src/share/vm/utilities/taskqueue.hpp

Fri, 29 Apr 2016 00:06:10 +0800

author
aoqi
date
Fri, 29 Apr 2016 00:06:10 +0800
changeset 1
2d8a650513c2
parent 0
f90c822e73f8
child 25
873fd82b133d
permissions
-rw-r--r--

Added MIPS 64-bit port.

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@1 25 /*
aoqi@1 26 * This file has been modified by Loongson Technology in 2015. These
aoqi@1 27 * modifications are Copyright (c) 2015 Loongson Technology, and are made
aoqi@1 28 * available on the same license terms set forth above.
aoqi@1 29 */
aoqi@1 30
aoqi@0 31 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
aoqi@0 32 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
aoqi@0 33
aoqi@0 34 #include "memory/allocation.hpp"
aoqi@0 35 #include "memory/allocation.inline.hpp"
aoqi@0 36 #include "runtime/mutex.hpp"
aoqi@0 37 #include "utilities/stack.hpp"
aoqi@0 38 #ifdef TARGET_OS_ARCH_linux_x86
aoqi@0 39 # include "orderAccess_linux_x86.inline.hpp"
aoqi@0 40 #endif
aoqi@0 41 #ifdef TARGET_OS_ARCH_linux_sparc
aoqi@0 42 # include "orderAccess_linux_sparc.inline.hpp"
aoqi@0 43 #endif
aoqi@0 44 #ifdef TARGET_OS_ARCH_linux_zero
aoqi@0 45 # include "orderAccess_linux_zero.inline.hpp"
aoqi@0 46 #endif
aoqi@0 47 #ifdef TARGET_OS_ARCH_solaris_x86
aoqi@0 48 # include "orderAccess_solaris_x86.inline.hpp"
aoqi@0 49 #endif
aoqi@0 50 #ifdef TARGET_OS_ARCH_solaris_sparc
aoqi@0 51 # include "orderAccess_solaris_sparc.inline.hpp"
aoqi@0 52 #endif
aoqi@0 53 #ifdef TARGET_OS_ARCH_windows_x86
aoqi@0 54 # include "orderAccess_windows_x86.inline.hpp"
aoqi@0 55 #endif
aoqi@0 56 #ifdef TARGET_OS_ARCH_linux_arm
aoqi@0 57 # include "orderAccess_linux_arm.inline.hpp"
aoqi@0 58 #endif
aoqi@0 59 #ifdef TARGET_OS_ARCH_linux_ppc
aoqi@0 60 # include "orderAccess_linux_ppc.inline.hpp"
aoqi@0 61 #endif
aoqi@0 62 #ifdef TARGET_OS_ARCH_aix_ppc
aoqi@0 63 # include "orderAccess_aix_ppc.inline.hpp"
aoqi@0 64 #endif
aoqi@0 65 #ifdef TARGET_OS_ARCH_bsd_x86
aoqi@0 66 # include "orderAccess_bsd_x86.inline.hpp"
aoqi@0 67 #endif
aoqi@0 68 #ifdef TARGET_OS_ARCH_bsd_zero
aoqi@0 69 # include "orderAccess_bsd_zero.inline.hpp"
aoqi@0 70 #endif
aoqi@0 71
aoqi@0 72 // Simple TaskQueue stats that are collected by default in debug builds.
aoqi@0 73
aoqi@0 74 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
aoqi@0 75 #define TASKQUEUE_STATS 1
aoqi@0 76 #elif !defined(TASKQUEUE_STATS)
aoqi@0 77 #define TASKQUEUE_STATS 0
aoqi@0 78 #endif
aoqi@0 79
aoqi@0 80 #if TASKQUEUE_STATS
aoqi@0 81 #define TASKQUEUE_STATS_ONLY(code) code
aoqi@0 82 #else
aoqi@0 83 #define TASKQUEUE_STATS_ONLY(code)
aoqi@0 84 #endif // TASKQUEUE_STATS
aoqi@0 85
aoqi@0 86 #if TASKQUEUE_STATS
aoqi@0 87 class TaskQueueStats {
aoqi@0 88 public:
aoqi@0 89 enum StatId {
aoqi@0 90 push, // number of taskqueue pushes
aoqi@0 91 pop, // number of taskqueue pops
aoqi@0 92 pop_slow, // subset of taskqueue pops that were done slow-path
aoqi@0 93 steal_attempt, // number of taskqueue steal attempts
aoqi@0 94 steal, // number of taskqueue steals
aoqi@0 95 overflow, // number of overflow pushes
aoqi@0 96 overflow_max_len, // max length of overflow stack
aoqi@0 97 last_stat_id
aoqi@0 98 };
aoqi@0 99
aoqi@0 100 public:
aoqi@0 101 inline TaskQueueStats() { reset(); }
aoqi@0 102
aoqi@0 103 inline void record_push() { ++_stats[push]; }
aoqi@0 104 inline void record_pop() { ++_stats[pop]; }
aoqi@0 105 inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
aoqi@0 106 inline void record_steal(bool success);
aoqi@0 107 inline void record_overflow(size_t new_length);
aoqi@0 108
aoqi@0 109 TaskQueueStats & operator +=(const TaskQueueStats & addend);
aoqi@0 110
aoqi@0 111 inline size_t get(StatId id) const { return _stats[id]; }
aoqi@0 112 inline const size_t* get() const { return _stats; }
aoqi@0 113
aoqi@0 114 inline void reset();
aoqi@0 115
aoqi@0 116 // Print the specified line of the header (does not include a line separator).
aoqi@0 117 static void print_header(unsigned int line, outputStream* const stream = tty,
aoqi@0 118 unsigned int width = 10);
aoqi@0 119 // Print the statistics (does not include a line separator).
aoqi@0 120 void print(outputStream* const stream = tty, unsigned int width = 10) const;
aoqi@0 121
aoqi@0 122 DEBUG_ONLY(void verify() const;)
aoqi@0 123
aoqi@0 124 private:
aoqi@0 125 size_t _stats[last_stat_id];
aoqi@0 126 static const char * const _names[last_stat_id];
aoqi@0 127 };
aoqi@0 128
aoqi@0 129 void TaskQueueStats::record_steal(bool success) {
aoqi@0 130 ++_stats[steal_attempt];
aoqi@0 131 if (success) ++_stats[steal];
aoqi@0 132 }
aoqi@0 133
aoqi@0 134 void TaskQueueStats::record_overflow(size_t new_len) {
aoqi@0 135 ++_stats[overflow];
aoqi@0 136 if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
aoqi@0 137 }
aoqi@0 138
aoqi@0 139 void TaskQueueStats::reset() {
aoqi@0 140 memset(_stats, 0, sizeof(_stats));
aoqi@0 141 }
aoqi@0 142 #endif // TASKQUEUE_STATS
aoqi@0 143
aoqi@0 144 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
aoqi@0 145
aoqi@0 146 template <unsigned int N, MEMFLAGS F>
aoqi@0 147 class TaskQueueSuper: public CHeapObj<F> {
aoqi@0 148 protected:
aoqi@0 149 // Internal type for indexing the queue; also used for the tag.
aoqi@0 150 typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
aoqi@0 151
aoqi@0 152 // The first free element after the last one pushed (mod N).
aoqi@0 153 volatile uint _bottom;
aoqi@0 154
aoqi@0 155 enum { MOD_N_MASK = N - 1 };
aoqi@0 156
aoqi@0 157 class Age {
aoqi@0 158 public:
aoqi@0 159 Age(size_t data = 0) { _data = data; }
aoqi@0 160 Age(const Age& age) { _data = age._data; }
aoqi@0 161 Age(idx_t top, idx_t tag) { _fields._top = top; _fields._tag = tag; }
aoqi@0 162
aoqi@0 163 Age get() const volatile { return _data; }
aoqi@0 164 void set(Age age) volatile { _data = age._data; }
aoqi@0 165
aoqi@0 166 idx_t top() const volatile { return _fields._top; }
aoqi@0 167 idx_t tag() const volatile { return _fields._tag; }
aoqi@0 168
aoqi@0 169 // Increment top; if it wraps, increment tag also.
aoqi@0 170 void increment() {
aoqi@0 171 _fields._top = increment_index(_fields._top);
aoqi@0 172 if (_fields._top == 0) ++_fields._tag;
aoqi@0 173 }
aoqi@0 174
aoqi@0 175 Age cmpxchg(const Age new_age, const Age old_age) volatile {
aoqi@0 176 return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
aoqi@0 177 (volatile intptr_t *)&_data,
aoqi@0 178 (intptr_t)old_age._data);
aoqi@0 179 }
aoqi@0 180
aoqi@0 181 bool operator ==(const Age& other) const { return _data == other._data; }
aoqi@0 182
aoqi@0 183 private:
aoqi@0 184 struct fields {
aoqi@0 185 idx_t _top;
aoqi@0 186 idx_t _tag;
aoqi@0 187 };
aoqi@0 188 union {
aoqi@0 189 size_t _data;
aoqi@0 190 fields _fields;
aoqi@0 191 };
aoqi@0 192 };
aoqi@0 193
aoqi@0 194 volatile Age _age;
aoqi@0 195
aoqi@0 196 // These both operate mod N.
aoqi@0 197 static uint increment_index(uint ind) {
aoqi@0 198 return (ind + 1) & MOD_N_MASK;
aoqi@0 199 }
aoqi@0 200 static uint decrement_index(uint ind) {
aoqi@0 201 return (ind - 1) & MOD_N_MASK;
aoqi@0 202 }
aoqi@0 203
aoqi@0 204 // Returns a number in the range [0..N). If the result is "N-1", it should be
aoqi@0 205 // interpreted as 0.
aoqi@0 206 uint dirty_size(uint bot, uint top) const {
aoqi@0 207 return (bot - top) & MOD_N_MASK;
aoqi@0 208 }
aoqi@0 209
aoqi@0 210 // Returns the size corresponding to the given "bot" and "top".
aoqi@0 211 uint size(uint bot, uint top) const {
aoqi@0 212 uint sz = dirty_size(bot, top);
aoqi@0 213 // Has the queue "wrapped", so that bottom is less than top? There's a
aoqi@0 214 // complicated special case here. A pair of threads could perform pop_local
aoqi@0 215 // and pop_global operations concurrently, starting from a state in which
aoqi@0 216 // _bottom == _top+1. The pop_local could succeed in decrementing _bottom,
aoqi@0 217 // and the pop_global in incrementing _top (in which case the pop_global
aoqi@0 218 // will be awarded the contested queue element.) The resulting state must
aoqi@0 219 // be interpreted as an empty queue. (We only need to worry about one such
aoqi@0 220 // event: only the queue owner performs pop_local's, and several concurrent
aoqi@0 221 // threads attempting to perform the pop_global will all perform the same
aoqi@0 222 // CAS, and only one can succeed.) Any stealing thread that reads after
aoqi@0 223 // either the increment or decrement will see an empty queue, and will not
aoqi@0 224 // join the competitors. The "sz == -1 || sz == N-1" state will not be
aoqi@0 225 // modified by concurrent queues, so the owner thread can reset the state to
aoqi@0 226 // _bottom == top so subsequent pushes will be performed normally.
aoqi@0 227 return (sz == N - 1) ? 0 : sz;
aoqi@0 228 }
aoqi@0 229
aoqi@0 230 public:
aoqi@0 231 TaskQueueSuper() : _bottom(0), _age() {}
aoqi@0 232
aoqi@0 233 // Return true if the TaskQueue contains/does not contain any tasks.
aoqi@0 234 bool peek() const { return _bottom != _age.top(); }
aoqi@0 235 bool is_empty() const { return size() == 0; }
aoqi@0 236
aoqi@0 237 // Return an estimate of the number of elements in the queue.
aoqi@0 238 // The "careful" version admits the possibility of pop_local/pop_global
aoqi@0 239 // races.
aoqi@0 240 uint size() const {
aoqi@0 241 return size(_bottom, _age.top());
aoqi@0 242 }
aoqi@0 243
aoqi@0 244 uint dirty_size() const {
aoqi@0 245 return dirty_size(_bottom, _age.top());
aoqi@0 246 }
aoqi@0 247
aoqi@0 248 void set_empty() {
aoqi@0 249 _bottom = 0;
aoqi@0 250 _age.set(0);
aoqi@0 251 }
aoqi@0 252
aoqi@0 253 // Maximum number of elements allowed in the queue. This is two less
aoqi@0 254 // than the actual queue size, for somewhat complicated reasons.
aoqi@0 255 uint max_elems() const { return N - 2; }
aoqi@0 256
aoqi@0 257 // Total size of queue.
aoqi@0 258 static const uint total_size() { return N; }
aoqi@0 259
aoqi@0 260 TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
aoqi@0 261 };
aoqi@0 262
aoqi@0 263 //
aoqi@0 264 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
aoqi@0 265 // ended-queue (deque), intended for use in work stealing. Queue operations
aoqi@0 266 // are non-blocking.
aoqi@0 267 //
aoqi@0 268 // A queue owner thread performs push() and pop_local() operations on one end
aoqi@0 269 // of the queue, while other threads may steal work using the pop_global()
aoqi@0 270 // method.
aoqi@0 271 //
aoqi@0 272 // The main difference to the original algorithm is that this
aoqi@0 273 // implementation allows wrap-around at the end of its allocated
aoqi@0 274 // storage, which is an array.
aoqi@0 275 //
aoqi@0 276 // The original paper is:
aoqi@0 277 //
aoqi@0 278 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
aoqi@0 279 // Thread scheduling for multiprogrammed multiprocessors.
aoqi@0 280 // Theory of Computing Systems 34, 2 (2001), 115-144.
aoqi@0 281 //
aoqi@0 282 // The following paper provides an correctness proof and an
aoqi@0 283 // implementation for weakly ordered memory models including (pseudo-)
aoqi@0 284 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
aoqi@0 285 // similar to ABP, with the main difference that it allows resizing of the
aoqi@0 286 // underlying storage:
aoqi@0 287 //
aoqi@0 288 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
aoqi@0 289 // Correct and efficient work-stealing for weak memory models
aoqi@0 290 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
aoqi@0 291 // practice of parallel programming (PPoPP 2013), 69-80
aoqi@0 292 //
aoqi@0 293
aoqi@0 294 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
aoqi@0 295 class GenericTaskQueue: public TaskQueueSuper<N, F> {
aoqi@0 296 ArrayAllocator<E, F> _array_allocator;
aoqi@0 297 protected:
aoqi@0 298 typedef typename TaskQueueSuper<N, F>::Age Age;
aoqi@0 299 typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
aoqi@0 300
aoqi@0 301 using TaskQueueSuper<N, F>::_bottom;
aoqi@0 302 using TaskQueueSuper<N, F>::_age;
aoqi@0 303 using TaskQueueSuper<N, F>::increment_index;
aoqi@0 304 using TaskQueueSuper<N, F>::decrement_index;
aoqi@0 305 using TaskQueueSuper<N, F>::dirty_size;
aoqi@0 306
aoqi@0 307 public:
aoqi@0 308 using TaskQueueSuper<N, F>::max_elems;
aoqi@0 309 using TaskQueueSuper<N, F>::size;
aoqi@0 310
aoqi@0 311 #if TASKQUEUE_STATS
aoqi@0 312 using TaskQueueSuper<N, F>::stats;
aoqi@0 313 #endif
aoqi@0 314
aoqi@0 315 private:
aoqi@0 316 // Slow paths for push, pop_local. (pop_global has no fast path.)
aoqi@0 317 bool push_slow(E t, uint dirty_n_elems);
aoqi@0 318 bool pop_local_slow(uint localBot, Age oldAge);
aoqi@0 319
aoqi@0 320 public:
aoqi@0 321 typedef E element_type;
aoqi@0 322
aoqi@0 323 // Initializes the queue to empty.
aoqi@0 324 GenericTaskQueue();
aoqi@0 325
aoqi@0 326 void initialize();
aoqi@0 327
aoqi@0 328 // Push the task "t" on the queue. Returns "false" iff the queue is full.
aoqi@0 329 inline bool push(E t);
aoqi@0 330
aoqi@0 331 // Attempts to claim a task from the "local" end of the queue (the most
aoqi@0 332 // recently pushed). If successful, returns true and sets t to the task;
aoqi@0 333 // otherwise, returns false (the queue is empty).
aoqi@0 334 inline bool pop_local(volatile E& t);
aoqi@0 335
aoqi@0 336 // Like pop_local(), but uses the "global" end of the queue (the least
aoqi@0 337 // recently pushed).
aoqi@0 338 bool pop_global(volatile E& t);
aoqi@0 339
aoqi@0 340 // Delete any resource associated with the queue.
aoqi@0 341 ~GenericTaskQueue();
aoqi@0 342
aoqi@0 343 // apply the closure to all elements in the task queue
aoqi@0 344 void oops_do(OopClosure* f);
aoqi@0 345
aoqi@0 346 private:
aoqi@0 347 // Element array.
aoqi@0 348 volatile E* _elems;
aoqi@0 349 };
aoqi@0 350
aoqi@0 351 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 352 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
aoqi@0 353 assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
aoqi@0 354 }
aoqi@0 355
aoqi@0 356 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 357 void GenericTaskQueue<E, F, N>::initialize() {
aoqi@0 358 _elems = _array_allocator.allocate(N);
aoqi@0 359 }
aoqi@0 360
aoqi@0 361 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 362 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
aoqi@0 363 // tty->print_cr("START OopTaskQueue::oops_do");
aoqi@0 364 uint iters = size();
aoqi@0 365 uint index = _bottom;
aoqi@0 366 for (uint i = 0; i < iters; ++i) {
aoqi@0 367 index = decrement_index(index);
aoqi@0 368 // tty->print_cr(" doing entry %d," INTPTR_T " -> " INTPTR_T,
aoqi@0 369 // index, &_elems[index], _elems[index]);
aoqi@0 370 E* t = (E*)&_elems[index]; // cast away volatility
aoqi@0 371 oop* p = (oop*)t;
aoqi@0 372 assert((*t)->is_oop_or_null(), "Not an oop or null");
aoqi@0 373 f->do_oop(p);
aoqi@0 374 }
aoqi@0 375 // tty->print_cr("END OopTaskQueue::oops_do");
aoqi@0 376 }
aoqi@0 377
aoqi@0 378 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 379 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
aoqi@0 380 if (dirty_n_elems == N - 1) {
aoqi@0 381 // Actually means 0, so do the push.
aoqi@0 382 uint localBot = _bottom;
aoqi@0 383 // g++ complains if the volatile result of the assignment is
aoqi@0 384 // unused, so we cast the volatile away. We cannot cast directly
aoqi@0 385 // to void, because gcc treats that as not using the result of the
aoqi@0 386 // assignment. However, casting to E& means that we trigger an
aoqi@0 387 // unused-value warning. So, we cast the E& to void.
aoqi@0 388 (void)const_cast<E&>(_elems[localBot] = t);
aoqi@0 389 OrderAccess::release_store(&_bottom, increment_index(localBot));
aoqi@0 390 TASKQUEUE_STATS_ONLY(stats.record_push());
aoqi@0 391 return true;
aoqi@0 392 }
aoqi@0 393 return false;
aoqi@0 394 }
aoqi@0 395
aoqi@0 396 // pop_local_slow() is done by the owning thread and is trying to
aoqi@0 397 // get the last task in the queue. It will compete with pop_global()
aoqi@0 398 // that will be used by other threads. The tag age is incremented
aoqi@0 399 // whenever the queue goes empty which it will do here if this thread
aoqi@0 400 // gets the last task or in pop_global() if the queue wraps (top == 0
aoqi@0 401 // and pop_global() succeeds, see pop_global()).
aoqi@0 402 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 403 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
aoqi@0 404 // This queue was observed to contain exactly one element; either this
aoqi@0 405 // thread will claim it, or a competing "pop_global". In either case,
aoqi@0 406 // the queue will be logically empty afterwards. Create a new Age value
aoqi@0 407 // that represents the empty queue for the given value of "_bottom". (We
aoqi@0 408 // must also increment "tag" because of the case where "bottom == 1",
aoqi@0 409 // "top == 0". A pop_global could read the queue element in that case,
aoqi@0 410 // then have the owner thread do a pop followed by another push. Without
aoqi@0 411 // the incrementing of "tag", the pop_global's CAS could succeed,
aoqi@0 412 // allowing it to believe it has claimed the stale element.)
aoqi@0 413 Age newAge((idx_t)localBot, oldAge.tag() + 1);
aoqi@0 414 // Perhaps a competing pop_global has already incremented "top", in which
aoqi@0 415 // case it wins the element.
aoqi@0 416 if (localBot == oldAge.top()) {
aoqi@0 417 // No competing pop_global has yet incremented "top"; we'll try to
aoqi@0 418 // install new_age, thus claiming the element.
aoqi@0 419 Age tempAge = _age.cmpxchg(newAge, oldAge);
aoqi@0 420 if (tempAge == oldAge) {
aoqi@0 421 // We win.
aoqi@0 422 assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
aoqi@0 423 TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
aoqi@0 424 return true;
aoqi@0 425 }
aoqi@0 426 }
aoqi@0 427 // We lose; a completing pop_global gets the element. But the queue is empty
aoqi@0 428 // and top is greater than bottom. Fix this representation of the empty queue
aoqi@0 429 // to become the canonical one.
aoqi@0 430 _age.set(newAge);
aoqi@0 431 assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
aoqi@0 432 return false;
aoqi@0 433 }
aoqi@0 434
aoqi@0 435 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 436 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
aoqi@0 437 Age oldAge = _age.get();
aoqi@0 438 // Architectures with weak memory model require a barrier here
aoqi@0 439 // to guarantee that bottom is not older than age,
aoqi@0 440 // which is crucial for the correctness of the algorithm.
aoqi@0 441 #if !(defined SPARC || defined IA32 || defined AMD64)
aoqi@0 442 OrderAccess::fence();
aoqi@0 443 #endif
aoqi@0 444 uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
aoqi@0 445 uint n_elems = size(localBot, oldAge.top());
aoqi@0 446 if (n_elems == 0) {
aoqi@0 447 return false;
aoqi@0 448 }
aoqi@0 449
aoqi@0 450 // g++ complains if the volatile result of the assignment is
aoqi@0 451 // unused, so we cast the volatile away. We cannot cast directly
aoqi@0 452 // to void, because gcc treats that as not using the result of the
aoqi@0 453 // assignment. However, casting to E& means that we trigger an
aoqi@0 454 // unused-value warning. So, we cast the E& to void.
aoqi@0 455 (void) const_cast<E&>(t = _elems[oldAge.top()]);
aoqi@0 456 Age newAge(oldAge);
aoqi@0 457 newAge.increment();
aoqi@0 458 Age resAge = _age.cmpxchg(newAge, oldAge);
aoqi@0 459
aoqi@0 460 // Note that using "_bottom" here might fail, since a pop_local might
aoqi@0 461 // have decremented it.
aoqi@0 462 assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
aoqi@0 463 return resAge == oldAge;
aoqi@0 464 }
aoqi@0 465
aoqi@0 466 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 467 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
aoqi@0 468 FREE_C_HEAP_ARRAY(E, _elems, F);
aoqi@0 469 }
aoqi@0 470
aoqi@0 471 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
aoqi@0 472 // elements that do not fit in the TaskQueue.
aoqi@0 473 //
aoqi@0 474 // This class hides two methods from super classes:
aoqi@0 475 //
aoqi@0 476 // push() - push onto the task queue or, if that fails, onto the overflow stack
aoqi@0 477 // is_empty() - return true if both the TaskQueue and overflow stack are empty
aoqi@0 478 //
aoqi@0 479 // Note that size() is not hidden--it returns the number of elements in the
aoqi@0 480 // TaskQueue, and does not include the size of the overflow stack. This
aoqi@0 481 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
aoqi@0 482 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
aoqi@0 483 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
aoqi@0 484 {
aoqi@0 485 public:
aoqi@0 486 typedef Stack<E, F> overflow_t;
aoqi@0 487 typedef GenericTaskQueue<E, F, N> taskqueue_t;
aoqi@0 488
aoqi@0 489 TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
aoqi@0 490
aoqi@0 491 // Push task t onto the queue or onto the overflow stack. Return true.
aoqi@0 492 inline bool push(E t);
aoqi@0 493
aoqi@0 494 // Attempt to pop from the overflow stack; return true if anything was popped.
aoqi@0 495 inline bool pop_overflow(E& t);
aoqi@0 496
aoqi@0 497 inline overflow_t* overflow_stack() { return &_overflow_stack; }
aoqi@0 498
aoqi@0 499 inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
aoqi@0 500 inline bool overflow_empty() const { return _overflow_stack.is_empty(); }
aoqi@0 501 inline bool is_empty() const {
aoqi@0 502 return taskqueue_empty() && overflow_empty();
aoqi@0 503 }
aoqi@0 504
aoqi@0 505 private:
aoqi@0 506 overflow_t _overflow_stack;
aoqi@0 507 };
aoqi@0 508
aoqi@0 509 template <class E, MEMFLAGS F, unsigned int N>
aoqi@0 510 bool OverflowTaskQueue<E, F, N>::push(E t)
aoqi@0 511 {
aoqi@0 512 if (!taskqueue_t::push(t)) {
aoqi@0 513 overflow_stack()->push(t);
aoqi@0 514 TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
aoqi@0 515 }
aoqi@0 516 return true;
aoqi@0 517 }
aoqi@0 518
aoqi@0 519 template <class E, MEMFLAGS F, unsigned int N>
aoqi@0 520 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
aoqi@0 521 {
aoqi@0 522 if (overflow_empty()) return false;
aoqi@0 523 t = overflow_stack()->pop();
aoqi@0 524 return true;
aoqi@0 525 }
aoqi@0 526
aoqi@0 527 class TaskQueueSetSuper {
aoqi@0 528 protected:
aoqi@0 529 static int randomParkAndMiller(int* seed0);
aoqi@0 530 public:
aoqi@0 531 // Returns "true" if some TaskQueue in the set contains a task.
aoqi@0 532 virtual bool peek() = 0;
aoqi@0 533 };
aoqi@0 534
aoqi@0 535 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
aoqi@0 536 };
aoqi@0 537
aoqi@0 538 template<class T, MEMFLAGS F>
aoqi@0 539 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
aoqi@0 540 private:
aoqi@0 541 uint _n;
aoqi@0 542 T** _queues;
aoqi@0 543
aoqi@0 544 public:
aoqi@0 545 typedef typename T::element_type E;
aoqi@0 546
aoqi@0 547 GenericTaskQueueSet(int n) : _n(n) {
aoqi@0 548 typedef T* GenericTaskQueuePtr;
aoqi@0 549 _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
aoqi@0 550 for (int i = 0; i < n; i++) {
aoqi@0 551 _queues[i] = NULL;
aoqi@0 552 }
aoqi@0 553 }
aoqi@0 554
aoqi@0 555 bool steal_best_of_2(uint queue_num, int* seed, E& t);
aoqi@0 556
aoqi@0 557 void register_queue(uint i, T* q);
aoqi@0 558
aoqi@0 559 T* queue(uint n);
aoqi@0 560
aoqi@0 561 // The thread with queue number "queue_num" (and whose random number seed is
aoqi@0 562 // at "seed") is trying to steal a task from some other queue. (It may try
aoqi@0 563 // several queues, according to some configuration parameter.) If some steal
aoqi@0 564 // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
aoqi@0 565 // false.
aoqi@0 566 bool steal(uint queue_num, int* seed, E& t);
aoqi@0 567
aoqi@0 568 bool peek();
aoqi@0 569 };
aoqi@0 570
aoqi@0 571 template<class T, MEMFLAGS F> void
aoqi@0 572 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
aoqi@0 573 assert(i < _n, "index out of range.");
aoqi@0 574 _queues[i] = q;
aoqi@0 575 }
aoqi@0 576
aoqi@0 577 template<class T, MEMFLAGS F> T*
aoqi@0 578 GenericTaskQueueSet<T, F>::queue(uint i) {
aoqi@0 579 return _queues[i];
aoqi@0 580 }
aoqi@0 581
aoqi@0 582 template<class T, MEMFLAGS F> bool
aoqi@0 583 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
aoqi@0 584 for (uint i = 0; i < 2 * _n; i++) {
aoqi@0 585 if (steal_best_of_2(queue_num, seed, t)) {
aoqi@0 586 TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
aoqi@0 587 return true;
aoqi@0 588 }
aoqi@0 589 }
aoqi@0 590 TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
aoqi@0 591 return false;
aoqi@0 592 }
aoqi@0 593
aoqi@0 594 template<class T, MEMFLAGS F> bool
aoqi@0 595 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
aoqi@0 596 if (_n > 2) {
aoqi@1 597 if(UseNUMASteal) {
aoqi@1 598 uint i = 10;
aoqi@1 599 uint k = queue_num;
aoqi@1 600 while ((k == queue_num || (k - queue_num) > 3 || (queue_num - k) > 3) && i > 0) {
aoqi@1 601 i--;
aoqi@1 602 k = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
aoqi@1 603 }
aoqi@1 604 if(i > 0) {
aoqi@1 605 return _queues[k]->pop_global(t);
aoqi@1 606 }
aoqi@1 607 else {
aoqi@1 608 while (k == queue_num) {
aoqi@1 609 k = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
aoqi@1 610 }
aoqi@1 611 return _queues[k]->pop_global(t);
aoqi@1 612 }
aoqi@1 613 }
aoqi@1 614 else{
aoqi@1 615 uint k1 = queue_num;
aoqi@1 616 while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
aoqi@1 617 uint k2 = queue_num;
aoqi@1 618 while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
aoqi@1 619 // Sample both and try the larger.
aoqi@1 620 uint sz1 = _queues[k1]->size();
aoqi@1 621 uint sz2 = _queues[k2]->size();
aoqi@1 622 if (sz2 > sz1) return _queues[k2]->pop_global(t);
aoqi@1 623 else return _queues[k1]->pop_global(t);
aoqi@1 624 }
aoqi@0 625 } else if (_n == 2) {
aoqi@0 626 // Just try the other one.
aoqi@0 627 uint k = (queue_num + 1) % 2;
aoqi@0 628 return _queues[k]->pop_global(t);
aoqi@0 629 } else {
aoqi@0 630 assert(_n == 1, "can't be zero.");
aoqi@0 631 return false;
aoqi@0 632 }
aoqi@0 633 }
aoqi@0 634
aoqi@0 635 template<class T, MEMFLAGS F>
aoqi@0 636 bool GenericTaskQueueSet<T, F>::peek() {
aoqi@0 637 // Try all the queues.
aoqi@0 638 for (uint j = 0; j < _n; j++) {
aoqi@0 639 if (_queues[j]->peek())
aoqi@0 640 return true;
aoqi@0 641 }
aoqi@0 642 return false;
aoqi@0 643 }
aoqi@0 644
aoqi@0 645 // When to terminate from the termination protocol.
aoqi@0 646 class TerminatorTerminator: public CHeapObj<mtInternal> {
aoqi@0 647 public:
aoqi@0 648 virtual bool should_exit_termination() = 0;
aoqi@0 649 };
aoqi@0 650
aoqi@0 651 // A class to aid in the termination of a set of parallel tasks using
aoqi@0 652 // TaskQueueSet's for work stealing.
aoqi@0 653
aoqi@0 654 #undef TRACESPINNING
aoqi@0 655
aoqi@0 656 class ParallelTaskTerminator: public StackObj {
aoqi@0 657 private:
aoqi@0 658 int _n_threads;
aoqi@0 659 TaskQueueSetSuper* _queue_set;
aoqi@0 660 int _offered_termination;
aoqi@0 661
aoqi@0 662 #ifdef TRACESPINNING
aoqi@0 663 static uint _total_yields;
aoqi@0 664 static uint _total_spins;
aoqi@0 665 static uint _total_peeks;
aoqi@0 666 #endif
aoqi@0 667
aoqi@0 668 bool peek_in_queue_set();
aoqi@0 669 protected:
aoqi@0 670 virtual void yield();
aoqi@0 671 void sleep(uint millis);
aoqi@0 672
aoqi@0 673 public:
aoqi@0 674
aoqi@0 675 // "n_threads" is the number of threads to be terminated. "queue_set" is a
aoqi@0 676 // queue sets of work queues of other threads.
aoqi@0 677 ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
aoqi@0 678
aoqi@0 679 // The current thread has no work, and is ready to terminate if everyone
aoqi@0 680 // else is. If returns "true", all threads are terminated. If returns
aoqi@0 681 // "false", available work has been observed in one of the task queues,
aoqi@0 682 // so the global task is not complete.
aoqi@0 683 bool offer_termination() {
aoqi@0 684 return offer_termination(NULL);
aoqi@0 685 }
aoqi@0 686
aoqi@0 687 // As above, but it also terminates if the should_exit_termination()
aoqi@0 688 // method of the terminator parameter returns true. If terminator is
aoqi@0 689 // NULL, then it is ignored.
aoqi@0 690 bool offer_termination(TerminatorTerminator* terminator);
aoqi@0 691
aoqi@0 692 // Reset the terminator, so that it may be reused again.
aoqi@0 693 // The caller is responsible for ensuring that this is done
aoqi@0 694 // in an MT-safe manner, once the previous round of use of
aoqi@0 695 // the terminator is finished.
aoqi@0 696 void reset_for_reuse();
aoqi@0 697 // Same as above but the number of parallel threads is set to the
aoqi@0 698 // given number.
aoqi@0 699 void reset_for_reuse(int n_threads);
aoqi@0 700
aoqi@0 701 #ifdef TRACESPINNING
aoqi@0 702 static uint total_yields() { return _total_yields; }
aoqi@0 703 static uint total_spins() { return _total_spins; }
aoqi@0 704 static uint total_peeks() { return _total_peeks; }
aoqi@0 705 static void print_termination_counts();
aoqi@0 706 #endif
aoqi@0 707 };
aoqi@0 708
aoqi@0 709 template<class E, MEMFLAGS F, unsigned int N> inline bool
aoqi@0 710 GenericTaskQueue<E, F, N>::push(E t) {
aoqi@0 711 uint localBot = _bottom;
aoqi@0 712 assert(localBot < N, "_bottom out of range.");
aoqi@0 713 idx_t top = _age.top();
aoqi@0 714 uint dirty_n_elems = dirty_size(localBot, top);
aoqi@0 715 assert(dirty_n_elems < N, "n_elems out of range.");
aoqi@0 716 if (dirty_n_elems < max_elems()) {
aoqi@0 717 // g++ complains if the volatile result of the assignment is
aoqi@0 718 // unused, so we cast the volatile away. We cannot cast directly
aoqi@0 719 // to void, because gcc treats that as not using the result of the
aoqi@0 720 // assignment. However, casting to E& means that we trigger an
aoqi@0 721 // unused-value warning. So, we cast the E& to void.
aoqi@0 722 (void) const_cast<E&>(_elems[localBot] = t);
aoqi@0 723 OrderAccess::release_store(&_bottom, increment_index(localBot));
aoqi@0 724 TASKQUEUE_STATS_ONLY(stats.record_push());
aoqi@0 725 return true;
aoqi@0 726 } else {
aoqi@0 727 return push_slow(t, dirty_n_elems);
aoqi@0 728 }
aoqi@0 729 }
aoqi@0 730
aoqi@0 731 template<class E, MEMFLAGS F, unsigned int N> inline bool
aoqi@0 732 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
aoqi@0 733 uint localBot = _bottom;
aoqi@0 734 // This value cannot be N-1. That can only occur as a result of
aoqi@0 735 // the assignment to bottom in this method. If it does, this method
aoqi@0 736 // resets the size to 0 before the next call (which is sequential,
aoqi@0 737 // since this is pop_local.)
aoqi@0 738 uint dirty_n_elems = dirty_size(localBot, _age.top());
aoqi@0 739 assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
aoqi@0 740 if (dirty_n_elems == 0) return false;
aoqi@0 741 localBot = decrement_index(localBot);
aoqi@0 742 _bottom = localBot;
aoqi@0 743 // This is necessary to prevent any read below from being reordered
aoqi@0 744 // before the store just above.
aoqi@0 745 OrderAccess::fence();
aoqi@0 746 // g++ complains if the volatile result of the assignment is
aoqi@0 747 // unused, so we cast the volatile away. We cannot cast directly
aoqi@0 748 // to void, because gcc treats that as not using the result of the
aoqi@0 749 // assignment. However, casting to E& means that we trigger an
aoqi@0 750 // unused-value warning. So, we cast the E& to void.
aoqi@0 751 (void) const_cast<E&>(t = _elems[localBot]);
aoqi@0 752 // This is a second read of "age"; the "size()" above is the first.
aoqi@0 753 // If there's still at least one element in the queue, based on the
aoqi@0 754 // "_bottom" and "age" we've read, then there can be no interference with
aoqi@0 755 // a "pop_global" operation, and we're done.
aoqi@0 756 idx_t tp = _age.top(); // XXX
aoqi@0 757 if (size(localBot, tp) > 0) {
aoqi@0 758 assert(dirty_size(localBot, tp) != N - 1, "sanity");
aoqi@0 759 TASKQUEUE_STATS_ONLY(stats.record_pop());
aoqi@0 760 return true;
aoqi@0 761 } else {
aoqi@0 762 // Otherwise, the queue contained exactly one element; we take the slow
aoqi@0 763 // path.
aoqi@0 764 return pop_local_slow(localBot, _age.get());
aoqi@0 765 }
aoqi@0 766 }
aoqi@0 767
aoqi@0 768 typedef GenericTaskQueue<oop, mtGC> OopTaskQueue;
aoqi@0 769 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
aoqi@0 770
aoqi@0 771 #ifdef _MSC_VER
aoqi@0 772 #pragma warning(push)
aoqi@0 773 // warning C4522: multiple assignment operators specified
aoqi@0 774 #pragma warning(disable:4522)
aoqi@0 775 #endif
aoqi@0 776
aoqi@0 777 // This is a container class for either an oop* or a narrowOop*.
aoqi@0 778 // Both are pushed onto a task queue and the consumer will test is_narrow()
aoqi@0 779 // to determine which should be processed.
aoqi@0 780 class StarTask {
aoqi@0 781 void* _holder; // either union oop* or narrowOop*
aoqi@0 782
aoqi@0 783 enum { COMPRESSED_OOP_MASK = 1 };
aoqi@0 784
aoqi@0 785 public:
aoqi@0 786 StarTask(narrowOop* p) {
aoqi@0 787 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
aoqi@0 788 _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
aoqi@0 789 }
aoqi@0 790 StarTask(oop* p) {
aoqi@0 791 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
aoqi@0 792 _holder = (void*)p;
aoqi@0 793 }
aoqi@0 794 StarTask() { _holder = NULL; }
aoqi@0 795 operator oop*() { return (oop*)_holder; }
aoqi@0 796 operator narrowOop*() {
aoqi@0 797 return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
aoqi@0 798 }
aoqi@0 799
aoqi@0 800 StarTask& operator=(const StarTask& t) {
aoqi@0 801 _holder = t._holder;
aoqi@0 802 return *this;
aoqi@0 803 }
aoqi@0 804 volatile StarTask& operator=(const volatile StarTask& t) volatile {
aoqi@0 805 _holder = t._holder;
aoqi@0 806 return *this;
aoqi@0 807 }
aoqi@0 808
aoqi@0 809 bool is_narrow() const {
aoqi@0 810 return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
aoqi@0 811 }
aoqi@0 812 };
aoqi@0 813
aoqi@0 814 class ObjArrayTask
aoqi@0 815 {
aoqi@0 816 public:
aoqi@0 817 ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
aoqi@0 818 ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
aoqi@0 819 assert(idx <= size_t(max_jint), "too big");
aoqi@0 820 }
aoqi@0 821 ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
aoqi@0 822
aoqi@0 823 ObjArrayTask& operator =(const ObjArrayTask& t) {
aoqi@0 824 _obj = t._obj;
aoqi@0 825 _index = t._index;
aoqi@0 826 return *this;
aoqi@0 827 }
aoqi@0 828 volatile ObjArrayTask&
aoqi@0 829 operator =(const volatile ObjArrayTask& t) volatile {
aoqi@0 830 (void)const_cast<oop&>(_obj = t._obj);
aoqi@0 831 _index = t._index;
aoqi@0 832 return *this;
aoqi@0 833 }
aoqi@0 834
aoqi@0 835 inline oop obj() const { return _obj; }
aoqi@0 836 inline int index() const { return _index; }
aoqi@0 837
aoqi@0 838 DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
aoqi@0 839
aoqi@0 840 private:
aoqi@0 841 oop _obj;
aoqi@0 842 int _index;
aoqi@0 843 };
aoqi@0 844
aoqi@0 845 #ifdef _MSC_VER
aoqi@0 846 #pragma warning(pop)
aoqi@0 847 #endif
aoqi@0 848
aoqi@0 849 typedef OverflowTaskQueue<StarTask, mtClass> OopStarTaskQueue;
aoqi@0 850 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
aoqi@0 851
aoqi@0 852 typedef OverflowTaskQueue<size_t, mtInternal> RegionTaskQueue;
aoqi@0 853 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass> RegionTaskQueueSet;
aoqi@0 854
aoqi@0 855
aoqi@0 856 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP

mercurial