src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Mon, 05 Mar 2012 14:19:00 -0500

author
coleenp
date
Mon, 05 Mar 2012 14:19:00 -0500
changeset 3627
8a48c2906f91
parent 3592
701a83c86f28
child 3760
8f972594effc
permissions
-rw-r--r--

7150046: SIGILL on sparcv9 fastdebug
Summary: Breakpoint needs to do 64-bit compare for pointers on sparcv9
Reviewed-by: coleenp, never
Contributed-by: dean.long@oracle.com

duke@435 1 /*
iveresov@2432 2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 28 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 29 #include "c1/c1_Runtime1.hpp"
stefank@2314 30 #include "c1/c1_ValueStack.hpp"
stefank@2314 31 #include "ci/ciArrayKlass.hpp"
stefank@2314 32 #include "ci/ciInstance.hpp"
stefank@2314 33 #include "gc_interface/collectedHeap.hpp"
stefank@2314 34 #include "memory/barrierSet.hpp"
stefank@2314 35 #include "memory/cardTableModRefBS.hpp"
stefank@2314 36 #include "nativeInst_sparc.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
duke@435 39
duke@435 40 #define __ _masm->
duke@435 41
duke@435 42
duke@435 43 //------------------------------------------------------------
duke@435 44
duke@435 45
duke@435 46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 47 if (opr->is_constant()) {
duke@435 48 LIR_Const* constant = opr->as_constant_ptr();
duke@435 49 switch (constant->type()) {
duke@435 50 case T_INT: {
duke@435 51 jint value = constant->as_jint();
duke@435 52 return Assembler::is_simm13(value);
duke@435 53 }
duke@435 54
duke@435 55 default:
duke@435 56 return false;
duke@435 57 }
duke@435 58 }
duke@435 59 return false;
duke@435 60 }
duke@435 61
duke@435 62
duke@435 63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
duke@435 64 switch (op->code()) {
duke@435 65 case lir_null_check:
duke@435 66 return true;
duke@435 67
duke@435 68
duke@435 69 case lir_add:
duke@435 70 case lir_ushr:
duke@435 71 case lir_shr:
duke@435 72 case lir_shl:
duke@435 73 // integer shifts and adds are always one instruction
duke@435 74 return op->result_opr()->is_single_cpu();
duke@435 75
duke@435 76
duke@435 77 case lir_move: {
duke@435 78 LIR_Op1* op1 = op->as_Op1();
duke@435 79 LIR_Opr src = op1->in_opr();
duke@435 80 LIR_Opr dst = op1->result_opr();
duke@435 81
duke@435 82 if (src == dst) {
duke@435 83 NEEDS_CLEANUP;
duke@435 84 // this works around a problem where moves with the same src and dst
duke@435 85 // end up in the delay slot and then the assembler swallows the mov
duke@435 86 // since it has no effect and then it complains because the delay slot
duke@435 87 // is empty. returning false stops the optimizer from putting this in
duke@435 88 // the delay slot
duke@435 89 return false;
duke@435 90 }
duke@435 91
duke@435 92 // don't put moves involving oops into the delay slot since the VerifyOops code
duke@435 93 // will make it much larger than a single instruction.
duke@435 94 if (VerifyOops) {
duke@435 95 return false;
duke@435 96 }
duke@435 97
duke@435 98 if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
duke@435 99 ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
duke@435 100 return false;
duke@435 101 }
duke@435 102
iveresov@2344 103 if (UseCompressedOops) {
iveresov@2344 104 if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
iveresov@2344 105 if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
iveresov@2344 106 }
iveresov@2344 107
duke@435 108 if (dst->is_register()) {
duke@435 109 if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
duke@435 110 return !PatchALot;
duke@435 111 } else if (src->is_single_stack()) {
duke@435 112 return true;
duke@435 113 }
duke@435 114 }
duke@435 115
duke@435 116 if (src->is_register()) {
duke@435 117 if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
duke@435 118 return !PatchALot;
duke@435 119 } else if (dst->is_single_stack()) {
duke@435 120 return true;
duke@435 121 }
duke@435 122 }
duke@435 123
duke@435 124 if (dst->is_register() &&
duke@435 125 ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
duke@435 126 (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
duke@435 127 return true;
duke@435 128 }
duke@435 129
duke@435 130 return false;
duke@435 131 }
duke@435 132
duke@435 133 default:
duke@435 134 return false;
duke@435 135 }
duke@435 136 ShouldNotReachHere();
duke@435 137 }
duke@435 138
duke@435 139
duke@435 140 LIR_Opr LIR_Assembler::receiverOpr() {
duke@435 141 return FrameMap::O0_oop_opr;
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 LIR_Opr LIR_Assembler::osrBufferPointer() {
duke@435 146 return FrameMap::I0_opr;
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 151 return in_bytes(frame_map()->framesize_in_bytes());
duke@435 152 }
duke@435 153
duke@435 154
duke@435 155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
duke@435 156 // we fetch the class of the receiver (O0) and compare it with the cached class.
duke@435 157 // If they do not match we jump to slow case.
duke@435 158 int LIR_Assembler::check_icache() {
duke@435 159 int offset = __ offset();
duke@435 160 __ inline_cache_check(O0, G5_inline_cache_reg);
duke@435 161 return offset;
duke@435 162 }
duke@435 163
duke@435 164
duke@435 165 void LIR_Assembler::osr_entry() {
duke@435 166 // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
duke@435 167 //
duke@435 168 // 1. Create a new compiled activation.
duke@435 169 // 2. Initialize local variables in the compiled activation. The expression stack must be empty
duke@435 170 // at the osr_bci; it is not initialized.
duke@435 171 // 3. Jump to the continuation address in compiled code to resume execution.
duke@435 172
duke@435 173 // OSR entry point
duke@435 174 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 175 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 176 ValueStack* entry_state = osr_entry->end()->state();
duke@435 177 int number_of_locks = entry_state->locks_size();
duke@435 178
duke@435 179 // Create a frame for the compiled activation.
duke@435 180 __ build_frame(initial_frame_size_in_bytes());
duke@435 181
duke@435 182 // OSR buffer is
duke@435 183 //
duke@435 184 // locals[nlocals-1..0]
duke@435 185 // monitors[number_of_locks-1..0]
duke@435 186 //
duke@435 187 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 188 // so first slot in the local array is the last local from the interpreter
duke@435 189 // and last slot is local[0] (receiver) from the interpreter
duke@435 190 //
duke@435 191 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 192 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 193 // in the interpreter frame (the method lock if a sync method)
duke@435 194
duke@435 195 // Initialize monitors in the compiled activation.
duke@435 196 // I0: pointer to osr buffer
duke@435 197 //
duke@435 198 // All other registers are dead at this point and the locals will be
duke@435 199 // copied into place by code emitted in the IR.
duke@435 200
duke@435 201 Register OSR_buf = osrBufferPointer()->as_register();
duke@435 202 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 203 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 204 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 205 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 206 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 207 // the oop.
duke@435 208 for (int i = 0; i < number_of_locks; i++) {
roland@1495 209 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 210 #ifdef ASSERT
duke@435 211 // verify the interpreter's monitor has a non-null object
duke@435 212 {
duke@435 213 Label L;
roland@1495 214 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
kvn@3037 215 __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
duke@435 216 __ stop("locked object is NULL");
duke@435 217 __ bind(L);
duke@435 218 }
duke@435 219 #endif // ASSERT
duke@435 220 // Copy the lock field into the compiled activation.
roland@1495 221 __ ld_ptr(OSR_buf, slot_offset + 0, O7);
duke@435 222 __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
roland@1495 223 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 224 __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
duke@435 225 }
duke@435 226 }
duke@435 227 }
duke@435 228
duke@435 229
duke@435 230 // Optimized Library calls
duke@435 231 // This is the fast version of java.lang.String.compare; it has not
duke@435 232 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 233 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
duke@435 234 Register str0 = left->as_register();
duke@435 235 Register str1 = right->as_register();
duke@435 236
duke@435 237 Label Ldone;
duke@435 238
duke@435 239 Register result = dst->as_register();
duke@435 240 {
duke@435 241 // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
duke@435 242 // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
duke@435 243 // Also, get string0.count-string1.count in o7 and get the condition code set
duke@435 244 // Note: some instructions have been hoisted for better instruction scheduling
duke@435 245
duke@435 246 Register tmp0 = L0;
duke@435 247 Register tmp1 = L1;
duke@435 248 Register tmp2 = L2;
duke@435 249
duke@435 250 int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
duke@435 251 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
duke@435 252 int count_offset = java_lang_String:: count_offset_in_bytes();
duke@435 253
iveresov@2344 254 __ load_heap_oop(str0, value_offset, tmp0);
twisti@1162 255 __ ld(str0, offset_offset, tmp2);
duke@435 256 __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
twisti@1162 257 __ ld(str0, count_offset, str0);
duke@435 258 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
duke@435 259
duke@435 260 // str1 may be null
duke@435 261 add_debug_info_for_null_check_here(info);
duke@435 262
iveresov@2344 263 __ load_heap_oop(str1, value_offset, tmp1);
duke@435 264 __ add(tmp0, tmp2, tmp0);
duke@435 265
twisti@1162 266 __ ld(str1, offset_offset, tmp2);
duke@435 267 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
twisti@1162 268 __ ld(str1, count_offset, str1);
duke@435 269 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
duke@435 270 __ subcc(str0, str1, O7);
duke@435 271 __ add(tmp1, tmp2, tmp1);
duke@435 272 }
duke@435 273
duke@435 274 {
duke@435 275 // Compute the minimum of the string lengths, scale it and store it in limit
duke@435 276 Register count0 = I0;
duke@435 277 Register count1 = I1;
duke@435 278 Register limit = L3;
duke@435 279
duke@435 280 Label Lskip;
duke@435 281 __ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
duke@435 282 __ br(Assembler::greater, true, Assembler::pt, Lskip);
duke@435 283 __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
duke@435 284 __ bind(Lskip);
duke@435 285
duke@435 286 // If either string is empty (or both of them) the result is the difference in lengths
duke@435 287 __ cmp(limit, 0);
duke@435 288 __ br(Assembler::equal, true, Assembler::pn, Ldone);
duke@435 289 __ delayed()->mov(O7, result); // result is difference in lengths
duke@435 290 }
duke@435 291
duke@435 292 {
duke@435 293 // Neither string is empty
duke@435 294 Label Lloop;
duke@435 295
duke@435 296 Register base0 = L0;
duke@435 297 Register base1 = L1;
duke@435 298 Register chr0 = I0;
duke@435 299 Register chr1 = I1;
duke@435 300 Register limit = L3;
duke@435 301
duke@435 302 // Shift base0 and base1 to the end of the arrays, negate limit
duke@435 303 __ add(base0, limit, base0);
duke@435 304 __ add(base1, limit, base1);
duke@435 305 __ neg(limit); // limit = -min{string0.count, strin1.count}
duke@435 306
duke@435 307 __ lduh(base0, limit, chr0);
duke@435 308 __ bind(Lloop);
duke@435 309 __ lduh(base1, limit, chr1);
duke@435 310 __ subcc(chr0, chr1, chr0);
duke@435 311 __ br(Assembler::notZero, false, Assembler::pn, Ldone);
duke@435 312 assert(chr0 == result, "result must be pre-placed");
duke@435 313 __ delayed()->inccc(limit, sizeof(jchar));
duke@435 314 __ br(Assembler::notZero, true, Assembler::pt, Lloop);
duke@435 315 __ delayed()->lduh(base0, limit, chr0);
duke@435 316 }
duke@435 317
duke@435 318 // If strings are equal up to min length, return the length difference.
duke@435 319 __ mov(O7, result);
duke@435 320
duke@435 321 // Otherwise, return the difference between the first mismatched chars.
duke@435 322 __ bind(Ldone);
duke@435 323 }
duke@435 324
duke@435 325
duke@435 326 // --------------------------------------------------------------------------------------------
duke@435 327
duke@435 328 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
duke@435 329 if (!GenerateSynchronizationCode) return;
duke@435 330
duke@435 331 Register obj_reg = obj_opr->as_register();
duke@435 332 Register lock_reg = lock_opr->as_register();
duke@435 333
duke@435 334 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 335 Register reg = mon_addr.base();
duke@435 336 int offset = mon_addr.disp();
duke@435 337 // compute pointer to BasicLock
duke@435 338 if (mon_addr.is_simm13()) {
duke@435 339 __ add(reg, offset, lock_reg);
duke@435 340 }
duke@435 341 else {
duke@435 342 __ set(offset, lock_reg);
duke@435 343 __ add(reg, lock_reg, lock_reg);
duke@435 344 }
duke@435 345 // unlock object
duke@435 346 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
duke@435 347 // _slow_case_stubs->append(slow_case);
duke@435 348 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 349 _slow_case_stubs->append(slow_case);
duke@435 350 if (UseFastLocking) {
duke@435 351 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 352 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 353 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 354 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 355 } else {
duke@435 356 // always do slow unlocking
duke@435 357 // note: the slow unlocking code could be inlined here, however if we use
duke@435 358 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 359 // simpler and requires less duplicated code - additionally, the
duke@435 360 // slow unlocking code is the same in either case which simplifies
duke@435 361 // debugging
duke@435 362 __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
duke@435 363 __ delayed()->nop();
duke@435 364 }
duke@435 365 // done
duke@435 366 __ bind(*slow_case->continuation());
duke@435 367 }
duke@435 368
duke@435 369
twisti@1639 370 int LIR_Assembler::emit_exception_handler() {
duke@435 371 // if the last instruction is a call (typically to do a throw which
duke@435 372 // is coming at the end after block reordering) the return address
duke@435 373 // must still point into the code area in order to avoid assertion
duke@435 374 // failures when searching for the corresponding bci => add a nop
duke@435 375 // (was bug 5/14/1999 - gri)
duke@435 376 __ nop();
duke@435 377
duke@435 378 // generate code for exception handler
duke@435 379 ciMethod* method = compilation()->method();
duke@435 380
duke@435 381 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 382
duke@435 383 if (handler_base == NULL) {
duke@435 384 // not enough space left for the handler
duke@435 385 bailout("exception handler overflow");
twisti@1639 386 return -1;
duke@435 387 }
twisti@1639 388
duke@435 389 int offset = code_offset();
duke@435 390
twisti@2603 391 __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
duke@435 392 __ delayed()->nop();
twisti@2603 393 __ should_not_reach_here();
iveresov@3435 394 guarantee(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 395 __ end_a_stub();
twisti@1639 396
twisti@1639 397 return offset;
duke@435 398 }
duke@435 399
twisti@1639 400
never@1813 401 // Emit the code to remove the frame from the stack in the exception
never@1813 402 // unwind path.
never@1813 403 int LIR_Assembler::emit_unwind_handler() {
never@1813 404 #ifndef PRODUCT
never@1813 405 if (CommentedAssembly) {
never@1813 406 _masm->block_comment("Unwind handler");
never@1813 407 }
never@1813 408 #endif
never@1813 409
never@1813 410 int offset = code_offset();
never@1813 411
never@1813 412 // Fetch the exception from TLS and clear out exception related thread state
never@1813 413 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
never@1813 414 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
never@1813 415 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
never@1813 416
never@1813 417 __ bind(_unwind_handler_entry);
never@1813 418 __ verify_not_null_oop(O0);
never@1813 419 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 420 __ mov(O0, I0); // Preserve the exception
never@1813 421 }
never@1813 422
never@1813 423 // Preform needed unlocking
never@1813 424 MonitorExitStub* stub = NULL;
never@1813 425 if (method()->is_synchronized()) {
never@1813 426 monitor_address(0, FrameMap::I1_opr);
never@1813 427 stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
never@1813 428 __ unlock_object(I3, I2, I1, *stub->entry());
never@1813 429 __ bind(*stub->continuation());
never@1813 430 }
never@1813 431
never@1813 432 if (compilation()->env()->dtrace_method_probes()) {
never@2185 433 __ mov(G2_thread, O0);
never@2185 434 jobject2reg(method()->constant_encoding(), O1);
never@1813 435 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
never@1813 436 __ delayed()->nop();
never@1813 437 }
never@1813 438
never@1813 439 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 440 __ mov(I0, O0); // Restore the exception
never@1813 441 }
never@1813 442
never@1813 443 // dispatch to the unwind logic
never@1813 444 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
never@1813 445 __ delayed()->nop();
never@1813 446
never@1813 447 // Emit the slow path assembly
never@1813 448 if (stub != NULL) {
never@1813 449 stub->emit_code(this);
never@1813 450 }
never@1813 451
never@1813 452 return offset;
never@1813 453 }
never@1813 454
never@1813 455
twisti@1639 456 int LIR_Assembler::emit_deopt_handler() {
duke@435 457 // if the last instruction is a call (typically to do a throw which
duke@435 458 // is coming at the end after block reordering) the return address
duke@435 459 // must still point into the code area in order to avoid assertion
duke@435 460 // failures when searching for the corresponding bci => add a nop
duke@435 461 // (was bug 5/14/1999 - gri)
duke@435 462 __ nop();
duke@435 463
duke@435 464 // generate code for deopt handler
duke@435 465 ciMethod* method = compilation()->method();
duke@435 466 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 467 if (handler_base == NULL) {
duke@435 468 // not enough space left for the handler
duke@435 469 bailout("deopt handler overflow");
twisti@1639 470 return -1;
duke@435 471 }
twisti@1639 472
duke@435 473 int offset = code_offset();
twisti@1162 474 AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
twisti@1162 475 __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
duke@435 476 __ delayed()->nop();
iveresov@3435 477 guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 478 __ end_a_stub();
twisti@1639 479
twisti@1639 480 return offset;
duke@435 481 }
duke@435 482
duke@435 483
duke@435 484 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
duke@435 485 if (o == NULL) {
duke@435 486 __ set(NULL_WORD, reg);
duke@435 487 } else {
duke@435 488 int oop_index = __ oop_recorder()->find_index(o);
duke@435 489 RelocationHolder rspec = oop_Relocation::spec(oop_index);
duke@435 490 __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
duke@435 491 }
duke@435 492 }
duke@435 493
duke@435 494
duke@435 495 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
duke@435 496 // Allocate a new index in oop table to hold the oop once it's been patched
duke@435 497 int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
duke@435 498 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
duke@435 499
twisti@1162 500 AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
twisti@1162 501 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
duke@435 502 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
duke@435 503 // NULL will be dynamically patched later and the patched value may be large. We must
duke@435 504 // therefore generate the sethi/add as a placeholders
twisti@1162 505 __ patchable_set(addrlit, reg);
duke@435 506
duke@435 507 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 508 }
duke@435 509
duke@435 510
duke@435 511 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 512 Register Rdividend = op->in_opr1()->as_register();
duke@435 513 Register Rdivisor = noreg;
duke@435 514 Register Rscratch = op->in_opr3()->as_register();
duke@435 515 Register Rresult = op->result_opr()->as_register();
duke@435 516 int divisor = -1;
duke@435 517
duke@435 518 if (op->in_opr2()->is_register()) {
duke@435 519 Rdivisor = op->in_opr2()->as_register();
duke@435 520 } else {
duke@435 521 divisor = op->in_opr2()->as_constant_ptr()->as_jint();
duke@435 522 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 523 }
duke@435 524
duke@435 525 assert(Rdividend != Rscratch, "");
duke@435 526 assert(Rdivisor != Rscratch, "");
duke@435 527 assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
duke@435 528
duke@435 529 if (Rdivisor == noreg && is_power_of_2(divisor)) {
duke@435 530 // convert division by a power of two into some shifts and logical operations
duke@435 531 if (op->code() == lir_idiv) {
duke@435 532 if (divisor == 2) {
duke@435 533 __ srl(Rdividend, 31, Rscratch);
duke@435 534 } else {
duke@435 535 __ sra(Rdividend, 31, Rscratch);
duke@435 536 __ and3(Rscratch, divisor - 1, Rscratch);
duke@435 537 }
duke@435 538 __ add(Rdividend, Rscratch, Rscratch);
duke@435 539 __ sra(Rscratch, log2_intptr(divisor), Rresult);
duke@435 540 return;
duke@435 541 } else {
duke@435 542 if (divisor == 2) {
duke@435 543 __ srl(Rdividend, 31, Rscratch);
duke@435 544 } else {
duke@435 545 __ sra(Rdividend, 31, Rscratch);
duke@435 546 __ and3(Rscratch, divisor - 1,Rscratch);
duke@435 547 }
duke@435 548 __ add(Rdividend, Rscratch, Rscratch);
duke@435 549 __ andn(Rscratch, divisor - 1,Rscratch);
duke@435 550 __ sub(Rdividend, Rscratch, Rresult);
duke@435 551 return;
duke@435 552 }
duke@435 553 }
duke@435 554
duke@435 555 __ sra(Rdividend, 31, Rscratch);
duke@435 556 __ wry(Rscratch);
duke@435 557 if (!VM_Version::v9_instructions_work()) {
duke@435 558 // v9 doesn't require these nops
duke@435 559 __ nop();
duke@435 560 __ nop();
duke@435 561 __ nop();
duke@435 562 __ nop();
duke@435 563 }
duke@435 564
duke@435 565 add_debug_info_for_div0_here(op->info());
duke@435 566
duke@435 567 if (Rdivisor != noreg) {
duke@435 568 __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 569 } else {
duke@435 570 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 571 __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 572 }
duke@435 573
duke@435 574 Label skip;
duke@435 575 __ br(Assembler::overflowSet, true, Assembler::pn, skip);
duke@435 576 __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 577 __ bind(skip);
duke@435 578
duke@435 579 if (op->code() == lir_irem) {
duke@435 580 if (Rdivisor != noreg) {
duke@435 581 __ smul(Rscratch, Rdivisor, Rscratch);
duke@435 582 } else {
duke@435 583 __ smul(Rscratch, divisor, Rscratch);
duke@435 584 }
duke@435 585 __ sub(Rdividend, Rscratch, Rresult);
duke@435 586 }
duke@435 587 }
duke@435 588
duke@435 589
duke@435 590 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 591 #ifdef ASSERT
duke@435 592 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 593 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 594 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 595 #endif
duke@435 596 assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
duke@435 597
duke@435 598 if (op->cond() == lir_cond_always) {
duke@435 599 __ br(Assembler::always, false, Assembler::pt, *(op->label()));
duke@435 600 } else if (op->code() == lir_cond_float_branch) {
duke@435 601 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 602 bool is_unordered = (op->ublock() == op->block());
duke@435 603 Assembler::Condition acond;
duke@435 604 switch (op->cond()) {
duke@435 605 case lir_cond_equal: acond = Assembler::f_equal; break;
duke@435 606 case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
duke@435 607 case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
duke@435 608 case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
duke@435 609 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
duke@435 610 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
duke@435 611 default : ShouldNotReachHere();
duke@435 612 };
duke@435 613
duke@435 614 if (!VM_Version::v9_instructions_work()) {
duke@435 615 __ nop();
duke@435 616 }
duke@435 617 __ fb( acond, false, Assembler::pn, *(op->label()));
duke@435 618 } else {
duke@435 619 assert (op->code() == lir_branch, "just checking");
duke@435 620
duke@435 621 Assembler::Condition acond;
duke@435 622 switch (op->cond()) {
duke@435 623 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 624 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 625 case lir_cond_less: acond = Assembler::less; break;
duke@435 626 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 627 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 628 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 629 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 630 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 631 default: ShouldNotReachHere();
duke@435 632 };
duke@435 633
duke@435 634 // sparc has different condition codes for testing 32-bit
duke@435 635 // vs. 64-bit values. We could always test xcc is we could
duke@435 636 // guarantee that 32-bit loads always sign extended but that isn't
duke@435 637 // true and since sign extension isn't free, it would impose a
duke@435 638 // slight cost.
duke@435 639 #ifdef _LP64
duke@435 640 if (op->type() == T_INT) {
duke@435 641 __ br(acond, false, Assembler::pn, *(op->label()));
duke@435 642 } else
duke@435 643 #endif
duke@435 644 __ brx(acond, false, Assembler::pn, *(op->label()));
duke@435 645 }
duke@435 646 // The peephole pass fills the delay slot
duke@435 647 }
duke@435 648
duke@435 649
duke@435 650 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 651 Bytecodes::Code code = op->bytecode();
duke@435 652 LIR_Opr dst = op->result_opr();
duke@435 653
duke@435 654 switch(code) {
duke@435 655 case Bytecodes::_i2l: {
duke@435 656 Register rlo = dst->as_register_lo();
duke@435 657 Register rhi = dst->as_register_hi();
duke@435 658 Register rval = op->in_opr()->as_register();
duke@435 659 #ifdef _LP64
duke@435 660 __ sra(rval, 0, rlo);
duke@435 661 #else
duke@435 662 __ mov(rval, rlo);
duke@435 663 __ sra(rval, BitsPerInt-1, rhi);
duke@435 664 #endif
duke@435 665 break;
duke@435 666 }
duke@435 667 case Bytecodes::_i2d:
duke@435 668 case Bytecodes::_i2f: {
duke@435 669 bool is_double = (code == Bytecodes::_i2d);
duke@435 670 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 671 FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 672 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 673 if (rsrc != rdst) {
duke@435 674 __ fmov(FloatRegisterImpl::S, rsrc, rdst);
duke@435 675 }
duke@435 676 __ fitof(w, rdst, rdst);
duke@435 677 break;
duke@435 678 }
duke@435 679 case Bytecodes::_f2i:{
duke@435 680 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 681 Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
duke@435 682 Label L;
duke@435 683 // result must be 0 if value is NaN; test by comparing value to itself
duke@435 684 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
duke@435 685 if (!VM_Version::v9_instructions_work()) {
duke@435 686 __ nop();
duke@435 687 }
duke@435 688 __ fb(Assembler::f_unordered, true, Assembler::pn, L);
duke@435 689 __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
duke@435 690 __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
duke@435 691 // move integer result from float register to int register
duke@435 692 __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
duke@435 693 __ bind (L);
duke@435 694 break;
duke@435 695 }
duke@435 696 case Bytecodes::_l2i: {
duke@435 697 Register rlo = op->in_opr()->as_register_lo();
duke@435 698 Register rhi = op->in_opr()->as_register_hi();
duke@435 699 Register rdst = dst->as_register();
duke@435 700 #ifdef _LP64
duke@435 701 __ sra(rlo, 0, rdst);
duke@435 702 #else
duke@435 703 __ mov(rlo, rdst);
duke@435 704 #endif
duke@435 705 break;
duke@435 706 }
duke@435 707 case Bytecodes::_d2f:
duke@435 708 case Bytecodes::_f2d: {
duke@435 709 bool is_double = (code == Bytecodes::_f2d);
duke@435 710 assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
duke@435 711 LIR_Opr val = op->in_opr();
duke@435 712 FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
duke@435 713 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 714 FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
duke@435 715 FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 716 __ ftof(vw, dw, rval, rdst);
duke@435 717 break;
duke@435 718 }
duke@435 719 case Bytecodes::_i2s:
duke@435 720 case Bytecodes::_i2b: {
duke@435 721 Register rval = op->in_opr()->as_register();
duke@435 722 Register rdst = dst->as_register();
duke@435 723 int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
duke@435 724 __ sll (rval, shift, rdst);
duke@435 725 __ sra (rdst, shift, rdst);
duke@435 726 break;
duke@435 727 }
duke@435 728 case Bytecodes::_i2c: {
duke@435 729 Register rval = op->in_opr()->as_register();
duke@435 730 Register rdst = dst->as_register();
duke@435 731 int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
duke@435 732 __ sll (rval, shift, rdst);
duke@435 733 __ srl (rdst, shift, rdst);
duke@435 734 break;
duke@435 735 }
duke@435 736
duke@435 737 default: ShouldNotReachHere();
duke@435 738 }
duke@435 739 }
duke@435 740
duke@435 741
duke@435 742 void LIR_Assembler::align_call(LIR_Code) {
duke@435 743 // do nothing since all instructions are word aligned on sparc
duke@435 744 }
duke@435 745
duke@435 746
twisti@1730 747 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
twisti@1730 748 __ call(op->addr(), rtype);
twisti@1919 749 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 750 // LIR_Assembler::emit_delay.
duke@435 751 }
duke@435 752
duke@435 753
twisti@1730 754 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 755 RelocationHolder rspec = virtual_call_Relocation::spec(pc());
duke@435 756 __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
duke@435 757 __ relocate(rspec);
twisti@1730 758 __ call(op->addr(), relocInfo::none);
twisti@1919 759 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 760 // LIR_Assembler::emit_delay.
duke@435 761 }
duke@435 762
duke@435 763
twisti@1730 764 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
twisti@1730 765 add_debug_info_for_null_check_here(op->info());
iveresov@2344 766 __ load_klass(O0, G3_scratch);
twisti@3310 767 if (Assembler::is_simm13(op->vtable_offset())) {
twisti@1730 768 __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
duke@435 769 } else {
duke@435 770 // This will generate 2 instructions
twisti@1730 771 __ set(op->vtable_offset(), G5_method);
duke@435 772 // ld_ptr, set_hi, set
duke@435 773 __ ld_ptr(G3_scratch, G5_method, G5_method);
duke@435 774 }
twisti@1162 775 __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
duke@435 776 __ callr(G3_scratch, G0);
duke@435 777 // the peephole pass fills the delay slot
duke@435 778 }
duke@435 779
iveresov@2344 780 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
duke@435 781 int store_offset;
duke@435 782 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 783 assert(!unaligned, "can't handle this");
duke@435 784 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 785 __ set(offset, O7);
iveresov@2344 786 store_offset = store(from_reg, base, O7, type, wide);
duke@435 787 } else {
iveresov@2344 788 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 789 __ verify_oop(from_reg->as_register());
iveresov@2344 790 }
duke@435 791 store_offset = code_offset();
duke@435 792 switch (type) {
duke@435 793 case T_BOOLEAN: // fall through
duke@435 794 case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
duke@435 795 case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
duke@435 796 case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
duke@435 797 case T_INT : __ stw(from_reg->as_register(), base, offset); break;
duke@435 798 case T_LONG :
duke@435 799 #ifdef _LP64
duke@435 800 if (unaligned || PatchALot) {
duke@435 801 __ srax(from_reg->as_register_lo(), 32, O7);
duke@435 802 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 803 __ stw(O7, base, offset + hi_word_offset_in_bytes);
duke@435 804 } else {
duke@435 805 __ stx(from_reg->as_register_lo(), base, offset);
duke@435 806 }
duke@435 807 #else
duke@435 808 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 809 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 810 __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
duke@435 811 #endif
duke@435 812 break;
iveresov@2344 813 case T_ADDRESS:
iveresov@2344 814 __ st_ptr(from_reg->as_register(), base, offset);
iveresov@2344 815 break;
duke@435 816 case T_ARRAY : // fall through
iveresov@2344 817 case T_OBJECT:
iveresov@2344 818 {
iveresov@2344 819 if (UseCompressedOops && !wide) {
iveresov@2344 820 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
iveresov@2344 821 store_offset = code_offset();
iveresov@2344 822 __ stw(G3_scratch, base, offset);
iveresov@2344 823 } else {
iveresov@2344 824 __ st_ptr(from_reg->as_register(), base, offset);
iveresov@2344 825 }
iveresov@2344 826 break;
iveresov@2344 827 }
iveresov@2344 828
duke@435 829 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
duke@435 830 case T_DOUBLE:
duke@435 831 {
duke@435 832 FloatRegister reg = from_reg->as_double_reg();
duke@435 833 // split unaligned stores
duke@435 834 if (unaligned || PatchALot) {
duke@435 835 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 836 __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
duke@435 837 __ stf(FloatRegisterImpl::S, reg, base, offset);
duke@435 838 } else {
duke@435 839 __ stf(FloatRegisterImpl::D, reg, base, offset);
duke@435 840 }
duke@435 841 break;
duke@435 842 }
duke@435 843 default : ShouldNotReachHere();
duke@435 844 }
duke@435 845 }
duke@435 846 return store_offset;
duke@435 847 }
duke@435 848
duke@435 849
iveresov@2344 850 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
iveresov@2344 851 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 852 __ verify_oop(from_reg->as_register());
iveresov@2344 853 }
duke@435 854 int store_offset = code_offset();
duke@435 855 switch (type) {
duke@435 856 case T_BOOLEAN: // fall through
duke@435 857 case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
duke@435 858 case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
duke@435 859 case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
duke@435 860 case T_INT : __ stw(from_reg->as_register(), base, disp); break;
duke@435 861 case T_LONG :
duke@435 862 #ifdef _LP64
duke@435 863 __ stx(from_reg->as_register_lo(), base, disp);
duke@435 864 #else
duke@435 865 assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
duke@435 866 __ std(from_reg->as_register_hi(), base, disp);
duke@435 867 #endif
duke@435 868 break;
iveresov@2344 869 case T_ADDRESS:
iveresov@2344 870 __ st_ptr(from_reg->as_register(), base, disp);
iveresov@2344 871 break;
duke@435 872 case T_ARRAY : // fall through
iveresov@2344 873 case T_OBJECT:
iveresov@2344 874 {
iveresov@2344 875 if (UseCompressedOops && !wide) {
iveresov@2344 876 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
iveresov@2344 877 store_offset = code_offset();
iveresov@2344 878 __ stw(G3_scratch, base, disp);
iveresov@2344 879 } else {
iveresov@2344 880 __ st_ptr(from_reg->as_register(), base, disp);
iveresov@2344 881 }
iveresov@2344 882 break;
iveresov@2344 883 }
duke@435 884 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
duke@435 885 case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
duke@435 886 default : ShouldNotReachHere();
duke@435 887 }
duke@435 888 return store_offset;
duke@435 889 }
duke@435 890
duke@435 891
iveresov@2344 892 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
duke@435 893 int load_offset;
duke@435 894 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 895 assert(base != O7, "destroying register");
duke@435 896 assert(!unaligned, "can't handle this");
duke@435 897 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 898 __ set(offset, O7);
iveresov@2344 899 load_offset = load(base, O7, to_reg, type, wide);
duke@435 900 } else {
duke@435 901 load_offset = code_offset();
duke@435 902 switch(type) {
duke@435 903 case T_BOOLEAN: // fall through
duke@435 904 case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
duke@435 905 case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
duke@435 906 case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
duke@435 907 case T_INT : __ ld(base, offset, to_reg->as_register()); break;
duke@435 908 case T_LONG :
duke@435 909 if (!unaligned) {
duke@435 910 #ifdef _LP64
duke@435 911 __ ldx(base, offset, to_reg->as_register_lo());
duke@435 912 #else
duke@435 913 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 914 "must be sequential");
duke@435 915 __ ldd(base, offset, to_reg->as_register_hi());
duke@435 916 #endif
duke@435 917 } else {
duke@435 918 #ifdef _LP64
duke@435 919 assert(base != to_reg->as_register_lo(), "can't handle this");
roland@1495 920 assert(O7 != to_reg->as_register_lo(), "can't handle this");
duke@435 921 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
roland@1495 922 __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
duke@435 923 __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
roland@1495 924 __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
duke@435 925 #else
duke@435 926 if (base == to_reg->as_register_lo()) {
duke@435 927 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 928 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 929 } else {
duke@435 930 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 931 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 932 }
duke@435 933 #endif
duke@435 934 }
duke@435 935 break;
iveresov@2344 936 case T_ADDRESS: __ ld_ptr(base, offset, to_reg->as_register()); break;
duke@435 937 case T_ARRAY : // fall through
iveresov@2344 938 case T_OBJECT:
iveresov@2344 939 {
iveresov@2344 940 if (UseCompressedOops && !wide) {
iveresov@2344 941 __ lduw(base, offset, to_reg->as_register());
iveresov@2344 942 __ decode_heap_oop(to_reg->as_register());
iveresov@2344 943 } else {
iveresov@2344 944 __ ld_ptr(base, offset, to_reg->as_register());
iveresov@2344 945 }
iveresov@2344 946 break;
iveresov@2344 947 }
duke@435 948 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
duke@435 949 case T_DOUBLE:
duke@435 950 {
duke@435 951 FloatRegister reg = to_reg->as_double_reg();
duke@435 952 // split unaligned loads
duke@435 953 if (unaligned || PatchALot) {
roland@1495 954 __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
roland@1495 955 __ ldf(FloatRegisterImpl::S, base, offset, reg);
duke@435 956 } else {
duke@435 957 __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
duke@435 958 }
duke@435 959 break;
duke@435 960 }
duke@435 961 default : ShouldNotReachHere();
duke@435 962 }
iveresov@2344 963 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 964 __ verify_oop(to_reg->as_register());
iveresov@2344 965 }
duke@435 966 }
duke@435 967 return load_offset;
duke@435 968 }
duke@435 969
duke@435 970
iveresov@2344 971 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
duke@435 972 int load_offset = code_offset();
duke@435 973 switch(type) {
duke@435 974 case T_BOOLEAN: // fall through
iveresov@2344 975 case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
iveresov@2344 976 case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
iveresov@2344 977 case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
iveresov@2344 978 case T_INT : __ ld(base, disp, to_reg->as_register()); break;
iveresov@2344 979 case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
duke@435 980 case T_ARRAY : // fall through
iveresov@2344 981 case T_OBJECT:
iveresov@2344 982 {
iveresov@2344 983 if (UseCompressedOops && !wide) {
iveresov@2344 984 __ lduw(base, disp, to_reg->as_register());
iveresov@2344 985 __ decode_heap_oop(to_reg->as_register());
iveresov@2344 986 } else {
iveresov@2344 987 __ ld_ptr(base, disp, to_reg->as_register());
iveresov@2344 988 }
iveresov@2344 989 break;
iveresov@2344 990 }
duke@435 991 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
duke@435 992 case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
duke@435 993 case T_LONG :
duke@435 994 #ifdef _LP64
duke@435 995 __ ldx(base, disp, to_reg->as_register_lo());
duke@435 996 #else
duke@435 997 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 998 "must be sequential");
duke@435 999 __ ldd(base, disp, to_reg->as_register_hi());
duke@435 1000 #endif
duke@435 1001 break;
duke@435 1002 default : ShouldNotReachHere();
duke@435 1003 }
iveresov@2344 1004 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1005 __ verify_oop(to_reg->as_register());
iveresov@2344 1006 }
duke@435 1007 return load_offset;
duke@435 1008 }
duke@435 1009
duke@435 1010 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 1011 LIR_Const* c = src->as_constant_ptr();
duke@435 1012 switch (c->type()) {
duke@435 1013 case T_INT:
iveresov@2344 1014 case T_FLOAT: {
iveresov@2344 1015 Register src_reg = O7;
iveresov@2344 1016 int value = c->as_jint_bits();
iveresov@2344 1017 if (value == 0) {
iveresov@2344 1018 src_reg = G0;
iveresov@2344 1019 } else {
iveresov@2344 1020 __ set(value, O7);
iveresov@2344 1021 }
iveresov@2344 1022 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
iveresov@2344 1023 __ stw(src_reg, addr.base(), addr.disp());
iveresov@2344 1024 break;
iveresov@2344 1025 }
roland@1732 1026 case T_ADDRESS: {
duke@435 1027 Register src_reg = O7;
duke@435 1028 int value = c->as_jint_bits();
duke@435 1029 if (value == 0) {
duke@435 1030 src_reg = G0;
duke@435 1031 } else {
duke@435 1032 __ set(value, O7);
duke@435 1033 }
duke@435 1034 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
iveresov@2344 1035 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1036 break;
duke@435 1037 }
duke@435 1038 case T_OBJECT: {
duke@435 1039 Register src_reg = O7;
duke@435 1040 jobject2reg(c->as_jobject(), src_reg);
duke@435 1041 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1042 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1043 break;
duke@435 1044 }
duke@435 1045 case T_LONG:
duke@435 1046 case T_DOUBLE: {
duke@435 1047 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1048
duke@435 1049 Register tmp = O7;
duke@435 1050 int value_lo = c->as_jint_lo_bits();
duke@435 1051 if (value_lo == 0) {
duke@435 1052 tmp = G0;
duke@435 1053 } else {
duke@435 1054 __ set(value_lo, O7);
duke@435 1055 }
duke@435 1056 __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
duke@435 1057 int value_hi = c->as_jint_hi_bits();
duke@435 1058 if (value_hi == 0) {
duke@435 1059 tmp = G0;
duke@435 1060 } else {
duke@435 1061 __ set(value_hi, O7);
duke@435 1062 }
duke@435 1063 __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
duke@435 1064 break;
duke@435 1065 }
duke@435 1066 default:
duke@435 1067 Unimplemented();
duke@435 1068 }
duke@435 1069 }
duke@435 1070
duke@435 1071
iveresov@2344 1072 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 1073 LIR_Const* c = src->as_constant_ptr();
duke@435 1074 LIR_Address* addr = dest->as_address_ptr();
duke@435 1075 Register base = addr->base()->as_pointer_register();
iveresov@2344 1076 int offset = -1;
iveresov@2344 1077
duke@435 1078 switch (c->type()) {
duke@435 1079 case T_INT:
roland@1732 1080 case T_FLOAT:
roland@1732 1081 case T_ADDRESS: {
duke@435 1082 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1083 int value = c->as_jint_bits();
duke@435 1084 if (value == 0) {
duke@435 1085 tmp = FrameMap::G0_opr;
duke@435 1086 } else if (Assembler::is_simm13(value)) {
duke@435 1087 __ set(value, O7);
duke@435 1088 }
duke@435 1089 if (addr->index()->is_valid()) {
duke@435 1090 assert(addr->disp() == 0, "must be zero");
iveresov@2344 1091 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
duke@435 1092 } else {
duke@435 1093 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
iveresov@2344 1094 offset = store(tmp, base, addr->disp(), type, wide, false);
duke@435 1095 }
duke@435 1096 break;
duke@435 1097 }
duke@435 1098 case T_LONG:
duke@435 1099 case T_DOUBLE: {
duke@435 1100 assert(!addr->index()->is_valid(), "can't handle reg reg address here");
duke@435 1101 assert(Assembler::is_simm13(addr->disp()) &&
duke@435 1102 Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
duke@435 1103
iveresov@2344 1104 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1105 int value_lo = c->as_jint_lo_bits();
duke@435 1106 if (value_lo == 0) {
iveresov@2344 1107 tmp = FrameMap::G0_opr;
duke@435 1108 } else {
duke@435 1109 __ set(value_lo, O7);
duke@435 1110 }
iveresov@2344 1111 offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
duke@435 1112 int value_hi = c->as_jint_hi_bits();
duke@435 1113 if (value_hi == 0) {
iveresov@2344 1114 tmp = FrameMap::G0_opr;
duke@435 1115 } else {
duke@435 1116 __ set(value_hi, O7);
duke@435 1117 }
never@3248 1118 store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
duke@435 1119 break;
duke@435 1120 }
duke@435 1121 case T_OBJECT: {
duke@435 1122 jobject obj = c->as_jobject();
duke@435 1123 LIR_Opr tmp;
duke@435 1124 if (obj == NULL) {
duke@435 1125 tmp = FrameMap::G0_opr;
duke@435 1126 } else {
duke@435 1127 tmp = FrameMap::O7_opr;
duke@435 1128 jobject2reg(c->as_jobject(), O7);
duke@435 1129 }
duke@435 1130 // handle either reg+reg or reg+disp address
duke@435 1131 if (addr->index()->is_valid()) {
duke@435 1132 assert(addr->disp() == 0, "must be zero");
iveresov@2344 1133 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
duke@435 1134 } else {
duke@435 1135 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
iveresov@2344 1136 offset = store(tmp, base, addr->disp(), type, wide, false);
duke@435 1137 }
duke@435 1138
duke@435 1139 break;
duke@435 1140 }
duke@435 1141 default:
duke@435 1142 Unimplemented();
duke@435 1143 }
iveresov@2344 1144 if (info != NULL) {
iveresov@2344 1145 assert(offset != -1, "offset should've been set");
iveresov@2344 1146 add_debug_info_for_null_check(offset, info);
iveresov@2344 1147 }
duke@435 1148 }
duke@435 1149
duke@435 1150
duke@435 1151 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 1152 LIR_Const* c = src->as_constant_ptr();
duke@435 1153 LIR_Opr to_reg = dest;
duke@435 1154
duke@435 1155 switch (c->type()) {
duke@435 1156 case T_INT:
roland@1732 1157 case T_ADDRESS:
duke@435 1158 {
duke@435 1159 jint con = c->as_jint();
duke@435 1160 if (to_reg->is_single_cpu()) {
duke@435 1161 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 1162 __ set(con, to_reg->as_register());
duke@435 1163 } else {
duke@435 1164 ShouldNotReachHere();
duke@435 1165 assert(to_reg->is_single_fpu(), "wrong register kind");
duke@435 1166
duke@435 1167 __ set(con, O7);
twisti@1162 1168 Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
duke@435 1169 __ st(O7, temp_slot);
duke@435 1170 __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
duke@435 1171 }
duke@435 1172 }
duke@435 1173 break;
duke@435 1174
duke@435 1175 case T_LONG:
duke@435 1176 {
duke@435 1177 jlong con = c->as_jlong();
duke@435 1178
duke@435 1179 if (to_reg->is_double_cpu()) {
duke@435 1180 #ifdef _LP64
duke@435 1181 __ set(con, to_reg->as_register_lo());
duke@435 1182 #else
duke@435 1183 __ set(low(con), to_reg->as_register_lo());
duke@435 1184 __ set(high(con), to_reg->as_register_hi());
duke@435 1185 #endif
duke@435 1186 #ifdef _LP64
duke@435 1187 } else if (to_reg->is_single_cpu()) {
duke@435 1188 __ set(con, to_reg->as_register());
duke@435 1189 #endif
duke@435 1190 } else {
duke@435 1191 ShouldNotReachHere();
duke@435 1192 assert(to_reg->is_double_fpu(), "wrong register kind");
twisti@1162 1193 Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
twisti@1162 1194 Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
duke@435 1195 __ set(low(con), O7);
duke@435 1196 __ st(O7, temp_slot_lo);
duke@435 1197 __ set(high(con), O7);
duke@435 1198 __ st(O7, temp_slot_hi);
duke@435 1199 __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
duke@435 1200 }
duke@435 1201 }
duke@435 1202 break;
duke@435 1203
duke@435 1204 case T_OBJECT:
duke@435 1205 {
duke@435 1206 if (patch_code == lir_patch_none) {
duke@435 1207 jobject2reg(c->as_jobject(), to_reg->as_register());
duke@435 1208 } else {
duke@435 1209 jobject2reg_with_patching(to_reg->as_register(), info);
duke@435 1210 }
duke@435 1211 }
duke@435 1212 break;
duke@435 1213
duke@435 1214 case T_FLOAT:
duke@435 1215 {
duke@435 1216 address const_addr = __ float_constant(c->as_jfloat());
duke@435 1217 if (const_addr == NULL) {
duke@435 1218 bailout("const section overflow");
duke@435 1219 break;
duke@435 1220 }
duke@435 1221 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
twisti@1162 1222 AddressLiteral const_addrlit(const_addr, rspec);
duke@435 1223 if (to_reg->is_single_fpu()) {
twisti@1162 1224 __ patchable_sethi(const_addrlit, O7);
duke@435 1225 __ relocate(rspec);
twisti@1162 1226 __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
duke@435 1227
duke@435 1228 } else {
duke@435 1229 assert(to_reg->is_single_cpu(), "Must be a cpu register.");
duke@435 1230
twisti@1162 1231 __ set(const_addrlit, O7);
iveresov@2344 1232 __ ld(O7, 0, to_reg->as_register());
duke@435 1233 }
duke@435 1234 }
duke@435 1235 break;
duke@435 1236
duke@435 1237 case T_DOUBLE:
duke@435 1238 {
duke@435 1239 address const_addr = __ double_constant(c->as_jdouble());
duke@435 1240 if (const_addr == NULL) {
duke@435 1241 bailout("const section overflow");
duke@435 1242 break;
duke@435 1243 }
duke@435 1244 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
duke@435 1245
duke@435 1246 if (to_reg->is_double_fpu()) {
twisti@1162 1247 AddressLiteral const_addrlit(const_addr, rspec);
twisti@1162 1248 __ patchable_sethi(const_addrlit, O7);
duke@435 1249 __ relocate(rspec);
twisti@1162 1250 __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
duke@435 1251 } else {
duke@435 1252 assert(to_reg->is_double_cpu(), "Must be a long register.");
duke@435 1253 #ifdef _LP64
duke@435 1254 __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
duke@435 1255 #else
duke@435 1256 __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
duke@435 1257 __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
duke@435 1258 #endif
duke@435 1259 }
duke@435 1260
duke@435 1261 }
duke@435 1262 break;
duke@435 1263
duke@435 1264 default:
duke@435 1265 ShouldNotReachHere();
duke@435 1266 }
duke@435 1267 }
duke@435 1268
duke@435 1269 Address LIR_Assembler::as_Address(LIR_Address* addr) {
duke@435 1270 Register reg = addr->base()->as_register();
twisti@1162 1271 return Address(reg, addr->disp());
duke@435 1272 }
duke@435 1273
duke@435 1274
duke@435 1275 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1276 switch (type) {
duke@435 1277 case T_INT:
duke@435 1278 case T_FLOAT: {
duke@435 1279 Register tmp = O7;
duke@435 1280 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1281 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1282 __ lduw(from.base(), from.disp(), tmp);
duke@435 1283 __ stw(tmp, to.base(), to.disp());
duke@435 1284 break;
duke@435 1285 }
duke@435 1286 case T_OBJECT: {
duke@435 1287 Register tmp = O7;
duke@435 1288 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1289 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1290 __ ld_ptr(from.base(), from.disp(), tmp);
duke@435 1291 __ st_ptr(tmp, to.base(), to.disp());
duke@435 1292 break;
duke@435 1293 }
duke@435 1294 case T_LONG:
duke@435 1295 case T_DOUBLE: {
duke@435 1296 Register tmp = O7;
duke@435 1297 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1298 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1299 __ lduw(from.base(), from.disp(), tmp);
duke@435 1300 __ stw(tmp, to.base(), to.disp());
duke@435 1301 __ lduw(from.base(), from.disp() + 4, tmp);
duke@435 1302 __ stw(tmp, to.base(), to.disp() + 4);
duke@435 1303 break;
duke@435 1304 }
duke@435 1305
duke@435 1306 default:
duke@435 1307 ShouldNotReachHere();
duke@435 1308 }
duke@435 1309 }
duke@435 1310
duke@435 1311
duke@435 1312 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 1313 Address base = as_Address(addr);
twisti@1162 1314 return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
duke@435 1315 }
duke@435 1316
duke@435 1317
duke@435 1318 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 1319 Address base = as_Address(addr);
twisti@1162 1320 return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
duke@435 1321 }
duke@435 1322
duke@435 1323
duke@435 1324 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
iveresov@2344 1325 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
duke@435 1326
duke@435 1327 LIR_Address* addr = src_opr->as_address_ptr();
duke@435 1328 LIR_Opr to_reg = dest;
duke@435 1329
duke@435 1330 Register src = addr->base()->as_pointer_register();
duke@435 1331 Register disp_reg = noreg;
duke@435 1332 int disp_value = addr->disp();
duke@435 1333 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1334
duke@435 1335 if (addr->base()->type() == T_OBJECT) {
duke@435 1336 __ verify_oop(src);
duke@435 1337 }
duke@435 1338
duke@435 1339 PatchingStub* patch = NULL;
duke@435 1340 if (needs_patching) {
duke@435 1341 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1342 assert(!to_reg->is_double_cpu() ||
duke@435 1343 patch_code == lir_patch_none ||
duke@435 1344 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1345 }
duke@435 1346
duke@435 1347 if (addr->index()->is_illegal()) {
duke@435 1348 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1349 if (needs_patching) {
twisti@1162 1350 __ patchable_set(0, O7);
duke@435 1351 } else {
duke@435 1352 __ set(disp_value, O7);
duke@435 1353 }
duke@435 1354 disp_reg = O7;
duke@435 1355 }
duke@435 1356 } else if (unaligned || PatchALot) {
duke@435 1357 __ add(src, addr->index()->as_register(), O7);
duke@435 1358 src = O7;
duke@435 1359 } else {
duke@435 1360 disp_reg = addr->index()->as_pointer_register();
duke@435 1361 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1362 }
duke@435 1363
duke@435 1364 // remember the offset of the load. The patching_epilog must be done
duke@435 1365 // before the call to add_debug_info, otherwise the PcDescs don't get
duke@435 1366 // entered in increasing order.
duke@435 1367 int offset = code_offset();
duke@435 1368
duke@435 1369 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1370 if (disp_reg == noreg) {
iveresov@2344 1371 offset = load(src, disp_value, to_reg, type, wide, unaligned);
duke@435 1372 } else {
duke@435 1373 assert(!unaligned, "can't handle this");
iveresov@2344 1374 offset = load(src, disp_reg, to_reg, type, wide);
duke@435 1375 }
duke@435 1376
duke@435 1377 if (patch != NULL) {
duke@435 1378 patching_epilog(patch, patch_code, src, info);
duke@435 1379 }
duke@435 1380 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1381 }
duke@435 1382
duke@435 1383
duke@435 1384 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1385 LIR_Address* addr = src->as_address_ptr();
duke@435 1386 Address from_addr = as_Address(addr);
duke@435 1387
duke@435 1388 if (VM_Version::has_v9()) {
duke@435 1389 __ prefetch(from_addr, Assembler::severalReads);
duke@435 1390 }
duke@435 1391 }
duke@435 1392
duke@435 1393
duke@435 1394 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1395 LIR_Address* addr = src->as_address_ptr();
duke@435 1396 Address from_addr = as_Address(addr);
duke@435 1397
duke@435 1398 if (VM_Version::has_v9()) {
duke@435 1399 __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
duke@435 1400 }
duke@435 1401 }
duke@435 1402
duke@435 1403
duke@435 1404 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1405 Address addr;
duke@435 1406 if (src->is_single_word()) {
duke@435 1407 addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1408 } else if (src->is_double_word()) {
duke@435 1409 addr = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1410 }
duke@435 1411
duke@435 1412 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
iveresov@2344 1413 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
duke@435 1414 }
duke@435 1415
duke@435 1416
duke@435 1417 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 1418 Address addr;
duke@435 1419 if (dest->is_single_word()) {
duke@435 1420 addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1421 } else if (dest->is_double_word()) {
duke@435 1422 addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1423 }
duke@435 1424 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
iveresov@2344 1425 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
duke@435 1426 }
duke@435 1427
duke@435 1428
duke@435 1429 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
duke@435 1430 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
duke@435 1431 if (from_reg->is_double_fpu()) {
duke@435 1432 // double to double moves
duke@435 1433 assert(to_reg->is_double_fpu(), "should match");
duke@435 1434 __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
duke@435 1435 } else {
duke@435 1436 // float to float moves
duke@435 1437 assert(to_reg->is_single_fpu(), "should match");
duke@435 1438 __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
duke@435 1439 }
duke@435 1440 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
duke@435 1441 if (from_reg->is_double_cpu()) {
duke@435 1442 #ifdef _LP64
duke@435 1443 __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
duke@435 1444 #else
duke@435 1445 assert(to_reg->is_double_cpu() &&
duke@435 1446 from_reg->as_register_hi() != to_reg->as_register_lo() &&
duke@435 1447 from_reg->as_register_lo() != to_reg->as_register_hi(),
duke@435 1448 "should both be long and not overlap");
duke@435 1449 // long to long moves
duke@435 1450 __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
duke@435 1451 __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
duke@435 1452 #endif
duke@435 1453 #ifdef _LP64
duke@435 1454 } else if (to_reg->is_double_cpu()) {
duke@435 1455 // int to int moves
duke@435 1456 __ mov(from_reg->as_register(), to_reg->as_register_lo());
duke@435 1457 #endif
duke@435 1458 } else {
duke@435 1459 // int to int moves
duke@435 1460 __ mov(from_reg->as_register(), to_reg->as_register());
duke@435 1461 }
duke@435 1462 } else {
duke@435 1463 ShouldNotReachHere();
duke@435 1464 }
duke@435 1465 if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
duke@435 1466 __ verify_oop(to_reg->as_register());
duke@435 1467 }
duke@435 1468 }
duke@435 1469
duke@435 1470
duke@435 1471 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
duke@435 1472 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
iveresov@2344 1473 bool wide, bool unaligned) {
duke@435 1474 LIR_Address* addr = dest->as_address_ptr();
duke@435 1475
duke@435 1476 Register src = addr->base()->as_pointer_register();
duke@435 1477 Register disp_reg = noreg;
duke@435 1478 int disp_value = addr->disp();
duke@435 1479 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1480
duke@435 1481 if (addr->base()->is_oop_register()) {
duke@435 1482 __ verify_oop(src);
duke@435 1483 }
duke@435 1484
duke@435 1485 PatchingStub* patch = NULL;
duke@435 1486 if (needs_patching) {
duke@435 1487 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1488 assert(!from_reg->is_double_cpu() ||
duke@435 1489 patch_code == lir_patch_none ||
duke@435 1490 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1491 }
duke@435 1492
duke@435 1493 if (addr->index()->is_illegal()) {
duke@435 1494 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1495 if (needs_patching) {
twisti@1162 1496 __ patchable_set(0, O7);
duke@435 1497 } else {
duke@435 1498 __ set(disp_value, O7);
duke@435 1499 }
duke@435 1500 disp_reg = O7;
duke@435 1501 }
duke@435 1502 } else if (unaligned || PatchALot) {
duke@435 1503 __ add(src, addr->index()->as_register(), O7);
duke@435 1504 src = O7;
duke@435 1505 } else {
duke@435 1506 disp_reg = addr->index()->as_pointer_register();
duke@435 1507 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1508 }
duke@435 1509
duke@435 1510 // remember the offset of the store. The patching_epilog must be done
duke@435 1511 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
duke@435 1512 // entered in increasing order.
duke@435 1513 int offset;
duke@435 1514
duke@435 1515 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1516 if (disp_reg == noreg) {
iveresov@2344 1517 offset = store(from_reg, src, disp_value, type, wide, unaligned);
duke@435 1518 } else {
duke@435 1519 assert(!unaligned, "can't handle this");
iveresov@2344 1520 offset = store(from_reg, src, disp_reg, type, wide);
duke@435 1521 }
duke@435 1522
duke@435 1523 if (patch != NULL) {
duke@435 1524 patching_epilog(patch, patch_code, src, info);
duke@435 1525 }
duke@435 1526
duke@435 1527 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1528 }
duke@435 1529
duke@435 1530
duke@435 1531 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 1532 // the poll may need a register so just pick one that isn't the return register
iveresov@2138 1533 #if defined(TIERED) && !defined(_LP64)
duke@435 1534 if (result->type_field() == LIR_OprDesc::long_type) {
duke@435 1535 // Must move the result to G1
duke@435 1536 // Must leave proper result in O0,O1 and G1 (TIERED only)
duke@435 1537 __ sllx(I0, 32, G1); // Shift bits into high G1
duke@435 1538 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
duke@435 1539 __ or3 (I1, G1, G1); // OR 64 bits into G1
iveresov@2138 1540 #ifdef ASSERT
iveresov@2138 1541 // mangle it so any problems will show up
iveresov@2138 1542 __ set(0xdeadbeef, I0);
iveresov@2138 1543 __ set(0xdeadbeef, I1);
iveresov@2138 1544 #endif
duke@435 1545 }
duke@435 1546 #endif // TIERED
duke@435 1547 __ set((intptr_t)os::get_polling_page(), L0);
duke@435 1548 __ relocate(relocInfo::poll_return_type);
duke@435 1549 __ ld_ptr(L0, 0, G0);
duke@435 1550 __ ret();
duke@435 1551 __ delayed()->restore();
duke@435 1552 }
duke@435 1553
duke@435 1554
duke@435 1555 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 1556 __ set((intptr_t)os::get_polling_page(), tmp->as_register());
duke@435 1557 if (info != NULL) {
duke@435 1558 add_debug_info_for_branch(info);
duke@435 1559 } else {
duke@435 1560 __ relocate(relocInfo::poll_type);
duke@435 1561 }
duke@435 1562
duke@435 1563 int offset = __ offset();
duke@435 1564 __ ld_ptr(tmp->as_register(), 0, G0);
duke@435 1565
duke@435 1566 return offset;
duke@435 1567 }
duke@435 1568
duke@435 1569
duke@435 1570 void LIR_Assembler::emit_static_call_stub() {
duke@435 1571 address call_pc = __ pc();
duke@435 1572 address stub = __ start_a_stub(call_stub_size);
duke@435 1573 if (stub == NULL) {
duke@435 1574 bailout("static call stub overflow");
duke@435 1575 return;
duke@435 1576 }
duke@435 1577
duke@435 1578 int start = __ offset();
duke@435 1579 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 1580
duke@435 1581 __ set_oop(NULL, G5);
duke@435 1582 // must be set to -1 at code generation time
twisti@1162 1583 AddressLiteral addrlit(-1);
twisti@1162 1584 __ jump_to(addrlit, G3);
duke@435 1585 __ delayed()->nop();
duke@435 1586
duke@435 1587 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 1588 __ end_a_stub();
duke@435 1589 }
duke@435 1590
duke@435 1591
duke@435 1592 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 1593 if (opr1->is_single_fpu()) {
duke@435 1594 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
duke@435 1595 } else if (opr1->is_double_fpu()) {
duke@435 1596 __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
duke@435 1597 } else if (opr1->is_single_cpu()) {
duke@435 1598 if (opr2->is_constant()) {
duke@435 1599 switch (opr2->as_constant_ptr()->type()) {
duke@435 1600 case T_INT:
duke@435 1601 { jint con = opr2->as_constant_ptr()->as_jint();
duke@435 1602 if (Assembler::is_simm13(con)) {
duke@435 1603 __ cmp(opr1->as_register(), con);
duke@435 1604 } else {
duke@435 1605 __ set(con, O7);
duke@435 1606 __ cmp(opr1->as_register(), O7);
duke@435 1607 }
duke@435 1608 }
duke@435 1609 break;
duke@435 1610
duke@435 1611 case T_OBJECT:
duke@435 1612 // there are only equal/notequal comparisions on objects
duke@435 1613 { jobject con = opr2->as_constant_ptr()->as_jobject();
duke@435 1614 if (con == NULL) {
duke@435 1615 __ cmp(opr1->as_register(), 0);
duke@435 1616 } else {
duke@435 1617 jobject2reg(con, O7);
duke@435 1618 __ cmp(opr1->as_register(), O7);
duke@435 1619 }
duke@435 1620 }
duke@435 1621 break;
duke@435 1622
duke@435 1623 default:
duke@435 1624 ShouldNotReachHere();
duke@435 1625 break;
duke@435 1626 }
duke@435 1627 } else {
duke@435 1628 if (opr2->is_address()) {
duke@435 1629 LIR_Address * addr = opr2->as_address_ptr();
duke@435 1630 BasicType type = addr->type();
duke@435 1631 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1632 else __ ld(as_Address(addr), O7);
duke@435 1633 __ cmp(opr1->as_register(), O7);
duke@435 1634 } else {
duke@435 1635 __ cmp(opr1->as_register(), opr2->as_register());
duke@435 1636 }
duke@435 1637 }
duke@435 1638 } else if (opr1->is_double_cpu()) {
duke@435 1639 Register xlo = opr1->as_register_lo();
duke@435 1640 Register xhi = opr1->as_register_hi();
duke@435 1641 if (opr2->is_constant() && opr2->as_jlong() == 0) {
duke@435 1642 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
duke@435 1643 #ifdef _LP64
duke@435 1644 __ orcc(xhi, G0, G0);
duke@435 1645 #else
duke@435 1646 __ orcc(xhi, xlo, G0);
duke@435 1647 #endif
duke@435 1648 } else if (opr2->is_register()) {
duke@435 1649 Register ylo = opr2->as_register_lo();
duke@435 1650 Register yhi = opr2->as_register_hi();
duke@435 1651 #ifdef _LP64
duke@435 1652 __ cmp(xlo, ylo);
duke@435 1653 #else
duke@435 1654 __ subcc(xlo, ylo, xlo);
duke@435 1655 __ subccc(xhi, yhi, xhi);
duke@435 1656 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 1657 __ orcc(xhi, xlo, G0);
duke@435 1658 }
duke@435 1659 #endif
duke@435 1660 } else {
duke@435 1661 ShouldNotReachHere();
duke@435 1662 }
duke@435 1663 } else if (opr1->is_address()) {
duke@435 1664 LIR_Address * addr = opr1->as_address_ptr();
duke@435 1665 BasicType type = addr->type();
duke@435 1666 assert (opr2->is_constant(), "Checking");
duke@435 1667 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1668 else __ ld(as_Address(addr), O7);
duke@435 1669 __ cmp(O7, opr2->as_constant_ptr()->as_jint());
duke@435 1670 } else {
duke@435 1671 ShouldNotReachHere();
duke@435 1672 }
duke@435 1673 }
duke@435 1674
duke@435 1675
duke@435 1676 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
duke@435 1677 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 1678 bool is_unordered_less = (code == lir_ucmp_fd2i);
duke@435 1679 if (left->is_single_fpu()) {
duke@435 1680 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
duke@435 1681 } else if (left->is_double_fpu()) {
duke@435 1682 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
duke@435 1683 } else {
duke@435 1684 ShouldNotReachHere();
duke@435 1685 }
duke@435 1686 } else if (code == lir_cmp_l2i) {
iveresov@1804 1687 #ifdef _LP64
iveresov@1804 1688 __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
iveresov@1804 1689 #else
duke@435 1690 __ lcmp(left->as_register_hi(), left->as_register_lo(),
duke@435 1691 right->as_register_hi(), right->as_register_lo(),
duke@435 1692 dst->as_register());
iveresov@1804 1693 #endif
duke@435 1694 } else {
duke@435 1695 ShouldNotReachHere();
duke@435 1696 }
duke@435 1697 }
duke@435 1698
duke@435 1699
iveresov@2412 1700 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 1701 Assembler::Condition acond;
duke@435 1702 switch (condition) {
duke@435 1703 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1704 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1705 case lir_cond_less: acond = Assembler::less; break;
duke@435 1706 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1707 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 1708 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1709 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 1710 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 1711 default: ShouldNotReachHere();
duke@435 1712 };
duke@435 1713
duke@435 1714 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1715 Register dest = result->as_register();
duke@435 1716 // load up first part of constant before branch
duke@435 1717 // and do the rest in the delay slot.
duke@435 1718 if (!Assembler::is_simm13(opr1->as_jint())) {
duke@435 1719 __ sethi(opr1->as_jint(), dest);
duke@435 1720 }
duke@435 1721 } else if (opr1->is_constant()) {
duke@435 1722 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1723 } else if (opr1->is_register()) {
duke@435 1724 reg2reg(opr1, result);
duke@435 1725 } else if (opr1->is_stack()) {
duke@435 1726 stack2reg(opr1, result, result->type());
duke@435 1727 } else {
duke@435 1728 ShouldNotReachHere();
duke@435 1729 }
duke@435 1730 Label skip;
iveresov@2412 1731 #ifdef _LP64
iveresov@2412 1732 if (type == T_INT) {
iveresov@2412 1733 __ br(acond, false, Assembler::pt, skip);
iveresov@2412 1734 } else
iveresov@2412 1735 #endif
iveresov@2412 1736 __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
duke@435 1737 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1738 Register dest = result->as_register();
duke@435 1739 if (Assembler::is_simm13(opr1->as_jint())) {
duke@435 1740 __ delayed()->or3(G0, opr1->as_jint(), dest);
duke@435 1741 } else {
duke@435 1742 // the sethi has been done above, so just put in the low 10 bits
duke@435 1743 __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
duke@435 1744 }
duke@435 1745 } else {
duke@435 1746 // can't do anything useful in the delay slot
duke@435 1747 __ delayed()->nop();
duke@435 1748 }
duke@435 1749 if (opr2->is_constant()) {
duke@435 1750 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1751 } else if (opr2->is_register()) {
duke@435 1752 reg2reg(opr2, result);
duke@435 1753 } else if (opr2->is_stack()) {
duke@435 1754 stack2reg(opr2, result, result->type());
duke@435 1755 } else {
duke@435 1756 ShouldNotReachHere();
duke@435 1757 }
duke@435 1758 __ bind(skip);
duke@435 1759 }
duke@435 1760
duke@435 1761
duke@435 1762 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1763 assert(info == NULL, "unused on this code path");
duke@435 1764 assert(left->is_register(), "wrong items state");
duke@435 1765 assert(dest->is_register(), "wrong items state");
duke@435 1766
duke@435 1767 if (right->is_register()) {
duke@435 1768 if (dest->is_float_kind()) {
duke@435 1769
duke@435 1770 FloatRegister lreg, rreg, res;
duke@435 1771 FloatRegisterImpl::Width w;
duke@435 1772 if (right->is_single_fpu()) {
duke@435 1773 w = FloatRegisterImpl::S;
duke@435 1774 lreg = left->as_float_reg();
duke@435 1775 rreg = right->as_float_reg();
duke@435 1776 res = dest->as_float_reg();
duke@435 1777 } else {
duke@435 1778 w = FloatRegisterImpl::D;
duke@435 1779 lreg = left->as_double_reg();
duke@435 1780 rreg = right->as_double_reg();
duke@435 1781 res = dest->as_double_reg();
duke@435 1782 }
duke@435 1783
duke@435 1784 switch (code) {
duke@435 1785 case lir_add: __ fadd(w, lreg, rreg, res); break;
duke@435 1786 case lir_sub: __ fsub(w, lreg, rreg, res); break;
duke@435 1787 case lir_mul: // fall through
duke@435 1788 case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
duke@435 1789 case lir_div: // fall through
duke@435 1790 case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
duke@435 1791 default: ShouldNotReachHere();
duke@435 1792 }
duke@435 1793
duke@435 1794 } else if (dest->is_double_cpu()) {
duke@435 1795 #ifdef _LP64
duke@435 1796 Register dst_lo = dest->as_register_lo();
duke@435 1797 Register op1_lo = left->as_pointer_register();
duke@435 1798 Register op2_lo = right->as_pointer_register();
duke@435 1799
duke@435 1800 switch (code) {
duke@435 1801 case lir_add:
duke@435 1802 __ add(op1_lo, op2_lo, dst_lo);
duke@435 1803 break;
duke@435 1804
duke@435 1805 case lir_sub:
duke@435 1806 __ sub(op1_lo, op2_lo, dst_lo);
duke@435 1807 break;
duke@435 1808
duke@435 1809 default: ShouldNotReachHere();
duke@435 1810 }
duke@435 1811 #else
duke@435 1812 Register op1_lo = left->as_register_lo();
duke@435 1813 Register op1_hi = left->as_register_hi();
duke@435 1814 Register op2_lo = right->as_register_lo();
duke@435 1815 Register op2_hi = right->as_register_hi();
duke@435 1816 Register dst_lo = dest->as_register_lo();
duke@435 1817 Register dst_hi = dest->as_register_hi();
duke@435 1818
duke@435 1819 switch (code) {
duke@435 1820 case lir_add:
duke@435 1821 __ addcc(op1_lo, op2_lo, dst_lo);
duke@435 1822 __ addc (op1_hi, op2_hi, dst_hi);
duke@435 1823 break;
duke@435 1824
duke@435 1825 case lir_sub:
duke@435 1826 __ subcc(op1_lo, op2_lo, dst_lo);
duke@435 1827 __ subc (op1_hi, op2_hi, dst_hi);
duke@435 1828 break;
duke@435 1829
duke@435 1830 default: ShouldNotReachHere();
duke@435 1831 }
duke@435 1832 #endif
duke@435 1833 } else {
duke@435 1834 assert (right->is_single_cpu(), "Just Checking");
duke@435 1835
duke@435 1836 Register lreg = left->as_register();
duke@435 1837 Register res = dest->as_register();
duke@435 1838 Register rreg = right->as_register();
duke@435 1839 switch (code) {
duke@435 1840 case lir_add: __ add (lreg, rreg, res); break;
duke@435 1841 case lir_sub: __ sub (lreg, rreg, res); break;
duke@435 1842 case lir_mul: __ mult (lreg, rreg, res); break;
duke@435 1843 default: ShouldNotReachHere();
duke@435 1844 }
duke@435 1845 }
duke@435 1846 } else {
duke@435 1847 assert (right->is_constant(), "must be constant");
duke@435 1848
duke@435 1849 if (dest->is_single_cpu()) {
duke@435 1850 Register lreg = left->as_register();
duke@435 1851 Register res = dest->as_register();
duke@435 1852 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1853
duke@435 1854 switch (code) {
duke@435 1855 case lir_add: __ add (lreg, simm13, res); break;
duke@435 1856 case lir_sub: __ sub (lreg, simm13, res); break;
duke@435 1857 case lir_mul: __ mult (lreg, simm13, res); break;
duke@435 1858 default: ShouldNotReachHere();
duke@435 1859 }
duke@435 1860 } else {
duke@435 1861 Register lreg = left->as_pointer_register();
duke@435 1862 Register res = dest->as_register_lo();
duke@435 1863 long con = right->as_constant_ptr()->as_jlong();
duke@435 1864 assert(Assembler::is_simm13(con), "must be simm13");
duke@435 1865
duke@435 1866 switch (code) {
duke@435 1867 case lir_add: __ add (lreg, (int)con, res); break;
duke@435 1868 case lir_sub: __ sub (lreg, (int)con, res); break;
duke@435 1869 case lir_mul: __ mult (lreg, (int)con, res); break;
duke@435 1870 default: ShouldNotReachHere();
duke@435 1871 }
duke@435 1872 }
duke@435 1873 }
duke@435 1874 }
duke@435 1875
duke@435 1876
duke@435 1877 void LIR_Assembler::fpop() {
duke@435 1878 // do nothing
duke@435 1879 }
duke@435 1880
duke@435 1881
duke@435 1882 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
duke@435 1883 switch (code) {
duke@435 1884 case lir_sin:
duke@435 1885 case lir_tan:
duke@435 1886 case lir_cos: {
duke@435 1887 assert(thread->is_valid(), "preserve the thread object for performance reasons");
duke@435 1888 assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
duke@435 1889 break;
duke@435 1890 }
duke@435 1891 case lir_sqrt: {
duke@435 1892 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
duke@435 1893 FloatRegister src_reg = value->as_double_reg();
duke@435 1894 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1895 __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1896 break;
duke@435 1897 }
duke@435 1898 case lir_abs: {
duke@435 1899 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
duke@435 1900 FloatRegister src_reg = value->as_double_reg();
duke@435 1901 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1902 __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1903 break;
duke@435 1904 }
duke@435 1905 default: {
duke@435 1906 ShouldNotReachHere();
duke@435 1907 break;
duke@435 1908 }
duke@435 1909 }
duke@435 1910 }
duke@435 1911
duke@435 1912
duke@435 1913 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
duke@435 1914 if (right->is_constant()) {
duke@435 1915 if (dest->is_single_cpu()) {
duke@435 1916 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1917 switch (code) {
duke@435 1918 case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1919 case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1920 case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1921 default: ShouldNotReachHere();
duke@435 1922 }
duke@435 1923 } else {
duke@435 1924 long c = right->as_constant_ptr()->as_jlong();
duke@435 1925 assert(c == (int)c && Assembler::is_simm13(c), "out of range");
duke@435 1926 int simm13 = (int)c;
duke@435 1927 switch (code) {
duke@435 1928 case lir_logic_and:
duke@435 1929 #ifndef _LP64
duke@435 1930 __ and3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1931 #endif
duke@435 1932 __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1933 break;
duke@435 1934
duke@435 1935 case lir_logic_or:
duke@435 1936 #ifndef _LP64
duke@435 1937 __ or3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1938 #endif
duke@435 1939 __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1940 break;
duke@435 1941
duke@435 1942 case lir_logic_xor:
duke@435 1943 #ifndef _LP64
duke@435 1944 __ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1945 #endif
duke@435 1946 __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1947 break;
duke@435 1948
duke@435 1949 default: ShouldNotReachHere();
duke@435 1950 }
duke@435 1951 }
duke@435 1952 } else {
duke@435 1953 assert(right->is_register(), "right should be in register");
duke@435 1954
duke@435 1955 if (dest->is_single_cpu()) {
duke@435 1956 switch (code) {
duke@435 1957 case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1958 case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1959 case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1960 default: ShouldNotReachHere();
duke@435 1961 }
duke@435 1962 } else {
duke@435 1963 #ifdef _LP64
duke@435 1964 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
duke@435 1965 left->as_register_lo();
duke@435 1966 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
duke@435 1967 right->as_register_lo();
duke@435 1968
duke@435 1969 switch (code) {
duke@435 1970 case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
duke@435 1971 case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
duke@435 1972 case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
duke@435 1973 default: ShouldNotReachHere();
duke@435 1974 }
duke@435 1975 #else
duke@435 1976 switch (code) {
duke@435 1977 case lir_logic_and:
duke@435 1978 __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 1979 __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 1980 break;
duke@435 1981
duke@435 1982 case lir_logic_or:
duke@435 1983 __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 1984 __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 1985 break;
duke@435 1986
duke@435 1987 case lir_logic_xor:
duke@435 1988 __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 1989 __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 1990 break;
duke@435 1991
duke@435 1992 default: ShouldNotReachHere();
duke@435 1993 }
duke@435 1994 #endif
duke@435 1995 }
duke@435 1996 }
duke@435 1997 }
duke@435 1998
duke@435 1999
duke@435 2000 int LIR_Assembler::shift_amount(BasicType t) {
kvn@464 2001 int elem_size = type2aelembytes(t);
duke@435 2002 switch (elem_size) {
duke@435 2003 case 1 : return 0;
duke@435 2004 case 2 : return 1;
duke@435 2005 case 4 : return 2;
duke@435 2006 case 8 : return 3;
duke@435 2007 }
duke@435 2008 ShouldNotReachHere();
duke@435 2009 return -1;
duke@435 2010 }
duke@435 2011
duke@435 2012
never@1813 2013 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2014 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2015 assert(exceptionPC->as_register() == Oissuing_pc, "should match");
duke@435 2016
duke@435 2017 info->add_register_oop(exceptionOop);
duke@435 2018
never@1813 2019 // reuse the debug info from the safepoint poll for the throw op itself
never@1813 2020 address pc_for_athrow = __ pc();
never@1813 2021 int pc_for_athrow_offset = __ offset();
never@1813 2022 RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
never@1813 2023 __ set(pc_for_athrow, Oissuing_pc, rspec);
never@1813 2024 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2025
never@1813 2026 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
never@1813 2027 __ delayed()->nop();
never@1813 2028 }
never@1813 2029
never@1813 2030
never@1813 2031 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2032 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2033
never@1813 2034 __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
never@1813 2035 __ delayed()->nop();
duke@435 2036 }
duke@435 2037
duke@435 2038
duke@435 2039 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2040 Register src = op->src()->as_register();
duke@435 2041 Register dst = op->dst()->as_register();
duke@435 2042 Register src_pos = op->src_pos()->as_register();
duke@435 2043 Register dst_pos = op->dst_pos()->as_register();
duke@435 2044 Register length = op->length()->as_register();
duke@435 2045 Register tmp = op->tmp()->as_register();
duke@435 2046 Register tmp2 = O7;
duke@435 2047
duke@435 2048 int flags = op->flags();
duke@435 2049 ciArrayKlass* default_type = op->expected_type();
duke@435 2050 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2051 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2052
iveresov@2731 2053 #ifdef _LP64
iveresov@2731 2054 // higher 32bits must be null
iveresov@2731 2055 __ sra(dst_pos, 0, dst_pos);
iveresov@2731 2056 __ sra(src_pos, 0, src_pos);
iveresov@2731 2057 __ sra(length, 0, length);
iveresov@2731 2058 #endif
iveresov@2731 2059
duke@435 2060 // set up the arraycopy stub information
duke@435 2061 ArrayCopyStub* stub = op->stub();
duke@435 2062
duke@435 2063 // always do stub if no type information is available. it's ok if
duke@435 2064 // the known type isn't loaded since the code sanity checks
duke@435 2065 // in debug mode and the type isn't required when we know the exact type
duke@435 2066 // also check that the type is an array type.
roland@2728 2067 if (op->expected_type() == NULL) {
duke@435 2068 __ mov(src, O0);
duke@435 2069 __ mov(src_pos, O1);
duke@435 2070 __ mov(dst, O2);
duke@435 2071 __ mov(dst_pos, O3);
duke@435 2072 __ mov(length, O4);
roland@2728 2073 address copyfunc_addr = StubRoutines::generic_arraycopy();
roland@2728 2074
roland@2728 2075 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 2076 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
roland@2728 2077 } else {
roland@2728 2078 #ifndef PRODUCT
roland@2728 2079 if (PrintC1Statistics) {
roland@2728 2080 address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
roland@2728 2081 __ inc_counter(counter, G1, G3);
roland@2728 2082 }
roland@2728 2083 #endif
roland@2728 2084 __ call_VM_leaf(tmp, copyfunc_addr);
roland@2728 2085 }
roland@2728 2086
roland@2728 2087 if (copyfunc_addr != NULL) {
roland@2728 2088 __ xor3(O0, -1, tmp);
roland@2728 2089 __ sub(length, tmp, length);
roland@2728 2090 __ add(src_pos, tmp, src_pos);
kvn@3037 2091 __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
roland@2728 2092 __ delayed()->add(dst_pos, tmp, dst_pos);
roland@2728 2093 } else {
kvn@3037 2094 __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
roland@2728 2095 __ delayed()->nop();
roland@2728 2096 }
duke@435 2097 __ bind(*stub->continuation());
duke@435 2098 return;
duke@435 2099 }
duke@435 2100
duke@435 2101 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
duke@435 2102
duke@435 2103 // make sure src and dst are non-null and load array length
duke@435 2104 if (flags & LIR_OpArrayCopy::src_null_check) {
duke@435 2105 __ tst(src);
iveresov@2344 2106 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2107 __ delayed()->nop();
duke@435 2108 }
duke@435 2109
duke@435 2110 if (flags & LIR_OpArrayCopy::dst_null_check) {
duke@435 2111 __ tst(dst);
iveresov@2344 2112 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2113 __ delayed()->nop();
duke@435 2114 }
duke@435 2115
duke@435 2116 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 2117 // test src_pos register
kvn@3037 2118 __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
duke@435 2119 __ delayed()->nop();
duke@435 2120 }
duke@435 2121
duke@435 2122 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 2123 // test dst_pos register
kvn@3037 2124 __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
duke@435 2125 __ delayed()->nop();
duke@435 2126 }
duke@435 2127
duke@435 2128 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 2129 // make sure length isn't negative
kvn@3037 2130 __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
duke@435 2131 __ delayed()->nop();
duke@435 2132 }
duke@435 2133
duke@435 2134 if (flags & LIR_OpArrayCopy::src_range_check) {
duke@435 2135 __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2136 __ add(length, src_pos, tmp);
duke@435 2137 __ cmp(tmp2, tmp);
duke@435 2138 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2139 __ delayed()->nop();
duke@435 2140 }
duke@435 2141
duke@435 2142 if (flags & LIR_OpArrayCopy::dst_range_check) {
duke@435 2143 __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2144 __ add(length, dst_pos, tmp);
duke@435 2145 __ cmp(tmp2, tmp);
duke@435 2146 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2147 __ delayed()->nop();
duke@435 2148 }
duke@435 2149
roland@2728 2150 int shift = shift_amount(basic_type);
roland@2728 2151
duke@435 2152 if (flags & LIR_OpArrayCopy::type_check) {
roland@2728 2153 // We don't know the array types are compatible
roland@2728 2154 if (basic_type != T_OBJECT) {
roland@2728 2155 // Simple test for basic type arrays
roland@2728 2156 if (UseCompressedOops) {
roland@2728 2157 // We don't need decode because we just need to compare
roland@2728 2158 __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
roland@2728 2159 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
roland@2728 2160 __ cmp(tmp, tmp2);
roland@2728 2161 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2162 } else {
roland@2728 2163 __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
roland@2728 2164 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
roland@2728 2165 __ cmp(tmp, tmp2);
roland@2728 2166 __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2167 }
roland@2728 2168 __ delayed()->nop();
iveresov@2344 2169 } else {
roland@2728 2170 // For object arrays, if src is a sub class of dst then we can
roland@2728 2171 // safely do the copy.
roland@2728 2172 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
roland@2728 2173
roland@2728 2174 Label cont, slow;
roland@2728 2175 assert_different_registers(tmp, tmp2, G3, G1);
roland@2728 2176
roland@2728 2177 __ load_klass(src, G3);
roland@2728 2178 __ load_klass(dst, G1);
roland@2728 2179
roland@2728 2180 __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
roland@2728 2181
roland@2728 2182 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
roland@2728 2183 __ delayed()->nop();
roland@2728 2184
roland@2728 2185 __ cmp(G3, 0);
roland@2728 2186 if (copyfunc_addr != NULL) { // use stub if available
roland@2728 2187 // src is not a sub class of dst so we have to do a
roland@2728 2188 // per-element check.
roland@2728 2189 __ br(Assembler::notEqual, false, Assembler::pt, cont);
roland@2728 2190 __ delayed()->nop();
roland@2728 2191
roland@2728 2192 __ bind(slow);
roland@2728 2193
roland@2728 2194 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
roland@2728 2195 if ((flags & mask) != mask) {
roland@2728 2196 // Check that at least both of them object arrays.
roland@2728 2197 assert(flags & mask, "one of the two should be known to be an object array");
roland@2728 2198
roland@2728 2199 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
roland@2728 2200 __ load_klass(src, tmp);
roland@2728 2201 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
roland@2728 2202 __ load_klass(dst, tmp);
roland@2728 2203 }
stefank@3391 2204 int lh_offset = in_bytes(Klass::layout_helper_offset());
roland@2728 2205
roland@2728 2206 __ lduw(tmp, lh_offset, tmp2);
roland@2728 2207
roland@2728 2208 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
roland@2728 2209 __ set(objArray_lh, tmp);
roland@2728 2210 __ cmp(tmp, tmp2);
roland@2728 2211 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2212 __ delayed()->nop();
roland@2728 2213 }
roland@2728 2214
roland@2728 2215 Register src_ptr = O0;
roland@2728 2216 Register dst_ptr = O1;
roland@2728 2217 Register len = O2;
roland@2728 2218 Register chk_off = O3;
roland@2728 2219 Register super_k = O4;
roland@2728 2220
roland@2728 2221 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
roland@2728 2222 if (shift == 0) {
roland@2728 2223 __ add(src_ptr, src_pos, src_ptr);
roland@2728 2224 } else {
roland@2728 2225 __ sll(src_pos, shift, tmp);
roland@2728 2226 __ add(src_ptr, tmp, src_ptr);
roland@2728 2227 }
roland@2728 2228
roland@2728 2229 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
roland@2728 2230 if (shift == 0) {
roland@2728 2231 __ add(dst_ptr, dst_pos, dst_ptr);
roland@2728 2232 } else {
roland@2728 2233 __ sll(dst_pos, shift, tmp);
roland@2728 2234 __ add(dst_ptr, tmp, dst_ptr);
roland@2728 2235 }
roland@2728 2236 __ mov(length, len);
roland@2728 2237 __ load_klass(dst, tmp);
roland@2728 2238
stefank@3391 2239 int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
roland@2728 2240 __ ld_ptr(tmp, ek_offset, super_k);
roland@2728 2241
stefank@3391 2242 int sco_offset = in_bytes(Klass::super_check_offset_offset());
roland@2728 2243 __ lduw(super_k, sco_offset, chk_off);
roland@2728 2244
roland@2728 2245 __ call_VM_leaf(tmp, copyfunc_addr);
roland@2728 2246
roland@2728 2247 #ifndef PRODUCT
roland@2728 2248 if (PrintC1Statistics) {
roland@2728 2249 Label failed;
kvn@3037 2250 __ br_notnull_short(O0, Assembler::pn, failed);
roland@2728 2251 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
roland@2728 2252 __ bind(failed);
roland@2728 2253 }
roland@2728 2254 #endif
roland@2728 2255
roland@2728 2256 __ br_null(O0, false, Assembler::pt, *stub->continuation());
roland@2728 2257 __ delayed()->xor3(O0, -1, tmp);
roland@2728 2258
roland@2728 2259 #ifndef PRODUCT
roland@2728 2260 if (PrintC1Statistics) {
roland@2728 2261 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
roland@2728 2262 }
roland@2728 2263 #endif
roland@2728 2264
roland@2728 2265 __ sub(length, tmp, length);
roland@2728 2266 __ add(src_pos, tmp, src_pos);
roland@2728 2267 __ br(Assembler::always, false, Assembler::pt, *stub->entry());
roland@2728 2268 __ delayed()->add(dst_pos, tmp, dst_pos);
roland@2728 2269
roland@2728 2270 __ bind(cont);
roland@2728 2271 } else {
roland@2728 2272 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
roland@2728 2273 __ delayed()->nop();
roland@2728 2274 __ bind(cont);
roland@2728 2275 }
iveresov@2344 2276 }
duke@435 2277 }
duke@435 2278
duke@435 2279 #ifdef ASSERT
duke@435 2280 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 2281 // Sanity check the known type with the incoming class. For the
duke@435 2282 // primitive case the types must match exactly with src.klass and
duke@435 2283 // dst.klass each exactly matching the default type. For the
duke@435 2284 // object array case, if no type check is needed then either the
duke@435 2285 // dst type is exactly the expected type and the src type is a
duke@435 2286 // subtype which we can't check or src is the same array as dst
duke@435 2287 // but not necessarily exactly of type default_type.
duke@435 2288 Label known_ok, halt;
jrose@1424 2289 jobject2reg(op->expected_type()->constant_encoding(), tmp);
iveresov@2344 2290 if (UseCompressedOops) {
iveresov@2344 2291 // tmp holds the default type. It currently comes uncompressed after the
iveresov@2344 2292 // load of a constant, so encode it.
iveresov@2344 2293 __ encode_heap_oop(tmp);
iveresov@2344 2294 // load the raw value of the dst klass, since we will be comparing
iveresov@2344 2295 // uncompressed values directly.
iveresov@2344 2296 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2297 if (basic_type != T_OBJECT) {
iveresov@2344 2298 __ cmp(tmp, tmp2);
iveresov@2344 2299 __ br(Assembler::notEqual, false, Assembler::pn, halt);
iveresov@2344 2300 // load the raw value of the src klass.
iveresov@2344 2301 __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
kvn@3037 2302 __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
iveresov@2344 2303 } else {
iveresov@2344 2304 __ cmp(tmp, tmp2);
iveresov@2344 2305 __ br(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2306 __ delayed()->cmp(src, dst);
iveresov@2344 2307 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2308 __ delayed()->nop();
iveresov@2344 2309 }
duke@435 2310 } else {
iveresov@2344 2311 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2312 if (basic_type != T_OBJECT) {
iveresov@2344 2313 __ cmp(tmp, tmp2);
iveresov@2344 2314 __ brx(Assembler::notEqual, false, Assembler::pn, halt);
iveresov@2344 2315 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
kvn@3037 2316 __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
iveresov@2344 2317 } else {
iveresov@2344 2318 __ cmp(tmp, tmp2);
iveresov@2344 2319 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2320 __ delayed()->cmp(src, dst);
iveresov@2344 2321 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2322 __ delayed()->nop();
iveresov@2344 2323 }
duke@435 2324 }
duke@435 2325 __ bind(halt);
duke@435 2326 __ stop("incorrect type information in arraycopy");
duke@435 2327 __ bind(known_ok);
duke@435 2328 }
duke@435 2329 #endif
duke@435 2330
roland@2728 2331 #ifndef PRODUCT
roland@2728 2332 if (PrintC1Statistics) {
roland@2728 2333 address counter = Runtime1::arraycopy_count_address(basic_type);
roland@2728 2334 __ inc_counter(counter, G1, G3);
roland@2728 2335 }
roland@2728 2336 #endif
duke@435 2337
duke@435 2338 Register src_ptr = O0;
duke@435 2339 Register dst_ptr = O1;
duke@435 2340 Register len = O2;
duke@435 2341
duke@435 2342 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
duke@435 2343 if (shift == 0) {
duke@435 2344 __ add(src_ptr, src_pos, src_ptr);
duke@435 2345 } else {
duke@435 2346 __ sll(src_pos, shift, tmp);
duke@435 2347 __ add(src_ptr, tmp, src_ptr);
duke@435 2348 }
duke@435 2349
duke@435 2350 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
duke@435 2351 if (shift == 0) {
duke@435 2352 __ add(dst_ptr, dst_pos, dst_ptr);
duke@435 2353 } else {
duke@435 2354 __ sll(dst_pos, shift, tmp);
duke@435 2355 __ add(dst_ptr, tmp, dst_ptr);
duke@435 2356 }
duke@435 2357
roland@2728 2358 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
roland@2728 2359 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
roland@2728 2360 const char *name;
roland@2728 2361 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
roland@2728 2362
roland@2728 2363 // arraycopy stubs takes a length in number of elements, so don't scale it.
roland@2728 2364 __ mov(length, len);
roland@2728 2365 __ call_VM_leaf(tmp, entry);
duke@435 2366
duke@435 2367 __ bind(*stub->continuation());
duke@435 2368 }
duke@435 2369
duke@435 2370
duke@435 2371 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2372 if (dest->is_single_cpu()) {
duke@435 2373 #ifdef _LP64
duke@435 2374 if (left->type() == T_OBJECT) {
duke@435 2375 switch (code) {
duke@435 2376 case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2377 case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2378 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2379 default: ShouldNotReachHere();
duke@435 2380 }
duke@435 2381 } else
duke@435 2382 #endif
duke@435 2383 switch (code) {
duke@435 2384 case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2385 case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2386 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2387 default: ShouldNotReachHere();
duke@435 2388 }
duke@435 2389 } else {
duke@435 2390 #ifdef _LP64
duke@435 2391 switch (code) {
duke@435 2392 case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2393 case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2394 case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2395 default: ShouldNotReachHere();
duke@435 2396 }
duke@435 2397 #else
duke@435 2398 switch (code) {
duke@435 2399 case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2400 case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2401 case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2402 default: ShouldNotReachHere();
duke@435 2403 }
duke@435 2404 #endif
duke@435 2405 }
duke@435 2406 }
duke@435 2407
duke@435 2408
duke@435 2409 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2410 #ifdef _LP64
duke@435 2411 if (left->type() == T_OBJECT) {
duke@435 2412 count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
duke@435 2413 Register l = left->as_register();
duke@435 2414 Register d = dest->as_register_lo();
duke@435 2415 switch (code) {
duke@435 2416 case lir_shl: __ sllx (l, count, d); break;
duke@435 2417 case lir_shr: __ srax (l, count, d); break;
duke@435 2418 case lir_ushr: __ srlx (l, count, d); break;
duke@435 2419 default: ShouldNotReachHere();
duke@435 2420 }
duke@435 2421 return;
duke@435 2422 }
duke@435 2423 #endif
duke@435 2424
duke@435 2425 if (dest->is_single_cpu()) {
duke@435 2426 count = count & 0x1F; // Java spec
duke@435 2427 switch (code) {
duke@435 2428 case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
duke@435 2429 case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
duke@435 2430 case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
duke@435 2431 default: ShouldNotReachHere();
duke@435 2432 }
duke@435 2433 } else if (dest->is_double_cpu()) {
duke@435 2434 count = count & 63; // Java spec
duke@435 2435 switch (code) {
duke@435 2436 case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2437 case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2438 case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2439 default: ShouldNotReachHere();
duke@435 2440 }
duke@435 2441 } else {
duke@435 2442 ShouldNotReachHere();
duke@435 2443 }
duke@435 2444 }
duke@435 2445
duke@435 2446
duke@435 2447 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 2448 assert(op->tmp1()->as_register() == G1 &&
duke@435 2449 op->tmp2()->as_register() == G3 &&
duke@435 2450 op->tmp3()->as_register() == G4 &&
duke@435 2451 op->obj()->as_register() == O0 &&
duke@435 2452 op->klass()->as_register() == G5, "must be");
duke@435 2453 if (op->init_check()) {
coleenp@3368 2454 __ ldub(op->klass()->as_register(),
stefank@3391 2455 in_bytes(instanceKlass::init_state_offset()),
duke@435 2456 op->tmp1()->as_register());
duke@435 2457 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 2458 __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
duke@435 2459 __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
duke@435 2460 __ delayed()->nop();
duke@435 2461 }
duke@435 2462 __ allocate_object(op->obj()->as_register(),
duke@435 2463 op->tmp1()->as_register(),
duke@435 2464 op->tmp2()->as_register(),
duke@435 2465 op->tmp3()->as_register(),
duke@435 2466 op->header_size(),
duke@435 2467 op->object_size(),
duke@435 2468 op->klass()->as_register(),
duke@435 2469 *op->stub()->entry());
duke@435 2470 __ bind(*op->stub()->continuation());
duke@435 2471 __ verify_oop(op->obj()->as_register());
duke@435 2472 }
duke@435 2473
duke@435 2474
duke@435 2475 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 2476 assert(op->tmp1()->as_register() == G1 &&
duke@435 2477 op->tmp2()->as_register() == G3 &&
duke@435 2478 op->tmp3()->as_register() == G4 &&
duke@435 2479 op->tmp4()->as_register() == O1 &&
duke@435 2480 op->klass()->as_register() == G5, "must be");
iveresov@2432 2481
iveresov@2432 2482 LP64_ONLY( __ signx(op->len()->as_register()); )
duke@435 2483 if (UseSlowPath ||
duke@435 2484 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 2485 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
never@1813 2486 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2487 __ delayed()->nop();
duke@435 2488 } else {
duke@435 2489 __ allocate_array(op->obj()->as_register(),
duke@435 2490 op->len()->as_register(),
duke@435 2491 op->tmp1()->as_register(),
duke@435 2492 op->tmp2()->as_register(),
duke@435 2493 op->tmp3()->as_register(),
duke@435 2494 arrayOopDesc::header_size(op->type()),
kvn@464 2495 type2aelembytes(op->type()),
duke@435 2496 op->klass()->as_register(),
duke@435 2497 *op->stub()->entry());
duke@435 2498 }
duke@435 2499 __ bind(*op->stub()->continuation());
duke@435 2500 }
duke@435 2501
duke@435 2502
iveresov@2138 2503 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
iveresov@2138 2504 ciMethodData *md, ciProfileData *data,
iveresov@2138 2505 Register recv, Register tmp1, Label* update_done) {
iveresov@2138 2506 uint i;
iveresov@2138 2507 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2508 Label next_test;
iveresov@2138 2509 // See if the receiver is receiver[n].
iveresov@2138 2510 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2511 mdo_offset_bias);
iveresov@2138 2512 __ ld_ptr(receiver_addr, tmp1);
iveresov@2138 2513 __ verify_oop(tmp1);
kvn@3037 2514 __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
iveresov@2138 2515 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2516 mdo_offset_bias);
iveresov@2138 2517 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2518 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2519 __ st_ptr(tmp1, data_addr);
kvn@3037 2520 __ ba(*update_done);
iveresov@2138 2521 __ delayed()->nop();
iveresov@2138 2522 __ bind(next_test);
iveresov@2138 2523 }
iveresov@2138 2524
iveresov@2138 2525 // Didn't find receiver; find next empty slot and fill it in
iveresov@2138 2526 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2527 Label next_test;
iveresov@2138 2528 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2529 mdo_offset_bias);
iveresov@2344 2530 __ ld_ptr(recv_addr, tmp1);
kvn@3037 2531 __ br_notnull_short(tmp1, Assembler::pt, next_test);
iveresov@2138 2532 __ st_ptr(recv, recv_addr);
iveresov@2138 2533 __ set(DataLayout::counter_increment, tmp1);
iveresov@2138 2534 __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2535 mdo_offset_bias);
kvn@3037 2536 __ ba(*update_done);
iveresov@2138 2537 __ delayed()->nop();
iveresov@2138 2538 __ bind(next_test);
iveresov@2138 2539 }
iveresov@2138 2540 }
iveresov@2138 2541
iveresov@2146 2542
iveresov@2146 2543 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
iveresov@2146 2544 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
iveresov@2349 2545 md = method->method_data_or_null();
iveresov@2349 2546 assert(md != NULL, "Sanity");
iveresov@2146 2547 data = md->bci_to_data(bci);
iveresov@2146 2548 assert(data != NULL, "need data for checkcast");
iveresov@2146 2549 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 2550 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
iveresov@2146 2551 // The offset is large so bias the mdo by the base of the slot so
iveresov@2146 2552 // that the ld can use simm13s to reference the slots of the data
iveresov@2146 2553 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
iveresov@2146 2554 }
iveresov@2146 2555 }
iveresov@2146 2556
iveresov@2146 2557 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 2558 // we always need a stub for the failure case.
iveresov@2138 2559 CodeStub* stub = op->stub();
iveresov@2138 2560 Register obj = op->object()->as_register();
iveresov@2138 2561 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 2562 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 2563 Register dst = op->result_opr()->as_register();
iveresov@2138 2564 Register Rtmp1 = op->tmp3()->as_register();
iveresov@2138 2565 ciKlass* k = op->klass();
iveresov@2138 2566
iveresov@2138 2567
iveresov@2138 2568 if (obj == k_RInfo) {
iveresov@2138 2569 k_RInfo = klass_RInfo;
iveresov@2138 2570 klass_RInfo = obj;
iveresov@2138 2571 }
iveresov@2138 2572
iveresov@2138 2573 ciMethodData* md;
iveresov@2138 2574 ciProfileData* data;
iveresov@2138 2575 int mdo_offset_bias = 0;
iveresov@2138 2576 if (op->should_profile()) {
iveresov@2138 2577 ciMethod* method = op->profiled_method();
iveresov@2138 2578 assert(method != NULL, "Should have method");
iveresov@2146 2579 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2580
iveresov@2146 2581 Label not_null;
kvn@3037 2582 __ br_notnull_short(obj, Assembler::pn, not_null);
iveresov@2138 2583 Register mdo = k_RInfo;
iveresov@2138 2584 Register data_val = Rtmp1;
iveresov@2138 2585 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2586 if (mdo_offset_bias > 0) {
iveresov@2138 2587 __ set(mdo_offset_bias, data_val);
iveresov@2138 2588 __ add(mdo, data_val, mdo);
iveresov@2138 2589 }
iveresov@2138 2590 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2138 2591 __ ldub(flags_addr, data_val);
iveresov@2138 2592 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2138 2593 __ stb(data_val, flags_addr);
kvn@3037 2594 __ ba(*obj_is_null);
iveresov@2146 2595 __ delayed()->nop();
iveresov@2146 2596 __ bind(not_null);
iveresov@2146 2597 } else {
iveresov@2146 2598 __ br_null(obj, false, Assembler::pn, *obj_is_null);
iveresov@2146 2599 __ delayed()->nop();
iveresov@2138 2600 }
iveresov@2146 2601
iveresov@2146 2602 Label profile_cast_failure, profile_cast_success;
iveresov@2146 2603 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2146 2604 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2138 2605
iveresov@2138 2606 // patching may screw with our temporaries on sparc,
iveresov@2138 2607 // so let's do it before loading the class
iveresov@2138 2608 if (k->is_loaded()) {
iveresov@2138 2609 jobject2reg(k->constant_encoding(), k_RInfo);
iveresov@2138 2610 } else {
iveresov@2138 2611 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 2612 }
iveresov@2138 2613 assert(obj != k_RInfo, "must be different");
iveresov@2138 2614
iveresov@2138 2615 // get object class
iveresov@2138 2616 // not a safepoint as obj null check happens earlier
iveresov@2344 2617 __ load_klass(obj, klass_RInfo);
iveresov@2138 2618 if (op->fast_check()) {
iveresov@2138 2619 assert_different_registers(klass_RInfo, k_RInfo);
iveresov@2138 2620 __ cmp(k_RInfo, klass_RInfo);
iveresov@2138 2621 __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
iveresov@2138 2622 __ delayed()->nop();
iveresov@2138 2623 } else {
iveresov@2138 2624 bool need_slow_path = true;
iveresov@2138 2625 if (k->is_loaded()) {
stefank@3391 2626 if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
iveresov@2138 2627 need_slow_path = false;
iveresov@2138 2628 // perform the fast part of the checking logic
iveresov@2138 2629 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
iveresov@2146 2630 (need_slow_path ? success_target : NULL),
iveresov@2138 2631 failure_target, NULL,
iveresov@2138 2632 RegisterOrConstant(k->super_check_offset()));
iveresov@2138 2633 } else {
iveresov@2138 2634 // perform the fast part of the checking logic
iveresov@2146 2635 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
iveresov@2138 2636 failure_target, NULL);
iveresov@2138 2637 }
iveresov@2138 2638 if (need_slow_path) {
iveresov@2138 2639 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 2640 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
iveresov@2138 2641 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
iveresov@2138 2642 __ delayed()->nop();
iveresov@2138 2643 __ cmp(G3, 0);
iveresov@2138 2644 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
iveresov@2138 2645 __ delayed()->nop();
iveresov@2146 2646 // Fall through to success case
iveresov@2138 2647 }
iveresov@2138 2648 }
iveresov@2138 2649
iveresov@2138 2650 if (op->should_profile()) {
iveresov@2138 2651 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2138 2652 assert_different_registers(obj, mdo, recv, tmp1);
iveresov@2146 2653 __ bind(profile_cast_success);
iveresov@2138 2654 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2655 if (mdo_offset_bias > 0) {
iveresov@2138 2656 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2657 __ add(mdo, tmp1, mdo);
iveresov@2138 2658 }
iveresov@2344 2659 __ load_klass(obj, recv);
iveresov@2146 2660 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
iveresov@2138 2661 // Jump over the failure case
kvn@3037 2662 __ ba(*success);
iveresov@2138 2663 __ delayed()->nop();
iveresov@2138 2664 // Cast failure case
iveresov@2138 2665 __ bind(profile_cast_failure);
iveresov@2138 2666 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2667 if (mdo_offset_bias > 0) {
iveresov@2138 2668 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2669 __ add(mdo, tmp1, mdo);
iveresov@2138 2670 }
iveresov@2138 2671 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2138 2672 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2673 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2674 __ st_ptr(tmp1, data_addr);
kvn@3037 2675 __ ba(*failure);
iveresov@2138 2676 __ delayed()->nop();
iveresov@2138 2677 }
kvn@3037 2678 __ ba(*success);
iveresov@2146 2679 __ delayed()->nop();
iveresov@2138 2680 }
iveresov@2138 2681
duke@435 2682 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 2683 LIR_Code code = op->code();
duke@435 2684 if (code == lir_store_check) {
duke@435 2685 Register value = op->object()->as_register();
duke@435 2686 Register array = op->array()->as_register();
duke@435 2687 Register k_RInfo = op->tmp1()->as_register();
duke@435 2688 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2689 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2690
duke@435 2691 __ verify_oop(value);
duke@435 2692 CodeStub* stub = op->stub();
iveresov@2146 2693 // check if it needs to be profiled
iveresov@2146 2694 ciMethodData* md;
iveresov@2146 2695 ciProfileData* data;
iveresov@2146 2696 int mdo_offset_bias = 0;
iveresov@2146 2697 if (op->should_profile()) {
iveresov@2146 2698 ciMethod* method = op->profiled_method();
iveresov@2146 2699 assert(method != NULL, "Should have method");
iveresov@2146 2700 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2701 }
iveresov@2146 2702 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 2703 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 2704 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 2705
iveresov@2146 2706 if (op->should_profile()) {
iveresov@2146 2707 Label not_null;
kvn@3037 2708 __ br_notnull_short(value, Assembler::pn, not_null);
iveresov@2146 2709 Register mdo = k_RInfo;
iveresov@2146 2710 Register data_val = Rtmp1;
iveresov@2146 2711 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2712 if (mdo_offset_bias > 0) {
iveresov@2146 2713 __ set(mdo_offset_bias, data_val);
iveresov@2146 2714 __ add(mdo, data_val, mdo);
iveresov@2146 2715 }
iveresov@2146 2716 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2146 2717 __ ldub(flags_addr, data_val);
iveresov@2146 2718 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2146 2719 __ stb(data_val, flags_addr);
kvn@3037 2720 __ ba_short(done);
iveresov@2146 2721 __ bind(not_null);
iveresov@2146 2722 } else {
kvn@3037 2723 __ br_null_short(value, Assembler::pn, done);
iveresov@2146 2724 }
iveresov@2344 2725 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 2726 __ load_klass(array, k_RInfo);
iveresov@2344 2727 __ load_klass(value, klass_RInfo);
duke@435 2728
duke@435 2729 // get instance klass
stefank@3391 2730 __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset()), k_RInfo);
jrose@1079 2731 // perform the fast part of the checking logic
iveresov@2146 2732 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
jrose@1079 2733
jrose@1079 2734 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2735 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2736 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2737 __ delayed()->nop();
duke@435 2738 __ cmp(G3, 0);
iveresov@2146 2739 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
duke@435 2740 __ delayed()->nop();
iveresov@2146 2741 // fall through to the success case
iveresov@2146 2742
iveresov@2146 2743 if (op->should_profile()) {
iveresov@2146 2744 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2146 2745 assert_different_registers(value, mdo, recv, tmp1);
iveresov@2146 2746 __ bind(profile_cast_success);
iveresov@2146 2747 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2748 if (mdo_offset_bias > 0) {
iveresov@2146 2749 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2750 __ add(mdo, tmp1, mdo);
iveresov@2146 2751 }
iveresov@2344 2752 __ load_klass(value, recv);
iveresov@2146 2753 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
kvn@3037 2754 __ ba_short(done);
iveresov@2146 2755 // Cast failure case
iveresov@2146 2756 __ bind(profile_cast_failure);
iveresov@2146 2757 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2758 if (mdo_offset_bias > 0) {
iveresov@2146 2759 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2760 __ add(mdo, tmp1, mdo);
iveresov@2146 2761 }
iveresov@2146 2762 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2146 2763 __ ld_ptr(data_addr, tmp1);
iveresov@2146 2764 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2146 2765 __ st_ptr(tmp1, data_addr);
kvn@3037 2766 __ ba(*stub->entry());
iveresov@2146 2767 __ delayed()->nop();
iveresov@2146 2768 }
duke@435 2769 __ bind(done);
iveresov@2146 2770 } else if (code == lir_checkcast) {
iveresov@2146 2771 Register obj = op->object()->as_register();
iveresov@2146 2772 Register dst = op->result_opr()->as_register();
iveresov@2146 2773 Label success;
iveresov@2146 2774 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 2775 __ bind(success);
iveresov@2146 2776 __ mov(obj, dst);
duke@435 2777 } else if (code == lir_instanceof) {
duke@435 2778 Register obj = op->object()->as_register();
duke@435 2779 Register dst = op->result_opr()->as_register();
iveresov@2146 2780 Label success, failure, done;
iveresov@2146 2781 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 2782 __ bind(failure);
iveresov@2146 2783 __ set(0, dst);
kvn@3037 2784 __ ba_short(done);
iveresov@2146 2785 __ bind(success);
iveresov@2146 2786 __ set(1, dst);
iveresov@2146 2787 __ bind(done);
duke@435 2788 } else {
duke@435 2789 ShouldNotReachHere();
duke@435 2790 }
duke@435 2791
duke@435 2792 }
duke@435 2793
duke@435 2794
duke@435 2795 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
duke@435 2796 if (op->code() == lir_cas_long) {
duke@435 2797 assert(VM_Version::supports_cx8(), "wrong machine");
duke@435 2798 Register addr = op->addr()->as_pointer_register();
duke@435 2799 Register cmp_value_lo = op->cmp_value()->as_register_lo();
duke@435 2800 Register cmp_value_hi = op->cmp_value()->as_register_hi();
duke@435 2801 Register new_value_lo = op->new_value()->as_register_lo();
duke@435 2802 Register new_value_hi = op->new_value()->as_register_hi();
duke@435 2803 Register t1 = op->tmp1()->as_register();
duke@435 2804 Register t2 = op->tmp2()->as_register();
duke@435 2805 #ifdef _LP64
duke@435 2806 __ mov(cmp_value_lo, t1);
duke@435 2807 __ mov(new_value_lo, t2);
iveresov@2412 2808 // perform the compare and swap operation
iveresov@2412 2809 __ casx(addr, t1, t2);
iveresov@2412 2810 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
iveresov@2412 2811 // overwritten with the original value in "addr" and will be equal to t1.
iveresov@2412 2812 __ cmp(t1, t2);
duke@435 2813 #else
duke@435 2814 // move high and low halves of long values into single registers
duke@435 2815 __ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
duke@435 2816 __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
duke@435 2817 __ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
duke@435 2818 __ sllx(new_value_hi, 32, t2);
duke@435 2819 __ srl(new_value_lo, 0, new_value_lo);
duke@435 2820 __ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
duke@435 2821 // perform the compare and swap operation
duke@435 2822 __ casx(addr, t1, t2);
duke@435 2823 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
duke@435 2824 // overwritten with the original value in "addr" and will be equal to t1.
iveresov@2412 2825 // Produce icc flag for 32bit.
iveresov@2412 2826 __ sub(t1, t2, t2);
iveresov@2412 2827 __ srlx(t2, 32, t1);
iveresov@2412 2828 __ orcc(t2, t1, G0);
iveresov@2412 2829 #endif
duke@435 2830 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
duke@435 2831 Register addr = op->addr()->as_pointer_register();
duke@435 2832 Register cmp_value = op->cmp_value()->as_register();
duke@435 2833 Register new_value = op->new_value()->as_register();
duke@435 2834 Register t1 = op->tmp1()->as_register();
duke@435 2835 Register t2 = op->tmp2()->as_register();
duke@435 2836 __ mov(cmp_value, t1);
duke@435 2837 __ mov(new_value, t2);
duke@435 2838 if (op->code() == lir_cas_obj) {
iveresov@2344 2839 if (UseCompressedOops) {
iveresov@2344 2840 __ encode_heap_oop(t1);
iveresov@2344 2841 __ encode_heap_oop(t2);
duke@435 2842 __ cas(addr, t1, t2);
iveresov@2344 2843 } else {
never@2352 2844 __ cas_ptr(addr, t1, t2);
duke@435 2845 }
iveresov@2344 2846 } else {
iveresov@2344 2847 __ cas(addr, t1, t2);
iveresov@2344 2848 }
duke@435 2849 __ cmp(t1, t2);
duke@435 2850 } else {
duke@435 2851 Unimplemented();
duke@435 2852 }
duke@435 2853 }
duke@435 2854
duke@435 2855 void LIR_Assembler::set_24bit_FPU() {
duke@435 2856 Unimplemented();
duke@435 2857 }
duke@435 2858
duke@435 2859
duke@435 2860 void LIR_Assembler::reset_FPU() {
duke@435 2861 Unimplemented();
duke@435 2862 }
duke@435 2863
duke@435 2864
duke@435 2865 void LIR_Assembler::breakpoint() {
duke@435 2866 __ breakpoint_trap();
duke@435 2867 }
duke@435 2868
duke@435 2869
duke@435 2870 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 2871 Unimplemented();
duke@435 2872 }
duke@435 2873
duke@435 2874
duke@435 2875 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 2876 Unimplemented();
duke@435 2877 }
duke@435 2878
duke@435 2879
duke@435 2880 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
duke@435 2881 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 2882 Register dst = dst_opr->as_register();
duke@435 2883 Register reg = mon_addr.base();
duke@435 2884 int offset = mon_addr.disp();
duke@435 2885 // compute pointer to BasicLock
duke@435 2886 if (mon_addr.is_simm13()) {
duke@435 2887 __ add(reg, offset, dst);
duke@435 2888 } else {
duke@435 2889 __ set(offset, dst);
duke@435 2890 __ add(dst, reg, dst);
duke@435 2891 }
duke@435 2892 }
duke@435 2893
duke@435 2894
duke@435 2895 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 2896 Register obj = op->obj_opr()->as_register();
duke@435 2897 Register hdr = op->hdr_opr()->as_register();
duke@435 2898 Register lock = op->lock_opr()->as_register();
duke@435 2899
duke@435 2900 // obj may not be an oop
duke@435 2901 if (op->code() == lir_lock) {
duke@435 2902 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
duke@435 2903 if (UseFastLocking) {
duke@435 2904 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2905 // add debug info for NullPointerException only if one is possible
duke@435 2906 if (op->info() != NULL) {
duke@435 2907 add_debug_info_for_null_check_here(op->info());
duke@435 2908 }
duke@435 2909 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
duke@435 2910 } else {
duke@435 2911 // always do slow locking
duke@435 2912 // note: the slow locking code could be inlined here, however if we use
duke@435 2913 // slow locking, speed doesn't matter anyway and this solution is
duke@435 2914 // simpler and requires less duplicated code - additionally, the
duke@435 2915 // slow locking code is the same in either case which simplifies
duke@435 2916 // debugging
duke@435 2917 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2918 __ delayed()->nop();
duke@435 2919 }
duke@435 2920 } else {
duke@435 2921 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
duke@435 2922 if (UseFastLocking) {
duke@435 2923 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2924 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 2925 } else {
duke@435 2926 // always do slow unlocking
duke@435 2927 // note: the slow unlocking code could be inlined here, however if we use
duke@435 2928 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 2929 // simpler and requires less duplicated code - additionally, the
duke@435 2930 // slow unlocking code is the same in either case which simplifies
duke@435 2931 // debugging
duke@435 2932 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2933 __ delayed()->nop();
duke@435 2934 }
duke@435 2935 }
duke@435 2936 __ bind(*op->stub()->continuation());
duke@435 2937 }
duke@435 2938
duke@435 2939
duke@435 2940 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 2941 ciMethod* method = op->profiled_method();
duke@435 2942 int bci = op->profiled_bci();
duke@435 2943
duke@435 2944 // Update counter for all call types
iveresov@2349 2945 ciMethodData* md = method->method_data_or_null();
iveresov@2349 2946 assert(md != NULL, "Sanity");
duke@435 2947 ciProfileData* data = md->bci_to_data(bci);
duke@435 2948 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 2949 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
iveresov@2138 2950 Register mdo = op->mdo()->as_register();
iveresov@2138 2951 #ifdef _LP64
iveresov@2138 2952 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
iveresov@2138 2953 Register tmp1 = op->tmp1()->as_register_lo();
iveresov@2138 2954 #else
duke@435 2955 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
duke@435 2956 Register tmp1 = op->tmp1()->as_register();
iveresov@2138 2957 #endif
jrose@1424 2958 jobject2reg(md->constant_encoding(), mdo);
duke@435 2959 int mdo_offset_bias = 0;
duke@435 2960 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
duke@435 2961 data->size_in_bytes())) {
duke@435 2962 // The offset is large so bias the mdo by the base of the slot so
duke@435 2963 // that the ld can use simm13s to reference the slots of the data
duke@435 2964 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
duke@435 2965 __ set(mdo_offset_bias, O7);
duke@435 2966 __ add(mdo, O7, mdo);
duke@435 2967 }
duke@435 2968
twisti@1162 2969 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
duke@435 2970 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 2971 // Perform additional virtual call profiling for invokevirtual and
duke@435 2972 // invokeinterface bytecodes
duke@435 2973 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
iveresov@2138 2974 C1ProfileVirtualCalls) {
duke@435 2975 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 2976 Register recv = op->recv()->as_register();
duke@435 2977 assert_different_registers(mdo, tmp1, recv);
duke@435 2978 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 2979 ciKlass* known_klass = op->known_holder();
iveresov@2138 2980 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 2981 // We know the type that will be seen at this call site; we can
duke@435 2982 // statically update the methodDataOop rather than needing to do
duke@435 2983 // dynamic tests on the receiver type
duke@435 2984
duke@435 2985 // NOTE: we should probably put a lock around this search to
duke@435 2986 // avoid collisions by concurrent compilations
duke@435 2987 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 2988 uint i;
duke@435 2989 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2990 ciKlass* receiver = vc_data->receiver(i);
duke@435 2991 if (known_klass->equals(receiver)) {
twisti@1162 2992 Address data_addr(mdo, md->byte_offset_of_slot(data,
twisti@1162 2993 VirtualCallData::receiver_count_offset(i)) -
duke@435 2994 mdo_offset_bias);
iveresov@2138 2995 __ ld_ptr(data_addr, tmp1);
duke@435 2996 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2997 __ st_ptr(tmp1, data_addr);
duke@435 2998 return;
duke@435 2999 }
duke@435 3000 }
duke@435 3001
duke@435 3002 // Receiver type not found in profile data; select an empty slot
duke@435 3003
duke@435 3004 // Note that this is less efficient than it should be because it
duke@435 3005 // always does a write to the receiver part of the
duke@435 3006 // VirtualCallData rather than just the first time
duke@435 3007 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3008 ciKlass* receiver = vc_data->receiver(i);
duke@435 3009 if (receiver == NULL) {
twisti@1162 3010 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 3011 mdo_offset_bias);
jrose@1424 3012 jobject2reg(known_klass->constant_encoding(), tmp1);
duke@435 3013 __ st_ptr(tmp1, recv_addr);
twisti@1162 3014 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 3015 mdo_offset_bias);
iveresov@2138 3016 __ ld_ptr(data_addr, tmp1);
duke@435 3017 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3018 __ st_ptr(tmp1, data_addr);
duke@435 3019 return;
duke@435 3020 }
duke@435 3021 }
duke@435 3022 } else {
iveresov@2344 3023 __ load_klass(recv, recv);
duke@435 3024 Label update_done;
iveresov@2138 3025 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
kvn@1686 3026 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3027 // Increment total counter to indicate polymorphic case.
iveresov@2138 3028 __ ld_ptr(counter_addr, tmp1);
kvn@1686 3029 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3030 __ st_ptr(tmp1, counter_addr);
duke@435 3031
duke@435 3032 __ bind(update_done);
duke@435 3033 }
kvn@1686 3034 } else {
kvn@1686 3035 // Static call
iveresov@2138 3036 __ ld_ptr(counter_addr, tmp1);
kvn@1686 3037 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3038 __ st_ptr(tmp1, counter_addr);
duke@435 3039 }
duke@435 3040 }
duke@435 3041
duke@435 3042 void LIR_Assembler::align_backward_branch_target() {
kvn@1800 3043 __ align(OptoLoopAlignment);
duke@435 3044 }
duke@435 3045
duke@435 3046
duke@435 3047 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
duke@435 3048 // make sure we are expecting a delay
duke@435 3049 // this has the side effect of clearing the delay state
duke@435 3050 // so we can use _masm instead of _masm->delayed() to do the
duke@435 3051 // code generation.
duke@435 3052 __ delayed();
duke@435 3053
duke@435 3054 // make sure we only emit one instruction
duke@435 3055 int offset = code_offset();
duke@435 3056 op->delay_op()->emit_code(this);
duke@435 3057 #ifdef ASSERT
duke@435 3058 if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
duke@435 3059 op->delay_op()->print();
duke@435 3060 }
duke@435 3061 assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
duke@435 3062 "only one instruction can go in a delay slot");
duke@435 3063 #endif
duke@435 3064
duke@435 3065 // we may also be emitting the call info for the instruction
duke@435 3066 // which we are the delay slot of.
twisti@1919 3067 CodeEmitInfo* call_info = op->call_info();
duke@435 3068 if (call_info) {
duke@435 3069 add_call_info(code_offset(), call_info);
duke@435 3070 }
duke@435 3071
duke@435 3072 if (VerifyStackAtCalls) {
duke@435 3073 _masm->sub(FP, SP, O7);
duke@435 3074 _masm->cmp(O7, initial_frame_size_in_bytes());
duke@435 3075 _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
duke@435 3076 }
duke@435 3077 }
duke@435 3078
duke@435 3079
duke@435 3080 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3081 assert(left->is_register(), "can only handle registers");
duke@435 3082
duke@435 3083 if (left->is_single_cpu()) {
duke@435 3084 __ neg(left->as_register(), dest->as_register());
duke@435 3085 } else if (left->is_single_fpu()) {
duke@435 3086 __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
duke@435 3087 } else if (left->is_double_fpu()) {
duke@435 3088 __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
duke@435 3089 } else {
duke@435 3090 assert (left->is_double_cpu(), "Must be a long");
duke@435 3091 Register Rlow = left->as_register_lo();
duke@435 3092 Register Rhi = left->as_register_hi();
duke@435 3093 #ifdef _LP64
duke@435 3094 __ sub(G0, Rlow, dest->as_register_lo());
duke@435 3095 #else
duke@435 3096 __ subcc(G0, Rlow, dest->as_register_lo());
duke@435 3097 __ subc (G0, Rhi, dest->as_register_hi());
duke@435 3098 #endif
duke@435 3099 }
duke@435 3100 }
duke@435 3101
duke@435 3102
duke@435 3103 void LIR_Assembler::fxch(int i) {
duke@435 3104 Unimplemented();
duke@435 3105 }
duke@435 3106
duke@435 3107 void LIR_Assembler::fld(int i) {
duke@435 3108 Unimplemented();
duke@435 3109 }
duke@435 3110
duke@435 3111 void LIR_Assembler::ffree(int i) {
duke@435 3112 Unimplemented();
duke@435 3113 }
duke@435 3114
duke@435 3115 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
duke@435 3116 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3117
duke@435 3118 // if tmp is invalid, then the function being called doesn't destroy the thread
duke@435 3119 if (tmp->is_valid()) {
duke@435 3120 __ save_thread(tmp->as_register());
duke@435 3121 }
duke@435 3122 __ call(dest, relocInfo::runtime_call_type);
duke@435 3123 __ delayed()->nop();
duke@435 3124 if (info != NULL) {
duke@435 3125 add_call_info_here(info);
duke@435 3126 }
duke@435 3127 if (tmp->is_valid()) {
duke@435 3128 __ restore_thread(tmp->as_register());
duke@435 3129 }
duke@435 3130
duke@435 3131 #ifdef ASSERT
duke@435 3132 __ verify_thread();
duke@435 3133 #endif // ASSERT
duke@435 3134 }
duke@435 3135
duke@435 3136
duke@435 3137 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3138 #ifdef _LP64
duke@435 3139 ShouldNotReachHere();
duke@435 3140 #endif
duke@435 3141
duke@435 3142 NEEDS_CLEANUP;
duke@435 3143 if (type == T_LONG) {
duke@435 3144 LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
duke@435 3145
duke@435 3146 // (extended to allow indexed as well as constant displaced for JSR-166)
duke@435 3147 Register idx = noreg; // contains either constant offset or index
duke@435 3148
duke@435 3149 int disp = mem_addr->disp();
duke@435 3150 if (mem_addr->index() == LIR_OprFact::illegalOpr) {
duke@435 3151 if (!Assembler::is_simm13(disp)) {
duke@435 3152 idx = O7;
duke@435 3153 __ set(disp, idx);
duke@435 3154 }
duke@435 3155 } else {
duke@435 3156 assert(disp == 0, "not both indexed and disp");
duke@435 3157 idx = mem_addr->index()->as_register();
duke@435 3158 }
duke@435 3159
duke@435 3160 int null_check_offset = -1;
duke@435 3161
duke@435 3162 Register base = mem_addr->base()->as_register();
duke@435 3163 if (src->is_register() && dest->is_address()) {
duke@435 3164 // G4 is high half, G5 is low half
duke@435 3165 if (VM_Version::v9_instructions_work()) {
duke@435 3166 // clear the top bits of G5, and scale up G4
duke@435 3167 __ srl (src->as_register_lo(), 0, G5);
duke@435 3168 __ sllx(src->as_register_hi(), 32, G4);
duke@435 3169 // combine the two halves into the 64 bits of G4
duke@435 3170 __ or3(G4, G5, G4);
duke@435 3171 null_check_offset = __ offset();
duke@435 3172 if (idx == noreg) {
duke@435 3173 __ stx(G4, base, disp);
duke@435 3174 } else {
duke@435 3175 __ stx(G4, base, idx);
duke@435 3176 }
duke@435 3177 } else {
duke@435 3178 __ mov (src->as_register_hi(), G4);
duke@435 3179 __ mov (src->as_register_lo(), G5);
duke@435 3180 null_check_offset = __ offset();
duke@435 3181 if (idx == noreg) {
duke@435 3182 __ std(G4, base, disp);
duke@435 3183 } else {
duke@435 3184 __ std(G4, base, idx);
duke@435 3185 }
duke@435 3186 }
duke@435 3187 } else if (src->is_address() && dest->is_register()) {
duke@435 3188 null_check_offset = __ offset();
duke@435 3189 if (VM_Version::v9_instructions_work()) {
duke@435 3190 if (idx == noreg) {
duke@435 3191 __ ldx(base, disp, G5);
duke@435 3192 } else {
duke@435 3193 __ ldx(base, idx, G5);
duke@435 3194 }
duke@435 3195 __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
duke@435 3196 __ mov (G5, dest->as_register_lo()); // copy low half into lo
duke@435 3197 } else {
duke@435 3198 if (idx == noreg) {
duke@435 3199 __ ldd(base, disp, G4);
duke@435 3200 } else {
duke@435 3201 __ ldd(base, idx, G4);
duke@435 3202 }
duke@435 3203 // G4 is high half, G5 is low half
duke@435 3204 __ mov (G4, dest->as_register_hi());
duke@435 3205 __ mov (G5, dest->as_register_lo());
duke@435 3206 }
duke@435 3207 } else {
duke@435 3208 Unimplemented();
duke@435 3209 }
duke@435 3210 if (info != NULL) {
duke@435 3211 add_debug_info_for_null_check(null_check_offset, info);
duke@435 3212 }
duke@435 3213
duke@435 3214 } else {
duke@435 3215 // use normal move for all other volatiles since they don't need
duke@435 3216 // special handling to remain atomic.
iveresov@2344 3217 move_op(src, dest, type, lir_patch_none, info, false, false, false);
duke@435 3218 }
duke@435 3219 }
duke@435 3220
duke@435 3221 void LIR_Assembler::membar() {
duke@435 3222 // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
duke@435 3223 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
duke@435 3224 }
duke@435 3225
duke@435 3226 void LIR_Assembler::membar_acquire() {
duke@435 3227 // no-op on TSO
duke@435 3228 }
duke@435 3229
duke@435 3230 void LIR_Assembler::membar_release() {
duke@435 3231 // no-op on TSO
duke@435 3232 }
duke@435 3233
jiangli@3592 3234 void LIR_Assembler::membar_loadload() {
jiangli@3592 3235 // no-op
jiangli@3592 3236 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
jiangli@3592 3237 }
jiangli@3592 3238
jiangli@3592 3239 void LIR_Assembler::membar_storestore() {
jiangli@3592 3240 // no-op
jiangli@3592 3241 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
jiangli@3592 3242 }
jiangli@3592 3243
jiangli@3592 3244 void LIR_Assembler::membar_loadstore() {
jiangli@3592 3245 // no-op
jiangli@3592 3246 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
jiangli@3592 3247 }
jiangli@3592 3248
jiangli@3592 3249 void LIR_Assembler::membar_storeload() {
jiangli@3592 3250 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
jiangli@3592 3251 }
jiangli@3592 3252
jiangli@3592 3253
iveresov@2138 3254 // Pack two sequential registers containing 32 bit values
duke@435 3255 // into a single 64 bit register.
iveresov@2138 3256 // src and src->successor() are packed into dst
iveresov@2138 3257 // src and dst may be the same register.
iveresov@2138 3258 // Note: src is destroyed
iveresov@2138 3259 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3260 Register rs = src->as_register();
iveresov@2138 3261 Register rd = dst->as_register_lo();
duke@435 3262 __ sllx(rs, 32, rs);
duke@435 3263 __ srl(rs->successor(), 0, rs->successor());
duke@435 3264 __ or3(rs, rs->successor(), rd);
duke@435 3265 }
duke@435 3266
iveresov@2138 3267 // Unpack a 64 bit value in a register into
duke@435 3268 // two sequential registers.
iveresov@2138 3269 // src is unpacked into dst and dst->successor()
iveresov@2138 3270 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3271 Register rs = src->as_register_lo();
iveresov@2138 3272 Register rd = dst->as_register_hi();
iveresov@2138 3273 assert_different_registers(rs, rd, rd->successor());
iveresov@2138 3274 __ srlx(rs, 32, rd);
iveresov@2138 3275 __ srl (rs, 0, rd->successor());
duke@435 3276 }
duke@435 3277
duke@435 3278
duke@435 3279 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
duke@435 3280 LIR_Address* addr = addr_opr->as_address_ptr();
duke@435 3281 assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
iveresov@2138 3282
iveresov@2138 3283 __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
duke@435 3284 }
duke@435 3285
duke@435 3286
duke@435 3287 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3288 assert(result_reg->is_register(), "check");
duke@435 3289 __ mov(G2_thread, result_reg->as_register());
duke@435 3290 }
duke@435 3291
duke@435 3292
duke@435 3293 void LIR_Assembler::peephole(LIR_List* lir) {
duke@435 3294 LIR_OpList* inst = lir->instructions_list();
duke@435 3295 for (int i = 0; i < inst->length(); i++) {
duke@435 3296 LIR_Op* op = inst->at(i);
duke@435 3297 switch (op->code()) {
duke@435 3298 case lir_cond_float_branch:
duke@435 3299 case lir_branch: {
duke@435 3300 LIR_OpBranch* branch = op->as_OpBranch();
duke@435 3301 assert(branch->info() == NULL, "shouldn't be state on branches anymore");
duke@435 3302 LIR_Op* delay_op = NULL;
duke@435 3303 // we'd like to be able to pull following instructions into
duke@435 3304 // this slot but we don't know enough to do it safely yet so
duke@435 3305 // only optimize block to block control flow.
duke@435 3306 if (LIRFillDelaySlots && branch->block()) {
duke@435 3307 LIR_Op* prev = inst->at(i - 1);
duke@435 3308 if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
duke@435 3309 // swap previous instruction into delay slot
duke@435 3310 inst->at_put(i - 1, op);
duke@435 3311 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3312 #ifndef PRODUCT
duke@435 3313 if (LIRTracePeephole) {
duke@435 3314 tty->print_cr("delayed");
duke@435 3315 inst->at(i - 1)->print();
duke@435 3316 inst->at(i)->print();
twisti@1919 3317 tty->cr();
duke@435 3318 }
duke@435 3319 #endif
duke@435 3320 continue;
duke@435 3321 }
duke@435 3322 }
duke@435 3323
duke@435 3324 if (!delay_op) {
duke@435 3325 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
duke@435 3326 }
duke@435 3327 inst->insert_before(i + 1, delay_op);
duke@435 3328 break;
duke@435 3329 }
duke@435 3330 case lir_static_call:
duke@435 3331 case lir_virtual_call:
duke@435 3332 case lir_icvirtual_call:
twisti@1919 3333 case lir_optvirtual_call:
twisti@1919 3334 case lir_dynamic_call: {
duke@435 3335 LIR_Op* prev = inst->at(i - 1);
duke@435 3336 if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
duke@435 3337 (op->code() != lir_virtual_call ||
duke@435 3338 !prev->result_opr()->is_single_cpu() ||
duke@435 3339 prev->result_opr()->as_register() != O0) &&
duke@435 3340 LIR_Assembler::is_single_instruction(prev)) {
duke@435 3341 // Only moves without info can be put into the delay slot.
duke@435 3342 // Also don't allow the setup of the receiver in the delay
duke@435 3343 // slot for vtable calls.
duke@435 3344 inst->at_put(i - 1, op);
duke@435 3345 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3346 #ifndef PRODUCT
duke@435 3347 if (LIRTracePeephole) {
duke@435 3348 tty->print_cr("delayed");
duke@435 3349 inst->at(i - 1)->print();
duke@435 3350 inst->at(i)->print();
twisti@1919 3351 tty->cr();
duke@435 3352 }
duke@435 3353 #endif
iveresov@2138 3354 } else {
iveresov@2138 3355 LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
iveresov@2138 3356 inst->insert_before(i + 1, delay_op);
iveresov@2138 3357 i++;
duke@435 3358 }
duke@435 3359
iveresov@2138 3360 #if defined(TIERED) && !defined(_LP64)
iveresov@2138 3361 // fixup the return value from G1 to O0/O1 for long returns.
iveresov@2138 3362 // It's done here instead of in LIRGenerator because there's
iveresov@2138 3363 // such a mismatch between the single reg and double reg
iveresov@2138 3364 // calling convention.
iveresov@2138 3365 LIR_OpJavaCall* callop = op->as_OpJavaCall();
iveresov@2138 3366 if (callop->result_opr() == FrameMap::out_long_opr) {
iveresov@2138 3367 LIR_OpJavaCall* call;
iveresov@2138 3368 LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
iveresov@2138 3369 for (int a = 0; a < arguments->length(); a++) {
iveresov@2138 3370 arguments[a] = callop->arguments()[a];
iveresov@2138 3371 }
iveresov@2138 3372 if (op->code() == lir_virtual_call) {
iveresov@2138 3373 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3374 callop->vtable_offset(), arguments, callop->info());
iveresov@2138 3375 } else {
iveresov@2138 3376 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3377 callop->addr(), arguments, callop->info());
iveresov@2138 3378 }
iveresov@2138 3379 inst->at_put(i - 1, call);
iveresov@2138 3380 inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
iveresov@2138 3381 T_LONG, lir_patch_none, NULL));
iveresov@2138 3382 }
iveresov@2138 3383 #endif
duke@435 3384 break;
duke@435 3385 }
duke@435 3386 }
duke@435 3387 }
duke@435 3388 }
duke@435 3389
duke@435 3390
duke@435 3391
duke@435 3392
duke@435 3393 #undef __

mercurial