src/cpu/x86/vm/stubGenerator_x86_64.cpp

Mon, 13 Feb 2012 02:29:22 -0800

author
twisti
date
Mon, 13 Feb 2012 02:29:22 -0800
changeset 3566
45a1bf98f1bb
parent 3522
c742b0b47fe5
child 3568
b522995d91f0
permissions
-rw-r--r--

7141329: Strange values of stack_size in -XX:+TraceMethodHandles output
Reviewed-by: kvn, never

duke@435 1 /*
iveresov@2595 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_x86.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_x86.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
stefank@2314 31 #include "oops/methodOop.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@2314 40 #include "utilities/top.hpp"
stefank@2314 41 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 42 # include "thread_linux.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 45 # include "thread_solaris.inline.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 48 # include "thread_windows.inline.hpp"
stefank@2314 49 #endif
never@3156 50 #ifdef TARGET_OS_FAMILY_bsd
never@3156 51 # include "thread_bsd.inline.hpp"
never@3156 52 #endif
stefank@2314 53 #ifdef COMPILER2
stefank@2314 54 #include "opto/runtime.hpp"
stefank@2314 55 #endif
duke@435 56
duke@435 57 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 58 // For a more detailed description of the stub routine structure
duke@435 59 // see the comment in stubRoutines.hpp
duke@435 60
duke@435 61 #define __ _masm->
coleenp@548 62 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
never@739 63 #define a__ ((Assembler*)_masm)->
duke@435 64
duke@435 65 #ifdef PRODUCT
duke@435 66 #define BLOCK_COMMENT(str) /* nothing */
duke@435 67 #else
duke@435 68 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 69 #endif
duke@435 70
duke@435 71 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 72 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 73
duke@435 74 // Stub Code definitions
duke@435 75
duke@435 76 static address handle_unsafe_access() {
duke@435 77 JavaThread* thread = JavaThread::current();
duke@435 78 address pc = thread->saved_exception_pc();
duke@435 79 // pc is the instruction which we must emulate
duke@435 80 // doing a no-op is fine: return garbage from the load
duke@435 81 // therefore, compute npc
duke@435 82 address npc = Assembler::locate_next_instruction(pc);
duke@435 83
duke@435 84 // request an async exception
duke@435 85 thread->set_pending_unsafe_access_error();
duke@435 86
duke@435 87 // return address of next instruction to execute
duke@435 88 return npc;
duke@435 89 }
duke@435 90
duke@435 91 class StubGenerator: public StubCodeGenerator {
duke@435 92 private:
duke@435 93
duke@435 94 #ifdef PRODUCT
duke@435 95 #define inc_counter_np(counter) (0)
duke@435 96 #else
duke@435 97 void inc_counter_np_(int& counter) {
never@3314 98 // This can destroy rscratch1 if counter is far from the code cache
duke@435 99 __ incrementl(ExternalAddress((address)&counter));
duke@435 100 }
duke@435 101 #define inc_counter_np(counter) \
duke@435 102 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 103 inc_counter_np_(counter);
duke@435 104 #endif
duke@435 105
duke@435 106 // Call stubs are used to call Java from C
duke@435 107 //
duke@435 108 // Linux Arguments:
duke@435 109 // c_rarg0: call wrapper address address
duke@435 110 // c_rarg1: result address
duke@435 111 // c_rarg2: result type BasicType
duke@435 112 // c_rarg3: method methodOop
duke@435 113 // c_rarg4: (interpreter) entry point address
duke@435 114 // c_rarg5: parameters intptr_t*
duke@435 115 // 16(rbp): parameter size (in words) int
duke@435 116 // 24(rbp): thread Thread*
duke@435 117 //
duke@435 118 // [ return_from_Java ] <--- rsp
duke@435 119 // [ argument word n ]
duke@435 120 // ...
duke@435 121 // -12 [ argument word 1 ]
duke@435 122 // -11 [ saved r15 ] <--- rsp_after_call
duke@435 123 // -10 [ saved r14 ]
duke@435 124 // -9 [ saved r13 ]
duke@435 125 // -8 [ saved r12 ]
duke@435 126 // -7 [ saved rbx ]
duke@435 127 // -6 [ call wrapper ]
duke@435 128 // -5 [ result ]
duke@435 129 // -4 [ result type ]
duke@435 130 // -3 [ method ]
duke@435 131 // -2 [ entry point ]
duke@435 132 // -1 [ parameters ]
duke@435 133 // 0 [ saved rbp ] <--- rbp
duke@435 134 // 1 [ return address ]
duke@435 135 // 2 [ parameter size ]
duke@435 136 // 3 [ thread ]
duke@435 137 //
duke@435 138 // Windows Arguments:
duke@435 139 // c_rarg0: call wrapper address address
duke@435 140 // c_rarg1: result address
duke@435 141 // c_rarg2: result type BasicType
duke@435 142 // c_rarg3: method methodOop
duke@435 143 // 48(rbp): (interpreter) entry point address
duke@435 144 // 56(rbp): parameters intptr_t*
duke@435 145 // 64(rbp): parameter size (in words) int
duke@435 146 // 72(rbp): thread Thread*
duke@435 147 //
duke@435 148 // [ return_from_Java ] <--- rsp
duke@435 149 // [ argument word n ]
duke@435 150 // ...
iveresov@2689 151 // -28 [ argument word 1 ]
iveresov@2689 152 // -27 [ saved xmm15 ] <--- rsp_after_call
iveresov@2689 153 // [ saved xmm7-xmm14 ]
iveresov@2689 154 // -9 [ saved xmm6 ] (each xmm register takes 2 slots)
iveresov@2689 155 // -7 [ saved r15 ]
duke@435 156 // -6 [ saved r14 ]
duke@435 157 // -5 [ saved r13 ]
duke@435 158 // -4 [ saved r12 ]
duke@435 159 // -3 [ saved rdi ]
duke@435 160 // -2 [ saved rsi ]
duke@435 161 // -1 [ saved rbx ]
duke@435 162 // 0 [ saved rbp ] <--- rbp
duke@435 163 // 1 [ return address ]
duke@435 164 // 2 [ call wrapper ]
duke@435 165 // 3 [ result ]
duke@435 166 // 4 [ result type ]
duke@435 167 // 5 [ method ]
duke@435 168 // 6 [ entry point ]
duke@435 169 // 7 [ parameters ]
duke@435 170 // 8 [ parameter size ]
duke@435 171 // 9 [ thread ]
duke@435 172 //
duke@435 173 // Windows reserves the callers stack space for arguments 1-4.
duke@435 174 // We spill c_rarg0-c_rarg3 to this space.
duke@435 175
duke@435 176 // Call stub stack layout word offsets from rbp
duke@435 177 enum call_stub_layout {
duke@435 178 #ifdef _WIN64
iveresov@2689 179 xmm_save_first = 6, // save from xmm6
iveresov@2689 180 xmm_save_last = 15, // to xmm15
iveresov@2689 181 xmm_save_base = -9,
iveresov@2689 182 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
iveresov@2689 183 r15_off = -7,
duke@435 184 r14_off = -6,
duke@435 185 r13_off = -5,
duke@435 186 r12_off = -4,
duke@435 187 rdi_off = -3,
duke@435 188 rsi_off = -2,
duke@435 189 rbx_off = -1,
duke@435 190 rbp_off = 0,
duke@435 191 retaddr_off = 1,
duke@435 192 call_wrapper_off = 2,
duke@435 193 result_off = 3,
duke@435 194 result_type_off = 4,
duke@435 195 method_off = 5,
duke@435 196 entry_point_off = 6,
duke@435 197 parameters_off = 7,
duke@435 198 parameter_size_off = 8,
duke@435 199 thread_off = 9
duke@435 200 #else
duke@435 201 rsp_after_call_off = -12,
duke@435 202 mxcsr_off = rsp_after_call_off,
duke@435 203 r15_off = -11,
duke@435 204 r14_off = -10,
duke@435 205 r13_off = -9,
duke@435 206 r12_off = -8,
duke@435 207 rbx_off = -7,
duke@435 208 call_wrapper_off = -6,
duke@435 209 result_off = -5,
duke@435 210 result_type_off = -4,
duke@435 211 method_off = -3,
duke@435 212 entry_point_off = -2,
duke@435 213 parameters_off = -1,
duke@435 214 rbp_off = 0,
duke@435 215 retaddr_off = 1,
duke@435 216 parameter_size_off = 2,
duke@435 217 thread_off = 3
duke@435 218 #endif
duke@435 219 };
duke@435 220
iveresov@2689 221 #ifdef _WIN64
iveresov@2689 222 Address xmm_save(int reg) {
iveresov@2689 223 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
iveresov@2689 224 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
iveresov@2689 225 }
iveresov@2689 226 #endif
iveresov@2689 227
duke@435 228 address generate_call_stub(address& return_address) {
duke@435 229 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
duke@435 230 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
duke@435 231 "adjust this code");
duke@435 232 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 233 address start = __ pc();
duke@435 234
duke@435 235 // same as in generate_catch_exception()!
duke@435 236 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 237
duke@435 238 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
duke@435 239 const Address result (rbp, result_off * wordSize);
duke@435 240 const Address result_type (rbp, result_type_off * wordSize);
duke@435 241 const Address method (rbp, method_off * wordSize);
duke@435 242 const Address entry_point (rbp, entry_point_off * wordSize);
duke@435 243 const Address parameters (rbp, parameters_off * wordSize);
duke@435 244 const Address parameter_size(rbp, parameter_size_off * wordSize);
duke@435 245
duke@435 246 // same as in generate_catch_exception()!
duke@435 247 const Address thread (rbp, thread_off * wordSize);
duke@435 248
duke@435 249 const Address r15_save(rbp, r15_off * wordSize);
duke@435 250 const Address r14_save(rbp, r14_off * wordSize);
duke@435 251 const Address r13_save(rbp, r13_off * wordSize);
duke@435 252 const Address r12_save(rbp, r12_off * wordSize);
duke@435 253 const Address rbx_save(rbp, rbx_off * wordSize);
duke@435 254
duke@435 255 // stub code
duke@435 256 __ enter();
never@739 257 __ subptr(rsp, -rsp_after_call_off * wordSize);
duke@435 258
duke@435 259 // save register parameters
duke@435 260 #ifndef _WIN64
never@739 261 __ movptr(parameters, c_rarg5); // parameters
never@739 262 __ movptr(entry_point, c_rarg4); // entry_point
duke@435 263 #endif
duke@435 264
never@739 265 __ movptr(method, c_rarg3); // method
never@739 266 __ movl(result_type, c_rarg2); // result type
never@739 267 __ movptr(result, c_rarg1); // result
never@739 268 __ movptr(call_wrapper, c_rarg0); // call wrapper
duke@435 269
duke@435 270 // save regs belonging to calling function
never@739 271 __ movptr(rbx_save, rbx);
never@739 272 __ movptr(r12_save, r12);
never@739 273 __ movptr(r13_save, r13);
never@739 274 __ movptr(r14_save, r14);
never@739 275 __ movptr(r15_save, r15);
duke@435 276 #ifdef _WIN64
iveresov@2689 277 for (int i = 6; i <= 15; i++) {
iveresov@2689 278 __ movdqu(xmm_save(i), as_XMMRegister(i));
iveresov@2689 279 }
iveresov@2689 280
duke@435 281 const Address rdi_save(rbp, rdi_off * wordSize);
duke@435 282 const Address rsi_save(rbp, rsi_off * wordSize);
duke@435 283
never@739 284 __ movptr(rsi_save, rsi);
never@739 285 __ movptr(rdi_save, rdi);
duke@435 286 #else
duke@435 287 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
duke@435 288 {
duke@435 289 Label skip_ldmx;
duke@435 290 __ stmxcsr(mxcsr_save);
duke@435 291 __ movl(rax, mxcsr_save);
duke@435 292 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 293 ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
duke@435 294 __ cmp32(rax, mxcsr_std);
duke@435 295 __ jcc(Assembler::equal, skip_ldmx);
duke@435 296 __ ldmxcsr(mxcsr_std);
duke@435 297 __ bind(skip_ldmx);
duke@435 298 }
duke@435 299 #endif
duke@435 300
duke@435 301 // Load up thread register
never@739 302 __ movptr(r15_thread, thread);
coleenp@548 303 __ reinit_heapbase();
duke@435 304
duke@435 305 #ifdef ASSERT
duke@435 306 // make sure we have no pending exceptions
duke@435 307 {
duke@435 308 Label L;
never@739 309 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 310 __ jcc(Assembler::equal, L);
duke@435 311 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 312 __ bind(L);
duke@435 313 }
duke@435 314 #endif
duke@435 315
duke@435 316 // pass parameters if any
duke@435 317 BLOCK_COMMENT("pass parameters if any");
duke@435 318 Label parameters_done;
duke@435 319 __ movl(c_rarg3, parameter_size);
duke@435 320 __ testl(c_rarg3, c_rarg3);
duke@435 321 __ jcc(Assembler::zero, parameters_done);
duke@435 322
duke@435 323 Label loop;
never@739 324 __ movptr(c_rarg2, parameters); // parameter pointer
never@739 325 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
duke@435 326 __ BIND(loop);
never@739 327 __ movptr(rax, Address(c_rarg2, 0));// get parameter
never@739 328 __ addptr(c_rarg2, wordSize); // advance to next parameter
never@739 329 __ decrementl(c_rarg1); // decrement counter
never@739 330 __ push(rax); // pass parameter
duke@435 331 __ jcc(Assembler::notZero, loop);
duke@435 332
duke@435 333 // call Java function
duke@435 334 __ BIND(parameters_done);
never@739 335 __ movptr(rbx, method); // get methodOop
never@739 336 __ movptr(c_rarg1, entry_point); // get entry_point
never@739 337 __ mov(r13, rsp); // set sender sp
duke@435 338 BLOCK_COMMENT("call Java function");
duke@435 339 __ call(c_rarg1);
duke@435 340
duke@435 341 BLOCK_COMMENT("call_stub_return_address:");
duke@435 342 return_address = __ pc();
duke@435 343
duke@435 344 // store result depending on type (everything that is not
duke@435 345 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 346 __ movptr(c_rarg0, result);
duke@435 347 Label is_long, is_float, is_double, exit;
duke@435 348 __ movl(c_rarg1, result_type);
duke@435 349 __ cmpl(c_rarg1, T_OBJECT);
duke@435 350 __ jcc(Assembler::equal, is_long);
duke@435 351 __ cmpl(c_rarg1, T_LONG);
duke@435 352 __ jcc(Assembler::equal, is_long);
duke@435 353 __ cmpl(c_rarg1, T_FLOAT);
duke@435 354 __ jcc(Assembler::equal, is_float);
duke@435 355 __ cmpl(c_rarg1, T_DOUBLE);
duke@435 356 __ jcc(Assembler::equal, is_double);
duke@435 357
duke@435 358 // handle T_INT case
duke@435 359 __ movl(Address(c_rarg0, 0), rax);
duke@435 360
duke@435 361 __ BIND(exit);
duke@435 362
duke@435 363 // pop parameters
never@739 364 __ lea(rsp, rsp_after_call);
duke@435 365
duke@435 366 #ifdef ASSERT
duke@435 367 // verify that threads correspond
duke@435 368 {
duke@435 369 Label L, S;
never@739 370 __ cmpptr(r15_thread, thread);
duke@435 371 __ jcc(Assembler::notEqual, S);
duke@435 372 __ get_thread(rbx);
never@739 373 __ cmpptr(r15_thread, rbx);
duke@435 374 __ jcc(Assembler::equal, L);
duke@435 375 __ bind(S);
duke@435 376 __ jcc(Assembler::equal, L);
duke@435 377 __ stop("StubRoutines::call_stub: threads must correspond");
duke@435 378 __ bind(L);
duke@435 379 }
duke@435 380 #endif
duke@435 381
duke@435 382 // restore regs belonging to calling function
iveresov@2689 383 #ifdef _WIN64
iveresov@2689 384 for (int i = 15; i >= 6; i--) {
iveresov@2689 385 __ movdqu(as_XMMRegister(i), xmm_save(i));
iveresov@2689 386 }
iveresov@2689 387 #endif
never@739 388 __ movptr(r15, r15_save);
never@739 389 __ movptr(r14, r14_save);
never@739 390 __ movptr(r13, r13_save);
never@739 391 __ movptr(r12, r12_save);
never@739 392 __ movptr(rbx, rbx_save);
duke@435 393
duke@435 394 #ifdef _WIN64
never@739 395 __ movptr(rdi, rdi_save);
never@739 396 __ movptr(rsi, rsi_save);
duke@435 397 #else
duke@435 398 __ ldmxcsr(mxcsr_save);
duke@435 399 #endif
duke@435 400
duke@435 401 // restore rsp
never@739 402 __ addptr(rsp, -rsp_after_call_off * wordSize);
duke@435 403
duke@435 404 // return
never@739 405 __ pop(rbp);
duke@435 406 __ ret(0);
duke@435 407
duke@435 408 // handle return types different from T_INT
duke@435 409 __ BIND(is_long);
duke@435 410 __ movq(Address(c_rarg0, 0), rax);
duke@435 411 __ jmp(exit);
duke@435 412
duke@435 413 __ BIND(is_float);
duke@435 414 __ movflt(Address(c_rarg0, 0), xmm0);
duke@435 415 __ jmp(exit);
duke@435 416
duke@435 417 __ BIND(is_double);
duke@435 418 __ movdbl(Address(c_rarg0, 0), xmm0);
duke@435 419 __ jmp(exit);
duke@435 420
duke@435 421 return start;
duke@435 422 }
duke@435 423
duke@435 424 // Return point for a Java call if there's an exception thrown in
duke@435 425 // Java code. The exception is caught and transformed into a
duke@435 426 // pending exception stored in JavaThread that can be tested from
duke@435 427 // within the VM.
duke@435 428 //
duke@435 429 // Note: Usually the parameters are removed by the callee. In case
duke@435 430 // of an exception crossing an activation frame boundary, that is
duke@435 431 // not the case if the callee is compiled code => need to setup the
duke@435 432 // rsp.
duke@435 433 //
duke@435 434 // rax: exception oop
duke@435 435
duke@435 436 address generate_catch_exception() {
duke@435 437 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 438 address start = __ pc();
duke@435 439
duke@435 440 // same as in generate_call_stub():
duke@435 441 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 442 const Address thread (rbp, thread_off * wordSize);
duke@435 443
duke@435 444 #ifdef ASSERT
duke@435 445 // verify that threads correspond
duke@435 446 {
duke@435 447 Label L, S;
never@739 448 __ cmpptr(r15_thread, thread);
duke@435 449 __ jcc(Assembler::notEqual, S);
duke@435 450 __ get_thread(rbx);
never@739 451 __ cmpptr(r15_thread, rbx);
duke@435 452 __ jcc(Assembler::equal, L);
duke@435 453 __ bind(S);
duke@435 454 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 455 __ bind(L);
duke@435 456 }
duke@435 457 #endif
duke@435 458
duke@435 459 // set pending exception
duke@435 460 __ verify_oop(rax);
duke@435 461
never@739 462 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
duke@435 463 __ lea(rscratch1, ExternalAddress((address)__FILE__));
never@739 464 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
duke@435 465 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
duke@435 466
duke@435 467 // complete return to VM
duke@435 468 assert(StubRoutines::_call_stub_return_address != NULL,
duke@435 469 "_call_stub_return_address must have been generated before");
duke@435 470 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 471
duke@435 472 return start;
duke@435 473 }
duke@435 474
duke@435 475 // Continuation point for runtime calls returning with a pending
duke@435 476 // exception. The pending exception check happened in the runtime
duke@435 477 // or native call stub. The pending exception in Thread is
duke@435 478 // converted into a Java-level exception.
duke@435 479 //
duke@435 480 // Contract with Java-level exception handlers:
duke@435 481 // rax: exception
duke@435 482 // rdx: throwing pc
duke@435 483 //
duke@435 484 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 485
duke@435 486 address generate_forward_exception() {
duke@435 487 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 488 address start = __ pc();
duke@435 489
duke@435 490 // Upon entry, the sp points to the return address returning into
duke@435 491 // Java (interpreted or compiled) code; i.e., the return address
duke@435 492 // becomes the throwing pc.
duke@435 493 //
duke@435 494 // Arguments pushed before the runtime call are still on the stack
duke@435 495 // but the exception handler will reset the stack pointer ->
duke@435 496 // ignore them. A potential result in registers can be ignored as
duke@435 497 // well.
duke@435 498
duke@435 499 #ifdef ASSERT
duke@435 500 // make sure this code is only executed if there is a pending exception
duke@435 501 {
duke@435 502 Label L;
never@739 503 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
duke@435 504 __ jcc(Assembler::notEqual, L);
duke@435 505 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 506 __ bind(L);
duke@435 507 }
duke@435 508 #endif
duke@435 509
duke@435 510 // compute exception handler into rbx
never@739 511 __ movptr(c_rarg0, Address(rsp, 0));
duke@435 512 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 513 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
duke@435 514 SharedRuntime::exception_handler_for_return_address),
twisti@1730 515 r15_thread, c_rarg0);
never@739 516 __ mov(rbx, rax);
duke@435 517
duke@435 518 // setup rax & rdx, remove return address & clear pending exception
never@739 519 __ pop(rdx);
never@739 520 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
xlu@947 521 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 522
duke@435 523 #ifdef ASSERT
duke@435 524 // make sure exception is set
duke@435 525 {
duke@435 526 Label L;
never@739 527 __ testptr(rax, rax);
duke@435 528 __ jcc(Assembler::notEqual, L);
duke@435 529 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 530 __ bind(L);
duke@435 531 }
duke@435 532 #endif
duke@435 533
duke@435 534 // continue at exception handler (return address removed)
duke@435 535 // rax: exception
duke@435 536 // rbx: exception handler
duke@435 537 // rdx: throwing pc
duke@435 538 __ verify_oop(rax);
duke@435 539 __ jmp(rbx);
duke@435 540
duke@435 541 return start;
duke@435 542 }
duke@435 543
duke@435 544 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 545 //
duke@435 546 // Arguments :
duke@435 547 // c_rarg0: exchange_value
duke@435 548 // c_rarg0: dest
duke@435 549 //
duke@435 550 // Result:
duke@435 551 // *dest <- ex, return (orig *dest)
duke@435 552 address generate_atomic_xchg() {
duke@435 553 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 554 address start = __ pc();
duke@435 555
duke@435 556 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 557 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 558 __ ret(0);
duke@435 559
duke@435 560 return start;
duke@435 561 }
duke@435 562
duke@435 563 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
duke@435 564 //
duke@435 565 // Arguments :
duke@435 566 // c_rarg0: exchange_value
duke@435 567 // c_rarg1: dest
duke@435 568 //
duke@435 569 // Result:
duke@435 570 // *dest <- ex, return (orig *dest)
duke@435 571 address generate_atomic_xchg_ptr() {
duke@435 572 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
duke@435 573 address start = __ pc();
duke@435 574
never@739 575 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
never@739 576 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 577 __ ret(0);
duke@435 578
duke@435 579 return start;
duke@435 580 }
duke@435 581
duke@435 582 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
duke@435 583 // jint compare_value)
duke@435 584 //
duke@435 585 // Arguments :
duke@435 586 // c_rarg0: exchange_value
duke@435 587 // c_rarg1: dest
duke@435 588 // c_rarg2: compare_value
duke@435 589 //
duke@435 590 // Result:
duke@435 591 // if ( compare_value == *dest ) {
duke@435 592 // *dest = exchange_value
duke@435 593 // return compare_value;
duke@435 594 // else
duke@435 595 // return *dest;
duke@435 596 address generate_atomic_cmpxchg() {
duke@435 597 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 598 address start = __ pc();
duke@435 599
duke@435 600 __ movl(rax, c_rarg2);
duke@435 601 if ( os::is_MP() ) __ lock();
duke@435 602 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
duke@435 603 __ ret(0);
duke@435 604
duke@435 605 return start;
duke@435 606 }
duke@435 607
duke@435 608 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
duke@435 609 // volatile jlong* dest,
duke@435 610 // jlong compare_value)
duke@435 611 // Arguments :
duke@435 612 // c_rarg0: exchange_value
duke@435 613 // c_rarg1: dest
duke@435 614 // c_rarg2: compare_value
duke@435 615 //
duke@435 616 // Result:
duke@435 617 // if ( compare_value == *dest ) {
duke@435 618 // *dest = exchange_value
duke@435 619 // return compare_value;
duke@435 620 // else
duke@435 621 // return *dest;
duke@435 622 address generate_atomic_cmpxchg_long() {
duke@435 623 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 624 address start = __ pc();
duke@435 625
duke@435 626 __ movq(rax, c_rarg2);
duke@435 627 if ( os::is_MP() ) __ lock();
duke@435 628 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
duke@435 629 __ ret(0);
duke@435 630
duke@435 631 return start;
duke@435 632 }
duke@435 633
duke@435 634 // Support for jint atomic::add(jint add_value, volatile jint* dest)
duke@435 635 //
duke@435 636 // Arguments :
duke@435 637 // c_rarg0: add_value
duke@435 638 // c_rarg1: dest
duke@435 639 //
duke@435 640 // Result:
duke@435 641 // *dest += add_value
duke@435 642 // return *dest;
duke@435 643 address generate_atomic_add() {
duke@435 644 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 645 address start = __ pc();
duke@435 646
duke@435 647 __ movl(rax, c_rarg0);
duke@435 648 if ( os::is_MP() ) __ lock();
duke@435 649 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 650 __ addl(rax, c_rarg0);
duke@435 651 __ ret(0);
duke@435 652
duke@435 653 return start;
duke@435 654 }
duke@435 655
duke@435 656 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
duke@435 657 //
duke@435 658 // Arguments :
duke@435 659 // c_rarg0: add_value
duke@435 660 // c_rarg1: dest
duke@435 661 //
duke@435 662 // Result:
duke@435 663 // *dest += add_value
duke@435 664 // return *dest;
duke@435 665 address generate_atomic_add_ptr() {
duke@435 666 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
duke@435 667 address start = __ pc();
duke@435 668
never@739 669 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 670 if ( os::is_MP() ) __ lock();
never@739 671 __ xaddptr(Address(c_rarg1, 0), c_rarg0);
never@739 672 __ addptr(rax, c_rarg0);
duke@435 673 __ ret(0);
duke@435 674
duke@435 675 return start;
duke@435 676 }
duke@435 677
duke@435 678 // Support for intptr_t OrderAccess::fence()
duke@435 679 //
duke@435 680 // Arguments :
duke@435 681 //
duke@435 682 // Result:
duke@435 683 address generate_orderaccess_fence() {
duke@435 684 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
duke@435 685 address start = __ pc();
never@1106 686 __ membar(Assembler::StoreLoad);
duke@435 687 __ ret(0);
duke@435 688
duke@435 689 return start;
duke@435 690 }
duke@435 691
duke@435 692 // Support for intptr_t get_previous_fp()
duke@435 693 //
duke@435 694 // This routine is used to find the previous frame pointer for the
duke@435 695 // caller (current_frame_guess). This is used as part of debugging
duke@435 696 // ps() is seemingly lost trying to find frames.
duke@435 697 // This code assumes that caller current_frame_guess) has a frame.
duke@435 698 address generate_get_previous_fp() {
duke@435 699 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
duke@435 700 const Address old_fp(rbp, 0);
duke@435 701 const Address older_fp(rax, 0);
duke@435 702 address start = __ pc();
duke@435 703
duke@435 704 __ enter();
never@739 705 __ movptr(rax, old_fp); // callers fp
never@739 706 __ movptr(rax, older_fp); // the frame for ps()
never@739 707 __ pop(rbp);
duke@435 708 __ ret(0);
duke@435 709
duke@435 710 return start;
duke@435 711 }
duke@435 712
duke@435 713 //----------------------------------------------------------------------------------------------------
duke@435 714 // Support for void verify_mxcsr()
duke@435 715 //
duke@435 716 // This routine is used with -Xcheck:jni to verify that native
duke@435 717 // JNI code does not return to Java code without restoring the
duke@435 718 // MXCSR register to our expected state.
duke@435 719
duke@435 720 address generate_verify_mxcsr() {
duke@435 721 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 722 address start = __ pc();
duke@435 723
duke@435 724 const Address mxcsr_save(rsp, 0);
duke@435 725
duke@435 726 if (CheckJNICalls) {
duke@435 727 Label ok_ret;
never@739 728 __ push(rax);
never@739 729 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 730 __ stmxcsr(mxcsr_save);
duke@435 731 __ movl(rax, mxcsr_save);
duke@435 732 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 733 __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
duke@435 734 __ jcc(Assembler::equal, ok_ret);
duke@435 735
duke@435 736 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
duke@435 737
never@739 738 __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
duke@435 739
duke@435 740 __ bind(ok_ret);
never@739 741 __ addptr(rsp, wordSize);
never@739 742 __ pop(rax);
duke@435 743 }
duke@435 744
duke@435 745 __ ret(0);
duke@435 746
duke@435 747 return start;
duke@435 748 }
duke@435 749
duke@435 750 address generate_f2i_fixup() {
duke@435 751 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
duke@435 752 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 753
duke@435 754 address start = __ pc();
duke@435 755
duke@435 756 Label L;
duke@435 757
never@739 758 __ push(rax);
never@739 759 __ push(c_rarg3);
never@739 760 __ push(c_rarg2);
never@739 761 __ push(c_rarg1);
duke@435 762
duke@435 763 __ movl(rax, 0x7f800000);
duke@435 764 __ xorl(c_rarg3, c_rarg3);
duke@435 765 __ movl(c_rarg2, inout);
duke@435 766 __ movl(c_rarg1, c_rarg2);
duke@435 767 __ andl(c_rarg1, 0x7fffffff);
duke@435 768 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 769 __ jcc(Assembler::negative, L);
duke@435 770 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
duke@435 771 __ movl(c_rarg3, 0x80000000);
duke@435 772 __ movl(rax, 0x7fffffff);
duke@435 773 __ cmovl(Assembler::positive, c_rarg3, rax);
duke@435 774
duke@435 775 __ bind(L);
never@739 776 __ movptr(inout, c_rarg3);
never@739 777
never@739 778 __ pop(c_rarg1);
never@739 779 __ pop(c_rarg2);
never@739 780 __ pop(c_rarg3);
never@739 781 __ pop(rax);
duke@435 782
duke@435 783 __ ret(0);
duke@435 784
duke@435 785 return start;
duke@435 786 }
duke@435 787
duke@435 788 address generate_f2l_fixup() {
duke@435 789 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
duke@435 790 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 791 address start = __ pc();
duke@435 792
duke@435 793 Label L;
duke@435 794
never@739 795 __ push(rax);
never@739 796 __ push(c_rarg3);
never@739 797 __ push(c_rarg2);
never@739 798 __ push(c_rarg1);
duke@435 799
duke@435 800 __ movl(rax, 0x7f800000);
duke@435 801 __ xorl(c_rarg3, c_rarg3);
duke@435 802 __ movl(c_rarg2, inout);
duke@435 803 __ movl(c_rarg1, c_rarg2);
duke@435 804 __ andl(c_rarg1, 0x7fffffff);
duke@435 805 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 806 __ jcc(Assembler::negative, L);
duke@435 807 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
duke@435 808 __ mov64(c_rarg3, 0x8000000000000000);
duke@435 809 __ mov64(rax, 0x7fffffffffffffff);
never@739 810 __ cmov(Assembler::positive, c_rarg3, rax);
duke@435 811
duke@435 812 __ bind(L);
never@739 813 __ movptr(inout, c_rarg3);
never@739 814
never@739 815 __ pop(c_rarg1);
never@739 816 __ pop(c_rarg2);
never@739 817 __ pop(c_rarg3);
never@739 818 __ pop(rax);
duke@435 819
duke@435 820 __ ret(0);
duke@435 821
duke@435 822 return start;
duke@435 823 }
duke@435 824
duke@435 825 address generate_d2i_fixup() {
duke@435 826 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
duke@435 827 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 828
duke@435 829 address start = __ pc();
duke@435 830
duke@435 831 Label L;
duke@435 832
never@739 833 __ push(rax);
never@739 834 __ push(c_rarg3);
never@739 835 __ push(c_rarg2);
never@739 836 __ push(c_rarg1);
never@739 837 __ push(c_rarg0);
duke@435 838
duke@435 839 __ movl(rax, 0x7ff00000);
duke@435 840 __ movq(c_rarg2, inout);
duke@435 841 __ movl(c_rarg3, c_rarg2);
never@739 842 __ mov(c_rarg1, c_rarg2);
never@739 843 __ mov(c_rarg0, c_rarg2);
duke@435 844 __ negl(c_rarg3);
never@739 845 __ shrptr(c_rarg1, 0x20);
duke@435 846 __ orl(c_rarg3, c_rarg2);
duke@435 847 __ andl(c_rarg1, 0x7fffffff);
duke@435 848 __ xorl(c_rarg2, c_rarg2);
duke@435 849 __ shrl(c_rarg3, 0x1f);
duke@435 850 __ orl(c_rarg1, c_rarg3);
duke@435 851 __ cmpl(rax, c_rarg1);
duke@435 852 __ jcc(Assembler::negative, L); // NaN -> 0
never@739 853 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
duke@435 854 __ movl(c_rarg2, 0x80000000);
duke@435 855 __ movl(rax, 0x7fffffff);
never@739 856 __ cmov(Assembler::positive, c_rarg2, rax);
duke@435 857
duke@435 858 __ bind(L);
never@739 859 __ movptr(inout, c_rarg2);
never@739 860
never@739 861 __ pop(c_rarg0);
never@739 862 __ pop(c_rarg1);
never@739 863 __ pop(c_rarg2);
never@739 864 __ pop(c_rarg3);
never@739 865 __ pop(rax);
duke@435 866
duke@435 867 __ ret(0);
duke@435 868
duke@435 869 return start;
duke@435 870 }
duke@435 871
duke@435 872 address generate_d2l_fixup() {
duke@435 873 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
duke@435 874 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 875
duke@435 876 address start = __ pc();
duke@435 877
duke@435 878 Label L;
duke@435 879
never@739 880 __ push(rax);
never@739 881 __ push(c_rarg3);
never@739 882 __ push(c_rarg2);
never@739 883 __ push(c_rarg1);
never@739 884 __ push(c_rarg0);
duke@435 885
duke@435 886 __ movl(rax, 0x7ff00000);
duke@435 887 __ movq(c_rarg2, inout);
duke@435 888 __ movl(c_rarg3, c_rarg2);
never@739 889 __ mov(c_rarg1, c_rarg2);
never@739 890 __ mov(c_rarg0, c_rarg2);
duke@435 891 __ negl(c_rarg3);
never@739 892 __ shrptr(c_rarg1, 0x20);
duke@435 893 __ orl(c_rarg3, c_rarg2);
duke@435 894 __ andl(c_rarg1, 0x7fffffff);
duke@435 895 __ xorl(c_rarg2, c_rarg2);
duke@435 896 __ shrl(c_rarg3, 0x1f);
duke@435 897 __ orl(c_rarg1, c_rarg3);
duke@435 898 __ cmpl(rax, c_rarg1);
duke@435 899 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 900 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
duke@435 901 __ mov64(c_rarg2, 0x8000000000000000);
duke@435 902 __ mov64(rax, 0x7fffffffffffffff);
duke@435 903 __ cmovq(Assembler::positive, c_rarg2, rax);
duke@435 904
duke@435 905 __ bind(L);
duke@435 906 __ movq(inout, c_rarg2);
duke@435 907
never@739 908 __ pop(c_rarg0);
never@739 909 __ pop(c_rarg1);
never@739 910 __ pop(c_rarg2);
never@739 911 __ pop(c_rarg3);
never@739 912 __ pop(rax);
duke@435 913
duke@435 914 __ ret(0);
duke@435 915
duke@435 916 return start;
duke@435 917 }
duke@435 918
duke@435 919 address generate_fp_mask(const char *stub_name, int64_t mask) {
kvn@1800 920 __ align(CodeEntryAlignment);
duke@435 921 StubCodeMark mark(this, "StubRoutines", stub_name);
duke@435 922 address start = __ pc();
duke@435 923
duke@435 924 __ emit_data64( mask, relocInfo::none );
duke@435 925 __ emit_data64( mask, relocInfo::none );
duke@435 926
duke@435 927 return start;
duke@435 928 }
duke@435 929
duke@435 930 // The following routine generates a subroutine to throw an
duke@435 931 // asynchronous UnknownError when an unsafe access gets a fault that
duke@435 932 // could not be reasonably prevented by the programmer. (Example:
duke@435 933 // SIGBUS/OBJERR.)
duke@435 934 address generate_handler_for_unsafe_access() {
duke@435 935 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 936 address start = __ pc();
duke@435 937
never@739 938 __ push(0); // hole for return address-to-be
never@739 939 __ pusha(); // push registers
duke@435 940 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 941
never@3136 942 // FIXME: this probably needs alignment logic
never@3136 943
never@739 944 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 945 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 946 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 947 __ addptr(rsp, frame::arg_reg_save_area_bytes);
never@739 948
never@739 949 __ movptr(next_pc, rax); // stuff next address
never@739 950 __ popa();
duke@435 951 __ ret(0); // jump to next address
duke@435 952
duke@435 953 return start;
duke@435 954 }
duke@435 955
duke@435 956 // Non-destructive plausibility checks for oops
duke@435 957 //
duke@435 958 // Arguments:
duke@435 959 // all args on stack!
duke@435 960 //
duke@435 961 // Stack after saving c_rarg3:
duke@435 962 // [tos + 0]: saved c_rarg3
duke@435 963 // [tos + 1]: saved c_rarg2
kvn@559 964 // [tos + 2]: saved r12 (several TemplateTable methods use it)
kvn@559 965 // [tos + 3]: saved flags
kvn@559 966 // [tos + 4]: return address
kvn@559 967 // * [tos + 5]: error message (char*)
kvn@559 968 // * [tos + 6]: object to verify (oop)
kvn@559 969 // * [tos + 7]: saved rax - saved by caller and bashed
kvn@1938 970 // * [tos + 8]: saved r10 (rscratch1) - saved by caller
duke@435 971 // * = popped on exit
duke@435 972 address generate_verify_oop() {
duke@435 973 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 974 address start = __ pc();
duke@435 975
duke@435 976 Label exit, error;
duke@435 977
never@739 978 __ pushf();
duke@435 979 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 980
never@739 981 __ push(r12);
kvn@559 982
duke@435 983 // save c_rarg2 and c_rarg3
never@739 984 __ push(c_rarg2);
never@739 985 __ push(c_rarg3);
duke@435 986
kvn@559 987 enum {
kvn@559 988 // After previous pushes.
kvn@559 989 oop_to_verify = 6 * wordSize,
kvn@559 990 saved_rax = 7 * wordSize,
kvn@1938 991 saved_r10 = 8 * wordSize,
kvn@559 992
kvn@559 993 // Before the call to MacroAssembler::debug(), see below.
kvn@559 994 return_addr = 16 * wordSize,
kvn@559 995 error_msg = 17 * wordSize
kvn@559 996 };
kvn@559 997
duke@435 998 // get object
never@739 999 __ movptr(rax, Address(rsp, oop_to_verify));
duke@435 1000
duke@435 1001 // make sure object is 'reasonable'
never@739 1002 __ testptr(rax, rax);
duke@435 1003 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
duke@435 1004 // Check if the oop is in the right area of memory
never@739 1005 __ movptr(c_rarg2, rax);
xlu@947 1006 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
never@739 1007 __ andptr(c_rarg2, c_rarg3);
xlu@947 1008 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
never@739 1009 __ cmpptr(c_rarg2, c_rarg3);
duke@435 1010 __ jcc(Assembler::notZero, error);
duke@435 1011
kvn@559 1012 // set r12 to heapbase for load_klass()
kvn@559 1013 __ reinit_heapbase();
kvn@559 1014
duke@435 1015 // make sure klass is 'reasonable'
coleenp@548 1016 __ load_klass(rax, rax); // get klass
never@739 1017 __ testptr(rax, rax);
duke@435 1018 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 1019 // Check if the klass is in the right area of memory
never@739 1020 __ mov(c_rarg2, rax);
xlu@947 1021 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 1022 __ andptr(c_rarg2, c_rarg3);
xlu@947 1023 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 1024 __ cmpptr(c_rarg2, c_rarg3);
duke@435 1025 __ jcc(Assembler::notZero, error);
duke@435 1026
duke@435 1027 // make sure klass' klass is 'reasonable'
coleenp@548 1028 __ load_klass(rax, rax);
never@739 1029 __ testptr(rax, rax);
duke@435 1030 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 1031 // Check if the klass' klass is in the right area of memory
xlu@947 1032 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 1033 __ andptr(rax, c_rarg3);
xlu@947 1034 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 1035 __ cmpptr(rax, c_rarg3);
duke@435 1036 __ jcc(Assembler::notZero, error);
duke@435 1037
duke@435 1038 // return if everything seems ok
duke@435 1039 __ bind(exit);
never@739 1040 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1041 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1042 __ pop(c_rarg3); // restore c_rarg3
never@739 1043 __ pop(c_rarg2); // restore c_rarg2
never@739 1044 __ pop(r12); // restore r12
never@739 1045 __ popf(); // restore flags
kvn@1938 1046 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1047
duke@435 1048 // handle errors
duke@435 1049 __ bind(error);
never@739 1050 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1051 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1052 __ pop(c_rarg3); // get saved c_rarg3 back
never@739 1053 __ pop(c_rarg2); // get saved c_rarg2 back
never@739 1054 __ pop(r12); // get saved r12 back
never@739 1055 __ popf(); // get saved flags off stack --
duke@435 1056 // will be ignored
duke@435 1057
never@739 1058 __ pusha(); // push registers
duke@435 1059 // (rip is already
duke@435 1060 // already pushed)
kvn@559 1061 // debug(char* msg, int64_t pc, int64_t regs[])
duke@435 1062 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
duke@435 1063 // pushed all the registers, so now the stack looks like:
duke@435 1064 // [tos + 0] 16 saved registers
duke@435 1065 // [tos + 16] return address
kvn@559 1066 // * [tos + 17] error message (char*)
kvn@559 1067 // * [tos + 18] object to verify (oop)
kvn@559 1068 // * [tos + 19] saved rax - saved by caller and bashed
kvn@1938 1069 // * [tos + 20] saved r10 (rscratch1) - saved by caller
kvn@559 1070 // * = popped on exit
kvn@559 1071
never@739 1072 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
never@739 1073 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
never@739 1074 __ movq(c_rarg2, rsp); // pass address of regs on stack
never@739 1075 __ mov(r12, rsp); // remember rsp
never@739 1076 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1077 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1078 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 1079 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
never@739 1080 __ mov(rsp, r12); // restore rsp
never@739 1081 __ popa(); // pop registers (includes r12)
kvn@1938 1082 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1083
duke@435 1084 return start;
duke@435 1085 }
duke@435 1086
duke@435 1087 //
duke@435 1088 // Verify that a register contains clean 32-bits positive value
duke@435 1089 // (high 32-bits are 0) so it could be used in 64-bits shifts.
duke@435 1090 //
duke@435 1091 // Input:
duke@435 1092 // Rint - 32-bits value
duke@435 1093 // Rtmp - scratch
duke@435 1094 //
duke@435 1095 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1096 #ifdef ASSERT
duke@435 1097 Label L;
duke@435 1098 assert_different_registers(Rtmp, Rint);
duke@435 1099 __ movslq(Rtmp, Rint);
duke@435 1100 __ cmpq(Rtmp, Rint);
kvn@559 1101 __ jcc(Assembler::equal, L);
duke@435 1102 __ stop("high 32-bits of int value are not 0");
duke@435 1103 __ bind(L);
duke@435 1104 #endif
duke@435 1105 }
duke@435 1106
duke@435 1107 // Generate overlap test for array copy stubs
duke@435 1108 //
duke@435 1109 // Input:
duke@435 1110 // c_rarg0 - from
duke@435 1111 // c_rarg1 - to
duke@435 1112 // c_rarg2 - element count
duke@435 1113 //
duke@435 1114 // Output:
duke@435 1115 // rax - &from[element count - 1]
duke@435 1116 //
duke@435 1117 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
duke@435 1118 assert(no_overlap_target != NULL, "must be generated");
duke@435 1119 array_overlap_test(no_overlap_target, NULL, sf);
duke@435 1120 }
duke@435 1121 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
duke@435 1122 array_overlap_test(NULL, &L_no_overlap, sf);
duke@435 1123 }
duke@435 1124 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
duke@435 1125 const Register from = c_rarg0;
duke@435 1126 const Register to = c_rarg1;
duke@435 1127 const Register count = c_rarg2;
duke@435 1128 const Register end_from = rax;
duke@435 1129
never@739 1130 __ cmpptr(to, from);
never@739 1131 __ lea(end_from, Address(from, count, sf, 0));
duke@435 1132 if (NOLp == NULL) {
duke@435 1133 ExternalAddress no_overlap(no_overlap_target);
duke@435 1134 __ jump_cc(Assembler::belowEqual, no_overlap);
never@739 1135 __ cmpptr(to, end_from);
duke@435 1136 __ jump_cc(Assembler::aboveEqual, no_overlap);
duke@435 1137 } else {
duke@435 1138 __ jcc(Assembler::belowEqual, (*NOLp));
never@739 1139 __ cmpptr(to, end_from);
duke@435 1140 __ jcc(Assembler::aboveEqual, (*NOLp));
duke@435 1141 }
duke@435 1142 }
duke@435 1143
duke@435 1144 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
duke@435 1145 //
duke@435 1146 // Outputs:
duke@435 1147 // rdi - rcx
duke@435 1148 // rsi - rdx
duke@435 1149 // rdx - r8
duke@435 1150 // rcx - r9
duke@435 1151 //
duke@435 1152 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
duke@435 1153 // are non-volatile. r9 and r10 should not be used by the caller.
duke@435 1154 //
duke@435 1155 void setup_arg_regs(int nargs = 3) {
duke@435 1156 const Register saved_rdi = r9;
duke@435 1157 const Register saved_rsi = r10;
duke@435 1158 assert(nargs == 3 || nargs == 4, "else fix");
duke@435 1159 #ifdef _WIN64
duke@435 1160 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
duke@435 1161 "unexpected argument registers");
duke@435 1162 if (nargs >= 4)
never@739 1163 __ mov(rax, r9); // r9 is also saved_rdi
never@739 1164 __ movptr(saved_rdi, rdi);
never@739 1165 __ movptr(saved_rsi, rsi);
never@739 1166 __ mov(rdi, rcx); // c_rarg0
never@739 1167 __ mov(rsi, rdx); // c_rarg1
never@739 1168 __ mov(rdx, r8); // c_rarg2
duke@435 1169 if (nargs >= 4)
never@739 1170 __ mov(rcx, rax); // c_rarg3 (via rax)
duke@435 1171 #else
duke@435 1172 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
duke@435 1173 "unexpected argument registers");
duke@435 1174 #endif
duke@435 1175 }
duke@435 1176
duke@435 1177 void restore_arg_regs() {
duke@435 1178 const Register saved_rdi = r9;
duke@435 1179 const Register saved_rsi = r10;
duke@435 1180 #ifdef _WIN64
never@739 1181 __ movptr(rdi, saved_rdi);
never@739 1182 __ movptr(rsi, saved_rsi);
duke@435 1183 #endif
duke@435 1184 }
duke@435 1185
duke@435 1186 // Generate code for an array write pre barrier
duke@435 1187 //
duke@435 1188 // addr - starting address
iveresov@2606 1189 // count - element count
iveresov@2606 1190 // tmp - scratch register
duke@435 1191 //
duke@435 1192 // Destroy no registers!
duke@435 1193 //
iveresov@2606 1194 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
duke@435 1195 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1196 switch (bs->kind()) {
duke@435 1197 case BarrierSet::G1SATBCT:
duke@435 1198 case BarrierSet::G1SATBCTLogging:
iveresov@2606 1199 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 1200 if (!dest_uninitialized) {
iveresov@2606 1201 __ pusha(); // push registers
iveresov@2606 1202 if (count == c_rarg0) {
iveresov@2606 1203 if (addr == c_rarg1) {
iveresov@2606 1204 // exactly backwards!!
iveresov@2606 1205 __ xchgptr(c_rarg1, c_rarg0);
iveresov@2606 1206 } else {
iveresov@2606 1207 __ movptr(c_rarg1, count);
iveresov@2606 1208 __ movptr(c_rarg0, addr);
iveresov@2606 1209 }
iveresov@2606 1210 } else {
iveresov@2606 1211 __ movptr(c_rarg0, addr);
iveresov@2606 1212 __ movptr(c_rarg1, count);
iveresov@2606 1213 }
iveresov@2606 1214 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
iveresov@2606 1215 __ popa();
duke@435 1216 }
iveresov@2606 1217 break;
duke@435 1218 case BarrierSet::CardTableModRef:
duke@435 1219 case BarrierSet::CardTableExtension:
duke@435 1220 case BarrierSet::ModRef:
duke@435 1221 break;
ysr@777 1222 default:
duke@435 1223 ShouldNotReachHere();
duke@435 1224
duke@435 1225 }
duke@435 1226 }
duke@435 1227
duke@435 1228 //
duke@435 1229 // Generate code for an array write post barrier
duke@435 1230 //
duke@435 1231 // Input:
duke@435 1232 // start - register containing starting address of destination array
duke@435 1233 // end - register containing ending address of destination array
duke@435 1234 // scratch - scratch register
duke@435 1235 //
duke@435 1236 // The input registers are overwritten.
duke@435 1237 // The ending address is inclusive.
duke@435 1238 void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
duke@435 1239 assert_different_registers(start, end, scratch);
duke@435 1240 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1241 switch (bs->kind()) {
duke@435 1242 case BarrierSet::G1SATBCT:
duke@435 1243 case BarrierSet::G1SATBCTLogging:
duke@435 1244
duke@435 1245 {
never@739 1246 __ pusha(); // push registers (overkill)
duke@435 1247 // must compute element count unless barrier set interface is changed (other platforms supply count)
duke@435 1248 assert_different_registers(start, end, scratch);
ysr@1280 1249 __ lea(scratch, Address(end, BytesPerHeapOop));
ysr@1280 1250 __ subptr(scratch, start); // subtract start to get #bytes
ysr@1280 1251 __ shrptr(scratch, LogBytesPerHeapOop); // convert to element count
never@739 1252 __ mov(c_rarg0, start);
never@739 1253 __ mov(c_rarg1, scratch);
apetrusenko@1627 1254 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
never@739 1255 __ popa();
duke@435 1256 }
duke@435 1257 break;
duke@435 1258 case BarrierSet::CardTableModRef:
duke@435 1259 case BarrierSet::CardTableExtension:
duke@435 1260 {
duke@435 1261 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1262 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1263
duke@435 1264 Label L_loop;
duke@435 1265
never@739 1266 __ shrptr(start, CardTableModRefBS::card_shift);
ysr@1280 1267 __ addptr(end, BytesPerHeapOop);
never@739 1268 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 1269 __ subptr(end, start); // number of bytes to copy
duke@435 1270
never@684 1271 intptr_t disp = (intptr_t) ct->byte_map_base;
twisti@3310 1272 if (Assembler::is_simm32(disp)) {
never@684 1273 Address cardtable(noreg, noreg, Address::no_scale, disp);
never@684 1274 __ lea(scratch, cardtable);
never@684 1275 } else {
never@684 1276 ExternalAddress cardtable((address)disp);
never@684 1277 __ lea(scratch, cardtable);
never@684 1278 }
never@684 1279
duke@435 1280 const Register count = end; // 'end' register contains bytes count now
never@739 1281 __ addptr(start, scratch);
duke@435 1282 __ BIND(L_loop);
duke@435 1283 __ movb(Address(start, count, Address::times_1), 0);
never@739 1284 __ decrement(count);
duke@435 1285 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1286 }
ysr@777 1287 break;
ysr@777 1288 default:
ysr@777 1289 ShouldNotReachHere();
ysr@777 1290
ysr@777 1291 }
ysr@777 1292 }
duke@435 1293
kvn@840 1294
duke@435 1295 // Copy big chunks forward
duke@435 1296 //
duke@435 1297 // Inputs:
duke@435 1298 // end_from - source arrays end address
duke@435 1299 // end_to - destination array end address
duke@435 1300 // qword_count - 64-bits element count, negative
duke@435 1301 // to - scratch
duke@435 1302 // L_copy_32_bytes - entry label
duke@435 1303 // L_copy_8_bytes - exit label
duke@435 1304 //
duke@435 1305 void copy_32_bytes_forward(Register end_from, Register end_to,
duke@435 1306 Register qword_count, Register to,
duke@435 1307 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1308 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1309 Label L_loop;
kvn@1800 1310 __ align(OptoLoopAlignment);
duke@435 1311 __ BIND(L_loop);
kvn@840 1312 if(UseUnalignedLoadStores) {
kvn@840 1313 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1314 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@840 1315 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1316 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
kvn@840 1317
kvn@840 1318 } else {
kvn@840 1319 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1320 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
kvn@840 1321 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
kvn@840 1322 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
kvn@840 1323 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1324 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
kvn@840 1325 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
kvn@840 1326 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
kvn@840 1327 }
duke@435 1328 __ BIND(L_copy_32_bytes);
never@739 1329 __ addptr(qword_count, 4);
duke@435 1330 __ jcc(Assembler::lessEqual, L_loop);
never@739 1331 __ subptr(qword_count, 4);
duke@435 1332 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
duke@435 1333 }
duke@435 1334
duke@435 1335
duke@435 1336 // Copy big chunks backward
duke@435 1337 //
duke@435 1338 // Inputs:
duke@435 1339 // from - source arrays address
duke@435 1340 // dest - destination array address
duke@435 1341 // qword_count - 64-bits element count
duke@435 1342 // to - scratch
duke@435 1343 // L_copy_32_bytes - entry label
duke@435 1344 // L_copy_8_bytes - exit label
duke@435 1345 //
duke@435 1346 void copy_32_bytes_backward(Register from, Register dest,
duke@435 1347 Register qword_count, Register to,
duke@435 1348 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1349 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1350 Label L_loop;
kvn@1800 1351 __ align(OptoLoopAlignment);
duke@435 1352 __ BIND(L_loop);
kvn@840 1353 if(UseUnalignedLoadStores) {
kvn@840 1354 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
kvn@840 1355 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
kvn@840 1356 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@840 1357 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@840 1358
kvn@840 1359 } else {
kvn@840 1360 __ movq(to, Address(from, qword_count, Address::times_8, 24));
kvn@840 1361 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
kvn@840 1362 __ movq(to, Address(from, qword_count, Address::times_8, 16));
kvn@840 1363 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
kvn@840 1364 __ movq(to, Address(from, qword_count, Address::times_8, 8));
kvn@840 1365 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
kvn@840 1366 __ movq(to, Address(from, qword_count, Address::times_8, 0));
kvn@840 1367 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
kvn@840 1368 }
duke@435 1369 __ BIND(L_copy_32_bytes);
never@739 1370 __ subptr(qword_count, 4);
duke@435 1371 __ jcc(Assembler::greaterEqual, L_loop);
never@739 1372 __ addptr(qword_count, 4);
duke@435 1373 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
duke@435 1374 }
duke@435 1375
duke@435 1376
duke@435 1377 // Arguments:
duke@435 1378 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1379 // ignored
duke@435 1380 // name - stub name string
duke@435 1381 //
duke@435 1382 // Inputs:
duke@435 1383 // c_rarg0 - source array address
duke@435 1384 // c_rarg1 - destination array address
duke@435 1385 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1386 //
duke@435 1387 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1388 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1389 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1390 // and stored atomically.
duke@435 1391 //
duke@435 1392 // Side Effects:
duke@435 1393 // disjoint_byte_copy_entry is set to the no-overlap entry point
duke@435 1394 // used by generate_conjoint_byte_copy().
duke@435 1395 //
iveresov@2595 1396 address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
duke@435 1397 __ align(CodeEntryAlignment);
duke@435 1398 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1399 address start = __ pc();
duke@435 1400
duke@435 1401 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1402 Label L_copy_byte, L_exit;
duke@435 1403 const Register from = rdi; // source array address
duke@435 1404 const Register to = rsi; // destination array address
duke@435 1405 const Register count = rdx; // elements count
duke@435 1406 const Register byte_count = rcx;
duke@435 1407 const Register qword_count = count;
duke@435 1408 const Register end_from = from; // source array end address
duke@435 1409 const Register end_to = to; // destination array end address
duke@435 1410 // End pointers are inclusive, and if count is not zero they point
duke@435 1411 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1412
duke@435 1413 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1414 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1415
iveresov@2595 1416 if (entry != NULL) {
iveresov@2595 1417 *entry = __ pc();
iveresov@2595 1418 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1419 BLOCK_COMMENT("Entry:");
iveresov@2595 1420 }
duke@435 1421
duke@435 1422 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1423 // r9 and r10 may be used to save non-volatile registers
duke@435 1424
duke@435 1425 // 'from', 'to' and 'count' are now valid
never@739 1426 __ movptr(byte_count, count);
never@739 1427 __ shrptr(count, 3); // count => qword_count
duke@435 1428
duke@435 1429 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1430 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1431 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1432 __ negptr(qword_count); // make the count negative
duke@435 1433 __ jmp(L_copy_32_bytes);
duke@435 1434
duke@435 1435 // Copy trailing qwords
duke@435 1436 __ BIND(L_copy_8_bytes);
duke@435 1437 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1438 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1439 __ increment(qword_count);
duke@435 1440 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1441
duke@435 1442 // Check for and copy trailing dword
duke@435 1443 __ BIND(L_copy_4_bytes);
never@739 1444 __ testl(byte_count, 4);
duke@435 1445 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1446 __ movl(rax, Address(end_from, 8));
duke@435 1447 __ movl(Address(end_to, 8), rax);
duke@435 1448
never@739 1449 __ addptr(end_from, 4);
never@739 1450 __ addptr(end_to, 4);
duke@435 1451
duke@435 1452 // Check for and copy trailing word
duke@435 1453 __ BIND(L_copy_2_bytes);
never@739 1454 __ testl(byte_count, 2);
duke@435 1455 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1456 __ movw(rax, Address(end_from, 8));
duke@435 1457 __ movw(Address(end_to, 8), rax);
duke@435 1458
never@739 1459 __ addptr(end_from, 2);
never@739 1460 __ addptr(end_to, 2);
duke@435 1461
duke@435 1462 // Check for and copy trailing byte
duke@435 1463 __ BIND(L_copy_byte);
never@739 1464 __ testl(byte_count, 1);
duke@435 1465 __ jccb(Assembler::zero, L_exit);
duke@435 1466 __ movb(rax, Address(end_from, 8));
duke@435 1467 __ movb(Address(end_to, 8), rax);
duke@435 1468
duke@435 1469 __ BIND(L_exit);
duke@435 1470 restore_arg_regs();
never@3314 1471 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1472 __ xorptr(rax, rax); // return 0
duke@435 1473 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1474 __ ret(0);
duke@435 1475
duke@435 1476 // Copy in 32-bytes chunks
duke@435 1477 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1478 __ jmp(L_copy_4_bytes);
duke@435 1479
duke@435 1480 return start;
duke@435 1481 }
duke@435 1482
duke@435 1483 // Arguments:
duke@435 1484 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1485 // ignored
duke@435 1486 // name - stub name string
duke@435 1487 //
duke@435 1488 // Inputs:
duke@435 1489 // c_rarg0 - source array address
duke@435 1490 // c_rarg1 - destination array address
duke@435 1491 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1492 //
duke@435 1493 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1494 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1495 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1496 // and stored atomically.
duke@435 1497 //
iveresov@2595 1498 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1499 address* entry, const char *name) {
duke@435 1500 __ align(CodeEntryAlignment);
duke@435 1501 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1502 address start = __ pc();
duke@435 1503
duke@435 1504 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1505 const Register from = rdi; // source array address
duke@435 1506 const Register to = rsi; // destination array address
duke@435 1507 const Register count = rdx; // elements count
duke@435 1508 const Register byte_count = rcx;
duke@435 1509 const Register qword_count = count;
duke@435 1510
duke@435 1511 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1512 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1513
iveresov@2595 1514 if (entry != NULL) {
iveresov@2595 1515 *entry = __ pc();
iveresov@2595 1516 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1517 BLOCK_COMMENT("Entry:");
iveresov@2595 1518 }
iveresov@2595 1519
iveresov@2595 1520 array_overlap_test(nooverlap_target, Address::times_1);
duke@435 1521 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1522 // r9 and r10 may be used to save non-volatile registers
duke@435 1523
duke@435 1524 // 'from', 'to' and 'count' are now valid
never@739 1525 __ movptr(byte_count, count);
never@739 1526 __ shrptr(count, 3); // count => qword_count
duke@435 1527
duke@435 1528 // Copy from high to low addresses.
duke@435 1529
duke@435 1530 // Check for and copy trailing byte
never@739 1531 __ testl(byte_count, 1);
duke@435 1532 __ jcc(Assembler::zero, L_copy_2_bytes);
duke@435 1533 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
duke@435 1534 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
never@739 1535 __ decrement(byte_count); // Adjust for possible trailing word
duke@435 1536
duke@435 1537 // Check for and copy trailing word
duke@435 1538 __ BIND(L_copy_2_bytes);
never@739 1539 __ testl(byte_count, 2);
duke@435 1540 __ jcc(Assembler::zero, L_copy_4_bytes);
duke@435 1541 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
duke@435 1542 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
duke@435 1543
duke@435 1544 // Check for and copy trailing dword
duke@435 1545 __ BIND(L_copy_4_bytes);
never@739 1546 __ testl(byte_count, 4);
duke@435 1547 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1548 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1549 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1550 __ jmp(L_copy_32_bytes);
duke@435 1551
duke@435 1552 // Copy trailing qwords
duke@435 1553 __ BIND(L_copy_8_bytes);
duke@435 1554 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1555 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1556 __ decrement(qword_count);
duke@435 1557 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1558
duke@435 1559 restore_arg_regs();
never@3314 1560 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1561 __ xorptr(rax, rax); // return 0
duke@435 1562 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1563 __ ret(0);
duke@435 1564
duke@435 1565 // Copy in 32-bytes chunks
duke@435 1566 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1567
duke@435 1568 restore_arg_regs();
never@3314 1569 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1570 __ xorptr(rax, rax); // return 0
duke@435 1571 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1572 __ ret(0);
duke@435 1573
duke@435 1574 return start;
duke@435 1575 }
duke@435 1576
duke@435 1577 // Arguments:
duke@435 1578 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1579 // ignored
duke@435 1580 // name - stub name string
duke@435 1581 //
duke@435 1582 // Inputs:
duke@435 1583 // c_rarg0 - source array address
duke@435 1584 // c_rarg1 - destination array address
duke@435 1585 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1586 //
duke@435 1587 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1588 // let the hardware handle it. The two or four words within dwords
duke@435 1589 // or qwords that span cache line boundaries will still be loaded
duke@435 1590 // and stored atomically.
duke@435 1591 //
duke@435 1592 // Side Effects:
duke@435 1593 // disjoint_short_copy_entry is set to the no-overlap entry point
duke@435 1594 // used by generate_conjoint_short_copy().
duke@435 1595 //
iveresov@2595 1596 address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
duke@435 1597 __ align(CodeEntryAlignment);
duke@435 1598 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1599 address start = __ pc();
duke@435 1600
duke@435 1601 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
duke@435 1602 const Register from = rdi; // source array address
duke@435 1603 const Register to = rsi; // destination array address
duke@435 1604 const Register count = rdx; // elements count
duke@435 1605 const Register word_count = rcx;
duke@435 1606 const Register qword_count = count;
duke@435 1607 const Register end_from = from; // source array end address
duke@435 1608 const Register end_to = to; // destination array end address
duke@435 1609 // End pointers are inclusive, and if count is not zero they point
duke@435 1610 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1611
duke@435 1612 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1613 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1614
iveresov@2595 1615 if (entry != NULL) {
iveresov@2595 1616 *entry = __ pc();
iveresov@2595 1617 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1618 BLOCK_COMMENT("Entry:");
iveresov@2595 1619 }
duke@435 1620
duke@435 1621 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1622 // r9 and r10 may be used to save non-volatile registers
duke@435 1623
duke@435 1624 // 'from', 'to' and 'count' are now valid
never@739 1625 __ movptr(word_count, count);
never@739 1626 __ shrptr(count, 2); // count => qword_count
duke@435 1627
duke@435 1628 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1629 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1630 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1631 __ negptr(qword_count);
duke@435 1632 __ jmp(L_copy_32_bytes);
duke@435 1633
duke@435 1634 // Copy trailing qwords
duke@435 1635 __ BIND(L_copy_8_bytes);
duke@435 1636 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1637 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1638 __ increment(qword_count);
duke@435 1639 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1640
duke@435 1641 // Original 'dest' is trashed, so we can't use it as a
duke@435 1642 // base register for a possible trailing word copy
duke@435 1643
duke@435 1644 // Check for and copy trailing dword
duke@435 1645 __ BIND(L_copy_4_bytes);
never@739 1646 __ testl(word_count, 2);
duke@435 1647 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1648 __ movl(rax, Address(end_from, 8));
duke@435 1649 __ movl(Address(end_to, 8), rax);
duke@435 1650
never@739 1651 __ addptr(end_from, 4);
never@739 1652 __ addptr(end_to, 4);
duke@435 1653
duke@435 1654 // Check for and copy trailing word
duke@435 1655 __ BIND(L_copy_2_bytes);
never@739 1656 __ testl(word_count, 1);
duke@435 1657 __ jccb(Assembler::zero, L_exit);
duke@435 1658 __ movw(rax, Address(end_from, 8));
duke@435 1659 __ movw(Address(end_to, 8), rax);
duke@435 1660
duke@435 1661 __ BIND(L_exit);
duke@435 1662 restore_arg_regs();
never@3314 1663 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1664 __ xorptr(rax, rax); // return 0
duke@435 1665 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1666 __ ret(0);
duke@435 1667
duke@435 1668 // Copy in 32-bytes chunks
duke@435 1669 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1670 __ jmp(L_copy_4_bytes);
duke@435 1671
duke@435 1672 return start;
duke@435 1673 }
duke@435 1674
never@2118 1675 address generate_fill(BasicType t, bool aligned, const char *name) {
never@2118 1676 __ align(CodeEntryAlignment);
never@2118 1677 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1678 address start = __ pc();
never@2118 1679
never@2118 1680 BLOCK_COMMENT("Entry:");
never@2118 1681
never@2118 1682 const Register to = c_rarg0; // source array address
never@2118 1683 const Register value = c_rarg1; // value
never@2118 1684 const Register count = c_rarg2; // elements count
never@2118 1685
never@2118 1686 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@2118 1687
never@2118 1688 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
never@2118 1689
never@2118 1690 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@2118 1691 __ ret(0);
never@2118 1692 return start;
never@2118 1693 }
never@2118 1694
duke@435 1695 // Arguments:
duke@435 1696 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1697 // ignored
duke@435 1698 // name - stub name string
duke@435 1699 //
duke@435 1700 // Inputs:
duke@435 1701 // c_rarg0 - source array address
duke@435 1702 // c_rarg1 - destination array address
duke@435 1703 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1704 //
duke@435 1705 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1706 // let the hardware handle it. The two or four words within dwords
duke@435 1707 // or qwords that span cache line boundaries will still be loaded
duke@435 1708 // and stored atomically.
duke@435 1709 //
iveresov@2595 1710 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1711 address *entry, const char *name) {
duke@435 1712 __ align(CodeEntryAlignment);
duke@435 1713 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1714 address start = __ pc();
duke@435 1715
duke@435 1716 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
duke@435 1717 const Register from = rdi; // source array address
duke@435 1718 const Register to = rsi; // destination array address
duke@435 1719 const Register count = rdx; // elements count
duke@435 1720 const Register word_count = rcx;
duke@435 1721 const Register qword_count = count;
duke@435 1722
duke@435 1723 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1724 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1725
iveresov@2595 1726 if (entry != NULL) {
iveresov@2595 1727 *entry = __ pc();
iveresov@2595 1728 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1729 BLOCK_COMMENT("Entry:");
iveresov@2595 1730 }
iveresov@2595 1731
iveresov@2595 1732 array_overlap_test(nooverlap_target, Address::times_2);
duke@435 1733 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1734 // r9 and r10 may be used to save non-volatile registers
duke@435 1735
duke@435 1736 // 'from', 'to' and 'count' are now valid
never@739 1737 __ movptr(word_count, count);
never@739 1738 __ shrptr(count, 2); // count => qword_count
duke@435 1739
duke@435 1740 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1741
duke@435 1742 // Check for and copy trailing word
never@739 1743 __ testl(word_count, 1);
duke@435 1744 __ jccb(Assembler::zero, L_copy_4_bytes);
duke@435 1745 __ movw(rax, Address(from, word_count, Address::times_2, -2));
duke@435 1746 __ movw(Address(to, word_count, Address::times_2, -2), rax);
duke@435 1747
duke@435 1748 // Check for and copy trailing dword
duke@435 1749 __ BIND(L_copy_4_bytes);
never@739 1750 __ testl(word_count, 2);
duke@435 1751 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1752 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1753 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1754 __ jmp(L_copy_32_bytes);
duke@435 1755
duke@435 1756 // Copy trailing qwords
duke@435 1757 __ BIND(L_copy_8_bytes);
duke@435 1758 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1759 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1760 __ decrement(qword_count);
duke@435 1761 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1762
duke@435 1763 restore_arg_regs();
never@3314 1764 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1765 __ xorptr(rax, rax); // return 0
duke@435 1766 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1767 __ ret(0);
duke@435 1768
duke@435 1769 // Copy in 32-bytes chunks
duke@435 1770 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1771
duke@435 1772 restore_arg_regs();
never@3314 1773 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1774 __ xorptr(rax, rax); // return 0
duke@435 1775 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1776 __ ret(0);
duke@435 1777
duke@435 1778 return start;
duke@435 1779 }
duke@435 1780
duke@435 1781 // Arguments:
duke@435 1782 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1783 // ignored
coleenp@548 1784 // is_oop - true => oop array, so generate store check code
duke@435 1785 // name - stub name string
duke@435 1786 //
duke@435 1787 // Inputs:
duke@435 1788 // c_rarg0 - source array address
duke@435 1789 // c_rarg1 - destination array address
duke@435 1790 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1791 //
duke@435 1792 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1793 // the hardware handle it. The two dwords within qwords that span
duke@435 1794 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1795 //
duke@435 1796 // Side Effects:
duke@435 1797 // disjoint_int_copy_entry is set to the no-overlap entry point
coleenp@548 1798 // used by generate_conjoint_int_oop_copy().
duke@435 1799 //
iveresov@2606 1800 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
iveresov@2606 1801 const char *name, bool dest_uninitialized = false) {
duke@435 1802 __ align(CodeEntryAlignment);
duke@435 1803 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1804 address start = __ pc();
duke@435 1805
duke@435 1806 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
duke@435 1807 const Register from = rdi; // source array address
duke@435 1808 const Register to = rsi; // destination array address
duke@435 1809 const Register count = rdx; // elements count
duke@435 1810 const Register dword_count = rcx;
duke@435 1811 const Register qword_count = count;
duke@435 1812 const Register end_from = from; // source array end address
duke@435 1813 const Register end_to = to; // destination array end address
coleenp@548 1814 const Register saved_to = r11; // saved destination array address
duke@435 1815 // End pointers are inclusive, and if count is not zero they point
duke@435 1816 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1817
duke@435 1818 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1819 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1820
iveresov@2595 1821 if (entry != NULL) {
iveresov@2595 1822 *entry = __ pc();
iveresov@2595 1823 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1824 BLOCK_COMMENT("Entry:");
coleenp@548 1825 }
coleenp@548 1826
duke@435 1827 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1828 // r9 and r10 may be used to save non-volatile registers
coleenp@548 1829 if (is_oop) {
coleenp@548 1830 __ movq(saved_to, to);
iveresov@2606 1831 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1832 }
coleenp@548 1833
duke@435 1834 // 'from', 'to' and 'count' are now valid
never@739 1835 __ movptr(dword_count, count);
never@739 1836 __ shrptr(count, 1); // count => qword_count
duke@435 1837
duke@435 1838 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1839 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1840 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1841 __ negptr(qword_count);
duke@435 1842 __ jmp(L_copy_32_bytes);
duke@435 1843
duke@435 1844 // Copy trailing qwords
duke@435 1845 __ BIND(L_copy_8_bytes);
duke@435 1846 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1847 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1848 __ increment(qword_count);
duke@435 1849 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1850
duke@435 1851 // Check for and copy trailing dword
duke@435 1852 __ BIND(L_copy_4_bytes);
never@739 1853 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
duke@435 1854 __ jccb(Assembler::zero, L_exit);
duke@435 1855 __ movl(rax, Address(end_from, 8));
duke@435 1856 __ movl(Address(end_to, 8), rax);
duke@435 1857
duke@435 1858 __ BIND(L_exit);
coleenp@548 1859 if (is_oop) {
coleenp@548 1860 __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
coleenp@548 1861 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
coleenp@548 1862 }
duke@435 1863 restore_arg_regs();
never@3314 1864 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1865 __ xorptr(rax, rax); // return 0
duke@435 1866 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1867 __ ret(0);
duke@435 1868
duke@435 1869 // Copy 32-bytes chunks
duke@435 1870 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1871 __ jmp(L_copy_4_bytes);
duke@435 1872
duke@435 1873 return start;
duke@435 1874 }
duke@435 1875
duke@435 1876 // Arguments:
duke@435 1877 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1878 // ignored
coleenp@548 1879 // is_oop - true => oop array, so generate store check code
duke@435 1880 // name - stub name string
duke@435 1881 //
duke@435 1882 // Inputs:
duke@435 1883 // c_rarg0 - source array address
duke@435 1884 // c_rarg1 - destination array address
duke@435 1885 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1886 //
duke@435 1887 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1888 // the hardware handle it. The two dwords within qwords that span
duke@435 1889 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1890 //
iveresov@2595 1891 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
iveresov@2606 1892 address *entry, const char *name,
iveresov@2606 1893 bool dest_uninitialized = false) {
duke@435 1894 __ align(CodeEntryAlignment);
duke@435 1895 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1896 address start = __ pc();
duke@435 1897
coleenp@548 1898 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
duke@435 1899 const Register from = rdi; // source array address
duke@435 1900 const Register to = rsi; // destination array address
duke@435 1901 const Register count = rdx; // elements count
duke@435 1902 const Register dword_count = rcx;
duke@435 1903 const Register qword_count = count;
duke@435 1904
duke@435 1905 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1906 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1907
iveresov@2595 1908 if (entry != NULL) {
iveresov@2595 1909 *entry = __ pc();
iveresov@2595 1910 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1911 BLOCK_COMMENT("Entry:");
iveresov@2595 1912 }
iveresov@2595 1913
iveresov@2595 1914 array_overlap_test(nooverlap_target, Address::times_4);
iveresov@2595 1915 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
iveresov@2595 1916 // r9 and r10 may be used to save non-volatile registers
iveresov@2595 1917
coleenp@548 1918 if (is_oop) {
coleenp@548 1919 // no registers are destroyed by this call
iveresov@2606 1920 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1921 }
coleenp@548 1922
coleenp@548 1923 assert_clean_int(count, rax); // Make sure 'count' is clean int.
duke@435 1924 // 'from', 'to' and 'count' are now valid
never@739 1925 __ movptr(dword_count, count);
never@739 1926 __ shrptr(count, 1); // count => qword_count
duke@435 1927
duke@435 1928 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1929
duke@435 1930 // Check for and copy trailing dword
never@739 1931 __ testl(dword_count, 1);
duke@435 1932 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1933 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
duke@435 1934 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
duke@435 1935 __ jmp(L_copy_32_bytes);
duke@435 1936
duke@435 1937 // Copy trailing qwords
duke@435 1938 __ BIND(L_copy_8_bytes);
duke@435 1939 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1940 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1941 __ decrement(qword_count);
duke@435 1942 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1943
coleenp@548 1944 if (is_oop) {
coleenp@548 1945 __ jmp(L_exit);
coleenp@548 1946 }
duke@435 1947 restore_arg_regs();
never@3314 1948 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1949 __ xorptr(rax, rax); // return 0
duke@435 1950 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1951 __ ret(0);
duke@435 1952
duke@435 1953 // Copy in 32-bytes chunks
duke@435 1954 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1955
coleenp@548 1956 __ bind(L_exit);
coleenp@548 1957 if (is_oop) {
coleenp@548 1958 Register end_to = rdx;
coleenp@548 1959 __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
coleenp@548 1960 gen_write_ref_array_post_barrier(to, end_to, rax);
coleenp@548 1961 }
duke@435 1962 restore_arg_regs();
never@3314 1963 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1964 __ xorptr(rax, rax); // return 0
duke@435 1965 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1966 __ ret(0);
duke@435 1967
duke@435 1968 return start;
duke@435 1969 }
duke@435 1970
duke@435 1971 // Arguments:
duke@435 1972 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1973 // ignored
duke@435 1974 // is_oop - true => oop array, so generate store check code
duke@435 1975 // name - stub name string
duke@435 1976 //
duke@435 1977 // Inputs:
duke@435 1978 // c_rarg0 - source array address
duke@435 1979 // c_rarg1 - destination array address
duke@435 1980 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1981 //
coleenp@548 1982 // Side Effects:
duke@435 1983 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
duke@435 1984 // no-overlap entry point used by generate_conjoint_long_oop_copy().
duke@435 1985 //
iveresov@2606 1986 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
iveresov@2606 1987 const char *name, bool dest_uninitialized = false) {
duke@435 1988 __ align(CodeEntryAlignment);
duke@435 1989 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1990 address start = __ pc();
duke@435 1991
duke@435 1992 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 1993 const Register from = rdi; // source array address
duke@435 1994 const Register to = rsi; // destination array address
duke@435 1995 const Register qword_count = rdx; // elements count
duke@435 1996 const Register end_from = from; // source array end address
duke@435 1997 const Register end_to = rcx; // destination array end address
duke@435 1998 const Register saved_to = to;
duke@435 1999 // End pointers are inclusive, and if count is not zero they point
duke@435 2000 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2001
duke@435 2002 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2003 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
duke@435 2004 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2005
iveresov@2595 2006 if (entry != NULL) {
iveresov@2595 2007 *entry = __ pc();
iveresov@2595 2008 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2009 BLOCK_COMMENT("Entry:");
duke@435 2010 }
duke@435 2011
duke@435 2012 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2013 // r9 and r10 may be used to save non-volatile registers
duke@435 2014 // 'from', 'to' and 'qword_count' are now valid
iveresov@2595 2015 if (is_oop) {
iveresov@2595 2016 // no registers are destroyed by this call
iveresov@2606 2017 gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
iveresov@2595 2018 }
duke@435 2019
duke@435 2020 // Copy from low to high addresses. Use 'to' as scratch.
never@739 2021 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 2022 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 2023 __ negptr(qword_count);
duke@435 2024 __ jmp(L_copy_32_bytes);
duke@435 2025
duke@435 2026 // Copy trailing qwords
duke@435 2027 __ BIND(L_copy_8_bytes);
duke@435 2028 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 2029 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 2030 __ increment(qword_count);
duke@435 2031 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2032
duke@435 2033 if (is_oop) {
duke@435 2034 __ jmp(L_exit);
duke@435 2035 } else {
duke@435 2036 restore_arg_regs();
never@3314 2037 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@739 2038 __ xorptr(rax, rax); // return 0
duke@435 2039 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2040 __ ret(0);
duke@435 2041 }
duke@435 2042
duke@435 2043 // Copy 64-byte chunks
duke@435 2044 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2045
duke@435 2046 if (is_oop) {
duke@435 2047 __ BIND(L_exit);
duke@435 2048 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
duke@435 2049 }
duke@435 2050 restore_arg_regs();
never@3314 2051 if (is_oop) {
never@3314 2052 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2053 } else {
never@3314 2054 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2055 }
never@739 2056 __ xorptr(rax, rax); // return 0
duke@435 2057 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2058 __ ret(0);
duke@435 2059
duke@435 2060 return start;
duke@435 2061 }
duke@435 2062
duke@435 2063 // Arguments:
duke@435 2064 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 2065 // ignored
duke@435 2066 // is_oop - true => oop array, so generate store check code
duke@435 2067 // name - stub name string
duke@435 2068 //
duke@435 2069 // Inputs:
duke@435 2070 // c_rarg0 - source array address
duke@435 2071 // c_rarg1 - destination array address
duke@435 2072 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2073 //
iveresov@2606 2074 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
iveresov@2606 2075 address nooverlap_target, address *entry,
iveresov@2606 2076 const char *name, bool dest_uninitialized = false) {
duke@435 2077 __ align(CodeEntryAlignment);
duke@435 2078 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2079 address start = __ pc();
duke@435 2080
duke@435 2081 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 2082 const Register from = rdi; // source array address
duke@435 2083 const Register to = rsi; // destination array address
duke@435 2084 const Register qword_count = rdx; // elements count
duke@435 2085 const Register saved_count = rcx;
duke@435 2086
duke@435 2087 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2088 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2089
iveresov@2595 2090 if (entry != NULL) {
iveresov@2595 2091 *entry = __ pc();
iveresov@2595 2092 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2093 BLOCK_COMMENT("Entry:");
duke@435 2094 }
iveresov@2595 2095
iveresov@2595 2096 array_overlap_test(nooverlap_target, Address::times_8);
duke@435 2097 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2098 // r9 and r10 may be used to save non-volatile registers
duke@435 2099 // 'from', 'to' and 'qword_count' are now valid
duke@435 2100 if (is_oop) {
duke@435 2101 // Save to and count for store barrier
never@739 2102 __ movptr(saved_count, qword_count);
duke@435 2103 // No registers are destroyed by this call
iveresov@2606 2104 gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
duke@435 2105 }
duke@435 2106
duke@435 2107 __ jmp(L_copy_32_bytes);
duke@435 2108
duke@435 2109 // Copy trailing qwords
duke@435 2110 __ BIND(L_copy_8_bytes);
duke@435 2111 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 2112 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 2113 __ decrement(qword_count);
duke@435 2114 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2115
duke@435 2116 if (is_oop) {
duke@435 2117 __ jmp(L_exit);
duke@435 2118 } else {
duke@435 2119 restore_arg_regs();
never@3314 2120 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@739 2121 __ xorptr(rax, rax); // return 0
duke@435 2122 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2123 __ ret(0);
duke@435 2124 }
duke@435 2125
duke@435 2126 // Copy in 32-bytes chunks
duke@435 2127 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2128
duke@435 2129 if (is_oop) {
duke@435 2130 __ BIND(L_exit);
never@739 2131 __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
duke@435 2132 gen_write_ref_array_post_barrier(to, rcx, rax);
duke@435 2133 }
duke@435 2134 restore_arg_regs();
never@3314 2135 if (is_oop) {
never@3314 2136 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2137 } else {
never@3314 2138 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2139 }
never@739 2140 __ xorptr(rax, rax); // return 0
duke@435 2141 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2142 __ ret(0);
duke@435 2143
duke@435 2144 return start;
duke@435 2145 }
duke@435 2146
duke@435 2147
duke@435 2148 // Helper for generating a dynamic type check.
duke@435 2149 // Smashes no registers.
duke@435 2150 void generate_type_check(Register sub_klass,
duke@435 2151 Register super_check_offset,
duke@435 2152 Register super_klass,
duke@435 2153 Label& L_success) {
duke@435 2154 assert_different_registers(sub_klass, super_check_offset, super_klass);
duke@435 2155
duke@435 2156 BLOCK_COMMENT("type_check:");
duke@435 2157
duke@435 2158 Label L_miss;
duke@435 2159
jrose@1079 2160 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
jrose@1079 2161 super_check_offset);
jrose@1079 2162 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
duke@435 2163
duke@435 2164 // Fall through on failure!
duke@435 2165 __ BIND(L_miss);
duke@435 2166 }
duke@435 2167
duke@435 2168 //
duke@435 2169 // Generate checkcasting array copy stub
duke@435 2170 //
duke@435 2171 // Input:
duke@435 2172 // c_rarg0 - source array address
duke@435 2173 // c_rarg1 - destination array address
duke@435 2174 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2175 // c_rarg3 - size_t ckoff (super_check_offset)
duke@435 2176 // not Win64
duke@435 2177 // c_rarg4 - oop ckval (super_klass)
duke@435 2178 // Win64
duke@435 2179 // rsp+40 - oop ckval (super_klass)
duke@435 2180 //
duke@435 2181 // Output:
duke@435 2182 // rax == 0 - success
duke@435 2183 // rax == -1^K - failure, where K is partial transfer count
duke@435 2184 //
iveresov@2606 2185 address generate_checkcast_copy(const char *name, address *entry,
iveresov@2606 2186 bool dest_uninitialized = false) {
duke@435 2187
duke@435 2188 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 2189
duke@435 2190 // Input registers (after setup_arg_regs)
duke@435 2191 const Register from = rdi; // source array address
duke@435 2192 const Register to = rsi; // destination array address
duke@435 2193 const Register length = rdx; // elements count
duke@435 2194 const Register ckoff = rcx; // super_check_offset
duke@435 2195 const Register ckval = r8; // super_klass
duke@435 2196
duke@435 2197 // Registers used as temps (r13, r14 are save-on-entry)
duke@435 2198 const Register end_from = from; // source array end address
duke@435 2199 const Register end_to = r13; // destination array end address
duke@435 2200 const Register count = rdx; // -(count_remaining)
duke@435 2201 const Register r14_length = r14; // saved copy of length
duke@435 2202 // End pointers are inclusive, and if length is not zero they point
duke@435 2203 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2204
duke@435 2205 const Register rax_oop = rax; // actual oop copied
duke@435 2206 const Register r11_klass = r11; // oop._klass
duke@435 2207
duke@435 2208 //---------------------------------------------------------------
duke@435 2209 // Assembler stub will be used for this call to arraycopy
duke@435 2210 // if the two arrays are subtypes of Object[] but the
duke@435 2211 // destination array type is not equal to or a supertype
duke@435 2212 // of the source type. Each element must be separately
duke@435 2213 // checked.
duke@435 2214
duke@435 2215 __ align(CodeEntryAlignment);
duke@435 2216 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2217 address start = __ pc();
duke@435 2218
duke@435 2219 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2220
duke@435 2221 #ifdef ASSERT
duke@435 2222 // caller guarantees that the arrays really are different
duke@435 2223 // otherwise, we would have to make conjoint checks
duke@435 2224 { Label L;
coleenp@548 2225 array_overlap_test(L, TIMES_OOP);
duke@435 2226 __ stop("checkcast_copy within a single array");
duke@435 2227 __ bind(L);
duke@435 2228 }
duke@435 2229 #endif //ASSERT
duke@435 2230
duke@435 2231 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
duke@435 2232 // ckoff => rcx, ckval => r8
duke@435 2233 // r9 and r10 may be used to save non-volatile registers
duke@435 2234 #ifdef _WIN64
duke@435 2235 // last argument (#4) is on stack on Win64
twisti@2348 2236 __ movptr(ckval, Address(rsp, 6 * wordSize));
duke@435 2237 #endif
duke@435 2238
twisti@2348 2239 // Caller of this entry point must set up the argument registers.
iveresov@2595 2240 if (entry != NULL) {
iveresov@2595 2241 *entry = __ pc();
iveresov@2595 2242 BLOCK_COMMENT("Entry:");
iveresov@2595 2243 }
twisti@2348 2244
twisti@2348 2245 // allocate spill slots for r13, r14
twisti@2348 2246 enum {
twisti@2348 2247 saved_r13_offset,
twisti@2348 2248 saved_r14_offset,
twisti@2348 2249 saved_rbp_offset
twisti@2348 2250 };
twisti@2348 2251 __ subptr(rsp, saved_rbp_offset * wordSize);
twisti@2348 2252 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
twisti@2348 2253 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
twisti@2348 2254
duke@435 2255 // check that int operands are properly extended to size_t
duke@435 2256 assert_clean_int(length, rax);
duke@435 2257 assert_clean_int(ckoff, rax);
duke@435 2258
duke@435 2259 #ifdef ASSERT
duke@435 2260 BLOCK_COMMENT("assert consistent ckoff/ckval");
duke@435 2261 // The ckoff and ckval must be mutually consistent,
duke@435 2262 // even though caller generates both.
duke@435 2263 { Label L;
stefank@3391 2264 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 2265 __ cmpl(ckoff, Address(ckval, sco_offset));
duke@435 2266 __ jcc(Assembler::equal, L);
duke@435 2267 __ stop("super_check_offset inconsistent");
duke@435 2268 __ bind(L);
duke@435 2269 }
duke@435 2270 #endif //ASSERT
duke@435 2271
duke@435 2272 // Loop-invariant addresses. They are exclusive end pointers.
coleenp@548 2273 Address end_from_addr(from, length, TIMES_OOP, 0);
coleenp@548 2274 Address end_to_addr(to, length, TIMES_OOP, 0);
duke@435 2275 // Loop-variant addresses. They assume post-incremented count < 0.
coleenp@548 2276 Address from_element_addr(end_from, count, TIMES_OOP, 0);
coleenp@548 2277 Address to_element_addr(end_to, count, TIMES_OOP, 0);
duke@435 2278
iveresov@2606 2279 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
duke@435 2280
duke@435 2281 // Copy from low to high addresses, indexed from the end of each array.
never@739 2282 __ lea(end_from, end_from_addr);
never@739 2283 __ lea(end_to, end_to_addr);
never@739 2284 __ movptr(r14_length, length); // save a copy of the length
never@739 2285 assert(length == count, ""); // else fix next line:
never@739 2286 __ negptr(count); // negate and test the length
duke@435 2287 __ jcc(Assembler::notZero, L_load_element);
duke@435 2288
duke@435 2289 // Empty array: Nothing to do.
never@739 2290 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 2291 __ jmp(L_done);
duke@435 2292
duke@435 2293 // ======== begin loop ========
duke@435 2294 // (Loop is rotated; its entry is L_load_element.)
duke@435 2295 // Loop control:
duke@435 2296 // for (count = -count; count != 0; count++)
duke@435 2297 // Base pointers src, dst are biased by 8*(count-1),to last element.
kvn@1800 2298 __ align(OptoLoopAlignment);
duke@435 2299
duke@435 2300 __ BIND(L_store_element);
coleenp@548 2301 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
never@739 2302 __ increment(count); // increment the count toward zero
duke@435 2303 __ jcc(Assembler::zero, L_do_card_marks);
duke@435 2304
duke@435 2305 // ======== loop entry is here ========
duke@435 2306 __ BIND(L_load_element);
coleenp@548 2307 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
never@739 2308 __ testptr(rax_oop, rax_oop);
duke@435 2309 __ jcc(Assembler::zero, L_store_element);
duke@435 2310
coleenp@548 2311 __ load_klass(r11_klass, rax_oop);// query the object klass
duke@435 2312 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
duke@435 2313 // ======== end loop ========
duke@435 2314
duke@435 2315 // It was a real error; we must depend on the caller to finish the job.
duke@435 2316 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
duke@435 2317 // Emit GC store barriers for the oops we have copied (r14 + rdx),
duke@435 2318 // and report their number to the caller.
duke@435 2319 assert_different_registers(rax, r14_length, count, to, end_to, rcx);
never@739 2320 __ lea(end_to, to_element_addr);
ysr@1280 2321 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2322 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2323 __ movptr(rax, r14_length); // original oops
never@739 2324 __ addptr(rax, count); // K = (original - remaining) oops
never@739 2325 __ notptr(rax); // report (-1^K) to caller
duke@435 2326 __ jmp(L_done);
duke@435 2327
duke@435 2328 // Come here on success only.
duke@435 2329 __ BIND(L_do_card_marks);
ysr@1280 2330 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2331 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2332 __ xorptr(rax, rax); // return 0 on success
duke@435 2333
duke@435 2334 // Common exit point (success or failure).
duke@435 2335 __ BIND(L_done);
never@739 2336 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
never@739 2337 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
duke@435 2338 restore_arg_regs();
never@3314 2339 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
duke@435 2340 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2341 __ ret(0);
duke@435 2342
duke@435 2343 return start;
duke@435 2344 }
duke@435 2345
duke@435 2346 //
duke@435 2347 // Generate 'unsafe' array copy stub
duke@435 2348 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2349 // size_t argument instead of an element count.
duke@435 2350 //
duke@435 2351 // Input:
duke@435 2352 // c_rarg0 - source array address
duke@435 2353 // c_rarg1 - destination array address
duke@435 2354 // c_rarg2 - byte count, treated as ssize_t, can be zero
duke@435 2355 //
duke@435 2356 // Examines the alignment of the operands and dispatches
duke@435 2357 // to a long, int, short, or byte copy loop.
duke@435 2358 //
iveresov@2595 2359 address generate_unsafe_copy(const char *name,
iveresov@2595 2360 address byte_copy_entry, address short_copy_entry,
iveresov@2595 2361 address int_copy_entry, address long_copy_entry) {
duke@435 2362
duke@435 2363 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 2364
duke@435 2365 // Input registers (before setup_arg_regs)
duke@435 2366 const Register from = c_rarg0; // source array address
duke@435 2367 const Register to = c_rarg1; // destination array address
duke@435 2368 const Register size = c_rarg2; // byte count (size_t)
duke@435 2369
duke@435 2370 // Register used as a temp
duke@435 2371 const Register bits = rax; // test copy of low bits
duke@435 2372
duke@435 2373 __ align(CodeEntryAlignment);
duke@435 2374 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2375 address start = __ pc();
duke@435 2376
duke@435 2377 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2378
duke@435 2379 // bump this on entry, not on exit:
duke@435 2380 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 2381
never@739 2382 __ mov(bits, from);
never@739 2383 __ orptr(bits, to);
never@739 2384 __ orptr(bits, size);
duke@435 2385
duke@435 2386 __ testb(bits, BytesPerLong-1);
duke@435 2387 __ jccb(Assembler::zero, L_long_aligned);
duke@435 2388
duke@435 2389 __ testb(bits, BytesPerInt-1);
duke@435 2390 __ jccb(Assembler::zero, L_int_aligned);
duke@435 2391
duke@435 2392 __ testb(bits, BytesPerShort-1);
duke@435 2393 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 2394
duke@435 2395 __ BIND(L_short_aligned);
never@739 2396 __ shrptr(size, LogBytesPerShort); // size => short_count
duke@435 2397 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2398
duke@435 2399 __ BIND(L_int_aligned);
never@739 2400 __ shrptr(size, LogBytesPerInt); // size => int_count
duke@435 2401 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2402
duke@435 2403 __ BIND(L_long_aligned);
never@739 2404 __ shrptr(size, LogBytesPerLong); // size => qword_count
duke@435 2405 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2406
duke@435 2407 return start;
duke@435 2408 }
duke@435 2409
duke@435 2410 // Perform range checks on the proposed arraycopy.
duke@435 2411 // Kills temp, but nothing else.
duke@435 2412 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2413 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
duke@435 2414 Register src_pos, // source position (c_rarg1)
duke@435 2415 Register dst, // destination array oo (c_rarg2)
duke@435 2416 Register dst_pos, // destination position (c_rarg3)
duke@435 2417 Register length,
duke@435 2418 Register temp,
duke@435 2419 Label& L_failed) {
duke@435 2420 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2421
duke@435 2422 // if (src_pos + length > arrayOop(src)->length()) FAIL;
duke@435 2423 __ movl(temp, length);
duke@435 2424 __ addl(temp, src_pos); // src_pos + length
duke@435 2425 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 2426 __ jcc(Assembler::above, L_failed);
duke@435 2427
duke@435 2428 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
duke@435 2429 __ movl(temp, length);
duke@435 2430 __ addl(temp, dst_pos); // dst_pos + length
duke@435 2431 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 2432 __ jcc(Assembler::above, L_failed);
duke@435 2433
duke@435 2434 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2435 // Move with sign extension can be used since they are positive.
duke@435 2436 __ movslq(src_pos, src_pos);
duke@435 2437 __ movslq(dst_pos, dst_pos);
duke@435 2438
duke@435 2439 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2440 }
duke@435 2441
duke@435 2442 //
duke@435 2443 // Generate generic array copy stubs
duke@435 2444 //
duke@435 2445 // Input:
duke@435 2446 // c_rarg0 - src oop
duke@435 2447 // c_rarg1 - src_pos (32-bits)
duke@435 2448 // c_rarg2 - dst oop
duke@435 2449 // c_rarg3 - dst_pos (32-bits)
duke@435 2450 // not Win64
duke@435 2451 // c_rarg4 - element count (32-bits)
duke@435 2452 // Win64
duke@435 2453 // rsp+40 - element count (32-bits)
duke@435 2454 //
duke@435 2455 // Output:
duke@435 2456 // rax == 0 - success
duke@435 2457 // rax == -1^K - failure, where K is partial transfer count
duke@435 2458 //
iveresov@2595 2459 address generate_generic_copy(const char *name,
iveresov@2595 2460 address byte_copy_entry, address short_copy_entry,
iveresov@2691 2461 address int_copy_entry, address oop_copy_entry,
iveresov@2691 2462 address long_copy_entry, address checkcast_copy_entry) {
duke@435 2463
duke@435 2464 Label L_failed, L_failed_0, L_objArray;
duke@435 2465 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
duke@435 2466
duke@435 2467 // Input registers
duke@435 2468 const Register src = c_rarg0; // source array oop
duke@435 2469 const Register src_pos = c_rarg1; // source position
duke@435 2470 const Register dst = c_rarg2; // destination array oop
duke@435 2471 const Register dst_pos = c_rarg3; // destination position
twisti@2348 2472 #ifndef _WIN64
twisti@2348 2473 const Register length = c_rarg4;
duke@435 2474 #else
twisti@2348 2475 const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64
duke@435 2476 #endif
duke@435 2477
duke@435 2478 { int modulus = CodeEntryAlignment;
duke@435 2479 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 2480 int advance = target - (__ offset() % modulus);
duke@435 2481 if (advance < 0) advance += modulus;
duke@435 2482 if (advance > 0) __ nop(advance);
duke@435 2483 }
duke@435 2484 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2485
duke@435 2486 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 2487 __ BIND(L_failed_0);
duke@435 2488 __ jmp(L_failed);
duke@435 2489 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 2490
duke@435 2491 __ align(CodeEntryAlignment);
duke@435 2492 address start = __ pc();
duke@435 2493
duke@435 2494 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2495
duke@435 2496 // bump this on entry, not on exit:
duke@435 2497 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 2498
duke@435 2499 //-----------------------------------------------------------------------
duke@435 2500 // Assembler stub will be used for this call to arraycopy
duke@435 2501 // if the following conditions are met:
duke@435 2502 //
duke@435 2503 // (1) src and dst must not be null.
duke@435 2504 // (2) src_pos must not be negative.
duke@435 2505 // (3) dst_pos must not be negative.
duke@435 2506 // (4) length must not be negative.
duke@435 2507 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2508 // (6) src and dst should be arrays.
duke@435 2509 // (7) src_pos + length must not exceed length of src.
duke@435 2510 // (8) dst_pos + length must not exceed length of dst.
duke@435 2511 //
duke@435 2512
duke@435 2513 // if (src == NULL) return -1;
never@739 2514 __ testptr(src, src); // src oop
duke@435 2515 size_t j1off = __ offset();
duke@435 2516 __ jccb(Assembler::zero, L_failed_0);
duke@435 2517
duke@435 2518 // if (src_pos < 0) return -1;
duke@435 2519 __ testl(src_pos, src_pos); // src_pos (32-bits)
duke@435 2520 __ jccb(Assembler::negative, L_failed_0);
duke@435 2521
duke@435 2522 // if (dst == NULL) return -1;
never@739 2523 __ testptr(dst, dst); // dst oop
duke@435 2524 __ jccb(Assembler::zero, L_failed_0);
duke@435 2525
duke@435 2526 // if (dst_pos < 0) return -1;
duke@435 2527 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
duke@435 2528 size_t j4off = __ offset();
duke@435 2529 __ jccb(Assembler::negative, L_failed_0);
duke@435 2530
duke@435 2531 // The first four tests are very dense code,
duke@435 2532 // but not quite dense enough to put four
duke@435 2533 // jumps in a 16-byte instruction fetch buffer.
duke@435 2534 // That's good, because some branch predicters
duke@435 2535 // do not like jumps so close together.
duke@435 2536 // Make sure of this.
duke@435 2537 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
duke@435 2538
duke@435 2539 // registers used as temp
duke@435 2540 const Register r11_length = r11; // elements count to copy
duke@435 2541 const Register r10_src_klass = r10; // array klass
duke@435 2542
duke@435 2543 // if (length < 0) return -1;
twisti@2348 2544 __ movl(r11_length, length); // length (elements count, 32-bits value)
duke@435 2545 __ testl(r11_length, r11_length);
duke@435 2546 __ jccb(Assembler::negative, L_failed_0);
duke@435 2547
coleenp@548 2548 __ load_klass(r10_src_klass, src);
duke@435 2549 #ifdef ASSERT
duke@435 2550 // assert(src->klass() != NULL);
twisti@2348 2551 {
twisti@2348 2552 BLOCK_COMMENT("assert klasses not null {");
twisti@2348 2553 Label L1, L2;
never@739 2554 __ testptr(r10_src_klass, r10_src_klass);
duke@435 2555 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 2556 __ bind(L1);
duke@435 2557 __ stop("broken null klass");
duke@435 2558 __ bind(L2);
twisti@2348 2559 __ load_klass(rax, dst);
twisti@2348 2560 __ cmpq(rax, 0);
duke@435 2561 __ jcc(Assembler::equal, L1); // this would be broken also
twisti@2348 2562 BLOCK_COMMENT("} assert klasses not null done");
duke@435 2563 }
duke@435 2564 #endif
duke@435 2565
duke@435 2566 // Load layout helper (32-bits)
duke@435 2567 //
duke@435 2568 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2569 // 32 30 24 16 8 2 0
duke@435 2570 //
duke@435 2571 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2572 //
duke@435 2573
stefank@3391 2574 const int lh_offset = in_bytes(Klass::layout_helper_offset());
twisti@2348 2575
twisti@2348 2576 // Handle objArrays completely differently...
twisti@2348 2577 const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
twisti@2348 2578 __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
twisti@2348 2579 __ jcc(Assembler::equal, L_objArray);
twisti@2348 2580
twisti@2348 2581 // if (src->klass() != dst->klass()) return -1;
twisti@2348 2582 __ load_klass(rax, dst);
twisti@2348 2583 __ cmpq(r10_src_klass, rax);
twisti@2348 2584 __ jcc(Assembler::notEqual, L_failed);
duke@435 2585
duke@435 2586 const Register rax_lh = rax; // layout helper
duke@435 2587 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
duke@435 2588
duke@435 2589 // if (!src->is_Array()) return -1;
duke@435 2590 __ cmpl(rax_lh, Klass::_lh_neutral_value);
duke@435 2591 __ jcc(Assembler::greaterEqual, L_failed);
duke@435 2592
duke@435 2593 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2594 #ifdef ASSERT
twisti@2348 2595 {
twisti@2348 2596 BLOCK_COMMENT("assert primitive array {");
twisti@2348 2597 Label L;
duke@435 2598 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 2599 __ jcc(Assembler::greaterEqual, L);
duke@435 2600 __ stop("must be a primitive array");
duke@435 2601 __ bind(L);
twisti@2348 2602 BLOCK_COMMENT("} assert primitive array done");
duke@435 2603 }
duke@435 2604 #endif
duke@435 2605
duke@435 2606 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2607 r10, L_failed);
duke@435 2608
duke@435 2609 // typeArrayKlass
duke@435 2610 //
duke@435 2611 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2612 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2613 //
duke@435 2614
duke@435 2615 const Register r10_offset = r10; // array offset
duke@435 2616 const Register rax_elsize = rax_lh; // element size
duke@435 2617
duke@435 2618 __ movl(r10_offset, rax_lh);
duke@435 2619 __ shrl(r10_offset, Klass::_lh_header_size_shift);
never@739 2620 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
never@739 2621 __ addptr(src, r10_offset); // src array offset
never@739 2622 __ addptr(dst, r10_offset); // dst array offset
duke@435 2623 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2624 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
duke@435 2625
duke@435 2626 // next registers should be set before the jump to corresponding stub
duke@435 2627 const Register from = c_rarg0; // source array address
duke@435 2628 const Register to = c_rarg1; // destination array address
duke@435 2629 const Register count = c_rarg2; // elements count
duke@435 2630
duke@435 2631 // 'from', 'to', 'count' registers should be set in such order
duke@435 2632 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2633
duke@435 2634 __ BIND(L_copy_bytes);
duke@435 2635 __ cmpl(rax_elsize, 0);
duke@435 2636 __ jccb(Assembler::notEqual, L_copy_shorts);
never@739 2637 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
never@739 2638 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
never@739 2639 __ movl2ptr(count, r11_length); // length
duke@435 2640 __ jump(RuntimeAddress(byte_copy_entry));
duke@435 2641
duke@435 2642 __ BIND(L_copy_shorts);
duke@435 2643 __ cmpl(rax_elsize, LogBytesPerShort);
duke@435 2644 __ jccb(Assembler::notEqual, L_copy_ints);
never@739 2645 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
never@739 2646 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
never@739 2647 __ movl2ptr(count, r11_length); // length
duke@435 2648 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2649
duke@435 2650 __ BIND(L_copy_ints);
duke@435 2651 __ cmpl(rax_elsize, LogBytesPerInt);
duke@435 2652 __ jccb(Assembler::notEqual, L_copy_longs);
never@739 2653 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
never@739 2654 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
never@739 2655 __ movl2ptr(count, r11_length); // length
duke@435 2656 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2657
duke@435 2658 __ BIND(L_copy_longs);
duke@435 2659 #ifdef ASSERT
twisti@2348 2660 {
twisti@2348 2661 BLOCK_COMMENT("assert long copy {");
twisti@2348 2662 Label L;
duke@435 2663 __ cmpl(rax_elsize, LogBytesPerLong);
duke@435 2664 __ jcc(Assembler::equal, L);
duke@435 2665 __ stop("must be long copy, but elsize is wrong");
duke@435 2666 __ bind(L);
twisti@2348 2667 BLOCK_COMMENT("} assert long copy done");
duke@435 2668 }
duke@435 2669 #endif
never@739 2670 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
never@739 2671 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
never@739 2672 __ movl2ptr(count, r11_length); // length
duke@435 2673 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2674
duke@435 2675 // objArrayKlass
duke@435 2676 __ BIND(L_objArray);
twisti@2348 2677 // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos]
duke@435 2678
duke@435 2679 Label L_plain_copy, L_checkcast_copy;
duke@435 2680 // test array classes for subtyping
twisti@2348 2681 __ load_klass(rax, dst);
twisti@2348 2682 __ cmpq(r10_src_klass, rax); // usual case is exact equality
duke@435 2683 __ jcc(Assembler::notEqual, L_checkcast_copy);
duke@435 2684
duke@435 2685 // Identically typed arrays can be copied without element-wise checks.
duke@435 2686 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2687 r10, L_failed);
duke@435 2688
never@739 2689 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2690 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 2691 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
never@739 2692 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 2693 __ movl2ptr(count, r11_length); // length
duke@435 2694 __ BIND(L_plain_copy);
duke@435 2695 __ jump(RuntimeAddress(oop_copy_entry));
duke@435 2696
duke@435 2697 __ BIND(L_checkcast_copy);
twisti@2348 2698 // live at this point: r10_src_klass, r11_length, rax (dst_klass)
duke@435 2699 {
duke@435 2700 // Before looking at dst.length, make sure dst is also an objArray.
twisti@2348 2701 __ cmpl(Address(rax, lh_offset), objArray_lh);
duke@435 2702 __ jcc(Assembler::notEqual, L_failed);
duke@435 2703
duke@435 2704 // It is safe to examine both src.length and dst.length.
duke@435 2705 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2706 rax, L_failed);
twisti@2348 2707
twisti@2348 2708 const Register r11_dst_klass = r11;
coleenp@548 2709 __ load_klass(r11_dst_klass, dst); // reload
duke@435 2710
duke@435 2711 // Marshal the base address arguments now, freeing registers.
never@739 2712 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2713 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 2714 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
duke@435 2715 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
twisti@2348 2716 __ movl(count, length); // length (reloaded)
duke@435 2717 Register sco_temp = c_rarg3; // this register is free now
duke@435 2718 assert_different_registers(from, to, count, sco_temp,
duke@435 2719 r11_dst_klass, r10_src_klass);
duke@435 2720 assert_clean_int(count, sco_temp);
duke@435 2721
duke@435 2722 // Generate the type check.
stefank@3391 2723 const int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 2724 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2725 assert_clean_int(sco_temp, rax);
duke@435 2726 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
duke@435 2727
duke@435 2728 // Fetch destination element klass from the objArrayKlass header.
stefank@3391 2729 int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
never@739 2730 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
twisti@2348 2731 __ movl( sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2732 assert_clean_int(sco_temp, rax);
duke@435 2733
duke@435 2734 // the checkcast_copy loop needs two extra arguments:
duke@435 2735 assert(c_rarg3 == sco_temp, "#3 already in place");
twisti@2348 2736 // Set up arguments for checkcast_copy_entry.
twisti@2348 2737 setup_arg_regs(4);
twisti@2348 2738 __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
duke@435 2739 __ jump(RuntimeAddress(checkcast_copy_entry));
duke@435 2740 }
duke@435 2741
duke@435 2742 __ BIND(L_failed);
never@739 2743 __ xorptr(rax, rax);
never@739 2744 __ notptr(rax); // return -1
duke@435 2745 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2746 __ ret(0);
duke@435 2747
duke@435 2748 return start;
duke@435 2749 }
duke@435 2750
duke@435 2751 void generate_arraycopy_stubs() {
iveresov@2595 2752 address entry;
iveresov@2595 2753 address entry_jbyte_arraycopy;
iveresov@2595 2754 address entry_jshort_arraycopy;
iveresov@2595 2755 address entry_jint_arraycopy;
iveresov@2595 2756 address entry_oop_arraycopy;
iveresov@2595 2757 address entry_jlong_arraycopy;
iveresov@2595 2758 address entry_checkcast_arraycopy;
iveresov@2595 2759
iveresov@2595 2760 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2595 2761 "jbyte_disjoint_arraycopy");
iveresov@2595 2762 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
iveresov@2595 2763 "jbyte_arraycopy");
iveresov@2595 2764
iveresov@2595 2765 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2595 2766 "jshort_disjoint_arraycopy");
iveresov@2595 2767 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
iveresov@2595 2768 "jshort_arraycopy");
iveresov@2595 2769
iveresov@2595 2770 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry,
iveresov@2595 2771 "jint_disjoint_arraycopy");
iveresov@2595 2772 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry,
iveresov@2595 2773 &entry_jint_arraycopy, "jint_arraycopy");
iveresov@2595 2774
iveresov@2595 2775 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry,
iveresov@2595 2776 "jlong_disjoint_arraycopy");
iveresov@2595 2777 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry,
iveresov@2595 2778 &entry_jlong_arraycopy, "jlong_arraycopy");
duke@435 2779
coleenp@548 2780
coleenp@548 2781 if (UseCompressedOops) {
iveresov@2595 2782 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2595 2783 "oop_disjoint_arraycopy");
iveresov@2595 2784 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2595 2785 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2786 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2606 2787 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2788 /*dest_uninitialized*/true);
iveresov@2606 2789 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2606 2790 NULL, "oop_arraycopy_uninit",
iveresov@2606 2791 /*dest_uninitialized*/true);
coleenp@548 2792 } else {
iveresov@2595 2793 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2595 2794 "oop_disjoint_arraycopy");
iveresov@2595 2795 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2595 2796 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2797 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2606 2798 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2799 /*dest_uninitialized*/true);
iveresov@2606 2800 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2606 2801 NULL, "oop_arraycopy_uninit",
iveresov@2606 2802 /*dest_uninitialized*/true);
coleenp@548 2803 }
duke@435 2804
iveresov@2606 2805 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 2806 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
iveresov@2606 2807 /*dest_uninitialized*/true);
iveresov@2606 2808
iveresov@2595 2809 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 2810 entry_jbyte_arraycopy,
iveresov@2595 2811 entry_jshort_arraycopy,
iveresov@2595 2812 entry_jint_arraycopy,
iveresov@2595 2813 entry_jlong_arraycopy);
iveresov@2595 2814 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 2815 entry_jbyte_arraycopy,
iveresov@2595 2816 entry_jshort_arraycopy,
iveresov@2595 2817 entry_jint_arraycopy,
iveresov@2595 2818 entry_oop_arraycopy,
iveresov@2595 2819 entry_jlong_arraycopy,
iveresov@2595 2820 entry_checkcast_arraycopy);
duke@435 2821
never@2118 2822 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 2823 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 2824 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 2825 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 2826 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 2827 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
never@2118 2828
duke@435 2829 // We don't generate specialized code for HeapWord-aligned source
duke@435 2830 // arrays, so just use the code we've already generated
duke@435 2831 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
duke@435 2832 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
duke@435 2833
duke@435 2834 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
duke@435 2835 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
duke@435 2836
duke@435 2837 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
duke@435 2838 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2839
duke@435 2840 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2841 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2842
duke@435 2843 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
duke@435 2844 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
iveresov@2606 2845
iveresov@2606 2846 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
iveresov@2606 2847 StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
duke@435 2848 }
duke@435 2849
never@1609 2850 void generate_math_stubs() {
never@1609 2851 {
never@1609 2852 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2853 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2854
never@1609 2855 __ subq(rsp, 8);
never@1609 2856 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2857 __ fld_d(Address(rsp, 0));
never@1609 2858 __ flog();
never@1609 2859 __ fstp_d(Address(rsp, 0));
never@1609 2860 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2861 __ addq(rsp, 8);
never@1609 2862 __ ret(0);
never@1609 2863 }
never@1609 2864 {
never@1609 2865 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2866 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2867
never@1609 2868 __ subq(rsp, 8);
never@1609 2869 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2870 __ fld_d(Address(rsp, 0));
never@1609 2871 __ flog10();
never@1609 2872 __ fstp_d(Address(rsp, 0));
never@1609 2873 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2874 __ addq(rsp, 8);
never@1609 2875 __ ret(0);
never@1609 2876 }
never@1609 2877 {
never@1609 2878 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2879 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2880
never@1609 2881 __ subq(rsp, 8);
never@1609 2882 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2883 __ fld_d(Address(rsp, 0));
never@1609 2884 __ trigfunc('s');
never@1609 2885 __ fstp_d(Address(rsp, 0));
never@1609 2886 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2887 __ addq(rsp, 8);
never@1609 2888 __ ret(0);
never@1609 2889 }
never@1609 2890 {
never@1609 2891 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2892 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2893
never@1609 2894 __ subq(rsp, 8);
never@1609 2895 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2896 __ fld_d(Address(rsp, 0));
never@1609 2897 __ trigfunc('c');
never@1609 2898 __ fstp_d(Address(rsp, 0));
never@1609 2899 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2900 __ addq(rsp, 8);
never@1609 2901 __ ret(0);
never@1609 2902 }
never@1609 2903 {
never@1609 2904 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2905 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2906
never@1609 2907 __ subq(rsp, 8);
never@1609 2908 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2909 __ fld_d(Address(rsp, 0));
never@1609 2910 __ trigfunc('t');
never@1609 2911 __ fstp_d(Address(rsp, 0));
never@1609 2912 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2913 __ addq(rsp, 8);
never@1609 2914 __ ret(0);
never@1609 2915 }
never@1609 2916
never@1609 2917 // The intrinsic version of these seem to return the same value as
never@1609 2918 // the strict version.
never@1609 2919 StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
never@1609 2920 StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
never@1609 2921 }
never@1609 2922
duke@435 2923 #undef __
duke@435 2924 #define __ masm->
duke@435 2925
duke@435 2926 // Continuation point for throwing of implicit exceptions that are
duke@435 2927 // not handled in the current activation. Fabricates an exception
duke@435 2928 // oop and initiates normal exception dispatching in this
duke@435 2929 // frame. Since we need to preserve callee-saved values (currently
duke@435 2930 // only for C2, but done for C1 as well) we need a callee-saved oop
duke@435 2931 // map and therefore have to make these stubs into RuntimeStubs
duke@435 2932 // rather than BufferBlobs. If the compiler needs all registers to
duke@435 2933 // be preserved between the fault point and the exception handler
duke@435 2934 // then it must assume responsibility for that in
duke@435 2935 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2936 // continuation_for_implicit_division_by_zero_exception. All other
duke@435 2937 // implicit exceptions (e.g., NullPointerException or
duke@435 2938 // AbstractMethodError on entry) are either at call sites or
duke@435 2939 // otherwise assume that stack unwinding will be initiated, so
duke@435 2940 // caller saved registers were assumed volatile in the compiler.
duke@435 2941 address generate_throw_exception(const char* name,
duke@435 2942 address runtime_entry,
never@2978 2943 Register arg1 = noreg,
never@2978 2944 Register arg2 = noreg) {
duke@435 2945 // Information about frame layout at time of blocking runtime call.
duke@435 2946 // Note that we only have to preserve callee-saved registers since
duke@435 2947 // the compilers are responsible for supplying a continuation point
duke@435 2948 // if they expect all registers to be preserved.
duke@435 2949 enum layout {
duke@435 2950 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 2951 rbp_off2,
duke@435 2952 return_off,
duke@435 2953 return_off2,
duke@435 2954 framesize // inclusive of return address
duke@435 2955 };
duke@435 2956
duke@435 2957 int insts_size = 512;
duke@435 2958 int locs_size = 64;
duke@435 2959
duke@435 2960 CodeBuffer code(name, insts_size, locs_size);
duke@435 2961 OopMapSet* oop_maps = new OopMapSet();
duke@435 2962 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2963
duke@435 2964 address start = __ pc();
duke@435 2965
duke@435 2966 // This is an inlined and slightly modified version of call_VM
duke@435 2967 // which has the ability to fetch the return PC out of
duke@435 2968 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2969 // differently than the real call_VM
duke@435 2970
duke@435 2971 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2972
duke@435 2973 assert(is_even(framesize/2), "sp not 16-byte aligned");
duke@435 2974
duke@435 2975 // return address and rbp are already in place
never@739 2976 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
duke@435 2977
duke@435 2978 int frame_complete = __ pc() - start;
duke@435 2979
duke@435 2980 // Set up last_Java_sp and last_Java_fp
roland@3522 2981 address the_pc = __ pc();
roland@3522 2982 __ set_last_Java_frame(rsp, rbp, the_pc);
roland@3522 2983 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 2984
duke@435 2985 // Call runtime
never@2978 2986 if (arg1 != noreg) {
never@2978 2987 assert(arg2 != c_rarg1, "clobbered");
never@2978 2988 __ movptr(c_rarg1, arg1);
never@2978 2989 }
never@2978 2990 if (arg2 != noreg) {
never@2978 2991 __ movptr(c_rarg2, arg2);
never@2978 2992 }
never@739 2993 __ movptr(c_rarg0, r15_thread);
duke@435 2994 BLOCK_COMMENT("call runtime_entry");
duke@435 2995 __ call(RuntimeAddress(runtime_entry));
duke@435 2996
duke@435 2997 // Generate oop map
duke@435 2998 OopMap* map = new OopMap(framesize, 0);
duke@435 2999
duke@435 3000 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 3001
roland@3522 3002 __ reset_last_Java_frame(true, true);
duke@435 3003
duke@435 3004 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 3005
duke@435 3006 // check for pending exceptions
duke@435 3007 #ifdef ASSERT
duke@435 3008 Label L;
never@739 3009 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
never@739 3010 (int32_t) NULL_WORD);
duke@435 3011 __ jcc(Assembler::notEqual, L);
duke@435 3012 __ should_not_reach_here();
duke@435 3013 __ bind(L);
duke@435 3014 #endif // ASSERT
duke@435 3015 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3016
duke@435 3017
duke@435 3018 // codeBlob framesize is in words (not VMRegImpl::slot_size)
duke@435 3019 RuntimeStub* stub =
duke@435 3020 RuntimeStub::new_runtime_stub(name,
duke@435 3021 &code,
duke@435 3022 frame_complete,
duke@435 3023 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
duke@435 3024 oop_maps, false);
duke@435 3025 return stub->entry_point();
duke@435 3026 }
duke@435 3027
duke@435 3028 // Initialization
duke@435 3029 void generate_initial() {
duke@435 3030 // Generates all stubs and initializes the entry points
duke@435 3031
duke@435 3032 // This platform-specific stub is needed by generate_call_stub()
never@739 3033 StubRoutines::x86::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80);
duke@435 3034
duke@435 3035 // entry points that exist in all platforms Note: This is code
duke@435 3036 // that could be shared among different platforms - however the
duke@435 3037 // benefit seems to be smaller than the disadvantage of having a
duke@435 3038 // much more complicated generator structure. See also comment in
duke@435 3039 // stubRoutines.hpp.
duke@435 3040
duke@435 3041 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3042
duke@435 3043 StubRoutines::_call_stub_entry =
duke@435 3044 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3045
duke@435 3046 // is referenced by megamorphic call
duke@435 3047 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3048
duke@435 3049 // atomic calls
duke@435 3050 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3051 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
duke@435 3052 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3053 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3054 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3055 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
duke@435 3056 StubRoutines::_fence_entry = generate_orderaccess_fence();
duke@435 3057
duke@435 3058 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3059 generate_handler_for_unsafe_access();
duke@435 3060
duke@435 3061 // platform dependent
never@739 3062 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
never@739 3063
never@739 3064 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
never@2978 3065
never@2978 3066 // Build this early so it's available for the interpreter. Stub
never@2978 3067 // expects the required and actual types as register arguments in
never@2978 3068 // j_rarg0 and j_rarg1 respectively.
never@2978 3069 StubRoutines::_throw_WrongMethodTypeException_entry =
never@2978 3070 generate_throw_exception("WrongMethodTypeException throw_exception",
never@2978 3071 CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
never@3136 3072 rax, rcx);
bdelsart@3372 3073
bdelsart@3372 3074 // Build this early so it's available for the interpreter.
bdelsart@3372 3075 StubRoutines::_throw_StackOverflowError_entry =
bdelsart@3372 3076 generate_throw_exception("StackOverflowError throw_exception",
bdelsart@3372 3077 CAST_FROM_FN_PTR(address,
bdelsart@3372 3078 SharedRuntime::
bdelsart@3372 3079 throw_StackOverflowError));
duke@435 3080 }
duke@435 3081
duke@435 3082 void generate_all() {
duke@435 3083 // Generates all stubs and initializes the entry points
duke@435 3084
duke@435 3085 // These entry points require SharedInfo::stack0 to be set up in
duke@435 3086 // non-core builds and need to be relocatable, so they each
duke@435 3087 // fabricate a RuntimeStub internally.
duke@435 3088 StubRoutines::_throw_AbstractMethodError_entry =
duke@435 3089 generate_throw_exception("AbstractMethodError throw_exception",
duke@435 3090 CAST_FROM_FN_PTR(address,
duke@435 3091 SharedRuntime::
never@3136 3092 throw_AbstractMethodError));
duke@435 3093
dcubed@451 3094 StubRoutines::_throw_IncompatibleClassChangeError_entry =
dcubed@451 3095 generate_throw_exception("IncompatibleClassChangeError throw_exception",
dcubed@451 3096 CAST_FROM_FN_PTR(address,
dcubed@451 3097 SharedRuntime::
never@3136 3098 throw_IncompatibleClassChangeError));
duke@435 3099
duke@435 3100 StubRoutines::_throw_NullPointerException_at_call_entry =
duke@435 3101 generate_throw_exception("NullPointerException at call throw_exception",
duke@435 3102 CAST_FROM_FN_PTR(address,
duke@435 3103 SharedRuntime::
never@3136 3104 throw_NullPointerException_at_call));
duke@435 3105
duke@435 3106 // entry points that are platform specific
never@739 3107 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
never@739 3108 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
never@739 3109 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
never@739 3110 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
never@739 3111
never@739 3112 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
never@739 3113 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
never@739 3114 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
never@739 3115 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
duke@435 3116
duke@435 3117 // support for verify_oop (must happen after universe_init)
duke@435 3118 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 3119
duke@435 3120 // arraycopy stubs used by compilers
duke@435 3121 generate_arraycopy_stubs();
twisti@1543 3122
never@1609 3123 generate_math_stubs();
duke@435 3124 }
duke@435 3125
duke@435 3126 public:
duke@435 3127 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3128 if (all) {
duke@435 3129 generate_all();
duke@435 3130 } else {
duke@435 3131 generate_initial();
duke@435 3132 }
duke@435 3133 }
duke@435 3134 }; // end class declaration
duke@435 3135
duke@435 3136 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3137 StubGenerator g(code, all);
duke@435 3138 }

mercurial