src/cpu/x86/vm/vm_version_x86.cpp

Wed, 17 Jun 2015 17:48:25 -0700

author
ascarpino
date
Wed, 17 Jun 2015 17:48:25 -0700
changeset 9788
44ef77ad417c
parent 8984
7c2285d86b8d
child 9795
9ef81b9152f1
permissions
-rw-r--r--

8073108: Use x86 and SPARC CPU instructions for GHASH acceleration
Reviewed-by: kvn, jrose, phh

twisti@1020 1 /*
drchase@6680 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
twisti@1020 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
twisti@1020 4 *
twisti@1020 5 * This code is free software; you can redistribute it and/or modify it
twisti@1020 6 * under the terms of the GNU General Public License version 2 only, as
twisti@1020 7 * published by the Free Software Foundation.
twisti@1020 8 *
twisti@1020 9 * This code is distributed in the hope that it will be useful, but WITHOUT
twisti@1020 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
twisti@1020 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
twisti@1020 12 * version 2 for more details (a copy is included in the LICENSE file that
twisti@1020 13 * accompanied this code).
twisti@1020 14 *
twisti@1020 15 * You should have received a copy of the GNU General Public License version
twisti@1020 16 * 2 along with this work; if not, write to the Free Software Foundation,
twisti@1020 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
twisti@1020 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
twisti@1020 22 *
twisti@1020 23 */
twisti@1020 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "memory/resourceArea.hpp"
stefank@2314 29 #include "runtime/java.hpp"
stefank@2314 30 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 31 #include "vm_version_x86.hpp"
stefank@2314 32 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 33 # include "os_linux.inline.hpp"
stefank@2314 34 #endif
stefank@2314 35 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 36 # include "os_solaris.inline.hpp"
stefank@2314 37 #endif
stefank@2314 38 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 39 # include "os_windows.inline.hpp"
stefank@2314 40 #endif
never@3156 41 #ifdef TARGET_OS_FAMILY_bsd
never@3156 42 # include "os_bsd.inline.hpp"
never@3156 43 #endif
twisti@1020 44
twisti@1020 45
twisti@1020 46 int VM_Version::_cpu;
twisti@1020 47 int VM_Version::_model;
twisti@1020 48 int VM_Version::_stepping;
twisti@1020 49 int VM_Version::_cpuFeatures;
twisti@1020 50 const char* VM_Version::_features_str = "";
twisti@1020 51 VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
twisti@1020 52
kvn@6388 53 // Address of instruction which causes SEGV
kvn@6388 54 address VM_Version::_cpuinfo_segv_addr = 0;
kvn@6388 55 // Address of instruction after the one which causes SEGV
kvn@6388 56 address VM_Version::_cpuinfo_cont_addr = 0;
kvn@6388 57
twisti@1020 58 static BufferBlob* stub_blob;
kvn@6388 59 static const int stub_size = 600;
twisti@1020 60
twisti@1020 61 extern "C" {
kvn@6537 62 typedef void (*get_cpu_info_stub_t)(void*);
twisti@1020 63 }
kvn@6537 64 static get_cpu_info_stub_t get_cpu_info_stub = NULL;
twisti@1020 65
twisti@1020 66
twisti@1020 67 class VM_Version_StubGenerator: public StubCodeGenerator {
twisti@1020 68 public:
twisti@1020 69
twisti@1020 70 VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
twisti@1020 71
kvn@6537 72 address generate_get_cpu_info() {
twisti@1020 73 // Flags to test CPU type.
sla@3587 74 const uint32_t HS_EFL_AC = 0x40000;
sla@3587 75 const uint32_t HS_EFL_ID = 0x200000;
twisti@1020 76 // Values for when we don't have a CPUID instruction.
twisti@1020 77 const int CPU_FAMILY_SHIFT = 8;
twisti@1020 78 const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT);
twisti@1020 79 const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT);
twisti@1020 80
kvn@1977 81 Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
kvn@3400 82 Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done;
twisti@1020 83
kvn@6537 84 StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
twisti@1020 85 # define __ _masm->
twisti@1020 86
twisti@1020 87 address start = __ pc();
twisti@1020 88
twisti@1020 89 //
kvn@6537 90 // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
twisti@1020 91 //
twisti@1020 92 // LP64: rcx and rdx are first and second argument registers on windows
twisti@1020 93
twisti@1020 94 __ push(rbp);
twisti@1020 95 #ifdef _LP64
twisti@1020 96 __ mov(rbp, c_rarg0); // cpuid_info address
twisti@1020 97 #else
twisti@1020 98 __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
twisti@1020 99 #endif
twisti@1020 100 __ push(rbx);
twisti@1020 101 __ push(rsi);
twisti@1020 102 __ pushf(); // preserve rbx, and flags
twisti@1020 103 __ pop(rax);
twisti@1020 104 __ push(rax);
twisti@1020 105 __ mov(rcx, rax);
twisti@1020 106 //
twisti@1020 107 // if we are unable to change the AC flag, we have a 386
twisti@1020 108 //
sla@3587 109 __ xorl(rax, HS_EFL_AC);
twisti@1020 110 __ push(rax);
twisti@1020 111 __ popf();
twisti@1020 112 __ pushf();
twisti@1020 113 __ pop(rax);
twisti@1020 114 __ cmpptr(rax, rcx);
twisti@1020 115 __ jccb(Assembler::notEqual, detect_486);
twisti@1020 116
twisti@1020 117 __ movl(rax, CPU_FAMILY_386);
twisti@1020 118 __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
twisti@1020 119 __ jmp(done);
twisti@1020 120
twisti@1020 121 //
twisti@1020 122 // If we are unable to change the ID flag, we have a 486 which does
twisti@1020 123 // not support the "cpuid" instruction.
twisti@1020 124 //
twisti@1020 125 __ bind(detect_486);
twisti@1020 126 __ mov(rax, rcx);
sla@3587 127 __ xorl(rax, HS_EFL_ID);
twisti@1020 128 __ push(rax);
twisti@1020 129 __ popf();
twisti@1020 130 __ pushf();
twisti@1020 131 __ pop(rax);
twisti@1020 132 __ cmpptr(rcx, rax);
twisti@1020 133 __ jccb(Assembler::notEqual, detect_586);
twisti@1020 134
twisti@1020 135 __ bind(cpu486);
twisti@1020 136 __ movl(rax, CPU_FAMILY_486);
twisti@1020 137 __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
twisti@1020 138 __ jmp(done);
twisti@1020 139
twisti@1020 140 //
twisti@1020 141 // At this point, we have a chip which supports the "cpuid" instruction
twisti@1020 142 //
twisti@1020 143 __ bind(detect_586);
twisti@1020 144 __ xorl(rax, rax);
twisti@1020 145 __ cpuid();
twisti@1020 146 __ orl(rax, rax);
twisti@1020 147 __ jcc(Assembler::equal, cpu486); // if cpuid doesn't support an input
twisti@1020 148 // value of at least 1, we give up and
twisti@1020 149 // assume a 486
twisti@1020 150 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
twisti@1020 151 __ movl(Address(rsi, 0), rax);
twisti@1020 152 __ movl(Address(rsi, 4), rbx);
twisti@1020 153 __ movl(Address(rsi, 8), rcx);
twisti@1020 154 __ movl(Address(rsi,12), rdx);
twisti@1020 155
kvn@1977 156 __ cmpl(rax, 0xa); // Is cpuid(0xB) supported?
kvn@1977 157 __ jccb(Assembler::belowEqual, std_cpuid4);
kvn@1977 158
kvn@1977 159 //
kvn@1977 160 // cpuid(0xB) Processor Topology
kvn@1977 161 //
kvn@1977 162 __ movl(rax, 0xb);
kvn@1977 163 __ xorl(rcx, rcx); // Threads level
kvn@1977 164 __ cpuid();
kvn@1977 165
kvn@1977 166 __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
kvn@1977 167 __ movl(Address(rsi, 0), rax);
kvn@1977 168 __ movl(Address(rsi, 4), rbx);
kvn@1977 169 __ movl(Address(rsi, 8), rcx);
kvn@1977 170 __ movl(Address(rsi,12), rdx);
kvn@1977 171
kvn@1977 172 __ movl(rax, 0xb);
kvn@1977 173 __ movl(rcx, 1); // Cores level
kvn@1977 174 __ cpuid();
kvn@1977 175 __ push(rax);
kvn@1977 176 __ andl(rax, 0x1f); // Determine if valid topology level
kvn@1977 177 __ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level
kvn@1977 178 __ andl(rax, 0xffff);
kvn@1977 179 __ pop(rax);
kvn@1977 180 __ jccb(Assembler::equal, std_cpuid4);
kvn@1977 181
kvn@1977 182 __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
kvn@1977 183 __ movl(Address(rsi, 0), rax);
kvn@1977 184 __ movl(Address(rsi, 4), rbx);
kvn@1977 185 __ movl(Address(rsi, 8), rcx);
kvn@1977 186 __ movl(Address(rsi,12), rdx);
kvn@1977 187
kvn@1977 188 __ movl(rax, 0xb);
kvn@1977 189 __ movl(rcx, 2); // Packages level
kvn@1977 190 __ cpuid();
kvn@1977 191 __ push(rax);
kvn@1977 192 __ andl(rax, 0x1f); // Determine if valid topology level
kvn@1977 193 __ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level
kvn@1977 194 __ andl(rax, 0xffff);
kvn@1977 195 __ pop(rax);
kvn@1977 196 __ jccb(Assembler::equal, std_cpuid4);
kvn@1977 197
kvn@1977 198 __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
kvn@1977 199 __ movl(Address(rsi, 0), rax);
kvn@1977 200 __ movl(Address(rsi, 4), rbx);
kvn@1977 201 __ movl(Address(rsi, 8), rcx);
kvn@1977 202 __ movl(Address(rsi,12), rdx);
twisti@1020 203
twisti@1020 204 //
twisti@1020 205 // cpuid(0x4) Deterministic cache params
twisti@1020 206 //
kvn@1977 207 __ bind(std_cpuid4);
twisti@1020 208 __ movl(rax, 4);
kvn@1977 209 __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
kvn@1977 210 __ jccb(Assembler::greater, std_cpuid1);
kvn@1977 211
twisti@1020 212 __ xorl(rcx, rcx); // L1 cache
twisti@1020 213 __ cpuid();
twisti@1020 214 __ push(rax);
twisti@1020 215 __ andl(rax, 0x1f); // Determine if valid cache parameters used
twisti@1020 216 __ orl(rax, rax); // eax[4:0] == 0 indicates invalid cache
twisti@1020 217 __ pop(rax);
twisti@1020 218 __ jccb(Assembler::equal, std_cpuid1);
twisti@1020 219
twisti@1020 220 __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
twisti@1020 221 __ movl(Address(rsi, 0), rax);
twisti@1020 222 __ movl(Address(rsi, 4), rbx);
twisti@1020 223 __ movl(Address(rsi, 8), rcx);
twisti@1020 224 __ movl(Address(rsi,12), rdx);
twisti@1020 225
twisti@1020 226 //
twisti@1020 227 // Standard cpuid(0x1)
twisti@1020 228 //
twisti@1020 229 __ bind(std_cpuid1);
twisti@1020 230 __ movl(rax, 1);
twisti@1020 231 __ cpuid();
twisti@1020 232 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
twisti@1020 233 __ movl(Address(rsi, 0), rax);
twisti@1020 234 __ movl(Address(rsi, 4), rbx);
twisti@1020 235 __ movl(Address(rsi, 8), rcx);
twisti@1020 236 __ movl(Address(rsi,12), rdx);
twisti@1020 237
kvn@3388 238 //
kvn@3388 239 // Check if OS has enabled XGETBV instruction to access XCR0
kvn@3388 240 // (OSXSAVE feature flag) and CPU supports AVX
kvn@3388 241 //
kvn@6388 242 __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
kvn@3388 243 __ cmpl(rcx, 0x18000000);
kvn@6388 244 __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
kvn@3388 245
kvn@3388 246 //
kvn@3388 247 // XCR0, XFEATURE_ENABLED_MASK register
kvn@3388 248 //
kvn@3388 249 __ xorl(rcx, rcx); // zero for XCR0 register
kvn@3388 250 __ xgetbv();
kvn@3388 251 __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
kvn@3388 252 __ movl(Address(rsi, 0), rax);
kvn@3388 253 __ movl(Address(rsi, 4), rdx);
kvn@3388 254
kvn@6388 255 __ andl(rax, 0x6); // xcr0 bits sse | ymm
kvn@6388 256 __ cmpl(rax, 0x6);
kvn@6388 257 __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
kvn@6388 258
kvn@6388 259 //
kvn@6388 260 // Some OSs have a bug when upper 128bits of YMM
kvn@6388 261 // registers are not restored after a signal processing.
kvn@6388 262 // Generate SEGV here (reference through NULL)
kvn@6388 263 // and check upper YMM bits after it.
kvn@6388 264 //
kvn@6388 265 VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
kvn@6656 266 intx saved_useavx = UseAVX;
kvn@6656 267 intx saved_usesse = UseSSE;
kvn@6656 268 UseAVX = 1;
kvn@6656 269 UseSSE = 2;
kvn@6388 270
kvn@6388 271 // load value into all 32 bytes of ymm7 register
kvn@6388 272 __ movl(rcx, VM_Version::ymm_test_value());
kvn@6388 273
kvn@6388 274 __ movdl(xmm0, rcx);
kvn@6388 275 __ pshufd(xmm0, xmm0, 0x00);
kvn@6388 276 __ vinsertf128h(xmm0, xmm0, xmm0);
kvn@6388 277 __ vmovdqu(xmm7, xmm0);
kvn@6388 278 #ifdef _LP64
kvn@6388 279 __ vmovdqu(xmm8, xmm0);
kvn@6388 280 __ vmovdqu(xmm15, xmm0);
kvn@6388 281 #endif
kvn@6388 282
kvn@6388 283 __ xorl(rsi, rsi);
kvn@6388 284 VM_Version::set_cpuinfo_segv_addr( __ pc() );
kvn@6388 285 // Generate SEGV
kvn@6388 286 __ movl(rax, Address(rsi, 0));
kvn@6388 287
kvn@6388 288 VM_Version::set_cpuinfo_cont_addr( __ pc() );
kvn@6388 289 // Returns here after signal. Save xmm0 to check it later.
kvn@6388 290 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
kvn@6388 291 __ vmovdqu(Address(rsi, 0), xmm0);
kvn@6388 292 __ vmovdqu(Address(rsi, 32), xmm7);
kvn@6388 293 #ifdef _LP64
kvn@6388 294 __ vmovdqu(Address(rsi, 64), xmm8);
kvn@6388 295 __ vmovdqu(Address(rsi, 96), xmm15);
kvn@6388 296 #endif
kvn@6388 297
kvn@6388 298 VM_Version::clean_cpuFeatures();
kvn@6656 299 UseAVX = saved_useavx;
kvn@6656 300 UseSSE = saved_usesse;
kvn@6388 301
kvn@3388 302 //
kvn@3388 303 // cpuid(0x7) Structured Extended Features
kvn@3388 304 //
kvn@3388 305 __ bind(sef_cpuid);
kvn@3388 306 __ movl(rax, 7);
kvn@3388 307 __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
kvn@3388 308 __ jccb(Assembler::greater, ext_cpuid);
kvn@3388 309
kvn@3388 310 __ xorl(rcx, rcx);
kvn@3388 311 __ cpuid();
kvn@3388 312 __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
kvn@3388 313 __ movl(Address(rsi, 0), rax);
kvn@3388 314 __ movl(Address(rsi, 4), rbx);
kvn@3388 315
kvn@3388 316 //
kvn@3388 317 // Extended cpuid(0x80000000)
kvn@3388 318 //
kvn@3388 319 __ bind(ext_cpuid);
twisti@1020 320 __ movl(rax, 0x80000000);
twisti@1020 321 __ cpuid();
twisti@1020 322 __ cmpl(rax, 0x80000000); // Is cpuid(0x80000001) supported?
twisti@1020 323 __ jcc(Assembler::belowEqual, done);
twisti@1020 324 __ cmpl(rax, 0x80000004); // Is cpuid(0x80000005) supported?
twisti@1020 325 __ jccb(Assembler::belowEqual, ext_cpuid1);
phh@3378 326 __ cmpl(rax, 0x80000006); // Is cpuid(0x80000007) supported?
phh@3378 327 __ jccb(Assembler::belowEqual, ext_cpuid5);
twisti@1020 328 __ cmpl(rax, 0x80000007); // Is cpuid(0x80000008) supported?
phh@3378 329 __ jccb(Assembler::belowEqual, ext_cpuid7);
twisti@1020 330 //
twisti@1020 331 // Extended cpuid(0x80000008)
twisti@1020 332 //
twisti@1020 333 __ movl(rax, 0x80000008);
twisti@1020 334 __ cpuid();
twisti@1020 335 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
twisti@1020 336 __ movl(Address(rsi, 0), rax);
twisti@1020 337 __ movl(Address(rsi, 4), rbx);
twisti@1020 338 __ movl(Address(rsi, 8), rcx);
twisti@1020 339 __ movl(Address(rsi,12), rdx);
twisti@1020 340
twisti@1020 341 //
phh@3378 342 // Extended cpuid(0x80000007)
phh@3378 343 //
phh@3378 344 __ bind(ext_cpuid7);
phh@3378 345 __ movl(rax, 0x80000007);
phh@3378 346 __ cpuid();
phh@3378 347 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
phh@3378 348 __ movl(Address(rsi, 0), rax);
phh@3378 349 __ movl(Address(rsi, 4), rbx);
phh@3378 350 __ movl(Address(rsi, 8), rcx);
phh@3378 351 __ movl(Address(rsi,12), rdx);
phh@3378 352
phh@3378 353 //
twisti@1020 354 // Extended cpuid(0x80000005)
twisti@1020 355 //
twisti@1020 356 __ bind(ext_cpuid5);
twisti@1020 357 __ movl(rax, 0x80000005);
twisti@1020 358 __ cpuid();
twisti@1020 359 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
twisti@1020 360 __ movl(Address(rsi, 0), rax);
twisti@1020 361 __ movl(Address(rsi, 4), rbx);
twisti@1020 362 __ movl(Address(rsi, 8), rcx);
twisti@1020 363 __ movl(Address(rsi,12), rdx);
twisti@1020 364
twisti@1020 365 //
twisti@1020 366 // Extended cpuid(0x80000001)
twisti@1020 367 //
twisti@1020 368 __ bind(ext_cpuid1);
twisti@1020 369 __ movl(rax, 0x80000001);
twisti@1020 370 __ cpuid();
twisti@1020 371 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
twisti@1020 372 __ movl(Address(rsi, 0), rax);
twisti@1020 373 __ movl(Address(rsi, 4), rbx);
twisti@1020 374 __ movl(Address(rsi, 8), rcx);
twisti@1020 375 __ movl(Address(rsi,12), rdx);
twisti@1020 376
twisti@1020 377 //
twisti@1020 378 // return
twisti@1020 379 //
twisti@1020 380 __ bind(done);
twisti@1020 381 __ popf();
twisti@1020 382 __ pop(rsi);
twisti@1020 383 __ pop(rbx);
twisti@1020 384 __ pop(rbp);
twisti@1020 385 __ ret(0);
twisti@1020 386
twisti@1020 387 # undef __
twisti@1020 388
twisti@1020 389 return start;
twisti@1020 390 };
twisti@1020 391 };
twisti@1020 392
twisti@1020 393
kvn@6537 394 void VM_Version::get_cpu_info_wrapper() {
kvn@6537 395 get_cpu_info_stub(&_cpuid_info);
kvn@6537 396 }
kvn@6537 397
kvn@6537 398 #ifndef CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED
kvn@6537 399 #define CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED(f) f()
kvn@6537 400 #endif
kvn@6537 401
twisti@1020 402 void VM_Version::get_processor_features() {
twisti@1020 403
twisti@1020 404 _cpu = 4; // 486 by default
twisti@1020 405 _model = 0;
twisti@1020 406 _stepping = 0;
twisti@1020 407 _cpuFeatures = 0;
twisti@1020 408 _logical_processors_per_package = 1;
kevinw@8966 409 // i486 internal cache is both I&D and has a 16-byte line size
kevinw@8966 410 _L1_data_cache_line_size = 16;
twisti@1020 411
twisti@1020 412 if (!Use486InstrsOnly) {
twisti@1020 413 // Get raw processor info
kvn@6537 414
kvn@6537 415 // Some platforms (like Win*) need a wrapper around here
kvn@6537 416 // in order to properly handle SEGV for YMM registers test.
kvn@6537 417 CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED(get_cpu_info_wrapper);
kvn@6537 418
twisti@1020 419 assert_is_initialized();
twisti@1020 420 _cpu = extended_cpu_family();
twisti@1020 421 _model = extended_cpu_model();
twisti@1020 422 _stepping = cpu_stepping();
twisti@1020 423
twisti@1020 424 if (cpu_family() > 4) { // it supports CPUID
twisti@1020 425 _cpuFeatures = feature_flags();
twisti@1020 426 // Logical processors are only available on P4s and above,
twisti@1020 427 // and only if hyperthreading is available.
twisti@1020 428 _logical_processors_per_package = logical_processor_count();
kevinw@8966 429 _L1_data_cache_line_size = L1_line_size();
twisti@1020 430 }
twisti@1020 431 }
twisti@1020 432
twisti@1020 433 _supports_cx8 = supports_cmpxchg8();
roland@4106 434 // xchg and xadd instructions
roland@4106 435 _supports_atomic_getset4 = true;
roland@4106 436 _supports_atomic_getadd4 = true;
roland@4106 437 LP64_ONLY(_supports_atomic_getset8 = true);
roland@4106 438 LP64_ONLY(_supports_atomic_getadd8 = true);
twisti@1020 439
twisti@1020 440 #ifdef _LP64
twisti@1020 441 // OS should support SSE for x64 and hardware should support at least SSE2.
twisti@1020 442 if (!VM_Version::supports_sse2()) {
twisti@1020 443 vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
twisti@1020 444 }
roland@1495 445 // in 64 bit the use of SSE2 is the minimum
roland@1495 446 if (UseSSE < 2) UseSSE = 2;
twisti@1020 447 #endif
twisti@1020 448
kvn@2984 449 #ifdef AMD64
kvn@2984 450 // flush_icache_stub have to be generated first.
kvn@2984 451 // That is why Icache line size is hard coded in ICache class,
kvn@2984 452 // see icache_x86.hpp. It is also the reason why we can't use
kvn@2984 453 // clflush instruction in 32-bit VM since it could be running
kvn@2984 454 // on CPU which does not support it.
kvn@2984 455 //
kvn@2984 456 // The only thing we can do is to verify that flushed
kvn@2984 457 // ICache::line_size has correct value.
kvn@2984 458 guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
kvn@2984 459 // clflush_size is size in quadwords (8 bytes).
kvn@2984 460 guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
kvn@2984 461 #endif
kvn@2984 462
twisti@1020 463 // If the OS doesn't support SSE, we can't use this feature even if the HW does
twisti@1020 464 if (!os::supports_sse())
twisti@1020 465 _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
twisti@1020 466
twisti@1020 467 if (UseSSE < 4) {
twisti@1020 468 _cpuFeatures &= ~CPU_SSE4_1;
twisti@1020 469 _cpuFeatures &= ~CPU_SSE4_2;
twisti@1020 470 }
twisti@1020 471
twisti@1020 472 if (UseSSE < 3) {
twisti@1020 473 _cpuFeatures &= ~CPU_SSE3;
twisti@1020 474 _cpuFeatures &= ~CPU_SSSE3;
twisti@1020 475 _cpuFeatures &= ~CPU_SSE4A;
twisti@1020 476 }
twisti@1020 477
twisti@1020 478 if (UseSSE < 2)
twisti@1020 479 _cpuFeatures &= ~CPU_SSE2;
twisti@1020 480
twisti@1020 481 if (UseSSE < 1)
twisti@1020 482 _cpuFeatures &= ~CPU_SSE;
twisti@1020 483
kvn@3388 484 if (UseAVX < 2)
kvn@3388 485 _cpuFeatures &= ~CPU_AVX2;
kvn@3388 486
kvn@3388 487 if (UseAVX < 1)
kvn@3388 488 _cpuFeatures &= ~CPU_AVX;
kvn@3388 489
kvn@4205 490 if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
kvn@4205 491 _cpuFeatures &= ~CPU_AES;
kvn@4205 492
twisti@1020 493 if (logical_processors_per_package() == 1) {
twisti@1020 494 // HT processor could be installed on a system which doesn't support HT.
twisti@1020 495 _cpuFeatures &= ~CPU_HT;
twisti@1020 496 }
twisti@1020 497
twisti@1020 498 char buf[256];
kvn@7152 499 jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
twisti@1020 500 cores_per_cpu(), threads_per_core(),
twisti@1020 501 cpu_family(), _model, _stepping,
twisti@1020 502 (supports_cmov() ? ", cmov" : ""),
twisti@1020 503 (supports_cmpxchg8() ? ", cx8" : ""),
twisti@1020 504 (supports_fxsr() ? ", fxsr" : ""),
twisti@1020 505 (supports_mmx() ? ", mmx" : ""),
twisti@1020 506 (supports_sse() ? ", sse" : ""),
twisti@1020 507 (supports_sse2() ? ", sse2" : ""),
twisti@1020 508 (supports_sse3() ? ", sse3" : ""),
twisti@1020 509 (supports_ssse3()? ", ssse3": ""),
twisti@1020 510 (supports_sse4_1() ? ", sse4.1" : ""),
twisti@1020 511 (supports_sse4_2() ? ", sse4.2" : ""),
twisti@1078 512 (supports_popcnt() ? ", popcnt" : ""),
kvn@3388 513 (supports_avx() ? ", avx" : ""),
kvn@3388 514 (supports_avx2() ? ", avx2" : ""),
kvn@4205 515 (supports_aes() ? ", aes" : ""),
kvn@6429 516 (supports_clmul() ? ", clmul" : ""),
kvn@4410 517 (supports_erms() ? ", erms" : ""),
kvn@6429 518 (supports_rtm() ? ", rtm" : ""),
twisti@1020 519 (supports_mmx_ext() ? ", mmxext" : ""),
kvn@2761 520 (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
twisti@1210 521 (supports_lzcnt() ? ", lzcnt": ""),
twisti@1020 522 (supports_sse4a() ? ", sse4a": ""),
phh@3378 523 (supports_ht() ? ", ht": ""),
phh@3378 524 (supports_tsc() ? ", tsc": ""),
phh@3378 525 (supports_tscinv_bit() ? ", tscinvbit": ""),
iveresov@6378 526 (supports_tscinv() ? ", tscinv": ""),
iveresov@6378 527 (supports_bmi1() ? ", bmi1" : ""),
kvn@7152 528 (supports_bmi2() ? ", bmi2" : ""),
kvn@7152 529 (supports_adx() ? ", adx" : ""));
twisti@1020 530 _features_str = strdup(buf);
twisti@1020 531
twisti@1020 532 // UseSSE is set to the smaller of what hardware supports and what
twisti@1020 533 // the command line requires. I.e., you cannot set UseSSE to 2 on
twisti@1020 534 // older Pentiums which do not support it.
kvn@3388 535 if (UseSSE > 4) UseSSE=4;
kvn@3388 536 if (UseSSE < 0) UseSSE=0;
kvn@3388 537 if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
twisti@1020 538 UseSSE = MIN2((intx)3,UseSSE);
kvn@3388 539 if (!supports_sse3()) // Drop to 2 if no SSE3 support
twisti@1020 540 UseSSE = MIN2((intx)2,UseSSE);
kvn@3388 541 if (!supports_sse2()) // Drop to 1 if no SSE2 support
twisti@1020 542 UseSSE = MIN2((intx)1,UseSSE);
kvn@3388 543 if (!supports_sse ()) // Drop to 0 if no SSE support
twisti@1020 544 UseSSE = 0;
twisti@1020 545
kvn@3388 546 if (UseAVX > 2) UseAVX=2;
kvn@3388 547 if (UseAVX < 0) UseAVX=0;
kvn@3388 548 if (!supports_avx2()) // Drop to 1 if no AVX2 support
kvn@3388 549 UseAVX = MIN2((intx)1,UseAVX);
kvn@3388 550 if (!supports_avx ()) // Drop to 0 if no AVX support
kvn@3388 551 UseAVX = 0;
kvn@3388 552
kvn@4205 553 // Use AES instructions if available.
kvn@4205 554 if (supports_aes()) {
kvn@4205 555 if (FLAG_IS_DEFAULT(UseAES)) {
kvn@4205 556 UseAES = true;
kvn@4205 557 }
kvn@4205 558 } else if (UseAES) {
kvn@4205 559 if (!FLAG_IS_DEFAULT(UseAES))
kvn@6429 560 warning("AES instructions are not available on this CPU");
kvn@4205 561 FLAG_SET_DEFAULT(UseAES, false);
kvn@4205 562 }
kvn@4205 563
drchase@5353 564 // Use CLMUL instructions if available.
drchase@5353 565 if (supports_clmul()) {
drchase@5353 566 if (FLAG_IS_DEFAULT(UseCLMUL)) {
drchase@5353 567 UseCLMUL = true;
drchase@5353 568 }
drchase@5353 569 } else if (UseCLMUL) {
drchase@5353 570 if (!FLAG_IS_DEFAULT(UseCLMUL))
drchase@5353 571 warning("CLMUL instructions not available on this CPU (AVX may also be required)");
drchase@5353 572 FLAG_SET_DEFAULT(UseCLMUL, false);
drchase@5353 573 }
drchase@5353 574
kvn@7025 575 if (UseCLMUL && (UseSSE > 2)) {
drchase@5353 576 if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
drchase@5353 577 UseCRC32Intrinsics = true;
drchase@5353 578 }
drchase@5353 579 } else if (UseCRC32Intrinsics) {
drchase@5353 580 if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
kvn@7152 581 warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)");
drchase@5353 582 FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
drchase@5353 583 }
drchase@5353 584
kvn@4205 585 // The AES intrinsic stubs require AES instruction support (of course)
kvn@4363 586 // but also require sse3 mode for instructions it use.
kvn@4363 587 if (UseAES && (UseSSE > 2)) {
kvn@4205 588 if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
kvn@4205 589 UseAESIntrinsics = true;
kvn@4205 590 }
kvn@4205 591 } else if (UseAESIntrinsics) {
kvn@4205 592 if (!FLAG_IS_DEFAULT(UseAESIntrinsics))
kvn@6429 593 warning("AES intrinsics are not available on this CPU");
kvn@4205 594 FLAG_SET_DEFAULT(UseAESIntrinsics, false);
kvn@4205 595 }
kvn@4205 596
ascarpino@9788 597 // GHASH/GCM intrinsics
ascarpino@9788 598 if (UseCLMUL && (UseSSE > 2)) {
ascarpino@9788 599 if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
ascarpino@9788 600 UseGHASHIntrinsics = true;
ascarpino@9788 601 }
ascarpino@9788 602 } else if (UseGHASHIntrinsics) {
ascarpino@9788 603 if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
ascarpino@9788 604 warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU");
ascarpino@9788 605 FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
ascarpino@9788 606 }
ascarpino@9788 607
kvn@7027 608 if (UseSHA) {
kvn@7027 609 warning("SHA instructions are not available on this CPU");
kvn@7027 610 FLAG_SET_DEFAULT(UseSHA, false);
kvn@7027 611 }
kvn@7027 612 if (UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics) {
kvn@7027 613 warning("SHA intrinsics are not available on this CPU");
kvn@7027 614 FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
kvn@7027 615 FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
kvn@7027 616 FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
kvn@7027 617 }
kvn@7027 618
kvn@6429 619 // Adjust RTM (Restricted Transactional Memory) flags
kvn@6429 620 if (!supports_rtm() && UseRTMLocking) {
kvn@6429 621 // Can't continue because UseRTMLocking affects UseBiasedLocking flag
kvn@6429 622 // setting during arguments processing. See use_biased_locking().
kvn@6429 623 // VM_Version_init() is executed after UseBiasedLocking is used
kvn@6429 624 // in Thread::allocate().
kvn@6429 625 vm_exit_during_initialization("RTM instructions are not available on this CPU");
kvn@6429 626 }
kvn@6429 627
kvn@6429 628 #if INCLUDE_RTM_OPT
kvn@6429 629 if (UseRTMLocking) {
kvn@7088 630 if (is_intel_family_core()) {
kvn@7088 631 if ((_model == CPU_MODEL_HASWELL_E3) ||
kvn@7088 632 (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
kvn@7088 633 (_model == CPU_MODEL_BROADWELL && _stepping < 4)) {
kvn@7088 634 if (!UnlockExperimentalVMOptions) {
kvn@7088 635 vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
kvn@7088 636 } else {
kvn@7088 637 warning("UseRTMLocking is only available as experimental option on this platform.");
kvn@7088 638 }
kvn@7088 639 }
kvn@7088 640 }
kvn@6429 641 if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
kvn@6429 642 // RTM locking should be used only for applications with
kvn@6429 643 // high lock contention. For now we do not use it by default.
kvn@6429 644 vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
kvn@6429 645 }
kvn@6429 646 if (!is_power_of_2(RTMTotalCountIncrRate)) {
kvn@6429 647 warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64");
kvn@6429 648 FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64);
kvn@6429 649 }
kvn@6429 650 if (RTMAbortRatio < 0 || RTMAbortRatio > 100) {
kvn@6429 651 warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50");
kvn@6429 652 FLAG_SET_DEFAULT(RTMAbortRatio, 50);
kvn@6429 653 }
kvn@6429 654 } else { // !UseRTMLocking
kvn@6429 655 if (UseRTMForStackLocks) {
kvn@6429 656 if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
kvn@6429 657 warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
kvn@6429 658 }
kvn@6429 659 FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
kvn@6429 660 }
kvn@6429 661 if (UseRTMDeopt) {
kvn@6429 662 FLAG_SET_DEFAULT(UseRTMDeopt, false);
kvn@6429 663 }
kvn@6429 664 if (PrintPreciseRTMLockingStatistics) {
kvn@6429 665 FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
kvn@6429 666 }
kvn@6429 667 }
kvn@6429 668 #else
kvn@6429 669 if (UseRTMLocking) {
kvn@6429 670 // Only C2 does RTM locking optimization.
kvn@6429 671 // Can't continue because UseRTMLocking affects UseBiasedLocking flag
kvn@6429 672 // setting during arguments processing. See use_biased_locking().
kvn@6429 673 vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
kvn@6429 674 }
kvn@6429 675 #endif
kvn@6429 676
kvn@3882 677 #ifdef COMPILER2
kvn@3882 678 if (UseFPUForSpilling) {
kvn@3882 679 if (UseSSE < 2) {
kvn@3882 680 // Only supported with SSE2+
kvn@3882 681 FLAG_SET_DEFAULT(UseFPUForSpilling, false);
kvn@3882 682 }
kvn@3882 683 }
kvn@3882 684 if (MaxVectorSize > 0) {
kvn@3882 685 if (!is_power_of_2(MaxVectorSize)) {
kvn@3882 686 warning("MaxVectorSize must be a power of 2");
kvn@3882 687 FLAG_SET_DEFAULT(MaxVectorSize, 32);
kvn@3882 688 }
kvn@3882 689 if (MaxVectorSize > 32) {
kvn@3882 690 FLAG_SET_DEFAULT(MaxVectorSize, 32);
kvn@3882 691 }
kvn@6388 692 if (MaxVectorSize > 16 && (UseAVX == 0 || !os_supports_avx_vectors())) {
kvn@6388 693 // 32 bytes vectors (in YMM) are only supported with AVX+
kvn@3882 694 FLAG_SET_DEFAULT(MaxVectorSize, 16);
kvn@3882 695 }
kvn@3882 696 if (UseSSE < 2) {
kvn@6388 697 // Vectors (in XMM) are only supported with SSE2+
kvn@3882 698 FLAG_SET_DEFAULT(MaxVectorSize, 0);
kvn@3882 699 }
kvn@6388 700 #ifdef ASSERT
kvn@6388 701 if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
kvn@6388 702 tty->print_cr("State of YMM registers after signal handle:");
kvn@6388 703 int nreg = 2 LP64_ONLY(+2);
kvn@6388 704 const char* ymm_name[4] = {"0", "7", "8", "15"};
kvn@6388 705 for (int i = 0; i < nreg; i++) {
kvn@6388 706 tty->print("YMM%s:", ymm_name[i]);
kvn@6388 707 for (int j = 7; j >=0; j--) {
kvn@6388 708 tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
kvn@6388 709 }
kvn@6388 710 tty->cr();
kvn@6388 711 }
kvn@6388 712 }
kvn@6388 713 #endif
kvn@3882 714 }
kvn@7152 715
kvn@7152 716 #ifdef _LP64
kvn@7152 717 if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
kvn@7152 718 UseMultiplyToLenIntrinsic = true;
kvn@7152 719 }
igerasim@8307 720 if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
vkempik@8637 721 UseSquareToLenIntrinsic = true;
igerasim@8307 722 }
igerasim@8307 723 if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
vkempik@8637 724 UseMulAddIntrinsic = true;
igerasim@8307 725 }
vkempik@8318 726 if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
vkempik@8637 727 UseMontgomeryMultiplyIntrinsic = true;
vkempik@8318 728 }
vkempik@8318 729 if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
vkempik@8637 730 UseMontgomerySquareIntrinsic = true;
vkempik@8318 731 }
kvn@7152 732 #else
kvn@7152 733 if (UseMultiplyToLenIntrinsic) {
kvn@7152 734 if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
kvn@7152 735 warning("multiplyToLen intrinsic is not available in 32-bit VM");
kvn@7152 736 }
kvn@7152 737 FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
kvn@7152 738 }
igerasim@8307 739 if (UseSquareToLenIntrinsic) {
igerasim@8307 740 if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
igerasim@8307 741 warning("squareToLen intrinsic is not available in 32-bit VM");
igerasim@8307 742 }
igerasim@8307 743 FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false);
igerasim@8307 744 }
igerasim@8307 745 if (UseMulAddIntrinsic) {
igerasim@8307 746 if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
igerasim@8307 747 warning("mulAdd intrinsic is not available in 32-bit VM");
igerasim@8307 748 }
igerasim@8307 749 FLAG_SET_DEFAULT(UseMulAddIntrinsic, false);
igerasim@8307 750 }
vkempik@8318 751 if (UseMontgomeryMultiplyIntrinsic) {
vkempik@8318 752 if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
vkempik@8318 753 warning("montgomeryMultiply intrinsic is not available in 32-bit VM");
vkempik@8318 754 }
vkempik@8318 755 FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false);
vkempik@8318 756 }
vkempik@8318 757 if (UseMontgomerySquareIntrinsic) {
vkempik@8318 758 if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
vkempik@8318 759 warning("montgomerySquare intrinsic is not available in 32-bit VM");
vkempik@8318 760 }
vkempik@8318 761 FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false);
vkempik@8318 762 }
kvn@3882 763 #endif
kvn@7152 764 #endif // COMPILER2
kvn@3882 765
twisti@1020 766 // On new cpus instructions which update whole XMM register should be used
twisti@1020 767 // to prevent partial register stall due to dependencies on high half.
twisti@1020 768 //
twisti@1020 769 // UseXmmLoadAndClearUpper == true --> movsd(xmm, mem)
twisti@1020 770 // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
twisti@1020 771 // UseXmmRegToRegMoveAll == true --> movaps(xmm, xmm), movapd(xmm, xmm).
twisti@1020 772 // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm), movsd(xmm, xmm).
twisti@1020 773
twisti@1020 774 if( is_amd() ) { // AMD cpus specific settings
twisti@1020 775 if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
twisti@1020 776 // Use it on new AMD cpus starting from Opteron.
twisti@1020 777 UseAddressNop = true;
twisti@1020 778 }
twisti@1020 779 if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
twisti@1020 780 // Use it on new AMD cpus starting from Opteron.
twisti@1020 781 UseNewLongLShift = true;
twisti@1020 782 }
twisti@1020 783 if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
twisti@1020 784 if( supports_sse4a() ) {
twisti@1020 785 UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
twisti@1020 786 } else {
twisti@1020 787 UseXmmLoadAndClearUpper = false;
twisti@1020 788 }
twisti@1020 789 }
twisti@1020 790 if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
twisti@1020 791 if( supports_sse4a() ) {
twisti@1020 792 UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
twisti@1020 793 } else {
twisti@1020 794 UseXmmRegToRegMoveAll = false;
twisti@1020 795 }
twisti@1020 796 }
twisti@1020 797 if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
twisti@1020 798 if( supports_sse4a() ) {
twisti@1020 799 UseXmmI2F = true;
twisti@1020 800 } else {
twisti@1020 801 UseXmmI2F = false;
twisti@1020 802 }
twisti@1020 803 }
twisti@1020 804 if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
twisti@1020 805 if( supports_sse4a() ) {
twisti@1020 806 UseXmmI2D = true;
twisti@1020 807 } else {
twisti@1020 808 UseXmmI2D = false;
twisti@1020 809 }
twisti@1020 810 }
kvn@2688 811 if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
kvn@2688 812 if( supports_sse4_2() && UseSSE >= 4 ) {
kvn@2688 813 UseSSE42Intrinsics = true;
kvn@2688 814 }
kvn@2688 815 }
twisti@1210 816
kvn@2808 817 // some defaults for AMD family 15h
kvn@2808 818 if ( cpu_family() == 0x15 ) {
kvn@2808 819 // On family 15h processors default is no sw prefetch
kvn@2640 820 if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
kvn@2640 821 AllocatePrefetchStyle = 0;
kvn@2640 822 }
kvn@2808 823 // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
kvn@2808 824 if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
kvn@2808 825 AllocatePrefetchInstr = 3;
kvn@2808 826 }
kvn@2808 827 // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
kvn@4105 828 if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
kvn@2808 829 UseXMMForArrayCopy = true;
kvn@2808 830 }
kvn@4105 831 if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
kvn@2808 832 UseUnalignedLoadStores = true;
kvn@2808 833 }
kvn@2640 834 }
kvn@2808 835
kvn@3882 836 #ifdef COMPILER2
kvn@3882 837 if (MaxVectorSize > 16) {
kvn@3882 838 // Limit vectors size to 16 bytes on current AMD cpus.
kvn@3882 839 FLAG_SET_DEFAULT(MaxVectorSize, 16);
kvn@3882 840 }
kvn@3882 841 #endif // COMPILER2
twisti@1020 842 }
twisti@1020 843
twisti@1020 844 if( is_intel() ) { // Intel cpus specific settings
twisti@1020 845 if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
twisti@1020 846 UseStoreImmI16 = false; // don't use it on Intel cpus
twisti@1020 847 }
twisti@1020 848 if( cpu_family() == 6 || cpu_family() == 15 ) {
twisti@1020 849 if( FLAG_IS_DEFAULT(UseAddressNop) ) {
twisti@1020 850 // Use it on all Intel cpus starting from PentiumPro
twisti@1020 851 UseAddressNop = true;
twisti@1020 852 }
twisti@1020 853 }
twisti@1020 854 if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
twisti@1020 855 UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
twisti@1020 856 }
twisti@1020 857 if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
twisti@1020 858 if( supports_sse3() ) {
twisti@1020 859 UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
twisti@1020 860 } else {
twisti@1020 861 UseXmmRegToRegMoveAll = false;
twisti@1020 862 }
twisti@1020 863 }
twisti@1020 864 if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
twisti@1020 865 #ifdef COMPILER2
twisti@1020 866 if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
twisti@1020 867 // For new Intel cpus do the next optimization:
twisti@1020 868 // don't align the beginning of a loop if there are enough instructions
twisti@1020 869 // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
twisti@1020 870 // in current fetch line (OptoLoopAlignment) or the padding
twisti@1020 871 // is big (> MaxLoopPad).
twisti@1020 872 // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
twisti@1020 873 // generated NOP instructions. 11 is the largest size of one
twisti@1020 874 // address NOP instruction '0F 1F' (see Assembler::nop(i)).
twisti@1020 875 MaxLoopPad = 11;
twisti@1020 876 }
twisti@1020 877 #endif // COMPILER2
kvn@4105 878 if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
twisti@1020 879 UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
twisti@1020 880 }
kvn@4105 881 if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
kvn@4105 882 if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
twisti@1020 883 UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
twisti@1020 884 }
twisti@1020 885 }
kvn@4105 886 if (supports_sse4_2() && UseSSE >= 4) {
kvn@4105 887 if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
cfang@1116 888 UseSSE42Intrinsics = true;
cfang@1116 889 }
cfang@1116 890 }
twisti@1020 891 }
kvn@7025 892 if ((cpu_family() == 0x06) &&
kvn@7025 893 ((extended_cpu_model() == 0x36) || // Centerton
kvn@7025 894 (extended_cpu_model() == 0x37) || // Silvermont
kvn@7025 895 (extended_cpu_model() == 0x4D))) {
kvn@7025 896 #ifdef COMPILER2
kvn@7025 897 if (FLAG_IS_DEFAULT(OptoScheduling)) {
kvn@7025 898 OptoScheduling = true;
kvn@7025 899 }
kvn@7025 900 #endif
kvn@7025 901 if (supports_sse4_2()) { // Silvermont
kvn@7025 902 if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
kvn@7025 903 UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
kvn@7025 904 }
kvn@7025 905 }
kvn@7025 906 }
kvn@7152 907 if(FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
kvn@7152 908 AllocatePrefetchInstr = 3;
kvn@7152 909 }
twisti@1020 910 }
twisti@1020 911
iveresov@6378 912 // Use count leading zeros count instruction if available.
iveresov@6378 913 if (supports_lzcnt()) {
iveresov@6378 914 if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
iveresov@6378 915 UseCountLeadingZerosInstruction = true;
iveresov@6378 916 }
iveresov@6378 917 } else if (UseCountLeadingZerosInstruction) {
iveresov@6378 918 warning("lzcnt instruction is not available on this CPU");
iveresov@6378 919 FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
iveresov@6378 920 }
iveresov@6378 921
kvn@7152 922 // Use count trailing zeros instruction if available
iveresov@6378 923 if (supports_bmi1()) {
kvn@7152 924 // tzcnt does not require VEX prefix
kvn@7152 925 if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
kvn@7269 926 if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
kvn@7269 927 // Don't use tzcnt if BMI1 is switched off on command line.
kvn@7269 928 UseCountTrailingZerosInstruction = false;
kvn@7269 929 } else {
kvn@7269 930 UseCountTrailingZerosInstruction = true;
kvn@7269 931 }
kvn@7152 932 }
kvn@7152 933 } else if (UseCountTrailingZerosInstruction) {
kvn@7152 934 warning("tzcnt instruction is not available on this CPU");
kvn@7152 935 FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
kvn@7152 936 }
kvn@7152 937
kvn@7269 938 // BMI instructions (except tzcnt) use an encoding with VEX prefix.
kvn@7152 939 // VEX prefix is generated only when AVX > 0.
kvn@7152 940 if (supports_bmi1() && supports_avx()) {
iveresov@6378 941 if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
iveresov@6378 942 UseBMI1Instructions = true;
iveresov@6378 943 }
iveresov@6378 944 } else if (UseBMI1Instructions) {
kvn@7152 945 warning("BMI1 instructions are not available on this CPU (AVX is also required)");
iveresov@6378 946 FLAG_SET_DEFAULT(UseBMI1Instructions, false);
iveresov@6378 947 }
iveresov@6378 948
kvn@7152 949 if (supports_bmi2() && supports_avx()) {
kvn@7152 950 if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
kvn@7152 951 UseBMI2Instructions = true;
iveresov@6378 952 }
kvn@7152 953 } else if (UseBMI2Instructions) {
kvn@7152 954 warning("BMI2 instructions are not available on this CPU (AVX is also required)");
kvn@7152 955 FLAG_SET_DEFAULT(UseBMI2Instructions, false);
iveresov@6378 956 }
iveresov@6378 957
twisti@1078 958 // Use population count instruction if available.
twisti@1078 959 if (supports_popcnt()) {
twisti@1078 960 if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
twisti@1078 961 UsePopCountInstruction = true;
twisti@1078 962 }
kvn@3388 963 } else if (UsePopCountInstruction) {
kvn@3388 964 warning("POPCNT instruction is not available on this CPU");
kvn@3388 965 FLAG_SET_DEFAULT(UsePopCountInstruction, false);
twisti@1078 966 }
twisti@1078 967
kvn@4410 968 // Use fast-string operations if available.
kvn@4410 969 if (supports_erms()) {
kvn@4410 970 if (FLAG_IS_DEFAULT(UseFastStosb)) {
kvn@4410 971 UseFastStosb = true;
kvn@4410 972 }
kvn@4410 973 } else if (UseFastStosb) {
kvn@4410 974 warning("fast-string operations are not available on this CPU");
kvn@4410 975 FLAG_SET_DEFAULT(UseFastStosb, false);
kvn@4410 976 }
kvn@4410 977
kvn@4105 978 #ifdef COMPILER2
kvn@4105 979 if (FLAG_IS_DEFAULT(AlignVector)) {
kvn@4105 980 // Modern processors allow misaligned memory operations for vectors.
kvn@4105 981 AlignVector = !UseUnalignedLoadStores;
kvn@4105 982 }
kvn@4105 983 #endif // COMPILER2
kvn@4105 984
twisti@1020 985 assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
twisti@1020 986 assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
twisti@1020 987
twisti@1020 988 // set valid Prefetch instruction
twisti@1020 989 if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
twisti@1020 990 if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
kvn@2761 991 if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
kvn@2761 992 if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
twisti@1020 993
twisti@1020 994 if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
twisti@1020 995 if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
kvn@2761 996 if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
kvn@2761 997 if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
twisti@1020 998
twisti@1020 999 // Allocation prefetch settings
kvn@3052 1000 intx cache_line_size = prefetch_data_size();
twisti@1020 1001 if( cache_line_size > AllocatePrefetchStepSize )
twisti@1020 1002 AllocatePrefetchStepSize = cache_line_size;
kvn@3052 1003
twisti@1020 1004 assert(AllocatePrefetchLines > 0, "invalid value");
kvn@3052 1005 if( AllocatePrefetchLines < 1 ) // set valid value in product VM
kvn@3052 1006 AllocatePrefetchLines = 3;
kvn@3052 1007 assert(AllocateInstancePrefetchLines > 0, "invalid value");
kvn@3052 1008 if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
kvn@3052 1009 AllocateInstancePrefetchLines = 1;
twisti@1020 1010
twisti@1020 1011 AllocatePrefetchDistance = allocate_prefetch_distance();
twisti@1020 1012 AllocatePrefetchStyle = allocate_prefetch_style();
twisti@1020 1013
kvn@7025 1014 if (is_intel() && cpu_family() == 6 && supports_sse3()) {
kvn@7025 1015 if (AllocatePrefetchStyle == 2) { // watermark prefetching on Core
twisti@1020 1016 #ifdef _LP64
kvn@1977 1017 AllocatePrefetchDistance = 384;
twisti@1020 1018 #else
kvn@1977 1019 AllocatePrefetchDistance = 320;
twisti@1020 1020 #endif
kvn@1977 1021 }
kvn@7025 1022 if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
kvn@1977 1023 AllocatePrefetchDistance = 192;
kvn@1977 1024 AllocatePrefetchLines = 4;
kvn@7025 1025 }
never@2085 1026 #ifdef COMPILER2
kvn@7025 1027 if (supports_sse4_2()) {
kvn@7025 1028 if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
never@2085 1029 FLAG_SET_DEFAULT(UseFPUForSpilling, true);
never@2085 1030 }
kvn@7025 1031 }
never@2085 1032 #endif
twisti@1020 1033 }
twisti@1020 1034 assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
twisti@1020 1035
twisti@1020 1036 #ifdef _LP64
twisti@1020 1037 // Prefetch settings
twisti@1020 1038 PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
twisti@1020 1039 PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
twisti@1020 1040 PrefetchFieldsAhead = prefetch_fields_ahead();
twisti@1020 1041 #endif
twisti@1020 1042
jwilhelm@4430 1043 if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
jwilhelm@4430 1044 (cache_line_size > ContendedPaddingWidth))
jwilhelm@4430 1045 ContendedPaddingWidth = cache_line_size;
jwilhelm@4430 1046
twisti@1020 1047 #ifndef PRODUCT
twisti@1020 1048 if (PrintMiscellaneous && Verbose) {
twisti@1020 1049 tty->print_cr("Logical CPUs per core: %u",
twisti@1020 1050 logical_processors_per_package());
kevinw@8966 1051 tty->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
drchase@6680 1052 tty->print("UseSSE=%d", (int) UseSSE);
kvn@3388 1053 if (UseAVX > 0) {
drchase@6680 1054 tty->print(" UseAVX=%d", (int) UseAVX);
kvn@3388 1055 }
kvn@4205 1056 if (UseAES) {
kvn@4205 1057 tty->print(" UseAES=1");
kvn@4205 1058 }
kvn@6388 1059 #ifdef COMPILER2
kvn@6388 1060 if (MaxVectorSize > 0) {
drchase@6680 1061 tty->print(" MaxVectorSize=%d", (int) MaxVectorSize);
kvn@6388 1062 }
kvn@6388 1063 #endif
kvn@3388 1064 tty->cr();
kvn@3052 1065 tty->print("Allocation");
kvn@2761 1066 if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
kvn@3052 1067 tty->print_cr(": no prefetching");
twisti@1020 1068 } else {
kvn@3052 1069 tty->print(" prefetching: ");
kvn@2761 1070 if (UseSSE == 0 && supports_3dnow_prefetch()) {
twisti@1020 1071 tty->print("PREFETCHW");
twisti@1020 1072 } else if (UseSSE >= 1) {
twisti@1020 1073 if (AllocatePrefetchInstr == 0) {
twisti@1020 1074 tty->print("PREFETCHNTA");
twisti@1020 1075 } else if (AllocatePrefetchInstr == 1) {
twisti@1020 1076 tty->print("PREFETCHT0");
twisti@1020 1077 } else if (AllocatePrefetchInstr == 2) {
twisti@1020 1078 tty->print("PREFETCHT2");
twisti@1020 1079 } else if (AllocatePrefetchInstr == 3) {
twisti@1020 1080 tty->print("PREFETCHW");
twisti@1020 1081 }
twisti@1020 1082 }
twisti@1020 1083 if (AllocatePrefetchLines > 1) {
drchase@6680 1084 tty->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
twisti@1020 1085 } else {
drchase@6680 1086 tty->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
twisti@1020 1087 }
twisti@1020 1088 }
twisti@1020 1089
twisti@1020 1090 if (PrefetchCopyIntervalInBytes > 0) {
drchase@6680 1091 tty->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
twisti@1020 1092 }
twisti@1020 1093 if (PrefetchScanIntervalInBytes > 0) {
drchase@6680 1094 tty->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
twisti@1020 1095 }
twisti@1020 1096 if (PrefetchFieldsAhead > 0) {
drchase@6680 1097 tty->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
twisti@1020 1098 }
jwilhelm@4430 1099 if (ContendedPaddingWidth > 0) {
drchase@6680 1100 tty->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
jwilhelm@4430 1101 }
twisti@1020 1102 }
twisti@1020 1103 #endif // !PRODUCT
twisti@1020 1104 }
twisti@1020 1105
kvn@6429 1106 bool VM_Version::use_biased_locking() {
kvn@6429 1107 #if INCLUDE_RTM_OPT
kvn@6429 1108 // RTM locking is most useful when there is high lock contention and
kvn@6429 1109 // low data contention. With high lock contention the lock is usually
kvn@6429 1110 // inflated and biased locking is not suitable for that case.
kvn@6429 1111 // RTM locking code requires that biased locking is off.
kvn@6429 1112 // Note: we can't switch off UseBiasedLocking in get_processor_features()
kvn@6429 1113 // because it is used by Thread::allocate() which is called before
kvn@6429 1114 // VM_Version::initialize().
kvn@6429 1115 if (UseRTMLocking && UseBiasedLocking) {
kvn@6429 1116 if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
kvn@6429 1117 FLAG_SET_DEFAULT(UseBiasedLocking, false);
kvn@6429 1118 } else {
kvn@6429 1119 warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
kvn@6429 1120 UseBiasedLocking = false;
kvn@6429 1121 }
kvn@6429 1122 }
kvn@6429 1123 #endif
kvn@6429 1124 return UseBiasedLocking;
kvn@6429 1125 }
kvn@6429 1126
twisti@1020 1127 void VM_Version::initialize() {
twisti@1020 1128 ResourceMark rm;
twisti@1020 1129 // Making this stub must be FIRST use of assembler
twisti@1020 1130
kvn@6537 1131 stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
twisti@1020 1132 if (stub_blob == NULL) {
kvn@6537 1133 vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
twisti@1020 1134 }
twisti@2103 1135 CodeBuffer c(stub_blob);
twisti@1020 1136 VM_Version_StubGenerator g(&c);
kvn@6537 1137 get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
kvn@6537 1138 g.generate_get_cpu_info());
twisti@1020 1139
twisti@1020 1140 get_processor_features();
twisti@1020 1141 }

mercurial