src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp

Wed, 26 Oct 2011 21:07:52 -0700

author
ysr
date
Wed, 26 Oct 2011 21:07:52 -0700
changeset 3264
5a5ed80bea5b
parent 3220
c08412904149
child 3335
3c648b9ad052
permissions
-rw-r--r--

7105163: CMS: some mentions of MinChunkSize should be IndexSetStart
Summary: Fixed the instances that were missed in the changeset for 7099817.
Reviewed-by: stefank

duke@435 1 /*
ysr@2943 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
stefank@2314 29 #include "gc_implementation/concurrentMarkSweep/freeList.hpp"
stefank@2314 30 #include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
stefank@2314 31 #include "memory/blockOffsetTable.inline.hpp"
stefank@2314 32 #include "memory/space.hpp"
stefank@2314 33
duke@435 34 // Classes in support of keeping track of promotions into a non-Contiguous
duke@435 35 // space, in this case a CompactibleFreeListSpace.
duke@435 36
duke@435 37 // Forward declarations
duke@435 38 class CompactibleFreeListSpace;
duke@435 39 class BlkClosure;
duke@435 40 class BlkClosureCareful;
duke@435 41 class UpwardsObjectClosure;
duke@435 42 class ObjectClosureCareful;
duke@435 43 class Klass;
duke@435 44
duke@435 45 class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
duke@435 46 public:
duke@435 47 LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
duke@435 48 _allocation_size_limit(0) {}
duke@435 49 void set(HeapWord* ptr, size_t word_size, size_t refill_size,
duke@435 50 size_t allocation_size_limit) {
duke@435 51 _ptr = ptr;
duke@435 52 _word_size = word_size;
duke@435 53 _refillSize = refill_size;
duke@435 54 _allocation_size_limit = allocation_size_limit;
duke@435 55 }
duke@435 56 HeapWord* _ptr;
duke@435 57 size_t _word_size;
duke@435 58 size_t _refillSize;
duke@435 59 size_t _allocation_size_limit; // largest size that will be allocated
ysr@2071 60
ysr@2071 61 void print_on(outputStream* st) const;
duke@435 62 };
duke@435 63
duke@435 64 // Concrete subclass of CompactibleSpace that implements
duke@435 65 // a free list space, such as used in the concurrent mark sweep
duke@435 66 // generation.
duke@435 67
duke@435 68 class CompactibleFreeListSpace: public CompactibleSpace {
duke@435 69 friend class VMStructs;
duke@435 70 friend class ConcurrentMarkSweepGeneration;
duke@435 71 friend class ASConcurrentMarkSweepGeneration;
duke@435 72 friend class CMSCollector;
duke@435 73 friend class CMSPermGenGen;
duke@435 74 // Local alloc buffer for promotion into this space.
duke@435 75 friend class CFLS_LAB;
duke@435 76
duke@435 77 // "Size" of chunks of work (executed during parallel remark phases
duke@435 78 // of CMS collection); this probably belongs in CMSCollector, although
duke@435 79 // it's cached here because it's used in
duke@435 80 // initialize_sequential_subtasks_for_rescan() which modifies
duke@435 81 // par_seq_tasks which also lives in Space. XXX
duke@435 82 const size_t _rescan_task_size;
duke@435 83 const size_t _marking_task_size;
duke@435 84
duke@435 85 // Yet another sequential tasks done structure. This supports
duke@435 86 // CMS GC, where we have threads dynamically
duke@435 87 // claiming sub-tasks from a larger parallel task.
duke@435 88 SequentialSubTasksDone _conc_par_seq_tasks;
duke@435 89
duke@435 90 BlockOffsetArrayNonContigSpace _bt;
duke@435 91
duke@435 92 CMSCollector* _collector;
duke@435 93 ConcurrentMarkSweepGeneration* _gen;
duke@435 94
duke@435 95 // Data structures for free blocks (used during allocation/sweeping)
duke@435 96
duke@435 97 // Allocation is done linearly from two different blocks depending on
duke@435 98 // whether the request is small or large, in an effort to reduce
duke@435 99 // fragmentation. We assume that any locking for allocation is done
duke@435 100 // by the containing generation. Thus, none of the methods in this
duke@435 101 // space are re-entrant.
duke@435 102 enum SomeConstants {
duke@435 103 SmallForLinearAlloc = 16, // size < this then use _sLAB
duke@435 104 SmallForDictionary = 257, // size < this then use _indexedFreeList
kvn@1926 105 IndexSetSize = SmallForDictionary // keep this odd-sized
duke@435 106 };
ysr@3264 107 static size_t IndexSetStart;
ysr@3264 108 static size_t IndexSetStride;
duke@435 109
duke@435 110 private:
duke@435 111 enum FitStrategyOptions {
duke@435 112 FreeBlockStrategyNone = 0,
duke@435 113 FreeBlockBestFitFirst
duke@435 114 };
duke@435 115
duke@435 116 PromotionInfo _promoInfo;
duke@435 117
duke@435 118 // helps to impose a global total order on freelistLock ranks;
duke@435 119 // assumes that CFLSpace's are allocated in global total order
duke@435 120 static int _lockRank;
duke@435 121
duke@435 122 // a lock protecting the free lists and free blocks;
duke@435 123 // mutable because of ubiquity of locking even for otherwise const methods
duke@435 124 mutable Mutex _freelistLock;
duke@435 125 // locking verifier convenience function
duke@435 126 void assert_locked() const PRODUCT_RETURN;
ysr@1580 127 void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
duke@435 128
duke@435 129 // Linear allocation blocks
duke@435 130 LinearAllocBlock _smallLinearAllocBlock;
duke@435 131
duke@435 132 FreeBlockDictionary::DictionaryChoice _dictionaryChoice;
duke@435 133 FreeBlockDictionary* _dictionary; // ptr to dictionary for large size blocks
duke@435 134
duke@435 135 FreeList _indexedFreeList[IndexSetSize];
duke@435 136 // indexed array for small size blocks
duke@435 137 // allocation stategy
duke@435 138 bool _fitStrategy; // Use best fit strategy.
duke@435 139 bool _adaptive_freelists; // Use adaptive freelists
duke@435 140
duke@435 141 // This is an address close to the largest free chunk in the heap.
duke@435 142 // It is currently assumed to be at the end of the heap. Free
duke@435 143 // chunks with addresses greater than nearLargestChunk are coalesced
duke@435 144 // in an effort to maintain a large chunk at the end of the heap.
duke@435 145 HeapWord* _nearLargestChunk;
duke@435 146
duke@435 147 // Used to keep track of limit of sweep for the space
duke@435 148 HeapWord* _sweep_limit;
duke@435 149
duke@435 150 // Support for compacting cms
duke@435 151 HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
duke@435 152 HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
duke@435 153
duke@435 154 // Initialization helpers.
duke@435 155 void initializeIndexedFreeListArray();
duke@435 156
duke@435 157 // Extra stuff to manage promotion parallelism.
duke@435 158
duke@435 159 // a lock protecting the dictionary during par promotion allocation.
duke@435 160 mutable Mutex _parDictionaryAllocLock;
duke@435 161 Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
duke@435 162
duke@435 163 // Locks protecting the exact lists during par promotion allocation.
duke@435 164 Mutex* _indexedFreeListParLocks[IndexSetSize];
duke@435 165
duke@435 166 // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
duke@435 167 // required to be smaller than "IndexSetSize".) If successful,
duke@435 168 // adds them to "fl", which is required to be an empty free list.
duke@435 169 // If the count of "fl" is negative, it's absolute value indicates a
duke@435 170 // number of free chunks that had been previously "borrowed" from global
duke@435 171 // list of size "word_sz", and must now be decremented.
duke@435 172 void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl);
duke@435 173
duke@435 174 // Allocation helper functions
duke@435 175 // Allocate using a strategy that takes from the indexed free lists
duke@435 176 // first. This allocation strategy assumes a companion sweeping
duke@435 177 // strategy that attempts to keep the needed number of chunks in each
duke@435 178 // indexed free lists.
duke@435 179 HeapWord* allocate_adaptive_freelists(size_t size);
duke@435 180 // Allocate from the linear allocation buffers first. This allocation
duke@435 181 // strategy assumes maximal coalescing can maintain chunks large enough
duke@435 182 // to be used as linear allocation buffers.
duke@435 183 HeapWord* allocate_non_adaptive_freelists(size_t size);
duke@435 184
duke@435 185 // Gets a chunk from the linear allocation block (LinAB). If there
duke@435 186 // is not enough space in the LinAB, refills it.
duke@435 187 HeapWord* getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
duke@435 188 HeapWord* getChunkFromSmallLinearAllocBlock(size_t size);
duke@435 189 // Get a chunk from the space remaining in the linear allocation block. Do
duke@435 190 // not attempt to refill if the space is not available, return NULL. Do the
duke@435 191 // repairs on the linear allocation block as appropriate.
duke@435 192 HeapWord* getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
duke@435 193 inline HeapWord* getChunkFromSmallLinearAllocBlockRemainder(size_t size);
duke@435 194
duke@435 195 // Helper function for getChunkFromIndexedFreeList.
duke@435 196 // Replenish the indexed free list for this "size". Do not take from an
duke@435 197 // underpopulated size.
ysr@1580 198 FreeChunk* getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
duke@435 199
duke@435 200 // Get a chunk from the indexed free list. If the indexed free list
duke@435 201 // does not have a free chunk, try to replenish the indexed free list
duke@435 202 // then get the free chunk from the replenished indexed free list.
duke@435 203 inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
duke@435 204
duke@435 205 // The returned chunk may be larger than requested (or null).
duke@435 206 FreeChunk* getChunkFromDictionary(size_t size);
duke@435 207 // The returned chunk is the exact size requested (or null).
duke@435 208 FreeChunk* getChunkFromDictionaryExact(size_t size);
duke@435 209
duke@435 210 // Find a chunk in the indexed free list that is the best
duke@435 211 // fit for size "numWords".
duke@435 212 FreeChunk* bestFitSmall(size_t numWords);
duke@435 213 // For free list "fl" of chunks of size > numWords,
duke@435 214 // remove a chunk, split off a chunk of size numWords
duke@435 215 // and return it. The split off remainder is returned to
duke@435 216 // the free lists. The old name for getFromListGreater
duke@435 217 // was lookInListGreater.
duke@435 218 FreeChunk* getFromListGreater(FreeList* fl, size_t numWords);
duke@435 219 // Get a chunk in the indexed free list or dictionary,
duke@435 220 // by considering a larger chunk and splitting it.
duke@435 221 FreeChunk* getChunkFromGreater(size_t numWords);
duke@435 222 // Verify that the given chunk is in the indexed free lists.
duke@435 223 bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
duke@435 224 // Remove the specified chunk from the indexed free lists.
duke@435 225 void removeChunkFromIndexedFreeList(FreeChunk* fc);
duke@435 226 // Remove the specified chunk from the dictionary.
duke@435 227 void removeChunkFromDictionary(FreeChunk* fc);
duke@435 228 // Split a free chunk into a smaller free chunk of size "new_size".
duke@435 229 // Return the smaller free chunk and return the remainder to the
duke@435 230 // free lists.
duke@435 231 FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
duke@435 232 // Add a chunk to the free lists.
duke@435 233 void addChunkToFreeLists(HeapWord* chunk, size_t size);
duke@435 234 // Add a chunk to the free lists, preferring to suffix it
duke@435 235 // to the last free chunk at end of space if possible, and
duke@435 236 // updating the block census stats as well as block offset table.
duke@435 237 // Take any locks as appropriate if we are multithreaded.
duke@435 238 void addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
duke@435 239 // Add a free chunk to the indexed free lists.
duke@435 240 void returnChunkToFreeList(FreeChunk* chunk);
duke@435 241 // Add a free chunk to the dictionary.
duke@435 242 void returnChunkToDictionary(FreeChunk* chunk);
duke@435 243
duke@435 244 // Functions for maintaining the linear allocation buffers (LinAB).
duke@435 245 // Repairing a linear allocation block refers to operations
duke@435 246 // performed on the remainder of a LinAB after an allocation
duke@435 247 // has been made from it.
duke@435 248 void repairLinearAllocationBlocks();
duke@435 249 void repairLinearAllocBlock(LinearAllocBlock* blk);
duke@435 250 void refillLinearAllocBlock(LinearAllocBlock* blk);
duke@435 251 void refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
duke@435 252 void refillLinearAllocBlocksIfNeeded();
duke@435 253
duke@435 254 void verify_objects_initialized() const;
duke@435 255
duke@435 256 // Statistics reporting helper functions
duke@435 257 void reportFreeListStatistics() const;
duke@435 258 void reportIndexedFreeListStatistics() const;
duke@435 259 size_t maxChunkSizeInIndexedFreeLists() const;
duke@435 260 size_t numFreeBlocksInIndexedFreeLists() const;
duke@435 261 // Accessor
duke@435 262 HeapWord* unallocated_block() const {
ysr@2071 263 if (BlockOffsetArrayUseUnallocatedBlock) {
ysr@2071 264 HeapWord* ub = _bt.unallocated_block();
ysr@2071 265 assert(ub >= bottom() &&
ysr@2071 266 ub <= end(), "space invariant");
ysr@2071 267 return ub;
ysr@2071 268 } else {
ysr@2071 269 return end();
ysr@2071 270 }
duke@435 271 }
duke@435 272 void freed(HeapWord* start, size_t size) {
duke@435 273 _bt.freed(start, size);
duke@435 274 }
duke@435 275
duke@435 276 protected:
duke@435 277 // reset the indexed free list to its initial empty condition.
duke@435 278 void resetIndexedFreeListArray();
duke@435 279 // reset to an initial state with a single free block described
duke@435 280 // by the MemRegion parameter.
duke@435 281 void reset(MemRegion mr);
duke@435 282 // Return the total number of words in the indexed free lists.
duke@435 283 size_t totalSizeInIndexedFreeLists() const;
duke@435 284
duke@435 285 public:
duke@435 286 // Constructor...
duke@435 287 CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
duke@435 288 bool use_adaptive_freelists,
duke@435 289 FreeBlockDictionary::DictionaryChoice);
duke@435 290 // accessors
duke@435 291 bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
duke@435 292 FreeBlockDictionary* dictionary() const { return _dictionary; }
duke@435 293 HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
duke@435 294 void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
duke@435 295
kvn@1926 296 // Set CMS global values
kvn@1926 297 static void set_cms_values();
kvn@1926 298
duke@435 299 // Return the free chunk at the end of the space. If no such
duke@435 300 // chunk exists, return NULL.
duke@435 301 FreeChunk* find_chunk_at_end();
duke@435 302
ysr@447 303 bool adaptive_freelists() const { return _adaptive_freelists; }
duke@435 304
duke@435 305 void set_collector(CMSCollector* collector) { _collector = collector; }
duke@435 306
duke@435 307 // Support for parallelization of rescan and marking
duke@435 308 const size_t rescan_task_size() const { return _rescan_task_size; }
duke@435 309 const size_t marking_task_size() const { return _marking_task_size; }
duke@435 310 SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
duke@435 311 void initialize_sequential_subtasks_for_rescan(int n_threads);
duke@435 312 void initialize_sequential_subtasks_for_marking(int n_threads,
duke@435 313 HeapWord* low = NULL);
duke@435 314
duke@435 315 // Space enquiries
duke@435 316 size_t used() const;
duke@435 317 size_t free() const;
duke@435 318 size_t max_alloc_in_words() const;
duke@435 319 // XXX: should have a less conservative used_region() than that of
duke@435 320 // Space; we could consider keeping track of highest allocated
duke@435 321 // address and correcting that at each sweep, as the sweeper
duke@435 322 // goes through the entire allocated part of the generation. We
duke@435 323 // could also use that information to keep the sweeper from
duke@435 324 // sweeping more than is necessary. The allocator and sweeper will
duke@435 325 // of course need to synchronize on this, since the sweeper will
duke@435 326 // try to bump down the address and the allocator will try to bump it up.
duke@435 327 // For now, however, we'll just use the default used_region()
duke@435 328 // which overestimates the region by returning the entire
duke@435 329 // committed region (this is safe, but inefficient).
duke@435 330
duke@435 331 // Returns a subregion of the space containing all the objects in
duke@435 332 // the space.
duke@435 333 MemRegion used_region() const {
duke@435 334 return MemRegion(bottom(),
duke@435 335 BlockOffsetArrayUseUnallocatedBlock ?
duke@435 336 unallocated_block() : end());
duke@435 337 }
duke@435 338
duke@435 339 // This is needed because the default implementation uses block_start()
duke@435 340 // which can;t be used at certain times (for example phase 3 of mark-sweep).
duke@435 341 // A better fix is to change the assertions in phase 3 of mark-sweep to
duke@435 342 // use is_in_reserved(), but that is deferred since the is_in() assertions
duke@435 343 // are buried through several layers of callers and are used elsewhere
duke@435 344 // as well.
duke@435 345 bool is_in(const void* p) const {
duke@435 346 return used_region().contains(p);
duke@435 347 }
duke@435 348
duke@435 349 virtual bool is_free_block(const HeapWord* p) const;
duke@435 350
duke@435 351 // Resizing support
duke@435 352 void set_end(HeapWord* value); // override
duke@435 353
duke@435 354 // mutual exclusion support
duke@435 355 Mutex* freelistLock() const { return &_freelistLock; }
duke@435 356
duke@435 357 // Iteration support
duke@435 358 void oop_iterate(MemRegion mr, OopClosure* cl);
duke@435 359 void oop_iterate(OopClosure* cl);
duke@435 360
duke@435 361 void object_iterate(ObjectClosure* blk);
jmasa@952 362 // Apply the closure to each object in the space whose references
jmasa@952 363 // point to objects in the heap. The usage of CompactibleFreeListSpace
jmasa@952 364 // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
jmasa@952 365 // objects in the space with references to objects that are no longer
jmasa@952 366 // valid. For example, an object may reference another object
jmasa@952 367 // that has already been sweep up (collected). This method uses
jmasa@952 368 // obj_is_alive() to determine whether it is safe to iterate of
jmasa@952 369 // an object.
jmasa@952 370 void safe_object_iterate(ObjectClosure* blk);
duke@435 371 void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
duke@435 372
duke@435 373 // Requires that "mr" be entirely within the space.
duke@435 374 // Apply "cl->do_object" to all objects that intersect with "mr".
duke@435 375 // If the iteration encounters an unparseable portion of the region,
duke@435 376 // terminate the iteration and return the address of the start of the
duke@435 377 // subregion that isn't done. Return of "NULL" indicates that the
duke@435 378 // interation completed.
duke@435 379 virtual HeapWord*
duke@435 380 object_iterate_careful_m(MemRegion mr,
duke@435 381 ObjectClosureCareful* cl);
duke@435 382 virtual HeapWord*
duke@435 383 object_iterate_careful(ObjectClosureCareful* cl);
duke@435 384
duke@435 385 // Override: provides a DCTO_CL specific to this kind of space.
duke@435 386 DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
duke@435 387 CardTableModRefBS::PrecisionStyle precision,
duke@435 388 HeapWord* boundary);
duke@435 389
duke@435 390 void blk_iterate(BlkClosure* cl);
duke@435 391 void blk_iterate_careful(BlkClosureCareful* cl);
ysr@777 392 HeapWord* block_start_const(const void* p) const;
duke@435 393 HeapWord* block_start_careful(const void* p) const;
duke@435 394 size_t block_size(const HeapWord* p) const;
duke@435 395 size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
duke@435 396 bool block_is_obj(const HeapWord* p) const;
duke@435 397 bool obj_is_alive(const HeapWord* p) const;
duke@435 398 size_t block_size_nopar(const HeapWord* p) const;
duke@435 399 bool block_is_obj_nopar(const HeapWord* p) const;
duke@435 400
duke@435 401 // iteration support for promotion
duke@435 402 void save_marks();
duke@435 403 bool no_allocs_since_save_marks();
duke@435 404 void object_iterate_since_last_GC(ObjectClosure* cl);
duke@435 405
duke@435 406 // iteration support for sweeping
duke@435 407 void save_sweep_limit() {
duke@435 408 _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
duke@435 409 unallocated_block() : end();
ysr@2943 410 if (CMSTraceSweeper) {
ysr@2943 411 gclog_or_tty->print_cr(">>>>> Saving sweep limit " PTR_FORMAT
ysr@2943 412 " for space [" PTR_FORMAT "," PTR_FORMAT ") <<<<<<",
ysr@2943 413 _sweep_limit, bottom(), end());
ysr@2943 414 }
duke@435 415 }
duke@435 416 NOT_PRODUCT(
duke@435 417 void clear_sweep_limit() { _sweep_limit = NULL; }
duke@435 418 )
duke@435 419 HeapWord* sweep_limit() { return _sweep_limit; }
duke@435 420
duke@435 421 // Apply "blk->do_oop" to the addresses of all reference fields in objects
duke@435 422 // promoted into this generation since the most recent save_marks() call.
duke@435 423 // Fields in objects allocated by applications of the closure
duke@435 424 // *are* included in the iteration. Thus, when the iteration completes
duke@435 425 // there should be no further such objects remaining.
duke@435 426 #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
duke@435 427 void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
duke@435 428 ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
duke@435 429 #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
duke@435 430
duke@435 431 // Allocation support
duke@435 432 HeapWord* allocate(size_t size);
duke@435 433 HeapWord* par_allocate(size_t size);
duke@435 434
coleenp@548 435 oop promote(oop obj, size_t obj_size);
duke@435 436 void gc_prologue();
duke@435 437 void gc_epilogue();
duke@435 438
duke@435 439 // This call is used by a containing CMS generation / collector
duke@435 440 // to inform the CFLS space that a sweep has been completed
duke@435 441 // and that the space can do any related house-keeping functions.
duke@435 442 void sweep_completed();
duke@435 443
duke@435 444 // For an object in this space, the mark-word's two
duke@435 445 // LSB's having the value [11] indicates that it has been
duke@435 446 // promoted since the most recent call to save_marks() on
duke@435 447 // this generation and has not subsequently been iterated
duke@435 448 // over (using oop_since_save_marks_iterate() above).
ysr@1876 449 // This property holds only for single-threaded collections,
ysr@1876 450 // and is typically used for Cheney scans; for MT scavenges,
ysr@1876 451 // the property holds for all objects promoted during that
ysr@1876 452 // scavenge for the duration of the scavenge and is used
ysr@1876 453 // by card-scanning to avoid scanning objects (being) promoted
ysr@1876 454 // during that scavenge.
duke@435 455 bool obj_allocated_since_save_marks(const oop obj) const {
duke@435 456 assert(is_in_reserved(obj), "Wrong space?");
duke@435 457 return ((PromotedObject*)obj)->hasPromotedMark();
duke@435 458 }
duke@435 459
duke@435 460 // A worst-case estimate of the space required (in HeapWords) to expand the
duke@435 461 // heap when promoting an obj of size obj_size.
duke@435 462 size_t expansionSpaceRequired(size_t obj_size) const;
duke@435 463
duke@435 464 FreeChunk* allocateScratch(size_t size);
duke@435 465
duke@435 466 // returns true if either the small or large linear allocation buffer is empty.
ysr@447 467 bool linearAllocationWouldFail() const;
duke@435 468
duke@435 469 // Adjust the chunk for the minimum size. This version is called in
duke@435 470 // most cases in CompactibleFreeListSpace methods.
duke@435 471 inline static size_t adjustObjectSize(size_t size) {
duke@435 472 return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
duke@435 473 }
duke@435 474 // This is a virtual version of adjustObjectSize() that is called
duke@435 475 // only occasionally when the compaction space changes and the type
duke@435 476 // of the new compaction space is is only known to be CompactibleSpace.
duke@435 477 size_t adjust_object_size_v(size_t size) const {
duke@435 478 return adjustObjectSize(size);
duke@435 479 }
duke@435 480 // Minimum size of a free block.
duke@435 481 virtual size_t minimum_free_block_size() const { return MinChunkSize; }
duke@435 482 void removeFreeChunkFromFreeLists(FreeChunk* chunk);
duke@435 483 void addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
duke@435 484 bool coalesced);
duke@435 485
ysr@447 486 // Support for decisions regarding concurrent collection policy
ysr@447 487 bool should_concurrent_collect() const;
ysr@447 488
duke@435 489 // Support for compaction
duke@435 490 void prepare_for_compaction(CompactPoint* cp);
duke@435 491 void adjust_pointers();
duke@435 492 void compact();
duke@435 493 // reset the space to reflect the fact that a compaction of the
duke@435 494 // space has been done.
duke@435 495 virtual void reset_after_compaction();
duke@435 496
duke@435 497 // Debugging support
duke@435 498 void print() const;
ysr@2071 499 void print_on(outputStream* st) const;
duke@435 500 void prepare_for_verify();
duke@435 501 void verify(bool allow_dirty) const;
duke@435 502 void verifyFreeLists() const PRODUCT_RETURN;
duke@435 503 void verifyIndexedFreeLists() const;
duke@435 504 void verifyIndexedFreeList(size_t size) const;
ysr@3220 505 // Verify that the given chunk is in the free lists:
ysr@3220 506 // i.e. either the binary tree dictionary, the indexed free lists
ysr@3220 507 // or the linear allocation block.
duke@435 508 bool verifyChunkInFreeLists(FreeChunk* fc) const;
ysr@3220 509 // Verify that the given chunk is the linear allocation block
ysr@3220 510 bool verify_chunk_is_linear_alloc_block(FreeChunk* fc) const;
duke@435 511 // Do some basic checks on the the free lists.
ysr@3220 512 void check_free_list_consistency() const PRODUCT_RETURN;
duke@435 513
ysr@1580 514 // Printing support
ysr@1580 515 void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
ysr@1580 516 void print_indexed_free_lists(outputStream* st) const;
ysr@1580 517 void print_dictionary_free_lists(outputStream* st) const;
ysr@1580 518 void print_promo_info_blocks(outputStream* st) const;
ysr@1580 519
duke@435 520 NOT_PRODUCT (
duke@435 521 void initializeIndexedFreeListArrayReturnedBytes();
duke@435 522 size_t sumIndexedFreeListArrayReturnedBytes();
duke@435 523 // Return the total number of chunks in the indexed free lists.
duke@435 524 size_t totalCountInIndexedFreeLists() const;
duke@435 525 // Return the total numberof chunks in the space.
duke@435 526 size_t totalCount();
duke@435 527 )
duke@435 528
duke@435 529 // The census consists of counts of the quantities such as
duke@435 530 // the current count of the free chunks, number of chunks
duke@435 531 // created as a result of the split of a larger chunk or
duke@435 532 // coalescing of smaller chucks, etc. The counts in the
duke@435 533 // census is used to make decisions on splitting and
duke@435 534 // coalescing of chunks during the sweep of garbage.
duke@435 535
duke@435 536 // Print the statistics for the free lists.
ysr@447 537 void printFLCensus(size_t sweep_count) const;
duke@435 538
duke@435 539 // Statistics functions
duke@435 540 // Initialize census for lists before the sweep.
ysr@1580 541 void beginSweepFLCensus(float inter_sweep_current,
ysr@1580 542 float inter_sweep_estimate,
ysr@1580 543 float intra_sweep_estimate);
duke@435 544 // Set the surplus for each of the free lists.
duke@435 545 void setFLSurplus();
duke@435 546 // Set the hint for each of the free lists.
duke@435 547 void setFLHints();
duke@435 548 // Clear the census for each of the free lists.
duke@435 549 void clearFLCensus();
duke@435 550 // Perform functions for the census after the end of the sweep.
ysr@447 551 void endSweepFLCensus(size_t sweep_count);
duke@435 552 // Return true if the count of free chunks is greater
duke@435 553 // than the desired number of free chunks.
duke@435 554 bool coalOverPopulated(size_t size);
duke@435 555
duke@435 556 // Record (for each size):
duke@435 557 //
duke@435 558 // split-births = #chunks added due to splits in (prev-sweep-end,
duke@435 559 // this-sweep-start)
duke@435 560 // split-deaths = #chunks removed for splits in (prev-sweep-end,
duke@435 561 // this-sweep-start)
duke@435 562 // num-curr = #chunks at start of this sweep
duke@435 563 // num-prev = #chunks at end of previous sweep
duke@435 564 //
duke@435 565 // The above are quantities that are measured. Now define:
duke@435 566 //
duke@435 567 // num-desired := num-prev + split-births - split-deaths - num-curr
duke@435 568 //
duke@435 569 // Roughly, num-prev + split-births is the supply,
duke@435 570 // split-deaths is demand due to other sizes
duke@435 571 // and num-curr is what we have left.
duke@435 572 //
duke@435 573 // Thus, num-desired is roughly speaking the "legitimate demand"
duke@435 574 // for blocks of this size and what we are striving to reach at the
duke@435 575 // end of the current sweep.
duke@435 576 //
duke@435 577 // For a given list, let num-len be its current population.
duke@435 578 // Define, for a free list of a given size:
duke@435 579 //
duke@435 580 // coal-overpopulated := num-len >= num-desired * coal-surplus
duke@435 581 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
duke@435 582 // coalescing -- we do not coalesce unless we think that the current
duke@435 583 // supply has exceeded the estimated demand by more than 5%).
duke@435 584 //
duke@435 585 // For the set of sizes in the binary tree, which is neither dense nor
duke@435 586 // closed, it may be the case that for a particular size we have never
duke@435 587 // had, or do not now have, or did not have at the previous sweep,
duke@435 588 // chunks of that size. We need to extend the definition of
duke@435 589 // coal-overpopulated to such sizes as well:
duke@435 590 //
duke@435 591 // For a chunk in/not in the binary tree, extend coal-overpopulated
duke@435 592 // defined above to include all sizes as follows:
duke@435 593 //
duke@435 594 // . a size that is non-existent is coal-overpopulated
duke@435 595 // . a size that has a num-desired <= 0 as defined above is
duke@435 596 // coal-overpopulated.
duke@435 597 //
duke@435 598 // Also define, for a chunk heap-offset C and mountain heap-offset M:
duke@435 599 //
duke@435 600 // close-to-mountain := C >= 0.99 * M
duke@435 601 //
duke@435 602 // Now, the coalescing strategy is:
duke@435 603 //
duke@435 604 // Coalesce left-hand chunk with right-hand chunk if and
duke@435 605 // only if:
duke@435 606 //
duke@435 607 // EITHER
duke@435 608 // . left-hand chunk is of a size that is coal-overpopulated
duke@435 609 // OR
duke@435 610 // . right-hand chunk is close-to-mountain
duke@435 611 void smallCoalBirth(size_t size);
duke@435 612 void smallCoalDeath(size_t size);
duke@435 613 void coalBirth(size_t size);
duke@435 614 void coalDeath(size_t size);
duke@435 615 void smallSplitBirth(size_t size);
duke@435 616 void smallSplitDeath(size_t size);
duke@435 617 void splitBirth(size_t size);
duke@435 618 void splitDeath(size_t size);
duke@435 619 void split(size_t from, size_t to1);
duke@435 620
duke@435 621 double flsFrag() const;
duke@435 622 };
duke@435 623
duke@435 624 // A parallel-GC-thread-local allocation buffer for allocation into a
duke@435 625 // CompactibleFreeListSpace.
duke@435 626 class CFLS_LAB : public CHeapObj {
duke@435 627 // The space that this buffer allocates into.
duke@435 628 CompactibleFreeListSpace* _cfls;
duke@435 629
duke@435 630 // Our local free lists.
duke@435 631 FreeList _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
duke@435 632
duke@435 633 // Initialized from a command-line arg.
duke@435 634
ysr@1580 635 // Allocation statistics in support of dynamic adjustment of
ysr@1580 636 // #blocks to claim per get_from_global_pool() call below.
ysr@1580 637 static AdaptiveWeightedAverage
ysr@1580 638 _blocks_to_claim [CompactibleFreeListSpace::IndexSetSize];
ysr@1580 639 static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
ysr@1580 640 static int _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
ysr@1580 641 size_t _num_blocks [CompactibleFreeListSpace::IndexSetSize];
ysr@1580 642
ysr@1580 643 // Internal work method
ysr@1580 644 void get_from_global_pool(size_t word_sz, FreeList* fl);
duke@435 645
duke@435 646 public:
duke@435 647 CFLS_LAB(CompactibleFreeListSpace* cfls);
duke@435 648
duke@435 649 // Allocate and return a block of the given size, or else return NULL.
duke@435 650 HeapWord* alloc(size_t word_sz);
duke@435 651
duke@435 652 // Return any unused portions of the buffer to the global pool.
ysr@1580 653 void retire(int tid);
ysr@1580 654
ysr@1580 655 // Dynamic OldPLABSize sizing
ysr@1580 656 static void compute_desired_plab_size();
ysr@1580 657 // When the settings are modified from default static initialization
ysr@1580 658 static void modify_initialization(size_t n, unsigned wt);
duke@435 659 };
duke@435 660
duke@435 661 size_t PromotionInfo::refillSize() const {
duke@435 662 const size_t CMSSpoolBlockSize = 256;
duke@435 663 const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
duke@435 664 * CMSSpoolBlockSize);
duke@435 665 return CompactibleFreeListSpace::adjustObjectSize(sz);
duke@435 666 }
stefank@2314 667
stefank@2314 668 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP

mercurial