src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp

Tue, 17 Dec 2019 05:26:57 +0000

author
zgu
date
Tue, 17 Dec 2019 05:26:57 +0000
changeset 9793
7386b3a385ac
parent 7476
c2844108a708
child 9806
758c07667682
permissions
-rw-r--r--

8229420: [Redo] jstat reports incorrect values for OU for CMS GC
Reviewed-by: andrew

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
    28 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
    29 #include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
    30 #include "memory/binaryTreeDictionary.hpp"
    31 #include "memory/blockOffsetTable.inline.hpp"
    32 #include "memory/freeList.hpp"
    33 #include "memory/space.hpp"
    35 // Classes in support of keeping track of promotions into a non-Contiguous
    36 // space, in this case a CompactibleFreeListSpace.
    38 // Forward declarations
    39 class CompactibleFreeListSpace;
    40 class BlkClosure;
    41 class BlkClosureCareful;
    42 class FreeChunk;
    43 class UpwardsObjectClosure;
    44 class ObjectClosureCareful;
    45 class Klass;
    47 class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
    48  public:
    49   LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
    50     _allocation_size_limit(0) {}
    51   void set(HeapWord* ptr, size_t word_size, size_t refill_size,
    52     size_t allocation_size_limit) {
    53     _ptr = ptr;
    54     _word_size = word_size;
    55     _refillSize = refill_size;
    56     _allocation_size_limit = allocation_size_limit;
    57   }
    58   HeapWord* _ptr;
    59   size_t    _word_size;
    60   size_t    _refillSize;
    61   size_t    _allocation_size_limit;  // largest size that will be allocated
    63   void print_on(outputStream* st) const;
    64 };
    66 // Concrete subclass of CompactibleSpace that implements
    67 // a free list space, such as used in the concurrent mark sweep
    68 // generation.
    70 class CompactibleFreeListSpace: public CompactibleSpace {
    71   friend class VMStructs;
    72   friend class ConcurrentMarkSweepGeneration;
    73   friend class ASConcurrentMarkSweepGeneration;
    74   friend class CMSCollector;
    75   // Local alloc buffer for promotion into this space.
    76   friend class CFLS_LAB;
    78   // "Size" of chunks of work (executed during parallel remark phases
    79   // of CMS collection); this probably belongs in CMSCollector, although
    80   // it's cached here because it's used in
    81   // initialize_sequential_subtasks_for_rescan() which modifies
    82   // par_seq_tasks which also lives in Space. XXX
    83   const size_t _rescan_task_size;
    84   const size_t _marking_task_size;
    86   // Yet another sequential tasks done structure. This supports
    87   // CMS GC, where we have threads dynamically
    88   // claiming sub-tasks from a larger parallel task.
    89   SequentialSubTasksDone _conc_par_seq_tasks;
    91   BlockOffsetArrayNonContigSpace _bt;
    93   CMSCollector* _collector;
    94   ConcurrentMarkSweepGeneration* _gen;
    96   // Data structures for free blocks (used during allocation/sweeping)
    98   // Allocation is done linearly from two different blocks depending on
    99   // whether the request is small or large, in an effort to reduce
   100   // fragmentation. We assume that any locking for allocation is done
   101   // by the containing generation. Thus, none of the methods in this
   102   // space are re-entrant.
   103   enum SomeConstants {
   104     SmallForLinearAlloc = 16,        // size < this then use _sLAB
   105     SmallForDictionary  = 257,       // size < this then use _indexedFreeList
   106     IndexSetSize        = SmallForDictionary  // keep this odd-sized
   107   };
   108   static size_t IndexSetStart;
   109   static size_t IndexSetStride;
   111  private:
   112   enum FitStrategyOptions {
   113     FreeBlockStrategyNone = 0,
   114     FreeBlockBestFitFirst
   115   };
   117   PromotionInfo _promoInfo;
   119   // helps to impose a global total order on freelistLock ranks;
   120   // assumes that CFLSpace's are allocated in global total order
   121   static int   _lockRank;
   123   // a lock protecting the free lists and free blocks;
   124   // mutable because of ubiquity of locking even for otherwise const methods
   125   mutable Mutex _freelistLock;
   126   // locking verifier convenience function
   127   void assert_locked() const PRODUCT_RETURN;
   128   void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
   130   // Linear allocation blocks
   131   LinearAllocBlock _smallLinearAllocBlock;
   133   FreeBlockDictionary<FreeChunk>::DictionaryChoice _dictionaryChoice;
   134   AFLBinaryTreeDictionary* _dictionary;    // ptr to dictionary for large size blocks
   136   AdaptiveFreeList<FreeChunk> _indexedFreeList[IndexSetSize];
   137                                        // indexed array for small size blocks
   138   // allocation stategy
   139   bool       _fitStrategy;      // Use best fit strategy.
   140   bool       _adaptive_freelists; // Use adaptive freelists
   142   // This is an address close to the largest free chunk in the heap.
   143   // It is currently assumed to be at the end of the heap.  Free
   144   // chunks with addresses greater than nearLargestChunk are coalesced
   145   // in an effort to maintain a large chunk at the end of the heap.
   146   HeapWord*  _nearLargestChunk;
   148   // Used to keep track of limit of sweep for the space
   149   HeapWord* _sweep_limit;
   151   // Stable value of used().
   152   size_t _used_stable;
   154   // Support for compacting cms
   155   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   156   HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
   158   // Initialization helpers.
   159   void initializeIndexedFreeListArray();
   161   // Extra stuff to manage promotion parallelism.
   163   // a lock protecting the dictionary during par promotion allocation.
   164   mutable Mutex _parDictionaryAllocLock;
   165   Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
   167   // Locks protecting the exact lists during par promotion allocation.
   168   Mutex* _indexedFreeListParLocks[IndexSetSize];
   170   // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
   171   // required to be smaller than "IndexSetSize".)  If successful,
   172   // adds them to "fl", which is required to be an empty free list.
   173   // If the count of "fl" is negative, it's absolute value indicates a
   174   // number of free chunks that had been previously "borrowed" from global
   175   // list of size "word_sz", and must now be decremented.
   176   void par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
   178   // Used by par_get_chunk_of_blocks() for the chunks from the
   179   // indexed_free_lists.
   180   bool par_get_chunk_of_blocks_IFL(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
   182   // Used by par_get_chunk_of_blocks_dictionary() to get a chunk
   183   // evenly splittable into "n" "word_sz" chunks.  Returns that
   184   // evenly splittable chunk.  May split a larger chunk to get the
   185   // evenly splittable chunk.
   186   FreeChunk* get_n_way_chunk_to_split(size_t word_sz, size_t n);
   188   // Used by par_get_chunk_of_blocks() for the chunks from the
   189   // dictionary.
   190   void par_get_chunk_of_blocks_dictionary(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
   192   // Allocation helper functions
   193   // Allocate using a strategy that takes from the indexed free lists
   194   // first.  This allocation strategy assumes a companion sweeping
   195   // strategy that attempts to keep the needed number of chunks in each
   196   // indexed free lists.
   197   HeapWord* allocate_adaptive_freelists(size_t size);
   198   // Allocate from the linear allocation buffers first.  This allocation
   199   // strategy assumes maximal coalescing can maintain chunks large enough
   200   // to be used as linear allocation buffers.
   201   HeapWord* allocate_non_adaptive_freelists(size_t size);
   203   // Gets a chunk from the linear allocation block (LinAB).  If there
   204   // is not enough space in the LinAB, refills it.
   205   HeapWord*  getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
   206   HeapWord*  getChunkFromSmallLinearAllocBlock(size_t size);
   207   // Get a chunk from the space remaining in the linear allocation block.  Do
   208   // not attempt to refill if the space is not available, return NULL.  Do the
   209   // repairs on the linear allocation block as appropriate.
   210   HeapWord*  getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
   211   inline HeapWord*  getChunkFromSmallLinearAllocBlockRemainder(size_t size);
   213   // Helper function for getChunkFromIndexedFreeList.
   214   // Replenish the indexed free list for this "size".  Do not take from an
   215   // underpopulated size.
   216   FreeChunk*  getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
   218   // Get a chunk from the indexed free list.  If the indexed free list
   219   // does not have a free chunk, try to replenish the indexed free list
   220   // then get the free chunk from the replenished indexed free list.
   221   inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
   223   // The returned chunk may be larger than requested (or null).
   224   FreeChunk* getChunkFromDictionary(size_t size);
   225   // The returned chunk is the exact size requested (or null).
   226   FreeChunk* getChunkFromDictionaryExact(size_t size);
   228   // Find a chunk in the indexed free list that is the best
   229   // fit for size "numWords".
   230   FreeChunk* bestFitSmall(size_t numWords);
   231   // For free list "fl" of chunks of size > numWords,
   232   // remove a chunk, split off a chunk of size numWords
   233   // and return it.  The split off remainder is returned to
   234   // the free lists.  The old name for getFromListGreater
   235   // was lookInListGreater.
   236   FreeChunk* getFromListGreater(AdaptiveFreeList<FreeChunk>* fl, size_t numWords);
   237   // Get a chunk in the indexed free list or dictionary,
   238   // by considering a larger chunk and splitting it.
   239   FreeChunk* getChunkFromGreater(size_t numWords);
   240   //  Verify that the given chunk is in the indexed free lists.
   241   bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
   242   // Remove the specified chunk from the indexed free lists.
   243   void       removeChunkFromIndexedFreeList(FreeChunk* fc);
   244   // Remove the specified chunk from the dictionary.
   245   void       removeChunkFromDictionary(FreeChunk* fc);
   246   // Split a free chunk into a smaller free chunk of size "new_size".
   247   // Return the smaller free chunk and return the remainder to the
   248   // free lists.
   249   FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
   250   // Add a chunk to the free lists.
   251   void       addChunkToFreeLists(HeapWord* chunk, size_t size);
   252   // Add a chunk to the free lists, preferring to suffix it
   253   // to the last free chunk at end of space if possible, and
   254   // updating the block census stats as well as block offset table.
   255   // Take any locks as appropriate if we are multithreaded.
   256   void       addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
   257   // Add a free chunk to the indexed free lists.
   258   void       returnChunkToFreeList(FreeChunk* chunk);
   259   // Add a free chunk to the dictionary.
   260   void       returnChunkToDictionary(FreeChunk* chunk);
   262   // Functions for maintaining the linear allocation buffers (LinAB).
   263   // Repairing a linear allocation block refers to operations
   264   // performed on the remainder of a LinAB after an allocation
   265   // has been made from it.
   266   void       repairLinearAllocationBlocks();
   267   void       repairLinearAllocBlock(LinearAllocBlock* blk);
   268   void       refillLinearAllocBlock(LinearAllocBlock* blk);
   269   void       refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
   270   void       refillLinearAllocBlocksIfNeeded();
   272   void       verify_objects_initialized() const;
   274   // Statistics reporting helper functions
   275   void       reportFreeListStatistics() const;
   276   void       reportIndexedFreeListStatistics() const;
   277   size_t     maxChunkSizeInIndexedFreeLists() const;
   278   size_t     numFreeBlocksInIndexedFreeLists() const;
   279   // Accessor
   280   HeapWord* unallocated_block() const {
   281     if (BlockOffsetArrayUseUnallocatedBlock) {
   282       HeapWord* ub = _bt.unallocated_block();
   283       assert(ub >= bottom() &&
   284              ub <= end(), "space invariant");
   285       return ub;
   286     } else {
   287       return end();
   288     }
   289   }
   290   void freed(HeapWord* start, size_t size) {
   291     _bt.freed(start, size);
   292   }
   294  protected:
   295   // reset the indexed free list to its initial empty condition.
   296   void resetIndexedFreeListArray();
   297   // reset to an initial state with a single free block described
   298   // by the MemRegion parameter.
   299   void reset(MemRegion mr);
   300   // Return the total number of words in the indexed free lists.
   301   size_t     totalSizeInIndexedFreeLists() const;
   303  public:
   304   // Constructor...
   305   CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
   306                            bool use_adaptive_freelists,
   307                            FreeBlockDictionary<FreeChunk>::DictionaryChoice);
   308   // accessors
   309   bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
   310   FreeBlockDictionary<FreeChunk>* dictionary() const { return _dictionary; }
   311   HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
   312   void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
   314   // Set CMS global values
   315   static void set_cms_values();
   317   // Return the free chunk at the end of the space.  If no such
   318   // chunk exists, return NULL.
   319   FreeChunk* find_chunk_at_end();
   321   bool adaptive_freelists() const { return _adaptive_freelists; }
   323   void set_collector(CMSCollector* collector) { _collector = collector; }
   325   // Support for parallelization of rescan and marking
   326   const size_t rescan_task_size()  const { return _rescan_task_size;  }
   327   const size_t marking_task_size() const { return _marking_task_size; }
   328   SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
   329   void initialize_sequential_subtasks_for_rescan(int n_threads);
   330   void initialize_sequential_subtasks_for_marking(int n_threads,
   331          HeapWord* low = NULL);
   333   // Space enquiries
   334   size_t used() const;
   335   size_t free() const;
   336   size_t max_alloc_in_words() const;
   337   // XXX: should have a less conservative used_region() than that of
   338   // Space; we could consider keeping track of highest allocated
   339   // address and correcting that at each sweep, as the sweeper
   340   // goes through the entire allocated part of the generation. We
   341   // could also use that information to keep the sweeper from
   342   // sweeping more than is necessary. The allocator and sweeper will
   343   // of course need to synchronize on this, since the sweeper will
   344   // try to bump down the address and the allocator will try to bump it up.
   345   // For now, however, we'll just use the default used_region()
   346   // which overestimates the region by returning the entire
   347   // committed region (this is safe, but inefficient).
   349   // Returns monotonically increasing stable used space bytes for CMS.
   350   // This is required for jstat and other memory monitoring tools
   351   // that might otherwise see inconsistent used space values during a garbage
   352   // collection, promotion or allocation into compactibleFreeListSpace.
   353   // The value returned by this function might be smaller than the
   354   // actual value.
   355   size_t used_stable() const;
   356   // Recalculate and cache the current stable used() value. Only to be called
   357   // in places where we can be sure that the result is stable.
   358   void recalculate_used_stable();
   360   // Returns a subregion of the space containing all the objects in
   361   // the space.
   362   MemRegion used_region() const {
   363     return MemRegion(bottom(),
   364                      BlockOffsetArrayUseUnallocatedBlock ?
   365                      unallocated_block() : end());
   366   }
   368   virtual bool is_free_block(const HeapWord* p) const;
   370   // Resizing support
   371   void set_end(HeapWord* value);  // override
   373   // mutual exclusion support
   374   Mutex* freelistLock() const { return &_freelistLock; }
   376   // Iteration support
   377   void oop_iterate(ExtendedOopClosure* cl);
   379   void object_iterate(ObjectClosure* blk);
   380   // Apply the closure to each object in the space whose references
   381   // point to objects in the heap.  The usage of CompactibleFreeListSpace
   382   // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
   383   // objects in the space with references to objects that are no longer
   384   // valid.  For example, an object may reference another object
   385   // that has already been sweep up (collected).  This method uses
   386   // obj_is_alive() to determine whether it is safe to iterate of
   387   // an object.
   388   void safe_object_iterate(ObjectClosure* blk);
   390   // Iterate over all objects that intersect with mr, calling "cl->do_object"
   391   // on each.  There is an exception to this: if this closure has already
   392   // been invoked on an object, it may skip such objects in some cases.  This is
   393   // Most likely to happen in an "upwards" (ascending address) iteration of
   394   // MemRegions.
   395   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   397   // Requires that "mr" be entirely within the space.
   398   // Apply "cl->do_object" to all objects that intersect with "mr".
   399   // If the iteration encounters an unparseable portion of the region,
   400   // terminate the iteration and return the address of the start of the
   401   // subregion that isn't done.  Return of "NULL" indicates that the
   402   // interation completed.
   403  HeapWord* object_iterate_careful_m(MemRegion mr,
   404                                     ObjectClosureCareful* cl);
   406   // Override: provides a DCTO_CL specific to this kind of space.
   407   DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
   408                                      CardTableModRefBS::PrecisionStyle precision,
   409                                      HeapWord* boundary);
   411   void blk_iterate(BlkClosure* cl);
   412   void blk_iterate_careful(BlkClosureCareful* cl);
   413   HeapWord* block_start_const(const void* p) const;
   414   HeapWord* block_start_careful(const void* p) const;
   415   size_t block_size(const HeapWord* p) const;
   416   size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
   417   bool block_is_obj(const HeapWord* p) const;
   418   bool obj_is_alive(const HeapWord* p) const;
   419   size_t block_size_nopar(const HeapWord* p) const;
   420   bool block_is_obj_nopar(const HeapWord* p) const;
   422   // iteration support for promotion
   423   void save_marks();
   424   bool no_allocs_since_save_marks();
   426   // iteration support for sweeping
   427   void save_sweep_limit() {
   428     _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
   429                    unallocated_block() : end();
   430     if (CMSTraceSweeper) {
   431       gclog_or_tty->print_cr(">>>>> Saving sweep limit " PTR_FORMAT
   432                              "  for space [" PTR_FORMAT "," PTR_FORMAT ") <<<<<<",
   433                              p2i(_sweep_limit), p2i(bottom()), p2i(end()));
   434     }
   435   }
   436   NOT_PRODUCT(
   437     void clear_sweep_limit() { _sweep_limit = NULL; }
   438   )
   439   HeapWord* sweep_limit() { return _sweep_limit; }
   441   // Apply "blk->do_oop" to the addresses of all reference fields in objects
   442   // promoted into this generation since the most recent save_marks() call.
   443   // Fields in objects allocated by applications of the closure
   444   // *are* included in the iteration. Thus, when the iteration completes
   445   // there should be no further such objects remaining.
   446   #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   447     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
   448   ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
   449   #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
   451   // Allocation support
   452   HeapWord* allocate(size_t size);
   453   HeapWord* par_allocate(size_t size);
   455   oop       promote(oop obj, size_t obj_size);
   456   void      gc_prologue();
   457   void      gc_epilogue();
   459   // This call is used by a containing CMS generation / collector
   460   // to inform the CFLS space that a sweep has been completed
   461   // and that the space can do any related house-keeping functions.
   462   void      sweep_completed();
   464   // For an object in this space, the mark-word's two
   465   // LSB's having the value [11] indicates that it has been
   466   // promoted since the most recent call to save_marks() on
   467   // this generation and has not subsequently been iterated
   468   // over (using oop_since_save_marks_iterate() above).
   469   // This property holds only for single-threaded collections,
   470   // and is typically used for Cheney scans; for MT scavenges,
   471   // the property holds for all objects promoted during that
   472   // scavenge for the duration of the scavenge and is used
   473   // by card-scanning to avoid scanning objects (being) promoted
   474   // during that scavenge.
   475   bool obj_allocated_since_save_marks(const oop obj) const {
   476     assert(is_in_reserved(obj), "Wrong space?");
   477     return ((PromotedObject*)obj)->hasPromotedMark();
   478   }
   480   // A worst-case estimate of the space required (in HeapWords) to expand the
   481   // heap when promoting an obj of size obj_size.
   482   size_t expansionSpaceRequired(size_t obj_size) const;
   484   FreeChunk* allocateScratch(size_t size);
   486   // returns true if either the small or large linear allocation buffer is empty.
   487   bool       linearAllocationWouldFail() const;
   489   // Adjust the chunk for the minimum size.  This version is called in
   490   // most cases in CompactibleFreeListSpace methods.
   491   inline static size_t adjustObjectSize(size_t size) {
   492     return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
   493   }
   494   // This is a virtual version of adjustObjectSize() that is called
   495   // only occasionally when the compaction space changes and the type
   496   // of the new compaction space is is only known to be CompactibleSpace.
   497   size_t adjust_object_size_v(size_t size) const {
   498     return adjustObjectSize(size);
   499   }
   500   // Minimum size of a free block.
   501   virtual size_t minimum_free_block_size() const { return MinChunkSize; }
   502   void      removeFreeChunkFromFreeLists(FreeChunk* chunk);
   503   void      addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
   504               bool coalesced);
   506   // Support for decisions regarding concurrent collection policy
   507   bool should_concurrent_collect() const;
   509   // Support for compaction
   510   void prepare_for_compaction(CompactPoint* cp);
   511   void adjust_pointers();
   512   void compact();
   513   // reset the space to reflect the fact that a compaction of the
   514   // space has been done.
   515   virtual void reset_after_compaction();
   517   // Debugging support
   518   void print()                            const;
   519   void print_on(outputStream* st)         const;
   520   void prepare_for_verify();
   521   void verify()                           const;
   522   void verifyFreeLists()                  const PRODUCT_RETURN;
   523   void verifyIndexedFreeLists()           const;
   524   void verifyIndexedFreeList(size_t size) const;
   525   // Verify that the given chunk is in the free lists:
   526   // i.e. either the binary tree dictionary, the indexed free lists
   527   // or the linear allocation block.
   528   bool verify_chunk_in_free_list(FreeChunk* fc) const;
   529   // Verify that the given chunk is the linear allocation block
   530   bool verify_chunk_is_linear_alloc_block(FreeChunk* fc) const;
   531   // Do some basic checks on the the free lists.
   532   void check_free_list_consistency()      const PRODUCT_RETURN;
   534   // Printing support
   535   void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
   536   void print_indexed_free_lists(outputStream* st) const;
   537   void print_dictionary_free_lists(outputStream* st) const;
   538   void print_promo_info_blocks(outputStream* st) const;
   540   NOT_PRODUCT (
   541     void initializeIndexedFreeListArrayReturnedBytes();
   542     size_t sumIndexedFreeListArrayReturnedBytes();
   543     // Return the total number of chunks in the indexed free lists.
   544     size_t totalCountInIndexedFreeLists() const;
   545     // Return the total numberof chunks in the space.
   546     size_t totalCount();
   547   )
   549   // The census consists of counts of the quantities such as
   550   // the current count of the free chunks, number of chunks
   551   // created as a result of the split of a larger chunk or
   552   // coalescing of smaller chucks, etc.  The counts in the
   553   // census is used to make decisions on splitting and
   554   // coalescing of chunks during the sweep of garbage.
   556   // Print the statistics for the free lists.
   557   void printFLCensus(size_t sweep_count) const;
   559   // Statistics functions
   560   // Initialize census for lists before the sweep.
   561   void beginSweepFLCensus(float inter_sweep_current,
   562                           float inter_sweep_estimate,
   563                           float intra_sweep_estimate);
   564   // Set the surplus for each of the free lists.
   565   void setFLSurplus();
   566   // Set the hint for each of the free lists.
   567   void setFLHints();
   568   // Clear the census for each of the free lists.
   569   void clearFLCensus();
   570   // Perform functions for the census after the end of the sweep.
   571   void endSweepFLCensus(size_t sweep_count);
   572   // Return true if the count of free chunks is greater
   573   // than the desired number of free chunks.
   574   bool coalOverPopulated(size_t size);
   576 // Record (for each size):
   577 //
   578 //   split-births = #chunks added due to splits in (prev-sweep-end,
   579 //      this-sweep-start)
   580 //   split-deaths = #chunks removed for splits in (prev-sweep-end,
   581 //      this-sweep-start)
   582 //   num-curr     = #chunks at start of this sweep
   583 //   num-prev     = #chunks at end of previous sweep
   584 //
   585 // The above are quantities that are measured. Now define:
   586 //
   587 //   num-desired := num-prev + split-births - split-deaths - num-curr
   588 //
   589 // Roughly, num-prev + split-births is the supply,
   590 // split-deaths is demand due to other sizes
   591 // and num-curr is what we have left.
   592 //
   593 // Thus, num-desired is roughly speaking the "legitimate demand"
   594 // for blocks of this size and what we are striving to reach at the
   595 // end of the current sweep.
   596 //
   597 // For a given list, let num-len be its current population.
   598 // Define, for a free list of a given size:
   599 //
   600 //   coal-overpopulated := num-len >= num-desired * coal-surplus
   601 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
   602 // coalescing -- we do not coalesce unless we think that the current
   603 // supply has exceeded the estimated demand by more than 5%).
   604 //
   605 // For the set of sizes in the binary tree, which is neither dense nor
   606 // closed, it may be the case that for a particular size we have never
   607 // had, or do not now have, or did not have at the previous sweep,
   608 // chunks of that size. We need to extend the definition of
   609 // coal-overpopulated to such sizes as well:
   610 //
   611 //   For a chunk in/not in the binary tree, extend coal-overpopulated
   612 //   defined above to include all sizes as follows:
   613 //
   614 //   . a size that is non-existent is coal-overpopulated
   615 //   . a size that has a num-desired <= 0 as defined above is
   616 //     coal-overpopulated.
   617 //
   618 // Also define, for a chunk heap-offset C and mountain heap-offset M:
   619 //
   620 //   close-to-mountain := C >= 0.99 * M
   621 //
   622 // Now, the coalescing strategy is:
   623 //
   624 //    Coalesce left-hand chunk with right-hand chunk if and
   625 //    only if:
   626 //
   627 //      EITHER
   628 //        . left-hand chunk is of a size that is coal-overpopulated
   629 //      OR
   630 //        . right-hand chunk is close-to-mountain
   631   void smallCoalBirth(size_t size);
   632   void smallCoalDeath(size_t size);
   633   void coalBirth(size_t size);
   634   void coalDeath(size_t size);
   635   void smallSplitBirth(size_t size);
   636   void smallSplitDeath(size_t size);
   637   void split_birth(size_t size);
   638   void splitDeath(size_t size);
   639   void split(size_t from, size_t to1);
   641   double flsFrag() const;
   642 };
   644 // A parallel-GC-thread-local allocation buffer for allocation into a
   645 // CompactibleFreeListSpace.
   646 class CFLS_LAB : public CHeapObj<mtGC> {
   647   // The space that this buffer allocates into.
   648   CompactibleFreeListSpace* _cfls;
   650   // Our local free lists.
   651   AdaptiveFreeList<FreeChunk> _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
   653   // Initialized from a command-line arg.
   655   // Allocation statistics in support of dynamic adjustment of
   656   // #blocks to claim per get_from_global_pool() call below.
   657   static AdaptiveWeightedAverage
   658                  _blocks_to_claim  [CompactibleFreeListSpace::IndexSetSize];
   659   static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
   660   static uint   _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
   661   size_t        _num_blocks        [CompactibleFreeListSpace::IndexSetSize];
   663   // Internal work method
   664   void get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl);
   666 public:
   667   CFLS_LAB(CompactibleFreeListSpace* cfls);
   669   // Allocate and return a block of the given size, or else return NULL.
   670   HeapWord* alloc(size_t word_sz);
   672   // Return any unused portions of the buffer to the global pool.
   673   void retire(int tid);
   675   // Dynamic OldPLABSize sizing
   676   static void compute_desired_plab_size();
   677   // When the settings are modified from default static initialization
   678   static void modify_initialization(size_t n, unsigned wt);
   679 };
   681 size_t PromotionInfo::refillSize() const {
   682   const size_t CMSSpoolBlockSize = 256;
   683   const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
   684                                    * CMSSpoolBlockSize);
   685   return CompactibleFreeListSpace::adjustObjectSize(sz);
   686 }
   688 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP

mercurial