src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Mon, 07 Nov 2011 22:11:12 -0500

author
tonyp
date
Mon, 07 Nov 2011 22:11:12 -0500
changeset 3268
8aae2050e83e
parent 3219
c6a6e936dc68
child 3289
a88de71c4e3a
permissions
-rw-r--r--

7092309: G1: introduce old region set
Summary: Keep track of all the old regions in the heap with a heap region set.
Reviewed-by: brutisso, johnc

ysr@777 1 /*
tonyp@3028 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/collectionSetChooser.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1MMUTracker.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31
ysr@777 32 // A G1CollectorPolicy makes policy decisions that determine the
ysr@777 33 // characteristics of the collector. Examples include:
ysr@777 34 // * choice of collection set.
ysr@777 35 // * when to collect.
ysr@777 36
ysr@777 37 class HeapRegion;
ysr@777 38 class CollectionSetChooser;
ysr@777 39
ysr@777 40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
ysr@777 41 // over and over again and introducing subtle problems through small typos and
ysr@777 42 // cutting and pasting mistakes. The macros below introduces a number
ysr@777 43 // sequnce into the following two classes and the methods that access it.
ysr@777 44
ysr@777 45 #define define_num_seq(name) \
ysr@777 46 private: \
ysr@777 47 NumberSeq _all_##name##_times_ms; \
ysr@777 48 public: \
ysr@777 49 void record_##name##_time_ms(double ms) { \
ysr@777 50 _all_##name##_times_ms.add(ms); \
ysr@777 51 } \
ysr@777 52 NumberSeq* get_##name##_seq() { \
ysr@777 53 return &_all_##name##_times_ms; \
ysr@777 54 }
ysr@777 55
ysr@777 56 class MainBodySummary;
ysr@777 57
apetrusenko@984 58 class PauseSummary: public CHeapObj {
ysr@777 59 define_num_seq(total)
ysr@777 60 define_num_seq(other)
ysr@777 61
ysr@777 62 public:
ysr@777 63 virtual MainBodySummary* main_body_summary() { return NULL; }
ysr@777 64 };
ysr@777 65
apetrusenko@984 66 class MainBodySummary: public CHeapObj {
ysr@777 67 define_num_seq(satb_drain) // optional
ysr@777 68 define_num_seq(parallel) // parallel only
ysr@777 69 define_num_seq(ext_root_scan)
ysr@777 70 define_num_seq(mark_stack_scan)
ysr@777 71 define_num_seq(update_rs)
ysr@777 72 define_num_seq(scan_rs)
ysr@777 73 define_num_seq(obj_copy)
ysr@777 74 define_num_seq(termination) // parallel only
ysr@777 75 define_num_seq(parallel_other) // parallel only
ysr@777 76 define_num_seq(mark_closure)
johnc@3219 77 define_num_seq(clear_ct)
ysr@777 78 };
ysr@777 79
apetrusenko@1112 80 class Summary: public PauseSummary,
apetrusenko@1112 81 public MainBodySummary {
ysr@777 82 public:
ysr@777 83 virtual MainBodySummary* main_body_summary() { return this; }
ysr@777 84 };
ysr@777 85
ysr@777 86 class G1CollectorPolicy: public CollectorPolicy {
tonyp@3209 87 private:
ysr@777 88 // The number of pauses during the execution.
ysr@777 89 long _n_pauses;
ysr@777 90
ysr@777 91 // either equal to the number of parallel threads, if ParallelGCThreads
ysr@777 92 // has been set, or 1 otherwise
ysr@777 93 int _parallel_gc_threads;
ysr@777 94
ysr@777 95 enum SomePrivateConstants {
tonyp@1377 96 NumPrevPausesForHeuristics = 10
ysr@777 97 };
ysr@777 98
ysr@777 99 G1MMUTracker* _mmu_tracker;
ysr@777 100
ysr@777 101 void initialize_flags();
ysr@777 102
ysr@777 103 void initialize_all() {
ysr@777 104 initialize_flags();
ysr@777 105 initialize_size_info();
ysr@777 106 initialize_perm_generation(PermGen::MarkSweepCompact);
ysr@777 107 }
ysr@777 108
tonyp@3209 109 CollectionSetChooser* _collectionSetChooser;
ysr@777 110
ysr@777 111 double _cur_collection_start_sec;
ysr@777 112 size_t _cur_collection_pause_used_at_start_bytes;
ysr@777 113 size_t _cur_collection_pause_used_regions_at_start;
ysr@777 114 size_t _prev_collection_pause_used_at_end_bytes;
ysr@777 115 double _cur_collection_par_time_ms;
ysr@777 116 double _cur_satb_drain_time_ms;
ysr@777 117 double _cur_clear_ct_time_ms;
johnc@3175 118 double _cur_ref_proc_time_ms;
johnc@3175 119 double _cur_ref_enq_time_ms;
ysr@777 120
johnc@1325 121 #ifndef PRODUCT
johnc@1325 122 // Card Table Count Cache stats
johnc@1325 123 double _min_clear_cc_time_ms; // min
johnc@1325 124 double _max_clear_cc_time_ms; // max
johnc@1325 125 double _cur_clear_cc_time_ms; // clearing time during current pause
johnc@1325 126 double _cum_clear_cc_time_ms; // cummulative clearing time
johnc@1325 127 jlong _num_cc_clears; // number of times the card count cache has been cleared
johnc@1325 128 #endif
johnc@1325 129
johnc@3021 130 // Statistics for recent GC pauses. See below for how indexed.
johnc@3021 131 TruncatedSeq* _recent_rs_scan_times_ms;
ysr@777 132
ysr@777 133 // These exclude marking times.
ysr@777 134 TruncatedSeq* _recent_pause_times_ms;
ysr@777 135 TruncatedSeq* _recent_gc_times_ms;
ysr@777 136
ysr@777 137 TruncatedSeq* _recent_CS_bytes_used_before;
ysr@777 138 TruncatedSeq* _recent_CS_bytes_surviving;
ysr@777 139
ysr@777 140 TruncatedSeq* _recent_rs_sizes;
ysr@777 141
ysr@777 142 TruncatedSeq* _concurrent_mark_remark_times_ms;
ysr@777 143 TruncatedSeq* _concurrent_mark_cleanup_times_ms;
ysr@777 144
apetrusenko@1112 145 Summary* _summary;
ysr@777 146
ysr@777 147 NumberSeq* _all_pause_times_ms;
ysr@777 148 NumberSeq* _all_full_gc_times_ms;
ysr@777 149 double _stop_world_start;
ysr@777 150 NumberSeq* _all_stop_world_times_ms;
ysr@777 151 NumberSeq* _all_yield_times_ms;
ysr@777 152
ysr@777 153 size_t _region_num_young;
ysr@777 154 size_t _region_num_tenured;
ysr@777 155 size_t _prev_region_num_young;
ysr@777 156 size_t _prev_region_num_tenured;
ysr@777 157
ysr@777 158 NumberSeq* _all_mod_union_times_ms;
ysr@777 159
ysr@777 160 int _aux_num;
ysr@777 161 NumberSeq* _all_aux_times_ms;
ysr@777 162 double* _cur_aux_start_times_ms;
ysr@777 163 double* _cur_aux_times_ms;
ysr@777 164 bool* _cur_aux_times_set;
ysr@777 165
tonyp@1966 166 double* _par_last_gc_worker_start_times_ms;
ysr@777 167 double* _par_last_ext_root_scan_times_ms;
ysr@777 168 double* _par_last_mark_stack_scan_times_ms;
ysr@777 169 double* _par_last_update_rs_times_ms;
ysr@777 170 double* _par_last_update_rs_processed_buffers;
ysr@777 171 double* _par_last_scan_rs_times_ms;
ysr@777 172 double* _par_last_obj_copy_times_ms;
ysr@777 173 double* _par_last_termination_times_ms;
tonyp@1966 174 double* _par_last_termination_attempts;
tonyp@1966 175 double* _par_last_gc_worker_end_times_ms;
brutisso@2712 176 double* _par_last_gc_worker_times_ms;
ysr@777 177
johnc@3219 178 // Each workers 'other' time i.e. the elapsed time of the parallel
johnc@3219 179 // phase of the pause minus the sum of the individual sub-phase
johnc@3219 180 // times for a given worker thread.
johnc@3219 181 double* _par_last_gc_worker_other_times_ms;
johnc@3219 182
ysr@777 183 // indicates whether we are in full young or partially young GC mode
ysr@777 184 bool _full_young_gcs;
ysr@777 185
ysr@777 186 // if true, then it tries to dynamically adjust the length of the
ysr@777 187 // young list
ysr@777 188 bool _adaptive_young_list_length;
ysr@777 189 size_t _young_list_target_length;
ysr@777 190 size_t _young_list_fixed_length;
brutisso@3120 191 size_t _prev_eden_capacity; // used for logging
ysr@777 192
tonyp@2333 193 // The max number of regions we can extend the eden by while the GC
tonyp@2333 194 // locker is active. This should be >= _young_list_target_length;
tonyp@2333 195 size_t _young_list_max_length;
tonyp@2333 196
ysr@777 197 size_t _young_cset_length;
ysr@777 198 bool _last_young_gc_full;
ysr@777 199
ysr@777 200 unsigned _full_young_pause_num;
ysr@777 201 unsigned _partial_young_pause_num;
ysr@777 202
ysr@777 203 bool _during_marking;
ysr@777 204 bool _in_marking_window;
ysr@777 205 bool _in_marking_window_im;
ysr@777 206
ysr@777 207 SurvRateGroup* _short_lived_surv_rate_group;
ysr@777 208 SurvRateGroup* _survivor_surv_rate_group;
ysr@777 209 // add here any more surv rate groups
ysr@777 210
tonyp@1791 211 double _gc_overhead_perc;
tonyp@1791 212
tonyp@3119 213 double _reserve_factor;
tonyp@3119 214 size_t _reserve_regions;
tonyp@3119 215
ysr@777 216 bool during_marking() {
ysr@777 217 return _during_marking;
ysr@777 218 }
ysr@777 219
ysr@777 220 // <NEW PREDICTION>
ysr@777 221
ysr@777 222 private:
ysr@777 223 enum PredictionConstants {
ysr@777 224 TruncatedSeqLength = 10
ysr@777 225 };
ysr@777 226
ysr@777 227 TruncatedSeq* _alloc_rate_ms_seq;
ysr@777 228 double _prev_collection_pause_end_ms;
ysr@777 229
ysr@777 230 TruncatedSeq* _pending_card_diff_seq;
ysr@777 231 TruncatedSeq* _rs_length_diff_seq;
ysr@777 232 TruncatedSeq* _cost_per_card_ms_seq;
ysr@777 233 TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
ysr@777 234 TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
ysr@777 235 TruncatedSeq* _cost_per_entry_ms_seq;
ysr@777 236 TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
ysr@777 237 TruncatedSeq* _cost_per_byte_ms_seq;
ysr@777 238 TruncatedSeq* _constant_other_time_ms_seq;
ysr@777 239 TruncatedSeq* _young_other_cost_per_region_ms_seq;
ysr@777 240 TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
ysr@777 241
ysr@777 242 TruncatedSeq* _pending_cards_seq;
ysr@777 243 TruncatedSeq* _scanned_cards_seq;
ysr@777 244 TruncatedSeq* _rs_lengths_seq;
ysr@777 245
ysr@777 246 TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
ysr@777 247
ysr@777 248 TruncatedSeq* _young_gc_eff_seq;
ysr@777 249
ysr@777 250 TruncatedSeq* _max_conc_overhead_seq;
ysr@777 251
brutisso@3120 252 bool _using_new_ratio_calculations;
brutisso@3120 253 size_t _min_desired_young_length; // as set on the command line or default calculations
brutisso@3120 254 size_t _max_desired_young_length; // as set on the command line or default calculations
brutisso@3120 255
ysr@777 256 size_t _recorded_young_regions;
ysr@777 257 size_t _recorded_non_young_regions;
ysr@777 258 size_t _recorded_region_num;
ysr@777 259
ysr@777 260 size_t _free_regions_at_end_of_collection;
ysr@777 261
ysr@777 262 size_t _recorded_rs_lengths;
ysr@777 263 size_t _max_rs_lengths;
ysr@777 264
ysr@777 265 size_t _recorded_marked_bytes;
ysr@777 266 size_t _recorded_young_bytes;
ysr@777 267
ysr@777 268 size_t _predicted_pending_cards;
ysr@777 269 size_t _predicted_cards_scanned;
ysr@777 270 size_t _predicted_rs_lengths;
ysr@777 271 size_t _predicted_bytes_to_copy;
ysr@777 272
ysr@777 273 double _predicted_survival_ratio;
ysr@777 274 double _predicted_rs_update_time_ms;
ysr@777 275 double _predicted_rs_scan_time_ms;
ysr@777 276 double _predicted_object_copy_time_ms;
ysr@777 277 double _predicted_constant_other_time_ms;
ysr@777 278 double _predicted_young_other_time_ms;
ysr@777 279 double _predicted_non_young_other_time_ms;
ysr@777 280 double _predicted_pause_time_ms;
ysr@777 281
ysr@777 282 double _vtime_diff_ms;
ysr@777 283
ysr@777 284 double _recorded_young_free_cset_time_ms;
ysr@777 285 double _recorded_non_young_free_cset_time_ms;
ysr@777 286
ysr@777 287 double _sigma;
ysr@777 288 double _expensive_region_limit_ms;
ysr@777 289
ysr@777 290 size_t _rs_lengths_prediction;
ysr@777 291
ysr@777 292 size_t _known_garbage_bytes;
ysr@777 293 double _known_garbage_ratio;
ysr@777 294
ysr@777 295 double sigma() {
ysr@777 296 return _sigma;
ysr@777 297 }
ysr@777 298
ysr@777 299 // A function that prevents us putting too much stock in small sample
ysr@777 300 // sets. Returns a number between 2.0 and 1.0, depending on the number
ysr@777 301 // of samples. 5 or more samples yields one; fewer scales linearly from
ysr@777 302 // 2.0 at 1 sample to 1.0 at 5.
ysr@777 303 double confidence_factor(int samples) {
ysr@777 304 if (samples > 4) return 1.0;
ysr@777 305 else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
ysr@777 306 }
ysr@777 307
ysr@777 308 double get_new_neg_prediction(TruncatedSeq* seq) {
ysr@777 309 return seq->davg() - sigma() * seq->dsd();
ysr@777 310 }
ysr@777 311
ysr@777 312 #ifndef PRODUCT
ysr@777 313 bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
ysr@777 314 #endif // PRODUCT
ysr@777 315
iveresov@1546 316 void adjust_concurrent_refinement(double update_rs_time,
iveresov@1546 317 double update_rs_processed_buffers,
iveresov@1546 318 double goal_ms);
iveresov@1546 319
ysr@777 320 double _pause_time_target_ms;
ysr@777 321 double _recorded_young_cset_choice_time_ms;
ysr@777 322 double _recorded_non_young_cset_choice_time_ms;
ysr@777 323 bool _within_target;
ysr@777 324 size_t _pending_cards;
ysr@777 325 size_t _max_pending_cards;
ysr@777 326
ysr@777 327 public:
ysr@777 328
ysr@777 329 void set_region_short_lived(HeapRegion* hr) {
ysr@777 330 hr->install_surv_rate_group(_short_lived_surv_rate_group);
ysr@777 331 }
ysr@777 332
ysr@777 333 void set_region_survivors(HeapRegion* hr) {
ysr@777 334 hr->install_surv_rate_group(_survivor_surv_rate_group);
ysr@777 335 }
ysr@777 336
ysr@777 337 #ifndef PRODUCT
ysr@777 338 bool verify_young_ages();
ysr@777 339 #endif // PRODUCT
ysr@777 340
ysr@777 341 double get_new_prediction(TruncatedSeq* seq) {
ysr@777 342 return MAX2(seq->davg() + sigma() * seq->dsd(),
ysr@777 343 seq->davg() * confidence_factor(seq->num()));
ysr@777 344 }
ysr@777 345
ysr@777 346 size_t young_cset_length() {
ysr@777 347 return _young_cset_length;
ysr@777 348 }
ysr@777 349
ysr@777 350 void record_max_rs_lengths(size_t rs_lengths) {
ysr@777 351 _max_rs_lengths = rs_lengths;
ysr@777 352 }
ysr@777 353
ysr@777 354 size_t predict_pending_card_diff() {
ysr@777 355 double prediction = get_new_neg_prediction(_pending_card_diff_seq);
ysr@777 356 if (prediction < 0.00001)
ysr@777 357 return 0;
ysr@777 358 else
ysr@777 359 return (size_t) prediction;
ysr@777 360 }
ysr@777 361
ysr@777 362 size_t predict_pending_cards() {
ysr@777 363 size_t max_pending_card_num = _g1->max_pending_card_num();
ysr@777 364 size_t diff = predict_pending_card_diff();
ysr@777 365 size_t prediction;
ysr@777 366 if (diff > max_pending_card_num)
ysr@777 367 prediction = max_pending_card_num;
ysr@777 368 else
ysr@777 369 prediction = max_pending_card_num - diff;
ysr@777 370
ysr@777 371 return prediction;
ysr@777 372 }
ysr@777 373
ysr@777 374 size_t predict_rs_length_diff() {
ysr@777 375 return (size_t) get_new_prediction(_rs_length_diff_seq);
ysr@777 376 }
ysr@777 377
ysr@777 378 double predict_alloc_rate_ms() {
ysr@777 379 return get_new_prediction(_alloc_rate_ms_seq);
ysr@777 380 }
ysr@777 381
ysr@777 382 double predict_cost_per_card_ms() {
ysr@777 383 return get_new_prediction(_cost_per_card_ms_seq);
ysr@777 384 }
ysr@777 385
ysr@777 386 double predict_rs_update_time_ms(size_t pending_cards) {
ysr@777 387 return (double) pending_cards * predict_cost_per_card_ms();
ysr@777 388 }
ysr@777 389
ysr@777 390 double predict_fully_young_cards_per_entry_ratio() {
ysr@777 391 return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
ysr@777 392 }
ysr@777 393
ysr@777 394 double predict_partially_young_cards_per_entry_ratio() {
ysr@777 395 if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
ysr@777 396 return predict_fully_young_cards_per_entry_ratio();
ysr@777 397 else
ysr@777 398 return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
ysr@777 399 }
ysr@777 400
ysr@777 401 size_t predict_young_card_num(size_t rs_length) {
ysr@777 402 return (size_t) ((double) rs_length *
ysr@777 403 predict_fully_young_cards_per_entry_ratio());
ysr@777 404 }
ysr@777 405
ysr@777 406 size_t predict_non_young_card_num(size_t rs_length) {
ysr@777 407 return (size_t) ((double) rs_length *
ysr@777 408 predict_partially_young_cards_per_entry_ratio());
ysr@777 409 }
ysr@777 410
ysr@777 411 double predict_rs_scan_time_ms(size_t card_num) {
ysr@777 412 if (full_young_gcs())
ysr@777 413 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
ysr@777 414 else
ysr@777 415 return predict_partially_young_rs_scan_time_ms(card_num);
ysr@777 416 }
ysr@777 417
ysr@777 418 double predict_partially_young_rs_scan_time_ms(size_t card_num) {
ysr@777 419 if (_partially_young_cost_per_entry_ms_seq->num() < 3)
ysr@777 420 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
ysr@777 421 else
ysr@777 422 return (double) card_num *
ysr@777 423 get_new_prediction(_partially_young_cost_per_entry_ms_seq);
ysr@777 424 }
ysr@777 425
ysr@777 426 double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
ysr@777 427 if (_cost_per_byte_ms_during_cm_seq->num() < 3)
ysr@777 428 return 1.1 * (double) bytes_to_copy *
ysr@777 429 get_new_prediction(_cost_per_byte_ms_seq);
ysr@777 430 else
ysr@777 431 return (double) bytes_to_copy *
ysr@777 432 get_new_prediction(_cost_per_byte_ms_during_cm_seq);
ysr@777 433 }
ysr@777 434
ysr@777 435 double predict_object_copy_time_ms(size_t bytes_to_copy) {
ysr@777 436 if (_in_marking_window && !_in_marking_window_im)
ysr@777 437 return predict_object_copy_time_ms_during_cm(bytes_to_copy);
ysr@777 438 else
ysr@777 439 return (double) bytes_to_copy *
ysr@777 440 get_new_prediction(_cost_per_byte_ms_seq);
ysr@777 441 }
ysr@777 442
ysr@777 443 double predict_constant_other_time_ms() {
ysr@777 444 return get_new_prediction(_constant_other_time_ms_seq);
ysr@777 445 }
ysr@777 446
ysr@777 447 double predict_young_other_time_ms(size_t young_num) {
ysr@777 448 return
ysr@777 449 (double) young_num *
ysr@777 450 get_new_prediction(_young_other_cost_per_region_ms_seq);
ysr@777 451 }
ysr@777 452
ysr@777 453 double predict_non_young_other_time_ms(size_t non_young_num) {
ysr@777 454 return
ysr@777 455 (double) non_young_num *
ysr@777 456 get_new_prediction(_non_young_other_cost_per_region_ms_seq);
ysr@777 457 }
ysr@777 458
ysr@777 459 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 460
ysr@777 461 double predict_young_collection_elapsed_time_ms(size_t adjustment);
ysr@777 462 double predict_base_elapsed_time_ms(size_t pending_cards);
ysr@777 463 double predict_base_elapsed_time_ms(size_t pending_cards,
ysr@777 464 size_t scanned_cards);
ysr@777 465 size_t predict_bytes_to_copy(HeapRegion* hr);
ysr@777 466 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 467
ysr@777 468 void start_recording_regions();
johnc@1829 469 void record_cset_region_info(HeapRegion* hr, bool young);
johnc@1829 470 void record_non_young_cset_region(HeapRegion* hr);
johnc@1829 471
johnc@1829 472 void set_recorded_young_regions(size_t n_regions);
johnc@1829 473 void set_recorded_young_bytes(size_t bytes);
johnc@1829 474 void set_recorded_rs_lengths(size_t rs_lengths);
johnc@1829 475 void set_predicted_bytes_to_copy(size_t bytes);
johnc@1829 476
ysr@777 477 void end_recording_regions();
ysr@777 478
ysr@777 479 void record_vtime_diff_ms(double vtime_diff_ms) {
ysr@777 480 _vtime_diff_ms = vtime_diff_ms;
ysr@777 481 }
ysr@777 482
ysr@777 483 void record_young_free_cset_time_ms(double time_ms) {
ysr@777 484 _recorded_young_free_cset_time_ms = time_ms;
ysr@777 485 }
ysr@777 486
ysr@777 487 void record_non_young_free_cset_time_ms(double time_ms) {
ysr@777 488 _recorded_non_young_free_cset_time_ms = time_ms;
ysr@777 489 }
ysr@777 490
ysr@777 491 double predict_young_gc_eff() {
ysr@777 492 return get_new_neg_prediction(_young_gc_eff_seq);
ysr@777 493 }
ysr@777 494
apetrusenko@980 495 double predict_survivor_regions_evac_time();
apetrusenko@980 496
ysr@777 497 // </NEW PREDICTION>
ysr@777 498
ysr@777 499 void cset_regions_freed() {
ysr@777 500 bool propagate = _last_young_gc_full && !_in_marking_window;
ysr@777 501 _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 502 _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 503 // also call it on any more surv rate groups
ysr@777 504 }
ysr@777 505
ysr@777 506 void set_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 507 _known_garbage_bytes = known_garbage_bytes;
ysr@777 508 size_t heap_bytes = _g1->capacity();
ysr@777 509 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 510 }
ysr@777 511
ysr@777 512 void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 513 guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
ysr@777 514
ysr@777 515 _known_garbage_bytes -= known_garbage_bytes;
ysr@777 516 size_t heap_bytes = _g1->capacity();
ysr@777 517 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 518 }
ysr@777 519
ysr@777 520 G1MMUTracker* mmu_tracker() {
ysr@777 521 return _mmu_tracker;
ysr@777 522 }
ysr@777 523
tonyp@2011 524 double max_pause_time_ms() {
tonyp@2011 525 return _mmu_tracker->max_gc_time() * 1000.0;
tonyp@2011 526 }
tonyp@2011 527
ysr@777 528 double predict_remark_time_ms() {
ysr@777 529 return get_new_prediction(_concurrent_mark_remark_times_ms);
ysr@777 530 }
ysr@777 531
ysr@777 532 double predict_cleanup_time_ms() {
ysr@777 533 return get_new_prediction(_concurrent_mark_cleanup_times_ms);
ysr@777 534 }
ysr@777 535
ysr@777 536 // Returns an estimate of the survival rate of the region at yg-age
ysr@777 537 // "yg_age".
apetrusenko@980 538 double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
apetrusenko@980 539 TruncatedSeq* seq = surv_rate_group->get_seq(age);
ysr@777 540 if (seq->num() == 0)
ysr@777 541 gclog_or_tty->print("BARF! age is %d", age);
ysr@777 542 guarantee( seq->num() > 0, "invariant" );
ysr@777 543 double pred = get_new_prediction(seq);
ysr@777 544 if (pred > 1.0)
ysr@777 545 pred = 1.0;
ysr@777 546 return pred;
ysr@777 547 }
ysr@777 548
apetrusenko@980 549 double predict_yg_surv_rate(int age) {
apetrusenko@980 550 return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
apetrusenko@980 551 }
apetrusenko@980 552
ysr@777 553 double accum_yg_surv_rate_pred(int age) {
ysr@777 554 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
ysr@777 555 }
ysr@777 556
tonyp@3209 557 private:
tonyp@1966 558 void print_stats(int level, const char* str, double value);
tonyp@1966 559 void print_stats(int level, const char* str, int value);
tonyp@1966 560
brutisso@2712 561 void print_par_stats(int level, const char* str, double* data);
brutisso@2712 562 void print_par_sizes(int level, const char* str, double* data);
ysr@777 563
ysr@777 564 void check_other_times(int level,
ysr@777 565 NumberSeq* other_times_ms,
ysr@777 566 NumberSeq* calc_other_times_ms) const;
ysr@777 567
ysr@777 568 void print_summary (PauseSummary* stats) const;
ysr@777 569
ysr@777 570 void print_summary (int level, const char* str, NumberSeq* seq) const;
ysr@777 571 void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
ysr@777 572
ysr@777 573 double avg_value (double* data);
ysr@777 574 double max_value (double* data);
ysr@777 575 double sum_of_values (double* data);
ysr@777 576 double max_sum (double* data1, double* data2);
ysr@777 577
ysr@777 578 int _last_satb_drain_processed_buffers;
ysr@777 579 int _last_update_rs_processed_buffers;
ysr@777 580 double _last_pause_time_ms;
ysr@777 581
ysr@777 582 size_t _bytes_in_collection_set_before_gc;
tonyp@3028 583 size_t _bytes_copied_during_gc;
tonyp@3028 584
ysr@777 585 // Used to count used bytes in CS.
ysr@777 586 friend class CountCSClosure;
ysr@777 587
ysr@777 588 // Statistics kept per GC stoppage, pause or full.
ysr@777 589 TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
ysr@777 590
ysr@777 591 // Add a new GC of the given duration and end time to the record.
ysr@777 592 void update_recent_gc_times(double end_time_sec, double elapsed_ms);
ysr@777 593
ysr@777 594 // The head of the list (via "next_in_collection_set()") representing the
johnc@1829 595 // current collection set. Set from the incrementally built collection
johnc@1829 596 // set at the start of the pause.
ysr@777 597 HeapRegion* _collection_set;
johnc@1829 598
johnc@1829 599 // The number of regions in the collection set. Set from the incrementally
johnc@1829 600 // built collection set at the start of an evacuation pause.
ysr@777 601 size_t _collection_set_size;
johnc@1829 602
johnc@1829 603 // The number of bytes in the collection set before the pause. Set from
johnc@1829 604 // the incrementally built collection set at the start of an evacuation
johnc@1829 605 // pause.
ysr@777 606 size_t _collection_set_bytes_used_before;
ysr@777 607
johnc@1829 608 // The associated information that is maintained while the incremental
johnc@1829 609 // collection set is being built with young regions. Used to populate
johnc@1829 610 // the recorded info for the evacuation pause.
johnc@1829 611
johnc@1829 612 enum CSetBuildType {
johnc@1829 613 Active, // We are actively building the collection set
johnc@1829 614 Inactive // We are not actively building the collection set
johnc@1829 615 };
johnc@1829 616
johnc@1829 617 CSetBuildType _inc_cset_build_state;
johnc@1829 618
johnc@1829 619 // The head of the incrementally built collection set.
johnc@1829 620 HeapRegion* _inc_cset_head;
johnc@1829 621
johnc@1829 622 // The tail of the incrementally built collection set.
johnc@1829 623 HeapRegion* _inc_cset_tail;
johnc@1829 624
johnc@1829 625 // The number of regions in the incrementally built collection set.
johnc@1829 626 // Used to set _collection_set_size at the start of an evacuation
johnc@1829 627 // pause.
johnc@1829 628 size_t _inc_cset_size;
johnc@1829 629
johnc@1829 630 // Used as the index in the surving young words structure
johnc@1829 631 // which tracks the amount of space, for each young region,
johnc@1829 632 // that survives the pause.
johnc@1829 633 size_t _inc_cset_young_index;
johnc@1829 634
johnc@1829 635 // The number of bytes in the incrementally built collection set.
johnc@1829 636 // Used to set _collection_set_bytes_used_before at the start of
johnc@1829 637 // an evacuation pause.
johnc@1829 638 size_t _inc_cset_bytes_used_before;
johnc@1829 639
johnc@1829 640 // Used to record the highest end of heap region in collection set
johnc@1829 641 HeapWord* _inc_cset_max_finger;
johnc@1829 642
johnc@1829 643 // The number of recorded used bytes in the young regions
johnc@1829 644 // of the collection set. This is the sum of the used() bytes
johnc@1829 645 // of retired young regions in the collection set.
johnc@1829 646 size_t _inc_cset_recorded_young_bytes;
johnc@1829 647
johnc@1829 648 // The RSet lengths recorded for regions in the collection set
johnc@1829 649 // (updated by the periodic sampling of the regions in the
johnc@1829 650 // young list/collection set).
johnc@1829 651 size_t _inc_cset_recorded_rs_lengths;
johnc@1829 652
johnc@1829 653 // The predicted elapsed time it will take to collect the regions
johnc@1829 654 // in the collection set (updated by the periodic sampling of the
johnc@1829 655 // regions in the young list/collection set).
johnc@1829 656 double _inc_cset_predicted_elapsed_time_ms;
johnc@1829 657
johnc@1829 658 // The predicted bytes to copy for the regions in the collection
johnc@1829 659 // set (updated by the periodic sampling of the regions in the
johnc@1829 660 // young list/collection set).
johnc@1829 661 size_t _inc_cset_predicted_bytes_to_copy;
johnc@1829 662
ysr@777 663 // Stash a pointer to the g1 heap.
ysr@777 664 G1CollectedHeap* _g1;
ysr@777 665
ysr@777 666 // The average time in ms per collection pause, averaged over recent pauses.
ysr@777 667 double recent_avg_time_for_pauses_ms();
ysr@777 668
johnc@3021 669 // The average time in ms for RS scanning, per pause, averaged
johnc@3021 670 // over recent pauses. (Note the RS scanning time for a pause
johnc@3021 671 // is itself an average of the RS scanning time for each worker
johnc@3021 672 // thread.)
johnc@3021 673 double recent_avg_time_for_rs_scan_ms();
ysr@777 674
ysr@777 675 // The number of "recent" GCs recorded in the number sequences
ysr@777 676 int number_of_recent_gcs();
ysr@777 677
ysr@777 678 // The average survival ratio, computed by the total number of bytes
ysr@777 679 // suriviving / total number of bytes before collection over the last
ysr@777 680 // several recent pauses.
ysr@777 681 double recent_avg_survival_fraction();
ysr@777 682 // The survival fraction of the most recent pause; if there have been no
ysr@777 683 // pauses, returns 1.0.
ysr@777 684 double last_survival_fraction();
ysr@777 685
ysr@777 686 // Returns a "conservative" estimate of the recent survival rate, i.e.,
ysr@777 687 // one that may be higher than "recent_avg_survival_fraction".
ysr@777 688 // This is conservative in several ways:
ysr@777 689 // If there have been few pauses, it will assume a potential high
ysr@777 690 // variance, and err on the side of caution.
ysr@777 691 // It puts a lower bound (currently 0.1) on the value it will return.
ysr@777 692 // To try to detect phase changes, if the most recent pause ("latest") has a
ysr@777 693 // higher-than average ("avg") survival rate, it returns that rate.
ysr@777 694 // "work" version is a utility function; young is restricted to young regions.
ysr@777 695 double conservative_avg_survival_fraction_work(double avg,
ysr@777 696 double latest);
ysr@777 697
ysr@777 698 // The arguments are the two sequences that keep track of the number of bytes
ysr@777 699 // surviving and the total number of bytes before collection, resp.,
ysr@777 700 // over the last evereal recent pauses
ysr@777 701 // Returns the survival rate for the category in the most recent pause.
ysr@777 702 // If there have been no pauses, returns 1.0.
ysr@777 703 double last_survival_fraction_work(TruncatedSeq* surviving,
ysr@777 704 TruncatedSeq* before);
ysr@777 705
ysr@777 706 // The arguments are the two sequences that keep track of the number of bytes
ysr@777 707 // surviving and the total number of bytes before collection, resp.,
ysr@777 708 // over the last several recent pauses
ysr@777 709 // Returns the average survival ration over the last several recent pauses
ysr@777 710 // If there have been no pauses, return 1.0
ysr@777 711 double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
ysr@777 712 TruncatedSeq* before);
ysr@777 713
ysr@777 714 double conservative_avg_survival_fraction() {
ysr@777 715 double avg = recent_avg_survival_fraction();
ysr@777 716 double latest = last_survival_fraction();
ysr@777 717 return conservative_avg_survival_fraction_work(avg, latest);
ysr@777 718 }
ysr@777 719
ysr@777 720 // The ratio of gc time to elapsed time, computed over recent pauses.
ysr@777 721 double _recent_avg_pause_time_ratio;
ysr@777 722
ysr@777 723 double recent_avg_pause_time_ratio() {
ysr@777 724 return _recent_avg_pause_time_ratio;
ysr@777 725 }
ysr@777 726
ysr@777 727 // Number of pauses between concurrent marking.
ysr@777 728 size_t _pauses_btwn_concurrent_mark;
ysr@777 729
tonyp@1794 730 // At the end of a pause we check the heap occupancy and we decide
tonyp@1794 731 // whether we will start a marking cycle during the next pause. If
tonyp@1794 732 // we decide that we want to do that, we will set this parameter to
tonyp@1794 733 // true. So, this parameter will stay true between the end of a
tonyp@1794 734 // pause and the beginning of a subsequent pause (not necessarily
tonyp@1794 735 // the next one, see the comments on the next field) when we decide
tonyp@1794 736 // that we will indeed start a marking cycle and do the initial-mark
tonyp@1794 737 // work.
tonyp@1794 738 volatile bool _initiate_conc_mark_if_possible;
ysr@777 739
tonyp@1794 740 // If initiate_conc_mark_if_possible() is set at the beginning of a
tonyp@1794 741 // pause, it is a suggestion that the pause should start a marking
tonyp@1794 742 // cycle by doing the initial-mark work. However, it is possible
tonyp@1794 743 // that the concurrent marking thread is still finishing up the
tonyp@1794 744 // previous marking cycle (e.g., clearing the next marking
tonyp@1794 745 // bitmap). If that is the case we cannot start a new cycle and
tonyp@1794 746 // we'll have to wait for the concurrent marking thread to finish
tonyp@1794 747 // what it is doing. In this case we will postpone the marking cycle
tonyp@1794 748 // initiation decision for the next pause. When we eventually decide
tonyp@1794 749 // to start a cycle, we will set _during_initial_mark_pause which
tonyp@1794 750 // will stay true until the end of the initial-mark pause and it's
tonyp@1794 751 // the condition that indicates that a pause is doing the
tonyp@1794 752 // initial-mark work.
tonyp@1794 753 volatile bool _during_initial_mark_pause;
tonyp@1794 754
ysr@777 755 bool _should_revert_to_full_young_gcs;
ysr@777 756 bool _last_full_young_gc;
ysr@777 757
ysr@777 758 // This set of variables tracks the collector efficiency, in order to
ysr@777 759 // determine whether we should initiate a new marking.
ysr@777 760 double _cur_mark_stop_world_time_ms;
ysr@777 761 double _mark_remark_start_sec;
ysr@777 762 double _mark_cleanup_start_sec;
ysr@777 763 double _mark_closure_time_ms;
ysr@777 764
tonyp@3119 765 // Update the young list target length either by setting it to the
tonyp@3119 766 // desired fixed value or by calculating it using G1's pause
tonyp@3119 767 // prediction model. If no rs_lengths parameter is passed, predict
tonyp@3119 768 // the RS lengths using the prediction model, otherwise use the
tonyp@3119 769 // given rs_lengths as the prediction.
tonyp@3119 770 void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
tonyp@3119 771
tonyp@3119 772 // Calculate and return the minimum desired young list target
tonyp@3119 773 // length. This is the minimum desired young list length according
tonyp@3119 774 // to the user's inputs.
tonyp@3119 775 size_t calculate_young_list_desired_min_length(size_t base_min_length);
tonyp@3119 776
tonyp@3119 777 // Calculate and return the maximum desired young list target
tonyp@3119 778 // length. This is the maximum desired young list length according
tonyp@3119 779 // to the user's inputs.
tonyp@3119 780 size_t calculate_young_list_desired_max_length();
tonyp@3119 781
tonyp@3119 782 // Calculate and return the maximum young list target length that
tonyp@3119 783 // can fit into the pause time goal. The parameters are: rs_lengths
tonyp@3119 784 // represent the prediction of how large the young RSet lengths will
tonyp@3119 785 // be, base_min_length is the alreay existing number of regions in
tonyp@3119 786 // the young list, min_length and max_length are the desired min and
tonyp@3119 787 // max young list length according to the user's inputs.
tonyp@3119 788 size_t calculate_young_list_target_length(size_t rs_lengths,
tonyp@3119 789 size_t base_min_length,
tonyp@3119 790 size_t desired_min_length,
tonyp@3119 791 size_t desired_max_length);
tonyp@3119 792
tonyp@3119 793 // Check whether a given young length (young_length) fits into the
tonyp@3119 794 // given target pause time and whether the prediction for the amount
tonyp@3119 795 // of objects to be copied for the given length will fit into the
tonyp@3119 796 // given free space (expressed by base_free_regions). It is used by
tonyp@3119 797 // calculate_young_list_target_length().
tonyp@3119 798 bool predict_will_fit(size_t young_length, double base_time_ms,
tonyp@3119 799 size_t base_free_regions, double target_pause_time_ms);
ysr@777 800
tonyp@3209 801 // Count the number of bytes used in the CS.
tonyp@3209 802 void count_CS_bytes_used();
tonyp@3209 803
tonyp@3209 804 void update_young_list_size_using_newratio(size_t number_of_heap_regions);
tonyp@3209 805
ysr@777 806 public:
ysr@777 807
ysr@777 808 G1CollectorPolicy();
ysr@777 809
ysr@777 810 virtual G1CollectorPolicy* as_g1_policy() { return this; }
ysr@777 811
ysr@777 812 virtual CollectorPolicy::Name kind() {
ysr@777 813 return CollectorPolicy::G1CollectorPolicyKind;
ysr@777 814 }
ysr@777 815
tonyp@3119 816 // Check the current value of the young list RSet lengths and
tonyp@3119 817 // compare it against the last prediction. If the current value is
tonyp@3119 818 // higher, recalculate the young list target length prediction.
tonyp@3119 819 void revise_young_list_target_length_if_necessary();
ysr@777 820
ysr@777 821 size_t bytes_in_collection_set() {
ysr@777 822 return _bytes_in_collection_set_before_gc;
ysr@777 823 }
ysr@777 824
ysr@777 825 unsigned calc_gc_alloc_time_stamp() {
ysr@777 826 return _all_pause_times_ms->num() + 1;
ysr@777 827 }
ysr@777 828
brutisso@3120 829 // This should be called after the heap is resized.
brutisso@3120 830 void record_new_heap_size(size_t new_number_of_regions);
tonyp@3119 831
ysr@777 832 public:
ysr@777 833
tonyp@3209 834 void init();
ysr@777 835
apetrusenko@980 836 // Create jstat counters for the policy.
apetrusenko@980 837 virtual void initialize_gc_policy_counters();
apetrusenko@980 838
ysr@777 839 virtual HeapWord* mem_allocate_work(size_t size,
ysr@777 840 bool is_tlab,
ysr@777 841 bool* gc_overhead_limit_was_exceeded);
ysr@777 842
ysr@777 843 // This method controls how a collector handles one or more
ysr@777 844 // of its generations being fully allocated.
ysr@777 845 virtual HeapWord* satisfy_failed_allocation(size_t size,
ysr@777 846 bool is_tlab);
ysr@777 847
ysr@777 848 BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
ysr@777 849
ysr@777 850 GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
ysr@777 851
ysr@777 852 // The number of collection pauses so far.
ysr@777 853 long n_pauses() const { return _n_pauses; }
ysr@777 854
ysr@777 855 // Update the heuristic info to record a collection pause of the given
ysr@777 856 // start time, where the given number of bytes were used at the start.
ysr@777 857 // This may involve changing the desired size of a collection set.
ysr@777 858
tonyp@3209 859 void record_stop_world_start();
ysr@777 860
tonyp@3209 861 void record_collection_pause_start(double start_time_sec, size_t start_used);
ysr@777 862
ysr@777 863 // Must currently be called while the world is stopped.
brutisso@3065 864 void record_concurrent_mark_init_end(double
ysr@777 865 mark_init_elapsed_time_ms);
ysr@777 866
ysr@777 867 void record_mark_closure_time(double mark_closure_time_ms);
ysr@777 868
tonyp@3209 869 void record_concurrent_mark_remark_start();
tonyp@3209 870 void record_concurrent_mark_remark_end();
ysr@777 871
tonyp@3209 872 void record_concurrent_mark_cleanup_start();
tonyp@3209 873 void record_concurrent_mark_cleanup_end();
tonyp@3209 874 void record_concurrent_mark_cleanup_completed();
ysr@777 875
tonyp@3209 876 void record_concurrent_pause();
tonyp@3209 877 void record_concurrent_pause_end();
ysr@777 878
tonyp@3209 879 void record_collection_pause_end();
tonyp@2961 880 void print_heap_transition();
ysr@777 881
ysr@777 882 // Record the fact that a full collection occurred.
tonyp@3209 883 void record_full_collection_start();
tonyp@3209 884 void record_full_collection_end();
ysr@777 885
tonyp@1966 886 void record_gc_worker_start_time(int worker_i, double ms) {
tonyp@1966 887 _par_last_gc_worker_start_times_ms[worker_i] = ms;
tonyp@1966 888 }
tonyp@1966 889
ysr@777 890 void record_ext_root_scan_time(int worker_i, double ms) {
ysr@777 891 _par_last_ext_root_scan_times_ms[worker_i] = ms;
ysr@777 892 }
ysr@777 893
ysr@777 894 void record_mark_stack_scan_time(int worker_i, double ms) {
ysr@777 895 _par_last_mark_stack_scan_times_ms[worker_i] = ms;
ysr@777 896 }
ysr@777 897
ysr@777 898 void record_satb_drain_time(double ms) {
johnc@3219 899 assert(_g1->mark_in_progress(), "shouldn't be here otherwise");
ysr@777 900 _cur_satb_drain_time_ms = ms;
ysr@777 901 }
ysr@777 902
johnc@3219 903 void record_satb_drain_processed_buffers(int processed_buffers) {
johnc@3219 904 assert(_g1->mark_in_progress(), "shouldn't be here otherwise");
ysr@777 905 _last_satb_drain_processed_buffers = processed_buffers;
ysr@777 906 }
ysr@777 907
ysr@777 908 void record_mod_union_time(double ms) {
ysr@777 909 _all_mod_union_times_ms->add(ms);
ysr@777 910 }
ysr@777 911
ysr@777 912 void record_update_rs_time(int thread, double ms) {
ysr@777 913 _par_last_update_rs_times_ms[thread] = ms;
ysr@777 914 }
ysr@777 915
ysr@777 916 void record_update_rs_processed_buffers (int thread,
ysr@777 917 double processed_buffers) {
ysr@777 918 _par_last_update_rs_processed_buffers[thread] = processed_buffers;
ysr@777 919 }
ysr@777 920
ysr@777 921 void record_scan_rs_time(int thread, double ms) {
ysr@777 922 _par_last_scan_rs_times_ms[thread] = ms;
ysr@777 923 }
ysr@777 924
ysr@777 925 void reset_obj_copy_time(int thread) {
ysr@777 926 _par_last_obj_copy_times_ms[thread] = 0.0;
ysr@777 927 }
ysr@777 928
ysr@777 929 void reset_obj_copy_time() {
ysr@777 930 reset_obj_copy_time(0);
ysr@777 931 }
ysr@777 932
ysr@777 933 void record_obj_copy_time(int thread, double ms) {
ysr@777 934 _par_last_obj_copy_times_ms[thread] += ms;
ysr@777 935 }
ysr@777 936
tonyp@1966 937 void record_termination(int thread, double ms, size_t attempts) {
tonyp@1966 938 _par_last_termination_times_ms[thread] = ms;
tonyp@1966 939 _par_last_termination_attempts[thread] = (double) attempts;
ysr@777 940 }
ysr@777 941
tonyp@1966 942 void record_gc_worker_end_time(int worker_i, double ms) {
tonyp@1966 943 _par_last_gc_worker_end_times_ms[worker_i] = ms;
ysr@777 944 }
ysr@777 945
tonyp@1030 946 void record_pause_time_ms(double ms) {
ysr@777 947 _last_pause_time_ms = ms;
ysr@777 948 }
ysr@777 949
ysr@777 950 void record_clear_ct_time(double ms) {
ysr@777 951 _cur_clear_ct_time_ms = ms;
ysr@777 952 }
ysr@777 953
ysr@777 954 void record_par_time(double ms) {
ysr@777 955 _cur_collection_par_time_ms = ms;
ysr@777 956 }
ysr@777 957
ysr@777 958 void record_aux_start_time(int i) {
ysr@777 959 guarantee(i < _aux_num, "should be within range");
ysr@777 960 _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
ysr@777 961 }
ysr@777 962
ysr@777 963 void record_aux_end_time(int i) {
ysr@777 964 guarantee(i < _aux_num, "should be within range");
ysr@777 965 double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
ysr@777 966 _cur_aux_times_set[i] = true;
ysr@777 967 _cur_aux_times_ms[i] += ms;
ysr@777 968 }
ysr@777 969
johnc@3175 970 void record_ref_proc_time(double ms) {
johnc@3175 971 _cur_ref_proc_time_ms = ms;
johnc@3175 972 }
johnc@3175 973
johnc@3175 974 void record_ref_enq_time(double ms) {
johnc@3175 975 _cur_ref_enq_time_ms = ms;
johnc@3175 976 }
johnc@3175 977
johnc@1325 978 #ifndef PRODUCT
johnc@1325 979 void record_cc_clear_time(double ms) {
johnc@1325 980 if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
johnc@1325 981 _min_clear_cc_time_ms = ms;
johnc@1325 982 if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
johnc@1325 983 _max_clear_cc_time_ms = ms;
johnc@1325 984 _cur_clear_cc_time_ms = ms;
johnc@1325 985 _cum_clear_cc_time_ms += ms;
johnc@1325 986 _num_cc_clears++;
johnc@1325 987 }
johnc@1325 988 #endif
johnc@1325 989
tonyp@3028 990 // Record how much space we copied during a GC. This is typically
tonyp@3028 991 // called when a GC alloc region is being retired.
tonyp@3028 992 void record_bytes_copied_during_gc(size_t bytes) {
tonyp@3028 993 _bytes_copied_during_gc += bytes;
tonyp@3028 994 }
tonyp@3028 995
tonyp@3028 996 // The amount of space we copied during a GC.
tonyp@3028 997 size_t bytes_copied_during_gc() {
tonyp@3028 998 return _bytes_copied_during_gc;
tonyp@3028 999 }
ysr@777 1000
ysr@777 1001 // Choose a new collection set. Marks the chosen regions as being
ysr@777 1002 // "in_collection_set", and links them together. The head and number of
ysr@777 1003 // the collection set are available via access methods.
tonyp@3209 1004 void choose_collection_set(double target_pause_time_ms);
ysr@777 1005
ysr@777 1006 // The head of the list (via "next_in_collection_set()") representing the
ysr@777 1007 // current collection set.
ysr@777 1008 HeapRegion* collection_set() { return _collection_set; }
ysr@777 1009
johnc@1829 1010 void clear_collection_set() { _collection_set = NULL; }
johnc@1829 1011
ysr@777 1012 // The number of elements in the current collection set.
ysr@777 1013 size_t collection_set_size() { return _collection_set_size; }
ysr@777 1014
ysr@777 1015 // Add "hr" to the CS.
ysr@777 1016 void add_to_collection_set(HeapRegion* hr);
ysr@777 1017
johnc@1829 1018 // Incremental CSet Support
johnc@1829 1019
johnc@1829 1020 // The head of the incrementally built collection set.
johnc@1829 1021 HeapRegion* inc_cset_head() { return _inc_cset_head; }
johnc@1829 1022
johnc@1829 1023 // The tail of the incrementally built collection set.
johnc@1829 1024 HeapRegion* inc_set_tail() { return _inc_cset_tail; }
johnc@1829 1025
johnc@1829 1026 // The number of elements in the incrementally built collection set.
johnc@1829 1027 size_t inc_cset_size() { return _inc_cset_size; }
johnc@1829 1028
johnc@1829 1029 // Initialize incremental collection set info.
johnc@1829 1030 void start_incremental_cset_building();
johnc@1829 1031
johnc@1829 1032 void clear_incremental_cset() {
johnc@1829 1033 _inc_cset_head = NULL;
johnc@1829 1034 _inc_cset_tail = NULL;
johnc@1829 1035 }
johnc@1829 1036
johnc@1829 1037 // Stop adding regions to the incremental collection set
johnc@1829 1038 void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
johnc@1829 1039
johnc@1829 1040 // Add/remove information about hr to the aggregated information
johnc@1829 1041 // for the incrementally built collection set.
johnc@1829 1042 void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
johnc@1829 1043 void remove_from_incremental_cset_info(HeapRegion* hr);
johnc@1829 1044
johnc@1829 1045 // Update information about hr in the aggregated information for
johnc@1829 1046 // the incrementally built collection set.
johnc@1829 1047 void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
johnc@1829 1048
johnc@1829 1049 private:
johnc@1829 1050 // Update the incremental cset information when adding a region
johnc@1829 1051 // (should not be called directly).
johnc@1829 1052 void add_region_to_incremental_cset_common(HeapRegion* hr);
johnc@1829 1053
johnc@1829 1054 public:
johnc@1829 1055 // Add hr to the LHS of the incremental collection set.
johnc@1829 1056 void add_region_to_incremental_cset_lhs(HeapRegion* hr);
johnc@1829 1057
johnc@1829 1058 // Add hr to the RHS of the incremental collection set.
johnc@1829 1059 void add_region_to_incremental_cset_rhs(HeapRegion* hr);
johnc@1829 1060
johnc@1829 1061 #ifndef PRODUCT
johnc@1829 1062 void print_collection_set(HeapRegion* list_head, outputStream* st);
johnc@1829 1063 #endif // !PRODUCT
johnc@1829 1064
tonyp@1794 1065 bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
tonyp@1794 1066 void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
tonyp@1794 1067 void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
tonyp@1794 1068
tonyp@1794 1069 bool during_initial_mark_pause() { return _during_initial_mark_pause; }
tonyp@1794 1070 void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
tonyp@1794 1071 void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
tonyp@1794 1072
tonyp@2011 1073 // This sets the initiate_conc_mark_if_possible() flag to start a
tonyp@2011 1074 // new cycle, as long as we are not already in one. It's best if it
tonyp@2011 1075 // is called during a safepoint when the test whether a cycle is in
tonyp@2011 1076 // progress or not is stable.
tonyp@3114 1077 bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
tonyp@2011 1078
tonyp@1794 1079 // This is called at the very beginning of an evacuation pause (it
tonyp@1794 1080 // has to be the first thing that the pause does). If
tonyp@1794 1081 // initiate_conc_mark_if_possible() is true, and the concurrent
tonyp@1794 1082 // marking thread has completed its work during the previous cycle,
tonyp@1794 1083 // it will set during_initial_mark_pause() to so that the pause does
tonyp@1794 1084 // the initial-mark work and start a marking cycle.
tonyp@1794 1085 void decide_on_conc_mark_initiation();
ysr@777 1086
ysr@777 1087 // If an expansion would be appropriate, because recent GC overhead had
ysr@777 1088 // exceeded the desired limit, return an amount to expand by.
tonyp@3209 1089 size_t expansion_amount();
ysr@777 1090
ysr@777 1091 #ifndef PRODUCT
ysr@777 1092 // Check any appropriate marked bytes info, asserting false if
ysr@777 1093 // something's wrong, else returning "true".
tonyp@3209 1094 bool assertMarkedBytesDataOK();
ysr@777 1095 #endif
ysr@777 1096
ysr@777 1097 // Print tracing information.
ysr@777 1098 void print_tracing_info() const;
ysr@777 1099
ysr@777 1100 // Print stats on young survival ratio
ysr@777 1101 void print_yg_surv_rate_info() const;
ysr@777 1102
apetrusenko@980 1103 void finished_recalculating_age_indexes(bool is_survivors) {
apetrusenko@980 1104 if (is_survivors) {
apetrusenko@980 1105 _survivor_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1106 } else {
apetrusenko@980 1107 _short_lived_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1108 }
ysr@777 1109 // do that for any other surv rate groups
ysr@777 1110 }
ysr@777 1111
tonyp@2315 1112 bool is_young_list_full() {
tonyp@2315 1113 size_t young_list_length = _g1->young_list()->length();
tonyp@2333 1114 size_t young_list_target_length = _young_list_target_length;
tonyp@2333 1115 return young_list_length >= young_list_target_length;
tonyp@2333 1116 }
tonyp@2333 1117
tonyp@2333 1118 bool can_expand_young_list() {
tonyp@2333 1119 size_t young_list_length = _g1->young_list()->length();
tonyp@2333 1120 size_t young_list_max_length = _young_list_max_length;
tonyp@2333 1121 return young_list_length < young_list_max_length;
tonyp@2333 1122 }
tonyp@2315 1123
tonyp@3176 1124 size_t young_list_max_length() {
tonyp@3176 1125 return _young_list_max_length;
tonyp@3176 1126 }
tonyp@3176 1127
tonyp@2315 1128 void update_region_num(bool young);
ysr@777 1129
ysr@777 1130 bool full_young_gcs() {
ysr@777 1131 return _full_young_gcs;
ysr@777 1132 }
ysr@777 1133 void set_full_young_gcs(bool full_young_gcs) {
ysr@777 1134 _full_young_gcs = full_young_gcs;
ysr@777 1135 }
ysr@777 1136
ysr@777 1137 bool adaptive_young_list_length() {
ysr@777 1138 return _adaptive_young_list_length;
ysr@777 1139 }
ysr@777 1140 void set_adaptive_young_list_length(bool adaptive_young_list_length) {
ysr@777 1141 _adaptive_young_list_length = adaptive_young_list_length;
ysr@777 1142 }
ysr@777 1143
ysr@777 1144 inline double get_gc_eff_factor() {
ysr@777 1145 double ratio = _known_garbage_ratio;
ysr@777 1146
ysr@777 1147 double square = ratio * ratio;
ysr@777 1148 // square = square * square;
ysr@777 1149 double ret = square * 9.0 + 1.0;
ysr@777 1150 #if 0
ysr@777 1151 gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
ysr@777 1152 #endif // 0
ysr@777 1153 guarantee(0.0 <= ret && ret < 10.0, "invariant!");
ysr@777 1154 return ret;
ysr@777 1155 }
ysr@777 1156
tonyp@3209 1157 private:
ysr@777 1158 //
ysr@777 1159 // Survivor regions policy.
ysr@777 1160 //
ysr@777 1161
ysr@777 1162 // Current tenuring threshold, set to 0 if the collector reaches the
ysr@777 1163 // maximum amount of suvivors regions.
ysr@777 1164 int _tenuring_threshold;
ysr@777 1165
apetrusenko@980 1166 // The limit on the number of regions allocated for survivors.
apetrusenko@980 1167 size_t _max_survivor_regions;
apetrusenko@980 1168
tonyp@2961 1169 // For reporting purposes.
tonyp@2961 1170 size_t _eden_bytes_before_gc;
tonyp@2961 1171 size_t _survivor_bytes_before_gc;
tonyp@2961 1172 size_t _capacity_before_gc;
tonyp@2961 1173
apetrusenko@980 1174 // The amount of survor regions after a collection.
apetrusenko@980 1175 size_t _recorded_survivor_regions;
apetrusenko@980 1176 // List of survivor regions.
apetrusenko@980 1177 HeapRegion* _recorded_survivor_head;
apetrusenko@980 1178 HeapRegion* _recorded_survivor_tail;
apetrusenko@980 1179
apetrusenko@980 1180 ageTable _survivors_age_table;
apetrusenko@980 1181
ysr@777 1182 public:
ysr@777 1183
ysr@777 1184 inline GCAllocPurpose
ysr@777 1185 evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
ysr@777 1186 if (age < _tenuring_threshold && src_region->is_young()) {
ysr@777 1187 return GCAllocForSurvived;
ysr@777 1188 } else {
ysr@777 1189 return GCAllocForTenured;
ysr@777 1190 }
ysr@777 1191 }
ysr@777 1192
ysr@777 1193 inline bool track_object_age(GCAllocPurpose purpose) {
ysr@777 1194 return purpose == GCAllocForSurvived;
ysr@777 1195 }
ysr@777 1196
apetrusenko@980 1197 static const size_t REGIONS_UNLIMITED = ~(size_t)0;
apetrusenko@980 1198
apetrusenko@980 1199 size_t max_regions(int purpose);
ysr@777 1200
ysr@777 1201 // The limit on regions for a particular purpose is reached.
ysr@777 1202 void note_alloc_region_limit_reached(int purpose) {
ysr@777 1203 if (purpose == GCAllocForSurvived) {
ysr@777 1204 _tenuring_threshold = 0;
ysr@777 1205 }
ysr@777 1206 }
ysr@777 1207
ysr@777 1208 void note_start_adding_survivor_regions() {
ysr@777 1209 _survivor_surv_rate_group->start_adding_regions();
ysr@777 1210 }
ysr@777 1211
ysr@777 1212 void note_stop_adding_survivor_regions() {
ysr@777 1213 _survivor_surv_rate_group->stop_adding_regions();
ysr@777 1214 }
apetrusenko@980 1215
apetrusenko@980 1216 void record_survivor_regions(size_t regions,
apetrusenko@980 1217 HeapRegion* head,
apetrusenko@980 1218 HeapRegion* tail) {
apetrusenko@980 1219 _recorded_survivor_regions = regions;
apetrusenko@980 1220 _recorded_survivor_head = head;
apetrusenko@980 1221 _recorded_survivor_tail = tail;
apetrusenko@980 1222 }
apetrusenko@980 1223
tonyp@1273 1224 size_t recorded_survivor_regions() {
tonyp@1273 1225 return _recorded_survivor_regions;
tonyp@1273 1226 }
tonyp@1273 1227
apetrusenko@980 1228 void record_thread_age_table(ageTable* age_table)
apetrusenko@980 1229 {
apetrusenko@980 1230 _survivors_age_table.merge_par(age_table);
apetrusenko@980 1231 }
apetrusenko@980 1232
tonyp@3119 1233 void update_max_gc_locker_expansion();
tonyp@2333 1234
apetrusenko@980 1235 // Calculates survivor space parameters.
tonyp@3119 1236 void update_survivors_policy();
apetrusenko@980 1237
ysr@777 1238 };
ysr@777 1239
ysr@777 1240 // This should move to some place more general...
ysr@777 1241
ysr@777 1242 // If we have "n" measurements, and we've kept track of their "sum" and the
ysr@777 1243 // "sum_of_squares" of the measurements, this returns the variance of the
ysr@777 1244 // sequence.
ysr@777 1245 inline double variance(int n, double sum_of_squares, double sum) {
ysr@777 1246 double n_d = (double)n;
ysr@777 1247 double avg = sum/n_d;
ysr@777 1248 return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
ysr@777 1249 }
ysr@777 1250
stefank@2314 1251 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial