src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp

Tue, 17 Dec 2019 05:26:57 +0000

author
zgu
date
Tue, 17 Dec 2019 05:26:57 +0000
changeset 9793
7386b3a385ac
parent 7476
c2844108a708
child 9806
758c07667682
permissions
-rw-r--r--

8229420: [Redo] jstat reports incorrect values for OU for CMS GC
Reviewed-by: andrew

duke@435 1 /*
drchase@6680 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
stefank@2314 27
jmasa@4196 28 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
stefank@2314 29 #include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
jmasa@3730 30 #include "memory/binaryTreeDictionary.hpp"
stefank@2314 31 #include "memory/blockOffsetTable.inline.hpp"
jmasa@3730 32 #include "memory/freeList.hpp"
stefank@2314 33 #include "memory/space.hpp"
stefank@2314 34
duke@435 35 // Classes in support of keeping track of promotions into a non-Contiguous
duke@435 36 // space, in this case a CompactibleFreeListSpace.
duke@435 37
duke@435 38 // Forward declarations
duke@435 39 class CompactibleFreeListSpace;
duke@435 40 class BlkClosure;
duke@435 41 class BlkClosureCareful;
jmasa@4196 42 class FreeChunk;
duke@435 43 class UpwardsObjectClosure;
duke@435 44 class ObjectClosureCareful;
duke@435 45 class Klass;
duke@435 46
duke@435 47 class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
duke@435 48 public:
duke@435 49 LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
duke@435 50 _allocation_size_limit(0) {}
duke@435 51 void set(HeapWord* ptr, size_t word_size, size_t refill_size,
duke@435 52 size_t allocation_size_limit) {
duke@435 53 _ptr = ptr;
duke@435 54 _word_size = word_size;
duke@435 55 _refillSize = refill_size;
duke@435 56 _allocation_size_limit = allocation_size_limit;
duke@435 57 }
duke@435 58 HeapWord* _ptr;
duke@435 59 size_t _word_size;
duke@435 60 size_t _refillSize;
duke@435 61 size_t _allocation_size_limit; // largest size that will be allocated
ysr@2071 62
ysr@2071 63 void print_on(outputStream* st) const;
duke@435 64 };
duke@435 65
duke@435 66 // Concrete subclass of CompactibleSpace that implements
duke@435 67 // a free list space, such as used in the concurrent mark sweep
duke@435 68 // generation.
duke@435 69
duke@435 70 class CompactibleFreeListSpace: public CompactibleSpace {
duke@435 71 friend class VMStructs;
duke@435 72 friend class ConcurrentMarkSweepGeneration;
duke@435 73 friend class ASConcurrentMarkSweepGeneration;
duke@435 74 friend class CMSCollector;
duke@435 75 // Local alloc buffer for promotion into this space.
duke@435 76 friend class CFLS_LAB;
duke@435 77
duke@435 78 // "Size" of chunks of work (executed during parallel remark phases
duke@435 79 // of CMS collection); this probably belongs in CMSCollector, although
duke@435 80 // it's cached here because it's used in
duke@435 81 // initialize_sequential_subtasks_for_rescan() which modifies
duke@435 82 // par_seq_tasks which also lives in Space. XXX
duke@435 83 const size_t _rescan_task_size;
duke@435 84 const size_t _marking_task_size;
duke@435 85
duke@435 86 // Yet another sequential tasks done structure. This supports
duke@435 87 // CMS GC, where we have threads dynamically
duke@435 88 // claiming sub-tasks from a larger parallel task.
duke@435 89 SequentialSubTasksDone _conc_par_seq_tasks;
duke@435 90
duke@435 91 BlockOffsetArrayNonContigSpace _bt;
duke@435 92
duke@435 93 CMSCollector* _collector;
duke@435 94 ConcurrentMarkSweepGeneration* _gen;
duke@435 95
duke@435 96 // Data structures for free blocks (used during allocation/sweeping)
duke@435 97
duke@435 98 // Allocation is done linearly from two different blocks depending on
duke@435 99 // whether the request is small or large, in an effort to reduce
duke@435 100 // fragmentation. We assume that any locking for allocation is done
duke@435 101 // by the containing generation. Thus, none of the methods in this
duke@435 102 // space are re-entrant.
duke@435 103 enum SomeConstants {
duke@435 104 SmallForLinearAlloc = 16, // size < this then use _sLAB
duke@435 105 SmallForDictionary = 257, // size < this then use _indexedFreeList
kvn@1926 106 IndexSetSize = SmallForDictionary // keep this odd-sized
duke@435 107 };
ysr@3264 108 static size_t IndexSetStart;
ysr@3264 109 static size_t IndexSetStride;
duke@435 110
duke@435 111 private:
duke@435 112 enum FitStrategyOptions {
duke@435 113 FreeBlockStrategyNone = 0,
duke@435 114 FreeBlockBestFitFirst
duke@435 115 };
duke@435 116
duke@435 117 PromotionInfo _promoInfo;
duke@435 118
duke@435 119 // helps to impose a global total order on freelistLock ranks;
duke@435 120 // assumes that CFLSpace's are allocated in global total order
duke@435 121 static int _lockRank;
duke@435 122
duke@435 123 // a lock protecting the free lists and free blocks;
duke@435 124 // mutable because of ubiquity of locking even for otherwise const methods
duke@435 125 mutable Mutex _freelistLock;
duke@435 126 // locking verifier convenience function
duke@435 127 void assert_locked() const PRODUCT_RETURN;
ysr@1580 128 void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
duke@435 129
duke@435 130 // Linear allocation blocks
duke@435 131 LinearAllocBlock _smallLinearAllocBlock;
duke@435 132
jmasa@3730 133 FreeBlockDictionary<FreeChunk>::DictionaryChoice _dictionaryChoice;
jmasa@4488 134 AFLBinaryTreeDictionary* _dictionary; // ptr to dictionary for large size blocks
duke@435 135
jmasa@4196 136 AdaptiveFreeList<FreeChunk> _indexedFreeList[IndexSetSize];
duke@435 137 // indexed array for small size blocks
duke@435 138 // allocation stategy
duke@435 139 bool _fitStrategy; // Use best fit strategy.
duke@435 140 bool _adaptive_freelists; // Use adaptive freelists
duke@435 141
duke@435 142 // This is an address close to the largest free chunk in the heap.
duke@435 143 // It is currently assumed to be at the end of the heap. Free
duke@435 144 // chunks with addresses greater than nearLargestChunk are coalesced
duke@435 145 // in an effort to maintain a large chunk at the end of the heap.
duke@435 146 HeapWord* _nearLargestChunk;
duke@435 147
duke@435 148 // Used to keep track of limit of sweep for the space
duke@435 149 HeapWord* _sweep_limit;
duke@435 150
zgu@9793 151 // Stable value of used().
zgu@9793 152 size_t _used_stable;
zgu@9793 153
duke@435 154 // Support for compacting cms
duke@435 155 HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
duke@435 156 HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
duke@435 157
duke@435 158 // Initialization helpers.
duke@435 159 void initializeIndexedFreeListArray();
duke@435 160
duke@435 161 // Extra stuff to manage promotion parallelism.
duke@435 162
duke@435 163 // a lock protecting the dictionary during par promotion allocation.
duke@435 164 mutable Mutex _parDictionaryAllocLock;
duke@435 165 Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
duke@435 166
duke@435 167 // Locks protecting the exact lists during par promotion allocation.
duke@435 168 Mutex* _indexedFreeListParLocks[IndexSetSize];
duke@435 169
duke@435 170 // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
duke@435 171 // required to be smaller than "IndexSetSize".) If successful,
duke@435 172 // adds them to "fl", which is required to be an empty free list.
duke@435 173 // If the count of "fl" is negative, it's absolute value indicates a
duke@435 174 // number of free chunks that had been previously "borrowed" from global
duke@435 175 // list of size "word_sz", and must now be decremented.
jmasa@4196 176 void par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
duke@435 177
jmasa@7474 178 // Used by par_get_chunk_of_blocks() for the chunks from the
jmasa@7474 179 // indexed_free_lists.
jmasa@7474 180 bool par_get_chunk_of_blocks_IFL(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
jmasa@7474 181
jmasa@7474 182 // Used by par_get_chunk_of_blocks_dictionary() to get a chunk
jmasa@7474 183 // evenly splittable into "n" "word_sz" chunks. Returns that
jmasa@7474 184 // evenly splittable chunk. May split a larger chunk to get the
jmasa@7474 185 // evenly splittable chunk.
jmasa@7474 186 FreeChunk* get_n_way_chunk_to_split(size_t word_sz, size_t n);
jmasa@7474 187
jmasa@7474 188 // Used by par_get_chunk_of_blocks() for the chunks from the
jmasa@7474 189 // dictionary.
jmasa@7474 190 void par_get_chunk_of_blocks_dictionary(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
jmasa@7474 191
duke@435 192 // Allocation helper functions
duke@435 193 // Allocate using a strategy that takes from the indexed free lists
duke@435 194 // first. This allocation strategy assumes a companion sweeping
duke@435 195 // strategy that attempts to keep the needed number of chunks in each
duke@435 196 // indexed free lists.
duke@435 197 HeapWord* allocate_adaptive_freelists(size_t size);
duke@435 198 // Allocate from the linear allocation buffers first. This allocation
duke@435 199 // strategy assumes maximal coalescing can maintain chunks large enough
duke@435 200 // to be used as linear allocation buffers.
duke@435 201 HeapWord* allocate_non_adaptive_freelists(size_t size);
duke@435 202
duke@435 203 // Gets a chunk from the linear allocation block (LinAB). If there
duke@435 204 // is not enough space in the LinAB, refills it.
duke@435 205 HeapWord* getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
duke@435 206 HeapWord* getChunkFromSmallLinearAllocBlock(size_t size);
duke@435 207 // Get a chunk from the space remaining in the linear allocation block. Do
duke@435 208 // not attempt to refill if the space is not available, return NULL. Do the
duke@435 209 // repairs on the linear allocation block as appropriate.
duke@435 210 HeapWord* getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
duke@435 211 inline HeapWord* getChunkFromSmallLinearAllocBlockRemainder(size_t size);
duke@435 212
duke@435 213 // Helper function for getChunkFromIndexedFreeList.
duke@435 214 // Replenish the indexed free list for this "size". Do not take from an
duke@435 215 // underpopulated size.
ysr@1580 216 FreeChunk* getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
duke@435 217
duke@435 218 // Get a chunk from the indexed free list. If the indexed free list
duke@435 219 // does not have a free chunk, try to replenish the indexed free list
duke@435 220 // then get the free chunk from the replenished indexed free list.
duke@435 221 inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
duke@435 222
duke@435 223 // The returned chunk may be larger than requested (or null).
duke@435 224 FreeChunk* getChunkFromDictionary(size_t size);
duke@435 225 // The returned chunk is the exact size requested (or null).
duke@435 226 FreeChunk* getChunkFromDictionaryExact(size_t size);
duke@435 227
duke@435 228 // Find a chunk in the indexed free list that is the best
duke@435 229 // fit for size "numWords".
duke@435 230 FreeChunk* bestFitSmall(size_t numWords);
duke@435 231 // For free list "fl" of chunks of size > numWords,
duke@435 232 // remove a chunk, split off a chunk of size numWords
duke@435 233 // and return it. The split off remainder is returned to
duke@435 234 // the free lists. The old name for getFromListGreater
duke@435 235 // was lookInListGreater.
jmasa@4196 236 FreeChunk* getFromListGreater(AdaptiveFreeList<FreeChunk>* fl, size_t numWords);
duke@435 237 // Get a chunk in the indexed free list or dictionary,
duke@435 238 // by considering a larger chunk and splitting it.
duke@435 239 FreeChunk* getChunkFromGreater(size_t numWords);
duke@435 240 // Verify that the given chunk is in the indexed free lists.
duke@435 241 bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
duke@435 242 // Remove the specified chunk from the indexed free lists.
duke@435 243 void removeChunkFromIndexedFreeList(FreeChunk* fc);
duke@435 244 // Remove the specified chunk from the dictionary.
duke@435 245 void removeChunkFromDictionary(FreeChunk* fc);
duke@435 246 // Split a free chunk into a smaller free chunk of size "new_size".
duke@435 247 // Return the smaller free chunk and return the remainder to the
duke@435 248 // free lists.
duke@435 249 FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
duke@435 250 // Add a chunk to the free lists.
duke@435 251 void addChunkToFreeLists(HeapWord* chunk, size_t size);
duke@435 252 // Add a chunk to the free lists, preferring to suffix it
duke@435 253 // to the last free chunk at end of space if possible, and
duke@435 254 // updating the block census stats as well as block offset table.
duke@435 255 // Take any locks as appropriate if we are multithreaded.
duke@435 256 void addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
duke@435 257 // Add a free chunk to the indexed free lists.
duke@435 258 void returnChunkToFreeList(FreeChunk* chunk);
duke@435 259 // Add a free chunk to the dictionary.
duke@435 260 void returnChunkToDictionary(FreeChunk* chunk);
duke@435 261
duke@435 262 // Functions for maintaining the linear allocation buffers (LinAB).
duke@435 263 // Repairing a linear allocation block refers to operations
duke@435 264 // performed on the remainder of a LinAB after an allocation
duke@435 265 // has been made from it.
duke@435 266 void repairLinearAllocationBlocks();
duke@435 267 void repairLinearAllocBlock(LinearAllocBlock* blk);
duke@435 268 void refillLinearAllocBlock(LinearAllocBlock* blk);
duke@435 269 void refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
duke@435 270 void refillLinearAllocBlocksIfNeeded();
duke@435 271
duke@435 272 void verify_objects_initialized() const;
duke@435 273
duke@435 274 // Statistics reporting helper functions
duke@435 275 void reportFreeListStatistics() const;
duke@435 276 void reportIndexedFreeListStatistics() const;
duke@435 277 size_t maxChunkSizeInIndexedFreeLists() const;
duke@435 278 size_t numFreeBlocksInIndexedFreeLists() const;
duke@435 279 // Accessor
duke@435 280 HeapWord* unallocated_block() const {
ysr@2071 281 if (BlockOffsetArrayUseUnallocatedBlock) {
ysr@2071 282 HeapWord* ub = _bt.unallocated_block();
ysr@2071 283 assert(ub >= bottom() &&
ysr@2071 284 ub <= end(), "space invariant");
ysr@2071 285 return ub;
ysr@2071 286 } else {
ysr@2071 287 return end();
ysr@2071 288 }
duke@435 289 }
duke@435 290 void freed(HeapWord* start, size_t size) {
duke@435 291 _bt.freed(start, size);
duke@435 292 }
duke@435 293
duke@435 294 protected:
duke@435 295 // reset the indexed free list to its initial empty condition.
duke@435 296 void resetIndexedFreeListArray();
duke@435 297 // reset to an initial state with a single free block described
duke@435 298 // by the MemRegion parameter.
duke@435 299 void reset(MemRegion mr);
duke@435 300 // Return the total number of words in the indexed free lists.
duke@435 301 size_t totalSizeInIndexedFreeLists() const;
duke@435 302
duke@435 303 public:
duke@435 304 // Constructor...
duke@435 305 CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
duke@435 306 bool use_adaptive_freelists,
jmasa@3730 307 FreeBlockDictionary<FreeChunk>::DictionaryChoice);
duke@435 308 // accessors
duke@435 309 bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
jmasa@3730 310 FreeBlockDictionary<FreeChunk>* dictionary() const { return _dictionary; }
duke@435 311 HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
duke@435 312 void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
duke@435 313
kvn@1926 314 // Set CMS global values
kvn@1926 315 static void set_cms_values();
kvn@1926 316
duke@435 317 // Return the free chunk at the end of the space. If no such
duke@435 318 // chunk exists, return NULL.
duke@435 319 FreeChunk* find_chunk_at_end();
duke@435 320
ysr@447 321 bool adaptive_freelists() const { return _adaptive_freelists; }
duke@435 322
duke@435 323 void set_collector(CMSCollector* collector) { _collector = collector; }
duke@435 324
duke@435 325 // Support for parallelization of rescan and marking
duke@435 326 const size_t rescan_task_size() const { return _rescan_task_size; }
duke@435 327 const size_t marking_task_size() const { return _marking_task_size; }
duke@435 328 SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
duke@435 329 void initialize_sequential_subtasks_for_rescan(int n_threads);
duke@435 330 void initialize_sequential_subtasks_for_marking(int n_threads,
duke@435 331 HeapWord* low = NULL);
duke@435 332
duke@435 333 // Space enquiries
duke@435 334 size_t used() const;
duke@435 335 size_t free() const;
duke@435 336 size_t max_alloc_in_words() const;
duke@435 337 // XXX: should have a less conservative used_region() than that of
duke@435 338 // Space; we could consider keeping track of highest allocated
duke@435 339 // address and correcting that at each sweep, as the sweeper
duke@435 340 // goes through the entire allocated part of the generation. We
duke@435 341 // could also use that information to keep the sweeper from
duke@435 342 // sweeping more than is necessary. The allocator and sweeper will
duke@435 343 // of course need to synchronize on this, since the sweeper will
duke@435 344 // try to bump down the address and the allocator will try to bump it up.
duke@435 345 // For now, however, we'll just use the default used_region()
duke@435 346 // which overestimates the region by returning the entire
duke@435 347 // committed region (this is safe, but inefficient).
duke@435 348
zgu@9793 349 // Returns monotonically increasing stable used space bytes for CMS.
zgu@9793 350 // This is required for jstat and other memory monitoring tools
zgu@9793 351 // that might otherwise see inconsistent used space values during a garbage
zgu@9793 352 // collection, promotion or allocation into compactibleFreeListSpace.
zgu@9793 353 // The value returned by this function might be smaller than the
zgu@9793 354 // actual value.
zgu@9793 355 size_t used_stable() const;
zgu@9793 356 // Recalculate and cache the current stable used() value. Only to be called
zgu@9793 357 // in places where we can be sure that the result is stable.
zgu@9793 358 void recalculate_used_stable();
zgu@9793 359
duke@435 360 // Returns a subregion of the space containing all the objects in
duke@435 361 // the space.
duke@435 362 MemRegion used_region() const {
duke@435 363 return MemRegion(bottom(),
duke@435 364 BlockOffsetArrayUseUnallocatedBlock ?
duke@435 365 unallocated_block() : end());
duke@435 366 }
duke@435 367
duke@435 368 virtual bool is_free_block(const HeapWord* p) const;
duke@435 369
duke@435 370 // Resizing support
duke@435 371 void set_end(HeapWord* value); // override
duke@435 372
duke@435 373 // mutual exclusion support
duke@435 374 Mutex* freelistLock() const { return &_freelistLock; }
duke@435 375
duke@435 376 // Iteration support
coleenp@4037 377 void oop_iterate(ExtendedOopClosure* cl);
duke@435 378
duke@435 379 void object_iterate(ObjectClosure* blk);
jmasa@952 380 // Apply the closure to each object in the space whose references
jmasa@952 381 // point to objects in the heap. The usage of CompactibleFreeListSpace
jmasa@952 382 // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
jmasa@952 383 // objects in the space with references to objects that are no longer
jmasa@952 384 // valid. For example, an object may reference another object
jmasa@952 385 // that has already been sweep up (collected). This method uses
jmasa@952 386 // obj_is_alive() to determine whether it is safe to iterate of
jmasa@952 387 // an object.
jmasa@952 388 void safe_object_iterate(ObjectClosure* blk);
mgerdin@6979 389
mgerdin@6979 390 // Iterate over all objects that intersect with mr, calling "cl->do_object"
mgerdin@6979 391 // on each. There is an exception to this: if this closure has already
mgerdin@6979 392 // been invoked on an object, it may skip such objects in some cases. This is
mgerdin@6979 393 // Most likely to happen in an "upwards" (ascending address) iteration of
mgerdin@6979 394 // MemRegions.
duke@435 395 void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
duke@435 396
duke@435 397 // Requires that "mr" be entirely within the space.
duke@435 398 // Apply "cl->do_object" to all objects that intersect with "mr".
duke@435 399 // If the iteration encounters an unparseable portion of the region,
duke@435 400 // terminate the iteration and return the address of the start of the
duke@435 401 // subregion that isn't done. Return of "NULL" indicates that the
duke@435 402 // interation completed.
mgerdin@6980 403 HeapWord* object_iterate_careful_m(MemRegion mr,
mgerdin@6980 404 ObjectClosureCareful* cl);
duke@435 405
duke@435 406 // Override: provides a DCTO_CL specific to this kind of space.
coleenp@4037 407 DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
duke@435 408 CardTableModRefBS::PrecisionStyle precision,
duke@435 409 HeapWord* boundary);
duke@435 410
duke@435 411 void blk_iterate(BlkClosure* cl);
duke@435 412 void blk_iterate_careful(BlkClosureCareful* cl);
ysr@777 413 HeapWord* block_start_const(const void* p) const;
duke@435 414 HeapWord* block_start_careful(const void* p) const;
duke@435 415 size_t block_size(const HeapWord* p) const;
duke@435 416 size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
duke@435 417 bool block_is_obj(const HeapWord* p) const;
duke@435 418 bool obj_is_alive(const HeapWord* p) const;
duke@435 419 size_t block_size_nopar(const HeapWord* p) const;
duke@435 420 bool block_is_obj_nopar(const HeapWord* p) const;
duke@435 421
duke@435 422 // iteration support for promotion
duke@435 423 void save_marks();
duke@435 424 bool no_allocs_since_save_marks();
duke@435 425
duke@435 426 // iteration support for sweeping
duke@435 427 void save_sweep_limit() {
duke@435 428 _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
duke@435 429 unallocated_block() : end();
ysr@2943 430 if (CMSTraceSweeper) {
ysr@2943 431 gclog_or_tty->print_cr(">>>>> Saving sweep limit " PTR_FORMAT
ysr@2943 432 " for space [" PTR_FORMAT "," PTR_FORMAT ") <<<<<<",
drchase@6680 433 p2i(_sweep_limit), p2i(bottom()), p2i(end()));
ysr@2943 434 }
duke@435 435 }
duke@435 436 NOT_PRODUCT(
duke@435 437 void clear_sweep_limit() { _sweep_limit = NULL; }
duke@435 438 )
duke@435 439 HeapWord* sweep_limit() { return _sweep_limit; }
duke@435 440
duke@435 441 // Apply "blk->do_oop" to the addresses of all reference fields in objects
duke@435 442 // promoted into this generation since the most recent save_marks() call.
duke@435 443 // Fields in objects allocated by applications of the closure
duke@435 444 // *are* included in the iteration. Thus, when the iteration completes
duke@435 445 // there should be no further such objects remaining.
duke@435 446 #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
duke@435 447 void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
duke@435 448 ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
duke@435 449 #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
duke@435 450
duke@435 451 // Allocation support
duke@435 452 HeapWord* allocate(size_t size);
duke@435 453 HeapWord* par_allocate(size_t size);
duke@435 454
coleenp@548 455 oop promote(oop obj, size_t obj_size);
duke@435 456 void gc_prologue();
duke@435 457 void gc_epilogue();
duke@435 458
duke@435 459 // This call is used by a containing CMS generation / collector
duke@435 460 // to inform the CFLS space that a sweep has been completed
duke@435 461 // and that the space can do any related house-keeping functions.
duke@435 462 void sweep_completed();
duke@435 463
duke@435 464 // For an object in this space, the mark-word's two
duke@435 465 // LSB's having the value [11] indicates that it has been
duke@435 466 // promoted since the most recent call to save_marks() on
duke@435 467 // this generation and has not subsequently been iterated
duke@435 468 // over (using oop_since_save_marks_iterate() above).
ysr@1876 469 // This property holds only for single-threaded collections,
ysr@1876 470 // and is typically used for Cheney scans; for MT scavenges,
ysr@1876 471 // the property holds for all objects promoted during that
ysr@1876 472 // scavenge for the duration of the scavenge and is used
ysr@1876 473 // by card-scanning to avoid scanning objects (being) promoted
ysr@1876 474 // during that scavenge.
duke@435 475 bool obj_allocated_since_save_marks(const oop obj) const {
duke@435 476 assert(is_in_reserved(obj), "Wrong space?");
duke@435 477 return ((PromotedObject*)obj)->hasPromotedMark();
duke@435 478 }
duke@435 479
duke@435 480 // A worst-case estimate of the space required (in HeapWords) to expand the
duke@435 481 // heap when promoting an obj of size obj_size.
duke@435 482 size_t expansionSpaceRequired(size_t obj_size) const;
duke@435 483
duke@435 484 FreeChunk* allocateScratch(size_t size);
duke@435 485
duke@435 486 // returns true if either the small or large linear allocation buffer is empty.
ysr@447 487 bool linearAllocationWouldFail() const;
duke@435 488
duke@435 489 // Adjust the chunk for the minimum size. This version is called in
duke@435 490 // most cases in CompactibleFreeListSpace methods.
duke@435 491 inline static size_t adjustObjectSize(size_t size) {
duke@435 492 return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
duke@435 493 }
duke@435 494 // This is a virtual version of adjustObjectSize() that is called
duke@435 495 // only occasionally when the compaction space changes and the type
duke@435 496 // of the new compaction space is is only known to be CompactibleSpace.
duke@435 497 size_t adjust_object_size_v(size_t size) const {
duke@435 498 return adjustObjectSize(size);
duke@435 499 }
duke@435 500 // Minimum size of a free block.
duke@435 501 virtual size_t minimum_free_block_size() const { return MinChunkSize; }
duke@435 502 void removeFreeChunkFromFreeLists(FreeChunk* chunk);
duke@435 503 void addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
duke@435 504 bool coalesced);
duke@435 505
ysr@447 506 // Support for decisions regarding concurrent collection policy
ysr@447 507 bool should_concurrent_collect() const;
ysr@447 508
duke@435 509 // Support for compaction
duke@435 510 void prepare_for_compaction(CompactPoint* cp);
duke@435 511 void adjust_pointers();
duke@435 512 void compact();
duke@435 513 // reset the space to reflect the fact that a compaction of the
duke@435 514 // space has been done.
duke@435 515 virtual void reset_after_compaction();
duke@435 516
duke@435 517 // Debugging support
duke@435 518 void print() const;
ysr@2071 519 void print_on(outputStream* st) const;
duke@435 520 void prepare_for_verify();
brutisso@3711 521 void verify() const;
duke@435 522 void verifyFreeLists() const PRODUCT_RETURN;
duke@435 523 void verifyIndexedFreeLists() const;
duke@435 524 void verifyIndexedFreeList(size_t size) const;
ysr@3220 525 // Verify that the given chunk is in the free lists:
ysr@3220 526 // i.e. either the binary tree dictionary, the indexed free lists
ysr@3220 527 // or the linear allocation block.
jmasa@3732 528 bool verify_chunk_in_free_list(FreeChunk* fc) const;
ysr@3220 529 // Verify that the given chunk is the linear allocation block
ysr@3220 530 bool verify_chunk_is_linear_alloc_block(FreeChunk* fc) const;
duke@435 531 // Do some basic checks on the the free lists.
ysr@3220 532 void check_free_list_consistency() const PRODUCT_RETURN;
duke@435 533
ysr@1580 534 // Printing support
ysr@1580 535 void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
ysr@1580 536 void print_indexed_free_lists(outputStream* st) const;
ysr@1580 537 void print_dictionary_free_lists(outputStream* st) const;
ysr@1580 538 void print_promo_info_blocks(outputStream* st) const;
ysr@1580 539
duke@435 540 NOT_PRODUCT (
duke@435 541 void initializeIndexedFreeListArrayReturnedBytes();
duke@435 542 size_t sumIndexedFreeListArrayReturnedBytes();
duke@435 543 // Return the total number of chunks in the indexed free lists.
duke@435 544 size_t totalCountInIndexedFreeLists() const;
duke@435 545 // Return the total numberof chunks in the space.
duke@435 546 size_t totalCount();
duke@435 547 )
duke@435 548
duke@435 549 // The census consists of counts of the quantities such as
duke@435 550 // the current count of the free chunks, number of chunks
duke@435 551 // created as a result of the split of a larger chunk or
duke@435 552 // coalescing of smaller chucks, etc. The counts in the
duke@435 553 // census is used to make decisions on splitting and
duke@435 554 // coalescing of chunks during the sweep of garbage.
duke@435 555
duke@435 556 // Print the statistics for the free lists.
ysr@447 557 void printFLCensus(size_t sweep_count) const;
duke@435 558
duke@435 559 // Statistics functions
duke@435 560 // Initialize census for lists before the sweep.
ysr@1580 561 void beginSweepFLCensus(float inter_sweep_current,
ysr@1580 562 float inter_sweep_estimate,
ysr@1580 563 float intra_sweep_estimate);
duke@435 564 // Set the surplus for each of the free lists.
duke@435 565 void setFLSurplus();
duke@435 566 // Set the hint for each of the free lists.
duke@435 567 void setFLHints();
duke@435 568 // Clear the census for each of the free lists.
duke@435 569 void clearFLCensus();
duke@435 570 // Perform functions for the census after the end of the sweep.
ysr@447 571 void endSweepFLCensus(size_t sweep_count);
duke@435 572 // Return true if the count of free chunks is greater
duke@435 573 // than the desired number of free chunks.
duke@435 574 bool coalOverPopulated(size_t size);
duke@435 575
duke@435 576 // Record (for each size):
duke@435 577 //
duke@435 578 // split-births = #chunks added due to splits in (prev-sweep-end,
duke@435 579 // this-sweep-start)
duke@435 580 // split-deaths = #chunks removed for splits in (prev-sweep-end,
duke@435 581 // this-sweep-start)
duke@435 582 // num-curr = #chunks at start of this sweep
duke@435 583 // num-prev = #chunks at end of previous sweep
duke@435 584 //
duke@435 585 // The above are quantities that are measured. Now define:
duke@435 586 //
duke@435 587 // num-desired := num-prev + split-births - split-deaths - num-curr
duke@435 588 //
duke@435 589 // Roughly, num-prev + split-births is the supply,
duke@435 590 // split-deaths is demand due to other sizes
duke@435 591 // and num-curr is what we have left.
duke@435 592 //
duke@435 593 // Thus, num-desired is roughly speaking the "legitimate demand"
duke@435 594 // for blocks of this size and what we are striving to reach at the
duke@435 595 // end of the current sweep.
duke@435 596 //
duke@435 597 // For a given list, let num-len be its current population.
duke@435 598 // Define, for a free list of a given size:
duke@435 599 //
duke@435 600 // coal-overpopulated := num-len >= num-desired * coal-surplus
duke@435 601 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
duke@435 602 // coalescing -- we do not coalesce unless we think that the current
duke@435 603 // supply has exceeded the estimated demand by more than 5%).
duke@435 604 //
duke@435 605 // For the set of sizes in the binary tree, which is neither dense nor
duke@435 606 // closed, it may be the case that for a particular size we have never
duke@435 607 // had, or do not now have, or did not have at the previous sweep,
duke@435 608 // chunks of that size. We need to extend the definition of
duke@435 609 // coal-overpopulated to such sizes as well:
duke@435 610 //
duke@435 611 // For a chunk in/not in the binary tree, extend coal-overpopulated
duke@435 612 // defined above to include all sizes as follows:
duke@435 613 //
duke@435 614 // . a size that is non-existent is coal-overpopulated
duke@435 615 // . a size that has a num-desired <= 0 as defined above is
duke@435 616 // coal-overpopulated.
duke@435 617 //
duke@435 618 // Also define, for a chunk heap-offset C and mountain heap-offset M:
duke@435 619 //
duke@435 620 // close-to-mountain := C >= 0.99 * M
duke@435 621 //
duke@435 622 // Now, the coalescing strategy is:
duke@435 623 //
duke@435 624 // Coalesce left-hand chunk with right-hand chunk if and
duke@435 625 // only if:
duke@435 626 //
duke@435 627 // EITHER
duke@435 628 // . left-hand chunk is of a size that is coal-overpopulated
duke@435 629 // OR
duke@435 630 // . right-hand chunk is close-to-mountain
duke@435 631 void smallCoalBirth(size_t size);
duke@435 632 void smallCoalDeath(size_t size);
duke@435 633 void coalBirth(size_t size);
duke@435 634 void coalDeath(size_t size);
duke@435 635 void smallSplitBirth(size_t size);
duke@435 636 void smallSplitDeath(size_t size);
jmasa@3732 637 void split_birth(size_t size);
duke@435 638 void splitDeath(size_t size);
duke@435 639 void split(size_t from, size_t to1);
duke@435 640
duke@435 641 double flsFrag() const;
duke@435 642 };
duke@435 643
duke@435 644 // A parallel-GC-thread-local allocation buffer for allocation into a
duke@435 645 // CompactibleFreeListSpace.
zgu@3900 646 class CFLS_LAB : public CHeapObj<mtGC> {
duke@435 647 // The space that this buffer allocates into.
duke@435 648 CompactibleFreeListSpace* _cfls;
duke@435 649
duke@435 650 // Our local free lists.
jmasa@4196 651 AdaptiveFreeList<FreeChunk> _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
duke@435 652
duke@435 653 // Initialized from a command-line arg.
duke@435 654
ysr@1580 655 // Allocation statistics in support of dynamic adjustment of
ysr@1580 656 // #blocks to claim per get_from_global_pool() call below.
ysr@1580 657 static AdaptiveWeightedAverage
ysr@1580 658 _blocks_to_claim [CompactibleFreeListSpace::IndexSetSize];
ysr@1580 659 static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
jmasa@3357 660 static uint _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
ysr@1580 661 size_t _num_blocks [CompactibleFreeListSpace::IndexSetSize];
ysr@1580 662
ysr@1580 663 // Internal work method
jmasa@4196 664 void get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl);
duke@435 665
duke@435 666 public:
duke@435 667 CFLS_LAB(CompactibleFreeListSpace* cfls);
duke@435 668
duke@435 669 // Allocate and return a block of the given size, or else return NULL.
duke@435 670 HeapWord* alloc(size_t word_sz);
duke@435 671
duke@435 672 // Return any unused portions of the buffer to the global pool.
ysr@1580 673 void retire(int tid);
ysr@1580 674
ysr@1580 675 // Dynamic OldPLABSize sizing
ysr@1580 676 static void compute_desired_plab_size();
ysr@1580 677 // When the settings are modified from default static initialization
ysr@1580 678 static void modify_initialization(size_t n, unsigned wt);
duke@435 679 };
duke@435 680
duke@435 681 size_t PromotionInfo::refillSize() const {
duke@435 682 const size_t CMSSpoolBlockSize = 256;
duke@435 683 const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
duke@435 684 * CMSSpoolBlockSize);
duke@435 685 return CompactibleFreeListSpace::adjustObjectSize(sz);
duke@435 686 }
stefank@2314 687
stefank@2314 688 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP

mercurial