src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Thu, 11 Dec 2008 12:05:14 -0800

author
jcoomes
date
Thu, 11 Dec 2008 12:05:14 -0800
changeset 917
7c2386d67889
parent 916
7d7a7c599c17
child 918
0f773163217d
permissions
-rw-r--r--

6765745: par compact - allow young gen spaces to be split
Reviewed-by: jmasa

     1 /*
     2  * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_psParallelCompact.cpp.incl"
    28 #include <math.h>
    30 // All sizes are in HeapWords.
    31 const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
    32 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
    33 const size_t ParallelCompactData::RegionSizeBytes =
    34   RegionSize << LogHeapWordSize;
    35 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
    36 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
    37 const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
    39 const ParallelCompactData::RegionData::region_sz_t
    40 ParallelCompactData::RegionData::dc_shift = 27;
    42 const ParallelCompactData::RegionData::region_sz_t
    43 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
    45 const ParallelCompactData::RegionData::region_sz_t
    46 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
    48 const ParallelCompactData::RegionData::region_sz_t
    49 ParallelCompactData::RegionData::los_mask = ~dc_mask;
    51 const ParallelCompactData::RegionData::region_sz_t
    52 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
    54 const ParallelCompactData::RegionData::region_sz_t
    55 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
    57 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
    58 bool      PSParallelCompact::_print_phases = false;
    60 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
    61 klassOop            PSParallelCompact::_updated_int_array_klass_obj = NULL;
    63 double PSParallelCompact::_dwl_mean;
    64 double PSParallelCompact::_dwl_std_dev;
    65 double PSParallelCompact::_dwl_first_term;
    66 double PSParallelCompact::_dwl_adjustment;
    67 #ifdef  ASSERT
    68 bool   PSParallelCompact::_dwl_initialized = false;
    69 #endif  // #ifdef ASSERT
    71 #ifdef VALIDATE_MARK_SWEEP
    72 GrowableArray<void*>*   PSParallelCompact::_root_refs_stack = NULL;
    73 GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
    74 GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
    75 GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
    76 size_t                  PSParallelCompact::_live_oops_index = 0;
    77 size_t                  PSParallelCompact::_live_oops_index_at_perm = 0;
    78 GrowableArray<void*>*   PSParallelCompact::_other_refs_stack = NULL;
    79 GrowableArray<void*>*   PSParallelCompact::_adjusted_pointers = NULL;
    80 bool                    PSParallelCompact::_pointer_tracking = false;
    81 bool                    PSParallelCompact::_root_tracking = true;
    83 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
    84 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
    85 GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
    86 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
    87 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
    88 GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
    89 #endif
    91 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
    92                        HeapWord* destination)
    93 {
    94   assert(src_region_idx != 0, "invalid src_region_idx");
    95   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
    96   assert(destination != NULL, "invalid destination argument");
    98   _src_region_idx = src_region_idx;
    99   _partial_obj_size = partial_obj_size;
   100   _destination = destination;
   102   // These fields may not be updated below, so make sure they're clear.
   103   assert(_dest_region_addr == NULL, "should have been cleared");
   104   assert(_first_src_addr == NULL, "should have been cleared");
   106   // Determine the number of destination regions for the partial object.
   107   HeapWord* const last_word = destination + partial_obj_size - 1;
   108   const ParallelCompactData& sd = PSParallelCompact::summary_data();
   109   HeapWord* const beg_region_addr = sd.region_align_down(destination);
   110   HeapWord* const end_region_addr = sd.region_align_down(last_word);
   112   if (beg_region_addr == end_region_addr) {
   113     // One destination region.
   114     _destination_count = 1;
   115     if (end_region_addr == destination) {
   116       // The destination falls on a region boundary, thus the first word of the
   117       // partial object will be the first word copied to the destination region.
   118       _dest_region_addr = end_region_addr;
   119       _first_src_addr = sd.region_to_addr(src_region_idx);
   120     }
   121   } else {
   122     // Two destination regions.  When copied, the partial object will cross a
   123     // destination region boundary, so a word somewhere within the partial
   124     // object will be the first word copied to the second destination region.
   125     _destination_count = 2;
   126     _dest_region_addr = end_region_addr;
   127     const size_t ofs = pointer_delta(end_region_addr, destination);
   128     assert(ofs < _partial_obj_size, "sanity");
   129     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
   130   }
   131 }
   133 void SplitInfo::clear()
   134 {
   135   _src_region_idx = 0;
   136   _partial_obj_size = 0;
   137   _destination = NULL;
   138   _destination_count = 0;
   139   _dest_region_addr = NULL;
   140   _first_src_addr = NULL;
   141   assert(!is_valid(), "sanity");
   142 }
   144 #ifdef  ASSERT
   145 void SplitInfo::verify_clear()
   146 {
   147   assert(_src_region_idx == 0, "not clear");
   148   assert(_partial_obj_size == 0, "not clear");
   149   assert(_destination == NULL, "not clear");
   150   assert(_destination_count == 0, "not clear");
   151   assert(_dest_region_addr == NULL, "not clear");
   152   assert(_first_src_addr == NULL, "not clear");
   153 }
   154 #endif  // #ifdef ASSERT
   157 #ifndef PRODUCT
   158 const char* PSParallelCompact::space_names[] = {
   159   "perm", "old ", "eden", "from", "to  "
   160 };
   162 void PSParallelCompact::print_region_ranges()
   163 {
   164   tty->print_cr("space  bottom     top        end        new_top");
   165   tty->print_cr("------ ---------- ---------- ---------- ----------");
   167   for (unsigned int id = 0; id < last_space_id; ++id) {
   168     const MutableSpace* space = _space_info[id].space();
   169     tty->print_cr("%u %s "
   170                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
   171                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
   172                   id, space_names[id],
   173                   summary_data().addr_to_region_idx(space->bottom()),
   174                   summary_data().addr_to_region_idx(space->top()),
   175                   summary_data().addr_to_region_idx(space->end()),
   176                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
   177   }
   178 }
   180 void
   181 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
   182 {
   183 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
   184 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
   186   ParallelCompactData& sd = PSParallelCompact::summary_data();
   187   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
   188   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
   189                 REGION_IDX_FORMAT " " PTR_FORMAT " "
   190                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
   191                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
   192                 i, c->data_location(), dci, c->destination(),
   193                 c->partial_obj_size(), c->live_obj_size(),
   194                 c->data_size(), c->source_region(), c->destination_count());
   196 #undef  REGION_IDX_FORMAT
   197 #undef  REGION_DATA_FORMAT
   198 }
   200 void
   201 print_generic_summary_data(ParallelCompactData& summary_data,
   202                            HeapWord* const beg_addr,
   203                            HeapWord* const end_addr)
   204 {
   205   size_t total_words = 0;
   206   size_t i = summary_data.addr_to_region_idx(beg_addr);
   207   const size_t last = summary_data.addr_to_region_idx(end_addr);
   208   HeapWord* pdest = 0;
   210   while (i <= last) {
   211     ParallelCompactData::RegionData* c = summary_data.region(i);
   212     if (c->data_size() != 0 || c->destination() != pdest) {
   213       print_generic_summary_region(i, c);
   214       total_words += c->data_size();
   215       pdest = c->destination();
   216     }
   217     ++i;
   218   }
   220   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
   221 }
   223 void
   224 print_generic_summary_data(ParallelCompactData& summary_data,
   225                            SpaceInfo* space_info)
   226 {
   227   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
   228     const MutableSpace* space = space_info[id].space();
   229     print_generic_summary_data(summary_data, space->bottom(),
   230                                MAX2(space->top(), space_info[id].new_top()));
   231   }
   232 }
   234 void
   235 print_initial_summary_region(size_t i,
   236                              const ParallelCompactData::RegionData* c,
   237                              bool newline = true)
   238 {
   239   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
   240              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
   241              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
   242              i, c->destination(),
   243              c->partial_obj_size(), c->live_obj_size(),
   244              c->data_size(), c->source_region(), c->destination_count());
   245   if (newline) tty->cr();
   246 }
   248 void
   249 print_initial_summary_data(ParallelCompactData& summary_data,
   250                            const MutableSpace* space) {
   251   if (space->top() == space->bottom()) {
   252     return;
   253   }
   255   const size_t region_size = ParallelCompactData::RegionSize;
   256   typedef ParallelCompactData::RegionData RegionData;
   257   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
   258   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
   259   const RegionData* c = summary_data.region(end_region - 1);
   260   HeapWord* end_addr = c->destination() + c->data_size();
   261   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
   263   // Print (and count) the full regions at the beginning of the space.
   264   size_t full_region_count = 0;
   265   size_t i = summary_data.addr_to_region_idx(space->bottom());
   266   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
   267     print_initial_summary_region(i, summary_data.region(i));
   268     ++full_region_count;
   269     ++i;
   270   }
   272   size_t live_to_right = live_in_space - full_region_count * region_size;
   274   double max_reclaimed_ratio = 0.0;
   275   size_t max_reclaimed_ratio_region = 0;
   276   size_t max_dead_to_right = 0;
   277   size_t max_live_to_right = 0;
   279   // Print the 'reclaimed ratio' for regions while there is something live in
   280   // the region or to the right of it.  The remaining regions are empty (and
   281   // uninteresting), and computing the ratio will result in division by 0.
   282   while (i < end_region && live_to_right > 0) {
   283     c = summary_data.region(i);
   284     HeapWord* const region_addr = summary_data.region_to_addr(i);
   285     const size_t used_to_right = pointer_delta(space->top(), region_addr);
   286     const size_t dead_to_right = used_to_right - live_to_right;
   287     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
   289     if (reclaimed_ratio > max_reclaimed_ratio) {
   290             max_reclaimed_ratio = reclaimed_ratio;
   291             max_reclaimed_ratio_region = i;
   292             max_dead_to_right = dead_to_right;
   293             max_live_to_right = live_to_right;
   294     }
   296     print_initial_summary_region(i, c, false);
   297     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
   298                   reclaimed_ratio, dead_to_right, live_to_right);
   300     live_to_right -= c->data_size();
   301     ++i;
   302   }
   304   // Any remaining regions are empty.  Print one more if there is one.
   305   if (i < end_region) {
   306     print_initial_summary_region(i, summary_data.region(i));
   307   }
   309   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
   310                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
   311                 max_reclaimed_ratio_region, max_dead_to_right,
   312                 max_live_to_right, max_reclaimed_ratio);
   313 }
   315 void
   316 print_initial_summary_data(ParallelCompactData& summary_data,
   317                            SpaceInfo* space_info) {
   318   unsigned int id = PSParallelCompact::perm_space_id;
   319   const MutableSpace* space;
   320   do {
   321     space = space_info[id].space();
   322     print_initial_summary_data(summary_data, space);
   323   } while (++id < PSParallelCompact::eden_space_id);
   325   do {
   326     space = space_info[id].space();
   327     print_generic_summary_data(summary_data, space->bottom(), space->top());
   328   } while (++id < PSParallelCompact::last_space_id);
   329 }
   330 #endif  // #ifndef PRODUCT
   332 #ifdef  ASSERT
   333 size_t add_obj_count;
   334 size_t add_obj_size;
   335 size_t mark_bitmap_count;
   336 size_t mark_bitmap_size;
   337 #endif  // #ifdef ASSERT
   339 ParallelCompactData::ParallelCompactData()
   340 {
   341   _region_start = 0;
   343   _region_vspace = 0;
   344   _region_data = 0;
   345   _region_count = 0;
   346 }
   348 bool ParallelCompactData::initialize(MemRegion covered_region)
   349 {
   350   _region_start = covered_region.start();
   351   const size_t region_size = covered_region.word_size();
   352   DEBUG_ONLY(_region_end = _region_start + region_size;)
   354   assert(region_align_down(_region_start) == _region_start,
   355          "region start not aligned");
   356   assert((region_size & RegionSizeOffsetMask) == 0,
   357          "region size not a multiple of RegionSize");
   359   bool result = initialize_region_data(region_size);
   361   return result;
   362 }
   364 PSVirtualSpace*
   365 ParallelCompactData::create_vspace(size_t count, size_t element_size)
   366 {
   367   const size_t raw_bytes = count * element_size;
   368   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
   369   const size_t granularity = os::vm_allocation_granularity();
   370   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
   372   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
   373     MAX2(page_sz, granularity);
   374   ReservedSpace rs(bytes, rs_align, rs_align > 0);
   375   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
   376                        rs.size());
   377   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
   378   if (vspace != 0) {
   379     if (vspace->expand_by(bytes)) {
   380       return vspace;
   381     }
   382     delete vspace;
   383     // Release memory reserved in the space.
   384     rs.release();
   385   }
   387   return 0;
   388 }
   390 bool ParallelCompactData::initialize_region_data(size_t region_size)
   391 {
   392   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
   393   _region_vspace = create_vspace(count, sizeof(RegionData));
   394   if (_region_vspace != 0) {
   395     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
   396     _region_count = count;
   397     return true;
   398   }
   399   return false;
   400 }
   402 void ParallelCompactData::clear()
   403 {
   404   memset(_region_data, 0, _region_vspace->committed_size());
   405 }
   407 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
   408   assert(beg_region <= _region_count, "beg_region out of range");
   409   assert(end_region <= _region_count, "end_region out of range");
   411   const size_t region_cnt = end_region - beg_region;
   412   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
   413 }
   415 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
   416 {
   417   const RegionData* cur_cp = region(region_idx);
   418   const RegionData* const end_cp = region(region_count() - 1);
   420   HeapWord* result = region_to_addr(region_idx);
   421   if (cur_cp < end_cp) {
   422     do {
   423       result += cur_cp->partial_obj_size();
   424     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
   425   }
   426   return result;
   427 }
   429 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
   430 {
   431   const size_t obj_ofs = pointer_delta(addr, _region_start);
   432   const size_t beg_region = obj_ofs >> Log2RegionSize;
   433   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
   435   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
   436   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
   438   if (beg_region == end_region) {
   439     // All in one region.
   440     _region_data[beg_region].add_live_obj(len);
   441     return;
   442   }
   444   // First region.
   445   const size_t beg_ofs = region_offset(addr);
   446   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
   448   klassOop klass = ((oop)addr)->klass();
   449   // Middle regions--completely spanned by this object.
   450   for (size_t region = beg_region + 1; region < end_region; ++region) {
   451     _region_data[region].set_partial_obj_size(RegionSize);
   452     _region_data[region].set_partial_obj_addr(addr);
   453   }
   455   // Last region.
   456   const size_t end_ofs = region_offset(addr + len - 1);
   457   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
   458   _region_data[end_region].set_partial_obj_addr(addr);
   459 }
   461 void
   462 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
   463 {
   464   assert(region_offset(beg) == 0, "not RegionSize aligned");
   465   assert(region_offset(end) == 0, "not RegionSize aligned");
   467   size_t cur_region = addr_to_region_idx(beg);
   468   const size_t end_region = addr_to_region_idx(end);
   469   HeapWord* addr = beg;
   470   while (cur_region < end_region) {
   471     _region_data[cur_region].set_destination(addr);
   472     _region_data[cur_region].set_destination_count(0);
   473     _region_data[cur_region].set_source_region(cur_region);
   474     _region_data[cur_region].set_data_location(addr);
   476     // Update live_obj_size so the region appears completely full.
   477     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
   478     _region_data[cur_region].set_live_obj_size(live_size);
   480     ++cur_region;
   481     addr += RegionSize;
   482   }
   483 }
   485 // Find the point at which a space can be split and, if necessary, record the
   486 // split point.
   487 //
   488 // If the current src region (which overflowed the destination space) doesn't
   489 // have a partial object, the split point is at the beginning of the current src
   490 // region (an "easy" split, no extra bookkeeping required).
   491 //
   492 // If the current src region has a partial object, the split point is in the
   493 // region where that partial object starts (call it the split_region).  If
   494 // split_region has a partial object, then the split point is just after that
   495 // partial object (a "hard" split where we have to record the split data and
   496 // zero the partial_obj_size field).  With a "hard" split, we know that the
   497 // partial_obj ends within split_region because the partial object that caused
   498 // the overflow starts in split_region.  If split_region doesn't have a partial
   499 // obj, then the split is at the beginning of split_region (another "easy"
   500 // split).
   501 HeapWord*
   502 ParallelCompactData::summarize_split_space(size_t src_region,
   503                                            SplitInfo& split_info,
   504                                            HeapWord* destination,
   505                                            HeapWord* target_end,
   506                                            HeapWord** target_next)
   507 {
   508   assert(destination <= target_end, "sanity");
   509   assert(destination + _region_data[src_region].data_size() > target_end,
   510     "region should not fit into target space");
   512   size_t split_region = src_region;
   513   HeapWord* split_destination = destination;
   514   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
   516   if (destination + partial_obj_size > target_end) {
   517     // The split point is just after the partial object (if any) in the
   518     // src_region that contains the start of the object that overflowed the
   519     // destination space.
   520     //
   521     // Find the start of the "overflow" object and set split_region to the
   522     // region containing it.
   523     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
   524     split_region = addr_to_region_idx(overflow_obj);
   526     // Clear the source_region field of all destination regions whose first word
   527     // came from data after the split point (a non-null source_region field
   528     // implies a region must be filled).
   529     //
   530     // An alternative to the simple loop below:  clear during post_compact(),
   531     // which uses memcpy instead of individual stores, and is easy to
   532     // parallelize.  (The downside is that it clears the entire RegionData
   533     // object as opposed to just one field.)
   534     //
   535     // post_compact() would have to clear the summary data up to the highest
   536     // address that was written during the summary phase, which would be
   537     //
   538     //         max(top, max(new_top, clear_top))
   539     //
   540     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
   541     // to destination + partial_obj_size, where both have the values passed to
   542     // this routine.
   543     const RegionData* const sr = region(split_region);
   544     const size_t beg_idx =
   545       addr_to_region_idx(region_align_up(sr->destination() +
   546                                          sr->partial_obj_size()));
   547     const size_t end_idx =
   548       addr_to_region_idx(region_align_up(destination + partial_obj_size));
   550     if (TraceParallelOldGCSummaryPhase) {
   551         gclog_or_tty->print_cr("split:  clearing source_region field in ["
   552                                SIZE_FORMAT ", " SIZE_FORMAT ")",
   553                                beg_idx, end_idx);
   554     }
   555     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
   556       _region_data[idx].set_source_region(0);
   557     }
   559     // Set split_destination and partial_obj_size to reflect the split region.
   560     split_destination = sr->destination();
   561     partial_obj_size = sr->partial_obj_size();
   562   }
   564   // The split is recorded only if a partial object extends onto the region.
   565   if (partial_obj_size != 0) {
   566     _region_data[split_region].set_partial_obj_size(0);
   567     split_info.record(split_region, partial_obj_size, split_destination);
   568   }
   570   // Setup the continuation addresses.
   571   *target_next = split_destination + partial_obj_size;
   572   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
   574   if (TraceParallelOldGCSummaryPhase) {
   575     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
   576     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
   577                            " pos=" SIZE_FORMAT,
   578                            split_type, source_next, split_region,
   579                            partial_obj_size);
   580     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
   581                            " tn=" PTR_FORMAT,
   582                            split_type, split_destination,
   583                            addr_to_region_idx(split_destination),
   584                            *target_next);
   586     if (partial_obj_size != 0) {
   587       HeapWord* const po_beg = split_info.destination();
   588       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
   589       gclog_or_tty->print_cr("%s split:  "
   590                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
   591                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
   592                              split_type,
   593                              po_beg, addr_to_region_idx(po_beg),
   594                              po_end, addr_to_region_idx(po_end));
   595     }
   596   }
   598   return source_next;
   599 }
   601 bool ParallelCompactData::summarize(SplitInfo& split_info,
   602                                     HeapWord* source_beg, HeapWord* source_end,
   603                                     HeapWord** source_next,
   604                                     HeapWord* target_beg, HeapWord* target_end,
   605                                     HeapWord** target_next)
   606 {
   607   if (TraceParallelOldGCSummaryPhase) {
   608     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
   609     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
   610                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
   611                   source_beg, source_end, source_next_val,
   612                   target_beg, target_end, *target_next);
   613   }
   615   size_t cur_region = addr_to_region_idx(source_beg);
   616   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
   618   HeapWord *dest_addr = target_beg;
   619   while (cur_region < end_region) {
   620     // The destination must be set even if the region has no data.
   621     _region_data[cur_region].set_destination(dest_addr);
   623     size_t words = _region_data[cur_region].data_size();
   624     if (words > 0) {
   625       // If cur_region does not fit entirely into the target space, find a point
   626       // at which the source space can be 'split' so that part is copied to the
   627       // target space and the rest is copied elsewhere.
   628       if (dest_addr + words > target_end) {
   629         assert(source_next != NULL, "source_next is NULL when splitting");
   630         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
   631                                              target_end, target_next);
   632         return false;
   633       }
   635       // Compute the destination_count for cur_region, and if necessary, update
   636       // source_region for a destination region.  The source_region field is
   637       // updated if cur_region is the first (left-most) region to be copied to a
   638       // destination region.
   639       //
   640       // The destination_count calculation is a bit subtle.  A region that has
   641       // data that compacts into itself does not count itself as a destination.
   642       // This maintains the invariant that a zero count means the region is
   643       // available and can be claimed and then filled.
   644       uint destination_count = 0;
   645       if (split_info.is_split(cur_region)) {
   646         // The current region has been split:  the partial object will be copied
   647         // to one destination space and the remaining data will be copied to
   648         // another destination space.  Adjust the initial destination_count and,
   649         // if necessary, set the source_region field if the partial object will
   650         // cross a destination region boundary.
   651         destination_count = split_info.destination_count();
   652         if (destination_count == 2) {
   653           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
   654           _region_data[dest_idx].set_source_region(cur_region);
   655         }
   656       }
   658       HeapWord* const last_addr = dest_addr + words - 1;
   659       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
   660       const size_t dest_region_2 = addr_to_region_idx(last_addr);
   662       // Initially assume that the destination regions will be the same and
   663       // adjust the value below if necessary.  Under this assumption, if
   664       // cur_region == dest_region_2, then cur_region will be compacted
   665       // completely into itself.
   666       destination_count += cur_region == dest_region_2 ? 0 : 1;
   667       if (dest_region_1 != dest_region_2) {
   668         // Destination regions differ; adjust destination_count.
   669         destination_count += 1;
   670         // Data from cur_region will be copied to the start of dest_region_2.
   671         _region_data[dest_region_2].set_source_region(cur_region);
   672       } else if (region_offset(dest_addr) == 0) {
   673         // Data from cur_region will be copied to the start of the destination
   674         // region.
   675         _region_data[dest_region_1].set_source_region(cur_region);
   676       }
   678       _region_data[cur_region].set_destination_count(destination_count);
   679       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
   680       dest_addr += words;
   681     }
   683     ++cur_region;
   684   }
   686   *target_next = dest_addr;
   687   return true;
   688 }
   690 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
   691   assert(addr != NULL, "Should detect NULL oop earlier");
   692   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
   693 #ifdef ASSERT
   694   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
   695     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
   696   }
   697 #endif
   698   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
   700   // Region covering the object.
   701   size_t region_index = addr_to_region_idx(addr);
   702   const RegionData* const region_ptr = region(region_index);
   703   HeapWord* const region_addr = region_align_down(addr);
   705   assert(addr < region_addr + RegionSize, "Region does not cover object");
   706   assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
   708   HeapWord* result = region_ptr->destination();
   710   // If all the data in the region is live, then the new location of the object
   711   // can be calculated from the destination of the region plus the offset of the
   712   // object in the region.
   713   if (region_ptr->data_size() == RegionSize) {
   714     result += pointer_delta(addr, region_addr);
   715     return result;
   716   }
   718   // The new location of the object is
   719   //    region destination +
   720   //    size of the partial object extending onto the region +
   721   //    sizes of the live objects in the Region that are to the left of addr
   722   const size_t partial_obj_size = region_ptr->partial_obj_size();
   723   HeapWord* const search_start = region_addr + partial_obj_size;
   725   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   726   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
   728   result += partial_obj_size + live_to_left;
   729   assert(result <= addr, "object cannot move to the right");
   730   return result;
   731 }
   733 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
   734   klassOop updated_klass;
   735   if (PSParallelCompact::should_update_klass(old_klass)) {
   736     updated_klass = (klassOop) calc_new_pointer(old_klass);
   737   } else {
   738     updated_klass = old_klass;
   739   }
   741   return updated_klass;
   742 }
   744 #ifdef  ASSERT
   745 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
   746 {
   747   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
   748   const size_t* const end = (const size_t*)vspace->committed_high_addr();
   749   for (const size_t* p = beg; p < end; ++p) {
   750     assert(*p == 0, "not zero");
   751   }
   752 }
   754 void ParallelCompactData::verify_clear()
   755 {
   756   verify_clear(_region_vspace);
   757 }
   758 #endif  // #ifdef ASSERT
   760 #ifdef NOT_PRODUCT
   761 ParallelCompactData::RegionData* debug_region(size_t region_index) {
   762   ParallelCompactData& sd = PSParallelCompact::summary_data();
   763   return sd.region(region_index);
   764 }
   765 #endif
   767 elapsedTimer        PSParallelCompact::_accumulated_time;
   768 unsigned int        PSParallelCompact::_total_invocations = 0;
   769 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
   770 jlong               PSParallelCompact::_time_of_last_gc = 0;
   771 CollectorCounters*  PSParallelCompact::_counters = NULL;
   772 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
   773 ParallelCompactData PSParallelCompact::_summary_data;
   775 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
   777 void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
   778 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
   780 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   781 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   783 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
   784 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
   786 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
   787 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
   789 void PSParallelCompact::FollowStackClosure::do_void() { follow_stack(_compaction_manager); }
   791 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       { mark_and_push(_compaction_manager, p); }
   792 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
   794 void PSParallelCompact::post_initialize() {
   795   ParallelScavengeHeap* heap = gc_heap();
   796   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   798   MemRegion mr = heap->reserved_region();
   799   _ref_processor = ReferenceProcessor::create_ref_processor(
   800     mr,                         // span
   801     true,                       // atomic_discovery
   802     true,                       // mt_discovery
   803     &_is_alive_closure,
   804     ParallelGCThreads,
   805     ParallelRefProcEnabled);
   806   _counters = new CollectorCounters("PSParallelCompact", 1);
   808   // Initialize static fields in ParCompactionManager.
   809   ParCompactionManager::initialize(mark_bitmap());
   810 }
   812 bool PSParallelCompact::initialize() {
   813   ParallelScavengeHeap* heap = gc_heap();
   814   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   815   MemRegion mr = heap->reserved_region();
   817   // Was the old gen get allocated successfully?
   818   if (!heap->old_gen()->is_allocated()) {
   819     return false;
   820   }
   822   initialize_space_info();
   823   initialize_dead_wood_limiter();
   825   if (!_mark_bitmap.initialize(mr)) {
   826     vm_shutdown_during_initialization("Unable to allocate bit map for "
   827       "parallel garbage collection for the requested heap size.");
   828     return false;
   829   }
   831   if (!_summary_data.initialize(mr)) {
   832     vm_shutdown_during_initialization("Unable to allocate tables for "
   833       "parallel garbage collection for the requested heap size.");
   834     return false;
   835   }
   837   return true;
   838 }
   840 void PSParallelCompact::initialize_space_info()
   841 {
   842   memset(&_space_info, 0, sizeof(_space_info));
   844   ParallelScavengeHeap* heap = gc_heap();
   845   PSYoungGen* young_gen = heap->young_gen();
   846   MutableSpace* perm_space = heap->perm_gen()->object_space();
   848   _space_info[perm_space_id].set_space(perm_space);
   849   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
   850   _space_info[eden_space_id].set_space(young_gen->eden_space());
   851   _space_info[from_space_id].set_space(young_gen->from_space());
   852   _space_info[to_space_id].set_space(young_gen->to_space());
   854   _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
   855   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
   857   _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
   858   if (TraceParallelOldGCDensePrefix) {
   859     tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
   860                   _space_info[perm_space_id].min_dense_prefix());
   861   }
   862 }
   864 void PSParallelCompact::initialize_dead_wood_limiter()
   865 {
   866   const size_t max = 100;
   867   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
   868   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
   869   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
   870   DEBUG_ONLY(_dwl_initialized = true;)
   871   _dwl_adjustment = normal_distribution(1.0);
   872 }
   874 // Simple class for storing info about the heap at the start of GC, to be used
   875 // after GC for comparison/printing.
   876 class PreGCValues {
   877 public:
   878   PreGCValues() { }
   879   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
   881   void fill(ParallelScavengeHeap* heap) {
   882     _heap_used      = heap->used();
   883     _young_gen_used = heap->young_gen()->used_in_bytes();
   884     _old_gen_used   = heap->old_gen()->used_in_bytes();
   885     _perm_gen_used  = heap->perm_gen()->used_in_bytes();
   886   };
   888   size_t heap_used() const      { return _heap_used; }
   889   size_t young_gen_used() const { return _young_gen_used; }
   890   size_t old_gen_used() const   { return _old_gen_used; }
   891   size_t perm_gen_used() const  { return _perm_gen_used; }
   893 private:
   894   size_t _heap_used;
   895   size_t _young_gen_used;
   896   size_t _old_gen_used;
   897   size_t _perm_gen_used;
   898 };
   900 void
   901 PSParallelCompact::clear_data_covering_space(SpaceId id)
   902 {
   903   // At this point, top is the value before GC, new_top() is the value that will
   904   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
   905   // should be marked above top.  The summary data is cleared to the larger of
   906   // top & new_top.
   907   MutableSpace* const space = _space_info[id].space();
   908   HeapWord* const bot = space->bottom();
   909   HeapWord* const top = space->top();
   910   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
   912   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
   913   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
   914   _mark_bitmap.clear_range(beg_bit, end_bit);
   916   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
   917   const size_t end_region =
   918     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
   919   _summary_data.clear_range(beg_region, end_region);
   921   // Clear the data used to 'split' regions.
   922   SplitInfo& split_info = _space_info[id].split_info();
   923   if (split_info.is_valid()) {
   924     split_info.clear();
   925   }
   926   DEBUG_ONLY(split_info.verify_clear();)
   927 }
   929 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
   930 {
   931   // Update the from & to space pointers in space_info, since they are swapped
   932   // at each young gen gc.  Do the update unconditionally (even though a
   933   // promotion failure does not swap spaces) because an unknown number of minor
   934   // collections will have swapped the spaces an unknown number of times.
   935   TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
   936   ParallelScavengeHeap* heap = gc_heap();
   937   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
   938   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
   940   pre_gc_values->fill(heap);
   942   ParCompactionManager::reset();
   943   NOT_PRODUCT(_mark_bitmap.reset_counters());
   944   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
   945   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
   947   // Increment the invocation count
   948   heap->increment_total_collections(true);
   950   // We need to track unique mark sweep invocations as well.
   951   _total_invocations++;
   953   if (PrintHeapAtGC) {
   954     Universe::print_heap_before_gc();
   955   }
   957   // Fill in TLABs
   958   heap->accumulate_statistics_all_tlabs();
   959   heap->ensure_parsability(true);  // retire TLABs
   961   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   962     HandleMark hm;  // Discard invalid handles created during verification
   963     gclog_or_tty->print(" VerifyBeforeGC:");
   964     Universe::verify(true);
   965   }
   967   // Verify object start arrays
   968   if (VerifyObjectStartArray &&
   969       VerifyBeforeGC) {
   970     heap->old_gen()->verify_object_start_array();
   971     heap->perm_gen()->verify_object_start_array();
   972   }
   974   DEBUG_ONLY(mark_bitmap()->verify_clear();)
   975   DEBUG_ONLY(summary_data().verify_clear();)
   977   // Have worker threads release resources the next time they run a task.
   978   gc_task_manager()->release_all_resources();
   979 }
   981 void PSParallelCompact::post_compact()
   982 {
   983   TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
   985   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
   986     // Clear the marking bitmap, summary data and split info.
   987     clear_data_covering_space(SpaceId(id));
   988     // Update top().  Must be done after clearing the bitmap and summary data.
   989     _space_info[id].publish_new_top();
   990   }
   992   MutableSpace* const eden_space = _space_info[eden_space_id].space();
   993   MutableSpace* const from_space = _space_info[from_space_id].space();
   994   MutableSpace* const to_space   = _space_info[to_space_id].space();
   996   ParallelScavengeHeap* heap = gc_heap();
   997   bool eden_empty = eden_space->is_empty();
   998   if (!eden_empty) {
   999     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
  1000                                             heap->young_gen(), heap->old_gen());
  1003   // Update heap occupancy information which is used as input to the soft ref
  1004   // clearing policy at the next gc.
  1005   Universe::update_heap_info_at_gc();
  1007   bool young_gen_empty = eden_empty && from_space->is_empty() &&
  1008     to_space->is_empty();
  1010   BarrierSet* bs = heap->barrier_set();
  1011   if (bs->is_a(BarrierSet::ModRef)) {
  1012     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
  1013     MemRegion old_mr = heap->old_gen()->reserved();
  1014     MemRegion perm_mr = heap->perm_gen()->reserved();
  1015     assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
  1017     if (young_gen_empty) {
  1018       modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
  1019     } else {
  1020       modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
  1024   Threads::gc_epilogue();
  1025   CodeCache::gc_epilogue();
  1027   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1029   ref_processor()->enqueue_discovered_references(NULL);
  1031   if (ZapUnusedHeapArea) {
  1032     heap->gen_mangle_unused_area();
  1035   // Update time of last GC
  1036   reset_millis_since_last_gc();
  1039 HeapWord*
  1040 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
  1041                                                     bool maximum_compaction)
  1043   const size_t region_size = ParallelCompactData::RegionSize;
  1044   const ParallelCompactData& sd = summary_data();
  1046   const MutableSpace* const space = _space_info[id].space();
  1047   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  1048   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
  1049   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
  1051   // Skip full regions at the beginning of the space--they are necessarily part
  1052   // of the dense prefix.
  1053   size_t full_count = 0;
  1054   const RegionData* cp;
  1055   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
  1056     ++full_count;
  1059   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1060   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1061   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  1062   if (maximum_compaction || cp == end_cp || interval_ended) {
  1063     _maximum_compaction_gc_num = total_invocations();
  1064     return sd.region_to_addr(cp);
  1067   HeapWord* const new_top = _space_info[id].new_top();
  1068   const size_t space_live = pointer_delta(new_top, space->bottom());
  1069   const size_t space_used = space->used_in_words();
  1070   const size_t space_capacity = space->capacity_in_words();
  1072   const double cur_density = double(space_live) / space_capacity;
  1073   const double deadwood_density =
  1074     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  1075   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
  1077   if (TraceParallelOldGCDensePrefix) {
  1078     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
  1079                   cur_density, deadwood_density, deadwood_goal);
  1080     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1081                   "space_cap=" SIZE_FORMAT,
  1082                   space_live, space_used,
  1083                   space_capacity);
  1086   // XXX - Use binary search?
  1087   HeapWord* dense_prefix = sd.region_to_addr(cp);
  1088   const RegionData* full_cp = cp;
  1089   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
  1090   while (cp < end_cp) {
  1091     HeapWord* region_destination = cp->destination();
  1092     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
  1093     if (TraceParallelOldGCDensePrefix && Verbose) {
  1094       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
  1095                     "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
  1096                     sd.region(cp), region_destination,
  1097                     dense_prefix, cur_deadwood);
  1100     if (cur_deadwood >= deadwood_goal) {
  1101       // Found the region that has the correct amount of deadwood to the left.
  1102       // This typically occurs after crossing a fairly sparse set of regions, so
  1103       // iterate backwards over those sparse regions, looking for the region
  1104       // that has the lowest density of live objects 'to the right.'
  1105       size_t space_to_left = sd.region(cp) * region_size;
  1106       size_t live_to_left = space_to_left - cur_deadwood;
  1107       size_t space_to_right = space_capacity - space_to_left;
  1108       size_t live_to_right = space_live - live_to_left;
  1109       double density_to_right = double(live_to_right) / space_to_right;
  1110       while (cp > full_cp) {
  1111         --cp;
  1112         const size_t prev_region_live_to_right = live_to_right -
  1113           cp->data_size();
  1114         const size_t prev_region_space_to_right = space_to_right + region_size;
  1115         double prev_region_density_to_right =
  1116           double(prev_region_live_to_right) / prev_region_space_to_right;
  1117         if (density_to_right <= prev_region_density_to_right) {
  1118           return dense_prefix;
  1120         if (TraceParallelOldGCDensePrefix && Verbose) {
  1121           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
  1122                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
  1123                         prev_region_density_to_right);
  1125         dense_prefix -= region_size;
  1126         live_to_right = prev_region_live_to_right;
  1127         space_to_right = prev_region_space_to_right;
  1128         density_to_right = prev_region_density_to_right;
  1130       return dense_prefix;
  1133     dense_prefix += region_size;
  1134     ++cp;
  1137   return dense_prefix;
  1140 #ifndef PRODUCT
  1141 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
  1142                                                  const SpaceId id,
  1143                                                  const bool maximum_compaction,
  1144                                                  HeapWord* const addr)
  1146   const size_t region_idx = summary_data().addr_to_region_idx(addr);
  1147   RegionData* const cp = summary_data().region(region_idx);
  1148   const MutableSpace* const space = _space_info[id].space();
  1149   HeapWord* const new_top = _space_info[id].new_top();
  1151   const size_t space_live = pointer_delta(new_top, space->bottom());
  1152   const size_t dead_to_left = pointer_delta(addr, cp->destination());
  1153   const size_t space_cap = space->capacity_in_words();
  1154   const double dead_to_left_pct = double(dead_to_left) / space_cap;
  1155   const size_t live_to_right = new_top - cp->destination();
  1156   const size_t dead_to_right = space->top() - addr - live_to_right;
  1158   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
  1159                 "spl=" SIZE_FORMAT " "
  1160                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
  1161                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
  1162                 " ratio=%10.8f",
  1163                 algorithm, addr, region_idx,
  1164                 space_live,
  1165                 dead_to_left, dead_to_left_pct,
  1166                 dead_to_right, live_to_right,
  1167                 double(dead_to_right) / live_to_right);
  1169 #endif  // #ifndef PRODUCT
  1171 // Return a fraction indicating how much of the generation can be treated as
  1172 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
  1173 // based on the density of live objects in the generation to determine a limit,
  1174 // which is then adjusted so the return value is min_percent when the density is
  1175 // 1.
  1176 //
  1177 // The following table shows some return values for a different values of the
  1178 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
  1179 // min_percent is 1.
  1180 //
  1181 //                          fraction allowed as dead wood
  1182 //         -----------------------------------------------------------------
  1183 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
  1184 // ------- ---------- ---------- ---------- ---------- ---------- ----------
  1185 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1186 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1187 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1188 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1189 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1190 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1191 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1192 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1193 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1194 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1195 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
  1196 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1197 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1198 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1199 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1200 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1201 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1202 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1203 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1204 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1205 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1207 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
  1209   assert(_dwl_initialized, "uninitialized");
  1211   // The raw limit is the value of the normal distribution at x = density.
  1212   const double raw_limit = normal_distribution(density);
  1214   // Adjust the raw limit so it becomes the minimum when the density is 1.
  1215   //
  1216   // First subtract the adjustment value (which is simply the precomputed value
  1217   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  1218   // Then add the minimum value, so the minimum is returned when the density is
  1219   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  1220   const double min = double(min_percent) / 100.0;
  1221   const double limit = raw_limit - _dwl_adjustment + min;
  1222   return MAX2(limit, 0.0);
  1225 ParallelCompactData::RegionData*
  1226 PSParallelCompact::first_dead_space_region(const RegionData* beg,
  1227                                            const RegionData* end)
  1229   const size_t region_size = ParallelCompactData::RegionSize;
  1230   ParallelCompactData& sd = summary_data();
  1231   size_t left = sd.region(beg);
  1232   size_t right = end > beg ? sd.region(end) - 1 : left;
  1234   // Binary search.
  1235   while (left < right) {
  1236     // Equivalent to (left + right) / 2, but does not overflow.
  1237     const size_t middle = left + (right - left) / 2;
  1238     RegionData* const middle_ptr = sd.region(middle);
  1239     HeapWord* const dest = middle_ptr->destination();
  1240     HeapWord* const addr = sd.region_to_addr(middle);
  1241     assert(dest != NULL, "sanity");
  1242     assert(dest <= addr, "must move left");
  1244     if (middle > left && dest < addr) {
  1245       right = middle - 1;
  1246     } else if (middle < right && middle_ptr->data_size() == region_size) {
  1247       left = middle + 1;
  1248     } else {
  1249       return middle_ptr;
  1252   return sd.region(left);
  1255 ParallelCompactData::RegionData*
  1256 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
  1257                                           const RegionData* end,
  1258                                           size_t dead_words)
  1260   ParallelCompactData& sd = summary_data();
  1261   size_t left = sd.region(beg);
  1262   size_t right = end > beg ? sd.region(end) - 1 : left;
  1264   // Binary search.
  1265   while (left < right) {
  1266     // Equivalent to (left + right) / 2, but does not overflow.
  1267     const size_t middle = left + (right - left) / 2;
  1268     RegionData* const middle_ptr = sd.region(middle);
  1269     HeapWord* const dest = middle_ptr->destination();
  1270     HeapWord* const addr = sd.region_to_addr(middle);
  1271     assert(dest != NULL, "sanity");
  1272     assert(dest <= addr, "must move left");
  1274     const size_t dead_to_left = pointer_delta(addr, dest);
  1275     if (middle > left && dead_to_left > dead_words) {
  1276       right = middle - 1;
  1277     } else if (middle < right && dead_to_left < dead_words) {
  1278       left = middle + 1;
  1279     } else {
  1280       return middle_ptr;
  1283   return sd.region(left);
  1286 // The result is valid during the summary phase, after the initial summarization
  1287 // of each space into itself, and before final summarization.
  1288 inline double
  1289 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
  1290                                    HeapWord* const bottom,
  1291                                    HeapWord* const top,
  1292                                    HeapWord* const new_top)
  1294   ParallelCompactData& sd = summary_data();
  1296   assert(cp != NULL, "sanity");
  1297   assert(bottom != NULL, "sanity");
  1298   assert(top != NULL, "sanity");
  1299   assert(new_top != NULL, "sanity");
  1300   assert(top >= new_top, "summary data problem?");
  1301   assert(new_top > bottom, "space is empty; should not be here");
  1302   assert(new_top >= cp->destination(), "sanity");
  1303   assert(top >= sd.region_to_addr(cp), "sanity");
  1305   HeapWord* const destination = cp->destination();
  1306   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  1307   const size_t compacted_region_live = pointer_delta(new_top, destination);
  1308   const size_t compacted_region_used = pointer_delta(top,
  1309                                                      sd.region_to_addr(cp));
  1310   const size_t reclaimable = compacted_region_used - compacted_region_live;
  1312   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  1313   return double(reclaimable) / divisor;
  1316 // Return the address of the end of the dense prefix, a.k.a. the start of the
  1317 // compacted region.  The address is always on a region boundary.
  1318 //
  1319 // Completely full regions at the left are skipped, since no compaction can
  1320 // occur in those regions.  Then the maximum amount of dead wood to allow is
  1321 // computed, based on the density (amount live / capacity) of the generation;
  1322 // the region with approximately that amount of dead space to the left is
  1323 // identified as the limit region.  Regions between the last completely full
  1324 // region and the limit region are scanned and the one that has the best
  1325 // (maximum) reclaimed_ratio() is selected.
  1326 HeapWord*
  1327 PSParallelCompact::compute_dense_prefix(const SpaceId id,
  1328                                         bool maximum_compaction)
  1330   const size_t region_size = ParallelCompactData::RegionSize;
  1331   const ParallelCompactData& sd = summary_data();
  1333   const MutableSpace* const space = _space_info[id].space();
  1334   HeapWord* const top = space->top();
  1335   HeapWord* const top_aligned_up = sd.region_align_up(top);
  1336   HeapWord* const new_top = _space_info[id].new_top();
  1337   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
  1338   HeapWord* const bottom = space->bottom();
  1339   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  1340   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  1341   const RegionData* const new_top_cp =
  1342     sd.addr_to_region_ptr(new_top_aligned_up);
  1344   // Skip full regions at the beginning of the space--they are necessarily part
  1345   // of the dense prefix.
  1346   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  1347   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
  1348          space->is_empty(), "no dead space allowed to the left");
  1349   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
  1350          "region must have dead space");
  1352   // The gc number is saved whenever a maximum compaction is done, and used to
  1353   // determine when the maximum compaction interval has expired.  This avoids
  1354   // successive max compactions for different reasons.
  1355   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1356   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1357   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
  1358     total_invocations() == HeapFirstMaximumCompactionCount;
  1359   if (maximum_compaction || full_cp == top_cp || interval_ended) {
  1360     _maximum_compaction_gc_num = total_invocations();
  1361     return sd.region_to_addr(full_cp);
  1364   const size_t space_live = pointer_delta(new_top, bottom);
  1365   const size_t space_used = space->used_in_words();
  1366   const size_t space_capacity = space->capacity_in_words();
  1368   const double density = double(space_live) / double(space_capacity);
  1369   const size_t min_percent_free =
  1370           id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
  1371   const double limiter = dead_wood_limiter(density, min_percent_free);
  1372   const size_t dead_wood_max = space_used - space_live;
  1373   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
  1374                                       dead_wood_max);
  1376   if (TraceParallelOldGCDensePrefix) {
  1377     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1378                   "space_cap=" SIZE_FORMAT,
  1379                   space_live, space_used,
  1380                   space_capacity);
  1381     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
  1382                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
  1383                   density, min_percent_free, limiter,
  1384                   dead_wood_max, dead_wood_limit);
  1387   // Locate the region with the desired amount of dead space to the left.
  1388   const RegionData* const limit_cp =
  1389     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
  1391   // Scan from the first region with dead space to the limit region and find the
  1392   // one with the best (largest) reclaimed ratio.
  1393   double best_ratio = 0.0;
  1394   const RegionData* best_cp = full_cp;
  1395   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
  1396     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
  1397     if (tmp_ratio > best_ratio) {
  1398       best_cp = cp;
  1399       best_ratio = tmp_ratio;
  1403 #if     0
  1404   // Something to consider:  if the region with the best ratio is 'close to' the
  1405   // first region w/free space, choose the first region with free space
  1406   // ("first-free").  The first-free region is usually near the start of the
  1407   // heap, which means we are copying most of the heap already, so copy a bit
  1408   // more to get complete compaction.
  1409   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
  1410     _maximum_compaction_gc_num = total_invocations();
  1411     best_cp = full_cp;
  1413 #endif  // #if 0
  1415   return sd.region_to_addr(best_cp);
  1418 void PSParallelCompact::summarize_spaces_quick()
  1420   for (unsigned int i = 0; i < last_space_id; ++i) {
  1421     const MutableSpace* space = _space_info[i].space();
  1422     HeapWord** nta = _space_info[i].new_top_addr();
  1423     bool result = _summary_data.summarize(_space_info[i].split_info(),
  1424                                           space->bottom(), space->top(), NULL,
  1425                                           space->bottom(), space->end(), nta);
  1426     assert(result, "space must fit into itself");
  1427     _space_info[i].set_dense_prefix(space->bottom());
  1431 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
  1433   HeapWord* const dense_prefix_end = dense_prefix(id);
  1434   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
  1435   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
  1436   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
  1437     // Only enough dead space is filled so that any remaining dead space to the
  1438     // left is larger than the minimum filler object.  (The remainder is filled
  1439     // during the copy/update phase.)
  1440     //
  1441     // The size of the dead space to the right of the boundary is not a
  1442     // concern, since compaction will be able to use whatever space is
  1443     // available.
  1444     //
  1445     // Here '||' is the boundary, 'x' represents a don't care bit and a box
  1446     // surrounds the space to be filled with an object.
  1447     //
  1448     // In the 32-bit VM, each bit represents two 32-bit words:
  1449     //                              +---+
  1450     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1451     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1452     //                              +---+
  1453     //
  1454     // In the 64-bit VM, each bit represents one 64-bit word:
  1455     //                              +------------+
  1456     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
  1457     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
  1458     //                              +------------+
  1459     //                          +-------+
  1460     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
  1461     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
  1462     //                          +-------+
  1463     //                      +-----------+
  1464     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
  1465     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
  1466     //                      +-----------+
  1467     //                          +-------+
  1468     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1469     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1470     //                          +-------+
  1472     // Initially assume case a, c or e will apply.
  1473     size_t obj_len = (size_t)oopDesc::header_size();
  1474     HeapWord* obj_beg = dense_prefix_end - obj_len;
  1476 #ifdef  _LP64
  1477     if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
  1478       // Case b above.
  1479       obj_beg = dense_prefix_end - 1;
  1480     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
  1481                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
  1482       // Case d above.
  1483       obj_beg = dense_prefix_end - 3;
  1484       obj_len = 3;
  1486 #endif  // #ifdef _LP64
  1488     CollectedHeap::fill_with_object(obj_beg, obj_len);
  1489     _mark_bitmap.mark_obj(obj_beg, obj_len);
  1490     _summary_data.add_obj(obj_beg, obj_len);
  1491     assert(start_array(id) != NULL, "sanity");
  1492     start_array(id)->allocate_block(obj_beg);
  1496 void
  1497 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
  1499   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
  1500   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
  1501   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
  1502   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
  1503     cur->set_source_region(0);
  1507 void
  1508 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
  1510   assert(id < last_space_id, "id out of range");
  1511   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
  1512          "should have been set in summarize_spaces_quick()");
  1514   const MutableSpace* space = _space_info[id].space();
  1515   if (_space_info[id].new_top() != space->bottom()) {
  1516     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
  1517     _space_info[id].set_dense_prefix(dense_prefix_end);
  1519 #ifndef PRODUCT
  1520     if (TraceParallelOldGCDensePrefix) {
  1521       print_dense_prefix_stats("ratio", id, maximum_compaction,
  1522                                dense_prefix_end);
  1523       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
  1524       print_dense_prefix_stats("density", id, maximum_compaction, addr);
  1526 #endif  // #ifndef PRODUCT
  1528     // Recompute the summary data, taking into account the dense prefix.  If every
  1529     // last byte will be reclaimed, then the existing summary data which compacts
  1530     // everything can be left in place.
  1531     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
  1532       // If dead space crosses the dense prefix boundary, it is (at least
  1533       // partially) filled with a dummy object, marked live and added to the
  1534       // summary data.  This simplifies the copy/update phase and must be done
  1535       // before the final locations of objects are determined, to prevent leaving
  1536       // a fragment of dead space that is too small to fill with an object.
  1537       fill_dense_prefix_end(id);
  1539       // Compute the destination of each Region, and thus each object.
  1540       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
  1541       _summary_data.summarize(_space_info[id].split_info(),
  1542                               dense_prefix_end, space->top(), NULL,
  1543                               dense_prefix_end, space->end(),
  1544                               _space_info[id].new_top_addr());
  1548   if (TraceParallelOldGCSummaryPhase) {
  1549     const size_t region_size = ParallelCompactData::RegionSize;
  1550     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
  1551     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
  1552     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
  1553     HeapWord* const new_top = _space_info[id].new_top();
  1554     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
  1555     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
  1556     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
  1557                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
  1558                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
  1559                   id, space->capacity_in_words(), dense_prefix_end,
  1560                   dp_region, dp_words / region_size,
  1561                   cr_words / region_size, new_top);
  1565 #ifndef PRODUCT
  1566 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
  1567                                           HeapWord* dst_beg, HeapWord* dst_end,
  1568                                           SpaceId src_space_id,
  1569                                           HeapWord* src_beg, HeapWord* src_end)
  1571   if (TraceParallelOldGCSummaryPhase) {
  1572     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
  1573                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
  1574                   SIZE_FORMAT "-" SIZE_FORMAT " "
  1575                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
  1576                   SIZE_FORMAT "-" SIZE_FORMAT,
  1577                   src_space_id, space_names[src_space_id],
  1578                   dst_space_id, space_names[dst_space_id],
  1579                   src_beg, src_end,
  1580                   _summary_data.addr_to_region_idx(src_beg),
  1581                   _summary_data.addr_to_region_idx(src_end),
  1582                   dst_beg, dst_end,
  1583                   _summary_data.addr_to_region_idx(dst_beg),
  1584                   _summary_data.addr_to_region_idx(dst_end));
  1587 #endif  // #ifndef PRODUCT
  1589 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
  1590                                       bool maximum_compaction)
  1592   EventMark m("2 summarize");
  1593   TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  1594   // trace("2");
  1596 #ifdef  ASSERT
  1597   if (TraceParallelOldGCMarkingPhase) {
  1598     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
  1599                   "add_obj_bytes=" SIZE_FORMAT,
  1600                   add_obj_count, add_obj_size * HeapWordSize);
  1601     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
  1602                   "mark_bitmap_bytes=" SIZE_FORMAT,
  1603                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  1605 #endif  // #ifdef ASSERT
  1607   // Quick summarization of each space into itself, to see how much is live.
  1608   summarize_spaces_quick();
  1610   if (TraceParallelOldGCSummaryPhase) {
  1611     tty->print_cr("summary_phase:  after summarizing each space to self");
  1612     Universe::print();
  1613     NOT_PRODUCT(print_region_ranges());
  1614     if (Verbose) {
  1615       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
  1619   // The amount of live data that will end up in old space (assuming it fits).
  1620   size_t old_space_total_live = 0;
  1621   assert(perm_space_id < old_space_id, "should not count perm data here");
  1622   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  1623     old_space_total_live += pointer_delta(_space_info[id].new_top(),
  1624                                           _space_info[id].space()->bottom());
  1627   MutableSpace* const old_space = _space_info[old_space_id].space();
  1628   if (old_space_total_live > old_space->capacity_in_words()) {
  1629     // XXX - should also try to expand
  1630     maximum_compaction = true;
  1633   // Permanent and Old generations.
  1634   summarize_space(perm_space_id, maximum_compaction);
  1635   summarize_space(old_space_id, maximum_compaction);
  1637   // Summarize the remaining spaces in the young gen.  The initial target space
  1638   // is the old gen.  If a space does not fit entirely into the target, then the
  1639   // remainder is compacted into the space itself and that space becomes the new
  1640   // target.
  1641   SpaceId dst_space_id = old_space_id;
  1642   HeapWord* dst_space_end = old_space->end();
  1643   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
  1644   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
  1645     const MutableSpace* space = _space_info[id].space();
  1646     const size_t live = pointer_delta(_space_info[id].new_top(),
  1647                                       space->bottom());
  1648     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
  1650     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
  1651                                   SpaceId(id), space->bottom(), space->top());)
  1652     if (live > 0 && live <= available) {
  1653       // All the live data will fit.
  1654       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1655                                           space->bottom(), space->top(),
  1656                                           NULL,
  1657                                           *new_top_addr, dst_space_end,
  1658                                           new_top_addr);
  1659       assert(done, "space must fit into old gen");
  1661       // XXX - this is necessary because decrement_destination_counts() tests
  1662       // source_region() to determine if a region will be filled.  Probably
  1663       // better to pass src_space->new_top() into decrement_destination_counts
  1664       // and test that instead.
  1665       //
  1666       // Clear the source_region field for each region in the space.
  1667       clear_source_region(space->bottom(), _space_info[id].new_top());
  1669       // Reset the new_top value for the space.
  1670       _space_info[id].set_new_top(space->bottom());
  1671     } else if (live > 0) {
  1672       // Attempt to fit part of the source space into the target space.
  1673       HeapWord* next_src_addr = NULL;
  1674       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1675                                           space->bottom(), space->top(),
  1676                                           &next_src_addr,
  1677                                           *new_top_addr, dst_space_end,
  1678                                           new_top_addr);
  1679       assert(!done, "space should not fit into old gen");
  1680       assert(next_src_addr != NULL, "sanity");
  1682       // The source space becomes the new target, so the remainder is compacted
  1683       // within the space itself.
  1684       dst_space_id = SpaceId(id);
  1685       dst_space_end = space->end();
  1686       new_top_addr = _space_info[id].new_top_addr();
  1687       HeapWord* const clear_end = _space_info[id].new_top();
  1688       NOT_PRODUCT(summary_phase_msg(dst_space_id,
  1689                                     space->bottom(), dst_space_end,
  1690                                     SpaceId(id), next_src_addr, space->top());)
  1691       done = _summary_data.summarize(_space_info[id].split_info(),
  1692                                      next_src_addr, space->top(),
  1693                                      NULL,
  1694                                      space->bottom(), dst_space_end,
  1695                                      new_top_addr);
  1696       assert(done, "space must fit when compacted into itself");
  1697       assert(*new_top_addr <= space->top(), "usage should not grow");
  1699       // XXX - this should go away.  See comments above.
  1700       //
  1701       // Clear the source_region field in regions at the end of the space that
  1702       // will not be filled.
  1703       HeapWord* const clear_beg = _summary_data.region_align_up(*new_top_addr);
  1704       clear_source_region(clear_beg, clear_end);
  1708   if (TraceParallelOldGCSummaryPhase) {
  1709     tty->print_cr("summary_phase:  after final summarization");
  1710     Universe::print();
  1711     NOT_PRODUCT(print_region_ranges());
  1712     if (Verbose) {
  1713       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
  1718 // This method should contain all heap-specific policy for invoking a full
  1719 // collection.  invoke_no_policy() will only attempt to compact the heap; it
  1720 // will do nothing further.  If we need to bail out for policy reasons, scavenge
  1721 // before full gc, or any other specialized behavior, it needs to be added here.
  1722 //
  1723 // Note that this method should only be called from the vm_thread while at a
  1724 // safepoint.
  1725 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  1726   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1727   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
  1728          "should be in vm thread");
  1729   ParallelScavengeHeap* heap = gc_heap();
  1730   GCCause::Cause gc_cause = heap->gc_cause();
  1731   assert(!heap->is_gc_active(), "not reentrant");
  1733   PSAdaptiveSizePolicy* policy = heap->size_policy();
  1735   // Before each allocation/collection attempt, find out from the
  1736   // policy object if GCs are, on the whole, taking too long. If so,
  1737   // bail out without attempting a collection.  The exceptions are
  1738   // for explicitly requested GC's.
  1739   if (!policy->gc_time_limit_exceeded() ||
  1740       GCCause::is_user_requested_gc(gc_cause) ||
  1741       GCCause::is_serviceability_requested_gc(gc_cause)) {
  1742     IsGCActiveMark mark;
  1744     if (ScavengeBeforeFullGC) {
  1745       PSScavenge::invoke_no_policy();
  1748     PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
  1752 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
  1753   size_t addr_region_index = addr_to_region_idx(addr);
  1754   return region_index == addr_region_index;
  1757 // This method contains no policy. You should probably
  1758 // be calling invoke() instead.
  1759 void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  1760   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  1761   assert(ref_processor() != NULL, "Sanity");
  1763   if (GC_locker::check_active_before_gc()) {
  1764     return;
  1767   TimeStamp marking_start;
  1768   TimeStamp compaction_start;
  1769   TimeStamp collection_exit;
  1771   ParallelScavengeHeap* heap = gc_heap();
  1772   GCCause::Cause gc_cause = heap->gc_cause();
  1773   PSYoungGen* young_gen = heap->young_gen();
  1774   PSOldGen* old_gen = heap->old_gen();
  1775   PSPermGen* perm_gen = heap->perm_gen();
  1776   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
  1778   if (ZapUnusedHeapArea) {
  1779     // Save information needed to minimize mangling
  1780     heap->record_gen_tops_before_GC();
  1783   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
  1785   // Make sure data structures are sane, make the heap parsable, and do other
  1786   // miscellaneous bookkeeping.
  1787   PreGCValues pre_gc_values;
  1788   pre_compact(&pre_gc_values);
  1790   // Get the compaction manager reserved for the VM thread.
  1791   ParCompactionManager* const vmthread_cm =
  1792     ParCompactionManager::manager_array(gc_task_manager()->workers());
  1794   // Place after pre_compact() where the number of invocations is incremented.
  1795   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
  1798     ResourceMark rm;
  1799     HandleMark hm;
  1801     const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
  1803     // This is useful for debugging but don't change the output the
  1804     // the customer sees.
  1805     const char* gc_cause_str = "Full GC";
  1806     if (is_system_gc && PrintGCDetails) {
  1807       gc_cause_str = "Full GC (System)";
  1809     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  1810     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1811     TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
  1812     TraceCollectorStats tcs(counters());
  1813     TraceMemoryManagerStats tms(true /* Full GC */);
  1815     if (TraceGen1Time) accumulated_time()->start();
  1817     // Let the size policy know we're starting
  1818     size_policy->major_collection_begin();
  1820     // When collecting the permanent generation methodOops may be moving,
  1821     // so we either have to flush all bcp data or convert it into bci.
  1822     CodeCache::gc_prologue();
  1823     Threads::gc_prologue();
  1825     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  1826     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1828     ref_processor()->enable_discovery();
  1829     ref_processor()->setup_policy(maximum_heap_compaction);
  1831     bool marked_for_unloading = false;
  1833     marking_start.update();
  1834     marking_phase(vmthread_cm, maximum_heap_compaction);
  1836 #ifndef PRODUCT
  1837     if (TraceParallelOldGCMarkingPhase) {
  1838       gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
  1839         "cas_by_another %d",
  1840         mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
  1841         mark_bitmap()->cas_by_another());
  1843 #endif  // #ifndef PRODUCT
  1845     bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
  1846     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
  1848     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  1849     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
  1851     // adjust_roots() updates Universe::_intArrayKlassObj which is
  1852     // needed by the compaction for filling holes in the dense prefix.
  1853     adjust_roots();
  1855     compaction_start.update();
  1856     // Does the perm gen always have to be done serially because
  1857     // klasses are used in the update of an object?
  1858     compact_perm(vmthread_cm);
  1860     if (UseParallelOldGCCompacting) {
  1861       compact();
  1862     } else {
  1863       compact_serial(vmthread_cm);
  1866     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
  1867     // done before resizing.
  1868     post_compact();
  1870     // Let the size policy know we're done
  1871     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
  1873     if (UseAdaptiveSizePolicy) {
  1874       if (PrintAdaptiveSizePolicy) {
  1875         gclog_or_tty->print("AdaptiveSizeStart: ");
  1876         gclog_or_tty->stamp();
  1877         gclog_or_tty->print_cr(" collection: %d ",
  1878                        heap->total_collections());
  1879         if (Verbose) {
  1880           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
  1881             " perm_gen_capacity: %d ",
  1882             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
  1883             perm_gen->capacity_in_bytes());
  1887       // Don't check if the size_policy is ready here.  Let
  1888       // the size_policy check that internally.
  1889       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
  1890           ((gc_cause != GCCause::_java_lang_system_gc) ||
  1891             UseAdaptiveSizePolicyWithSystemGC)) {
  1892         // Calculate optimal free space amounts
  1893         assert(young_gen->max_size() >
  1894           young_gen->from_space()->capacity_in_bytes() +
  1895           young_gen->to_space()->capacity_in_bytes(),
  1896           "Sizes of space in young gen are out-of-bounds");
  1897         size_t max_eden_size = young_gen->max_size() -
  1898           young_gen->from_space()->capacity_in_bytes() -
  1899           young_gen->to_space()->capacity_in_bytes();
  1900         size_policy->compute_generation_free_space(
  1901                               young_gen->used_in_bytes(),
  1902                               young_gen->eden_space()->used_in_bytes(),
  1903                               old_gen->used_in_bytes(),
  1904                               perm_gen->used_in_bytes(),
  1905                               young_gen->eden_space()->capacity_in_bytes(),
  1906                               old_gen->max_gen_size(),
  1907                               max_eden_size,
  1908                               true /* full gc*/,
  1909                               gc_cause);
  1911         heap->resize_old_gen(
  1912           size_policy->calculated_old_free_size_in_bytes());
  1914         // Don't resize the young generation at an major collection.  A
  1915         // desired young generation size may have been calculated but
  1916         // resizing the young generation complicates the code because the
  1917         // resizing of the old generation may have moved the boundary
  1918         // between the young generation and the old generation.  Let the
  1919         // young generation resizing happen at the minor collections.
  1921       if (PrintAdaptiveSizePolicy) {
  1922         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
  1923                        heap->total_collections());
  1927     if (UsePerfData) {
  1928       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
  1929       counters->update_counters();
  1930       counters->update_old_capacity(old_gen->capacity_in_bytes());
  1931       counters->update_young_capacity(young_gen->capacity_in_bytes());
  1934     heap->resize_all_tlabs();
  1936     // We collected the perm gen, so we'll resize it here.
  1937     perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
  1939     if (TraceGen1Time) accumulated_time()->stop();
  1941     if (PrintGC) {
  1942       if (PrintGCDetails) {
  1943         // No GC timestamp here.  This is after GC so it would be confusing.
  1944         young_gen->print_used_change(pre_gc_values.young_gen_used());
  1945         old_gen->print_used_change(pre_gc_values.old_gen_used());
  1946         heap->print_heap_change(pre_gc_values.heap_used());
  1947         // Print perm gen last (print_heap_change() excludes the perm gen).
  1948         perm_gen->print_used_change(pre_gc_values.perm_gen_used());
  1949       } else {
  1950         heap->print_heap_change(pre_gc_values.heap_used());
  1954     // Track memory usage and detect low memory
  1955     MemoryService::track_memory_usage();
  1956     heap->update_counters();
  1958     if (PrintGCDetails) {
  1959       if (size_policy->print_gc_time_limit_would_be_exceeded()) {
  1960         if (size_policy->gc_time_limit_exceeded()) {
  1961           gclog_or_tty->print_cr("      GC time is exceeding GCTimeLimit "
  1962             "of %d%%", GCTimeLimit);
  1963         } else {
  1964           gclog_or_tty->print_cr("      GC time would exceed GCTimeLimit "
  1965             "of %d%%", GCTimeLimit);
  1968       size_policy->set_print_gc_time_limit_would_be_exceeded(false);
  1972   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
  1973     HandleMark hm;  // Discard invalid handles created during verification
  1974     gclog_or_tty->print(" VerifyAfterGC:");
  1975     Universe::verify(false);
  1978   // Re-verify object start arrays
  1979   if (VerifyObjectStartArray &&
  1980       VerifyAfterGC) {
  1981     old_gen->verify_object_start_array();
  1982     perm_gen->verify_object_start_array();
  1985   if (ZapUnusedHeapArea) {
  1986     old_gen->object_space()->check_mangled_unused_area_complete();
  1987     perm_gen->object_space()->check_mangled_unused_area_complete();
  1990   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  1992   collection_exit.update();
  1994   if (PrintHeapAtGC) {
  1995     Universe::print_heap_after_gc();
  1997   if (PrintGCTaskTimeStamps) {
  1998     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
  1999                            INT64_FORMAT,
  2000                            marking_start.ticks(), compaction_start.ticks(),
  2001                            collection_exit.ticks());
  2002     gc_task_manager()->print_task_time_stamps();
  2006 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  2007                                              PSYoungGen* young_gen,
  2008                                              PSOldGen* old_gen) {
  2009   MutableSpace* const eden_space = young_gen->eden_space();
  2010   assert(!eden_space->is_empty(), "eden must be non-empty");
  2011   assert(young_gen->virtual_space()->alignment() ==
  2012          old_gen->virtual_space()->alignment(), "alignments do not match");
  2014   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
  2015     return false;
  2018   // Both generations must be completely committed.
  2019   if (young_gen->virtual_space()->uncommitted_size() != 0) {
  2020     return false;
  2022   if (old_gen->virtual_space()->uncommitted_size() != 0) {
  2023     return false;
  2026   // Figure out how much to take from eden.  Include the average amount promoted
  2027   // in the total; otherwise the next young gen GC will simply bail out to a
  2028   // full GC.
  2029   const size_t alignment = old_gen->virtual_space()->alignment();
  2030   const size_t eden_used = eden_space->used_in_bytes();
  2031   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  2032   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  2033   const size_t eden_capacity = eden_space->capacity_in_bytes();
  2035   if (absorb_size >= eden_capacity) {
  2036     return false; // Must leave some space in eden.
  2039   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  2040   if (new_young_size < young_gen->min_gen_size()) {
  2041     return false; // Respect young gen minimum size.
  2044   if (TraceAdaptiveGCBoundary && Verbose) {
  2045     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
  2046                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
  2047                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
  2048                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
  2049                         absorb_size / K,
  2050                         eden_capacity / K, (eden_capacity - absorb_size) / K,
  2051                         young_gen->from_space()->used_in_bytes() / K,
  2052                         young_gen->to_space()->used_in_bytes() / K,
  2053                         young_gen->capacity_in_bytes() / K, new_young_size / K);
  2056   // Fill the unused part of the old gen.
  2057   MutableSpace* const old_space = old_gen->object_space();
  2058   HeapWord* const unused_start = old_space->top();
  2059   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
  2061   if (unused_words > 0) {
  2062     if (unused_words < CollectedHeap::min_fill_size()) {
  2063       return false;  // If the old gen cannot be filled, must give up.
  2065     CollectedHeap::fill_with_objects(unused_start, unused_words);
  2068   // Take the live data from eden and set both top and end in the old gen to
  2069   // eden top.  (Need to set end because reset_after_change() mangles the region
  2070   // from end to virtual_space->high() in debug builds).
  2071   HeapWord* const new_top = eden_space->top();
  2072   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
  2073                                         absorb_size);
  2074   young_gen->reset_after_change();
  2075   old_space->set_top(new_top);
  2076   old_space->set_end(new_top);
  2077   old_gen->reset_after_change();
  2079   // Update the object start array for the filler object and the data from eden.
  2080   ObjectStartArray* const start_array = old_gen->start_array();
  2081   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
  2082     start_array->allocate_block(p);
  2085   // Could update the promoted average here, but it is not typically updated at
  2086   // full GCs and the value to use is unclear.  Something like
  2087   //
  2088   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
  2090   size_policy->set_bytes_absorbed_from_eden(absorb_size);
  2091   return true;
  2094 GCTaskManager* const PSParallelCompact::gc_task_manager() {
  2095   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
  2096     "shouldn't return NULL");
  2097   return ParallelScavengeHeap::gc_task_manager();
  2100 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
  2101                                       bool maximum_heap_compaction) {
  2102   // Recursively traverse all live objects and mark them
  2103   EventMark m("1 mark object");
  2104   TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
  2106   ParallelScavengeHeap* heap = gc_heap();
  2107   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2108   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2109   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
  2111   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2112   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
  2115     TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
  2117     GCTaskQueue* q = GCTaskQueue::create();
  2119     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
  2120     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
  2121     // We scan the thread roots in parallel
  2122     Threads::create_thread_roots_marking_tasks(q);
  2123     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
  2124     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
  2125     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
  2126     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
  2127     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
  2128     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));
  2130     if (parallel_gc_threads > 1) {
  2131       for (uint j = 0; j < parallel_gc_threads; j++) {
  2132         q->enqueue(new StealMarkingTask(&terminator));
  2136     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
  2137     q->enqueue(fin);
  2139     gc_task_manager()->add_list(q);
  2141     fin->wait_for();
  2143     // We have to release the barrier tasks!
  2144     WaitForBarrierGCTask::destroy(fin);
  2147   // Process reference objects found during marking
  2149     TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
  2150     if (ref_processor()->processing_is_mt()) {
  2151       RefProcTaskExecutor task_executor;
  2152       ref_processor()->process_discovered_references(
  2153         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
  2154         &task_executor);
  2155     } else {
  2156       ref_processor()->process_discovered_references(
  2157         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
  2161   TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  2162   // Follow system dictionary roots and unload classes.
  2163   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
  2165   // Follow code cache roots.
  2166   CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
  2167                           purged_class);
  2168   follow_stack(cm); // Flush marking stack.
  2170   // Update subklass/sibling/implementor links of live klasses
  2171   // revisit_klass_stack is used in follow_weak_klass_links().
  2172   follow_weak_klass_links(cm);
  2174   // Visit symbol and interned string tables and delete unmarked oops
  2175   SymbolTable::unlink(is_alive_closure());
  2176   StringTable::unlink(is_alive_closure());
  2178   assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
  2179   assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
  2182 // This should be moved to the shared markSweep code!
  2183 class PSAlwaysTrueClosure: public BoolObjectClosure {
  2184 public:
  2185   void do_object(oop p) { ShouldNotReachHere(); }
  2186   bool do_object_b(oop p) { return true; }
  2187 };
  2188 static PSAlwaysTrueClosure always_true;
  2190 void PSParallelCompact::adjust_roots() {
  2191   // Adjust the pointers to reflect the new locations
  2192   EventMark m("3 adjust roots");
  2193   TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
  2195   // General strong roots.
  2196   Universe::oops_do(adjust_root_pointer_closure());
  2197   ReferenceProcessor::oops_do(adjust_root_pointer_closure());
  2198   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
  2199   Threads::oops_do(adjust_root_pointer_closure());
  2200   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
  2201   FlatProfiler::oops_do(adjust_root_pointer_closure());
  2202   Management::oops_do(adjust_root_pointer_closure());
  2203   JvmtiExport::oops_do(adjust_root_pointer_closure());
  2204   // SO_AllClasses
  2205   SystemDictionary::oops_do(adjust_root_pointer_closure());
  2206   vmSymbols::oops_do(adjust_root_pointer_closure());
  2208   // Now adjust pointers in remaining weak roots.  (All of which should
  2209   // have been cleared if they pointed to non-surviving objects.)
  2210   // Global (weak) JNI handles
  2211   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
  2213   CodeCache::oops_do(adjust_pointer_closure());
  2214   SymbolTable::oops_do(adjust_root_pointer_closure());
  2215   StringTable::oops_do(adjust_root_pointer_closure());
  2216   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
  2217   // Roots were visited so references into the young gen in roots
  2218   // may have been scanned.  Process them also.
  2219   // Should the reference processor have a span that excludes
  2220   // young gen objects?
  2221   PSScavenge::reference_processor()->weak_oops_do(
  2222                                               adjust_root_pointer_closure());
  2225 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
  2226   EventMark m("4 compact perm");
  2227   TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
  2228   // trace("4");
  2230   gc_heap()->perm_gen()->start_array()->reset();
  2231   move_and_update(cm, perm_space_id);
  2234 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
  2235                                                       uint parallel_gc_threads)
  2237   TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
  2239   const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
  2240   for (unsigned int j = 0; j < task_count; j++) {
  2241     q->enqueue(new DrainStacksCompactionTask());
  2244   // Find all regions that are available (can be filled immediately) and
  2245   // distribute them to the thread stacks.  The iteration is done in reverse
  2246   // order (high to low) so the regions will be removed in ascending order.
  2248   const ParallelCompactData& sd = PSParallelCompact::summary_data();
  2250   size_t fillable_regions = 0;   // A count for diagnostic purposes.
  2251   unsigned int which = 0;       // The worker thread number.
  2253   for (unsigned int id = to_space_id; id > perm_space_id; --id) {
  2254     SpaceInfo* const space_info = _space_info + id;
  2255     MutableSpace* const space = space_info->space();
  2256     HeapWord* const new_top = space_info->new_top();
  2258     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
  2259     const size_t end_region =
  2260       sd.addr_to_region_idx(sd.region_align_up(new_top));
  2261     assert(end_region > 0, "perm gen cannot be empty");
  2263     for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
  2264       if (sd.region(cur)->claim_unsafe()) {
  2265         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
  2266         cm->save_for_processing(cur);
  2268         if (TraceParallelOldGCCompactionPhase && Verbose) {
  2269           const size_t count_mod_8 = fillable_regions & 7;
  2270           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
  2271           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
  2272           if (count_mod_8 == 7) gclog_or_tty->cr();
  2275         NOT_PRODUCT(++fillable_regions;)
  2277         // Assign regions to threads in round-robin fashion.
  2278         if (++which == task_count) {
  2279           which = 0;
  2285   if (TraceParallelOldGCCompactionPhase) {
  2286     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
  2287     gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
  2291 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
  2293 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
  2294                                                     uint parallel_gc_threads) {
  2295   TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
  2297   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2299   // Iterate over all the spaces adding tasks for updating
  2300   // regions in the dense prefix.  Assume that 1 gc thread
  2301   // will work on opening the gaps and the remaining gc threads
  2302   // will work on the dense prefix.
  2303   unsigned int space_id;
  2304   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
  2305     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
  2306     const MutableSpace* const space = _space_info[space_id].space();
  2308     if (dense_prefix_end == space->bottom()) {
  2309       // There is no dense prefix for this space.
  2310       continue;
  2313     // The dense prefix is before this region.
  2314     size_t region_index_end_dense_prefix =
  2315         sd.addr_to_region_idx(dense_prefix_end);
  2316     RegionData* const dense_prefix_cp =
  2317       sd.region(region_index_end_dense_prefix);
  2318     assert(dense_prefix_end == space->end() ||
  2319            dense_prefix_cp->available() ||
  2320            dense_prefix_cp->claimed(),
  2321            "The region after the dense prefix should always be ready to fill");
  2323     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
  2325     // Is there dense prefix work?
  2326     size_t total_dense_prefix_regions =
  2327       region_index_end_dense_prefix - region_index_start;
  2328     // How many regions of the dense prefix should be given to
  2329     // each thread?
  2330     if (total_dense_prefix_regions > 0) {
  2331       uint tasks_for_dense_prefix = 1;
  2332       if (UseParallelDensePrefixUpdate) {
  2333         if (total_dense_prefix_regions <=
  2334             (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
  2335           // Don't over partition.  This assumes that
  2336           // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
  2337           // so there are not many regions to process.
  2338           tasks_for_dense_prefix = parallel_gc_threads;
  2339         } else {
  2340           // Over partition
  2341           tasks_for_dense_prefix = parallel_gc_threads *
  2342             PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
  2345       size_t regions_per_thread = total_dense_prefix_regions /
  2346         tasks_for_dense_prefix;
  2347       // Give each thread at least 1 region.
  2348       if (regions_per_thread == 0) {
  2349         regions_per_thread = 1;
  2352       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
  2353         if (region_index_start >= region_index_end_dense_prefix) {
  2354           break;
  2356         // region_index_end is not processed
  2357         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
  2358                                        region_index_end_dense_prefix);
  2359         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2360                                              region_index_start,
  2361                                              region_index_end));
  2362         region_index_start = region_index_end;
  2365     // This gets any part of the dense prefix that did not
  2366     // fit evenly.
  2367     if (region_index_start < region_index_end_dense_prefix) {
  2368       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2369                                            region_index_start,
  2370                                            region_index_end_dense_prefix));
  2375 void PSParallelCompact::enqueue_region_stealing_tasks(
  2376                                      GCTaskQueue* q,
  2377                                      ParallelTaskTerminator* terminator_ptr,
  2378                                      uint parallel_gc_threads) {
  2379   TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
  2381   // Once a thread has drained it's stack, it should try to steal regions from
  2382   // other threads.
  2383   if (parallel_gc_threads > 1) {
  2384     for (uint j = 0; j < parallel_gc_threads; j++) {
  2385       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
  2390 void PSParallelCompact::compact() {
  2391   EventMark m("5 compact");
  2392   // trace("5");
  2393   TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
  2395   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2396   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2397   PSOldGen* old_gen = heap->old_gen();
  2398   old_gen->start_array()->reset();
  2399   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2400   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2401   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
  2403   GCTaskQueue* q = GCTaskQueue::create();
  2404   enqueue_region_draining_tasks(q, parallel_gc_threads);
  2405   enqueue_dense_prefix_tasks(q, parallel_gc_threads);
  2406   enqueue_region_stealing_tasks(q, &terminator, parallel_gc_threads);
  2409     TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
  2411     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
  2412     q->enqueue(fin);
  2414     gc_task_manager()->add_list(q);
  2416     fin->wait_for();
  2418     // We have to release the barrier tasks!
  2419     WaitForBarrierGCTask::destroy(fin);
  2421 #ifdef  ASSERT
  2422     // Verify that all regions have been processed before the deferred updates.
  2423     // Note that perm_space_id is skipped; this type of verification is not
  2424     // valid until the perm gen is compacted by regions.
  2425     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2426       verify_complete(SpaceId(id));
  2428 #endif
  2432     // Update the deferred objects, if any.  Any compaction manager can be used.
  2433     TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
  2434     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
  2435     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2436       update_deferred_objects(cm, SpaceId(id));
  2441 #ifdef  ASSERT
  2442 void PSParallelCompact::verify_complete(SpaceId space_id) {
  2443   // All Regions between space bottom() to new_top() should be marked as filled
  2444   // and all Regions between new_top() and top() should be available (i.e.,
  2445   // should have been emptied).
  2446   ParallelCompactData& sd = summary_data();
  2447   SpaceInfo si = _space_info[space_id];
  2448   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  2449   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  2450   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  2451   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  2452   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
  2454   bool issued_a_warning = false;
  2456   size_t cur_region;
  2457   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
  2458     const RegionData* const c = sd.region(cur_region);
  2459     if (!c->completed()) {
  2460       warning("region " SIZE_FORMAT " not filled:  "
  2461               "destination_count=" SIZE_FORMAT,
  2462               cur_region, c->destination_count());
  2463       issued_a_warning = true;
  2467   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
  2468     const RegionData* const c = sd.region(cur_region);
  2469     if (!c->available()) {
  2470       warning("region " SIZE_FORMAT " not empty:   "
  2471               "destination_count=" SIZE_FORMAT,
  2472               cur_region, c->destination_count());
  2473       issued_a_warning = true;
  2477   if (issued_a_warning) {
  2478     print_region_ranges();
  2481 #endif  // #ifdef ASSERT
  2483 void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
  2484   EventMark m("5 compact serial");
  2485   TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);
  2487   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2488   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2490   PSYoungGen* young_gen = heap->young_gen();
  2491   PSOldGen* old_gen = heap->old_gen();
  2493   old_gen->start_array()->reset();
  2494   old_gen->move_and_update(cm);
  2495   young_gen->move_and_update(cm);
  2499 void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
  2500   while(!cm->overflow_stack()->is_empty()) {
  2501     oop obj = cm->overflow_stack()->pop();
  2502     obj->follow_contents(cm);
  2505   oop obj;
  2506   // obj is a reference!!!
  2507   while (cm->marking_stack()->pop_local(obj)) {
  2508     // It would be nice to assert about the type of objects we might
  2509     // pop, but they can come from anywhere, unfortunately.
  2510     obj->follow_contents(cm);
  2514 void
  2515 PSParallelCompact::follow_weak_klass_links(ParCompactionManager* serial_cm) {
  2516   // All klasses on the revisit stack are marked at this point.
  2517   // Update and follow all subklass, sibling and implementor links.
  2518   for (uint i = 0; i < ParallelGCThreads+1; i++) {
  2519     ParCompactionManager* cm = ParCompactionManager::manager_array(i);
  2520     KeepAliveClosure keep_alive_closure(cm);
  2521     for (int i = 0; i < cm->revisit_klass_stack()->length(); i++) {
  2522       cm->revisit_klass_stack()->at(i)->follow_weak_klass_links(
  2523         is_alive_closure(),
  2524         &keep_alive_closure);
  2526     follow_stack(cm);
  2530 void
  2531 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
  2532   cm->revisit_klass_stack()->push(k);
  2535 #ifdef VALIDATE_MARK_SWEEP
  2537 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
  2538   if (!ValidateMarkSweep)
  2539     return;
  2541   if (!isroot) {
  2542     if (_pointer_tracking) {
  2543       guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
  2544       _adjusted_pointers->remove(p);
  2546   } else {
  2547     ptrdiff_t index = _root_refs_stack->find(p);
  2548     if (index != -1) {
  2549       int l = _root_refs_stack->length();
  2550       if (l > 0 && l - 1 != index) {
  2551         void* last = _root_refs_stack->pop();
  2552         assert(last != p, "should be different");
  2553         _root_refs_stack->at_put(index, last);
  2554       } else {
  2555         _root_refs_stack->remove(p);
  2562 void PSParallelCompact::check_adjust_pointer(void* p) {
  2563   _adjusted_pointers->push(p);
  2567 class AdjusterTracker: public OopClosure {
  2568  public:
  2569   AdjusterTracker() {};
  2570   void do_oop(oop* o)         { PSParallelCompact::check_adjust_pointer(o); }
  2571   void do_oop(narrowOop* o)   { PSParallelCompact::check_adjust_pointer(o); }
  2572 };
  2575 void PSParallelCompact::track_interior_pointers(oop obj) {
  2576   if (ValidateMarkSweep) {
  2577     _adjusted_pointers->clear();
  2578     _pointer_tracking = true;
  2580     AdjusterTracker checker;
  2581     obj->oop_iterate(&checker);
  2586 void PSParallelCompact::check_interior_pointers() {
  2587   if (ValidateMarkSweep) {
  2588     _pointer_tracking = false;
  2589     guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
  2594 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
  2595   if (ValidateMarkSweep) {
  2596     guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
  2597     _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
  2602 void PSParallelCompact::register_live_oop(oop p, size_t size) {
  2603   if (ValidateMarkSweep) {
  2604     _live_oops->push(p);
  2605     _live_oops_size->push(size);
  2606     _live_oops_index++;
  2610 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
  2611   if (ValidateMarkSweep) {
  2612     oop obj = _live_oops->at((int)_live_oops_index);
  2613     guarantee(obj == p, "should be the same object");
  2614     guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
  2615     _live_oops_index++;
  2619 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
  2620                                   HeapWord* compaction_top) {
  2621   assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
  2622          "should be moved to forwarded location");
  2623   if (ValidateMarkSweep) {
  2624     PSParallelCompact::validate_live_oop(oop(q), size);
  2625     _live_oops_moved_to->push(oop(compaction_top));
  2627   if (RecordMarkSweepCompaction) {
  2628     _cur_gc_live_oops->push(q);
  2629     _cur_gc_live_oops_moved_to->push(compaction_top);
  2630     _cur_gc_live_oops_size->push(size);
  2635 void PSParallelCompact::compaction_complete() {
  2636   if (RecordMarkSweepCompaction) {
  2637     GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
  2638     GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
  2639     GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;
  2641     _cur_gc_live_oops           = _last_gc_live_oops;
  2642     _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
  2643     _cur_gc_live_oops_size      = _last_gc_live_oops_size;
  2644     _last_gc_live_oops          = _tmp_live_oops;
  2645     _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
  2646     _last_gc_live_oops_size     = _tmp_live_oops_size;
  2651 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
  2652   if (!RecordMarkSweepCompaction) {
  2653     tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
  2654     return;
  2657   if (_last_gc_live_oops == NULL) {
  2658     tty->print_cr("No compaction information gathered yet");
  2659     return;
  2662   for (int i = 0; i < _last_gc_live_oops->length(); i++) {
  2663     HeapWord* old_oop = _last_gc_live_oops->at(i);
  2664     size_t    sz      = _last_gc_live_oops_size->at(i);
  2665     if (old_oop <= q && q < (old_oop + sz)) {
  2666       HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
  2667       size_t offset = (q - old_oop);
  2668       tty->print_cr("Address " PTR_FORMAT, q);
  2669       tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
  2670       tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
  2671       return;
  2675   tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
  2677 #endif //VALIDATE_MARK_SWEEP
  2679 // Update interior oops in the ranges of regions [beg_region, end_region).
  2680 void
  2681 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  2682                                                        SpaceId space_id,
  2683                                                        size_t beg_region,
  2684                                                        size_t end_region) {
  2685   ParallelCompactData& sd = summary_data();
  2686   ParMarkBitMap* const mbm = mark_bitmap();
  2688   HeapWord* beg_addr = sd.region_to_addr(beg_region);
  2689   HeapWord* const end_addr = sd.region_to_addr(end_region);
  2690   assert(beg_region <= end_region, "bad region range");
  2691   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
  2693 #ifdef  ASSERT
  2694   // Claim the regions to avoid triggering an assert when they are marked as
  2695   // filled.
  2696   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
  2697     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
  2699 #endif  // #ifdef ASSERT
  2701   if (beg_addr != space(space_id)->bottom()) {
  2702     // Find the first live object or block of dead space that *starts* in this
  2703     // range of regions.  If a partial object crosses onto the region, skip it;
  2704     // it will be marked for 'deferred update' when the object head is
  2705     // processed.  If dead space crosses onto the region, it is also skipped; it
  2706     // will be filled when the prior region is processed.  If neither of those
  2707     // apply, the first word in the region is the start of a live object or dead
  2708     // space.
  2709     assert(beg_addr > space(space_id)->bottom(), "sanity");
  2710     const RegionData* const cp = sd.region(beg_region);
  2711     if (cp->partial_obj_size() != 0) {
  2712       beg_addr = sd.partial_obj_end(beg_region);
  2713     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
  2714       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
  2718   if (beg_addr < end_addr) {
  2719     // A live object or block of dead space starts in this range of Regions.
  2720      HeapWord* const dense_prefix_end = dense_prefix(space_id);
  2722     // Create closures and iterate.
  2723     UpdateOnlyClosure update_closure(mbm, cm, space_id);
  2724     FillClosure fill_closure(cm, space_id);
  2725     ParMarkBitMap::IterationStatus status;
  2726     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
  2727                           dense_prefix_end);
  2728     if (status == ParMarkBitMap::incomplete) {
  2729       update_closure.do_addr(update_closure.source());
  2733   // Mark the regions as filled.
  2734   RegionData* const beg_cp = sd.region(beg_region);
  2735   RegionData* const end_cp = sd.region(end_region);
  2736   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
  2737     cp->set_completed();
  2741 // Return the SpaceId for the space containing addr.  If addr is not in the
  2742 // heap, last_space_id is returned.  In debug mode it expects the address to be
  2743 // in the heap and asserts such.
  2744 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  2745   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
  2747   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
  2748     if (_space_info[id].space()->contains(addr)) {
  2749       return SpaceId(id);
  2753   assert(false, "no space contains the addr");
  2754   return last_space_id;
  2757 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
  2758                                                 SpaceId id) {
  2759   assert(id < last_space_id, "bad space id");
  2761   ParallelCompactData& sd = summary_data();
  2762   const SpaceInfo* const space_info = _space_info + id;
  2763   ObjectStartArray* const start_array = space_info->start_array();
  2765   const MutableSpace* const space = space_info->space();
  2766   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  2767   HeapWord* const beg_addr = space_info->dense_prefix();
  2768   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
  2770   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  2771   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  2772   const RegionData* cur_region;
  2773   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
  2774     HeapWord* const addr = cur_region->deferred_obj_addr();
  2775     if (addr != NULL) {
  2776       if (start_array != NULL) {
  2777         start_array->allocate_block(addr);
  2779       oop(addr)->update_contents(cm);
  2780       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
  2785 // Skip over count live words starting from beg, and return the address of the
  2786 // next live word.  Unless marked, the word corresponding to beg is assumed to
  2787 // be dead.  Callers must either ensure beg does not correspond to the middle of
  2788 // an object, or account for those live words in some other way.  Callers must
  2789 // also ensure that there are enough live words in the range [beg, end) to skip.
  2790 HeapWord*
  2791 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
  2793   assert(count > 0, "sanity");
  2795   ParMarkBitMap* m = mark_bitmap();
  2796   idx_t bits_to_skip = m->words_to_bits(count);
  2797   idx_t cur_beg = m->addr_to_bit(beg);
  2798   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
  2800   do {
  2801     cur_beg = m->find_obj_beg(cur_beg, search_end);
  2802     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
  2803     const size_t obj_bits = cur_end - cur_beg + 1;
  2804     if (obj_bits > bits_to_skip) {
  2805       return m->bit_to_addr(cur_beg + bits_to_skip);
  2807     bits_to_skip -= obj_bits;
  2808     cur_beg = cur_end + 1;
  2809   } while (bits_to_skip > 0);
  2811   // Skipping the desired number of words landed just past the end of an object.
  2812   // Find the start of the next object.
  2813   cur_beg = m->find_obj_beg(cur_beg, search_end);
  2814   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  2815   return m->bit_to_addr(cur_beg);
  2818 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
  2819                                             SpaceId src_space_id,
  2820                                             size_t src_region_idx)
  2822   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
  2824   const SplitInfo& split_info = _space_info[src_space_id].split_info();
  2825   if (split_info.dest_region_addr() == dest_addr) {
  2826     // The partial object ending at the split point contains the first word to
  2827     // be copied to dest_addr.
  2828     return split_info.first_src_addr();
  2831   const ParallelCompactData& sd = summary_data();
  2832   ParMarkBitMap* const bitmap = mark_bitmap();
  2833   const size_t RegionSize = ParallelCompactData::RegionSize;
  2835   assert(sd.is_region_aligned(dest_addr), "not aligned");
  2836   const RegionData* const src_region_ptr = sd.region(src_region_idx);
  2837   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  2838   HeapWord* const src_region_destination = src_region_ptr->destination();
  2840   assert(dest_addr >= src_region_destination, "wrong src region");
  2841   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
  2843   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  2844   HeapWord* const src_region_end = src_region_beg + RegionSize;
  2846   HeapWord* addr = src_region_beg;
  2847   if (dest_addr == src_region_destination) {
  2848     // Return the first live word in the source region.
  2849     if (partial_obj_size == 0) {
  2850       addr = bitmap->find_obj_beg(addr, src_region_end);
  2851       assert(addr < src_region_end, "no objects start in src region");
  2853     return addr;
  2856   // Must skip some live data.
  2857   size_t words_to_skip = dest_addr - src_region_destination;
  2858   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
  2860   if (partial_obj_size >= words_to_skip) {
  2861     // All the live words to skip are part of the partial object.
  2862     addr += words_to_skip;
  2863     if (partial_obj_size == words_to_skip) {
  2864       // Find the first live word past the partial object.
  2865       addr = bitmap->find_obj_beg(addr, src_region_end);
  2866       assert(addr < src_region_end, "wrong src region");
  2868     return addr;
  2871   // Skip over the partial object (if any).
  2872   if (partial_obj_size != 0) {
  2873     words_to_skip -= partial_obj_size;
  2874     addr += partial_obj_size;
  2877   // Skip over live words due to objects that start in the region.
  2878   addr = skip_live_words(addr, src_region_end, words_to_skip);
  2879   assert(addr < src_region_end, "wrong src region");
  2880   return addr;
  2883 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
  2884                                                      size_t beg_region,
  2885                                                      HeapWord* end_addr)
  2887   ParallelCompactData& sd = summary_data();
  2888   RegionData* const beg = sd.region(beg_region);
  2889   HeapWord* const end_addr_aligned_up = sd.region_align_up(end_addr);
  2890   RegionData* const end = sd.addr_to_region_ptr(end_addr_aligned_up);
  2891   size_t cur_idx = beg_region;
  2892   for (RegionData* cur = beg; cur < end; ++cur, ++cur_idx) {
  2893     assert(cur->data_size() > 0, "region must have live data");
  2894     cur->decrement_destination_count();
  2895     if (cur_idx <= cur->source_region() && cur->available() && cur->claim()) {
  2896       cm->save_for_processing(cur_idx);
  2901 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
  2902                                           SpaceId& src_space_id,
  2903                                           HeapWord*& src_space_top,
  2904                                           HeapWord* end_addr)
  2906   typedef ParallelCompactData::RegionData RegionData;
  2908   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2909   const size_t region_size = ParallelCompactData::RegionSize;
  2911   size_t src_region_idx = 0;
  2913   // Skip empty regions (if any) up to the top of the space.
  2914   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  2915   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  2916   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  2917   const RegionData* const top_region_ptr =
  2918     sd.addr_to_region_ptr(top_aligned_up);
  2919   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
  2920     ++src_region_ptr;
  2923   if (src_region_ptr < top_region_ptr) {
  2924     // The next source region is in the current space.  Update src_region_idx
  2925     // and the source address to match src_region_ptr.
  2926     src_region_idx = sd.region(src_region_ptr);
  2927     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
  2928     if (src_region_addr > closure.source()) {
  2929       closure.set_source(src_region_addr);
  2931     return src_region_idx;
  2934   // Switch to a new source space and find the first non-empty region.
  2935   unsigned int space_id = src_space_id + 1;
  2936   assert(space_id < last_space_id, "not enough spaces");
  2938   HeapWord* const destination = closure.destination();
  2940   do {
  2941     MutableSpace* space = _space_info[space_id].space();
  2942     HeapWord* const bottom = space->bottom();
  2943     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
  2945     // Iterate over the spaces that do not compact into themselves.
  2946     if (bottom_cp->destination() != bottom) {
  2947       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  2948       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  2950       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
  2951         if (src_cp->live_obj_size() > 0) {
  2952           // Found it.
  2953           assert(src_cp->destination() == destination,
  2954                  "first live obj in the space must match the destination");
  2955           assert(src_cp->partial_obj_size() == 0,
  2956                  "a space cannot begin with a partial obj");
  2958           src_space_id = SpaceId(space_id);
  2959           src_space_top = space->top();
  2960           const size_t src_region_idx = sd.region(src_cp);
  2961           closure.set_source(sd.region_to_addr(src_region_idx));
  2962           return src_region_idx;
  2963         } else {
  2964           assert(src_cp->data_size() == 0, "sanity");
  2968   } while (++space_id < last_space_id);
  2970   assert(false, "no source region was found");
  2971   return 0;
  2974 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
  2976   typedef ParMarkBitMap::IterationStatus IterationStatus;
  2977   const size_t RegionSize = ParallelCompactData::RegionSize;
  2978   ParMarkBitMap* const bitmap = mark_bitmap();
  2979   ParallelCompactData& sd = summary_data();
  2980   RegionData* const region_ptr = sd.region(region_idx);
  2982   // Get the items needed to construct the closure.
  2983   HeapWord* dest_addr = sd.region_to_addr(region_idx);
  2984   SpaceId dest_space_id = space_id(dest_addr);
  2985   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  2986   HeapWord* new_top = _space_info[dest_space_id].new_top();
  2987   assert(dest_addr < new_top, "sanity");
  2988   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
  2990   // Get the source region and related info.
  2991   size_t src_region_idx = region_ptr->source_region();
  2992   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
  2993   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
  2995   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  2996   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
  2998   // Adjust src_region_idx to prepare for decrementing destination counts (the
  2999   // destination count is not decremented when a region is copied to itself).
  3000   if (src_region_idx == region_idx) {
  3001     src_region_idx += 1;
  3004   if (bitmap->is_unmarked(closure.source())) {
  3005     // The first source word is in the middle of an object; copy the remainder
  3006     // of the object or as much as will fit.  The fact that pointer updates were
  3007     // deferred will be noted when the object header is processed.
  3008     HeapWord* const old_src_addr = closure.source();
  3009     closure.copy_partial_obj();
  3010     if (closure.is_full()) {
  3011       decrement_destination_counts(cm, src_region_idx, closure.source());
  3012       region_ptr->set_deferred_obj_addr(NULL);
  3013       region_ptr->set_completed();
  3014       return;
  3017     HeapWord* const end_addr = sd.region_align_down(closure.source());
  3018     if (sd.region_align_down(old_src_addr) != end_addr) {
  3019       // The partial object was copied from more than one source region.
  3020       decrement_destination_counts(cm, src_region_idx, end_addr);
  3022       // Move to the next source region, possibly switching spaces as well.  All
  3023       // args except end_addr may be modified.
  3024       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3025                                        end_addr);
  3029   do {
  3030     HeapWord* const cur_addr = closure.source();
  3031     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
  3032                                     src_space_top);
  3033     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
  3035     if (status == ParMarkBitMap::incomplete) {
  3036       // The last obj that starts in the source region does not end in the
  3037       // region.
  3038       assert(closure.source() < end_addr, "sanity")
  3039       HeapWord* const obj_beg = closure.source();
  3040       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
  3041                                        src_space_top);
  3042       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
  3043       if (obj_end < range_end) {
  3044         // The end was found; the entire object will fit.
  3045         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
  3046         assert(status != ParMarkBitMap::would_overflow, "sanity");
  3047       } else {
  3048         // The end was not found; the object will not fit.
  3049         assert(range_end < src_space_top, "obj cannot cross space boundary");
  3050         status = ParMarkBitMap::would_overflow;
  3054     if (status == ParMarkBitMap::would_overflow) {
  3055       // The last object did not fit.  Note that interior oop updates were
  3056       // deferred, then copy enough of the object to fill the region.
  3057       region_ptr->set_deferred_obj_addr(closure.destination());
  3058       status = closure.copy_until_full(); // copies from closure.source()
  3060       decrement_destination_counts(cm, src_region_idx, closure.source());
  3061       region_ptr->set_completed();
  3062       return;
  3065     if (status == ParMarkBitMap::full) {
  3066       decrement_destination_counts(cm, src_region_idx, closure.source());
  3067       region_ptr->set_deferred_obj_addr(NULL);
  3068       region_ptr->set_completed();
  3069       return;
  3072     decrement_destination_counts(cm, src_region_idx, end_addr);
  3074     // Move to the next source region, possibly switching spaces as well.  All
  3075     // args except end_addr may be modified.
  3076     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3077                                      end_addr);
  3078   } while (true);
  3081 void
  3082 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  3083   const MutableSpace* sp = space(space_id);
  3084   if (sp->is_empty()) {
  3085     return;
  3088   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3089   ParMarkBitMap* const bitmap = mark_bitmap();
  3090   HeapWord* const dp_addr = dense_prefix(space_id);
  3091   HeapWord* beg_addr = sp->bottom();
  3092   HeapWord* end_addr = sp->top();
  3094 #ifdef ASSERT
  3095   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  3096   if (cm->should_verify_only()) {
  3097     VerifyUpdateClosure verify_update(cm, sp);
  3098     bitmap->iterate(&verify_update, beg_addr, end_addr);
  3099     return;
  3102   if (cm->should_reset_only()) {
  3103     ResetObjectsClosure reset_objects(cm);
  3104     bitmap->iterate(&reset_objects, beg_addr, end_addr);
  3105     return;
  3107 #endif
  3109   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  3110   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  3111   if (beg_region < dp_region) {
  3112     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
  3115   // The destination of the first live object that starts in the region is one
  3116   // past the end of the partial object entering the region (if any).
  3117   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
  3118   HeapWord* const new_top = _space_info[space_id].new_top();
  3119   assert(new_top >= dest_addr, "bad new_top value");
  3120   const size_t words = pointer_delta(new_top, dest_addr);
  3122   if (words > 0) {
  3123     ObjectStartArray* start_array = _space_info[space_id].start_array();
  3124     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3126     ParMarkBitMap::IterationStatus status;
  3127     status = bitmap->iterate(&closure, dest_addr, end_addr);
  3128     assert(status == ParMarkBitMap::full, "iteration not complete");
  3129     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
  3130            "live objects skipped because closure is full");
  3134 jlong PSParallelCompact::millis_since_last_gc() {
  3135   jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
  3136   // XXX See note in genCollectedHeap::millis_since_last_gc().
  3137   if (ret_val < 0) {
  3138     NOT_PRODUCT(warning("time warp: %d", ret_val);)
  3139     return 0;
  3141   return ret_val;
  3144 void PSParallelCompact::reset_millis_since_last_gc() {
  3145   _time_of_last_gc = os::javaTimeMillis();
  3148 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
  3150   if (source() != destination()) {
  3151     assert(source() > destination(), "must copy to the left");
  3152     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  3154   update_state(words_remaining());
  3155   assert(is_full(), "sanity");
  3156   return ParMarkBitMap::full;
  3159 void MoveAndUpdateClosure::copy_partial_obj()
  3161   size_t words = words_remaining();
  3163   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  3164   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  3165   if (end_addr < range_end) {
  3166     words = bitmap()->obj_size(source(), end_addr);
  3169   // This test is necessary; if omitted, the pointer updates to a partial object
  3170   // that crosses the dense prefix boundary could be overwritten.
  3171   if (source() != destination()) {
  3172     assert(source() > destination(), "must copy to the left");
  3173     Copy::aligned_conjoint_words(source(), destination(), words);
  3175   update_state(words);
  3178 ParMarkBitMapClosure::IterationStatus
  3179 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3180   assert(destination() != NULL, "sanity");
  3181   assert(bitmap()->obj_size(addr) == words, "bad size");
  3183   _source = addr;
  3184   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
  3185          destination(), "wrong destination");
  3187   if (words > words_remaining()) {
  3188     return ParMarkBitMap::would_overflow;
  3191   // The start_array must be updated even if the object is not moving.
  3192   if (_start_array != NULL) {
  3193     _start_array->allocate_block(destination());
  3196   if (destination() != source()) {
  3197     assert(destination() < source(), "must copy to the left");
  3198     Copy::aligned_conjoint_words(source(), destination(), words);
  3201   oop moved_oop = (oop) destination();
  3202   moved_oop->update_contents(compaction_manager());
  3203   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
  3205   update_state(words);
  3206   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  3207   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
  3210 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
  3211                                      ParCompactionManager* cm,
  3212                                      PSParallelCompact::SpaceId space_id) :
  3213   ParMarkBitMapClosure(mbm, cm),
  3214   _space_id(space_id),
  3215   _start_array(PSParallelCompact::start_array(space_id))
  3219 // Updates the references in the object to their new values.
  3220 ParMarkBitMapClosure::IterationStatus
  3221 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  3222   do_addr(addr);
  3223   return ParMarkBitMap::incomplete;
  3226 // Verify the new location using the forwarding pointer
  3227 // from MarkSweep::mark_sweep_phase2().  Set the mark_word
  3228 // to the initial value.
  3229 ParMarkBitMapClosure::IterationStatus
  3230 PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3231   // The second arg (words) is not used.
  3232   oop obj = (oop) addr;
  3233   HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
  3234   HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
  3235   if (forwarding_ptr == NULL) {
  3236     // The object is dead or not moving.
  3237     assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
  3238            "Object liveness is wrong.");
  3239     return ParMarkBitMap::incomplete;
  3241   assert(UseParallelOldGCDensePrefix ||
  3242          (HeapMaximumCompactionInterval > 1) ||
  3243          (MarkSweepAlwaysCompactCount > 1) ||
  3244          (forwarding_ptr == new_pointer),
  3245     "Calculation of new location is incorrect");
  3246   return ParMarkBitMap::incomplete;
  3249 // Reset objects modified for debug checking.
  3250 ParMarkBitMapClosure::IterationStatus
  3251 PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
  3252   // The second arg (words) is not used.
  3253   oop obj = (oop) addr;
  3254   obj->init_mark();
  3255   return ParMarkBitMap::incomplete;
  3258 // Prepare for compaction.  This method is executed once
  3259 // (i.e., by a single thread) before compaction.
  3260 // Save the updated location of the intArrayKlassObj for
  3261 // filling holes in the dense prefix.
  3262 void PSParallelCompact::compact_prologue() {
  3263   _updated_int_array_klass_obj = (klassOop)
  3264     summary_data().calc_new_pointer(Universe::intArrayKlassObj());

mercurial