src/cpu/x86/vm/vm_version_x86.cpp

Tue, 29 Apr 2014 12:20:53 -0700

author
kvn
date
Tue, 29 Apr 2014 12:20:53 -0700
changeset 6656
1eba0601f0dd
parent 6537
0118c8c7b80f
child 6680
78bbf4d43a14
permissions
-rw-r--r--

8041957: -XX:UseAVX=0 cause assert(UseAVX) failed
Summary: temporary set UseAVX=1 and UseSSE=2 in generate_get_cpu_info()
Reviewed-by: twisti

twisti@1020 1 /*
drchase@5353 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
twisti@1020 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
twisti@1020 4 *
twisti@1020 5 * This code is free software; you can redistribute it and/or modify it
twisti@1020 6 * under the terms of the GNU General Public License version 2 only, as
twisti@1020 7 * published by the Free Software Foundation.
twisti@1020 8 *
twisti@1020 9 * This code is distributed in the hope that it will be useful, but WITHOUT
twisti@1020 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
twisti@1020 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
twisti@1020 12 * version 2 for more details (a copy is included in the LICENSE file that
twisti@1020 13 * accompanied this code).
twisti@1020 14 *
twisti@1020 15 * You should have received a copy of the GNU General Public License version
twisti@1020 16 * 2 along with this work; if not, write to the Free Software Foundation,
twisti@1020 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
twisti@1020 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
twisti@1020 22 *
twisti@1020 23 */
twisti@1020 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "memory/resourceArea.hpp"
stefank@2314 29 #include "runtime/java.hpp"
stefank@2314 30 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 31 #include "vm_version_x86.hpp"
stefank@2314 32 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 33 # include "os_linux.inline.hpp"
stefank@2314 34 #endif
stefank@2314 35 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 36 # include "os_solaris.inline.hpp"
stefank@2314 37 #endif
stefank@2314 38 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 39 # include "os_windows.inline.hpp"
stefank@2314 40 #endif
never@3156 41 #ifdef TARGET_OS_FAMILY_bsd
never@3156 42 # include "os_bsd.inline.hpp"
never@3156 43 #endif
twisti@1020 44
twisti@1020 45
twisti@1020 46 int VM_Version::_cpu;
twisti@1020 47 int VM_Version::_model;
twisti@1020 48 int VM_Version::_stepping;
twisti@1020 49 int VM_Version::_cpuFeatures;
twisti@1020 50 const char* VM_Version::_features_str = "";
twisti@1020 51 VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
twisti@1020 52
kvn@6388 53 // Address of instruction which causes SEGV
kvn@6388 54 address VM_Version::_cpuinfo_segv_addr = 0;
kvn@6388 55 // Address of instruction after the one which causes SEGV
kvn@6388 56 address VM_Version::_cpuinfo_cont_addr = 0;
kvn@6388 57
twisti@1020 58 static BufferBlob* stub_blob;
kvn@6388 59 static const int stub_size = 600;
twisti@1020 60
twisti@1020 61 extern "C" {
kvn@6537 62 typedef void (*get_cpu_info_stub_t)(void*);
twisti@1020 63 }
kvn@6537 64 static get_cpu_info_stub_t get_cpu_info_stub = NULL;
twisti@1020 65
twisti@1020 66
twisti@1020 67 class VM_Version_StubGenerator: public StubCodeGenerator {
twisti@1020 68 public:
twisti@1020 69
twisti@1020 70 VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
twisti@1020 71
kvn@6537 72 address generate_get_cpu_info() {
twisti@1020 73 // Flags to test CPU type.
sla@3587 74 const uint32_t HS_EFL_AC = 0x40000;
sla@3587 75 const uint32_t HS_EFL_ID = 0x200000;
twisti@1020 76 // Values for when we don't have a CPUID instruction.
twisti@1020 77 const int CPU_FAMILY_SHIFT = 8;
twisti@1020 78 const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT);
twisti@1020 79 const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT);
twisti@1020 80
kvn@1977 81 Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
kvn@3400 82 Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done;
twisti@1020 83
kvn@6537 84 StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
twisti@1020 85 # define __ _masm->
twisti@1020 86
twisti@1020 87 address start = __ pc();
twisti@1020 88
twisti@1020 89 //
kvn@6537 90 // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
twisti@1020 91 //
twisti@1020 92 // LP64: rcx and rdx are first and second argument registers on windows
twisti@1020 93
twisti@1020 94 __ push(rbp);
twisti@1020 95 #ifdef _LP64
twisti@1020 96 __ mov(rbp, c_rarg0); // cpuid_info address
twisti@1020 97 #else
twisti@1020 98 __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
twisti@1020 99 #endif
twisti@1020 100 __ push(rbx);
twisti@1020 101 __ push(rsi);
twisti@1020 102 __ pushf(); // preserve rbx, and flags
twisti@1020 103 __ pop(rax);
twisti@1020 104 __ push(rax);
twisti@1020 105 __ mov(rcx, rax);
twisti@1020 106 //
twisti@1020 107 // if we are unable to change the AC flag, we have a 386
twisti@1020 108 //
sla@3587 109 __ xorl(rax, HS_EFL_AC);
twisti@1020 110 __ push(rax);
twisti@1020 111 __ popf();
twisti@1020 112 __ pushf();
twisti@1020 113 __ pop(rax);
twisti@1020 114 __ cmpptr(rax, rcx);
twisti@1020 115 __ jccb(Assembler::notEqual, detect_486);
twisti@1020 116
twisti@1020 117 __ movl(rax, CPU_FAMILY_386);
twisti@1020 118 __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
twisti@1020 119 __ jmp(done);
twisti@1020 120
twisti@1020 121 //
twisti@1020 122 // If we are unable to change the ID flag, we have a 486 which does
twisti@1020 123 // not support the "cpuid" instruction.
twisti@1020 124 //
twisti@1020 125 __ bind(detect_486);
twisti@1020 126 __ mov(rax, rcx);
sla@3587 127 __ xorl(rax, HS_EFL_ID);
twisti@1020 128 __ push(rax);
twisti@1020 129 __ popf();
twisti@1020 130 __ pushf();
twisti@1020 131 __ pop(rax);
twisti@1020 132 __ cmpptr(rcx, rax);
twisti@1020 133 __ jccb(Assembler::notEqual, detect_586);
twisti@1020 134
twisti@1020 135 __ bind(cpu486);
twisti@1020 136 __ movl(rax, CPU_FAMILY_486);
twisti@1020 137 __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
twisti@1020 138 __ jmp(done);
twisti@1020 139
twisti@1020 140 //
twisti@1020 141 // At this point, we have a chip which supports the "cpuid" instruction
twisti@1020 142 //
twisti@1020 143 __ bind(detect_586);
twisti@1020 144 __ xorl(rax, rax);
twisti@1020 145 __ cpuid();
twisti@1020 146 __ orl(rax, rax);
twisti@1020 147 __ jcc(Assembler::equal, cpu486); // if cpuid doesn't support an input
twisti@1020 148 // value of at least 1, we give up and
twisti@1020 149 // assume a 486
twisti@1020 150 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
twisti@1020 151 __ movl(Address(rsi, 0), rax);
twisti@1020 152 __ movl(Address(rsi, 4), rbx);
twisti@1020 153 __ movl(Address(rsi, 8), rcx);
twisti@1020 154 __ movl(Address(rsi,12), rdx);
twisti@1020 155
kvn@1977 156 __ cmpl(rax, 0xa); // Is cpuid(0xB) supported?
kvn@1977 157 __ jccb(Assembler::belowEqual, std_cpuid4);
kvn@1977 158
kvn@1977 159 //
kvn@1977 160 // cpuid(0xB) Processor Topology
kvn@1977 161 //
kvn@1977 162 __ movl(rax, 0xb);
kvn@1977 163 __ xorl(rcx, rcx); // Threads level
kvn@1977 164 __ cpuid();
kvn@1977 165
kvn@1977 166 __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
kvn@1977 167 __ movl(Address(rsi, 0), rax);
kvn@1977 168 __ movl(Address(rsi, 4), rbx);
kvn@1977 169 __ movl(Address(rsi, 8), rcx);
kvn@1977 170 __ movl(Address(rsi,12), rdx);
kvn@1977 171
kvn@1977 172 __ movl(rax, 0xb);
kvn@1977 173 __ movl(rcx, 1); // Cores level
kvn@1977 174 __ cpuid();
kvn@1977 175 __ push(rax);
kvn@1977 176 __ andl(rax, 0x1f); // Determine if valid topology level
kvn@1977 177 __ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level
kvn@1977 178 __ andl(rax, 0xffff);
kvn@1977 179 __ pop(rax);
kvn@1977 180 __ jccb(Assembler::equal, std_cpuid4);
kvn@1977 181
kvn@1977 182 __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
kvn@1977 183 __ movl(Address(rsi, 0), rax);
kvn@1977 184 __ movl(Address(rsi, 4), rbx);
kvn@1977 185 __ movl(Address(rsi, 8), rcx);
kvn@1977 186 __ movl(Address(rsi,12), rdx);
kvn@1977 187
kvn@1977 188 __ movl(rax, 0xb);
kvn@1977 189 __ movl(rcx, 2); // Packages level
kvn@1977 190 __ cpuid();
kvn@1977 191 __ push(rax);
kvn@1977 192 __ andl(rax, 0x1f); // Determine if valid topology level
kvn@1977 193 __ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level
kvn@1977 194 __ andl(rax, 0xffff);
kvn@1977 195 __ pop(rax);
kvn@1977 196 __ jccb(Assembler::equal, std_cpuid4);
kvn@1977 197
kvn@1977 198 __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
kvn@1977 199 __ movl(Address(rsi, 0), rax);
kvn@1977 200 __ movl(Address(rsi, 4), rbx);
kvn@1977 201 __ movl(Address(rsi, 8), rcx);
kvn@1977 202 __ movl(Address(rsi,12), rdx);
twisti@1020 203
twisti@1020 204 //
twisti@1020 205 // cpuid(0x4) Deterministic cache params
twisti@1020 206 //
kvn@1977 207 __ bind(std_cpuid4);
twisti@1020 208 __ movl(rax, 4);
kvn@1977 209 __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
kvn@1977 210 __ jccb(Assembler::greater, std_cpuid1);
kvn@1977 211
twisti@1020 212 __ xorl(rcx, rcx); // L1 cache
twisti@1020 213 __ cpuid();
twisti@1020 214 __ push(rax);
twisti@1020 215 __ andl(rax, 0x1f); // Determine if valid cache parameters used
twisti@1020 216 __ orl(rax, rax); // eax[4:0] == 0 indicates invalid cache
twisti@1020 217 __ pop(rax);
twisti@1020 218 __ jccb(Assembler::equal, std_cpuid1);
twisti@1020 219
twisti@1020 220 __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
twisti@1020 221 __ movl(Address(rsi, 0), rax);
twisti@1020 222 __ movl(Address(rsi, 4), rbx);
twisti@1020 223 __ movl(Address(rsi, 8), rcx);
twisti@1020 224 __ movl(Address(rsi,12), rdx);
twisti@1020 225
twisti@1020 226 //
twisti@1020 227 // Standard cpuid(0x1)
twisti@1020 228 //
twisti@1020 229 __ bind(std_cpuid1);
twisti@1020 230 __ movl(rax, 1);
twisti@1020 231 __ cpuid();
twisti@1020 232 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
twisti@1020 233 __ movl(Address(rsi, 0), rax);
twisti@1020 234 __ movl(Address(rsi, 4), rbx);
twisti@1020 235 __ movl(Address(rsi, 8), rcx);
twisti@1020 236 __ movl(Address(rsi,12), rdx);
twisti@1020 237
kvn@3388 238 //
kvn@3388 239 // Check if OS has enabled XGETBV instruction to access XCR0
kvn@3388 240 // (OSXSAVE feature flag) and CPU supports AVX
kvn@3388 241 //
kvn@6388 242 __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
kvn@3388 243 __ cmpl(rcx, 0x18000000);
kvn@6388 244 __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
kvn@3388 245
kvn@3388 246 //
kvn@3388 247 // XCR0, XFEATURE_ENABLED_MASK register
kvn@3388 248 //
kvn@3388 249 __ xorl(rcx, rcx); // zero for XCR0 register
kvn@3388 250 __ xgetbv();
kvn@3388 251 __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
kvn@3388 252 __ movl(Address(rsi, 0), rax);
kvn@3388 253 __ movl(Address(rsi, 4), rdx);
kvn@3388 254
kvn@6388 255 __ andl(rax, 0x6); // xcr0 bits sse | ymm
kvn@6388 256 __ cmpl(rax, 0x6);
kvn@6388 257 __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
kvn@6388 258
kvn@6388 259 //
kvn@6388 260 // Some OSs have a bug when upper 128bits of YMM
kvn@6388 261 // registers are not restored after a signal processing.
kvn@6388 262 // Generate SEGV here (reference through NULL)
kvn@6388 263 // and check upper YMM bits after it.
kvn@6388 264 //
kvn@6388 265 VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
kvn@6656 266 intx saved_useavx = UseAVX;
kvn@6656 267 intx saved_usesse = UseSSE;
kvn@6656 268 UseAVX = 1;
kvn@6656 269 UseSSE = 2;
kvn@6388 270
kvn@6388 271 // load value into all 32 bytes of ymm7 register
kvn@6388 272 __ movl(rcx, VM_Version::ymm_test_value());
kvn@6388 273
kvn@6388 274 __ movdl(xmm0, rcx);
kvn@6388 275 __ pshufd(xmm0, xmm0, 0x00);
kvn@6388 276 __ vinsertf128h(xmm0, xmm0, xmm0);
kvn@6388 277 __ vmovdqu(xmm7, xmm0);
kvn@6388 278 #ifdef _LP64
kvn@6388 279 __ vmovdqu(xmm8, xmm0);
kvn@6388 280 __ vmovdqu(xmm15, xmm0);
kvn@6388 281 #endif
kvn@6388 282
kvn@6388 283 __ xorl(rsi, rsi);
kvn@6388 284 VM_Version::set_cpuinfo_segv_addr( __ pc() );
kvn@6388 285 // Generate SEGV
kvn@6388 286 __ movl(rax, Address(rsi, 0));
kvn@6388 287
kvn@6388 288 VM_Version::set_cpuinfo_cont_addr( __ pc() );
kvn@6388 289 // Returns here after signal. Save xmm0 to check it later.
kvn@6388 290 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
kvn@6388 291 __ vmovdqu(Address(rsi, 0), xmm0);
kvn@6388 292 __ vmovdqu(Address(rsi, 32), xmm7);
kvn@6388 293 #ifdef _LP64
kvn@6388 294 __ vmovdqu(Address(rsi, 64), xmm8);
kvn@6388 295 __ vmovdqu(Address(rsi, 96), xmm15);
kvn@6388 296 #endif
kvn@6388 297
kvn@6388 298 VM_Version::clean_cpuFeatures();
kvn@6656 299 UseAVX = saved_useavx;
kvn@6656 300 UseSSE = saved_usesse;
kvn@6388 301
kvn@3388 302 //
kvn@3388 303 // cpuid(0x7) Structured Extended Features
kvn@3388 304 //
kvn@3388 305 __ bind(sef_cpuid);
kvn@3388 306 __ movl(rax, 7);
kvn@3388 307 __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
kvn@3388 308 __ jccb(Assembler::greater, ext_cpuid);
kvn@3388 309
kvn@3388 310 __ xorl(rcx, rcx);
kvn@3388 311 __ cpuid();
kvn@3388 312 __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
kvn@3388 313 __ movl(Address(rsi, 0), rax);
kvn@3388 314 __ movl(Address(rsi, 4), rbx);
kvn@3388 315
kvn@3388 316 //
kvn@3388 317 // Extended cpuid(0x80000000)
kvn@3388 318 //
kvn@3388 319 __ bind(ext_cpuid);
twisti@1020 320 __ movl(rax, 0x80000000);
twisti@1020 321 __ cpuid();
twisti@1020 322 __ cmpl(rax, 0x80000000); // Is cpuid(0x80000001) supported?
twisti@1020 323 __ jcc(Assembler::belowEqual, done);
twisti@1020 324 __ cmpl(rax, 0x80000004); // Is cpuid(0x80000005) supported?
twisti@1020 325 __ jccb(Assembler::belowEqual, ext_cpuid1);
phh@3378 326 __ cmpl(rax, 0x80000006); // Is cpuid(0x80000007) supported?
phh@3378 327 __ jccb(Assembler::belowEqual, ext_cpuid5);
twisti@1020 328 __ cmpl(rax, 0x80000007); // Is cpuid(0x80000008) supported?
phh@3378 329 __ jccb(Assembler::belowEqual, ext_cpuid7);
twisti@1020 330 //
twisti@1020 331 // Extended cpuid(0x80000008)
twisti@1020 332 //
twisti@1020 333 __ movl(rax, 0x80000008);
twisti@1020 334 __ cpuid();
twisti@1020 335 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
twisti@1020 336 __ movl(Address(rsi, 0), rax);
twisti@1020 337 __ movl(Address(rsi, 4), rbx);
twisti@1020 338 __ movl(Address(rsi, 8), rcx);
twisti@1020 339 __ movl(Address(rsi,12), rdx);
twisti@1020 340
twisti@1020 341 //
phh@3378 342 // Extended cpuid(0x80000007)
phh@3378 343 //
phh@3378 344 __ bind(ext_cpuid7);
phh@3378 345 __ movl(rax, 0x80000007);
phh@3378 346 __ cpuid();
phh@3378 347 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
phh@3378 348 __ movl(Address(rsi, 0), rax);
phh@3378 349 __ movl(Address(rsi, 4), rbx);
phh@3378 350 __ movl(Address(rsi, 8), rcx);
phh@3378 351 __ movl(Address(rsi,12), rdx);
phh@3378 352
phh@3378 353 //
twisti@1020 354 // Extended cpuid(0x80000005)
twisti@1020 355 //
twisti@1020 356 __ bind(ext_cpuid5);
twisti@1020 357 __ movl(rax, 0x80000005);
twisti@1020 358 __ cpuid();
twisti@1020 359 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
twisti@1020 360 __ movl(Address(rsi, 0), rax);
twisti@1020 361 __ movl(Address(rsi, 4), rbx);
twisti@1020 362 __ movl(Address(rsi, 8), rcx);
twisti@1020 363 __ movl(Address(rsi,12), rdx);
twisti@1020 364
twisti@1020 365 //
twisti@1020 366 // Extended cpuid(0x80000001)
twisti@1020 367 //
twisti@1020 368 __ bind(ext_cpuid1);
twisti@1020 369 __ movl(rax, 0x80000001);
twisti@1020 370 __ cpuid();
twisti@1020 371 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
twisti@1020 372 __ movl(Address(rsi, 0), rax);
twisti@1020 373 __ movl(Address(rsi, 4), rbx);
twisti@1020 374 __ movl(Address(rsi, 8), rcx);
twisti@1020 375 __ movl(Address(rsi,12), rdx);
twisti@1020 376
twisti@1020 377 //
twisti@1020 378 // return
twisti@1020 379 //
twisti@1020 380 __ bind(done);
twisti@1020 381 __ popf();
twisti@1020 382 __ pop(rsi);
twisti@1020 383 __ pop(rbx);
twisti@1020 384 __ pop(rbp);
twisti@1020 385 __ ret(0);
twisti@1020 386
twisti@1020 387 # undef __
twisti@1020 388
twisti@1020 389 return start;
twisti@1020 390 };
twisti@1020 391 };
twisti@1020 392
twisti@1020 393
kvn@6537 394 void VM_Version::get_cpu_info_wrapper() {
kvn@6537 395 get_cpu_info_stub(&_cpuid_info);
kvn@6537 396 }
kvn@6537 397
kvn@6537 398 #ifndef CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED
kvn@6537 399 #define CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED(f) f()
kvn@6537 400 #endif
kvn@6537 401
twisti@1020 402 void VM_Version::get_processor_features() {
twisti@1020 403
twisti@1020 404 _cpu = 4; // 486 by default
twisti@1020 405 _model = 0;
twisti@1020 406 _stepping = 0;
twisti@1020 407 _cpuFeatures = 0;
twisti@1020 408 _logical_processors_per_package = 1;
twisti@1020 409
twisti@1020 410 if (!Use486InstrsOnly) {
twisti@1020 411 // Get raw processor info
kvn@6537 412
kvn@6537 413 // Some platforms (like Win*) need a wrapper around here
kvn@6537 414 // in order to properly handle SEGV for YMM registers test.
kvn@6537 415 CALL_TEST_FUNC_WITH_WRAPPER_IF_NEEDED(get_cpu_info_wrapper);
kvn@6537 416
twisti@1020 417 assert_is_initialized();
twisti@1020 418 _cpu = extended_cpu_family();
twisti@1020 419 _model = extended_cpu_model();
twisti@1020 420 _stepping = cpu_stepping();
twisti@1020 421
twisti@1020 422 if (cpu_family() > 4) { // it supports CPUID
twisti@1020 423 _cpuFeatures = feature_flags();
twisti@1020 424 // Logical processors are only available on P4s and above,
twisti@1020 425 // and only if hyperthreading is available.
twisti@1020 426 _logical_processors_per_package = logical_processor_count();
twisti@1020 427 }
twisti@1020 428 }
twisti@1020 429
twisti@1020 430 _supports_cx8 = supports_cmpxchg8();
roland@4106 431 // xchg and xadd instructions
roland@4106 432 _supports_atomic_getset4 = true;
roland@4106 433 _supports_atomic_getadd4 = true;
roland@4106 434 LP64_ONLY(_supports_atomic_getset8 = true);
roland@4106 435 LP64_ONLY(_supports_atomic_getadd8 = true);
twisti@1020 436
twisti@1020 437 #ifdef _LP64
twisti@1020 438 // OS should support SSE for x64 and hardware should support at least SSE2.
twisti@1020 439 if (!VM_Version::supports_sse2()) {
twisti@1020 440 vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
twisti@1020 441 }
roland@1495 442 // in 64 bit the use of SSE2 is the minimum
roland@1495 443 if (UseSSE < 2) UseSSE = 2;
twisti@1020 444 #endif
twisti@1020 445
kvn@2984 446 #ifdef AMD64
kvn@2984 447 // flush_icache_stub have to be generated first.
kvn@2984 448 // That is why Icache line size is hard coded in ICache class,
kvn@2984 449 // see icache_x86.hpp. It is also the reason why we can't use
kvn@2984 450 // clflush instruction in 32-bit VM since it could be running
kvn@2984 451 // on CPU which does not support it.
kvn@2984 452 //
kvn@2984 453 // The only thing we can do is to verify that flushed
kvn@2984 454 // ICache::line_size has correct value.
kvn@2984 455 guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
kvn@2984 456 // clflush_size is size in quadwords (8 bytes).
kvn@2984 457 guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
kvn@2984 458 #endif
kvn@2984 459
twisti@1020 460 // If the OS doesn't support SSE, we can't use this feature even if the HW does
twisti@1020 461 if (!os::supports_sse())
twisti@1020 462 _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
twisti@1020 463
twisti@1020 464 if (UseSSE < 4) {
twisti@1020 465 _cpuFeatures &= ~CPU_SSE4_1;
twisti@1020 466 _cpuFeatures &= ~CPU_SSE4_2;
twisti@1020 467 }
twisti@1020 468
twisti@1020 469 if (UseSSE < 3) {
twisti@1020 470 _cpuFeatures &= ~CPU_SSE3;
twisti@1020 471 _cpuFeatures &= ~CPU_SSSE3;
twisti@1020 472 _cpuFeatures &= ~CPU_SSE4A;
twisti@1020 473 }
twisti@1020 474
twisti@1020 475 if (UseSSE < 2)
twisti@1020 476 _cpuFeatures &= ~CPU_SSE2;
twisti@1020 477
twisti@1020 478 if (UseSSE < 1)
twisti@1020 479 _cpuFeatures &= ~CPU_SSE;
twisti@1020 480
kvn@3388 481 if (UseAVX < 2)
kvn@3388 482 _cpuFeatures &= ~CPU_AVX2;
kvn@3388 483
kvn@3388 484 if (UseAVX < 1)
kvn@3388 485 _cpuFeatures &= ~CPU_AVX;
kvn@3388 486
kvn@4205 487 if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
kvn@4205 488 _cpuFeatures &= ~CPU_AES;
kvn@4205 489
twisti@1020 490 if (logical_processors_per_package() == 1) {
twisti@1020 491 // HT processor could be installed on a system which doesn't support HT.
twisti@1020 492 _cpuFeatures &= ~CPU_HT;
twisti@1020 493 }
twisti@1020 494
twisti@1020 495 char buf[256];
kvn@6429 496 jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
twisti@1020 497 cores_per_cpu(), threads_per_core(),
twisti@1020 498 cpu_family(), _model, _stepping,
twisti@1020 499 (supports_cmov() ? ", cmov" : ""),
twisti@1020 500 (supports_cmpxchg8() ? ", cx8" : ""),
twisti@1020 501 (supports_fxsr() ? ", fxsr" : ""),
twisti@1020 502 (supports_mmx() ? ", mmx" : ""),
twisti@1020 503 (supports_sse() ? ", sse" : ""),
twisti@1020 504 (supports_sse2() ? ", sse2" : ""),
twisti@1020 505 (supports_sse3() ? ", sse3" : ""),
twisti@1020 506 (supports_ssse3()? ", ssse3": ""),
twisti@1020 507 (supports_sse4_1() ? ", sse4.1" : ""),
twisti@1020 508 (supports_sse4_2() ? ", sse4.2" : ""),
twisti@1078 509 (supports_popcnt() ? ", popcnt" : ""),
kvn@3388 510 (supports_avx() ? ", avx" : ""),
kvn@3388 511 (supports_avx2() ? ", avx2" : ""),
kvn@4205 512 (supports_aes() ? ", aes" : ""),
kvn@6429 513 (supports_clmul() ? ", clmul" : ""),
kvn@4410 514 (supports_erms() ? ", erms" : ""),
kvn@6429 515 (supports_rtm() ? ", rtm" : ""),
twisti@1020 516 (supports_mmx_ext() ? ", mmxext" : ""),
kvn@2761 517 (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
twisti@1210 518 (supports_lzcnt() ? ", lzcnt": ""),
twisti@1020 519 (supports_sse4a() ? ", sse4a": ""),
phh@3378 520 (supports_ht() ? ", ht": ""),
phh@3378 521 (supports_tsc() ? ", tsc": ""),
phh@3378 522 (supports_tscinv_bit() ? ", tscinvbit": ""),
iveresov@6378 523 (supports_tscinv() ? ", tscinv": ""),
iveresov@6378 524 (supports_bmi1() ? ", bmi1" : ""),
iveresov@6378 525 (supports_bmi2() ? ", bmi2" : ""));
twisti@1020 526 _features_str = strdup(buf);
twisti@1020 527
twisti@1020 528 // UseSSE is set to the smaller of what hardware supports and what
twisti@1020 529 // the command line requires. I.e., you cannot set UseSSE to 2 on
twisti@1020 530 // older Pentiums which do not support it.
kvn@3388 531 if (UseSSE > 4) UseSSE=4;
kvn@3388 532 if (UseSSE < 0) UseSSE=0;
kvn@3388 533 if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
twisti@1020 534 UseSSE = MIN2((intx)3,UseSSE);
kvn@3388 535 if (!supports_sse3()) // Drop to 2 if no SSE3 support
twisti@1020 536 UseSSE = MIN2((intx)2,UseSSE);
kvn@3388 537 if (!supports_sse2()) // Drop to 1 if no SSE2 support
twisti@1020 538 UseSSE = MIN2((intx)1,UseSSE);
kvn@3388 539 if (!supports_sse ()) // Drop to 0 if no SSE support
twisti@1020 540 UseSSE = 0;
twisti@1020 541
kvn@3388 542 if (UseAVX > 2) UseAVX=2;
kvn@3388 543 if (UseAVX < 0) UseAVX=0;
kvn@3388 544 if (!supports_avx2()) // Drop to 1 if no AVX2 support
kvn@3388 545 UseAVX = MIN2((intx)1,UseAVX);
kvn@3388 546 if (!supports_avx ()) // Drop to 0 if no AVX support
kvn@3388 547 UseAVX = 0;
kvn@3388 548
kvn@4205 549 // Use AES instructions if available.
kvn@4205 550 if (supports_aes()) {
kvn@4205 551 if (FLAG_IS_DEFAULT(UseAES)) {
kvn@4205 552 UseAES = true;
kvn@4205 553 }
kvn@4205 554 } else if (UseAES) {
kvn@4205 555 if (!FLAG_IS_DEFAULT(UseAES))
kvn@6429 556 warning("AES instructions are not available on this CPU");
kvn@4205 557 FLAG_SET_DEFAULT(UseAES, false);
kvn@4205 558 }
kvn@4205 559
drchase@5353 560 // Use CLMUL instructions if available.
drchase@5353 561 if (supports_clmul()) {
drchase@5353 562 if (FLAG_IS_DEFAULT(UseCLMUL)) {
drchase@5353 563 UseCLMUL = true;
drchase@5353 564 }
drchase@5353 565 } else if (UseCLMUL) {
drchase@5353 566 if (!FLAG_IS_DEFAULT(UseCLMUL))
drchase@5353 567 warning("CLMUL instructions not available on this CPU (AVX may also be required)");
drchase@5353 568 FLAG_SET_DEFAULT(UseCLMUL, false);
drchase@5353 569 }
drchase@5353 570
drchase@5353 571 if (UseCLMUL && (UseAVX > 0) && (UseSSE > 2)) {
drchase@5353 572 if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
drchase@5353 573 UseCRC32Intrinsics = true;
drchase@5353 574 }
drchase@5353 575 } else if (UseCRC32Intrinsics) {
drchase@5353 576 if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
drchase@5353 577 warning("CRC32 Intrinsics requires AVX and CLMUL instructions (not available on this CPU)");
drchase@5353 578 FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
drchase@5353 579 }
drchase@5353 580
kvn@4205 581 // The AES intrinsic stubs require AES instruction support (of course)
kvn@4363 582 // but also require sse3 mode for instructions it use.
kvn@4363 583 if (UseAES && (UseSSE > 2)) {
kvn@4205 584 if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
kvn@4205 585 UseAESIntrinsics = true;
kvn@4205 586 }
kvn@4205 587 } else if (UseAESIntrinsics) {
kvn@4205 588 if (!FLAG_IS_DEFAULT(UseAESIntrinsics))
kvn@6429 589 warning("AES intrinsics are not available on this CPU");
kvn@4205 590 FLAG_SET_DEFAULT(UseAESIntrinsics, false);
kvn@4205 591 }
kvn@4205 592
kvn@6429 593 // Adjust RTM (Restricted Transactional Memory) flags
kvn@6429 594 if (!supports_rtm() && UseRTMLocking) {
kvn@6429 595 // Can't continue because UseRTMLocking affects UseBiasedLocking flag
kvn@6429 596 // setting during arguments processing. See use_biased_locking().
kvn@6429 597 // VM_Version_init() is executed after UseBiasedLocking is used
kvn@6429 598 // in Thread::allocate().
kvn@6429 599 vm_exit_during_initialization("RTM instructions are not available on this CPU");
kvn@6429 600 }
kvn@6429 601
kvn@6429 602 #if INCLUDE_RTM_OPT
kvn@6429 603 if (UseRTMLocking) {
kvn@6429 604 if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
kvn@6429 605 // RTM locking should be used only for applications with
kvn@6429 606 // high lock contention. For now we do not use it by default.
kvn@6429 607 vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
kvn@6429 608 }
kvn@6429 609 if (!is_power_of_2(RTMTotalCountIncrRate)) {
kvn@6429 610 warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64");
kvn@6429 611 FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64);
kvn@6429 612 }
kvn@6429 613 if (RTMAbortRatio < 0 || RTMAbortRatio > 100) {
kvn@6429 614 warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50");
kvn@6429 615 FLAG_SET_DEFAULT(RTMAbortRatio, 50);
kvn@6429 616 }
kvn@6429 617 } else { // !UseRTMLocking
kvn@6429 618 if (UseRTMForStackLocks) {
kvn@6429 619 if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
kvn@6429 620 warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
kvn@6429 621 }
kvn@6429 622 FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
kvn@6429 623 }
kvn@6429 624 if (UseRTMDeopt) {
kvn@6429 625 FLAG_SET_DEFAULT(UseRTMDeopt, false);
kvn@6429 626 }
kvn@6429 627 if (PrintPreciseRTMLockingStatistics) {
kvn@6429 628 FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
kvn@6429 629 }
kvn@6429 630 }
kvn@6429 631 #else
kvn@6429 632 if (UseRTMLocking) {
kvn@6429 633 // Only C2 does RTM locking optimization.
kvn@6429 634 // Can't continue because UseRTMLocking affects UseBiasedLocking flag
kvn@6429 635 // setting during arguments processing. See use_biased_locking().
kvn@6429 636 vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
kvn@6429 637 }
kvn@6429 638 #endif
kvn@6429 639
kvn@3882 640 #ifdef COMPILER2
kvn@3882 641 if (UseFPUForSpilling) {
kvn@3882 642 if (UseSSE < 2) {
kvn@3882 643 // Only supported with SSE2+
kvn@3882 644 FLAG_SET_DEFAULT(UseFPUForSpilling, false);
kvn@3882 645 }
kvn@3882 646 }
kvn@3882 647 if (MaxVectorSize > 0) {
kvn@3882 648 if (!is_power_of_2(MaxVectorSize)) {
kvn@3882 649 warning("MaxVectorSize must be a power of 2");
kvn@3882 650 FLAG_SET_DEFAULT(MaxVectorSize, 32);
kvn@3882 651 }
kvn@3882 652 if (MaxVectorSize > 32) {
kvn@3882 653 FLAG_SET_DEFAULT(MaxVectorSize, 32);
kvn@3882 654 }
kvn@6388 655 if (MaxVectorSize > 16 && (UseAVX == 0 || !os_supports_avx_vectors())) {
kvn@6388 656 // 32 bytes vectors (in YMM) are only supported with AVX+
kvn@3882 657 FLAG_SET_DEFAULT(MaxVectorSize, 16);
kvn@3882 658 }
kvn@3882 659 if (UseSSE < 2) {
kvn@6388 660 // Vectors (in XMM) are only supported with SSE2+
kvn@3882 661 FLAG_SET_DEFAULT(MaxVectorSize, 0);
kvn@3882 662 }
kvn@6388 663 #ifdef ASSERT
kvn@6388 664 if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
kvn@6388 665 tty->print_cr("State of YMM registers after signal handle:");
kvn@6388 666 int nreg = 2 LP64_ONLY(+2);
kvn@6388 667 const char* ymm_name[4] = {"0", "7", "8", "15"};
kvn@6388 668 for (int i = 0; i < nreg; i++) {
kvn@6388 669 tty->print("YMM%s:", ymm_name[i]);
kvn@6388 670 for (int j = 7; j >=0; j--) {
kvn@6388 671 tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
kvn@6388 672 }
kvn@6388 673 tty->cr();
kvn@6388 674 }
kvn@6388 675 }
kvn@6388 676 #endif
kvn@3882 677 }
kvn@3882 678 #endif
kvn@3882 679
twisti@1020 680 // On new cpus instructions which update whole XMM register should be used
twisti@1020 681 // to prevent partial register stall due to dependencies on high half.
twisti@1020 682 //
twisti@1020 683 // UseXmmLoadAndClearUpper == true --> movsd(xmm, mem)
twisti@1020 684 // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
twisti@1020 685 // UseXmmRegToRegMoveAll == true --> movaps(xmm, xmm), movapd(xmm, xmm).
twisti@1020 686 // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm), movsd(xmm, xmm).
twisti@1020 687
twisti@1020 688 if( is_amd() ) { // AMD cpus specific settings
twisti@1020 689 if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
twisti@1020 690 // Use it on new AMD cpus starting from Opteron.
twisti@1020 691 UseAddressNop = true;
twisti@1020 692 }
twisti@1020 693 if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
twisti@1020 694 // Use it on new AMD cpus starting from Opteron.
twisti@1020 695 UseNewLongLShift = true;
twisti@1020 696 }
twisti@1020 697 if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
twisti@1020 698 if( supports_sse4a() ) {
twisti@1020 699 UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
twisti@1020 700 } else {
twisti@1020 701 UseXmmLoadAndClearUpper = false;
twisti@1020 702 }
twisti@1020 703 }
twisti@1020 704 if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
twisti@1020 705 if( supports_sse4a() ) {
twisti@1020 706 UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
twisti@1020 707 } else {
twisti@1020 708 UseXmmRegToRegMoveAll = false;
twisti@1020 709 }
twisti@1020 710 }
twisti@1020 711 if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
twisti@1020 712 if( supports_sse4a() ) {
twisti@1020 713 UseXmmI2F = true;
twisti@1020 714 } else {
twisti@1020 715 UseXmmI2F = false;
twisti@1020 716 }
twisti@1020 717 }
twisti@1020 718 if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
twisti@1020 719 if( supports_sse4a() ) {
twisti@1020 720 UseXmmI2D = true;
twisti@1020 721 } else {
twisti@1020 722 UseXmmI2D = false;
twisti@1020 723 }
twisti@1020 724 }
kvn@2688 725 if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
kvn@2688 726 if( supports_sse4_2() && UseSSE >= 4 ) {
kvn@2688 727 UseSSE42Intrinsics = true;
kvn@2688 728 }
kvn@2688 729 }
twisti@1210 730
kvn@2808 731 // some defaults for AMD family 15h
kvn@2808 732 if ( cpu_family() == 0x15 ) {
kvn@2808 733 // On family 15h processors default is no sw prefetch
kvn@2640 734 if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
kvn@2640 735 AllocatePrefetchStyle = 0;
kvn@2640 736 }
kvn@2808 737 // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
kvn@2808 738 if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
kvn@2808 739 AllocatePrefetchInstr = 3;
kvn@2808 740 }
kvn@2808 741 // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
kvn@4105 742 if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
kvn@2808 743 UseXMMForArrayCopy = true;
kvn@2808 744 }
kvn@4105 745 if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
kvn@2808 746 UseUnalignedLoadStores = true;
kvn@2808 747 }
kvn@2640 748 }
kvn@2808 749
kvn@3882 750 #ifdef COMPILER2
kvn@3882 751 if (MaxVectorSize > 16) {
kvn@3882 752 // Limit vectors size to 16 bytes on current AMD cpus.
kvn@3882 753 FLAG_SET_DEFAULT(MaxVectorSize, 16);
kvn@3882 754 }
kvn@3882 755 #endif // COMPILER2
twisti@1020 756 }
twisti@1020 757
twisti@1020 758 if( is_intel() ) { // Intel cpus specific settings
twisti@1020 759 if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
twisti@1020 760 UseStoreImmI16 = false; // don't use it on Intel cpus
twisti@1020 761 }
twisti@1020 762 if( cpu_family() == 6 || cpu_family() == 15 ) {
twisti@1020 763 if( FLAG_IS_DEFAULT(UseAddressNop) ) {
twisti@1020 764 // Use it on all Intel cpus starting from PentiumPro
twisti@1020 765 UseAddressNop = true;
twisti@1020 766 }
twisti@1020 767 }
twisti@1020 768 if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
twisti@1020 769 UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
twisti@1020 770 }
twisti@1020 771 if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
twisti@1020 772 if( supports_sse3() ) {
twisti@1020 773 UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
twisti@1020 774 } else {
twisti@1020 775 UseXmmRegToRegMoveAll = false;
twisti@1020 776 }
twisti@1020 777 }
twisti@1020 778 if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
twisti@1020 779 #ifdef COMPILER2
twisti@1020 780 if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
twisti@1020 781 // For new Intel cpus do the next optimization:
twisti@1020 782 // don't align the beginning of a loop if there are enough instructions
twisti@1020 783 // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
twisti@1020 784 // in current fetch line (OptoLoopAlignment) or the padding
twisti@1020 785 // is big (> MaxLoopPad).
twisti@1020 786 // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
twisti@1020 787 // generated NOP instructions. 11 is the largest size of one
twisti@1020 788 // address NOP instruction '0F 1F' (see Assembler::nop(i)).
twisti@1020 789 MaxLoopPad = 11;
twisti@1020 790 }
twisti@1020 791 #endif // COMPILER2
kvn@4105 792 if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
twisti@1020 793 UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
twisti@1020 794 }
kvn@4105 795 if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
kvn@4105 796 if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
twisti@1020 797 UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
twisti@1020 798 }
twisti@1020 799 }
kvn@4105 800 if (supports_sse4_2() && UseSSE >= 4) {
kvn@4105 801 if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
cfang@1116 802 UseSSE42Intrinsics = true;
cfang@1116 803 }
cfang@1116 804 }
twisti@1020 805 }
twisti@1020 806 }
twisti@1020 807
iveresov@6378 808 // Use count leading zeros count instruction if available.
iveresov@6378 809 if (supports_lzcnt()) {
iveresov@6378 810 if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
iveresov@6378 811 UseCountLeadingZerosInstruction = true;
iveresov@6378 812 }
iveresov@6378 813 } else if (UseCountLeadingZerosInstruction) {
iveresov@6378 814 warning("lzcnt instruction is not available on this CPU");
iveresov@6378 815 FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
iveresov@6378 816 }
iveresov@6378 817
iveresov@6378 818 if (supports_bmi1()) {
iveresov@6378 819 if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
iveresov@6378 820 UseBMI1Instructions = true;
iveresov@6378 821 }
iveresov@6378 822 } else if (UseBMI1Instructions) {
iveresov@6378 823 warning("BMI1 instructions are not available on this CPU");
iveresov@6378 824 FLAG_SET_DEFAULT(UseBMI1Instructions, false);
iveresov@6378 825 }
iveresov@6378 826
iveresov@6378 827 // Use count trailing zeros instruction if available
iveresov@6378 828 if (supports_bmi1()) {
iveresov@6378 829 if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
iveresov@6378 830 UseCountTrailingZerosInstruction = UseBMI1Instructions;
iveresov@6378 831 }
iveresov@6378 832 } else if (UseCountTrailingZerosInstruction) {
iveresov@6378 833 warning("tzcnt instruction is not available on this CPU");
iveresov@6378 834 FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
iveresov@6378 835 }
iveresov@6378 836
twisti@1078 837 // Use population count instruction if available.
twisti@1078 838 if (supports_popcnt()) {
twisti@1078 839 if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
twisti@1078 840 UsePopCountInstruction = true;
twisti@1078 841 }
kvn@3388 842 } else if (UsePopCountInstruction) {
kvn@3388 843 warning("POPCNT instruction is not available on this CPU");
kvn@3388 844 FLAG_SET_DEFAULT(UsePopCountInstruction, false);
twisti@1078 845 }
twisti@1078 846
kvn@4410 847 // Use fast-string operations if available.
kvn@4410 848 if (supports_erms()) {
kvn@4410 849 if (FLAG_IS_DEFAULT(UseFastStosb)) {
kvn@4410 850 UseFastStosb = true;
kvn@4410 851 }
kvn@4410 852 } else if (UseFastStosb) {
kvn@4410 853 warning("fast-string operations are not available on this CPU");
kvn@4410 854 FLAG_SET_DEFAULT(UseFastStosb, false);
kvn@4410 855 }
kvn@4410 856
kvn@4105 857 #ifdef COMPILER2
kvn@4105 858 if (FLAG_IS_DEFAULT(AlignVector)) {
kvn@4105 859 // Modern processors allow misaligned memory operations for vectors.
kvn@4105 860 AlignVector = !UseUnalignedLoadStores;
kvn@4105 861 }
kvn@4105 862 #endif // COMPILER2
kvn@4105 863
twisti@1020 864 assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
twisti@1020 865 assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
twisti@1020 866
twisti@1020 867 // set valid Prefetch instruction
twisti@1020 868 if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
twisti@1020 869 if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
kvn@2761 870 if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
kvn@2761 871 if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
twisti@1020 872
twisti@1020 873 if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
twisti@1020 874 if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
kvn@2761 875 if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
kvn@2761 876 if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
twisti@1020 877
twisti@1020 878 // Allocation prefetch settings
kvn@3052 879 intx cache_line_size = prefetch_data_size();
twisti@1020 880 if( cache_line_size > AllocatePrefetchStepSize )
twisti@1020 881 AllocatePrefetchStepSize = cache_line_size;
kvn@3052 882
twisti@1020 883 assert(AllocatePrefetchLines > 0, "invalid value");
kvn@3052 884 if( AllocatePrefetchLines < 1 ) // set valid value in product VM
kvn@3052 885 AllocatePrefetchLines = 3;
kvn@3052 886 assert(AllocateInstancePrefetchLines > 0, "invalid value");
kvn@3052 887 if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
kvn@3052 888 AllocateInstancePrefetchLines = 1;
twisti@1020 889
twisti@1020 890 AllocatePrefetchDistance = allocate_prefetch_distance();
twisti@1020 891 AllocatePrefetchStyle = allocate_prefetch_style();
twisti@1020 892
kvn@1977 893 if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
kvn@1977 894 if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
twisti@1020 895 #ifdef _LP64
kvn@1977 896 AllocatePrefetchDistance = 384;
twisti@1020 897 #else
kvn@1977 898 AllocatePrefetchDistance = 320;
twisti@1020 899 #endif
kvn@1977 900 }
kvn@1977 901 if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
kvn@1977 902 AllocatePrefetchDistance = 192;
kvn@1977 903 AllocatePrefetchLines = 4;
never@2085 904 #ifdef COMPILER2
never@2085 905 if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
never@2085 906 FLAG_SET_DEFAULT(UseFPUForSpilling, true);
never@2085 907 }
never@2085 908 #endif
kvn@1977 909 }
twisti@1020 910 }
twisti@1020 911 assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
twisti@1020 912
twisti@1020 913 #ifdef _LP64
twisti@1020 914 // Prefetch settings
twisti@1020 915 PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
twisti@1020 916 PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
twisti@1020 917 PrefetchFieldsAhead = prefetch_fields_ahead();
twisti@1020 918 #endif
twisti@1020 919
jwilhelm@4430 920 if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
jwilhelm@4430 921 (cache_line_size > ContendedPaddingWidth))
jwilhelm@4430 922 ContendedPaddingWidth = cache_line_size;
jwilhelm@4430 923
twisti@1020 924 #ifndef PRODUCT
twisti@1020 925 if (PrintMiscellaneous && Verbose) {
twisti@1020 926 tty->print_cr("Logical CPUs per core: %u",
twisti@1020 927 logical_processors_per_package());
kvn@3388 928 tty->print("UseSSE=%d",UseSSE);
kvn@3388 929 if (UseAVX > 0) {
kvn@3388 930 tty->print(" UseAVX=%d",UseAVX);
kvn@3388 931 }
kvn@4205 932 if (UseAES) {
kvn@4205 933 tty->print(" UseAES=1");
kvn@4205 934 }
kvn@6388 935 #ifdef COMPILER2
kvn@6388 936 if (MaxVectorSize > 0) {
kvn@6388 937 tty->print(" MaxVectorSize=%d", MaxVectorSize);
kvn@6388 938 }
kvn@6388 939 #endif
kvn@3388 940 tty->cr();
kvn@3052 941 tty->print("Allocation");
kvn@2761 942 if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
kvn@3052 943 tty->print_cr(": no prefetching");
twisti@1020 944 } else {
kvn@3052 945 tty->print(" prefetching: ");
kvn@2761 946 if (UseSSE == 0 && supports_3dnow_prefetch()) {
twisti@1020 947 tty->print("PREFETCHW");
twisti@1020 948 } else if (UseSSE >= 1) {
twisti@1020 949 if (AllocatePrefetchInstr == 0) {
twisti@1020 950 tty->print("PREFETCHNTA");
twisti@1020 951 } else if (AllocatePrefetchInstr == 1) {
twisti@1020 952 tty->print("PREFETCHT0");
twisti@1020 953 } else if (AllocatePrefetchInstr == 2) {
twisti@1020 954 tty->print("PREFETCHT2");
twisti@1020 955 } else if (AllocatePrefetchInstr == 3) {
twisti@1020 956 tty->print("PREFETCHW");
twisti@1020 957 }
twisti@1020 958 }
twisti@1020 959 if (AllocatePrefetchLines > 1) {
kvn@3052 960 tty->print_cr(" at distance %d, %d lines of %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
twisti@1020 961 } else {
kvn@3052 962 tty->print_cr(" at distance %d, one line of %d bytes", AllocatePrefetchDistance, AllocatePrefetchStepSize);
twisti@1020 963 }
twisti@1020 964 }
twisti@1020 965
twisti@1020 966 if (PrefetchCopyIntervalInBytes > 0) {
twisti@1020 967 tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
twisti@1020 968 }
twisti@1020 969 if (PrefetchScanIntervalInBytes > 0) {
twisti@1020 970 tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
twisti@1020 971 }
twisti@1020 972 if (PrefetchFieldsAhead > 0) {
twisti@1020 973 tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
twisti@1020 974 }
jwilhelm@4430 975 if (ContendedPaddingWidth > 0) {
jwilhelm@4430 976 tty->print_cr("ContendedPaddingWidth %d", ContendedPaddingWidth);
jwilhelm@4430 977 }
twisti@1020 978 }
twisti@1020 979 #endif // !PRODUCT
twisti@1020 980 }
twisti@1020 981
kvn@6429 982 bool VM_Version::use_biased_locking() {
kvn@6429 983 #if INCLUDE_RTM_OPT
kvn@6429 984 // RTM locking is most useful when there is high lock contention and
kvn@6429 985 // low data contention. With high lock contention the lock is usually
kvn@6429 986 // inflated and biased locking is not suitable for that case.
kvn@6429 987 // RTM locking code requires that biased locking is off.
kvn@6429 988 // Note: we can't switch off UseBiasedLocking in get_processor_features()
kvn@6429 989 // because it is used by Thread::allocate() which is called before
kvn@6429 990 // VM_Version::initialize().
kvn@6429 991 if (UseRTMLocking && UseBiasedLocking) {
kvn@6429 992 if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
kvn@6429 993 FLAG_SET_DEFAULT(UseBiasedLocking, false);
kvn@6429 994 } else {
kvn@6429 995 warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
kvn@6429 996 UseBiasedLocking = false;
kvn@6429 997 }
kvn@6429 998 }
kvn@6429 999 #endif
kvn@6429 1000 return UseBiasedLocking;
kvn@6429 1001 }
kvn@6429 1002
twisti@1020 1003 void VM_Version::initialize() {
twisti@1020 1004 ResourceMark rm;
twisti@1020 1005 // Making this stub must be FIRST use of assembler
twisti@1020 1006
kvn@6537 1007 stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
twisti@1020 1008 if (stub_blob == NULL) {
kvn@6537 1009 vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
twisti@1020 1010 }
twisti@2103 1011 CodeBuffer c(stub_blob);
twisti@1020 1012 VM_Version_StubGenerator g(&c);
kvn@6537 1013 get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
kvn@6537 1014 g.generate_get_cpu_info());
twisti@1020 1015
twisti@1020 1016 get_processor_features();
twisti@1020 1017 }

mercurial