src/share/vm/opto/vectornode.cpp

Fri, 15 Jun 2012 01:25:19 -0700

author
kvn
date
Fri, 15 Jun 2012 01:25:19 -0700
changeset 3882
8c92982cbbc4
parent 3040
c7b60b601eb4
child 4001
006050192a5a
permissions
-rw-r--r--

7119644: Increase superword's vector size up to 256 bits
Summary: Increase vector size up to 256-bits for YMM AVX registers on x86.
Reviewed-by: never, twisti, roland

     1 /*
     2  * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  */
    24 #include "precompiled.hpp"
    25 #include "memory/allocation.inline.hpp"
    26 #include "opto/connode.hpp"
    27 #include "opto/vectornode.hpp"
    29 //------------------------------VectorNode--------------------------------------
    31 // Return the vector operator for the specified scalar operation
    32 // and vector length.  Also used to check if the code generator
    33 // supports the vector operation.
    34 int VectorNode::opcode(int sopc, uint vlen, BasicType bt) {
    35   switch (sopc) {
    36   case Op_AddI:
    37     switch (bt) {
    38     case T_BOOLEAN:
    39     case T_BYTE:      return Op_AddVB;
    40     case T_CHAR:
    41     case T_SHORT:     return Op_AddVS;
    42     case T_INT:       return Op_AddVI;
    43     }
    44     ShouldNotReachHere();
    45   case Op_AddL:
    46     assert(bt == T_LONG, "must be");
    47     return Op_AddVL;
    48   case Op_AddF:
    49     assert(bt == T_FLOAT, "must be");
    50     return Op_AddVF;
    51   case Op_AddD:
    52     assert(bt == T_DOUBLE, "must be");
    53     return Op_AddVD;
    54   case Op_SubI:
    55     switch (bt) {
    56     case T_BOOLEAN:
    57     case T_BYTE:   return Op_SubVB;
    58     case T_CHAR:
    59     case T_SHORT:  return Op_SubVS;
    60     case T_INT:    return Op_SubVI;
    61     }
    62     ShouldNotReachHere();
    63   case Op_SubL:
    64     assert(bt == T_LONG, "must be");
    65     return Op_SubVL;
    66   case Op_SubF:
    67     assert(bt == T_FLOAT, "must be");
    68     return Op_SubVF;
    69   case Op_SubD:
    70     assert(bt == T_DOUBLE, "must be");
    71     return Op_SubVD;
    72   case Op_MulF:
    73     assert(bt == T_FLOAT, "must be");
    74     return Op_MulVF;
    75   case Op_MulD:
    76     assert(bt == T_DOUBLE, "must be");
    77     return Op_MulVD;
    78   case Op_DivF:
    79     assert(bt == T_FLOAT, "must be");
    80     return Op_DivVF;
    81   case Op_DivD:
    82     assert(bt == T_DOUBLE, "must be");
    83     return Op_DivVD;
    84   case Op_LShiftI:
    85     switch (bt) {
    86     case T_BOOLEAN:
    87     case T_BYTE:   return Op_LShiftVB;
    88     case T_CHAR:
    89     case T_SHORT:  return Op_LShiftVS;
    90     case T_INT:    return Op_LShiftVI;
    91     }
    92     ShouldNotReachHere();
    93   case Op_RShiftI:
    94     switch (bt) {
    95     case T_BOOLEAN:
    96     case T_BYTE:   return Op_RShiftVB;
    97     case T_CHAR:
    98     case T_SHORT:  return Op_RShiftVS;
    99     case T_INT:    return Op_RShiftVI;
   100     }
   101     ShouldNotReachHere();
   102   case Op_AndI:
   103   case Op_AndL:
   104     return Op_AndV;
   105   case Op_OrI:
   106   case Op_OrL:
   107     return Op_OrV;
   108   case Op_XorI:
   109   case Op_XorL:
   110     return Op_XorV;
   112   case Op_LoadB:
   113   case Op_LoadUB:
   114   case Op_LoadUS:
   115   case Op_LoadS:
   116   case Op_LoadI:
   117   case Op_LoadL:
   118   case Op_LoadF:
   119   case Op_LoadD:
   120     return Op_LoadVector;
   122   case Op_StoreB:
   123   case Op_StoreC:
   124   case Op_StoreI:
   125   case Op_StoreL:
   126   case Op_StoreF:
   127   case Op_StoreD:
   128     return Op_StoreVector;
   129   }
   130   return 0; // Unimplemented
   131 }
   133 bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
   134   if (is_java_primitive(bt) &&
   135       (vlen > 1) && is_power_of_2(vlen) &&
   136       Matcher::vector_size_supported(bt, vlen)) {
   137     int vopc = VectorNode::opcode(opc, vlen, bt);
   138     return vopc > 0 && Matcher::has_match_rule(vopc);
   139   }
   140   return false;
   141 }
   143 // Return the vector version of a scalar operation node.
   144 VectorNode* VectorNode::make(Compile* C, int opc, Node* n1, Node* n2, uint vlen, BasicType bt) {
   145   const TypeVect* vt = TypeVect::make(bt, vlen);
   146   int vopc = VectorNode::opcode(opc, vlen, bt);
   148   switch (vopc) {
   149   case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vt);
   150   case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vt);
   151   case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vt);
   152   case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vt);
   153   case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vt);
   154   case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vt);
   156   case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vt);
   157   case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vt);
   158   case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vt);
   159   case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vt);
   160   case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vt);
   161   case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vt);
   163   case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vt);
   164   case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vt);
   166   case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vt);
   167   case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vt);
   169   case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vt);
   170   case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vt);
   171   case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vt);
   173   case Op_RShiftVB: return new (C, 3) RShiftVBNode(n1, n2, vt);
   174   case Op_RShiftVS: return new (C, 3) RShiftVSNode(n1, n2, vt);
   175   case Op_RShiftVI: return new (C, 3) RShiftVINode(n1, n2, vt);
   177   case Op_AndV: return new (C, 3) AndVNode(n1, n2, vt);
   178   case Op_OrV:  return new (C, 3) OrVNode (n1, n2, vt);
   179   case Op_XorV: return new (C, 3) XorVNode(n1, n2, vt);
   180   }
   181   ShouldNotReachHere();
   182   return NULL;
   184 }
   186 // Scalar promotion
   187 VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
   188   BasicType bt = opd_t->array_element_basic_type();
   189   const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
   190                                           : TypeVect::make(bt, vlen);
   191   switch (bt) {
   192   case T_BOOLEAN:
   193   case T_BYTE:
   194     return new (C, 2) ReplicateBNode(s, vt);
   195   case T_CHAR:
   196   case T_SHORT:
   197     return new (C, 2) ReplicateSNode(s, vt);
   198   case T_INT:
   199     return new (C, 2) ReplicateINode(s, vt);
   200   case T_LONG:
   201     return new (C, 2) ReplicateLNode(s, vt);
   202   case T_FLOAT:
   203     return new (C, 2) ReplicateFNode(s, vt);
   204   case T_DOUBLE:
   205     return new (C, 2) ReplicateDNode(s, vt);
   206   }
   207   ShouldNotReachHere();
   208   return NULL;
   209 }
   211 // Return initial Pack node. Additional operands added with add_opd() calls.
   212 PackNode* PackNode::make(Compile* C, Node* s, uint vlen, BasicType bt) {
   213   const TypeVect* vt = TypeVect::make(bt, vlen);
   214   switch (bt) {
   215   case T_BOOLEAN:
   216   case T_BYTE:
   217     return new (C, vlen+1) PackBNode(s, vt);
   218   case T_CHAR:
   219   case T_SHORT:
   220     return new (C, vlen+1) PackSNode(s, vt);
   221   case T_INT:
   222     return new (C, vlen+1) PackINode(s, vt);
   223   case T_LONG:
   224     return new (C, vlen+1) PackLNode(s, vt);
   225   case T_FLOAT:
   226     return new (C, vlen+1) PackFNode(s, vt);
   227   case T_DOUBLE:
   228     return new (C, vlen+1) PackDNode(s, vt);
   229   }
   230   ShouldNotReachHere();
   231   return NULL;
   232 }
   234 // Create a binary tree form for Packs. [lo, hi) (half-open) range
   235 Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
   236   int ct = hi - lo;
   237   assert(is_power_of_2(ct), "power of 2");
   238   if (ct == 2) {
   239     PackNode* pk = PackNode::make(C, in(lo), 2, vect_type()->element_basic_type());
   240     pk->add_opd(1, in(lo+1));
   241     return pk;
   243   } else {
   244     int mid = lo + ct/2;
   245     Node* n1 = binaryTreePack(C, lo,  mid);
   246     Node* n2 = binaryTreePack(C, mid, hi );
   248     BasicType bt = vect_type()->element_basic_type();
   249     switch (bt) {
   250     case T_BOOLEAN:
   251     case T_BYTE:
   252       return new (C, 3) PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
   253     case T_CHAR:
   254     case T_SHORT:
   255       return new (C, 3) PackINode(n1, n2, TypeVect::make(T_INT, 2));
   256     case T_INT:
   257       return new (C, 3) PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
   258     case T_LONG:
   259       return new (C, 3) Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
   260     case T_FLOAT:
   261       return new (C, 3) PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
   262     case T_DOUBLE:
   263       return new (C, 3) Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
   264     }
   265     ShouldNotReachHere();
   266   }
   267   return NULL;
   268 }
   270 // Return the vector version of a scalar load node.
   271 LoadVectorNode* LoadVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem,
   272                                      Node* adr, const TypePtr* atyp, uint vlen, BasicType bt) {
   273   const TypeVect* vt = TypeVect::make(bt, vlen);
   274   return new (C, 3) LoadVectorNode(ctl, mem, adr, atyp, vt);
   275   return NULL;
   276 }
   278 // Return the vector version of a scalar store node.
   279 StoreVectorNode* StoreVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem,
   280                                        Node* adr, const TypePtr* atyp, Node* val,
   281                                        uint vlen) {
   282   return new (C, 4) StoreVectorNode(ctl, mem, adr, atyp, val);
   283 }
   285 // Extract a scalar element of vector.
   286 Node* ExtractNode::make(Compile* C, Node* v, uint position, BasicType bt) {
   287   assert((int)position < Matcher::max_vector_size(bt), "pos in range");
   288   ConINode* pos = ConINode::make(C, (int)position);
   289   switch (bt) {
   290   case T_BOOLEAN:
   291     return new (C, 3) ExtractUBNode(v, pos);
   292   case T_BYTE:
   293     return new (C, 3) ExtractBNode(v, pos);
   294   case T_CHAR:
   295     return new (C, 3) ExtractCNode(v, pos);
   296   case T_SHORT:
   297     return new (C, 3) ExtractSNode(v, pos);
   298   case T_INT:
   299     return new (C, 3) ExtractINode(v, pos);
   300   case T_LONG:
   301     return new (C, 3) ExtractLNode(v, pos);
   302   case T_FLOAT:
   303     return new (C, 3) ExtractFNode(v, pos);
   304   case T_DOUBLE:
   305     return new (C, 3) ExtractDNode(v, pos);
   306   }
   307   ShouldNotReachHere();
   308   return NULL;
   309 }

mercurial