src/share/vm/memory/defNewGeneration.cpp

Tue, 30 Oct 2012 10:23:55 -0700

author
jmasa
date
Tue, 30 Oct 2012 10:23:55 -0700
changeset 4234
3fadc0e8cffe
parent 4037
da91efe96a93
child 4299
f34d701e952e
permissions
-rw-r--r--

8000988: VM deadlock when running btree006 on windows-i586
Reviewed-by: johnc, jcoomes, ysr

duke@435 1 /*
johnc@3538 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/shared/collectorCounters.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 28 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 29 #include "memory/defNewGeneration.inline.hpp"
stefank@2314 30 #include "memory/gcLocker.inline.hpp"
stefank@2314 31 #include "memory/genCollectedHeap.hpp"
stefank@2314 32 #include "memory/genOopClosures.inline.hpp"
coleenp@4037 33 #include "memory/genRemSet.hpp"
stefank@2314 34 #include "memory/generationSpec.hpp"
stefank@2314 35 #include "memory/iterator.hpp"
stefank@2314 36 #include "memory/referencePolicy.hpp"
stefank@2314 37 #include "memory/space.inline.hpp"
stefank@2314 38 #include "oops/instanceRefKlass.hpp"
stefank@2314 39 #include "oops/oop.inline.hpp"
stefank@2314 40 #include "runtime/java.hpp"
stefank@2314 41 #include "utilities/copy.hpp"
stefank@2314 42 #include "utilities/stack.inline.hpp"
stefank@2314 43 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 44 # include "thread_linux.inline.hpp"
stefank@2314 45 #endif
stefank@2314 46 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 47 # include "thread_solaris.inline.hpp"
stefank@2314 48 #endif
stefank@2314 49 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 50 # include "thread_windows.inline.hpp"
stefank@2314 51 #endif
never@3156 52 #ifdef TARGET_OS_FAMILY_bsd
never@3156 53 # include "thread_bsd.inline.hpp"
never@3156 54 #endif
duke@435 55
duke@435 56 //
duke@435 57 // DefNewGeneration functions.
duke@435 58
duke@435 59 // Methods of protected closure types.
duke@435 60
duke@435 61 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
duke@435 62 assert(g->level() == 0, "Optimized for youngest gen.");
duke@435 63 }
duke@435 64 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
duke@435 65 assert(false, "Do not call.");
duke@435 66 }
duke@435 67 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
duke@435 68 return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
duke@435 69 }
duke@435 70
duke@435 71 DefNewGeneration::KeepAliveClosure::
duke@435 72 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
duke@435 73 GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
duke@435 74 assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
duke@435 75 _rs = (CardTableRS*)rs;
duke@435 76 }
duke@435 77
coleenp@548 78 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
coleenp@548 79 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
duke@435 80
duke@435 81
duke@435 82 DefNewGeneration::FastKeepAliveClosure::
duke@435 83 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
duke@435 84 DefNewGeneration::KeepAliveClosure(cl) {
duke@435 85 _boundary = g->reserved().end();
duke@435 86 }
duke@435 87
coleenp@548 88 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
coleenp@548 89 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
duke@435 90
duke@435 91 DefNewGeneration::EvacuateFollowersClosure::
duke@435 92 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 93 ScanClosure* cur, ScanClosure* older) :
duke@435 94 _gch(gch), _level(level),
duke@435 95 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 96 {}
duke@435 97
duke@435 98 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
duke@435 99 do {
duke@435 100 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 101 _scan_older);
duke@435 102 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 103 }
duke@435 104
duke@435 105 DefNewGeneration::FastEvacuateFollowersClosure::
duke@435 106 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 107 DefNewGeneration* gen,
duke@435 108 FastScanClosure* cur, FastScanClosure* older) :
duke@435 109 _gch(gch), _level(level), _gen(gen),
duke@435 110 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 111 {}
duke@435 112
duke@435 113 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
duke@435 114 do {
duke@435 115 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 116 _scan_older);
duke@435 117 } while (!_gch->no_allocs_since_save_marks(_level));
jcoomes@2191 118 guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
duke@435 119 }
duke@435 120
duke@435 121 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
coleenp@4037 122 OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 123 {
duke@435 124 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 125 _boundary = _g->reserved().end();
duke@435 126 }
duke@435 127
coleenp@548 128 void ScanClosure::do_oop(oop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 129 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 130
duke@435 131 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
coleenp@4037 132 OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 133 {
duke@435 134 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 135 _boundary = _g->reserved().end();
duke@435 136 }
duke@435 137
coleenp@548 138 void FastScanClosure::do_oop(oop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 139 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 140
coleenp@4037 141 void KlassScanClosure::do_klass(Klass* klass) {
coleenp@4037 142 #ifndef PRODUCT
coleenp@4037 143 if (TraceScavenge) {
coleenp@4037 144 ResourceMark rm;
coleenp@4037 145 gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
coleenp@4037 146 klass,
coleenp@4037 147 klass->external_name(),
coleenp@4037 148 klass->has_modified_oops() ? "true" : "false");
coleenp@4037 149 }
coleenp@4037 150 #endif
coleenp@4037 151
coleenp@4037 152 // If the klass has not been dirtied we know that there's
coleenp@4037 153 // no references into the young gen and we can skip it.
coleenp@4037 154 if (klass->has_modified_oops()) {
coleenp@4037 155 if (_accumulate_modified_oops) {
coleenp@4037 156 klass->accumulate_modified_oops();
coleenp@4037 157 }
coleenp@4037 158
coleenp@4037 159 // Clear this state since we're going to scavenge all the metadata.
coleenp@4037 160 klass->clear_modified_oops();
coleenp@4037 161
coleenp@4037 162 // Tell the closure which Klass is being scanned so that it can be dirtied
coleenp@4037 163 // if oops are left pointing into the young gen.
coleenp@4037 164 _scavenge_closure->set_scanned_klass(klass);
coleenp@4037 165
coleenp@4037 166 klass->oops_do(_scavenge_closure);
coleenp@4037 167
coleenp@4037 168 _scavenge_closure->set_scanned_klass(NULL);
coleenp@4037 169 }
coleenp@4037 170 }
coleenp@4037 171
duke@435 172 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
coleenp@4037 173 _g(g)
duke@435 174 {
duke@435 175 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 176 _boundary = _g->reserved().end();
duke@435 177 }
duke@435 178
coleenp@548 179 void ScanWeakRefClosure::do_oop(oop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 180 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 181
coleenp@548 182 void FilteringClosure::do_oop(oop* p) { FilteringClosure::do_oop_work(p); }
coleenp@548 183 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
duke@435 184
coleenp@4037 185 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
coleenp@4037 186 KlassRemSet* klass_rem_set)
coleenp@4037 187 : _scavenge_closure(scavenge_closure),
coleenp@4037 188 _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
coleenp@4037 189
coleenp@4037 190
duke@435 191 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
duke@435 192 size_t initial_size,
duke@435 193 int level,
duke@435 194 const char* policy)
duke@435 195 : Generation(rs, initial_size, level),
duke@435 196 _promo_failure_drain_in_progress(false),
duke@435 197 _should_allocate_from_space(false)
duke@435 198 {
duke@435 199 MemRegion cmr((HeapWord*)_virtual_space.low(),
duke@435 200 (HeapWord*)_virtual_space.high());
duke@435 201 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 202
duke@435 203 if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
duke@435 204 _eden_space = new ConcEdenSpace(this);
duke@435 205 } else {
duke@435 206 _eden_space = new EdenSpace(this);
duke@435 207 }
duke@435 208 _from_space = new ContiguousSpace();
duke@435 209 _to_space = new ContiguousSpace();
duke@435 210
duke@435 211 if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
duke@435 212 vm_exit_during_initialization("Could not allocate a new gen space");
duke@435 213
duke@435 214 // Compute the maximum eden and survivor space sizes. These sizes
duke@435 215 // are computed assuming the entire reserved space is committed.
duke@435 216 // These values are exported as performance counters.
duke@435 217 uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 218 uintx size = _virtual_space.reserved_size();
duke@435 219 _max_survivor_size = compute_survivor_size(size, alignment);
duke@435 220 _max_eden_size = size - (2*_max_survivor_size);
duke@435 221
duke@435 222 // allocate the performance counters
duke@435 223
duke@435 224 // Generation counters -- generation 0, 3 subspaces
duke@435 225 _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
duke@435 226 _gc_counters = new CollectorCounters(policy, 0);
duke@435 227
duke@435 228 _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
duke@435 229 _gen_counters);
duke@435 230 _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
duke@435 231 _gen_counters);
duke@435 232 _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
duke@435 233 _gen_counters);
duke@435 234
jmasa@698 235 compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 236 update_counters();
duke@435 237 _next_gen = NULL;
duke@435 238 _tenuring_threshold = MaxTenuringThreshold;
duke@435 239 _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
duke@435 240 }
duke@435 241
jmasa@698 242 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
jmasa@698 243 bool clear_space,
jmasa@698 244 bool mangle_space) {
jmasa@698 245 uintx alignment =
jmasa@698 246 GenCollectedHeap::heap()->collector_policy()->min_alignment();
jmasa@698 247
jmasa@698 248 // If the spaces are being cleared (only done at heap initialization
jmasa@698 249 // currently), the survivor spaces need not be empty.
jmasa@698 250 // Otherwise, no care is taken for used areas in the survivor spaces
jmasa@698 251 // so check.
jmasa@698 252 assert(clear_space || (to()->is_empty() && from()->is_empty()),
jmasa@698 253 "Initialization of the survivor spaces assumes these are empty");
duke@435 254
duke@435 255 // Compute sizes
duke@435 256 uintx size = _virtual_space.committed_size();
duke@435 257 uintx survivor_size = compute_survivor_size(size, alignment);
duke@435 258 uintx eden_size = size - (2*survivor_size);
duke@435 259 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 260
duke@435 261 if (eden_size < minimum_eden_size) {
duke@435 262 // May happen due to 64Kb rounding, if so adjust eden size back up
duke@435 263 minimum_eden_size = align_size_up(minimum_eden_size, alignment);
duke@435 264 uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
duke@435 265 uintx unaligned_survivor_size =
duke@435 266 align_size_down(maximum_survivor_size, alignment);
duke@435 267 survivor_size = MAX2(unaligned_survivor_size, alignment);
duke@435 268 eden_size = size - (2*survivor_size);
duke@435 269 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 270 assert(eden_size >= minimum_eden_size, "just checking");
duke@435 271 }
duke@435 272
duke@435 273 char *eden_start = _virtual_space.low();
duke@435 274 char *from_start = eden_start + eden_size;
duke@435 275 char *to_start = from_start + survivor_size;
duke@435 276 char *to_end = to_start + survivor_size;
duke@435 277
duke@435 278 assert(to_end == _virtual_space.high(), "just checking");
duke@435 279 assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
duke@435 280 assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
duke@435 281 assert(Space::is_aligned((HeapWord*)to_start), "checking alignment");
duke@435 282
duke@435 283 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
duke@435 284 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
duke@435 285 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
duke@435 286
jmasa@698 287 // A minimum eden size implies that there is a part of eden that
jmasa@698 288 // is being used and that affects the initialization of any
jmasa@698 289 // newly formed eden.
jmasa@698 290 bool live_in_eden = minimum_eden_size > 0;
jmasa@698 291
jmasa@698 292 // If not clearing the spaces, do some checking to verify that
jmasa@698 293 // the space are already mangled.
jmasa@698 294 if (!clear_space) {
jmasa@698 295 // Must check mangling before the spaces are reshaped. Otherwise,
jmasa@698 296 // the bottom or end of one space may have moved into another
jmasa@698 297 // a failure of the check may not correctly indicate which space
jmasa@698 298 // is not properly mangled.
jmasa@698 299 if (ZapUnusedHeapArea) {
jmasa@698 300 HeapWord* limit = (HeapWord*) _virtual_space.high();
jmasa@698 301 eden()->check_mangled_unused_area(limit);
jmasa@698 302 from()->check_mangled_unused_area(limit);
jmasa@698 303 to()->check_mangled_unused_area(limit);
jmasa@698 304 }
jmasa@698 305 }
jmasa@698 306
jmasa@698 307 // Reset the spaces for their new regions.
jmasa@698 308 eden()->initialize(edenMR,
jmasa@698 309 clear_space && !live_in_eden,
jmasa@698 310 SpaceDecorator::Mangle);
jmasa@698 311 // If clear_space and live_in_eden, we will not have cleared any
duke@435 312 // portion of eden above its top. This can cause newly
duke@435 313 // expanded space not to be mangled if using ZapUnusedHeapArea.
duke@435 314 // We explicitly do such mangling here.
jmasa@698 315 if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
duke@435 316 eden()->mangle_unused_area();
duke@435 317 }
jmasa@698 318 from()->initialize(fromMR, clear_space, mangle_space);
jmasa@698 319 to()->initialize(toMR, clear_space, mangle_space);
jmasa@698 320
jmasa@698 321 // Set next compaction spaces.
duke@435 322 eden()->set_next_compaction_space(from());
duke@435 323 // The to-space is normally empty before a compaction so need
duke@435 324 // not be considered. The exception is during promotion
duke@435 325 // failure handling when to-space can contain live objects.
duke@435 326 from()->set_next_compaction_space(NULL);
duke@435 327 }
duke@435 328
duke@435 329 void DefNewGeneration::swap_spaces() {
duke@435 330 ContiguousSpace* s = from();
duke@435 331 _from_space = to();
duke@435 332 _to_space = s;
duke@435 333 eden()->set_next_compaction_space(from());
duke@435 334 // The to-space is normally empty before a compaction so need
duke@435 335 // not be considered. The exception is during promotion
duke@435 336 // failure handling when to-space can contain live objects.
duke@435 337 from()->set_next_compaction_space(NULL);
duke@435 338
duke@435 339 if (UsePerfData) {
duke@435 340 CSpaceCounters* c = _from_counters;
duke@435 341 _from_counters = _to_counters;
duke@435 342 _to_counters = c;
duke@435 343 }
duke@435 344 }
duke@435 345
duke@435 346 bool DefNewGeneration::expand(size_t bytes) {
duke@435 347 MutexLocker x(ExpandHeap_lock);
jmasa@698 348 HeapWord* prev_high = (HeapWord*) _virtual_space.high();
duke@435 349 bool success = _virtual_space.expand_by(bytes);
jmasa@698 350 if (success && ZapUnusedHeapArea) {
jmasa@698 351 // Mangle newly committed space immediately because it
jmasa@698 352 // can be done here more simply that after the new
jmasa@698 353 // spaces have been computed.
jmasa@698 354 HeapWord* new_high = (HeapWord*) _virtual_space.high();
jmasa@698 355 MemRegion mangle_region(prev_high, new_high);
jmasa@698 356 SpaceMangler::mangle_region(mangle_region);
jmasa@698 357 }
duke@435 358
duke@435 359 // Do not attempt an expand-to-the reserve size. The
duke@435 360 // request should properly observe the maximum size of
duke@435 361 // the generation so an expand-to-reserve should be
duke@435 362 // unnecessary. Also a second call to expand-to-reserve
duke@435 363 // value potentially can cause an undue expansion.
duke@435 364 // For example if the first expand fail for unknown reasons,
duke@435 365 // but the second succeeds and expands the heap to its maximum
duke@435 366 // value.
duke@435 367 if (GC_locker::is_active()) {
duke@435 368 if (PrintGC && Verbose) {
jmasa@698 369 gclog_or_tty->print_cr("Garbage collection disabled, "
jmasa@698 370 "expanded heap instead");
duke@435 371 }
duke@435 372 }
duke@435 373
duke@435 374 return success;
duke@435 375 }
duke@435 376
duke@435 377
duke@435 378 void DefNewGeneration::compute_new_size() {
duke@435 379 // This is called after a gc that includes the following generation
duke@435 380 // (which is required to exist.) So from-space will normally be empty.
duke@435 381 // Note that we check both spaces, since if scavenge failed they revert roles.
duke@435 382 // If not we bail out (otherwise we would have to relocate the objects)
duke@435 383 if (!from()->is_empty() || !to()->is_empty()) {
duke@435 384 return;
duke@435 385 }
duke@435 386
duke@435 387 int next_level = level() + 1;
duke@435 388 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 389 assert(next_level < gch->_n_gens,
duke@435 390 "DefNewGeneration cannot be an oldest gen");
duke@435 391
duke@435 392 Generation* next_gen = gch->_gens[next_level];
duke@435 393 size_t old_size = next_gen->capacity();
duke@435 394 size_t new_size_before = _virtual_space.committed_size();
duke@435 395 size_t min_new_size = spec()->init_size();
duke@435 396 size_t max_new_size = reserved().byte_size();
duke@435 397 assert(min_new_size <= new_size_before &&
duke@435 398 new_size_before <= max_new_size,
duke@435 399 "just checking");
duke@435 400 // All space sizes must be multiples of Generation::GenGrain.
duke@435 401 size_t alignment = Generation::GenGrain;
duke@435 402
duke@435 403 // Compute desired new generation size based on NewRatio and
duke@435 404 // NewSizeThreadIncrease
duke@435 405 size_t desired_new_size = old_size/NewRatio;
duke@435 406 int threads_count = Threads::number_of_non_daemon_threads();
duke@435 407 size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
duke@435 408 desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
duke@435 409
duke@435 410 // Adjust new generation size
duke@435 411 desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
duke@435 412 assert(desired_new_size <= max_new_size, "just checking");
duke@435 413
duke@435 414 bool changed = false;
duke@435 415 if (desired_new_size > new_size_before) {
duke@435 416 size_t change = desired_new_size - new_size_before;
duke@435 417 assert(change % alignment == 0, "just checking");
duke@435 418 if (expand(change)) {
duke@435 419 changed = true;
duke@435 420 }
duke@435 421 // If the heap failed to expand to the desired size,
duke@435 422 // "changed" will be false. If the expansion failed
duke@435 423 // (and at this point it was expected to succeed),
duke@435 424 // ignore the failure (leaving "changed" as false).
duke@435 425 }
duke@435 426 if (desired_new_size < new_size_before && eden()->is_empty()) {
duke@435 427 // bail out of shrinking if objects in eden
duke@435 428 size_t change = new_size_before - desired_new_size;
duke@435 429 assert(change % alignment == 0, "just checking");
duke@435 430 _virtual_space.shrink_by(change);
duke@435 431 changed = true;
duke@435 432 }
duke@435 433 if (changed) {
jmasa@698 434 // The spaces have already been mangled at this point but
jmasa@698 435 // may not have been cleared (set top = bottom) and should be.
jmasa@698 436 // Mangling was done when the heap was being expanded.
jmasa@698 437 compute_space_boundaries(eden()->used(),
jmasa@698 438 SpaceDecorator::Clear,
jmasa@698 439 SpaceDecorator::DontMangle);
jmasa@698 440 MemRegion cmr((HeapWord*)_virtual_space.low(),
jmasa@698 441 (HeapWord*)_virtual_space.high());
duke@435 442 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 443 if (Verbose && PrintGC) {
duke@435 444 size_t new_size_after = _virtual_space.committed_size();
duke@435 445 size_t eden_size_after = eden()->capacity();
duke@435 446 size_t survivor_size_after = from()->capacity();
jmasa@698 447 gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
jmasa@698 448 SIZE_FORMAT "K [eden="
duke@435 449 SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
jmasa@698 450 new_size_before/K, new_size_after/K,
jmasa@698 451 eden_size_after/K, survivor_size_after/K);
duke@435 452 if (WizardMode) {
duke@435 453 gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
duke@435 454 thread_increase_size/K, threads_count);
duke@435 455 }
duke@435 456 gclog_or_tty->cr();
duke@435 457 }
duke@435 458 }
duke@435 459 }
duke@435 460
duke@435 461 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
duke@435 462 // $$$ This may be wrong in case of "scavenge failure"?
duke@435 463 eden()->object_iterate(cl);
duke@435 464 }
duke@435 465
duke@435 466 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
duke@435 467 assert(false, "NYI -- are you sure you want to call this?");
duke@435 468 }
duke@435 469
duke@435 470
duke@435 471 size_t DefNewGeneration::capacity() const {
duke@435 472 return eden()->capacity()
duke@435 473 + from()->capacity(); // to() is only used during scavenge
duke@435 474 }
duke@435 475
duke@435 476
duke@435 477 size_t DefNewGeneration::used() const {
duke@435 478 return eden()->used()
duke@435 479 + from()->used(); // to() is only used during scavenge
duke@435 480 }
duke@435 481
duke@435 482
duke@435 483 size_t DefNewGeneration::free() const {
duke@435 484 return eden()->free()
duke@435 485 + from()->free(); // to() is only used during scavenge
duke@435 486 }
duke@435 487
duke@435 488 size_t DefNewGeneration::max_capacity() const {
duke@435 489 const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 490 const size_t reserved_bytes = reserved().byte_size();
duke@435 491 return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
duke@435 492 }
duke@435 493
duke@435 494 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
duke@435 495 return eden()->free();
duke@435 496 }
duke@435 497
duke@435 498 size_t DefNewGeneration::capacity_before_gc() const {
duke@435 499 return eden()->capacity();
duke@435 500 }
duke@435 501
duke@435 502 size_t DefNewGeneration::contiguous_available() const {
duke@435 503 return eden()->free();
duke@435 504 }
duke@435 505
duke@435 506
duke@435 507 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
duke@435 508 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
duke@435 509
duke@435 510 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
duke@435 511 eden()->object_iterate(blk);
duke@435 512 from()->object_iterate(blk);
duke@435 513 }
duke@435 514
duke@435 515
duke@435 516 void DefNewGeneration::space_iterate(SpaceClosure* blk,
duke@435 517 bool usedOnly) {
duke@435 518 blk->do_space(eden());
duke@435 519 blk->do_space(from());
duke@435 520 blk->do_space(to());
duke@435 521 }
duke@435 522
duke@435 523 // The last collection bailed out, we are running out of heap space,
duke@435 524 // so we try to allocate the from-space, too.
duke@435 525 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
duke@435 526 HeapWord* result = NULL;
ysr@2336 527 if (Verbose && PrintGCDetails) {
duke@435 528 gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
ysr@2336 529 " will_fail: %s"
ysr@2336 530 " heap_lock: %s"
ysr@2336 531 " free: " SIZE_FORMAT,
ysr@2336 532 size,
ysr@2336 533 GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
ysr@2336 534 "true" : "false",
ysr@2336 535 Heap_lock->is_locked() ? "locked" : "unlocked",
ysr@2336 536 from()->free());
ysr@2336 537 }
duke@435 538 if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
duke@435 539 if (Heap_lock->owned_by_self() ||
duke@435 540 (SafepointSynchronize::is_at_safepoint() &&
duke@435 541 Thread::current()->is_VM_thread())) {
duke@435 542 // If the Heap_lock is not locked by this thread, this will be called
duke@435 543 // again later with the Heap_lock held.
duke@435 544 result = from()->allocate(size);
duke@435 545 } else if (PrintGC && Verbose) {
duke@435 546 gclog_or_tty->print_cr(" Heap_lock is not owned by self");
duke@435 547 }
duke@435 548 } else if (PrintGC && Verbose) {
duke@435 549 gclog_or_tty->print_cr(" should_allocate_from_space: NOT");
duke@435 550 }
duke@435 551 if (PrintGC && Verbose) {
duke@435 552 gclog_or_tty->print_cr(" returns %s", result == NULL ? "NULL" : "object");
duke@435 553 }
duke@435 554 return result;
duke@435 555 }
duke@435 556
duke@435 557 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
duke@435 558 bool is_tlab,
duke@435 559 bool parallel) {
duke@435 560 // We don't attempt to expand the young generation (but perhaps we should.)
duke@435 561 return allocate(size, is_tlab);
duke@435 562 }
duke@435 563
duke@435 564
duke@435 565 void DefNewGeneration::collect(bool full,
duke@435 566 bool clear_all_soft_refs,
duke@435 567 size_t size,
duke@435 568 bool is_tlab) {
duke@435 569 assert(full || size > 0, "otherwise we don't want to collect");
duke@435 570 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 571 _next_gen = gch->next_gen(this);
duke@435 572 assert(_next_gen != NULL,
duke@435 573 "This must be the youngest gen, and not the only gen");
duke@435 574
duke@435 575 // If the next generation is too full to accomodate promotion
duke@435 576 // from this generation, pass on collection; let the next generation
duke@435 577 // do it.
duke@435 578 if (!collection_attempt_is_safe()) {
ysr@2336 579 if (Verbose && PrintGCDetails) {
ysr@2336 580 gclog_or_tty->print(" :: Collection attempt not safe :: ");
ysr@2336 581 }
ysr@2243 582 gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
duke@435 583 return;
duke@435 584 }
duke@435 585 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
duke@435 586
duke@435 587 init_assuming_no_promotion_failure();
duke@435 588
brutisso@3767 589 TraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, gclog_or_tty);
duke@435 590 // Capture heap used before collection (for printing).
duke@435 591 size_t gch_prev_used = gch->used();
duke@435 592
duke@435 593 SpecializationStats::clear();
duke@435 594
duke@435 595 // These can be shared for all code paths
duke@435 596 IsAliveClosure is_alive(this);
duke@435 597 ScanWeakRefClosure scan_weak_ref(this);
duke@435 598
duke@435 599 age_table()->clear();
jmasa@698 600 to()->clear(SpaceDecorator::Mangle);
duke@435 601
duke@435 602 gch->rem_set()->prepare_for_younger_refs_iterate(false);
duke@435 603
duke@435 604 assert(gch->no_allocs_since_save_marks(0),
duke@435 605 "save marks have not been newly set.");
duke@435 606
duke@435 607 // Not very pretty.
duke@435 608 CollectorPolicy* cp = gch->collector_policy();
duke@435 609
duke@435 610 FastScanClosure fsc_with_no_gc_barrier(this, false);
duke@435 611 FastScanClosure fsc_with_gc_barrier(this, true);
duke@435 612
coleenp@4037 613 KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
coleenp@4037 614 gch->rem_set()->klass_rem_set());
coleenp@4037 615
duke@435 616 set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
duke@435 617 FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
duke@435 618 &fsc_with_no_gc_barrier,
duke@435 619 &fsc_with_gc_barrier);
duke@435 620
duke@435 621 assert(gch->no_allocs_since_save_marks(0),
duke@435 622 "save marks have not been newly set.");
duke@435 623
coleenp@4037 624 int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
coleenp@4037 625
duke@435 626 gch->gen_process_strong_roots(_level,
jrose@1424 627 true, // Process younger gens, if any,
jrose@1424 628 // as strong roots.
jrose@1424 629 true, // activate StrongRootsScope
coleenp@4037 630 true, // is scavenging
coleenp@4037 631 SharedHeap::ScanningOption(so),
jrose@1424 632 &fsc_with_no_gc_barrier,
jrose@1424 633 true, // walk *all* scavengable nmethods
coleenp@4037 634 &fsc_with_gc_barrier,
coleenp@4037 635 &klass_scan_closure);
duke@435 636
duke@435 637 // "evacuate followers".
duke@435 638 evacuate_followers.do_void();
duke@435 639
duke@435 640 FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
ysr@888 641 ReferenceProcessor* rp = ref_processor();
ysr@892 642 rp->setup_policy(clear_all_soft_refs);
ysr@888 643 rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
ysr@888 644 NULL);
duke@435 645 if (!promotion_failed()) {
duke@435 646 // Swap the survivor spaces.
jmasa@698 647 eden()->clear(SpaceDecorator::Mangle);
jmasa@698 648 from()->clear(SpaceDecorator::Mangle);
jmasa@698 649 if (ZapUnusedHeapArea) {
jmasa@698 650 // This is now done here because of the piece-meal mangling which
jmasa@698 651 // can check for valid mangling at intermediate points in the
jmasa@698 652 // collection(s). When a minor collection fails to collect
jmasa@698 653 // sufficient space resizing of the young generation can occur
jmasa@698 654 // an redistribute the spaces in the young generation. Mangle
jmasa@698 655 // here so that unzapped regions don't get distributed to
jmasa@698 656 // other spaces.
jmasa@698 657 to()->mangle_unused_area();
jmasa@698 658 }
duke@435 659 swap_spaces();
duke@435 660
duke@435 661 assert(to()->is_empty(), "to space should be empty now");
duke@435 662
duke@435 663 // Set the desired survivor size to half the real survivor space
duke@435 664 _tenuring_threshold =
duke@435 665 age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
duke@435 666
jmasa@1822 667 // A successful scavenge should restart the GC time limit count which is
jmasa@1822 668 // for full GC's.
jmasa@1822 669 AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
jmasa@1822 670 size_policy->reset_gc_overhead_limit_count();
duke@435 671 if (PrintGC && !PrintGCDetails) {
duke@435 672 gch->print_heap_change(gch_prev_used);
duke@435 673 }
ysr@2243 674 assert(!gch->incremental_collection_failed(), "Should be clear");
duke@435 675 } else {
jcoomes@2191 676 assert(_promo_failure_scan_stack.is_empty(), "post condition");
jcoomes@2191 677 _promo_failure_scan_stack.clear(true); // Clear cached segments.
duke@435 678
duke@435 679 remove_forwarding_pointers();
duke@435 680 if (PrintGCDetails) {
ysr@1580 681 gclog_or_tty->print(" (promotion failed) ");
duke@435 682 }
duke@435 683 // Add to-space to the list of space to compact
duke@435 684 // when a promotion failure has occurred. In that
duke@435 685 // case there can be live objects in to-space
duke@435 686 // as a result of a partial evacuation of eden
duke@435 687 // and from-space.
jcoomes@2191 688 swap_spaces(); // For uniformity wrt ParNewGeneration.
duke@435 689 from()->set_next_compaction_space(to());
ysr@2243 690 gch->set_incremental_collection_failed();
duke@435 691
ysr@1580 692 // Inform the next generation that a promotion failure occurred.
ysr@1580 693 _next_gen->promotion_failure_occurred();
ysr@1580 694
duke@435 695 // Reset the PromotionFailureALot counters.
duke@435 696 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
duke@435 697 }
duke@435 698 // set new iteration safe limit for the survivor spaces
duke@435 699 from()->set_concurrent_iteration_safe_limit(from()->top());
duke@435 700 to()->set_concurrent_iteration_safe_limit(to()->top());
duke@435 701 SpecializationStats::print();
johnc@3538 702
johnc@3538 703 // We need to use a monotonically non-deccreasing time in ms
johnc@3538 704 // or we will see time-warp warnings and os::javaTimeMillis()
johnc@3538 705 // does not guarantee monotonicity.
johnc@3538 706 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
johnc@3538 707 update_time_of_last_gc(now);
duke@435 708 }
duke@435 709
duke@435 710 class RemoveForwardPointerClosure: public ObjectClosure {
duke@435 711 public:
duke@435 712 void do_object(oop obj) {
duke@435 713 obj->init_mark();
duke@435 714 }
duke@435 715 };
duke@435 716
duke@435 717 void DefNewGeneration::init_assuming_no_promotion_failure() {
duke@435 718 _promotion_failed = false;
duke@435 719 from()->set_next_compaction_space(NULL);
duke@435 720 }
duke@435 721
duke@435 722 void DefNewGeneration::remove_forwarding_pointers() {
duke@435 723 RemoveForwardPointerClosure rspc;
duke@435 724 eden()->object_iterate(&rspc);
duke@435 725 from()->object_iterate(&rspc);
jcoomes@2191 726
duke@435 727 // Now restore saved marks, if any.
jcoomes@2191 728 assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
jcoomes@2191 729 "should be the same");
jcoomes@2191 730 while (!_objs_with_preserved_marks.is_empty()) {
jcoomes@2191 731 oop obj = _objs_with_preserved_marks.pop();
jcoomes@2191 732 markOop m = _preserved_marks_of_objs.pop();
jcoomes@2191 733 obj->set_mark(m);
duke@435 734 }
jcoomes@2191 735 _objs_with_preserved_marks.clear(true);
jcoomes@2191 736 _preserved_marks_of_objs.clear(true);
duke@435 737 }
duke@435 738
ysr@2380 739 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
ysr@2380 740 assert(promotion_failed() && m->must_be_preserved_for_promotion_failure(obj),
ysr@2380 741 "Oversaving!");
ysr@2380 742 _objs_with_preserved_marks.push(obj);
ysr@2380 743 _preserved_marks_of_objs.push(m);
ysr@2380 744 }
ysr@2380 745
duke@435 746 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
duke@435 747 if (m->must_be_preserved_for_promotion_failure(obj)) {
ysr@2380 748 preserve_mark(obj, m);
duke@435 749 }
duke@435 750 }
duke@435 751
duke@435 752 void DefNewGeneration::handle_promotion_failure(oop old) {
ysr@2380 753 if (PrintPromotionFailure && !_promotion_failed) {
ysr@1580 754 gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
ysr@1580 755 old->size());
ysr@1580 756 }
ysr@2380 757 _promotion_failed = true;
ysr@2380 758 preserve_mark_if_necessary(old, old->mark());
duke@435 759 // forward to self
duke@435 760 old->forward_to(old);
duke@435 761
jcoomes@2191 762 _promo_failure_scan_stack.push(old);
duke@435 763
duke@435 764 if (!_promo_failure_drain_in_progress) {
duke@435 765 // prevent recursion in copy_to_survivor_space()
duke@435 766 _promo_failure_drain_in_progress = true;
duke@435 767 drain_promo_failure_scan_stack();
duke@435 768 _promo_failure_drain_in_progress = false;
duke@435 769 }
duke@435 770 }
duke@435 771
coleenp@548 772 oop DefNewGeneration::copy_to_survivor_space(oop old) {
duke@435 773 assert(is_in_reserved(old) && !old->is_forwarded(),
duke@435 774 "shouldn't be scavenging this oop");
duke@435 775 size_t s = old->size();
duke@435 776 oop obj = NULL;
duke@435 777
duke@435 778 // Try allocating obj in to-space (unless too old)
duke@435 779 if (old->age() < tenuring_threshold()) {
duke@435 780 obj = (oop) to()->allocate(s);
duke@435 781 }
duke@435 782
duke@435 783 // Otherwise try allocating obj tenured
duke@435 784 if (obj == NULL) {
coleenp@548 785 obj = _next_gen->promote(old, s);
duke@435 786 if (obj == NULL) {
duke@435 787 handle_promotion_failure(old);
duke@435 788 return old;
duke@435 789 }
duke@435 790 } else {
duke@435 791 // Prefetch beyond obj
duke@435 792 const intx interval = PrefetchCopyIntervalInBytes;
duke@435 793 Prefetch::write(obj, interval);
duke@435 794
duke@435 795 // Copy obj
duke@435 796 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
duke@435 797
duke@435 798 // Increment age if obj still in new generation
duke@435 799 obj->incr_age();
duke@435 800 age_table()->add(obj, s);
duke@435 801 }
duke@435 802
duke@435 803 // Done, insert forward pointer to obj in this header
duke@435 804 old->forward_to(obj);
duke@435 805
duke@435 806 return obj;
duke@435 807 }
duke@435 808
duke@435 809 void DefNewGeneration::drain_promo_failure_scan_stack() {
jcoomes@2191 810 while (!_promo_failure_scan_stack.is_empty()) {
jcoomes@2191 811 oop obj = _promo_failure_scan_stack.pop();
duke@435 812 obj->oop_iterate(_promo_failure_scan_stack_closure);
duke@435 813 }
duke@435 814 }
duke@435 815
duke@435 816 void DefNewGeneration::save_marks() {
duke@435 817 eden()->set_saved_mark();
duke@435 818 to()->set_saved_mark();
duke@435 819 from()->set_saved_mark();
duke@435 820 }
duke@435 821
duke@435 822
duke@435 823 void DefNewGeneration::reset_saved_marks() {
duke@435 824 eden()->reset_saved_mark();
duke@435 825 to()->reset_saved_mark();
duke@435 826 from()->reset_saved_mark();
duke@435 827 }
duke@435 828
duke@435 829
duke@435 830 bool DefNewGeneration::no_allocs_since_save_marks() {
duke@435 831 assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
duke@435 832 assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
duke@435 833 return to()->saved_mark_at_top();
duke@435 834 }
duke@435 835
duke@435 836 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 837 \
duke@435 838 void DefNewGeneration:: \
duke@435 839 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
duke@435 840 cl->set_generation(this); \
duke@435 841 eden()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 842 to()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 843 from()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 844 cl->reset_generation(); \
duke@435 845 save_marks(); \
duke@435 846 }
duke@435 847
duke@435 848 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
duke@435 849
duke@435 850 #undef DefNew_SINCE_SAVE_MARKS_DEFN
duke@435 851
duke@435 852 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
duke@435 853 size_t max_alloc_words) {
duke@435 854 if (requestor == this || _promotion_failed) return;
duke@435 855 assert(requestor->level() > level(), "DefNewGeneration must be youngest");
duke@435 856
duke@435 857 /* $$$ Assert this? "trace" is a "MarkSweep" function so that's not appropriate.
duke@435 858 if (to_space->top() > to_space->bottom()) {
duke@435 859 trace("to_space not empty when contribute_scratch called");
duke@435 860 }
duke@435 861 */
duke@435 862
duke@435 863 ContiguousSpace* to_space = to();
duke@435 864 assert(to_space->end() >= to_space->top(), "pointers out of order");
duke@435 865 size_t free_words = pointer_delta(to_space->end(), to_space->top());
duke@435 866 if (free_words >= MinFreeScratchWords) {
duke@435 867 ScratchBlock* sb = (ScratchBlock*)to_space->top();
duke@435 868 sb->num_words = free_words;
duke@435 869 sb->next = list;
duke@435 870 list = sb;
duke@435 871 }
duke@435 872 }
duke@435 873
jmasa@698 874 void DefNewGeneration::reset_scratch() {
jmasa@698 875 // If contributing scratch in to_space, mangle all of
jmasa@698 876 // to_space if ZapUnusedHeapArea. This is needed because
jmasa@698 877 // top is not maintained while using to-space as scratch.
jmasa@698 878 if (ZapUnusedHeapArea) {
jmasa@698 879 to()->mangle_unused_area_complete();
jmasa@698 880 }
jmasa@698 881 }
jmasa@698 882
duke@435 883 bool DefNewGeneration::collection_attempt_is_safe() {
duke@435 884 if (!to()->is_empty()) {
ysr@2336 885 if (Verbose && PrintGCDetails) {
ysr@2336 886 gclog_or_tty->print(" :: to is not empty :: ");
ysr@2336 887 }
duke@435 888 return false;
duke@435 889 }
duke@435 890 if (_next_gen == NULL) {
duke@435 891 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 892 _next_gen = gch->next_gen(this);
duke@435 893 assert(_next_gen != NULL,
duke@435 894 "This must be the youngest gen, and not the only gen");
duke@435 895 }
ysr@2243 896 return _next_gen->promotion_attempt_is_safe(used());
duke@435 897 }
duke@435 898
duke@435 899 void DefNewGeneration::gc_epilogue(bool full) {
ysr@2244 900 DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
ysr@2244 901
ysr@2244 902 assert(!GC_locker::is_active(), "We should not be executing here");
duke@435 903 // Check if the heap is approaching full after a collection has
duke@435 904 // been done. Generally the young generation is empty at
duke@435 905 // a minimum at the end of a collection. If it is not, then
duke@435 906 // the heap is approaching full.
duke@435 907 GenCollectedHeap* gch = GenCollectedHeap::heap();
ysr@2243 908 if (full) {
ysr@2244 909 DEBUG_ONLY(seen_incremental_collection_failed = false;)
ysr@2336 910 if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
ysr@2336 911 if (Verbose && PrintGCDetails) {
ysr@2336 912 gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
ysr@2336 913 GCCause::to_string(gch->gc_cause()));
ysr@2336 914 }
ysr@2243 915 gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
ysr@2243 916 set_should_allocate_from_space(); // we seem to be running out of space
ysr@2243 917 } else {
ysr@2336 918 if (Verbose && PrintGCDetails) {
ysr@2336 919 gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
ysr@2336 920 GCCause::to_string(gch->gc_cause()));
ysr@2336 921 }
ysr@2243 922 gch->clear_incremental_collection_failed(); // We just did a full collection
ysr@2243 923 clear_should_allocate_from_space(); // if set
ysr@2243 924 }
duke@435 925 } else {
ysr@2244 926 #ifdef ASSERT
ysr@2244 927 // It is possible that incremental_collection_failed() == true
ysr@2244 928 // here, because an attempted scavenge did not succeed. The policy
ysr@2244 929 // is normally expected to cause a full collection which should
ysr@2244 930 // clear that condition, so we should not be here twice in a row
ysr@2244 931 // with incremental_collection_failed() == true without having done
ysr@2244 932 // a full collection in between.
ysr@2244 933 if (!seen_incremental_collection_failed &&
ysr@2244 934 gch->incremental_collection_failed()) {
ysr@2336 935 if (Verbose && PrintGCDetails) {
ysr@2336 936 gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
ysr@2336 937 GCCause::to_string(gch->gc_cause()));
ysr@2336 938 }
ysr@2244 939 seen_incremental_collection_failed = true;
ysr@2244 940 } else if (seen_incremental_collection_failed) {
ysr@2336 941 if (Verbose && PrintGCDetails) {
ysr@2336 942 gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
ysr@2336 943 GCCause::to_string(gch->gc_cause()));
ysr@2336 944 }
ysr@2336 945 assert(gch->gc_cause() == GCCause::_scavenge_alot ||
ysr@2336 946 (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
ysr@2336 947 !gch->incremental_collection_failed(),
ysr@2295 948 "Twice in a row");
ysr@2244 949 seen_incremental_collection_failed = false;
ysr@2244 950 }
ysr@2244 951 #endif // ASSERT
duke@435 952 }
duke@435 953
jmasa@698 954 if (ZapUnusedHeapArea) {
jmasa@698 955 eden()->check_mangled_unused_area_complete();
jmasa@698 956 from()->check_mangled_unused_area_complete();
jmasa@698 957 to()->check_mangled_unused_area_complete();
jmasa@698 958 }
jmasa@698 959
jcoomes@2996 960 if (!CleanChunkPoolAsync) {
jcoomes@2996 961 Chunk::clean_chunk_pool();
jcoomes@2996 962 }
jcoomes@2996 963
duke@435 964 // update the generation and space performance counters
duke@435 965 update_counters();
duke@435 966 gch->collector_policy()->counters()->update_counters();
duke@435 967 }
duke@435 968
jmasa@698 969 void DefNewGeneration::record_spaces_top() {
jmasa@698 970 assert(ZapUnusedHeapArea, "Not mangling unused space");
jmasa@698 971 eden()->set_top_for_allocations();
jmasa@698 972 to()->set_top_for_allocations();
jmasa@698 973 from()->set_top_for_allocations();
jmasa@698 974 }
jmasa@698 975
jmasa@698 976
duke@435 977 void DefNewGeneration::update_counters() {
duke@435 978 if (UsePerfData) {
duke@435 979 _eden_counters->update_all();
duke@435 980 _from_counters->update_all();
duke@435 981 _to_counters->update_all();
duke@435 982 _gen_counters->update_all();
duke@435 983 }
duke@435 984 }
duke@435 985
brutisso@3711 986 void DefNewGeneration::verify() {
brutisso@3711 987 eden()->verify();
brutisso@3711 988 from()->verify();
brutisso@3711 989 to()->verify();
duke@435 990 }
duke@435 991
duke@435 992 void DefNewGeneration::print_on(outputStream* st) const {
duke@435 993 Generation::print_on(st);
duke@435 994 st->print(" eden");
duke@435 995 eden()->print_on(st);
duke@435 996 st->print(" from");
duke@435 997 from()->print_on(st);
duke@435 998 st->print(" to ");
duke@435 999 to()->print_on(st);
duke@435 1000 }
duke@435 1001
duke@435 1002
duke@435 1003 const char* DefNewGeneration::name() const {
duke@435 1004 return "def new generation";
duke@435 1005 }
coleenp@548 1006
coleenp@548 1007 // Moved from inline file as they are not called inline
coleenp@548 1008 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
coleenp@548 1009 return eden();
coleenp@548 1010 }
coleenp@548 1011
coleenp@548 1012 HeapWord* DefNewGeneration::allocate(size_t word_size,
coleenp@548 1013 bool is_tlab) {
coleenp@548 1014 // This is the slow-path allocation for the DefNewGeneration.
coleenp@548 1015 // Most allocations are fast-path in compiled code.
coleenp@548 1016 // We try to allocate from the eden. If that works, we are happy.
coleenp@548 1017 // Note that since DefNewGeneration supports lock-free allocation, we
coleenp@548 1018 // have to use it here, as well.
coleenp@548 1019 HeapWord* result = eden()->par_allocate(word_size);
coleenp@548 1020 if (result != NULL) {
coleenp@548 1021 return result;
coleenp@548 1022 }
coleenp@548 1023 do {
coleenp@548 1024 HeapWord* old_limit = eden()->soft_end();
coleenp@548 1025 if (old_limit < eden()->end()) {
coleenp@548 1026 // Tell the next generation we reached a limit.
coleenp@548 1027 HeapWord* new_limit =
coleenp@548 1028 next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
coleenp@548 1029 if (new_limit != NULL) {
coleenp@548 1030 Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
coleenp@548 1031 } else {
coleenp@548 1032 assert(eden()->soft_end() == eden()->end(),
coleenp@548 1033 "invalid state after allocation_limit_reached returned null");
coleenp@548 1034 }
coleenp@548 1035 } else {
coleenp@548 1036 // The allocation failed and the soft limit is equal to the hard limit,
coleenp@548 1037 // there are no reasons to do an attempt to allocate
coleenp@548 1038 assert(old_limit == eden()->end(), "sanity check");
coleenp@548 1039 break;
coleenp@548 1040 }
coleenp@548 1041 // Try to allocate until succeeded or the soft limit can't be adjusted
coleenp@548 1042 result = eden()->par_allocate(word_size);
coleenp@548 1043 } while (result == NULL);
coleenp@548 1044
coleenp@548 1045 // If the eden is full and the last collection bailed out, we are running
coleenp@548 1046 // out of heap space, and we try to allocate the from-space, too.
coleenp@548 1047 // allocate_from_space can't be inlined because that would introduce a
coleenp@548 1048 // circular dependency at compile time.
coleenp@548 1049 if (result == NULL) {
coleenp@548 1050 result = allocate_from_space(word_size);
coleenp@548 1051 }
coleenp@548 1052 return result;
coleenp@548 1053 }
coleenp@548 1054
coleenp@548 1055 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
coleenp@548 1056 bool is_tlab) {
coleenp@548 1057 return eden()->par_allocate(word_size);
coleenp@548 1058 }
coleenp@548 1059
coleenp@548 1060 void DefNewGeneration::gc_prologue(bool full) {
coleenp@548 1061 // Ensure that _end and _soft_end are the same in eden space.
coleenp@548 1062 eden()->set_soft_end(eden()->end());
coleenp@548 1063 }
coleenp@548 1064
coleenp@548 1065 size_t DefNewGeneration::tlab_capacity() const {
coleenp@548 1066 return eden()->capacity();
coleenp@548 1067 }
coleenp@548 1068
coleenp@548 1069 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
coleenp@548 1070 return unsafe_max_alloc_nogc();
coleenp@548 1071 }

mercurial