src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.cpp

Thu, 13 Feb 2014 17:44:39 +0100

author
stefank
date
Thu, 13 Feb 2014 17:44:39 +0100
changeset 6971
7426d8d76305
parent 6912
c49dcaf78a65
child 6978
30c99d8e0f02
permissions
-rw-r--r--

8034761: Remove the do_code_roots parameter from process_strong_roots
Reviewed-by: tschatzl, mgerdin, jmasa

duke@435 1 /*
drchase@6680 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/concurrentMarkSweep/cmsLockVerifier.hpp"
stefank@2314 27 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
stefank@2314 28 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
stefank@2314 29 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
stefank@2314 30 #include "gc_implementation/shared/liveRange.hpp"
stefank@2314 31 #include "gc_implementation/shared/spaceDecorator.hpp"
coleenp@4037 32 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 33 #include "memory/allocation.inline.hpp"
stefank@2314 34 #include "memory/blockOffsetTable.inline.hpp"
stefank@2314 35 #include "memory/resourceArea.hpp"
goetz@6912 36 #include "memory/space.inline.hpp"
stefank@2314 37 #include "memory/universe.inline.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "runtime/globals.hpp"
stefank@2314 40 #include "runtime/handles.inline.hpp"
stefank@2314 41 #include "runtime/init.hpp"
stefank@2314 42 #include "runtime/java.hpp"
goetz@6911 43 #include "runtime/orderAccess.inline.hpp"
stefank@2314 44 #include "runtime/vmThread.hpp"
stefank@2314 45 #include "utilities/copy.hpp"
duke@435 46
duke@435 47 /////////////////////////////////////////////////////////////////////////
duke@435 48 //// CompactibleFreeListSpace
duke@435 49 /////////////////////////////////////////////////////////////////////////
duke@435 50
duke@435 51 // highest ranked free list lock rank
duke@435 52 int CompactibleFreeListSpace::_lockRank = Mutex::leaf + 3;
duke@435 53
kvn@1926 54 // Defaults are 0 so things will break badly if incorrectly initialized.
ysr@3264 55 size_t CompactibleFreeListSpace::IndexSetStart = 0;
ysr@3264 56 size_t CompactibleFreeListSpace::IndexSetStride = 0;
kvn@1926 57
kvn@1926 58 size_t MinChunkSize = 0;
kvn@1926 59
kvn@1926 60 void CompactibleFreeListSpace::set_cms_values() {
kvn@1926 61 // Set CMS global values
kvn@1926 62 assert(MinChunkSize == 0, "already set");
brutisso@3807 63
brutisso@3807 64 // MinChunkSize should be a multiple of MinObjAlignment and be large enough
brutisso@3807 65 // for chunks to contain a FreeChunk.
brutisso@3807 66 size_t min_chunk_size_in_bytes = align_size_up(sizeof(FreeChunk), MinObjAlignmentInBytes);
brutisso@3807 67 MinChunkSize = min_chunk_size_in_bytes / BytesPerWord;
kvn@1926 68
kvn@1926 69 assert(IndexSetStart == 0 && IndexSetStride == 0, "already set");
ysr@3264 70 IndexSetStart = MinChunkSize;
kvn@1926 71 IndexSetStride = MinObjAlignment;
kvn@1926 72 }
kvn@1926 73
duke@435 74 // Constructor
duke@435 75 CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs,
duke@435 76 MemRegion mr, bool use_adaptive_freelists,
jmasa@3730 77 FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
duke@435 78 _dictionaryChoice(dictionaryChoice),
duke@435 79 _adaptive_freelists(use_adaptive_freelists),
duke@435 80 _bt(bs, mr),
duke@435 81 // free list locks are in the range of values taken by _lockRank
duke@435 82 // This range currently is [_leaf+2, _leaf+3]
duke@435 83 // Note: this requires that CFLspace c'tors
duke@435 84 // are called serially in the order in which the locks are
duke@435 85 // are acquired in the program text. This is true today.
duke@435 86 _freelistLock(_lockRank--, "CompactibleFreeListSpace._lock", true),
duke@435 87 _parDictionaryAllocLock(Mutex::leaf - 1, // == rank(ExpandHeap_lock) - 1
duke@435 88 "CompactibleFreeListSpace._dict_par_lock", true),
duke@435 89 _rescan_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord *
duke@435 90 CMSRescanMultiple),
duke@435 91 _marking_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord *
duke@435 92 CMSConcMarkMultiple),
duke@435 93 _collector(NULL)
duke@435 94 {
jmasa@3730 95 assert(sizeof(FreeChunk) / BytesPerWord <= MinChunkSize,
jmasa@4196 96 "FreeChunk is larger than expected");
duke@435 97 _bt.set_space(this);
jmasa@698 98 initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 99 // We have all of "mr", all of which we place in the dictionary
duke@435 100 // as one big chunk. We'll need to decide here which of several
duke@435 101 // possible alternative dictionary implementations to use. For
duke@435 102 // now the choice is easy, since we have only one working
duke@435 103 // implementation, namely, the simple binary tree (splaying
duke@435 104 // temporarily disabled).
duke@435 105 switch (dictionaryChoice) {
jmasa@4196 106 case FreeBlockDictionary<FreeChunk>::dictionaryBinaryTree:
jmasa@4488 107 _dictionary = new AFLBinaryTreeDictionary(mr);
jmasa@4196 108 break;
jmasa@3730 109 case FreeBlockDictionary<FreeChunk>::dictionarySplayTree:
jmasa@3730 110 case FreeBlockDictionary<FreeChunk>::dictionarySkipList:
duke@435 111 default:
duke@435 112 warning("dictionaryChoice: selected option not understood; using"
duke@435 113 " default BinaryTreeDictionary implementation instead.");
duke@435 114 }
duke@435 115 assert(_dictionary != NULL, "CMS dictionary initialization");
duke@435 116 // The indexed free lists are initially all empty and are lazily
duke@435 117 // filled in on demand. Initialize the array elements to NULL.
duke@435 118 initializeIndexedFreeListArray();
duke@435 119
duke@435 120 // Not using adaptive free lists assumes that allocation is first
duke@435 121 // from the linAB's. Also a cms perm gen which can be compacted
duke@435 122 // has to have the klass's klassKlass allocated at a lower
duke@435 123 // address in the heap than the klass so that the klassKlass is
duke@435 124 // moved to its new location before the klass is moved.
duke@435 125 // Set the _refillSize for the linear allocation blocks
duke@435 126 if (!use_adaptive_freelists) {
jmasa@4488 127 FreeChunk* fc = _dictionary->get_chunk(mr.word_size(),
jmasa@4488 128 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 129 // The small linAB initially has all the space and will allocate
duke@435 130 // a chunk of any size.
duke@435 131 HeapWord* addr = (HeapWord*) fc;
duke@435 132 _smallLinearAllocBlock.set(addr, fc->size() ,
duke@435 133 1024*SmallForLinearAlloc, fc->size());
duke@435 134 // Note that _unallocated_block is not updated here.
duke@435 135 // Allocations from the linear allocation block should
duke@435 136 // update it.
duke@435 137 } else {
duke@435 138 _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc,
duke@435 139 SmallForLinearAlloc);
duke@435 140 }
duke@435 141 // CMSIndexedFreeListReplenish should be at least 1
duke@435 142 CMSIndexedFreeListReplenish = MAX2((uintx)1, CMSIndexedFreeListReplenish);
duke@435 143 _promoInfo.setSpace(this);
duke@435 144 if (UseCMSBestFit) {
duke@435 145 _fitStrategy = FreeBlockBestFitFirst;
duke@435 146 } else {
duke@435 147 _fitStrategy = FreeBlockStrategyNone;
duke@435 148 }
ysr@3220 149 check_free_list_consistency();
duke@435 150
duke@435 151 // Initialize locks for parallel case.
jmasa@2188 152
jmasa@2188 153 if (CollectedHeap::use_parallel_gc_threads()) {
duke@435 154 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 155 _indexedFreeListParLocks[i] = new Mutex(Mutex::leaf - 1, // == ExpandHeap_lock - 1
duke@435 156 "a freelist par lock",
duke@435 157 true);
duke@435 158 DEBUG_ONLY(
duke@435 159 _indexedFreeList[i].set_protecting_lock(_indexedFreeListParLocks[i]);
duke@435 160 )
duke@435 161 }
duke@435 162 _dictionary->set_par_lock(&_parDictionaryAllocLock);
duke@435 163 }
duke@435 164 }
duke@435 165
duke@435 166 // Like CompactibleSpace forward() but always calls cross_threshold() to
duke@435 167 // update the block offset table. Removed initialize_threshold call because
duke@435 168 // CFLS does not use a block offset array for contiguous spaces.
duke@435 169 HeapWord* CompactibleFreeListSpace::forward(oop q, size_t size,
duke@435 170 CompactPoint* cp, HeapWord* compact_top) {
duke@435 171 // q is alive
duke@435 172 // First check if we should switch compaction space
duke@435 173 assert(this == cp->space, "'this' should be current compaction space.");
duke@435 174 size_t compaction_max_size = pointer_delta(end(), compact_top);
duke@435 175 assert(adjustObjectSize(size) == cp->space->adjust_object_size_v(size),
duke@435 176 "virtual adjustObjectSize_v() method is not correct");
duke@435 177 size_t adjusted_size = adjustObjectSize(size);
duke@435 178 assert(compaction_max_size >= MinChunkSize || compaction_max_size == 0,
duke@435 179 "no small fragments allowed");
duke@435 180 assert(minimum_free_block_size() == MinChunkSize,
duke@435 181 "for de-virtualized reference below");
duke@435 182 // Can't leave a nonzero size, residual fragment smaller than MinChunkSize
duke@435 183 if (adjusted_size + MinChunkSize > compaction_max_size &&
duke@435 184 adjusted_size != compaction_max_size) {
duke@435 185 do {
duke@435 186 // switch to next compaction space
duke@435 187 cp->space->set_compaction_top(compact_top);
duke@435 188 cp->space = cp->space->next_compaction_space();
duke@435 189 if (cp->space == NULL) {
duke@435 190 cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
duke@435 191 assert(cp->gen != NULL, "compaction must succeed");
duke@435 192 cp->space = cp->gen->first_compaction_space();
duke@435 193 assert(cp->space != NULL, "generation must have a first compaction space");
duke@435 194 }
duke@435 195 compact_top = cp->space->bottom();
duke@435 196 cp->space->set_compaction_top(compact_top);
duke@435 197 // The correct adjusted_size may not be the same as that for this method
duke@435 198 // (i.e., cp->space may no longer be "this" so adjust the size again.
duke@435 199 // Use the virtual method which is not used above to save the virtual
duke@435 200 // dispatch.
duke@435 201 adjusted_size = cp->space->adjust_object_size_v(size);
duke@435 202 compaction_max_size = pointer_delta(cp->space->end(), compact_top);
duke@435 203 assert(cp->space->minimum_free_block_size() == 0, "just checking");
duke@435 204 } while (adjusted_size > compaction_max_size);
duke@435 205 }
duke@435 206
duke@435 207 // store the forwarding pointer into the mark word
duke@435 208 if ((HeapWord*)q != compact_top) {
duke@435 209 q->forward_to(oop(compact_top));
duke@435 210 assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
duke@435 211 } else {
duke@435 212 // if the object isn't moving we can just set the mark to the default
duke@435 213 // mark and handle it specially later on.
duke@435 214 q->init_mark();
duke@435 215 assert(q->forwardee() == NULL, "should be forwarded to NULL");
duke@435 216 }
duke@435 217
duke@435 218 compact_top += adjusted_size;
duke@435 219
duke@435 220 // we need to update the offset table so that the beginnings of objects can be
duke@435 221 // found during scavenge. Note that we are updating the offset table based on
duke@435 222 // where the object will be once the compaction phase finishes.
duke@435 223
duke@435 224 // Always call cross_threshold(). A contiguous space can only call it when
duke@435 225 // the compaction_top exceeds the current threshold but not for an
duke@435 226 // non-contiguous space.
duke@435 227 cp->threshold =
duke@435 228 cp->space->cross_threshold(compact_top - adjusted_size, compact_top);
duke@435 229 return compact_top;
duke@435 230 }
duke@435 231
duke@435 232 // A modified copy of OffsetTableContigSpace::cross_threshold() with _offsets -> _bt
duke@435 233 // and use of single_block instead of alloc_block. The name here is not really
duke@435 234 // appropriate - maybe a more general name could be invented for both the
duke@435 235 // contiguous and noncontiguous spaces.
duke@435 236
duke@435 237 HeapWord* CompactibleFreeListSpace::cross_threshold(HeapWord* start, HeapWord* the_end) {
duke@435 238 _bt.single_block(start, the_end);
duke@435 239 return end();
duke@435 240 }
duke@435 241
duke@435 242 // Initialize them to NULL.
duke@435 243 void CompactibleFreeListSpace::initializeIndexedFreeListArray() {
duke@435 244 for (size_t i = 0; i < IndexSetSize; i++) {
duke@435 245 // Note that on platforms where objects are double word aligned,
duke@435 246 // the odd array elements are not used. It is convenient, however,
duke@435 247 // to map directly from the object size to the array element.
duke@435 248 _indexedFreeList[i].reset(IndexSetSize);
duke@435 249 _indexedFreeList[i].set_size(i);
duke@435 250 assert(_indexedFreeList[i].count() == 0, "reset check failed");
duke@435 251 assert(_indexedFreeList[i].head() == NULL, "reset check failed");
duke@435 252 assert(_indexedFreeList[i].tail() == NULL, "reset check failed");
duke@435 253 assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed");
duke@435 254 }
duke@435 255 }
duke@435 256
duke@435 257 void CompactibleFreeListSpace::resetIndexedFreeListArray() {
ysr@3264 258 for (size_t i = 1; i < IndexSetSize; i++) {
duke@435 259 assert(_indexedFreeList[i].size() == (size_t) i,
duke@435 260 "Indexed free list sizes are incorrect");
duke@435 261 _indexedFreeList[i].reset(IndexSetSize);
duke@435 262 assert(_indexedFreeList[i].count() == 0, "reset check failed");
duke@435 263 assert(_indexedFreeList[i].head() == NULL, "reset check failed");
duke@435 264 assert(_indexedFreeList[i].tail() == NULL, "reset check failed");
duke@435 265 assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed");
duke@435 266 }
duke@435 267 }
duke@435 268
duke@435 269 void CompactibleFreeListSpace::reset(MemRegion mr) {
duke@435 270 resetIndexedFreeListArray();
duke@435 271 dictionary()->reset();
duke@435 272 if (BlockOffsetArrayUseUnallocatedBlock) {
duke@435 273 assert(end() == mr.end(), "We are compacting to the bottom of CMS gen");
duke@435 274 // Everything's allocated until proven otherwise.
duke@435 275 _bt.set_unallocated_block(end());
duke@435 276 }
duke@435 277 if (!mr.is_empty()) {
duke@435 278 assert(mr.word_size() >= MinChunkSize, "Chunk size is too small");
duke@435 279 _bt.single_block(mr.start(), mr.word_size());
duke@435 280 FreeChunk* fc = (FreeChunk*) mr.start();
jmasa@3732 281 fc->set_size(mr.word_size());
duke@435 282 if (mr.word_size() >= IndexSetSize ) {
duke@435 283 returnChunkToDictionary(fc);
duke@435 284 } else {
duke@435 285 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
jmasa@3732 286 _indexedFreeList[mr.word_size()].return_chunk_at_head(fc);
duke@435 287 }
brutisso@5163 288 coalBirth(mr.word_size());
duke@435 289 }
duke@435 290 _promoInfo.reset();
duke@435 291 _smallLinearAllocBlock._ptr = NULL;
duke@435 292 _smallLinearAllocBlock._word_size = 0;
duke@435 293 }
duke@435 294
duke@435 295 void CompactibleFreeListSpace::reset_after_compaction() {
duke@435 296 // Reset the space to the new reality - one free chunk.
duke@435 297 MemRegion mr(compaction_top(), end());
duke@435 298 reset(mr);
duke@435 299 // Now refill the linear allocation block(s) if possible.
duke@435 300 if (_adaptive_freelists) {
duke@435 301 refillLinearAllocBlocksIfNeeded();
duke@435 302 } else {
duke@435 303 // Place as much of mr in the linAB as we can get,
duke@435 304 // provided it was big enough to go into the dictionary.
jmasa@3732 305 FreeChunk* fc = dictionary()->find_largest_dict();
duke@435 306 if (fc != NULL) {
duke@435 307 assert(fc->size() == mr.word_size(),
duke@435 308 "Why was the chunk broken up?");
duke@435 309 removeChunkFromDictionary(fc);
duke@435 310 HeapWord* addr = (HeapWord*) fc;
duke@435 311 _smallLinearAllocBlock.set(addr, fc->size() ,
duke@435 312 1024*SmallForLinearAlloc, fc->size());
duke@435 313 // Note that _unallocated_block is not updated here.
duke@435 314 }
duke@435 315 }
duke@435 316 }
duke@435 317
duke@435 318 // Walks the entire dictionary, returning a coterminal
duke@435 319 // chunk, if it exists. Use with caution since it involves
duke@435 320 // a potentially complete walk of a potentially large tree.
duke@435 321 FreeChunk* CompactibleFreeListSpace::find_chunk_at_end() {
duke@435 322
duke@435 323 assert_lock_strong(&_freelistLock);
duke@435 324
duke@435 325 return dictionary()->find_chunk_ends_at(end());
duke@435 326 }
duke@435 327
duke@435 328
duke@435 329 #ifndef PRODUCT
duke@435 330 void CompactibleFreeListSpace::initializeIndexedFreeListArrayReturnedBytes() {
duke@435 331 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3732 332 _indexedFreeList[i].allocation_stats()->set_returned_bytes(0);
duke@435 333 }
duke@435 334 }
duke@435 335
duke@435 336 size_t CompactibleFreeListSpace::sumIndexedFreeListArrayReturnedBytes() {
duke@435 337 size_t sum = 0;
duke@435 338 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3732 339 sum += _indexedFreeList[i].allocation_stats()->returned_bytes();
duke@435 340 }
duke@435 341 return sum;
duke@435 342 }
duke@435 343
duke@435 344 size_t CompactibleFreeListSpace::totalCountInIndexedFreeLists() const {
duke@435 345 size_t count = 0;
ysr@3264 346 for (size_t i = IndexSetStart; i < IndexSetSize; i++) {
duke@435 347 debug_only(
duke@435 348 ssize_t total_list_count = 0;
duke@435 349 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 350 fc = fc->next()) {
duke@435 351 total_list_count++;
duke@435 352 }
duke@435 353 assert(total_list_count == _indexedFreeList[i].count(),
duke@435 354 "Count in list is incorrect");
duke@435 355 )
duke@435 356 count += _indexedFreeList[i].count();
duke@435 357 }
duke@435 358 return count;
duke@435 359 }
duke@435 360
duke@435 361 size_t CompactibleFreeListSpace::totalCount() {
duke@435 362 size_t num = totalCountInIndexedFreeLists();
jmasa@3732 363 num += dictionary()->total_count();
duke@435 364 if (_smallLinearAllocBlock._word_size != 0) {
duke@435 365 num++;
duke@435 366 }
duke@435 367 return num;
duke@435 368 }
duke@435 369 #endif
duke@435 370
duke@435 371 bool CompactibleFreeListSpace::is_free_block(const HeapWord* p) const {
duke@435 372 FreeChunk* fc = (FreeChunk*) p;
jmasa@3732 373 return fc->is_free();
duke@435 374 }
duke@435 375
duke@435 376 size_t CompactibleFreeListSpace::used() const {
duke@435 377 return capacity() - free();
duke@435 378 }
duke@435 379
duke@435 380 size_t CompactibleFreeListSpace::free() const {
duke@435 381 // "MT-safe, but not MT-precise"(TM), if you will: i.e.
duke@435 382 // if you do this while the structures are in flux you
duke@435 383 // may get an approximate answer only; for instance
duke@435 384 // because there is concurrent allocation either
duke@435 385 // directly by mutators or for promotion during a GC.
duke@435 386 // It's "MT-safe", however, in the sense that you are guaranteed
duke@435 387 // not to crash and burn, for instance, because of walking
duke@435 388 // pointers that could disappear as you were walking them.
duke@435 389 // The approximation is because the various components
duke@435 390 // that are read below are not read atomically (and
duke@435 391 // further the computation of totalSizeInIndexedFreeLists()
duke@435 392 // is itself a non-atomic computation. The normal use of
duke@435 393 // this is during a resize operation at the end of GC
duke@435 394 // and at that time you are guaranteed to get the
duke@435 395 // correct actual value. However, for instance, this is
duke@435 396 // also read completely asynchronously by the "perf-sampler"
duke@435 397 // that supports jvmstat, and you are apt to see the values
duke@435 398 // flicker in such cases.
duke@435 399 assert(_dictionary != NULL, "No _dictionary?");
jmasa@3732 400 return (_dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())) +
duke@435 401 totalSizeInIndexedFreeLists() +
duke@435 402 _smallLinearAllocBlock._word_size) * HeapWordSize;
duke@435 403 }
duke@435 404
duke@435 405 size_t CompactibleFreeListSpace::max_alloc_in_words() const {
duke@435 406 assert(_dictionary != NULL, "No _dictionary?");
duke@435 407 assert_locked();
jmasa@3732 408 size_t res = _dictionary->max_chunk_size();
duke@435 409 res = MAX2(res, MIN2(_smallLinearAllocBlock._word_size,
duke@435 410 (size_t) SmallForLinearAlloc - 1));
duke@435 411 // XXX the following could potentially be pretty slow;
duke@435 412 // should one, pesimally for the rare cases when res
duke@435 413 // caclulated above is less than IndexSetSize,
duke@435 414 // just return res calculated above? My reasoning was that
duke@435 415 // those cases will be so rare that the extra time spent doesn't
duke@435 416 // really matter....
duke@435 417 // Note: do not change the loop test i >= res + IndexSetStride
duke@435 418 // to i > res below, because i is unsigned and res may be zero.
duke@435 419 for (size_t i = IndexSetSize - 1; i >= res + IndexSetStride;
duke@435 420 i -= IndexSetStride) {
duke@435 421 if (_indexedFreeList[i].head() != NULL) {
duke@435 422 assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList");
duke@435 423 return i;
duke@435 424 }
duke@435 425 }
duke@435 426 return res;
duke@435 427 }
duke@435 428
ysr@2071 429 void LinearAllocBlock::print_on(outputStream* st) const {
ysr@2071 430 st->print_cr(" LinearAllocBlock: ptr = " PTR_FORMAT ", word_size = " SIZE_FORMAT
ysr@2071 431 ", refillsize = " SIZE_FORMAT ", allocation_size_limit = " SIZE_FORMAT,
drchase@6680 432 p2i(_ptr), _word_size, _refillSize, _allocation_size_limit);
ysr@2071 433 }
ysr@2071 434
ysr@2071 435 void CompactibleFreeListSpace::print_on(outputStream* st) const {
ysr@2071 436 st->print_cr("COMPACTIBLE FREELIST SPACE");
ysr@2071 437 st->print_cr(" Space:");
ysr@2071 438 Space::print_on(st);
ysr@2071 439
ysr@2071 440 st->print_cr("promoInfo:");
ysr@2071 441 _promoInfo.print_on(st);
ysr@2071 442
ysr@2071 443 st->print_cr("_smallLinearAllocBlock");
ysr@2071 444 _smallLinearAllocBlock.print_on(st);
ysr@2071 445
ysr@2071 446 // dump_memory_block(_smallLinearAllocBlock->_ptr, 128);
ysr@2071 447
ysr@2071 448 st->print_cr(" _fitStrategy = %s, _adaptive_freelists = %s",
ysr@2071 449 _fitStrategy?"true":"false", _adaptive_freelists?"true":"false");
ysr@2071 450 }
ysr@2071 451
ysr@1580 452 void CompactibleFreeListSpace::print_indexed_free_lists(outputStream* st)
ysr@1580 453 const {
ysr@1580 454 reportIndexedFreeListStatistics();
ysr@1580 455 gclog_or_tty->print_cr("Layout of Indexed Freelists");
ysr@1580 456 gclog_or_tty->print_cr("---------------------------");
jmasa@4196 457 AdaptiveFreeList<FreeChunk>::print_labels_on(st, "size");
ysr@1580 458 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
ysr@1580 459 _indexedFreeList[i].print_on(gclog_or_tty);
ysr@1580 460 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
ysr@1580 461 fc = fc->next()) {
ysr@1580 462 gclog_or_tty->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
drchase@6680 463 p2i(fc), p2i((HeapWord*)fc + i),
ysr@1580 464 fc->cantCoalesce() ? "\t CC" : "");
ysr@1580 465 }
ysr@1580 466 }
ysr@1580 467 }
ysr@1580 468
ysr@1580 469 void CompactibleFreeListSpace::print_promo_info_blocks(outputStream* st)
ysr@1580 470 const {
ysr@1580 471 _promoInfo.print_on(st);
ysr@1580 472 }
ysr@1580 473
ysr@1580 474 void CompactibleFreeListSpace::print_dictionary_free_lists(outputStream* st)
ysr@1580 475 const {
jmasa@3732 476 _dictionary->report_statistics();
ysr@1580 477 st->print_cr("Layout of Freelists in Tree");
ysr@1580 478 st->print_cr("---------------------------");
ysr@1580 479 _dictionary->print_free_lists(st);
ysr@1580 480 }
ysr@1580 481
ysr@1580 482 class BlkPrintingClosure: public BlkClosure {
ysr@1580 483 const CMSCollector* _collector;
ysr@1580 484 const CompactibleFreeListSpace* _sp;
ysr@1580 485 const CMSBitMap* _live_bit_map;
ysr@1580 486 const bool _post_remark;
ysr@1580 487 outputStream* _st;
ysr@1580 488 public:
ysr@1580 489 BlkPrintingClosure(const CMSCollector* collector,
ysr@1580 490 const CompactibleFreeListSpace* sp,
ysr@1580 491 const CMSBitMap* live_bit_map,
ysr@1580 492 outputStream* st):
ysr@1580 493 _collector(collector),
ysr@1580 494 _sp(sp),
ysr@1580 495 _live_bit_map(live_bit_map),
ysr@1580 496 _post_remark(collector->abstract_state() > CMSCollector::FinalMarking),
ysr@1580 497 _st(st) { }
ysr@1580 498 size_t do_blk(HeapWord* addr);
ysr@1580 499 };
ysr@1580 500
ysr@1580 501 size_t BlkPrintingClosure::do_blk(HeapWord* addr) {
ysr@1580 502 size_t sz = _sp->block_size_no_stall(addr, _collector);
ysr@1580 503 assert(sz != 0, "Should always be able to compute a size");
ysr@1580 504 if (_sp->block_is_obj(addr)) {
ysr@1580 505 const bool dead = _post_remark && !_live_bit_map->isMarked(addr);
ysr@1580 506 _st->print_cr(PTR_FORMAT ": %s object of size " SIZE_FORMAT "%s",
drchase@6680 507 p2i(addr),
ysr@1580 508 dead ? "dead" : "live",
ysr@1580 509 sz,
ysr@1580 510 (!dead && CMSPrintObjectsInDump) ? ":" : ".");
ysr@1580 511 if (CMSPrintObjectsInDump && !dead) {
ysr@1580 512 oop(addr)->print_on(_st);
ysr@1580 513 _st->print_cr("--------------------------------------");
ysr@1580 514 }
ysr@1580 515 } else { // free block
ysr@1580 516 _st->print_cr(PTR_FORMAT ": free block of size " SIZE_FORMAT "%s",
drchase@6680 517 p2i(addr), sz, CMSPrintChunksInDump ? ":" : ".");
ysr@1580 518 if (CMSPrintChunksInDump) {
ysr@1580 519 ((FreeChunk*)addr)->print_on(_st);
ysr@1580 520 _st->print_cr("--------------------------------------");
ysr@1580 521 }
ysr@1580 522 }
ysr@1580 523 return sz;
ysr@1580 524 }
ysr@1580 525
ysr@1580 526 void CompactibleFreeListSpace::dump_at_safepoint_with_locks(CMSCollector* c,
ysr@1580 527 outputStream* st) {
ysr@1580 528 st->print_cr("\n=========================");
ysr@1580 529 st->print_cr("Block layout in CMS Heap:");
ysr@1580 530 st->print_cr("=========================");
ysr@1580 531 BlkPrintingClosure bpcl(c, this, c->markBitMap(), st);
ysr@1580 532 blk_iterate(&bpcl);
ysr@1580 533
ysr@1580 534 st->print_cr("\n=======================================");
ysr@1580 535 st->print_cr("Order & Layout of Promotion Info Blocks");
ysr@1580 536 st->print_cr("=======================================");
ysr@1580 537 print_promo_info_blocks(st);
ysr@1580 538
ysr@1580 539 st->print_cr("\n===========================");
ysr@1580 540 st->print_cr("Order of Indexed Free Lists");
ysr@1580 541 st->print_cr("=========================");
ysr@1580 542 print_indexed_free_lists(st);
ysr@1580 543
ysr@1580 544 st->print_cr("\n=================================");
ysr@1580 545 st->print_cr("Order of Free Lists in Dictionary");
ysr@1580 546 st->print_cr("=================================");
ysr@1580 547 print_dictionary_free_lists(st);
ysr@1580 548 }
ysr@1580 549
ysr@1580 550
duke@435 551 void CompactibleFreeListSpace::reportFreeListStatistics() const {
duke@435 552 assert_lock_strong(&_freelistLock);
duke@435 553 assert(PrintFLSStatistics != 0, "Reporting error");
jmasa@3732 554 _dictionary->report_statistics();
duke@435 555 if (PrintFLSStatistics > 1) {
duke@435 556 reportIndexedFreeListStatistics();
jmasa@3732 557 size_t total_size = totalSizeInIndexedFreeLists() +
jmasa@3732 558 _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
hseigel@4465 559 gclog_or_tty->print(" free=" SIZE_FORMAT " frag=%1.4f\n", total_size, flsFrag());
duke@435 560 }
duke@435 561 }
duke@435 562
duke@435 563 void CompactibleFreeListSpace::reportIndexedFreeListStatistics() const {
duke@435 564 assert_lock_strong(&_freelistLock);
duke@435 565 gclog_or_tty->print("Statistics for IndexedFreeLists:\n"
duke@435 566 "--------------------------------\n");
jmasa@3732 567 size_t total_size = totalSizeInIndexedFreeLists();
jmasa@3732 568 size_t free_blocks = numFreeBlocksInIndexedFreeLists();
drchase@6680 569 gclog_or_tty->print("Total Free Space: " SIZE_FORMAT "\n", total_size);
drchase@6680 570 gclog_or_tty->print("Max Chunk Size: " SIZE_FORMAT "\n", maxChunkSizeInIndexedFreeLists());
drchase@6680 571 gclog_or_tty->print("Number of Blocks: " SIZE_FORMAT "\n", free_blocks);
jmasa@3732 572 if (free_blocks != 0) {
drchase@6680 573 gclog_or_tty->print("Av. Block Size: " SIZE_FORMAT "\n", total_size/free_blocks);
duke@435 574 }
duke@435 575 }
duke@435 576
duke@435 577 size_t CompactibleFreeListSpace::numFreeBlocksInIndexedFreeLists() const {
duke@435 578 size_t res = 0;
duke@435 579 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 580 debug_only(
duke@435 581 ssize_t recount = 0;
duke@435 582 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 583 fc = fc->next()) {
duke@435 584 recount += 1;
duke@435 585 }
duke@435 586 assert(recount == _indexedFreeList[i].count(),
duke@435 587 "Incorrect count in list");
duke@435 588 )
duke@435 589 res += _indexedFreeList[i].count();
duke@435 590 }
duke@435 591 return res;
duke@435 592 }
duke@435 593
duke@435 594 size_t CompactibleFreeListSpace::maxChunkSizeInIndexedFreeLists() const {
duke@435 595 for (size_t i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
duke@435 596 if (_indexedFreeList[i].head() != NULL) {
duke@435 597 assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList");
duke@435 598 return (size_t)i;
duke@435 599 }
duke@435 600 }
duke@435 601 return 0;
duke@435 602 }
duke@435 603
duke@435 604 void CompactibleFreeListSpace::set_end(HeapWord* value) {
duke@435 605 HeapWord* prevEnd = end();
duke@435 606 assert(prevEnd != value, "unnecessary set_end call");
ysr@2071 607 assert(prevEnd == NULL || !BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(),
ysr@2071 608 "New end is below unallocated block");
duke@435 609 _end = value;
duke@435 610 if (prevEnd != NULL) {
duke@435 611 // Resize the underlying block offset table.
duke@435 612 _bt.resize(pointer_delta(value, bottom()));
ysr@1580 613 if (value <= prevEnd) {
ysr@2071 614 assert(!BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(),
ysr@2071 615 "New end is below unallocated block");
ysr@1580 616 } else {
ysr@1580 617 // Now, take this new chunk and add it to the free blocks.
ysr@1580 618 // Note that the BOT has not yet been updated for this block.
ysr@1580 619 size_t newFcSize = pointer_delta(value, prevEnd);
ysr@1580 620 // XXX This is REALLY UGLY and should be fixed up. XXX
ysr@1580 621 if (!_adaptive_freelists && _smallLinearAllocBlock._ptr == NULL) {
ysr@1580 622 // Mark the boundary of the new block in BOT
ysr@1580 623 _bt.mark_block(prevEnd, value);
ysr@1580 624 // put it all in the linAB
ysr@1580 625 if (ParallelGCThreads == 0) {
ysr@1580 626 _smallLinearAllocBlock._ptr = prevEnd;
ysr@1580 627 _smallLinearAllocBlock._word_size = newFcSize;
ysr@1580 628 repairLinearAllocBlock(&_smallLinearAllocBlock);
ysr@1580 629 } else { // ParallelGCThreads > 0
ysr@1580 630 MutexLockerEx x(parDictionaryAllocLock(),
ysr@1580 631 Mutex::_no_safepoint_check_flag);
ysr@1580 632 _smallLinearAllocBlock._ptr = prevEnd;
ysr@1580 633 _smallLinearAllocBlock._word_size = newFcSize;
ysr@1580 634 repairLinearAllocBlock(&_smallLinearAllocBlock);
ysr@1580 635 }
ysr@1580 636 // Births of chunks put into a LinAB are not recorded. Births
ysr@1580 637 // of chunks as they are allocated out of a LinAB are.
ysr@1580 638 } else {
ysr@1580 639 // Add the block to the free lists, if possible coalescing it
ysr@1580 640 // with the last free block, and update the BOT and census data.
ysr@1580 641 addChunkToFreeListsAtEndRecordingStats(prevEnd, newFcSize);
duke@435 642 }
duke@435 643 }
duke@435 644 }
duke@435 645 }
duke@435 646
duke@435 647 class FreeListSpace_DCTOC : public Filtering_DCTOC {
duke@435 648 CompactibleFreeListSpace* _cfls;
duke@435 649 CMSCollector* _collector;
duke@435 650 protected:
duke@435 651 // Override.
duke@435 652 #define walk_mem_region_with_cl_DECL(ClosureType) \
duke@435 653 virtual void walk_mem_region_with_cl(MemRegion mr, \
duke@435 654 HeapWord* bottom, HeapWord* top, \
duke@435 655 ClosureType* cl); \
duke@435 656 void walk_mem_region_with_cl_par(MemRegion mr, \
duke@435 657 HeapWord* bottom, HeapWord* top, \
duke@435 658 ClosureType* cl); \
duke@435 659 void walk_mem_region_with_cl_nopar(MemRegion mr, \
duke@435 660 HeapWord* bottom, HeapWord* top, \
duke@435 661 ClosureType* cl)
coleenp@4037 662 walk_mem_region_with_cl_DECL(ExtendedOopClosure);
duke@435 663 walk_mem_region_with_cl_DECL(FilteringClosure);
duke@435 664
duke@435 665 public:
duke@435 666 FreeListSpace_DCTOC(CompactibleFreeListSpace* sp,
duke@435 667 CMSCollector* collector,
coleenp@4037 668 ExtendedOopClosure* cl,
duke@435 669 CardTableModRefBS::PrecisionStyle precision,
duke@435 670 HeapWord* boundary) :
duke@435 671 Filtering_DCTOC(sp, cl, precision, boundary),
duke@435 672 _cfls(sp), _collector(collector) {}
duke@435 673 };
duke@435 674
duke@435 675 // We de-virtualize the block-related calls below, since we know that our
duke@435 676 // space is a CompactibleFreeListSpace.
jmasa@3294 677
duke@435 678 #define FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
duke@435 679 void FreeListSpace_DCTOC::walk_mem_region_with_cl(MemRegion mr, \
duke@435 680 HeapWord* bottom, \
duke@435 681 HeapWord* top, \
duke@435 682 ClosureType* cl) { \
jmasa@3294 683 bool is_par = SharedHeap::heap()->n_par_threads() > 0; \
jmasa@3294 684 if (is_par) { \
jmasa@3294 685 assert(SharedHeap::heap()->n_par_threads() == \
jmasa@3294 686 SharedHeap::heap()->workers()->active_workers(), "Mismatch"); \
duke@435 687 walk_mem_region_with_cl_par(mr, bottom, top, cl); \
duke@435 688 } else { \
duke@435 689 walk_mem_region_with_cl_nopar(mr, bottom, top, cl); \
duke@435 690 } \
duke@435 691 } \
duke@435 692 void FreeListSpace_DCTOC::walk_mem_region_with_cl_par(MemRegion mr, \
duke@435 693 HeapWord* bottom, \
duke@435 694 HeapWord* top, \
duke@435 695 ClosureType* cl) { \
duke@435 696 /* Skip parts that are before "mr", in case "block_start" sent us \
duke@435 697 back too far. */ \
duke@435 698 HeapWord* mr_start = mr.start(); \
duke@435 699 size_t bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 700 HeapWord* next = bottom + bot_size; \
duke@435 701 while (next < mr_start) { \
duke@435 702 bottom = next; \
duke@435 703 bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 704 next = bottom + bot_size; \
duke@435 705 } \
duke@435 706 \
duke@435 707 while (bottom < top) { \
duke@435 708 if (_cfls->CompactibleFreeListSpace::block_is_obj(bottom) && \
duke@435 709 !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \
duke@435 710 oop(bottom)) && \
duke@435 711 !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \
duke@435 712 size_t word_sz = oop(bottom)->oop_iterate(cl, mr); \
duke@435 713 bottom += _cfls->adjustObjectSize(word_sz); \
duke@435 714 } else { \
duke@435 715 bottom += _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 716 } \
duke@435 717 } \
duke@435 718 } \
duke@435 719 void FreeListSpace_DCTOC::walk_mem_region_with_cl_nopar(MemRegion mr, \
duke@435 720 HeapWord* bottom, \
duke@435 721 HeapWord* top, \
duke@435 722 ClosureType* cl) { \
duke@435 723 /* Skip parts that are before "mr", in case "block_start" sent us \
duke@435 724 back too far. */ \
duke@435 725 HeapWord* mr_start = mr.start(); \
duke@435 726 size_t bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 727 HeapWord* next = bottom + bot_size; \
duke@435 728 while (next < mr_start) { \
duke@435 729 bottom = next; \
duke@435 730 bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 731 next = bottom + bot_size; \
duke@435 732 } \
duke@435 733 \
duke@435 734 while (bottom < top) { \
duke@435 735 if (_cfls->CompactibleFreeListSpace::block_is_obj_nopar(bottom) && \
duke@435 736 !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \
duke@435 737 oop(bottom)) && \
duke@435 738 !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \
duke@435 739 size_t word_sz = oop(bottom)->oop_iterate(cl, mr); \
duke@435 740 bottom += _cfls->adjustObjectSize(word_sz); \
duke@435 741 } else { \
duke@435 742 bottom += _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 743 } \
duke@435 744 } \
duke@435 745 }
duke@435 746
duke@435 747 // (There are only two of these, rather than N, because the split is due
duke@435 748 // only to the introduction of the FilteringClosure, a local part of the
duke@435 749 // impl of this abstraction.)
coleenp@4037 750 FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
duke@435 751 FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
duke@435 752
duke@435 753 DirtyCardToOopClosure*
coleenp@4037 754 CompactibleFreeListSpace::new_dcto_cl(ExtendedOopClosure* cl,
duke@435 755 CardTableModRefBS::PrecisionStyle precision,
duke@435 756 HeapWord* boundary) {
duke@435 757 return new FreeListSpace_DCTOC(this, _collector, cl, precision, boundary);
duke@435 758 }
duke@435 759
duke@435 760
duke@435 761 // Note on locking for the space iteration functions:
duke@435 762 // since the collector's iteration activities are concurrent with
duke@435 763 // allocation activities by mutators, absent a suitable mutual exclusion
duke@435 764 // mechanism the iterators may go awry. For instace a block being iterated
duke@435 765 // may suddenly be allocated or divided up and part of it allocated and
duke@435 766 // so on.
duke@435 767
duke@435 768 // Apply the given closure to each block in the space.
duke@435 769 void CompactibleFreeListSpace::blk_iterate_careful(BlkClosureCareful* cl) {
duke@435 770 assert_lock_strong(freelistLock());
duke@435 771 HeapWord *cur, *limit;
duke@435 772 for (cur = bottom(), limit = end(); cur < limit;
duke@435 773 cur += cl->do_blk_careful(cur));
duke@435 774 }
duke@435 775
duke@435 776 // Apply the given closure to each block in the space.
duke@435 777 void CompactibleFreeListSpace::blk_iterate(BlkClosure* cl) {
duke@435 778 assert_lock_strong(freelistLock());
duke@435 779 HeapWord *cur, *limit;
duke@435 780 for (cur = bottom(), limit = end(); cur < limit;
duke@435 781 cur += cl->do_blk(cur));
duke@435 782 }
duke@435 783
duke@435 784 // Apply the given closure to each oop in the space.
coleenp@4037 785 void CompactibleFreeListSpace::oop_iterate(ExtendedOopClosure* cl) {
duke@435 786 assert_lock_strong(freelistLock());
duke@435 787 HeapWord *cur, *limit;
duke@435 788 size_t curSize;
duke@435 789 for (cur = bottom(), limit = end(); cur < limit;
duke@435 790 cur += curSize) {
duke@435 791 curSize = block_size(cur);
duke@435 792 if (block_is_obj(cur)) {
duke@435 793 oop(cur)->oop_iterate(cl);
duke@435 794 }
duke@435 795 }
duke@435 796 }
duke@435 797
duke@435 798 // Apply the given closure to each oop in the space \intersect memory region.
coleenp@4037 799 void CompactibleFreeListSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
duke@435 800 assert_lock_strong(freelistLock());
duke@435 801 if (is_empty()) {
duke@435 802 return;
duke@435 803 }
duke@435 804 MemRegion cur = MemRegion(bottom(), end());
duke@435 805 mr = mr.intersection(cur);
duke@435 806 if (mr.is_empty()) {
duke@435 807 return;
duke@435 808 }
duke@435 809 if (mr.equals(cur)) {
duke@435 810 oop_iterate(cl);
duke@435 811 return;
duke@435 812 }
duke@435 813 assert(mr.end() <= end(), "just took an intersection above");
duke@435 814 HeapWord* obj_addr = block_start(mr.start());
duke@435 815 HeapWord* t = mr.end();
duke@435 816
duke@435 817 SpaceMemRegionOopsIterClosure smr_blk(cl, mr);
duke@435 818 if (block_is_obj(obj_addr)) {
duke@435 819 // Handle first object specially.
duke@435 820 oop obj = oop(obj_addr);
duke@435 821 obj_addr += adjustObjectSize(obj->oop_iterate(&smr_blk));
duke@435 822 } else {
duke@435 823 FreeChunk* fc = (FreeChunk*)obj_addr;
duke@435 824 obj_addr += fc->size();
duke@435 825 }
duke@435 826 while (obj_addr < t) {
duke@435 827 HeapWord* obj = obj_addr;
duke@435 828 obj_addr += block_size(obj_addr);
duke@435 829 // If "obj_addr" is not greater than top, then the
duke@435 830 // entire object "obj" is within the region.
duke@435 831 if (obj_addr <= t) {
duke@435 832 if (block_is_obj(obj)) {
duke@435 833 oop(obj)->oop_iterate(cl);
duke@435 834 }
duke@435 835 } else {
duke@435 836 // "obj" extends beyond end of region
duke@435 837 if (block_is_obj(obj)) {
duke@435 838 oop(obj)->oop_iterate(&smr_blk);
duke@435 839 }
duke@435 840 break;
duke@435 841 }
duke@435 842 }
duke@435 843 }
duke@435 844
duke@435 845 // NOTE: In the following methods, in order to safely be able to
duke@435 846 // apply the closure to an object, we need to be sure that the
duke@435 847 // object has been initialized. We are guaranteed that an object
duke@435 848 // is initialized if we are holding the Heap_lock with the
duke@435 849 // world stopped.
duke@435 850 void CompactibleFreeListSpace::verify_objects_initialized() const {
duke@435 851 if (is_init_completed()) {
duke@435 852 assert_locked_or_safepoint(Heap_lock);
duke@435 853 if (Universe::is_fully_initialized()) {
duke@435 854 guarantee(SafepointSynchronize::is_at_safepoint(),
duke@435 855 "Required for objects to be initialized");
duke@435 856 }
duke@435 857 } // else make a concession at vm start-up
duke@435 858 }
duke@435 859
duke@435 860 // Apply the given closure to each object in the space
duke@435 861 void CompactibleFreeListSpace::object_iterate(ObjectClosure* blk) {
duke@435 862 assert_lock_strong(freelistLock());
duke@435 863 NOT_PRODUCT(verify_objects_initialized());
duke@435 864 HeapWord *cur, *limit;
duke@435 865 size_t curSize;
duke@435 866 for (cur = bottom(), limit = end(); cur < limit;
duke@435 867 cur += curSize) {
duke@435 868 curSize = block_size(cur);
duke@435 869 if (block_is_obj(cur)) {
duke@435 870 blk->do_object(oop(cur));
duke@435 871 }
duke@435 872 }
duke@435 873 }
duke@435 874
jmasa@952 875 // Apply the given closure to each live object in the space
jmasa@952 876 // The usage of CompactibleFreeListSpace
jmasa@952 877 // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
jmasa@952 878 // objects in the space with references to objects that are no longer
jmasa@952 879 // valid. For example, an object may reference another object
jmasa@952 880 // that has already been sweep up (collected). This method uses
jmasa@952 881 // obj_is_alive() to determine whether it is safe to apply the closure to
jmasa@952 882 // an object. See obj_is_alive() for details on how liveness of an
jmasa@952 883 // object is decided.
jmasa@952 884
jmasa@952 885 void CompactibleFreeListSpace::safe_object_iterate(ObjectClosure* blk) {
jmasa@952 886 assert_lock_strong(freelistLock());
jmasa@952 887 NOT_PRODUCT(verify_objects_initialized());
jmasa@952 888 HeapWord *cur, *limit;
jmasa@952 889 size_t curSize;
jmasa@952 890 for (cur = bottom(), limit = end(); cur < limit;
jmasa@952 891 cur += curSize) {
jmasa@952 892 curSize = block_size(cur);
jmasa@952 893 if (block_is_obj(cur) && obj_is_alive(cur)) {
jmasa@952 894 blk->do_object(oop(cur));
jmasa@952 895 }
jmasa@952 896 }
jmasa@952 897 }
jmasa@952 898
duke@435 899 void CompactibleFreeListSpace::object_iterate_mem(MemRegion mr,
duke@435 900 UpwardsObjectClosure* cl) {
ysr@1580 901 assert_locked(freelistLock());
duke@435 902 NOT_PRODUCT(verify_objects_initialized());
duke@435 903 Space::object_iterate_mem(mr, cl);
duke@435 904 }
duke@435 905
duke@435 906 // Callers of this iterator beware: The closure application should
duke@435 907 // be robust in the face of uninitialized objects and should (always)
duke@435 908 // return a correct size so that the next addr + size below gives us a
duke@435 909 // valid block boundary. [See for instance,
duke@435 910 // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful()
duke@435 911 // in ConcurrentMarkSweepGeneration.cpp.]
duke@435 912 HeapWord*
duke@435 913 CompactibleFreeListSpace::object_iterate_careful(ObjectClosureCareful* cl) {
duke@435 914 assert_lock_strong(freelistLock());
duke@435 915 HeapWord *addr, *last;
duke@435 916 size_t size;
duke@435 917 for (addr = bottom(), last = end();
duke@435 918 addr < last; addr += size) {
duke@435 919 FreeChunk* fc = (FreeChunk*)addr;
jmasa@3732 920 if (fc->is_free()) {
duke@435 921 // Since we hold the free list lock, which protects direct
duke@435 922 // allocation in this generation by mutators, a free object
duke@435 923 // will remain free throughout this iteration code.
duke@435 924 size = fc->size();
duke@435 925 } else {
duke@435 926 // Note that the object need not necessarily be initialized,
duke@435 927 // because (for instance) the free list lock does NOT protect
duke@435 928 // object initialization. The closure application below must
duke@435 929 // therefore be correct in the face of uninitialized objects.
duke@435 930 size = cl->do_object_careful(oop(addr));
duke@435 931 if (size == 0) {
duke@435 932 // An unparsable object found. Signal early termination.
duke@435 933 return addr;
duke@435 934 }
duke@435 935 }
duke@435 936 }
duke@435 937 return NULL;
duke@435 938 }
duke@435 939
duke@435 940 // Callers of this iterator beware: The closure application should
duke@435 941 // be robust in the face of uninitialized objects and should (always)
duke@435 942 // return a correct size so that the next addr + size below gives us a
duke@435 943 // valid block boundary. [See for instance,
duke@435 944 // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful()
duke@435 945 // in ConcurrentMarkSweepGeneration.cpp.]
duke@435 946 HeapWord*
duke@435 947 CompactibleFreeListSpace::object_iterate_careful_m(MemRegion mr,
duke@435 948 ObjectClosureCareful* cl) {
duke@435 949 assert_lock_strong(freelistLock());
duke@435 950 // Can't use used_region() below because it may not necessarily
duke@435 951 // be the same as [bottom(),end()); although we could
duke@435 952 // use [used_region().start(),round_to(used_region().end(),CardSize)),
duke@435 953 // that appears too cumbersome, so we just do the simpler check
duke@435 954 // in the assertion below.
duke@435 955 assert(!mr.is_empty() && MemRegion(bottom(),end()).contains(mr),
duke@435 956 "mr should be non-empty and within used space");
duke@435 957 HeapWord *addr, *end;
duke@435 958 size_t size;
duke@435 959 for (addr = block_start_careful(mr.start()), end = mr.end();
duke@435 960 addr < end; addr += size) {
duke@435 961 FreeChunk* fc = (FreeChunk*)addr;
jmasa@3732 962 if (fc->is_free()) {
duke@435 963 // Since we hold the free list lock, which protects direct
duke@435 964 // allocation in this generation by mutators, a free object
duke@435 965 // will remain free throughout this iteration code.
duke@435 966 size = fc->size();
duke@435 967 } else {
duke@435 968 // Note that the object need not necessarily be initialized,
duke@435 969 // because (for instance) the free list lock does NOT protect
duke@435 970 // object initialization. The closure application below must
duke@435 971 // therefore be correct in the face of uninitialized objects.
duke@435 972 size = cl->do_object_careful_m(oop(addr), mr);
duke@435 973 if (size == 0) {
duke@435 974 // An unparsable object found. Signal early termination.
duke@435 975 return addr;
duke@435 976 }
duke@435 977 }
duke@435 978 }
duke@435 979 return NULL;
duke@435 980 }
duke@435 981
duke@435 982
ysr@777 983 HeapWord* CompactibleFreeListSpace::block_start_const(const void* p) const {
duke@435 984 NOT_PRODUCT(verify_objects_initialized());
duke@435 985 return _bt.block_start(p);
duke@435 986 }
duke@435 987
duke@435 988 HeapWord* CompactibleFreeListSpace::block_start_careful(const void* p) const {
duke@435 989 return _bt.block_start_careful(p);
duke@435 990 }
duke@435 991
duke@435 992 size_t CompactibleFreeListSpace::block_size(const HeapWord* p) const {
duke@435 993 NOT_PRODUCT(verify_objects_initialized());
duke@435 994 // This must be volatile, or else there is a danger that the compiler
duke@435 995 // will compile the code below into a sometimes-infinite loop, by keeping
duke@435 996 // the value read the first time in a register.
duke@435 997 while (true) {
duke@435 998 // We must do this until we get a consistent view of the object.
coleenp@622 999 if (FreeChunk::indicatesFreeChunk(p)) {
coleenp@622 1000 volatile FreeChunk* fc = (volatile FreeChunk*)p;
coleenp@622 1001 size_t res = fc->size();
goetz@6493 1002
goetz@6493 1003 // Bugfix for systems with weak memory model (PPC64/IA64). The
goetz@6493 1004 // block's free bit was set and we have read the size of the
goetz@6493 1005 // block. Acquire and check the free bit again. If the block is
goetz@6493 1006 // still free, the read size is correct.
goetz@6493 1007 OrderAccess::acquire();
goetz@6493 1008
coleenp@622 1009 // If the object is still a free chunk, return the size, else it
coleenp@622 1010 // has been allocated so try again.
coleenp@622 1011 if (FreeChunk::indicatesFreeChunk(p)) {
duke@435 1012 assert(res != 0, "Block size should not be 0");
duke@435 1013 return res;
duke@435 1014 }
coleenp@622 1015 } else {
coleenp@622 1016 // must read from what 'p' points to in each loop.
coleenp@4037 1017 Klass* k = ((volatile oopDesc*)p)->klass_or_null();
coleenp@622 1018 if (k != NULL) {
coleenp@4037 1019 assert(k->is_klass(), "Should really be klass oop.");
coleenp@622 1020 oop o = (oop)p;
coleenp@622 1021 assert(o->is_oop(true /* ignore mark word */), "Should be an oop.");
goetz@6493 1022
goetz@6493 1023 // Bugfix for systems with weak memory model (PPC64/IA64).
goetz@6493 1024 // The object o may be an array. Acquire to make sure that the array
goetz@6493 1025 // size (third word) is consistent.
goetz@6493 1026 OrderAccess::acquire();
goetz@6493 1027
coleenp@4037 1028 size_t res = o->size_given_klass(k);
coleenp@622 1029 res = adjustObjectSize(res);
coleenp@622 1030 assert(res != 0, "Block size should not be 0");
coleenp@622 1031 return res;
coleenp@622 1032 }
duke@435 1033 }
duke@435 1034 }
duke@435 1035 }
duke@435 1036
coleenp@4037 1037 // TODO: Now that is_parsable is gone, we should combine these two functions.
duke@435 1038 // A variant of the above that uses the Printezis bits for
duke@435 1039 // unparsable but allocated objects. This avoids any possible
duke@435 1040 // stalls waiting for mutators to initialize objects, and is
duke@435 1041 // thus potentially faster than the variant above. However,
duke@435 1042 // this variant may return a zero size for a block that is
duke@435 1043 // under mutation and for which a consistent size cannot be
duke@435 1044 // inferred without stalling; see CMSCollector::block_size_if_printezis_bits().
duke@435 1045 size_t CompactibleFreeListSpace::block_size_no_stall(HeapWord* p,
duke@435 1046 const CMSCollector* c)
duke@435 1047 const {
duke@435 1048 assert(MemRegion(bottom(), end()).contains(p), "p not in space");
duke@435 1049 // This must be volatile, or else there is a danger that the compiler
duke@435 1050 // will compile the code below into a sometimes-infinite loop, by keeping
duke@435 1051 // the value read the first time in a register.
duke@435 1052 DEBUG_ONLY(uint loops = 0;)
duke@435 1053 while (true) {
duke@435 1054 // We must do this until we get a consistent view of the object.
coleenp@622 1055 if (FreeChunk::indicatesFreeChunk(p)) {
coleenp@622 1056 volatile FreeChunk* fc = (volatile FreeChunk*)p;
coleenp@622 1057 size_t res = fc->size();
goetz@6493 1058
goetz@6493 1059 // Bugfix for systems with weak memory model (PPC64/IA64). The
goetz@6493 1060 // free bit of the block was set and we have read the size of
goetz@6493 1061 // the block. Acquire and check the free bit again. If the
goetz@6493 1062 // block is still free, the read size is correct.
goetz@6493 1063 OrderAccess::acquire();
goetz@6493 1064
coleenp@622 1065 if (FreeChunk::indicatesFreeChunk(p)) {
duke@435 1066 assert(res != 0, "Block size should not be 0");
duke@435 1067 assert(loops == 0, "Should be 0");
duke@435 1068 return res;
duke@435 1069 }
duke@435 1070 } else {
coleenp@622 1071 // must read from what 'p' points to in each loop.
coleenp@4037 1072 Klass* k = ((volatile oopDesc*)p)->klass_or_null();
ysr@2533 1073 // We trust the size of any object that has a non-NULL
ysr@2533 1074 // klass and (for those in the perm gen) is parsable
ysr@2533 1075 // -- irrespective of its conc_safe-ty.
coleenp@4037 1076 if (k != NULL) {
coleenp@4037 1077 assert(k->is_klass(), "Should really be klass oop.");
coleenp@622 1078 oop o = (oop)p;
coleenp@622 1079 assert(o->is_oop(), "Should be an oop");
goetz@6493 1080
goetz@6493 1081 // Bugfix for systems with weak memory model (PPC64/IA64).
goetz@6493 1082 // The object o may be an array. Acquire to make sure that the array
goetz@6493 1083 // size (third word) is consistent.
goetz@6493 1084 OrderAccess::acquire();
goetz@6493 1085
coleenp@4037 1086 size_t res = o->size_given_klass(k);
coleenp@622 1087 res = adjustObjectSize(res);
coleenp@622 1088 assert(res != 0, "Block size should not be 0");
coleenp@622 1089 return res;
coleenp@622 1090 } else {
ysr@2533 1091 // May return 0 if P-bits not present.
coleenp@622 1092 return c->block_size_if_printezis_bits(p);
coleenp@622 1093 }
duke@435 1094 }
duke@435 1095 assert(loops == 0, "Can loop at most once");
duke@435 1096 DEBUG_ONLY(loops++;)
duke@435 1097 }
duke@435 1098 }
duke@435 1099
duke@435 1100 size_t CompactibleFreeListSpace::block_size_nopar(const HeapWord* p) const {
duke@435 1101 NOT_PRODUCT(verify_objects_initialized());
duke@435 1102 assert(MemRegion(bottom(), end()).contains(p), "p not in space");
duke@435 1103 FreeChunk* fc = (FreeChunk*)p;
jmasa@3732 1104 if (fc->is_free()) {
duke@435 1105 return fc->size();
duke@435 1106 } else {
duke@435 1107 // Ignore mark word because this may be a recently promoted
duke@435 1108 // object whose mark word is used to chain together grey
duke@435 1109 // objects (the last one would have a null value).
duke@435 1110 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1111 return adjustObjectSize(oop(p)->size());
duke@435 1112 }
duke@435 1113 }
duke@435 1114
duke@435 1115 // This implementation assumes that the property of "being an object" is
duke@435 1116 // stable. But being a free chunk may not be (because of parallel
duke@435 1117 // promotion.)
duke@435 1118 bool CompactibleFreeListSpace::block_is_obj(const HeapWord* p) const {
duke@435 1119 FreeChunk* fc = (FreeChunk*)p;
duke@435 1120 assert(is_in_reserved(p), "Should be in space");
duke@435 1121 // When doing a mark-sweep-compact of the CMS generation, this
duke@435 1122 // assertion may fail because prepare_for_compaction() uses
duke@435 1123 // space that is garbage to maintain information on ranges of
duke@435 1124 // live objects so that these live ranges can be moved as a whole.
duke@435 1125 // Comment out this assertion until that problem can be solved
duke@435 1126 // (i.e., that the block start calculation may look at objects
duke@435 1127 // at address below "p" in finding the object that contains "p"
duke@435 1128 // and those objects (if garbage) may have been modified to hold
duke@435 1129 // live range information.
jmasa@2188 1130 // assert(CollectedHeap::use_parallel_gc_threads() || _bt.block_start(p) == p,
jmasa@2188 1131 // "Should be a block boundary");
coleenp@622 1132 if (FreeChunk::indicatesFreeChunk(p)) return false;
coleenp@4037 1133 Klass* k = oop(p)->klass_or_null();
duke@435 1134 if (k != NULL) {
duke@435 1135 // Ignore mark word because it may have been used to
duke@435 1136 // chain together promoted objects (the last one
duke@435 1137 // would have a null value).
duke@435 1138 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1139 return true;
duke@435 1140 } else {
duke@435 1141 return false; // Was not an object at the start of collection.
duke@435 1142 }
duke@435 1143 }
duke@435 1144
duke@435 1145 // Check if the object is alive. This fact is checked either by consulting
duke@435 1146 // the main marking bitmap in the sweeping phase or, if it's a permanent
duke@435 1147 // generation and we're not in the sweeping phase, by checking the
duke@435 1148 // perm_gen_verify_bit_map where we store the "deadness" information if
duke@435 1149 // we did not sweep the perm gen in the most recent previous GC cycle.
duke@435 1150 bool CompactibleFreeListSpace::obj_is_alive(const HeapWord* p) const {
ysr@2301 1151 assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
ysr@2301 1152 "Else races are possible");
ysr@2293 1153 assert(block_is_obj(p), "The address should point to an object");
duke@435 1154
duke@435 1155 // If we're sweeping, we use object liveness information from the main bit map
duke@435 1156 // for both perm gen and old gen.
duke@435 1157 // We don't need to lock the bitmap (live_map or dead_map below), because
duke@435 1158 // EITHER we are in the middle of the sweeping phase, and the
duke@435 1159 // main marking bit map (live_map below) is locked,
duke@435 1160 // OR we're in other phases and perm_gen_verify_bit_map (dead_map below)
duke@435 1161 // is stable, because it's mutated only in the sweeping phase.
ysr@2293 1162 // NOTE: This method is also used by jmap where, if class unloading is
ysr@2293 1163 // off, the results can return "false" for legitimate perm objects,
ysr@2293 1164 // when we are not in the midst of a sweeping phase, which can result
ysr@2293 1165 // in jmap not reporting certain perm gen objects. This will be moot
ysr@2293 1166 // if/when the perm gen goes away in the future.
duke@435 1167 if (_collector->abstract_state() == CMSCollector::Sweeping) {
duke@435 1168 CMSBitMap* live_map = _collector->markBitMap();
ysr@2293 1169 return live_map->par_isMarked((HeapWord*) p);
duke@435 1170 }
duke@435 1171 return true;
duke@435 1172 }
duke@435 1173
duke@435 1174 bool CompactibleFreeListSpace::block_is_obj_nopar(const HeapWord* p) const {
duke@435 1175 FreeChunk* fc = (FreeChunk*)p;
duke@435 1176 assert(is_in_reserved(p), "Should be in space");
duke@435 1177 assert(_bt.block_start(p) == p, "Should be a block boundary");
jmasa@3732 1178 if (!fc->is_free()) {
duke@435 1179 // Ignore mark word because it may have been used to
duke@435 1180 // chain together promoted objects (the last one
duke@435 1181 // would have a null value).
duke@435 1182 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1183 return true;
duke@435 1184 }
duke@435 1185 return false;
duke@435 1186 }
duke@435 1187
duke@435 1188 // "MT-safe but not guaranteed MT-precise" (TM); you may get an
duke@435 1189 // approximate answer if you don't hold the freelistlock when you call this.
duke@435 1190 size_t CompactibleFreeListSpace::totalSizeInIndexedFreeLists() const {
duke@435 1191 size_t size = 0;
duke@435 1192 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 1193 debug_only(
duke@435 1194 // We may be calling here without the lock in which case we
duke@435 1195 // won't do this modest sanity check.
duke@435 1196 if (freelistLock()->owned_by_self()) {
duke@435 1197 size_t total_list_size = 0;
duke@435 1198 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 1199 fc = fc->next()) {
duke@435 1200 total_list_size += i;
duke@435 1201 }
duke@435 1202 assert(total_list_size == i * _indexedFreeList[i].count(),
duke@435 1203 "Count in list is incorrect");
duke@435 1204 }
duke@435 1205 )
duke@435 1206 size += i * _indexedFreeList[i].count();
duke@435 1207 }
duke@435 1208 return size;
duke@435 1209 }
duke@435 1210
duke@435 1211 HeapWord* CompactibleFreeListSpace::par_allocate(size_t size) {
duke@435 1212 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
duke@435 1213 return allocate(size);
duke@435 1214 }
duke@435 1215
duke@435 1216 HeapWord*
duke@435 1217 CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlockRemainder(size_t size) {
duke@435 1218 return getChunkFromLinearAllocBlockRemainder(&_smallLinearAllocBlock, size);
duke@435 1219 }
duke@435 1220
duke@435 1221 HeapWord* CompactibleFreeListSpace::allocate(size_t size) {
duke@435 1222 assert_lock_strong(freelistLock());
duke@435 1223 HeapWord* res = NULL;
duke@435 1224 assert(size == adjustObjectSize(size),
duke@435 1225 "use adjustObjectSize() before calling into allocate()");
duke@435 1226
duke@435 1227 if (_adaptive_freelists) {
duke@435 1228 res = allocate_adaptive_freelists(size);
duke@435 1229 } else { // non-adaptive free lists
duke@435 1230 res = allocate_non_adaptive_freelists(size);
duke@435 1231 }
duke@435 1232
duke@435 1233 if (res != NULL) {
duke@435 1234 // check that res does lie in this space!
duke@435 1235 assert(is_in_reserved(res), "Not in this space!");
duke@435 1236 assert(is_aligned((void*)res), "alignment check");
duke@435 1237
duke@435 1238 FreeChunk* fc = (FreeChunk*)res;
duke@435 1239 fc->markNotFree();
jmasa@3732 1240 assert(!fc->is_free(), "shouldn't be marked free");
coleenp@622 1241 assert(oop(fc)->klass_or_null() == NULL, "should look uninitialized");
duke@435 1242 // Verify that the block offset table shows this to
duke@435 1243 // be a single block, but not one which is unallocated.
duke@435 1244 _bt.verify_single_block(res, size);
duke@435 1245 _bt.verify_not_unallocated(res, size);
duke@435 1246 // mangle a just allocated object with a distinct pattern.
duke@435 1247 debug_only(fc->mangleAllocated(size));
duke@435 1248 }
duke@435 1249
duke@435 1250 return res;
duke@435 1251 }
duke@435 1252
duke@435 1253 HeapWord* CompactibleFreeListSpace::allocate_non_adaptive_freelists(size_t size) {
duke@435 1254 HeapWord* res = NULL;
duke@435 1255 // try and use linear allocation for smaller blocks
duke@435 1256 if (size < _smallLinearAllocBlock._allocation_size_limit) {
duke@435 1257 // if successful, the following also adjusts block offset table
duke@435 1258 res = getChunkFromSmallLinearAllocBlock(size);
duke@435 1259 }
duke@435 1260 // Else triage to indexed lists for smaller sizes
duke@435 1261 if (res == NULL) {
duke@435 1262 if (size < SmallForDictionary) {
duke@435 1263 res = (HeapWord*) getChunkFromIndexedFreeList(size);
duke@435 1264 } else {
duke@435 1265 // else get it from the big dictionary; if even this doesn't
duke@435 1266 // work we are out of luck.
duke@435 1267 res = (HeapWord*)getChunkFromDictionaryExact(size);
duke@435 1268 }
duke@435 1269 }
duke@435 1270
duke@435 1271 return res;
duke@435 1272 }
duke@435 1273
duke@435 1274 HeapWord* CompactibleFreeListSpace::allocate_adaptive_freelists(size_t size) {
duke@435 1275 assert_lock_strong(freelistLock());
duke@435 1276 HeapWord* res = NULL;
duke@435 1277 assert(size == adjustObjectSize(size),
duke@435 1278 "use adjustObjectSize() before calling into allocate()");
duke@435 1279
duke@435 1280 // Strategy
duke@435 1281 // if small
duke@435 1282 // exact size from small object indexed list if small
duke@435 1283 // small or large linear allocation block (linAB) as appropriate
duke@435 1284 // take from lists of greater sized chunks
duke@435 1285 // else
duke@435 1286 // dictionary
duke@435 1287 // small or large linear allocation block if it has the space
duke@435 1288 // Try allocating exact size from indexTable first
duke@435 1289 if (size < IndexSetSize) {
duke@435 1290 res = (HeapWord*) getChunkFromIndexedFreeList(size);
duke@435 1291 if(res != NULL) {
duke@435 1292 assert(res != (HeapWord*)_indexedFreeList[size].head(),
duke@435 1293 "Not removed from free list");
duke@435 1294 // no block offset table adjustment is necessary on blocks in
duke@435 1295 // the indexed lists.
duke@435 1296
duke@435 1297 // Try allocating from the small LinAB
duke@435 1298 } else if (size < _smallLinearAllocBlock._allocation_size_limit &&
duke@435 1299 (res = getChunkFromSmallLinearAllocBlock(size)) != NULL) {
duke@435 1300 // if successful, the above also adjusts block offset table
duke@435 1301 // Note that this call will refill the LinAB to
duke@435 1302 // satisfy the request. This is different that
duke@435 1303 // evm.
duke@435 1304 // Don't record chunk off a LinAB? smallSplitBirth(size);
duke@435 1305 } else {
duke@435 1306 // Raid the exact free lists larger than size, even if they are not
duke@435 1307 // overpopulated.
duke@435 1308 res = (HeapWord*) getChunkFromGreater(size);
duke@435 1309 }
duke@435 1310 } else {
duke@435 1311 // Big objects get allocated directly from the dictionary.
duke@435 1312 res = (HeapWord*) getChunkFromDictionaryExact(size);
duke@435 1313 if (res == NULL) {
duke@435 1314 // Try hard not to fail since an allocation failure will likely
duke@435 1315 // trigger a synchronous GC. Try to get the space from the
duke@435 1316 // allocation blocks.
duke@435 1317 res = getChunkFromSmallLinearAllocBlockRemainder(size);
duke@435 1318 }
duke@435 1319 }
duke@435 1320
duke@435 1321 return res;
duke@435 1322 }
duke@435 1323
duke@435 1324 // A worst-case estimate of the space required (in HeapWords) to expand the heap
duke@435 1325 // when promoting obj.
duke@435 1326 size_t CompactibleFreeListSpace::expansionSpaceRequired(size_t obj_size) const {
duke@435 1327 // Depending on the object size, expansion may require refilling either a
duke@435 1328 // bigLAB or a smallLAB plus refilling a PromotionInfo object. MinChunkSize
duke@435 1329 // is added because the dictionary may over-allocate to avoid fragmentation.
duke@435 1330 size_t space = obj_size;
duke@435 1331 if (!_adaptive_freelists) {
duke@435 1332 space = MAX2(space, _smallLinearAllocBlock._refillSize);
duke@435 1333 }
duke@435 1334 space += _promoInfo.refillSize() + 2 * MinChunkSize;
duke@435 1335 return space;
duke@435 1336 }
duke@435 1337
duke@435 1338 FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) {
duke@435 1339 FreeChunk* ret;
duke@435 1340
duke@435 1341 assert(numWords >= MinChunkSize, "Size is less than minimum");
duke@435 1342 assert(linearAllocationWouldFail() || bestFitFirst(),
duke@435 1343 "Should not be here");
duke@435 1344
duke@435 1345 size_t i;
duke@435 1346 size_t currSize = numWords + MinChunkSize;
duke@435 1347 assert(currSize % MinObjAlignment == 0, "currSize should be aligned");
duke@435 1348 for (i = currSize; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 1349 AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[i];
duke@435 1350 if (fl->head()) {
duke@435 1351 ret = getFromListGreater(fl, numWords);
jmasa@3732 1352 assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
duke@435 1353 return ret;
duke@435 1354 }
duke@435 1355 }
duke@435 1356
duke@435 1357 currSize = MAX2((size_t)SmallForDictionary,
duke@435 1358 (size_t)(numWords + MinChunkSize));
duke@435 1359
duke@435 1360 /* Try to get a chunk that satisfies request, while avoiding
duke@435 1361 fragmentation that can't be handled. */
duke@435 1362 {
jmasa@3732 1363 ret = dictionary()->get_chunk(currSize);
duke@435 1364 if (ret != NULL) {
duke@435 1365 assert(ret->size() - numWords >= MinChunkSize,
duke@435 1366 "Chunk is too small");
duke@435 1367 _bt.allocated((HeapWord*)ret, ret->size());
duke@435 1368 /* Carve returned chunk. */
duke@435 1369 (void) splitChunkAndReturnRemainder(ret, numWords);
duke@435 1370 /* Label this as no longer a free chunk. */
jmasa@3732 1371 assert(ret->is_free(), "This chunk should be free");
jmasa@3732 1372 ret->link_prev(NULL);
duke@435 1373 }
jmasa@3732 1374 assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
duke@435 1375 return ret;
duke@435 1376 }
duke@435 1377 ShouldNotReachHere();
duke@435 1378 }
duke@435 1379
ysr@3220 1380 bool CompactibleFreeListSpace::verifyChunkInIndexedFreeLists(FreeChunk* fc) const {
duke@435 1381 assert(fc->size() < IndexSetSize, "Size of chunk is too large");
jmasa@3732 1382 return _indexedFreeList[fc->size()].verify_chunk_in_free_list(fc);
duke@435 1383 }
duke@435 1384
ysr@3220 1385 bool CompactibleFreeListSpace::verify_chunk_is_linear_alloc_block(FreeChunk* fc) const {
ysr@3220 1386 assert((_smallLinearAllocBlock._ptr != (HeapWord*)fc) ||
ysr@3220 1387 (_smallLinearAllocBlock._word_size == fc->size()),
ysr@3220 1388 "Linear allocation block shows incorrect size");
ysr@3220 1389 return ((_smallLinearAllocBlock._ptr == (HeapWord*)fc) &&
ysr@3220 1390 (_smallLinearAllocBlock._word_size == fc->size()));
ysr@3220 1391 }
ysr@3220 1392
ysr@3220 1393 // Check if the purported free chunk is present either as a linear
ysr@3220 1394 // allocation block, the size-indexed table of (smaller) free blocks,
ysr@3220 1395 // or the larger free blocks kept in the binary tree dictionary.
jmasa@3732 1396 bool CompactibleFreeListSpace::verify_chunk_in_free_list(FreeChunk* fc) const {
ysr@3220 1397 if (verify_chunk_is_linear_alloc_block(fc)) {
ysr@3220 1398 return true;
ysr@3220 1399 } else if (fc->size() < IndexSetSize) {
ysr@3220 1400 return verifyChunkInIndexedFreeLists(fc);
ysr@3220 1401 } else {
jmasa@3732 1402 return dictionary()->verify_chunk_in_free_list(fc);
duke@435 1403 }
duke@435 1404 }
duke@435 1405
duke@435 1406 #ifndef PRODUCT
duke@435 1407 void CompactibleFreeListSpace::assert_locked() const {
duke@435 1408 CMSLockVerifier::assert_locked(freelistLock(), parDictionaryAllocLock());
duke@435 1409 }
ysr@1580 1410
ysr@1580 1411 void CompactibleFreeListSpace::assert_locked(const Mutex* lock) const {
ysr@1580 1412 CMSLockVerifier::assert_locked(lock);
ysr@1580 1413 }
duke@435 1414 #endif
duke@435 1415
duke@435 1416 FreeChunk* CompactibleFreeListSpace::allocateScratch(size_t size) {
duke@435 1417 // In the parallel case, the main thread holds the free list lock
duke@435 1418 // on behalf the parallel threads.
duke@435 1419 FreeChunk* fc;
duke@435 1420 {
duke@435 1421 // If GC is parallel, this might be called by several threads.
duke@435 1422 // This should be rare enough that the locking overhead won't affect
duke@435 1423 // the sequential code.
duke@435 1424 MutexLockerEx x(parDictionaryAllocLock(),
duke@435 1425 Mutex::_no_safepoint_check_flag);
duke@435 1426 fc = getChunkFromDictionary(size);
duke@435 1427 }
duke@435 1428 if (fc != NULL) {
duke@435 1429 fc->dontCoalesce();
jmasa@3732 1430 assert(fc->is_free(), "Should be free, but not coalescable");
duke@435 1431 // Verify that the block offset table shows this to
duke@435 1432 // be a single block, but not one which is unallocated.
duke@435 1433 _bt.verify_single_block((HeapWord*)fc, fc->size());
duke@435 1434 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
duke@435 1435 }
duke@435 1436 return fc;
duke@435 1437 }
duke@435 1438
coleenp@548 1439 oop CompactibleFreeListSpace::promote(oop obj, size_t obj_size) {
duke@435 1440 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
duke@435 1441 assert_locked();
duke@435 1442
duke@435 1443 // if we are tracking promotions, then first ensure space for
duke@435 1444 // promotion (including spooling space for saving header if necessary).
duke@435 1445 // then allocate and copy, then track promoted info if needed.
duke@435 1446 // When tracking (see PromotionInfo::track()), the mark word may
duke@435 1447 // be displaced and in this case restoration of the mark word
duke@435 1448 // occurs in the (oop_since_save_marks_)iterate phase.
duke@435 1449 if (_promoInfo.tracking() && !_promoInfo.ensure_spooling_space()) {
duke@435 1450 return NULL;
duke@435 1451 }
duke@435 1452 // Call the allocate(size_t, bool) form directly to avoid the
duke@435 1453 // additional call through the allocate(size_t) form. Having
duke@435 1454 // the compile inline the call is problematic because allocate(size_t)
duke@435 1455 // is a virtual method.
duke@435 1456 HeapWord* res = allocate(adjustObjectSize(obj_size));
duke@435 1457 if (res != NULL) {
duke@435 1458 Copy::aligned_disjoint_words((HeapWord*)obj, res, obj_size);
duke@435 1459 // if we should be tracking promotions, do so.
duke@435 1460 if (_promoInfo.tracking()) {
duke@435 1461 _promoInfo.track((PromotedObject*)res);
duke@435 1462 }
duke@435 1463 }
duke@435 1464 return oop(res);
duke@435 1465 }
duke@435 1466
duke@435 1467 HeapWord*
duke@435 1468 CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlock(size_t size) {
duke@435 1469 assert_locked();
duke@435 1470 assert(size >= MinChunkSize, "minimum chunk size");
duke@435 1471 assert(size < _smallLinearAllocBlock._allocation_size_limit,
duke@435 1472 "maximum from smallLinearAllocBlock");
duke@435 1473 return getChunkFromLinearAllocBlock(&_smallLinearAllocBlock, size);
duke@435 1474 }
duke@435 1475
duke@435 1476 HeapWord*
duke@435 1477 CompactibleFreeListSpace::getChunkFromLinearAllocBlock(LinearAllocBlock *blk,
duke@435 1478 size_t size) {
duke@435 1479 assert_locked();
duke@435 1480 assert(size >= MinChunkSize, "too small");
duke@435 1481 HeapWord* res = NULL;
duke@435 1482 // Try to do linear allocation from blk, making sure that
duke@435 1483 if (blk->_word_size == 0) {
duke@435 1484 // We have probably been unable to fill this either in the prologue or
duke@435 1485 // when it was exhausted at the last linear allocation. Bail out until
duke@435 1486 // next time.
duke@435 1487 assert(blk->_ptr == NULL, "consistency check");
duke@435 1488 return NULL;
duke@435 1489 }
duke@435 1490 assert(blk->_word_size != 0 && blk->_ptr != NULL, "consistency check");
duke@435 1491 res = getChunkFromLinearAllocBlockRemainder(blk, size);
duke@435 1492 if (res != NULL) return res;
duke@435 1493
duke@435 1494 // about to exhaust this linear allocation block
duke@435 1495 if (blk->_word_size == size) { // exactly satisfied
duke@435 1496 res = blk->_ptr;
duke@435 1497 _bt.allocated(res, blk->_word_size);
duke@435 1498 } else if (size + MinChunkSize <= blk->_refillSize) {
ysr@1580 1499 size_t sz = blk->_word_size;
duke@435 1500 // Update _unallocated_block if the size is such that chunk would be
duke@435 1501 // returned to the indexed free list. All other chunks in the indexed
duke@435 1502 // free lists are allocated from the dictionary so that _unallocated_block
duke@435 1503 // has already been adjusted for them. Do it here so that the cost
duke@435 1504 // for all chunks added back to the indexed free lists.
ysr@1580 1505 if (sz < SmallForDictionary) {
ysr@1580 1506 _bt.allocated(blk->_ptr, sz);
duke@435 1507 }
duke@435 1508 // Return the chunk that isn't big enough, and then refill below.
ysr@1580 1509 addChunkToFreeLists(blk->_ptr, sz);
jmasa@3732 1510 split_birth(sz);
duke@435 1511 // Don't keep statistics on adding back chunk from a LinAB.
duke@435 1512 } else {
duke@435 1513 // A refilled block would not satisfy the request.
duke@435 1514 return NULL;
duke@435 1515 }
duke@435 1516
duke@435 1517 blk->_ptr = NULL; blk->_word_size = 0;
duke@435 1518 refillLinearAllocBlock(blk);
duke@435 1519 assert(blk->_ptr == NULL || blk->_word_size >= size + MinChunkSize,
duke@435 1520 "block was replenished");
duke@435 1521 if (res != NULL) {
jmasa@3732 1522 split_birth(size);
duke@435 1523 repairLinearAllocBlock(blk);
duke@435 1524 } else if (blk->_ptr != NULL) {
duke@435 1525 res = blk->_ptr;
duke@435 1526 size_t blk_size = blk->_word_size;
duke@435 1527 blk->_word_size -= size;
duke@435 1528 blk->_ptr += size;
jmasa@3732 1529 split_birth(size);
duke@435 1530 repairLinearAllocBlock(blk);
duke@435 1531 // Update BOT last so that other (parallel) GC threads see a consistent
duke@435 1532 // view of the BOT and free blocks.
duke@435 1533 // Above must occur before BOT is updated below.
ysr@2071 1534 OrderAccess::storestore();
duke@435 1535 _bt.split_block(res, blk_size, size); // adjust block offset table
duke@435 1536 }
duke@435 1537 return res;
duke@435 1538 }
duke@435 1539
duke@435 1540 HeapWord* CompactibleFreeListSpace::getChunkFromLinearAllocBlockRemainder(
duke@435 1541 LinearAllocBlock* blk,
duke@435 1542 size_t size) {
duke@435 1543 assert_locked();
duke@435 1544 assert(size >= MinChunkSize, "too small");
duke@435 1545
duke@435 1546 HeapWord* res = NULL;
duke@435 1547 // This is the common case. Keep it simple.
duke@435 1548 if (blk->_word_size >= size + MinChunkSize) {
duke@435 1549 assert(blk->_ptr != NULL, "consistency check");
duke@435 1550 res = blk->_ptr;
duke@435 1551 // Note that the BOT is up-to-date for the linAB before allocation. It
duke@435 1552 // indicates the start of the linAB. The split_block() updates the
duke@435 1553 // BOT for the linAB after the allocation (indicates the start of the
duke@435 1554 // next chunk to be allocated).
duke@435 1555 size_t blk_size = blk->_word_size;
duke@435 1556 blk->_word_size -= size;
duke@435 1557 blk->_ptr += size;
jmasa@3732 1558 split_birth(size);
duke@435 1559 repairLinearAllocBlock(blk);
duke@435 1560 // Update BOT last so that other (parallel) GC threads see a consistent
duke@435 1561 // view of the BOT and free blocks.
duke@435 1562 // Above must occur before BOT is updated below.
ysr@2071 1563 OrderAccess::storestore();
duke@435 1564 _bt.split_block(res, blk_size, size); // adjust block offset table
duke@435 1565 _bt.allocated(res, size);
duke@435 1566 }
duke@435 1567 return res;
duke@435 1568 }
duke@435 1569
duke@435 1570 FreeChunk*
duke@435 1571 CompactibleFreeListSpace::getChunkFromIndexedFreeList(size_t size) {
duke@435 1572 assert_locked();
duke@435 1573 assert(size < SmallForDictionary, "just checking");
duke@435 1574 FreeChunk* res;
jmasa@3732 1575 res = _indexedFreeList[size].get_chunk_at_head();
duke@435 1576 if (res == NULL) {
duke@435 1577 res = getChunkFromIndexedFreeListHelper(size);
duke@435 1578 }
duke@435 1579 _bt.verify_not_unallocated((HeapWord*) res, size);
ysr@1580 1580 assert(res == NULL || res->size() == size, "Incorrect block size");
duke@435 1581 return res;
duke@435 1582 }
duke@435 1583
duke@435 1584 FreeChunk*
ysr@1580 1585 CompactibleFreeListSpace::getChunkFromIndexedFreeListHelper(size_t size,
ysr@1580 1586 bool replenish) {
duke@435 1587 assert_locked();
duke@435 1588 FreeChunk* fc = NULL;
duke@435 1589 if (size < SmallForDictionary) {
duke@435 1590 assert(_indexedFreeList[size].head() == NULL ||
duke@435 1591 _indexedFreeList[size].surplus() <= 0,
duke@435 1592 "List for this size should be empty or under populated");
duke@435 1593 // Try best fit in exact lists before replenishing the list
duke@435 1594 if (!bestFitFirst() || (fc = bestFitSmall(size)) == NULL) {
duke@435 1595 // Replenish list.
duke@435 1596 //
duke@435 1597 // Things tried that failed.
duke@435 1598 // Tried allocating out of the two LinAB's first before
duke@435 1599 // replenishing lists.
duke@435 1600 // Tried small linAB of size 256 (size in indexed list)
duke@435 1601 // and replenishing indexed lists from the small linAB.
duke@435 1602 //
duke@435 1603 FreeChunk* newFc = NULL;
ysr@1580 1604 const size_t replenish_size = CMSIndexedFreeListReplenish * size;
duke@435 1605 if (replenish_size < SmallForDictionary) {
duke@435 1606 // Do not replenish from an underpopulated size.
duke@435 1607 if (_indexedFreeList[replenish_size].surplus() > 0 &&
duke@435 1608 _indexedFreeList[replenish_size].head() != NULL) {
jmasa@3732 1609 newFc = _indexedFreeList[replenish_size].get_chunk_at_head();
ysr@1580 1610 } else if (bestFitFirst()) {
duke@435 1611 newFc = bestFitSmall(replenish_size);
duke@435 1612 }
duke@435 1613 }
ysr@1580 1614 if (newFc == NULL && replenish_size > size) {
ysr@1580 1615 assert(CMSIndexedFreeListReplenish > 1, "ctl pt invariant");
ysr@1580 1616 newFc = getChunkFromIndexedFreeListHelper(replenish_size, false);
ysr@1580 1617 }
ysr@1580 1618 // Note: The stats update re split-death of block obtained above
ysr@1580 1619 // will be recorded below precisely when we know we are going to
ysr@1580 1620 // be actually splitting it into more than one pieces below.
duke@435 1621 if (newFc != NULL) {
ysr@1580 1622 if (replenish || CMSReplenishIntermediate) {
ysr@1580 1623 // Replenish this list and return one block to caller.
ysr@1580 1624 size_t i;
ysr@1580 1625 FreeChunk *curFc, *nextFc;
ysr@1580 1626 size_t num_blk = newFc->size() / size;
ysr@1580 1627 assert(num_blk >= 1, "Smaller than requested?");
ysr@1580 1628 assert(newFc->size() % size == 0, "Should be integral multiple of request");
ysr@1580 1629 if (num_blk > 1) {
ysr@1580 1630 // we are sure we will be splitting the block just obtained
ysr@1580 1631 // into multiple pieces; record the split-death of the original
ysr@1580 1632 splitDeath(replenish_size);
ysr@1580 1633 }
ysr@1580 1634 // carve up and link blocks 0, ..., num_blk - 2
ysr@1580 1635 // The last chunk is not added to the lists but is returned as the
ysr@1580 1636 // free chunk.
ysr@1580 1637 for (curFc = newFc, nextFc = (FreeChunk*)((HeapWord*)curFc + size),
ysr@1580 1638 i = 0;
ysr@1580 1639 i < (num_blk - 1);
ysr@1580 1640 curFc = nextFc, nextFc = (FreeChunk*)((HeapWord*)nextFc + size),
ysr@1580 1641 i++) {
jmasa@3732 1642 curFc->set_size(size);
ysr@1580 1643 // Don't record this as a return in order to try and
ysr@1580 1644 // determine the "returns" from a GC.
ysr@1580 1645 _bt.verify_not_unallocated((HeapWord*) fc, size);
jmasa@3732 1646 _indexedFreeList[size].return_chunk_at_tail(curFc, false);
ysr@1580 1647 _bt.mark_block((HeapWord*)curFc, size);
jmasa@3732 1648 split_birth(size);
ysr@1580 1649 // Don't record the initial population of the indexed list
ysr@1580 1650 // as a split birth.
ysr@1580 1651 }
ysr@1580 1652
ysr@1580 1653 // check that the arithmetic was OK above
ysr@1580 1654 assert((HeapWord*)nextFc == (HeapWord*)newFc + num_blk*size,
ysr@1580 1655 "inconsistency in carving newFc");
jmasa@3732 1656 curFc->set_size(size);
duke@435 1657 _bt.mark_block((HeapWord*)curFc, size);
jmasa@3732 1658 split_birth(size);
ysr@1580 1659 fc = curFc;
ysr@1580 1660 } else {
ysr@1580 1661 // Return entire block to caller
ysr@1580 1662 fc = newFc;
duke@435 1663 }
duke@435 1664 }
duke@435 1665 }
duke@435 1666 } else {
duke@435 1667 // Get a free chunk from the free chunk dictionary to be returned to
duke@435 1668 // replenish the indexed free list.
duke@435 1669 fc = getChunkFromDictionaryExact(size);
duke@435 1670 }
jmasa@3732 1671 // assert(fc == NULL || fc->is_free(), "Should be returning a free chunk");
duke@435 1672 return fc;
duke@435 1673 }
duke@435 1674
duke@435 1675 FreeChunk*
duke@435 1676 CompactibleFreeListSpace::getChunkFromDictionary(size_t size) {
duke@435 1677 assert_locked();
jmasa@4488 1678 FreeChunk* fc = _dictionary->get_chunk(size,
jmasa@4488 1679 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 1680 if (fc == NULL) {
duke@435 1681 return NULL;
duke@435 1682 }
duke@435 1683 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1684 if (fc->size() >= size + MinChunkSize) {
duke@435 1685 fc = splitChunkAndReturnRemainder(fc, size);
duke@435 1686 }
duke@435 1687 assert(fc->size() >= size, "chunk too small");
duke@435 1688 assert(fc->size() < size + MinChunkSize, "chunk too big");
duke@435 1689 _bt.verify_single_block((HeapWord*)fc, fc->size());
duke@435 1690 return fc;
duke@435 1691 }
duke@435 1692
duke@435 1693 FreeChunk*
duke@435 1694 CompactibleFreeListSpace::getChunkFromDictionaryExact(size_t size) {
duke@435 1695 assert_locked();
jmasa@4488 1696 FreeChunk* fc = _dictionary->get_chunk(size,
jmasa@4488 1697 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 1698 if (fc == NULL) {
duke@435 1699 return fc;
duke@435 1700 }
duke@435 1701 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1702 if (fc->size() == size) {
duke@435 1703 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1704 return fc;
duke@435 1705 }
jmasa@3732 1706 assert(fc->size() > size, "get_chunk() guarantee");
duke@435 1707 if (fc->size() < size + MinChunkSize) {
duke@435 1708 // Return the chunk to the dictionary and go get a bigger one.
duke@435 1709 returnChunkToDictionary(fc);
jmasa@4488 1710 fc = _dictionary->get_chunk(size + MinChunkSize,
jmasa@4488 1711 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 1712 if (fc == NULL) {
duke@435 1713 return NULL;
duke@435 1714 }
duke@435 1715 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1716 }
duke@435 1717 assert(fc->size() >= size + MinChunkSize, "tautology");
duke@435 1718 fc = splitChunkAndReturnRemainder(fc, size);
duke@435 1719 assert(fc->size() == size, "chunk is wrong size");
duke@435 1720 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1721 return fc;
duke@435 1722 }
duke@435 1723
duke@435 1724 void
duke@435 1725 CompactibleFreeListSpace::returnChunkToDictionary(FreeChunk* chunk) {
duke@435 1726 assert_locked();
duke@435 1727
duke@435 1728 size_t size = chunk->size();
duke@435 1729 _bt.verify_single_block((HeapWord*)chunk, size);
duke@435 1730 // adjust _unallocated_block downward, as necessary
duke@435 1731 _bt.freed((HeapWord*)chunk, size);
jmasa@3732 1732 _dictionary->return_chunk(chunk);
ysr@1580 1733 #ifndef PRODUCT
ysr@1580 1734 if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
goetz@6337 1735 TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >* tc = TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::as_TreeChunk(chunk);
goetz@6337 1736 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* tl = tc->list();
jmasa@4196 1737 tl->verify_stats();
ysr@1580 1738 }
ysr@1580 1739 #endif // PRODUCT
duke@435 1740 }
duke@435 1741
duke@435 1742 void
duke@435 1743 CompactibleFreeListSpace::returnChunkToFreeList(FreeChunk* fc) {
duke@435 1744 assert_locked();
duke@435 1745 size_t size = fc->size();
duke@435 1746 _bt.verify_single_block((HeapWord*) fc, size);
duke@435 1747 _bt.verify_not_unallocated((HeapWord*) fc, size);
duke@435 1748 if (_adaptive_freelists) {
jmasa@3732 1749 _indexedFreeList[size].return_chunk_at_tail(fc);
duke@435 1750 } else {
jmasa@3732 1751 _indexedFreeList[size].return_chunk_at_head(fc);
duke@435 1752 }
ysr@1580 1753 #ifndef PRODUCT
ysr@1580 1754 if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
ysr@1580 1755 _indexedFreeList[size].verify_stats();
ysr@1580 1756 }
ysr@1580 1757 #endif // PRODUCT
duke@435 1758 }
duke@435 1759
duke@435 1760 // Add chunk to end of last block -- if it's the largest
duke@435 1761 // block -- and update BOT and census data. We would
duke@435 1762 // of course have preferred to coalesce it with the
duke@435 1763 // last block, but it's currently less expensive to find the
duke@435 1764 // largest block than it is to find the last.
duke@435 1765 void
duke@435 1766 CompactibleFreeListSpace::addChunkToFreeListsAtEndRecordingStats(
duke@435 1767 HeapWord* chunk, size_t size) {
duke@435 1768 // check that the chunk does lie in this space!
duke@435 1769 assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!");
duke@435 1770 // One of the parallel gc task threads may be here
duke@435 1771 // whilst others are allocating.
duke@435 1772 Mutex* lock = NULL;
duke@435 1773 if (ParallelGCThreads != 0) {
duke@435 1774 lock = &_parDictionaryAllocLock;
duke@435 1775 }
duke@435 1776 FreeChunk* ec;
duke@435 1777 {
duke@435 1778 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
jmasa@3732 1779 ec = dictionary()->find_largest_dict(); // get largest block
jmasa@4196 1780 if (ec != NULL && ec->end() == (uintptr_t*) chunk) {
duke@435 1781 // It's a coterminal block - we can coalesce.
duke@435 1782 size_t old_size = ec->size();
duke@435 1783 coalDeath(old_size);
duke@435 1784 removeChunkFromDictionary(ec);
duke@435 1785 size += old_size;
duke@435 1786 } else {
duke@435 1787 ec = (FreeChunk*)chunk;
duke@435 1788 }
duke@435 1789 }
jmasa@3732 1790 ec->set_size(size);
duke@435 1791 debug_only(ec->mangleFreed(size));
brutisso@5166 1792 if (size < SmallForDictionary && ParallelGCThreads != 0) {
duke@435 1793 lock = _indexedFreeListParLocks[size];
duke@435 1794 }
duke@435 1795 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
duke@435 1796 addChunkAndRepairOffsetTable((HeapWord*)ec, size, true);
duke@435 1797 // record the birth under the lock since the recording involves
duke@435 1798 // manipulation of the list on which the chunk lives and
duke@435 1799 // if the chunk is allocated and is the last on the list,
duke@435 1800 // the list can go away.
duke@435 1801 coalBirth(size);
duke@435 1802 }
duke@435 1803
duke@435 1804 void
duke@435 1805 CompactibleFreeListSpace::addChunkToFreeLists(HeapWord* chunk,
duke@435 1806 size_t size) {
duke@435 1807 // check that the chunk does lie in this space!
duke@435 1808 assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!");
duke@435 1809 assert_locked();
duke@435 1810 _bt.verify_single_block(chunk, size);
duke@435 1811
duke@435 1812 FreeChunk* fc = (FreeChunk*) chunk;
jmasa@3732 1813 fc->set_size(size);
duke@435 1814 debug_only(fc->mangleFreed(size));
duke@435 1815 if (size < SmallForDictionary) {
duke@435 1816 returnChunkToFreeList(fc);
duke@435 1817 } else {
duke@435 1818 returnChunkToDictionary(fc);
duke@435 1819 }
duke@435 1820 }
duke@435 1821
duke@435 1822 void
duke@435 1823 CompactibleFreeListSpace::addChunkAndRepairOffsetTable(HeapWord* chunk,
duke@435 1824 size_t size, bool coalesced) {
duke@435 1825 assert_locked();
duke@435 1826 assert(chunk != NULL, "null chunk");
duke@435 1827 if (coalesced) {
duke@435 1828 // repair BOT
duke@435 1829 _bt.single_block(chunk, size);
duke@435 1830 }
duke@435 1831 addChunkToFreeLists(chunk, size);
duke@435 1832 }
duke@435 1833
duke@435 1834 // We _must_ find the purported chunk on our free lists;
duke@435 1835 // we assert if we don't.
duke@435 1836 void
duke@435 1837 CompactibleFreeListSpace::removeFreeChunkFromFreeLists(FreeChunk* fc) {
duke@435 1838 size_t size = fc->size();
duke@435 1839 assert_locked();
duke@435 1840 debug_only(verifyFreeLists());
duke@435 1841 if (size < SmallForDictionary) {
duke@435 1842 removeChunkFromIndexedFreeList(fc);
duke@435 1843 } else {
duke@435 1844 removeChunkFromDictionary(fc);
duke@435 1845 }
duke@435 1846 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1847 debug_only(verifyFreeLists());
duke@435 1848 }
duke@435 1849
duke@435 1850 void
duke@435 1851 CompactibleFreeListSpace::removeChunkFromDictionary(FreeChunk* fc) {
duke@435 1852 size_t size = fc->size();
duke@435 1853 assert_locked();
duke@435 1854 assert(fc != NULL, "null chunk");
duke@435 1855 _bt.verify_single_block((HeapWord*)fc, size);
jmasa@3732 1856 _dictionary->remove_chunk(fc);
duke@435 1857 // adjust _unallocated_block upward, as necessary
duke@435 1858 _bt.allocated((HeapWord*)fc, size);
duke@435 1859 }
duke@435 1860
duke@435 1861 void
duke@435 1862 CompactibleFreeListSpace::removeChunkFromIndexedFreeList(FreeChunk* fc) {
duke@435 1863 assert_locked();
duke@435 1864 size_t size = fc->size();
duke@435 1865 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1866 NOT_PRODUCT(
duke@435 1867 if (FLSVerifyIndexTable) {
duke@435 1868 verifyIndexedFreeList(size);
duke@435 1869 }
duke@435 1870 )
jmasa@3732 1871 _indexedFreeList[size].remove_chunk(fc);
duke@435 1872 NOT_PRODUCT(
duke@435 1873 if (FLSVerifyIndexTable) {
duke@435 1874 verifyIndexedFreeList(size);
duke@435 1875 }
duke@435 1876 )
duke@435 1877 }
duke@435 1878
duke@435 1879 FreeChunk* CompactibleFreeListSpace::bestFitSmall(size_t numWords) {
duke@435 1880 /* A hint is the next larger size that has a surplus.
duke@435 1881 Start search at a size large enough to guarantee that
duke@435 1882 the excess is >= MIN_CHUNK. */
duke@435 1883 size_t start = align_object_size(numWords + MinChunkSize);
duke@435 1884 if (start < IndexSetSize) {
jmasa@4196 1885 AdaptiveFreeList<FreeChunk>* it = _indexedFreeList;
duke@435 1886 size_t hint = _indexedFreeList[start].hint();
duke@435 1887 while (hint < IndexSetSize) {
duke@435 1888 assert(hint % MinObjAlignment == 0, "hint should be aligned");
jmasa@4196 1889 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[hint];
duke@435 1890 if (fl->surplus() > 0 && fl->head() != NULL) {
duke@435 1891 // Found a list with surplus, reset original hint
duke@435 1892 // and split out a free chunk which is returned.
duke@435 1893 _indexedFreeList[start].set_hint(hint);
duke@435 1894 FreeChunk* res = getFromListGreater(fl, numWords);
jmasa@3732 1895 assert(res == NULL || res->is_free(),
duke@435 1896 "Should be returning a free chunk");
duke@435 1897 return res;
duke@435 1898 }
duke@435 1899 hint = fl->hint(); /* keep looking */
duke@435 1900 }
duke@435 1901 /* None found. */
duke@435 1902 it[start].set_hint(IndexSetSize);
duke@435 1903 }
duke@435 1904 return NULL;
duke@435 1905 }
duke@435 1906
duke@435 1907 /* Requires fl->size >= numWords + MinChunkSize */
jmasa@4196 1908 FreeChunk* CompactibleFreeListSpace::getFromListGreater(AdaptiveFreeList<FreeChunk>* fl,
duke@435 1909 size_t numWords) {
duke@435 1910 FreeChunk *curr = fl->head();
duke@435 1911 size_t oldNumWords = curr->size();
duke@435 1912 assert(numWords >= MinChunkSize, "Word size is too small");
duke@435 1913 assert(curr != NULL, "List is empty");
duke@435 1914 assert(oldNumWords >= numWords + MinChunkSize,
duke@435 1915 "Size of chunks in the list is too small");
duke@435 1916
jmasa@3732 1917 fl->remove_chunk(curr);
duke@435 1918 // recorded indirectly by splitChunkAndReturnRemainder -
duke@435 1919 // smallSplit(oldNumWords, numWords);
duke@435 1920 FreeChunk* new_chunk = splitChunkAndReturnRemainder(curr, numWords);
duke@435 1921 // Does anything have to be done for the remainder in terms of
duke@435 1922 // fixing the card table?
jmasa@3732 1923 assert(new_chunk == NULL || new_chunk->is_free(),
duke@435 1924 "Should be returning a free chunk");
duke@435 1925 return new_chunk;
duke@435 1926 }
duke@435 1927
duke@435 1928 FreeChunk*
duke@435 1929 CompactibleFreeListSpace::splitChunkAndReturnRemainder(FreeChunk* chunk,
duke@435 1930 size_t new_size) {
duke@435 1931 assert_locked();
duke@435 1932 size_t size = chunk->size();
duke@435 1933 assert(size > new_size, "Split from a smaller block?");
duke@435 1934 assert(is_aligned(chunk), "alignment problem");
duke@435 1935 assert(size == adjustObjectSize(size), "alignment problem");
duke@435 1936 size_t rem_size = size - new_size;
duke@435 1937 assert(rem_size == adjustObjectSize(rem_size), "alignment problem");
duke@435 1938 assert(rem_size >= MinChunkSize, "Free chunk smaller than minimum");
duke@435 1939 FreeChunk* ffc = (FreeChunk*)((HeapWord*)chunk + new_size);
duke@435 1940 assert(is_aligned(ffc), "alignment problem");
jmasa@3732 1941 ffc->set_size(rem_size);
jmasa@3732 1942 ffc->link_next(NULL);
jmasa@3732 1943 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
duke@435 1944 // Above must occur before BOT is updated below.
duke@435 1945 // adjust block offset table
ysr@2071 1946 OrderAccess::storestore();
jmasa@3732 1947 assert(chunk->is_free() && ffc->is_free(), "Error");
duke@435 1948 _bt.split_block((HeapWord*)chunk, chunk->size(), new_size);
duke@435 1949 if (rem_size < SmallForDictionary) {
duke@435 1950 bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
duke@435 1951 if (is_par) _indexedFreeListParLocks[rem_size]->lock();
jmasa@3294 1952 assert(!is_par ||
jmasa@3294 1953 (SharedHeap::heap()->n_par_threads() ==
jmasa@3294 1954 SharedHeap::heap()->workers()->active_workers()), "Mismatch");
duke@435 1955 returnChunkToFreeList(ffc);
duke@435 1956 split(size, rem_size);
duke@435 1957 if (is_par) _indexedFreeListParLocks[rem_size]->unlock();
duke@435 1958 } else {
duke@435 1959 returnChunkToDictionary(ffc);
duke@435 1960 split(size ,rem_size);
duke@435 1961 }
jmasa@3732 1962 chunk->set_size(new_size);
duke@435 1963 return chunk;
duke@435 1964 }
duke@435 1965
duke@435 1966 void
duke@435 1967 CompactibleFreeListSpace::sweep_completed() {
duke@435 1968 // Now that space is probably plentiful, refill linear
duke@435 1969 // allocation blocks as needed.
duke@435 1970 refillLinearAllocBlocksIfNeeded();
duke@435 1971 }
duke@435 1972
duke@435 1973 void
duke@435 1974 CompactibleFreeListSpace::gc_prologue() {
duke@435 1975 assert_locked();
duke@435 1976 if (PrintFLSStatistics != 0) {
duke@435 1977 gclog_or_tty->print("Before GC:\n");
duke@435 1978 reportFreeListStatistics();
duke@435 1979 }
duke@435 1980 refillLinearAllocBlocksIfNeeded();
duke@435 1981 }
duke@435 1982
duke@435 1983 void
duke@435 1984 CompactibleFreeListSpace::gc_epilogue() {
duke@435 1985 assert_locked();
duke@435 1986 if (PrintGCDetails && Verbose && !_adaptive_freelists) {
duke@435 1987 if (_smallLinearAllocBlock._word_size == 0)
duke@435 1988 warning("CompactibleFreeListSpace(epilogue):: Linear allocation failure");
duke@435 1989 }
duke@435 1990 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
duke@435 1991 _promoInfo.stopTrackingPromotions();
duke@435 1992 repairLinearAllocationBlocks();
duke@435 1993 // Print Space's stats
duke@435 1994 if (PrintFLSStatistics != 0) {
duke@435 1995 gclog_or_tty->print("After GC:\n");
duke@435 1996 reportFreeListStatistics();
duke@435 1997 }
duke@435 1998 }
duke@435 1999
duke@435 2000 // Iteration support, mostly delegated from a CMS generation
duke@435 2001
duke@435 2002 void CompactibleFreeListSpace::save_marks() {
ysr@2825 2003 assert(Thread::current()->is_VM_thread(),
ysr@2825 2004 "Global variable should only be set when single-threaded");
ysr@2825 2005 // Mark the "end" of the used space at the time of this call;
duke@435 2006 // note, however, that promoted objects from this point
duke@435 2007 // on are tracked in the _promoInfo below.
ysr@2071 2008 set_saved_mark_word(unallocated_block());
ysr@2825 2009 #ifdef ASSERT
ysr@2825 2010 // Check the sanity of save_marks() etc.
ysr@2825 2011 MemRegion ur = used_region();
ysr@2825 2012 MemRegion urasm = used_region_at_save_marks();
ysr@2825 2013 assert(ur.contains(urasm),
ysr@2825 2014 err_msg(" Error at save_marks(): [" PTR_FORMAT "," PTR_FORMAT ")"
ysr@2825 2015 " should contain [" PTR_FORMAT "," PTR_FORMAT ")",
drchase@6680 2016 p2i(ur.start()), p2i(ur.end()), p2i(urasm.start()), p2i(urasm.end())));
ysr@2825 2017 #endif
duke@435 2018 // inform allocator that promotions should be tracked.
duke@435 2019 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
duke@435 2020 _promoInfo.startTrackingPromotions();
duke@435 2021 }
duke@435 2022
duke@435 2023 bool CompactibleFreeListSpace::no_allocs_since_save_marks() {
duke@435 2024 assert(_promoInfo.tracking(), "No preceding save_marks?");
ysr@2132 2025 assert(SharedHeap::heap()->n_par_threads() == 0,
ysr@2132 2026 "Shouldn't be called if using parallel gc.");
duke@435 2027 return _promoInfo.noPromotions();
duke@435 2028 }
duke@435 2029
duke@435 2030 #define CFLS_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 2031 \
duke@435 2032 void CompactibleFreeListSpace:: \
duke@435 2033 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \
duke@435 2034 assert(SharedHeap::heap()->n_par_threads() == 0, \
duke@435 2035 "Shouldn't be called (yet) during parallel part of gc."); \
duke@435 2036 _promoInfo.promoted_oops_iterate##nv_suffix(blk); \
duke@435 2037 /* \
duke@435 2038 * This also restores any displaced headers and removes the elements from \
duke@435 2039 * the iteration set as they are processed, so that we have a clean slate \
duke@435 2040 * at the end of the iteration. Note, thus, that if new objects are \
duke@435 2041 * promoted as a result of the iteration they are iterated over as well. \
duke@435 2042 */ \
duke@435 2043 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency"); \
duke@435 2044 }
duke@435 2045
duke@435 2046 ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DEFN)
duke@435 2047
ysr@447 2048 bool CompactibleFreeListSpace::linearAllocationWouldFail() const {
duke@435 2049 return _smallLinearAllocBlock._word_size == 0;
duke@435 2050 }
duke@435 2051
duke@435 2052 void CompactibleFreeListSpace::repairLinearAllocationBlocks() {
duke@435 2053 // Fix up linear allocation blocks to look like free blocks
duke@435 2054 repairLinearAllocBlock(&_smallLinearAllocBlock);
duke@435 2055 }
duke@435 2056
duke@435 2057 void CompactibleFreeListSpace::repairLinearAllocBlock(LinearAllocBlock* blk) {
duke@435 2058 assert_locked();
duke@435 2059 if (blk->_ptr != NULL) {
duke@435 2060 assert(blk->_word_size != 0 && blk->_word_size >= MinChunkSize,
duke@435 2061 "Minimum block size requirement");
duke@435 2062 FreeChunk* fc = (FreeChunk*)(blk->_ptr);
jmasa@3732 2063 fc->set_size(blk->_word_size);
jmasa@3732 2064 fc->link_prev(NULL); // mark as free
duke@435 2065 fc->dontCoalesce();
jmasa@3732 2066 assert(fc->is_free(), "just marked it free");
duke@435 2067 assert(fc->cantCoalesce(), "just marked it uncoalescable");
duke@435 2068 }
duke@435 2069 }
duke@435 2070
duke@435 2071 void CompactibleFreeListSpace::refillLinearAllocBlocksIfNeeded() {
duke@435 2072 assert_locked();
duke@435 2073 if (_smallLinearAllocBlock._ptr == NULL) {
duke@435 2074 assert(_smallLinearAllocBlock._word_size == 0,
duke@435 2075 "Size of linAB should be zero if the ptr is NULL");
duke@435 2076 // Reset the linAB refill and allocation size limit.
duke@435 2077 _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc, SmallForLinearAlloc);
duke@435 2078 }
duke@435 2079 refillLinearAllocBlockIfNeeded(&_smallLinearAllocBlock);
duke@435 2080 }
duke@435 2081
duke@435 2082 void
duke@435 2083 CompactibleFreeListSpace::refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk) {
duke@435 2084 assert_locked();
duke@435 2085 assert((blk->_ptr == NULL && blk->_word_size == 0) ||
duke@435 2086 (blk->_ptr != NULL && blk->_word_size >= MinChunkSize),
duke@435 2087 "blk invariant");
duke@435 2088 if (blk->_ptr == NULL) {
duke@435 2089 refillLinearAllocBlock(blk);
duke@435 2090 }
duke@435 2091 if (PrintMiscellaneous && Verbose) {
duke@435 2092 if (blk->_word_size == 0) {
duke@435 2093 warning("CompactibleFreeListSpace(prologue):: Linear allocation failure");
duke@435 2094 }
duke@435 2095 }
duke@435 2096 }
duke@435 2097
duke@435 2098 void
duke@435 2099 CompactibleFreeListSpace::refillLinearAllocBlock(LinearAllocBlock* blk) {
duke@435 2100 assert_locked();
duke@435 2101 assert(blk->_word_size == 0 && blk->_ptr == NULL,
duke@435 2102 "linear allocation block should be empty");
duke@435 2103 FreeChunk* fc;
duke@435 2104 if (blk->_refillSize < SmallForDictionary &&
duke@435 2105 (fc = getChunkFromIndexedFreeList(blk->_refillSize)) != NULL) {
duke@435 2106 // A linAB's strategy might be to use small sizes to reduce
duke@435 2107 // fragmentation but still get the benefits of allocation from a
duke@435 2108 // linAB.
duke@435 2109 } else {
duke@435 2110 fc = getChunkFromDictionary(blk->_refillSize);
duke@435 2111 }
duke@435 2112 if (fc != NULL) {
duke@435 2113 blk->_ptr = (HeapWord*)fc;
duke@435 2114 blk->_word_size = fc->size();
duke@435 2115 fc->dontCoalesce(); // to prevent sweeper from sweeping us up
duke@435 2116 }
duke@435 2117 }
duke@435 2118
ysr@447 2119 // Support for concurrent collection policy decisions.
ysr@447 2120 bool CompactibleFreeListSpace::should_concurrent_collect() const {
ysr@447 2121 // In the future we might want to add in frgamentation stats --
ysr@447 2122 // including erosion of the "mountain" into this decision as well.
ysr@447 2123 return !adaptive_freelists() && linearAllocationWouldFail();
ysr@447 2124 }
ysr@447 2125
duke@435 2126 // Support for compaction
duke@435 2127
duke@435 2128 void CompactibleFreeListSpace::prepare_for_compaction(CompactPoint* cp) {
duke@435 2129 SCAN_AND_FORWARD(cp,end,block_is_obj,block_size);
duke@435 2130 // prepare_for_compaction() uses the space between live objects
duke@435 2131 // so that later phase can skip dead space quickly. So verification
duke@435 2132 // of the free lists doesn't work after.
duke@435 2133 }
duke@435 2134
duke@435 2135 #define obj_size(q) adjustObjectSize(oop(q)->size())
duke@435 2136 #define adjust_obj_size(s) adjustObjectSize(s)
duke@435 2137
duke@435 2138 void CompactibleFreeListSpace::adjust_pointers() {
duke@435 2139 // In other versions of adjust_pointers(), a bail out
duke@435 2140 // based on the amount of live data in the generation
duke@435 2141 // (i.e., if 0, bail out) may be used.
duke@435 2142 // Cannot test used() == 0 here because the free lists have already
duke@435 2143 // been mangled by the compaction.
duke@435 2144
duke@435 2145 SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
duke@435 2146 // See note about verification in prepare_for_compaction().
duke@435 2147 }
duke@435 2148
duke@435 2149 void CompactibleFreeListSpace::compact() {
duke@435 2150 SCAN_AND_COMPACT(obj_size);
duke@435 2151 }
duke@435 2152
duke@435 2153 // fragmentation_metric = 1 - [sum of (fbs**2) / (sum of fbs)**2]
duke@435 2154 // where fbs is free block sizes
duke@435 2155 double CompactibleFreeListSpace::flsFrag() const {
duke@435 2156 size_t itabFree = totalSizeInIndexedFreeLists();
duke@435 2157 double frag = 0.0;
duke@435 2158 size_t i;
duke@435 2159
duke@435 2160 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 2161 double sz = i;
duke@435 2162 frag += _indexedFreeList[i].count() * (sz * sz);
duke@435 2163 }
duke@435 2164
duke@435 2165 double totFree = itabFree +
jmasa@3732 2166 _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
duke@435 2167 if (totFree > 0) {
duke@435 2168 frag = ((frag + _dictionary->sum_of_squared_block_sizes()) /
duke@435 2169 (totFree * totFree));
duke@435 2170 frag = (double)1.0 - frag;
duke@435 2171 } else {
duke@435 2172 assert(frag == 0.0, "Follows from totFree == 0");
duke@435 2173 }
duke@435 2174 return frag;
duke@435 2175 }
duke@435 2176
duke@435 2177 void CompactibleFreeListSpace::beginSweepFLCensus(
duke@435 2178 float inter_sweep_current,
ysr@1580 2179 float inter_sweep_estimate,
ysr@1580 2180 float intra_sweep_estimate) {
duke@435 2181 assert_locked();
duke@435 2182 size_t i;
duke@435 2183 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2184 AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[i];
ysr@1580 2185 if (PrintFLSStatistics > 1) {
drchase@6680 2186 gclog_or_tty->print("size[" SIZE_FORMAT "] : ", i);
ysr@1580 2187 }
ysr@1580 2188 fl->compute_desired(inter_sweep_current, inter_sweep_estimate, intra_sweep_estimate);
jmasa@3732 2189 fl->set_coal_desired((ssize_t)((double)fl->desired() * CMSSmallCoalSurplusPercent));
jmasa@3732 2190 fl->set_before_sweep(fl->count());
jmasa@3732 2191 fl->set_bfr_surp(fl->surplus());
duke@435 2192 }
jmasa@3732 2193 _dictionary->begin_sweep_dict_census(CMSLargeCoalSurplusPercent,
duke@435 2194 inter_sweep_current,
ysr@1580 2195 inter_sweep_estimate,
ysr@1580 2196 intra_sweep_estimate);
duke@435 2197 }
duke@435 2198
duke@435 2199 void CompactibleFreeListSpace::setFLSurplus() {
duke@435 2200 assert_locked();
duke@435 2201 size_t i;
duke@435 2202 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2203 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
duke@435 2204 fl->set_surplus(fl->count() -
ysr@1580 2205 (ssize_t)((double)fl->desired() * CMSSmallSplitSurplusPercent));
duke@435 2206 }
duke@435 2207 }
duke@435 2208
duke@435 2209 void CompactibleFreeListSpace::setFLHints() {
duke@435 2210 assert_locked();
duke@435 2211 size_t i;
duke@435 2212 size_t h = IndexSetSize;
duke@435 2213 for (i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
jmasa@4196 2214 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
duke@435 2215 fl->set_hint(h);
duke@435 2216 if (fl->surplus() > 0) {
duke@435 2217 h = i;
duke@435 2218 }
duke@435 2219 }
duke@435 2220 }
duke@435 2221
duke@435 2222 void CompactibleFreeListSpace::clearFLCensus() {
duke@435 2223 assert_locked();
ysr@3264 2224 size_t i;
duke@435 2225 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2226 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
jmasa@3732 2227 fl->set_prev_sweep(fl->count());
jmasa@3732 2228 fl->set_coal_births(0);
jmasa@3732 2229 fl->set_coal_deaths(0);
jmasa@3732 2230 fl->set_split_births(0);
jmasa@3732 2231 fl->set_split_deaths(0);
duke@435 2232 }
duke@435 2233 }
duke@435 2234
ysr@447 2235 void CompactibleFreeListSpace::endSweepFLCensus(size_t sweep_count) {
ysr@1580 2236 if (PrintFLSStatistics > 0) {
jmasa@3732 2237 HeapWord* largestAddr = (HeapWord*) dictionary()->find_largest_dict();
ysr@1580 2238 gclog_or_tty->print_cr("CMS: Large block " PTR_FORMAT,
drchase@6680 2239 p2i(largestAddr));
ysr@1580 2240 }
duke@435 2241 setFLSurplus();
duke@435 2242 setFLHints();
duke@435 2243 if (PrintGC && PrintFLSCensus > 0) {
ysr@447 2244 printFLCensus(sweep_count);
duke@435 2245 }
duke@435 2246 clearFLCensus();
duke@435 2247 assert_locked();
jmasa@3732 2248 _dictionary->end_sweep_dict_census(CMSLargeSplitSurplusPercent);
duke@435 2249 }
duke@435 2250
duke@435 2251 bool CompactibleFreeListSpace::coalOverPopulated(size_t size) {
duke@435 2252 if (size < SmallForDictionary) {
jmasa@4196 2253 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2254 return (fl->coal_desired() < 0) ||
jmasa@3732 2255 ((int)fl->count() > fl->coal_desired());
duke@435 2256 } else {
jmasa@3732 2257 return dictionary()->coal_dict_over_populated(size);
duke@435 2258 }
duke@435 2259 }
duke@435 2260
duke@435 2261 void CompactibleFreeListSpace::smallCoalBirth(size_t size) {
duke@435 2262 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2263 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2264 fl->increment_coal_births();
duke@435 2265 fl->increment_surplus();
duke@435 2266 }
duke@435 2267
duke@435 2268 void CompactibleFreeListSpace::smallCoalDeath(size_t size) {
duke@435 2269 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2270 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2271 fl->increment_coal_deaths();
duke@435 2272 fl->decrement_surplus();
duke@435 2273 }
duke@435 2274
duke@435 2275 void CompactibleFreeListSpace::coalBirth(size_t size) {
duke@435 2276 if (size < SmallForDictionary) {
duke@435 2277 smallCoalBirth(size);
duke@435 2278 } else {
jmasa@4196 2279 dictionary()->dict_census_update(size,
duke@435 2280 false /* split */,
duke@435 2281 true /* birth */);
duke@435 2282 }
duke@435 2283 }
duke@435 2284
duke@435 2285 void CompactibleFreeListSpace::coalDeath(size_t size) {
duke@435 2286 if(size < SmallForDictionary) {
duke@435 2287 smallCoalDeath(size);
duke@435 2288 } else {
jmasa@4196 2289 dictionary()->dict_census_update(size,
duke@435 2290 false /* split */,
duke@435 2291 false /* birth */);
duke@435 2292 }
duke@435 2293 }
duke@435 2294
duke@435 2295 void CompactibleFreeListSpace::smallSplitBirth(size_t size) {
duke@435 2296 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2297 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2298 fl->increment_split_births();
duke@435 2299 fl->increment_surplus();
duke@435 2300 }
duke@435 2301
duke@435 2302 void CompactibleFreeListSpace::smallSplitDeath(size_t size) {
duke@435 2303 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2304 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2305 fl->increment_split_deaths();
duke@435 2306 fl->decrement_surplus();
duke@435 2307 }
duke@435 2308
jmasa@3732 2309 void CompactibleFreeListSpace::split_birth(size_t size) {
duke@435 2310 if (size < SmallForDictionary) {
duke@435 2311 smallSplitBirth(size);
duke@435 2312 } else {
jmasa@4196 2313 dictionary()->dict_census_update(size,
duke@435 2314 true /* split */,
duke@435 2315 true /* birth */);
duke@435 2316 }
duke@435 2317 }
duke@435 2318
duke@435 2319 void CompactibleFreeListSpace::splitDeath(size_t size) {
duke@435 2320 if (size < SmallForDictionary) {
duke@435 2321 smallSplitDeath(size);
duke@435 2322 } else {
jmasa@4196 2323 dictionary()->dict_census_update(size,
duke@435 2324 true /* split */,
duke@435 2325 false /* birth */);
duke@435 2326 }
duke@435 2327 }
duke@435 2328
duke@435 2329 void CompactibleFreeListSpace::split(size_t from, size_t to1) {
duke@435 2330 size_t to2 = from - to1;
duke@435 2331 splitDeath(from);
jmasa@3732 2332 split_birth(to1);
jmasa@3732 2333 split_birth(to2);
duke@435 2334 }
duke@435 2335
duke@435 2336 void CompactibleFreeListSpace::print() const {
ysr@2294 2337 print_on(tty);
duke@435 2338 }
duke@435 2339
duke@435 2340 void CompactibleFreeListSpace::prepare_for_verify() {
duke@435 2341 assert_locked();
duke@435 2342 repairLinearAllocationBlocks();
duke@435 2343 // Verify that the SpoolBlocks look like free blocks of
duke@435 2344 // appropriate sizes... To be done ...
duke@435 2345 }
duke@435 2346
duke@435 2347 class VerifyAllBlksClosure: public BlkClosure {
coleenp@548 2348 private:
duke@435 2349 const CompactibleFreeListSpace* _sp;
duke@435 2350 const MemRegion _span;
ysr@2071 2351 HeapWord* _last_addr;
ysr@2071 2352 size_t _last_size;
ysr@2071 2353 bool _last_was_obj;
ysr@2071 2354 bool _last_was_live;
duke@435 2355
duke@435 2356 public:
duke@435 2357 VerifyAllBlksClosure(const CompactibleFreeListSpace* sp,
ysr@2071 2358 MemRegion span) : _sp(sp), _span(span),
ysr@2071 2359 _last_addr(NULL), _last_size(0),
ysr@2071 2360 _last_was_obj(false), _last_was_live(false) { }
duke@435 2361
coleenp@548 2362 virtual size_t do_blk(HeapWord* addr) {
duke@435 2363 size_t res;
ysr@2071 2364 bool was_obj = false;
ysr@2071 2365 bool was_live = false;
duke@435 2366 if (_sp->block_is_obj(addr)) {
ysr@2071 2367 was_obj = true;
duke@435 2368 oop p = oop(addr);
duke@435 2369 guarantee(p->is_oop(), "Should be an oop");
duke@435 2370 res = _sp->adjustObjectSize(p->size());
duke@435 2371 if (_sp->obj_is_alive(addr)) {
ysr@2071 2372 was_live = true;
duke@435 2373 p->verify();
duke@435 2374 }
duke@435 2375 } else {
duke@435 2376 FreeChunk* fc = (FreeChunk*)addr;
duke@435 2377 res = fc->size();
duke@435 2378 if (FLSVerifyLists && !fc->cantCoalesce()) {
jmasa@3732 2379 guarantee(_sp->verify_chunk_in_free_list(fc),
duke@435 2380 "Chunk should be on a free list");
duke@435 2381 }
duke@435 2382 }
ysr@2071 2383 if (res == 0) {
ysr@2071 2384 gclog_or_tty->print_cr("Livelock: no rank reduction!");
ysr@2071 2385 gclog_or_tty->print_cr(
ysr@2071 2386 " Current: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n"
ysr@2071 2387 " Previous: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n",
drchase@6680 2388 p2i(addr), res, was_obj ?"true":"false", was_live ?"true":"false",
drchase@6680 2389 p2i(_last_addr), _last_size, _last_was_obj?"true":"false", _last_was_live?"true":"false");
ysr@2071 2390 _sp->print_on(gclog_or_tty);
ysr@2071 2391 guarantee(false, "Seppuku!");
ysr@2071 2392 }
ysr@2071 2393 _last_addr = addr;
ysr@2071 2394 _last_size = res;
ysr@2071 2395 _last_was_obj = was_obj;
ysr@2071 2396 _last_was_live = was_live;
duke@435 2397 return res;
duke@435 2398 }
duke@435 2399 };
duke@435 2400
duke@435 2401 class VerifyAllOopsClosure: public OopClosure {
coleenp@548 2402 private:
duke@435 2403 const CMSCollector* _collector;
duke@435 2404 const CompactibleFreeListSpace* _sp;
duke@435 2405 const MemRegion _span;
duke@435 2406 const bool _past_remark;
duke@435 2407 const CMSBitMap* _bit_map;
duke@435 2408
coleenp@548 2409 protected:
coleenp@548 2410 void do_oop(void* p, oop obj) {
coleenp@548 2411 if (_span.contains(obj)) { // the interior oop points into CMS heap
coleenp@548 2412 if (!_span.contains(p)) { // reference from outside CMS heap
coleenp@548 2413 // Should be a valid object; the first disjunct below allows
coleenp@548 2414 // us to sidestep an assertion in block_is_obj() that insists
coleenp@548 2415 // that p be in _sp. Note that several generations (and spaces)
coleenp@548 2416 // are spanned by _span (CMS heap) above.
coleenp@548 2417 guarantee(!_sp->is_in_reserved(obj) ||
coleenp@548 2418 _sp->block_is_obj((HeapWord*)obj),
coleenp@548 2419 "Should be an object");
coleenp@548 2420 guarantee(obj->is_oop(), "Should be an oop");
coleenp@548 2421 obj->verify();
coleenp@548 2422 if (_past_remark) {
coleenp@548 2423 // Remark has been completed, the object should be marked
coleenp@548 2424 _bit_map->isMarked((HeapWord*)obj);
coleenp@548 2425 }
coleenp@548 2426 } else { // reference within CMS heap
coleenp@548 2427 if (_past_remark) {
coleenp@548 2428 // Remark has been completed -- so the referent should have
coleenp@548 2429 // been marked, if referring object is.
coleenp@548 2430 if (_bit_map->isMarked(_collector->block_start(p))) {
coleenp@548 2431 guarantee(_bit_map->isMarked((HeapWord*)obj), "Marking error?");
coleenp@548 2432 }
coleenp@548 2433 }
coleenp@548 2434 }
coleenp@548 2435 } else if (_sp->is_in_reserved(p)) {
coleenp@548 2436 // the reference is from FLS, and points out of FLS
coleenp@548 2437 guarantee(obj->is_oop(), "Should be an oop");
coleenp@548 2438 obj->verify();
coleenp@548 2439 }
coleenp@548 2440 }
coleenp@548 2441
coleenp@548 2442 template <class T> void do_oop_work(T* p) {
coleenp@548 2443 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 2444 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 2445 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 2446 do_oop(p, obj);
coleenp@548 2447 }
coleenp@548 2448 }
coleenp@548 2449
duke@435 2450 public:
duke@435 2451 VerifyAllOopsClosure(const CMSCollector* collector,
duke@435 2452 const CompactibleFreeListSpace* sp, MemRegion span,
duke@435 2453 bool past_remark, CMSBitMap* bit_map) :
coleenp@4037 2454 _collector(collector), _sp(sp), _span(span),
duke@435 2455 _past_remark(past_remark), _bit_map(bit_map) { }
duke@435 2456
coleenp@548 2457 virtual void do_oop(oop* p) { VerifyAllOopsClosure::do_oop_work(p); }
coleenp@548 2458 virtual void do_oop(narrowOop* p) { VerifyAllOopsClosure::do_oop_work(p); }
duke@435 2459 };
duke@435 2460
brutisso@3711 2461 void CompactibleFreeListSpace::verify() const {
duke@435 2462 assert_lock_strong(&_freelistLock);
duke@435 2463 verify_objects_initialized();
duke@435 2464 MemRegion span = _collector->_span;
duke@435 2465 bool past_remark = (_collector->abstract_state() ==
duke@435 2466 CMSCollector::Sweeping);
duke@435 2467
duke@435 2468 ResourceMark rm;
duke@435 2469 HandleMark hm;
duke@435 2470
duke@435 2471 // Check integrity of CFL data structures
duke@435 2472 _promoInfo.verify();
duke@435 2473 _dictionary->verify();
duke@435 2474 if (FLSVerifyIndexTable) {
duke@435 2475 verifyIndexedFreeLists();
duke@435 2476 }
duke@435 2477 // Check integrity of all objects and free blocks in space
duke@435 2478 {
duke@435 2479 VerifyAllBlksClosure cl(this, span);
duke@435 2480 ((CompactibleFreeListSpace*)this)->blk_iterate(&cl); // cast off const
duke@435 2481 }
duke@435 2482 // Check that all references in the heap to FLS
duke@435 2483 // are to valid objects in FLS or that references in
duke@435 2484 // FLS are to valid objects elsewhere in the heap
duke@435 2485 if (FLSVerifyAllHeapReferences)
duke@435 2486 {
duke@435 2487 VerifyAllOopsClosure cl(_collector, this, span, past_remark,
duke@435 2488 _collector->markBitMap());
duke@435 2489 CollectedHeap* ch = Universe::heap();
coleenp@4037 2490
coleenp@4037 2491 // Iterate over all oops in the heap. Uses the _no_header version
coleenp@4037 2492 // since we are not interested in following the klass pointers.
coleenp@4037 2493 ch->oop_iterate_no_header(&cl);
duke@435 2494 }
duke@435 2495
duke@435 2496 if (VerifyObjectStartArray) {
duke@435 2497 // Verify the block offset table
duke@435 2498 _bt.verify();
duke@435 2499 }
duke@435 2500 }
duke@435 2501
duke@435 2502 #ifndef PRODUCT
duke@435 2503 void CompactibleFreeListSpace::verifyFreeLists() const {
duke@435 2504 if (FLSVerifyLists) {
duke@435 2505 _dictionary->verify();
duke@435 2506 verifyIndexedFreeLists();
duke@435 2507 } else {
duke@435 2508 if (FLSVerifyDictionary) {
duke@435 2509 _dictionary->verify();
duke@435 2510 }
duke@435 2511 if (FLSVerifyIndexTable) {
duke@435 2512 verifyIndexedFreeLists();
duke@435 2513 }
duke@435 2514 }
duke@435 2515 }
duke@435 2516 #endif
duke@435 2517
duke@435 2518 void CompactibleFreeListSpace::verifyIndexedFreeLists() const {
duke@435 2519 size_t i = 0;
ysr@3264 2520 for (; i < IndexSetStart; i++) {
duke@435 2521 guarantee(_indexedFreeList[i].head() == NULL, "should be NULL");
duke@435 2522 }
duke@435 2523 for (; i < IndexSetSize; i++) {
duke@435 2524 verifyIndexedFreeList(i);
duke@435 2525 }
duke@435 2526 }
duke@435 2527
duke@435 2528 void CompactibleFreeListSpace::verifyIndexedFreeList(size_t size) const {
ysr@1580 2529 FreeChunk* fc = _indexedFreeList[size].head();
ysr@1580 2530 FreeChunk* tail = _indexedFreeList[size].tail();
ysr@1580 2531 size_t num = _indexedFreeList[size].count();
ysr@1580 2532 size_t n = 0;
ysr@3264 2533 guarantee(((size >= IndexSetStart) && (size % IndexSetStride == 0)) || fc == NULL,
ysr@3220 2534 "Slot should have been empty");
ysr@1580 2535 for (; fc != NULL; fc = fc->next(), n++) {
duke@435 2536 guarantee(fc->size() == size, "Size inconsistency");
jmasa@3732 2537 guarantee(fc->is_free(), "!free?");
duke@435 2538 guarantee(fc->next() == NULL || fc->next()->prev() == fc, "Broken list");
ysr@1580 2539 guarantee((fc->next() == NULL) == (fc == tail), "Incorrect tail");
duke@435 2540 }
ysr@1580 2541 guarantee(n == num, "Incorrect count");
duke@435 2542 }
duke@435 2543
duke@435 2544 #ifndef PRODUCT
ysr@3220 2545 void CompactibleFreeListSpace::check_free_list_consistency() const {
goetz@6337 2546 assert((TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::min_size() <= IndexSetSize),
duke@435 2547 "Some sizes can't be allocated without recourse to"
duke@435 2548 " linear allocation buffers");
goetz@6337 2549 assert((TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::min_size()*HeapWordSize == sizeof(TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >)),
duke@435 2550 "else MIN_TREE_CHUNK_SIZE is wrong");
brutisso@3807 2551 assert(IndexSetStart != 0, "IndexSetStart not initialized");
brutisso@3807 2552 assert(IndexSetStride != 0, "IndexSetStride not initialized");
duke@435 2553 }
duke@435 2554 #endif
duke@435 2555
ysr@447 2556 void CompactibleFreeListSpace::printFLCensus(size_t sweep_count) const {
duke@435 2557 assert_lock_strong(&_freelistLock);
jmasa@4196 2558 AdaptiveFreeList<FreeChunk> total;
ysr@447 2559 gclog_or_tty->print("end sweep# " SIZE_FORMAT "\n", sweep_count);
jmasa@4196 2560 AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
jmasa@3732 2561 size_t total_free = 0;
duke@435 2562 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2563 const AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
jmasa@3732 2564 total_free += fl->count() * fl->size();
ysr@447 2565 if (i % (40*IndexSetStride) == 0) {
jmasa@4196 2566 AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
ysr@447 2567 }
ysr@447 2568 fl->print_on(gclog_or_tty);
jmasa@3732 2569 total.set_bfr_surp( total.bfr_surp() + fl->bfr_surp() );
ysr@447 2570 total.set_surplus( total.surplus() + fl->surplus() );
ysr@447 2571 total.set_desired( total.desired() + fl->desired() );
jmasa@3732 2572 total.set_prev_sweep( total.prev_sweep() + fl->prev_sweep() );
jmasa@3732 2573 total.set_before_sweep(total.before_sweep() + fl->before_sweep());
ysr@447 2574 total.set_count( total.count() + fl->count() );
jmasa@3732 2575 total.set_coal_births( total.coal_births() + fl->coal_births() );
jmasa@3732 2576 total.set_coal_deaths( total.coal_deaths() + fl->coal_deaths() );
jmasa@3732 2577 total.set_split_births(total.split_births() + fl->split_births());
jmasa@3732 2578 total.set_split_deaths(total.split_deaths() + fl->split_deaths());
duke@435 2579 }
ysr@447 2580 total.print_on(gclog_or_tty, "TOTAL");
ysr@447 2581 gclog_or_tty->print_cr("Total free in indexed lists "
jmasa@3732 2582 SIZE_FORMAT " words", total_free);
duke@435 2583 gclog_or_tty->print("growth: %8.5f deficit: %8.5f\n",
jmasa@3732 2584 (double)(total.split_births()+total.coal_births()-total.split_deaths()-total.coal_deaths())/
jmasa@3732 2585 (total.prev_sweep() != 0 ? (double)total.prev_sweep() : 1.0),
ysr@447 2586 (double)(total.desired() - total.count())/(total.desired() != 0 ? (double)total.desired() : 1.0));
jmasa@3732 2587 _dictionary->print_dict_census();
duke@435 2588 }
duke@435 2589
ysr@1580 2590 ///////////////////////////////////////////////////////////////////////////
ysr@1580 2591 // CFLS_LAB
ysr@1580 2592 ///////////////////////////////////////////////////////////////////////////
ysr@1580 2593
ysr@1580 2594 #define VECTOR_257(x) \
ysr@1580 2595 /* 1 2 3 4 5 6 7 8 9 1x 11 12 13 14 15 16 17 18 19 2x 21 22 23 24 25 26 27 28 29 3x 31 32 */ \
ysr@1580 2596 { x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2597 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2598 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2599 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2600 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2601 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2602 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2603 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2604 x }
ysr@1580 2605
ysr@1580 2606 // Initialize with default setting of CMSParPromoteBlocksToClaim, _not_
ysr@1580 2607 // OldPLABSize, whose static default is different; if overridden at the
ysr@1580 2608 // command-line, this will get reinitialized via a call to
ysr@1580 2609 // modify_initialization() below.
ysr@1580 2610 AdaptiveWeightedAverage CFLS_LAB::_blocks_to_claim[] =
ysr@1580 2611 VECTOR_257(AdaptiveWeightedAverage(OldPLABWeight, (float)CMSParPromoteBlocksToClaim));
ysr@1580 2612 size_t CFLS_LAB::_global_num_blocks[] = VECTOR_257(0);
jmasa@3357 2613 uint CFLS_LAB::_global_num_workers[] = VECTOR_257(0);
duke@435 2614
duke@435 2615 CFLS_LAB::CFLS_LAB(CompactibleFreeListSpace* cfls) :
duke@435 2616 _cfls(cfls)
duke@435 2617 {
ysr@1580 2618 assert(CompactibleFreeListSpace::IndexSetSize == 257, "Modify VECTOR_257() macro above");
duke@435 2619 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
duke@435 2620 i < CompactibleFreeListSpace::IndexSetSize;
duke@435 2621 i += CompactibleFreeListSpace::IndexSetStride) {
duke@435 2622 _indexedFreeList[i].set_size(i);
ysr@1580 2623 _num_blocks[i] = 0;
ysr@1580 2624 }
ysr@1580 2625 }
ysr@1580 2626
ysr@1580 2627 static bool _CFLS_LAB_modified = false;
ysr@1580 2628
ysr@1580 2629 void CFLS_LAB::modify_initialization(size_t n, unsigned wt) {
ysr@1580 2630 assert(!_CFLS_LAB_modified, "Call only once");
ysr@1580 2631 _CFLS_LAB_modified = true;
ysr@1580 2632 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
ysr@1580 2633 i < CompactibleFreeListSpace::IndexSetSize;
ysr@1580 2634 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2635 _blocks_to_claim[i].modify(n, wt, true /* force */);
duke@435 2636 }
duke@435 2637 }
duke@435 2638
duke@435 2639 HeapWord* CFLS_LAB::alloc(size_t word_sz) {
duke@435 2640 FreeChunk* res;
ysr@2132 2641 assert(word_sz == _cfls->adjustObjectSize(word_sz), "Error");
duke@435 2642 if (word_sz >= CompactibleFreeListSpace::IndexSetSize) {
duke@435 2643 // This locking manages sync with other large object allocations.
duke@435 2644 MutexLockerEx x(_cfls->parDictionaryAllocLock(),
duke@435 2645 Mutex::_no_safepoint_check_flag);
duke@435 2646 res = _cfls->getChunkFromDictionaryExact(word_sz);
duke@435 2647 if (res == NULL) return NULL;
duke@435 2648 } else {
jmasa@4196 2649 AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[word_sz];
duke@435 2650 if (fl->count() == 0) {
duke@435 2651 // Attempt to refill this local free list.
ysr@1580 2652 get_from_global_pool(word_sz, fl);
duke@435 2653 // If it didn't work, give up.
duke@435 2654 if (fl->count() == 0) return NULL;
duke@435 2655 }
jmasa@3732 2656 res = fl->get_chunk_at_head();
duke@435 2657 assert(res != NULL, "Why was count non-zero?");
duke@435 2658 }
duke@435 2659 res->markNotFree();
jmasa@3732 2660 assert(!res->is_free(), "shouldn't be marked free");
coleenp@622 2661 assert(oop(res)->klass_or_null() == NULL, "should look uninitialized");
duke@435 2662 // mangle a just allocated object with a distinct pattern.
duke@435 2663 debug_only(res->mangleAllocated(word_sz));
duke@435 2664 return (HeapWord*)res;
duke@435 2665 }
duke@435 2666
ysr@1580 2667 // Get a chunk of blocks of the right size and update related
ysr@1580 2668 // book-keeping stats
jmasa@4196 2669 void CFLS_LAB::get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl) {
ysr@1580 2670 // Get the #blocks we want to claim
ysr@1580 2671 size_t n_blks = (size_t)_blocks_to_claim[word_sz].average();
ysr@1580 2672 assert(n_blks > 0, "Error");
ysr@1580 2673 assert(ResizePLAB || n_blks == OldPLABSize, "Error");
ysr@1580 2674 // In some cases, when the application has a phase change,
ysr@1580 2675 // there may be a sudden and sharp shift in the object survival
ysr@1580 2676 // profile, and updating the counts at the end of a scavenge
ysr@1580 2677 // may not be quick enough, giving rise to large scavenge pauses
ysr@1580 2678 // during these phase changes. It is beneficial to detect such
ysr@1580 2679 // changes on-the-fly during a scavenge and avoid such a phase-change
ysr@1580 2680 // pothole. The following code is a heuristic attempt to do that.
ysr@1580 2681 // It is protected by a product flag until we have gained
ysr@1580 2682 // enough experience with this heuristic and fine-tuned its behaviour.
ysr@1580 2683 // WARNING: This might increase fragmentation if we overreact to
ysr@1580 2684 // small spikes, so some kind of historical smoothing based on
ysr@1580 2685 // previous experience with the greater reactivity might be useful.
ysr@1580 2686 // Lacking sufficient experience, CMSOldPLABResizeQuicker is disabled by
ysr@1580 2687 // default.
ysr@1580 2688 if (ResizeOldPLAB && CMSOldPLABResizeQuicker) {
ysr@1580 2689 size_t multiple = _num_blocks[word_sz]/(CMSOldPLABToleranceFactor*CMSOldPLABNumRefills*n_blks);
ysr@1580 2690 n_blks += CMSOldPLABReactivityFactor*multiple*n_blks;
ysr@1580 2691 n_blks = MIN2(n_blks, CMSOldPLABMax);
ysr@1580 2692 }
ysr@1580 2693 assert(n_blks > 0, "Error");
ysr@1580 2694 _cfls->par_get_chunk_of_blocks(word_sz, n_blks, fl);
ysr@1580 2695 // Update stats table entry for this block size
ysr@1580 2696 _num_blocks[word_sz] += fl->count();
ysr@1580 2697 }
ysr@1580 2698
ysr@1580 2699 void CFLS_LAB::compute_desired_plab_size() {
ysr@1580 2700 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
duke@435 2701 i < CompactibleFreeListSpace::IndexSetSize;
duke@435 2702 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2703 assert((_global_num_workers[i] == 0) == (_global_num_blocks[i] == 0),
ysr@1580 2704 "Counter inconsistency");
ysr@1580 2705 if (_global_num_workers[i] > 0) {
ysr@1580 2706 // Need to smooth wrt historical average
ysr@1580 2707 if (ResizeOldPLAB) {
ysr@1580 2708 _blocks_to_claim[i].sample(
ysr@1580 2709 MAX2((size_t)CMSOldPLABMin,
ysr@1580 2710 MIN2((size_t)CMSOldPLABMax,
ysr@1580 2711 _global_num_blocks[i]/(_global_num_workers[i]*CMSOldPLABNumRefills))));
ysr@1580 2712 }
ysr@1580 2713 // Reset counters for next round
ysr@1580 2714 _global_num_workers[i] = 0;
ysr@1580 2715 _global_num_blocks[i] = 0;
ysr@1580 2716 if (PrintOldPLAB) {
drchase@6680 2717 gclog_or_tty->print_cr("[" SIZE_FORMAT "]: " SIZE_FORMAT, i, (size_t)_blocks_to_claim[i].average());
ysr@1580 2718 }
duke@435 2719 }
duke@435 2720 }
duke@435 2721 }
duke@435 2722
ysr@3220 2723 // If this is changed in the future to allow parallel
ysr@3220 2724 // access, one would need to take the FL locks and,
ysr@3220 2725 // depending on how it is used, stagger access from
ysr@3220 2726 // parallel threads to reduce contention.
ysr@1580 2727 void CFLS_LAB::retire(int tid) {
ysr@1580 2728 // We run this single threaded with the world stopped;
ysr@1580 2729 // so no need for locks and such.
ysr@1580 2730 NOT_PRODUCT(Thread* t = Thread::current();)
ysr@1580 2731 assert(Thread::current()->is_VM_thread(), "Error");
ysr@1580 2732 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
ysr@1580 2733 i < CompactibleFreeListSpace::IndexSetSize;
ysr@1580 2734 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2735 assert(_num_blocks[i] >= (size_t)_indexedFreeList[i].count(),
ysr@1580 2736 "Can't retire more than what we obtained");
ysr@1580 2737 if (_num_blocks[i] > 0) {
ysr@1580 2738 size_t num_retire = _indexedFreeList[i].count();
ysr@1580 2739 assert(_num_blocks[i] > num_retire, "Should have used at least one");
ysr@1580 2740 {
ysr@3220 2741 // MutexLockerEx x(_cfls->_indexedFreeListParLocks[i],
ysr@3220 2742 // Mutex::_no_safepoint_check_flag);
ysr@3220 2743
ysr@1580 2744 // Update globals stats for num_blocks used
ysr@1580 2745 _global_num_blocks[i] += (_num_blocks[i] - num_retire);
ysr@1580 2746 _global_num_workers[i]++;
jmasa@3357 2747 assert(_global_num_workers[i] <= ParallelGCThreads, "Too big");
ysr@1580 2748 if (num_retire > 0) {
ysr@1580 2749 _cfls->_indexedFreeList[i].prepend(&_indexedFreeList[i]);
ysr@1580 2750 // Reset this list.
jmasa@4196 2751 _indexedFreeList[i] = AdaptiveFreeList<FreeChunk>();
ysr@1580 2752 _indexedFreeList[i].set_size(i);
ysr@1580 2753 }
ysr@1580 2754 }
ysr@1580 2755 if (PrintOldPLAB) {
drchase@6680 2756 gclog_or_tty->print_cr("%d[" SIZE_FORMAT "]: " SIZE_FORMAT "/" SIZE_FORMAT "/" SIZE_FORMAT,
ysr@1580 2757 tid, i, num_retire, _num_blocks[i], (size_t)_blocks_to_claim[i].average());
ysr@1580 2758 }
ysr@1580 2759 // Reset stats for next round
ysr@1580 2760 _num_blocks[i] = 0;
ysr@1580 2761 }
ysr@1580 2762 }
ysr@1580 2763 }
ysr@1580 2764
jmasa@4196 2765 void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl) {
duke@435 2766 assert(fl->count() == 0, "Precondition.");
duke@435 2767 assert(word_sz < CompactibleFreeListSpace::IndexSetSize,
duke@435 2768 "Precondition");
duke@435 2769
ysr@1580 2770 // We'll try all multiples of word_sz in the indexed set, starting with
ysr@1580 2771 // word_sz itself and, if CMSSplitIndexedFreeListBlocks, try larger multiples,
ysr@1580 2772 // then try getting a big chunk and splitting it.
ysr@1580 2773 {
ysr@1580 2774 bool found;
ysr@1580 2775 int k;
ysr@1580 2776 size_t cur_sz;
ysr@1580 2777 for (k = 1, cur_sz = k * word_sz, found = false;
ysr@1580 2778 (cur_sz < CompactibleFreeListSpace::IndexSetSize) &&
ysr@1580 2779 (CMSSplitIndexedFreeListBlocks || k <= 1);
ysr@1580 2780 k++, cur_sz = k * word_sz) {
jmasa@4196 2781 AdaptiveFreeList<FreeChunk> fl_for_cur_sz; // Empty.
ysr@1580 2782 fl_for_cur_sz.set_size(cur_sz);
ysr@1580 2783 {
ysr@1580 2784 MutexLockerEx x(_indexedFreeListParLocks[cur_sz],
ysr@1580 2785 Mutex::_no_safepoint_check_flag);
jmasa@4196 2786 AdaptiveFreeList<FreeChunk>* gfl = &_indexedFreeList[cur_sz];
ysr@1580 2787 if (gfl->count() != 0) {
ysr@1580 2788 // nn is the number of chunks of size cur_sz that
ysr@1580 2789 // we'd need to split k-ways each, in order to create
ysr@1580 2790 // "n" chunks of size word_sz each.
ysr@1580 2791 const size_t nn = MAX2(n/k, (size_t)1);
ysr@1580 2792 gfl->getFirstNChunksFromList(nn, &fl_for_cur_sz);
ysr@1580 2793 found = true;
ysr@1580 2794 if (k > 1) {
ysr@1580 2795 // Update split death stats for the cur_sz-size blocks list:
ysr@1580 2796 // we increment the split death count by the number of blocks
ysr@1580 2797 // we just took from the cur_sz-size blocks list and which
ysr@1580 2798 // we will be splitting below.
jmasa@3732 2799 ssize_t deaths = gfl->split_deaths() +
ysr@1580 2800 fl_for_cur_sz.count();
jmasa@3732 2801 gfl->set_split_deaths(deaths);
ysr@1580 2802 }
ysr@1580 2803 }
ysr@1580 2804 }
ysr@1580 2805 // Now transfer fl_for_cur_sz to fl. Common case, we hope, is k = 1.
ysr@1580 2806 if (found) {
ysr@1580 2807 if (k == 1) {
ysr@1580 2808 fl->prepend(&fl_for_cur_sz);
ysr@1580 2809 } else {
ysr@1580 2810 // Divide each block on fl_for_cur_sz up k ways.
ysr@1580 2811 FreeChunk* fc;
jmasa@3732 2812 while ((fc = fl_for_cur_sz.get_chunk_at_head()) != NULL) {
ysr@1580 2813 // Must do this in reverse order, so that anybody attempting to
ysr@1580 2814 // access the main chunk sees it as a single free block until we
ysr@1580 2815 // change it.
ysr@1580 2816 size_t fc_size = fc->size();
jmasa@3732 2817 assert(fc->is_free(), "Error");
ysr@1580 2818 for (int i = k-1; i >= 0; i--) {
ysr@1580 2819 FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
ysr@2071 2820 assert((i != 0) ||
jmasa@3732 2821 ((fc == ffc) && ffc->is_free() &&
ysr@2071 2822 (ffc->size() == k*word_sz) && (fc_size == word_sz)),
ysr@2071 2823 "Counting error");
jmasa@3732 2824 ffc->set_size(word_sz);
jmasa@3732 2825 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2826 ffc->link_next(NULL);
ysr@1580 2827 // Above must occur before BOT is updated below.
ysr@2071 2828 OrderAccess::storestore();
ysr@2071 2829 // splitting from the right, fc_size == i * word_sz
ysr@2071 2830 _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */);
ysr@1580 2831 fc_size -= word_sz;
ysr@2071 2832 assert(fc_size == i*word_sz, "Error");
ysr@2071 2833 _bt.verify_not_unallocated((HeapWord*)ffc, word_sz);
ysr@1580 2834 _bt.verify_single_block((HeapWord*)fc, fc_size);
ysr@2071 2835 _bt.verify_single_block((HeapWord*)ffc, word_sz);
ysr@1580 2836 // Push this on "fl".
jmasa@3732 2837 fl->return_chunk_at_head(ffc);
ysr@1580 2838 }
ysr@1580 2839 // TRAP
ysr@1580 2840 assert(fl->tail()->next() == NULL, "List invariant.");
ysr@1580 2841 }
ysr@1580 2842 }
ysr@1580 2843 // Update birth stats for this block size.
ysr@1580 2844 size_t num = fl->count();
ysr@1580 2845 MutexLockerEx x(_indexedFreeListParLocks[word_sz],
ysr@1580 2846 Mutex::_no_safepoint_check_flag);
jmasa@3732 2847 ssize_t births = _indexedFreeList[word_sz].split_births() + num;
jmasa@3732 2848 _indexedFreeList[word_sz].set_split_births(births);
ysr@1580 2849 return;
duke@435 2850 }
duke@435 2851 }
duke@435 2852 }
duke@435 2853 // Otherwise, we'll split a block from the dictionary.
duke@435 2854 FreeChunk* fc = NULL;
duke@435 2855 FreeChunk* rem_fc = NULL;
duke@435 2856 size_t rem;
duke@435 2857 {
duke@435 2858 MutexLockerEx x(parDictionaryAllocLock(),
duke@435 2859 Mutex::_no_safepoint_check_flag);
duke@435 2860 while (n > 0) {
jmasa@4196 2861 fc = dictionary()->get_chunk(MAX2(n * word_sz, _dictionary->min_size()),
jmasa@3730 2862 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 2863 if (fc != NULL) {
ysr@2071 2864 _bt.allocated((HeapWord*)fc, fc->size(), true /* reducing */); // update _unallocated_blk
jmasa@4196 2865 dictionary()->dict_census_update(fc->size(),
duke@435 2866 true /*split*/,
duke@435 2867 false /*birth*/);
duke@435 2868 break;
duke@435 2869 } else {
duke@435 2870 n--;
duke@435 2871 }
duke@435 2872 }
duke@435 2873 if (fc == NULL) return;
ysr@2071 2874 // Otherwise, split up that block.
ysr@1580 2875 assert((ssize_t)n >= 1, "Control point invariant");
jmasa@3732 2876 assert(fc->is_free(), "Error: should be a free block");
ysr@2071 2877 _bt.verify_single_block((HeapWord*)fc, fc->size());
ysr@1580 2878 const size_t nn = fc->size() / word_sz;
duke@435 2879 n = MIN2(nn, n);
ysr@1580 2880 assert((ssize_t)n >= 1, "Control point invariant");
duke@435 2881 rem = fc->size() - n * word_sz;
duke@435 2882 // If there is a remainder, and it's too small, allocate one fewer.
duke@435 2883 if (rem > 0 && rem < MinChunkSize) {
duke@435 2884 n--; rem += word_sz;
duke@435 2885 }
jmasa@1583 2886 // Note that at this point we may have n == 0.
jmasa@1583 2887 assert((ssize_t)n >= 0, "Control point invariant");
jmasa@1583 2888
jmasa@1583 2889 // If n is 0, the chunk fc that was found is not large
jmasa@1583 2890 // enough to leave a viable remainder. We are unable to
jmasa@1583 2891 // allocate even one block. Return fc to the
jmasa@1583 2892 // dictionary and return, leaving "fl" empty.
jmasa@1583 2893 if (n == 0) {
jmasa@1583 2894 returnChunkToDictionary(fc);
ysr@2071 2895 assert(fl->count() == 0, "We never allocated any blocks");
jmasa@1583 2896 return;
jmasa@1583 2897 }
jmasa@1583 2898
duke@435 2899 // First return the remainder, if any.
duke@435 2900 // Note that we hold the lock until we decide if we're going to give
ysr@1580 2901 // back the remainder to the dictionary, since a concurrent allocation
duke@435 2902 // may otherwise see the heap as empty. (We're willing to take that
duke@435 2903 // hit if the block is a small block.)
duke@435 2904 if (rem > 0) {
duke@435 2905 size_t prefix_size = n * word_sz;
duke@435 2906 rem_fc = (FreeChunk*)((HeapWord*)fc + prefix_size);
jmasa@3732 2907 rem_fc->set_size(rem);
jmasa@3732 2908 rem_fc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2909 rem_fc->link_next(NULL);
duke@435 2910 // Above must occur before BOT is updated below.
ysr@1580 2911 assert((ssize_t)n > 0 && prefix_size > 0 && rem_fc > fc, "Error");
ysr@2071 2912 OrderAccess::storestore();
duke@435 2913 _bt.split_block((HeapWord*)fc, fc->size(), prefix_size);
jmasa@3732 2914 assert(fc->is_free(), "Error");
jmasa@3732 2915 fc->set_size(prefix_size);
duke@435 2916 if (rem >= IndexSetSize) {
duke@435 2917 returnChunkToDictionary(rem_fc);
jmasa@4196 2918 dictionary()->dict_census_update(rem, true /*split*/, true /*birth*/);
duke@435 2919 rem_fc = NULL;
duke@435 2920 }
duke@435 2921 // Otherwise, return it to the small list below.
duke@435 2922 }
duke@435 2923 }
duke@435 2924 if (rem_fc != NULL) {
duke@435 2925 MutexLockerEx x(_indexedFreeListParLocks[rem],
duke@435 2926 Mutex::_no_safepoint_check_flag);
duke@435 2927 _bt.verify_not_unallocated((HeapWord*)rem_fc, rem_fc->size());
jmasa@3732 2928 _indexedFreeList[rem].return_chunk_at_head(rem_fc);
duke@435 2929 smallSplitBirth(rem);
duke@435 2930 }
ysr@1580 2931 assert((ssize_t)n > 0 && fc != NULL, "Consistency");
duke@435 2932 // Now do the splitting up.
duke@435 2933 // Must do this in reverse order, so that anybody attempting to
duke@435 2934 // access the main chunk sees it as a single free block until we
duke@435 2935 // change it.
duke@435 2936 size_t fc_size = n * word_sz;
duke@435 2937 // All but first chunk in this loop
duke@435 2938 for (ssize_t i = n-1; i > 0; i--) {
duke@435 2939 FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
jmasa@3732 2940 ffc->set_size(word_sz);
jmasa@3732 2941 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2942 ffc->link_next(NULL);
duke@435 2943 // Above must occur before BOT is updated below.
ysr@2071 2944 OrderAccess::storestore();
duke@435 2945 // splitting from the right, fc_size == (n - i + 1) * wordsize
ysr@2071 2946 _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */);
duke@435 2947 fc_size -= word_sz;
duke@435 2948 _bt.verify_not_unallocated((HeapWord*)ffc, ffc->size());
duke@435 2949 _bt.verify_single_block((HeapWord*)ffc, ffc->size());
duke@435 2950 _bt.verify_single_block((HeapWord*)fc, fc_size);
duke@435 2951 // Push this on "fl".
jmasa@3732 2952 fl->return_chunk_at_head(ffc);
duke@435 2953 }
duke@435 2954 // First chunk
jmasa@3732 2955 assert(fc->is_free() && fc->size() == n*word_sz, "Error: should still be a free block");
ysr@2071 2956 // The blocks above should show their new sizes before the first block below
jmasa@3732 2957 fc->set_size(word_sz);
jmasa@3732 2958 fc->link_prev(NULL); // idempotent wrt free-ness, see assert above
jmasa@3732 2959 fc->link_next(NULL);
duke@435 2960 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
duke@435 2961 _bt.verify_single_block((HeapWord*)fc, fc->size());
jmasa@3732 2962 fl->return_chunk_at_head(fc);
duke@435 2963
ysr@1580 2964 assert((ssize_t)n > 0 && (ssize_t)n == fl->count(), "Incorrect number of blocks");
duke@435 2965 {
ysr@1580 2966 // Update the stats for this block size.
duke@435 2967 MutexLockerEx x(_indexedFreeListParLocks[word_sz],
duke@435 2968 Mutex::_no_safepoint_check_flag);
jmasa@3732 2969 const ssize_t births = _indexedFreeList[word_sz].split_births() + n;
jmasa@3732 2970 _indexedFreeList[word_sz].set_split_births(births);
ysr@1580 2971 // ssize_t new_surplus = _indexedFreeList[word_sz].surplus() + n;
ysr@1580 2972 // _indexedFreeList[word_sz].set_surplus(new_surplus);
duke@435 2973 }
duke@435 2974
duke@435 2975 // TRAP
duke@435 2976 assert(fl->tail()->next() == NULL, "List invariant.");
duke@435 2977 }
duke@435 2978
duke@435 2979 // Set up the space's par_seq_tasks structure for work claiming
duke@435 2980 // for parallel rescan. See CMSParRemarkTask where this is currently used.
duke@435 2981 // XXX Need to suitably abstract and generalize this and the next
duke@435 2982 // method into one.
duke@435 2983 void
duke@435 2984 CompactibleFreeListSpace::
duke@435 2985 initialize_sequential_subtasks_for_rescan(int n_threads) {
duke@435 2986 // The "size" of each task is fixed according to rescan_task_size.
duke@435 2987 assert(n_threads > 0, "Unexpected n_threads argument");
duke@435 2988 const size_t task_size = rescan_task_size();
duke@435 2989 size_t n_tasks = (used_region().word_size() + task_size - 1)/task_size;
ysr@775 2990 assert((n_tasks == 0) == used_region().is_empty(), "n_tasks incorrect");
ysr@775 2991 assert(n_tasks == 0 ||
ysr@775 2992 ((used_region().start() + (n_tasks - 1)*task_size < used_region().end()) &&
ysr@775 2993 (used_region().start() + n_tasks*task_size >= used_region().end())),
ysr@775 2994 "n_tasks calculation incorrect");
duke@435 2995 SequentialSubTasksDone* pst = conc_par_seq_tasks();
duke@435 2996 assert(!pst->valid(), "Clobbering existing data?");
jmasa@2188 2997 // Sets the condition for completion of the subtask (how many threads
jmasa@2188 2998 // need to finish in order to be done).
jmasa@2188 2999 pst->set_n_threads(n_threads);
duke@435 3000 pst->set_n_tasks((int)n_tasks);
duke@435 3001 }
duke@435 3002
duke@435 3003 // Set up the space's par_seq_tasks structure for work claiming
duke@435 3004 // for parallel concurrent marking. See CMSConcMarkTask where this is currently used.
duke@435 3005 void
duke@435 3006 CompactibleFreeListSpace::
duke@435 3007 initialize_sequential_subtasks_for_marking(int n_threads,
duke@435 3008 HeapWord* low) {
duke@435 3009 // The "size" of each task is fixed according to rescan_task_size.
duke@435 3010 assert(n_threads > 0, "Unexpected n_threads argument");
duke@435 3011 const size_t task_size = marking_task_size();
duke@435 3012 assert(task_size > CardTableModRefBS::card_size_in_words &&
duke@435 3013 (task_size % CardTableModRefBS::card_size_in_words == 0),
duke@435 3014 "Otherwise arithmetic below would be incorrect");
duke@435 3015 MemRegion span = _gen->reserved();
duke@435 3016 if (low != NULL) {
duke@435 3017 if (span.contains(low)) {
duke@435 3018 // Align low down to a card boundary so that
duke@435 3019 // we can use block_offset_careful() on span boundaries.
duke@435 3020 HeapWord* aligned_low = (HeapWord*)align_size_down((uintptr_t)low,
duke@435 3021 CardTableModRefBS::card_size);
duke@435 3022 // Clip span prefix at aligned_low
duke@435 3023 span = span.intersection(MemRegion(aligned_low, span.end()));
duke@435 3024 } else if (low > span.end()) {
duke@435 3025 span = MemRegion(low, low); // Null region
duke@435 3026 } // else use entire span
duke@435 3027 }
duke@435 3028 assert(span.is_empty() ||
duke@435 3029 ((uintptr_t)span.start() % CardTableModRefBS::card_size == 0),
duke@435 3030 "span should start at a card boundary");
duke@435 3031 size_t n_tasks = (span.word_size() + task_size - 1)/task_size;
duke@435 3032 assert((n_tasks == 0) == span.is_empty(), "Inconsistency");
duke@435 3033 assert(n_tasks == 0 ||
duke@435 3034 ((span.start() + (n_tasks - 1)*task_size < span.end()) &&
duke@435 3035 (span.start() + n_tasks*task_size >= span.end())),
ysr@775 3036 "n_tasks calculation incorrect");
duke@435 3037 SequentialSubTasksDone* pst = conc_par_seq_tasks();
duke@435 3038 assert(!pst->valid(), "Clobbering existing data?");
jmasa@2188 3039 // Sets the condition for completion of the subtask (how many threads
jmasa@2188 3040 // need to finish in order to be done).
jmasa@2188 3041 pst->set_n_threads(n_threads);
duke@435 3042 pst->set_n_tasks((int)n_tasks);
duke@435 3043 }

mercurial