src/share/vm/utilities/taskqueue.hpp

Fri, 29 Apr 2016 00:06:10 +0800

author
aoqi
date
Fri, 29 Apr 2016 00:06:10 +0800
changeset 1
2d8a650513c2
parent 0
f90c822e73f8
child 25
873fd82b133d
permissions
-rw-r--r--

Added MIPS 64-bit port.

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
    32 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
    34 #include "memory/allocation.hpp"
    35 #include "memory/allocation.inline.hpp"
    36 #include "runtime/mutex.hpp"
    37 #include "utilities/stack.hpp"
    38 #ifdef TARGET_OS_ARCH_linux_x86
    39 # include "orderAccess_linux_x86.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_ARCH_linux_sparc
    42 # include "orderAccess_linux_sparc.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_ARCH_linux_zero
    45 # include "orderAccess_linux_zero.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_ARCH_solaris_x86
    48 # include "orderAccess_solaris_x86.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_ARCH_solaris_sparc
    51 # include "orderAccess_solaris_sparc.inline.hpp"
    52 #endif
    53 #ifdef TARGET_OS_ARCH_windows_x86
    54 # include "orderAccess_windows_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_ARCH_linux_arm
    57 # include "orderAccess_linux_arm.inline.hpp"
    58 #endif
    59 #ifdef TARGET_OS_ARCH_linux_ppc
    60 # include "orderAccess_linux_ppc.inline.hpp"
    61 #endif
    62 #ifdef TARGET_OS_ARCH_aix_ppc
    63 # include "orderAccess_aix_ppc.inline.hpp"
    64 #endif
    65 #ifdef TARGET_OS_ARCH_bsd_x86
    66 # include "orderAccess_bsd_x86.inline.hpp"
    67 #endif
    68 #ifdef TARGET_OS_ARCH_bsd_zero
    69 # include "orderAccess_bsd_zero.inline.hpp"
    70 #endif
    72 // Simple TaskQueue stats that are collected by default in debug builds.
    74 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
    75 #define TASKQUEUE_STATS 1
    76 #elif !defined(TASKQUEUE_STATS)
    77 #define TASKQUEUE_STATS 0
    78 #endif
    80 #if TASKQUEUE_STATS
    81 #define TASKQUEUE_STATS_ONLY(code) code
    82 #else
    83 #define TASKQUEUE_STATS_ONLY(code)
    84 #endif // TASKQUEUE_STATS
    86 #if TASKQUEUE_STATS
    87 class TaskQueueStats {
    88 public:
    89   enum StatId {
    90     push,             // number of taskqueue pushes
    91     pop,              // number of taskqueue pops
    92     pop_slow,         // subset of taskqueue pops that were done slow-path
    93     steal_attempt,    // number of taskqueue steal attempts
    94     steal,            // number of taskqueue steals
    95     overflow,         // number of overflow pushes
    96     overflow_max_len, // max length of overflow stack
    97     last_stat_id
    98   };
   100 public:
   101   inline TaskQueueStats()       { reset(); }
   103   inline void record_push()     { ++_stats[push]; }
   104   inline void record_pop()      { ++_stats[pop]; }
   105   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
   106   inline void record_steal(bool success);
   107   inline void record_overflow(size_t new_length);
   109   TaskQueueStats & operator +=(const TaskQueueStats & addend);
   111   inline size_t get(StatId id) const { return _stats[id]; }
   112   inline const size_t* get() const   { return _stats; }
   114   inline void reset();
   116   // Print the specified line of the header (does not include a line separator).
   117   static void print_header(unsigned int line, outputStream* const stream = tty,
   118                            unsigned int width = 10);
   119   // Print the statistics (does not include a line separator).
   120   void print(outputStream* const stream = tty, unsigned int width = 10) const;
   122   DEBUG_ONLY(void verify() const;)
   124 private:
   125   size_t                    _stats[last_stat_id];
   126   static const char * const _names[last_stat_id];
   127 };
   129 void TaskQueueStats::record_steal(bool success) {
   130   ++_stats[steal_attempt];
   131   if (success) ++_stats[steal];
   132 }
   134 void TaskQueueStats::record_overflow(size_t new_len) {
   135   ++_stats[overflow];
   136   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
   137 }
   139 void TaskQueueStats::reset() {
   140   memset(_stats, 0, sizeof(_stats));
   141 }
   142 #endif // TASKQUEUE_STATS
   144 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
   146 template <unsigned int N, MEMFLAGS F>
   147 class TaskQueueSuper: public CHeapObj<F> {
   148 protected:
   149   // Internal type for indexing the queue; also used for the tag.
   150   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
   152   // The first free element after the last one pushed (mod N).
   153   volatile uint _bottom;
   155   enum { MOD_N_MASK = N - 1 };
   157   class Age {
   158   public:
   159     Age(size_t data = 0)         { _data = data; }
   160     Age(const Age& age)          { _data = age._data; }
   161     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
   163     Age   get()        const volatile { return _data; }
   164     void  set(Age age) volatile       { _data = age._data; }
   166     idx_t top()        const volatile { return _fields._top; }
   167     idx_t tag()        const volatile { return _fields._tag; }
   169     // Increment top; if it wraps, increment tag also.
   170     void increment() {
   171       _fields._top = increment_index(_fields._top);
   172       if (_fields._top == 0) ++_fields._tag;
   173     }
   175     Age cmpxchg(const Age new_age, const Age old_age) volatile {
   176       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
   177                                           (volatile intptr_t *)&_data,
   178                                           (intptr_t)old_age._data);
   179     }
   181     bool operator ==(const Age& other) const { return _data == other._data; }
   183   private:
   184     struct fields {
   185       idx_t _top;
   186       idx_t _tag;
   187     };
   188     union {
   189       size_t _data;
   190       fields _fields;
   191     };
   192   };
   194   volatile Age _age;
   196   // These both operate mod N.
   197   static uint increment_index(uint ind) {
   198     return (ind + 1) & MOD_N_MASK;
   199   }
   200   static uint decrement_index(uint ind) {
   201     return (ind - 1) & MOD_N_MASK;
   202   }
   204   // Returns a number in the range [0..N).  If the result is "N-1", it should be
   205   // interpreted as 0.
   206   uint dirty_size(uint bot, uint top) const {
   207     return (bot - top) & MOD_N_MASK;
   208   }
   210   // Returns the size corresponding to the given "bot" and "top".
   211   uint size(uint bot, uint top) const {
   212     uint sz = dirty_size(bot, top);
   213     // Has the queue "wrapped", so that bottom is less than top?  There's a
   214     // complicated special case here.  A pair of threads could perform pop_local
   215     // and pop_global operations concurrently, starting from a state in which
   216     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
   217     // and the pop_global in incrementing _top (in which case the pop_global
   218     // will be awarded the contested queue element.)  The resulting state must
   219     // be interpreted as an empty queue.  (We only need to worry about one such
   220     // event: only the queue owner performs pop_local's, and several concurrent
   221     // threads attempting to perform the pop_global will all perform the same
   222     // CAS, and only one can succeed.)  Any stealing thread that reads after
   223     // either the increment or decrement will see an empty queue, and will not
   224     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   225     // modified by concurrent queues, so the owner thread can reset the state to
   226     // _bottom == top so subsequent pushes will be performed normally.
   227     return (sz == N - 1) ? 0 : sz;
   228   }
   230 public:
   231   TaskQueueSuper() : _bottom(0), _age() {}
   233   // Return true if the TaskQueue contains/does not contain any tasks.
   234   bool peek()     const { return _bottom != _age.top(); }
   235   bool is_empty() const { return size() == 0; }
   237   // Return an estimate of the number of elements in the queue.
   238   // The "careful" version admits the possibility of pop_local/pop_global
   239   // races.
   240   uint size() const {
   241     return size(_bottom, _age.top());
   242   }
   244   uint dirty_size() const {
   245     return dirty_size(_bottom, _age.top());
   246   }
   248   void set_empty() {
   249     _bottom = 0;
   250     _age.set(0);
   251   }
   253   // Maximum number of elements allowed in the queue.  This is two less
   254   // than the actual queue size, for somewhat complicated reasons.
   255   uint max_elems() const { return N - 2; }
   257   // Total size of queue.
   258   static const uint total_size() { return N; }
   260   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
   261 };
   263 //
   264 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
   265 // ended-queue (deque), intended for use in work stealing. Queue operations
   266 // are non-blocking.
   267 //
   268 // A queue owner thread performs push() and pop_local() operations on one end
   269 // of the queue, while other threads may steal work using the pop_global()
   270 // method.
   271 //
   272 // The main difference to the original algorithm is that this
   273 // implementation allows wrap-around at the end of its allocated
   274 // storage, which is an array.
   275 //
   276 // The original paper is:
   277 //
   278 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
   279 // Thread scheduling for multiprogrammed multiprocessors.
   280 // Theory of Computing Systems 34, 2 (2001), 115-144.
   281 //
   282 // The following paper provides an correctness proof and an
   283 // implementation for weakly ordered memory models including (pseudo-)
   284 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
   285 // similar to ABP, with the main difference that it allows resizing of the
   286 // underlying storage:
   287 //
   288 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
   289 // Correct and efficient work-stealing for weak memory models
   290 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
   291 // practice of parallel programming (PPoPP 2013), 69-80
   292 //
   294 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   295 class GenericTaskQueue: public TaskQueueSuper<N, F> {
   296   ArrayAllocator<E, F> _array_allocator;
   297 protected:
   298   typedef typename TaskQueueSuper<N, F>::Age Age;
   299   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
   301   using TaskQueueSuper<N, F>::_bottom;
   302   using TaskQueueSuper<N, F>::_age;
   303   using TaskQueueSuper<N, F>::increment_index;
   304   using TaskQueueSuper<N, F>::decrement_index;
   305   using TaskQueueSuper<N, F>::dirty_size;
   307 public:
   308   using TaskQueueSuper<N, F>::max_elems;
   309   using TaskQueueSuper<N, F>::size;
   311 #if  TASKQUEUE_STATS
   312   using TaskQueueSuper<N, F>::stats;
   313 #endif
   315 private:
   316   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   317   bool push_slow(E t, uint dirty_n_elems);
   318   bool pop_local_slow(uint localBot, Age oldAge);
   320 public:
   321   typedef E element_type;
   323   // Initializes the queue to empty.
   324   GenericTaskQueue();
   326   void initialize();
   328   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
   329   inline bool push(E t);
   331   // Attempts to claim a task from the "local" end of the queue (the most
   332   // recently pushed).  If successful, returns true and sets t to the task;
   333   // otherwise, returns false (the queue is empty).
   334   inline bool pop_local(volatile E& t);
   336   // Like pop_local(), but uses the "global" end of the queue (the least
   337   // recently pushed).
   338   bool pop_global(volatile E& t);
   340   // Delete any resource associated with the queue.
   341   ~GenericTaskQueue();
   343   // apply the closure to all elements in the task queue
   344   void oops_do(OopClosure* f);
   346 private:
   347   // Element array.
   348   volatile E* _elems;
   349 };
   351 template<class E, MEMFLAGS F, unsigned int N>
   352 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
   353   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   354 }
   356 template<class E, MEMFLAGS F, unsigned int N>
   357 void GenericTaskQueue<E, F, N>::initialize() {
   358   _elems = _array_allocator.allocate(N);
   359 }
   361 template<class E, MEMFLAGS F, unsigned int N>
   362 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
   363   // tty->print_cr("START OopTaskQueue::oops_do");
   364   uint iters = size();
   365   uint index = _bottom;
   366   for (uint i = 0; i < iters; ++i) {
   367     index = decrement_index(index);
   368     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   369     //            index, &_elems[index], _elems[index]);
   370     E* t = (E*)&_elems[index];      // cast away volatility
   371     oop* p = (oop*)t;
   372     assert((*t)->is_oop_or_null(), "Not an oop or null");
   373     f->do_oop(p);
   374   }
   375   // tty->print_cr("END OopTaskQueue::oops_do");
   376 }
   378 template<class E, MEMFLAGS F, unsigned int N>
   379 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
   380   if (dirty_n_elems == N - 1) {
   381     // Actually means 0, so do the push.
   382     uint localBot = _bottom;
   383     // g++ complains if the volatile result of the assignment is
   384     // unused, so we cast the volatile away.  We cannot cast directly
   385     // to void, because gcc treats that as not using the result of the
   386     // assignment.  However, casting to E& means that we trigger an
   387     // unused-value warning.  So, we cast the E& to void.
   388     (void)const_cast<E&>(_elems[localBot] = t);
   389     OrderAccess::release_store(&_bottom, increment_index(localBot));
   390     TASKQUEUE_STATS_ONLY(stats.record_push());
   391     return true;
   392   }
   393   return false;
   394 }
   396 // pop_local_slow() is done by the owning thread and is trying to
   397 // get the last task in the queue.  It will compete with pop_global()
   398 // that will be used by other threads.  The tag age is incremented
   399 // whenever the queue goes empty which it will do here if this thread
   400 // gets the last task or in pop_global() if the queue wraps (top == 0
   401 // and pop_global() succeeds, see pop_global()).
   402 template<class E, MEMFLAGS F, unsigned int N>
   403 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
   404   // This queue was observed to contain exactly one element; either this
   405   // thread will claim it, or a competing "pop_global".  In either case,
   406   // the queue will be logically empty afterwards.  Create a new Age value
   407   // that represents the empty queue for the given value of "_bottom".  (We
   408   // must also increment "tag" because of the case where "bottom == 1",
   409   // "top == 0".  A pop_global could read the queue element in that case,
   410   // then have the owner thread do a pop followed by another push.  Without
   411   // the incrementing of "tag", the pop_global's CAS could succeed,
   412   // allowing it to believe it has claimed the stale element.)
   413   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   414   // Perhaps a competing pop_global has already incremented "top", in which
   415   // case it wins the element.
   416   if (localBot == oldAge.top()) {
   417     // No competing pop_global has yet incremented "top"; we'll try to
   418     // install new_age, thus claiming the element.
   419     Age tempAge = _age.cmpxchg(newAge, oldAge);
   420     if (tempAge == oldAge) {
   421       // We win.
   422       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   423       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
   424       return true;
   425     }
   426   }
   427   // We lose; a completing pop_global gets the element.  But the queue is empty
   428   // and top is greater than bottom.  Fix this representation of the empty queue
   429   // to become the canonical one.
   430   _age.set(newAge);
   431   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   432   return false;
   433 }
   435 template<class E, MEMFLAGS F, unsigned int N>
   436 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
   437   Age oldAge = _age.get();
   438   // Architectures with weak memory model require a barrier here
   439   // to guarantee that bottom is not older than age,
   440   // which is crucial for the correctness of the algorithm.
   441 #if !(defined SPARC || defined IA32 || defined AMD64)
   442   OrderAccess::fence();
   443 #endif
   444   uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
   445   uint n_elems = size(localBot, oldAge.top());
   446   if (n_elems == 0) {
   447     return false;
   448   }
   450   // g++ complains if the volatile result of the assignment is
   451   // unused, so we cast the volatile away.  We cannot cast directly
   452   // to void, because gcc treats that as not using the result of the
   453   // assignment.  However, casting to E& means that we trigger an
   454   // unused-value warning.  So, we cast the E& to void.
   455   (void) const_cast<E&>(t = _elems[oldAge.top()]);
   456   Age newAge(oldAge);
   457   newAge.increment();
   458   Age resAge = _age.cmpxchg(newAge, oldAge);
   460   // Note that using "_bottom" here might fail, since a pop_local might
   461   // have decremented it.
   462   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   463   return resAge == oldAge;
   464 }
   466 template<class E, MEMFLAGS F, unsigned int N>
   467 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
   468   FREE_C_HEAP_ARRAY(E, _elems, F);
   469 }
   471 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
   472 // elements that do not fit in the TaskQueue.
   473 //
   474 // This class hides two methods from super classes:
   475 //
   476 // push() - push onto the task queue or, if that fails, onto the overflow stack
   477 // is_empty() - return true if both the TaskQueue and overflow stack are empty
   478 //
   479 // Note that size() is not hidden--it returns the number of elements in the
   480 // TaskQueue, and does not include the size of the overflow stack.  This
   481 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
   482 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   483 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
   484 {
   485 public:
   486   typedef Stack<E, F>               overflow_t;
   487   typedef GenericTaskQueue<E, F, N> taskqueue_t;
   489   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
   491   // Push task t onto the queue or onto the overflow stack.  Return true.
   492   inline bool push(E t);
   494   // Attempt to pop from the overflow stack; return true if anything was popped.
   495   inline bool pop_overflow(E& t);
   497   inline overflow_t* overflow_stack() { return &_overflow_stack; }
   499   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
   500   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
   501   inline bool is_empty()        const {
   502     return taskqueue_empty() && overflow_empty();
   503   }
   505 private:
   506   overflow_t _overflow_stack;
   507 };
   509 template <class E, MEMFLAGS F, unsigned int N>
   510 bool OverflowTaskQueue<E, F, N>::push(E t)
   511 {
   512   if (!taskqueue_t::push(t)) {
   513     overflow_stack()->push(t);
   514     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
   515   }
   516   return true;
   517 }
   519 template <class E, MEMFLAGS F, unsigned int N>
   520 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
   521 {
   522   if (overflow_empty()) return false;
   523   t = overflow_stack()->pop();
   524   return true;
   525 }
   527 class TaskQueueSetSuper {
   528 protected:
   529   static int randomParkAndMiller(int* seed0);
   530 public:
   531   // Returns "true" if some TaskQueue in the set contains a task.
   532   virtual bool peek() = 0;
   533 };
   535 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
   536 };
   538 template<class T, MEMFLAGS F>
   539 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
   540 private:
   541   uint _n;
   542   T** _queues;
   544 public:
   545   typedef typename T::element_type E;
   547   GenericTaskQueueSet(int n) : _n(n) {
   548     typedef T* GenericTaskQueuePtr;
   549     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
   550     for (int i = 0; i < n; i++) {
   551       _queues[i] = NULL;
   552     }
   553   }
   555   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   557   void register_queue(uint i, T* q);
   559   T* queue(uint n);
   561   // The thread with queue number "queue_num" (and whose random number seed is
   562   // at "seed") is trying to steal a task from some other queue.  (It may try
   563   // several queues, according to some configuration parameter.)  If some steal
   564   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
   565   // false.
   566   bool steal(uint queue_num, int* seed, E& t);
   568   bool peek();
   569 };
   571 template<class T, MEMFLAGS F> void
   572 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
   573   assert(i < _n, "index out of range.");
   574   _queues[i] = q;
   575 }
   577 template<class T, MEMFLAGS F> T*
   578 GenericTaskQueueSet<T, F>::queue(uint i) {
   579   return _queues[i];
   580 }
   582 template<class T, MEMFLAGS F> bool
   583 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
   584   for (uint i = 0; i < 2 * _n; i++) {
   585     if (steal_best_of_2(queue_num, seed, t)) {
   586       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
   587       return true;
   588     }
   589   }
   590   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
   591   return false;
   592 }
   594 template<class T, MEMFLAGS F> bool
   595 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   596   if (_n > 2) {
   597     if(UseNUMASteal) {
   598       uint i = 10;
   599       uint k = queue_num;
   600       while ((k == queue_num || (k - queue_num) > 3 || (queue_num - k) > 3) && i > 0) {
   601         i--;
   602         k = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   603       }
   604       if(i > 0) {
   605         return _queues[k]->pop_global(t);
   606       }
   607       else {
   608          while (k == queue_num) { 
   609            k = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   610          }
   611          return _queues[k]->pop_global(t);
   612       }
   613     }
   614     else{
   615       uint k1 = queue_num;
   616       while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   617       uint k2 = queue_num;
   618       while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   619       // Sample both and try the larger.
   620       uint sz1 = _queues[k1]->size();
   621       uint sz2 = _queues[k2]->size();
   622       if (sz2 > sz1) return _queues[k2]->pop_global(t);
   623       else return _queues[k1]->pop_global(t);
   624     }
   625   } else if (_n == 2) {
   626     // Just try the other one.
   627     uint k = (queue_num + 1) % 2;
   628     return _queues[k]->pop_global(t);
   629   } else {
   630     assert(_n == 1, "can't be zero.");
   631     return false;
   632   }
   633 }
   635 template<class T, MEMFLAGS F>
   636 bool GenericTaskQueueSet<T, F>::peek() {
   637   // Try all the queues.
   638   for (uint j = 0; j < _n; j++) {
   639     if (_queues[j]->peek())
   640       return true;
   641   }
   642   return false;
   643 }
   645 // When to terminate from the termination protocol.
   646 class TerminatorTerminator: public CHeapObj<mtInternal> {
   647 public:
   648   virtual bool should_exit_termination() = 0;
   649 };
   651 // A class to aid in the termination of a set of parallel tasks using
   652 // TaskQueueSet's for work stealing.
   654 #undef TRACESPINNING
   656 class ParallelTaskTerminator: public StackObj {
   657 private:
   658   int _n_threads;
   659   TaskQueueSetSuper* _queue_set;
   660   int _offered_termination;
   662 #ifdef TRACESPINNING
   663   static uint _total_yields;
   664   static uint _total_spins;
   665   static uint _total_peeks;
   666 #endif
   668   bool peek_in_queue_set();
   669 protected:
   670   virtual void yield();
   671   void sleep(uint millis);
   673 public:
   675   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   676   // queue sets of work queues of other threads.
   677   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   679   // The current thread has no work, and is ready to terminate if everyone
   680   // else is.  If returns "true", all threads are terminated.  If returns
   681   // "false", available work has been observed in one of the task queues,
   682   // so the global task is not complete.
   683   bool offer_termination() {
   684     return offer_termination(NULL);
   685   }
   687   // As above, but it also terminates if the should_exit_termination()
   688   // method of the terminator parameter returns true. If terminator is
   689   // NULL, then it is ignored.
   690   bool offer_termination(TerminatorTerminator* terminator);
   692   // Reset the terminator, so that it may be reused again.
   693   // The caller is responsible for ensuring that this is done
   694   // in an MT-safe manner, once the previous round of use of
   695   // the terminator is finished.
   696   void reset_for_reuse();
   697   // Same as above but the number of parallel threads is set to the
   698   // given number.
   699   void reset_for_reuse(int n_threads);
   701 #ifdef TRACESPINNING
   702   static uint total_yields() { return _total_yields; }
   703   static uint total_spins() { return _total_spins; }
   704   static uint total_peeks() { return _total_peeks; }
   705   static void print_termination_counts();
   706 #endif
   707 };
   709 template<class E, MEMFLAGS F, unsigned int N> inline bool
   710 GenericTaskQueue<E, F, N>::push(E t) {
   711   uint localBot = _bottom;
   712   assert(localBot < N, "_bottom out of range.");
   713   idx_t top = _age.top();
   714   uint dirty_n_elems = dirty_size(localBot, top);
   715   assert(dirty_n_elems < N, "n_elems out of range.");
   716   if (dirty_n_elems < max_elems()) {
   717     // g++ complains if the volatile result of the assignment is
   718     // unused, so we cast the volatile away.  We cannot cast directly
   719     // to void, because gcc treats that as not using the result of the
   720     // assignment.  However, casting to E& means that we trigger an
   721     // unused-value warning.  So, we cast the E& to void.
   722     (void) const_cast<E&>(_elems[localBot] = t);
   723     OrderAccess::release_store(&_bottom, increment_index(localBot));
   724     TASKQUEUE_STATS_ONLY(stats.record_push());
   725     return true;
   726   } else {
   727     return push_slow(t, dirty_n_elems);
   728   }
   729 }
   731 template<class E, MEMFLAGS F, unsigned int N> inline bool
   732 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
   733   uint localBot = _bottom;
   734   // This value cannot be N-1.  That can only occur as a result of
   735   // the assignment to bottom in this method.  If it does, this method
   736   // resets the size to 0 before the next call (which is sequential,
   737   // since this is pop_local.)
   738   uint dirty_n_elems = dirty_size(localBot, _age.top());
   739   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   740   if (dirty_n_elems == 0) return false;
   741   localBot = decrement_index(localBot);
   742   _bottom = localBot;
   743   // This is necessary to prevent any read below from being reordered
   744   // before the store just above.
   745   OrderAccess::fence();
   746   // g++ complains if the volatile result of the assignment is
   747   // unused, so we cast the volatile away.  We cannot cast directly
   748   // to void, because gcc treats that as not using the result of the
   749   // assignment.  However, casting to E& means that we trigger an
   750   // unused-value warning.  So, we cast the E& to void.
   751   (void) const_cast<E&>(t = _elems[localBot]);
   752   // This is a second read of "age"; the "size()" above is the first.
   753   // If there's still at least one element in the queue, based on the
   754   // "_bottom" and "age" we've read, then there can be no interference with
   755   // a "pop_global" operation, and we're done.
   756   idx_t tp = _age.top();    // XXX
   757   if (size(localBot, tp) > 0) {
   758     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   759     TASKQUEUE_STATS_ONLY(stats.record_pop());
   760     return true;
   761   } else {
   762     // Otherwise, the queue contained exactly one element; we take the slow
   763     // path.
   764     return pop_local_slow(localBot, _age.get());
   765   }
   766 }
   768 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
   769 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
   771 #ifdef _MSC_VER
   772 #pragma warning(push)
   773 // warning C4522: multiple assignment operators specified
   774 #pragma warning(disable:4522)
   775 #endif
   777 // This is a container class for either an oop* or a narrowOop*.
   778 // Both are pushed onto a task queue and the consumer will test is_narrow()
   779 // to determine which should be processed.
   780 class StarTask {
   781   void*  _holder;        // either union oop* or narrowOop*
   783   enum { COMPRESSED_OOP_MASK = 1 };
   785  public:
   786   StarTask(narrowOop* p) {
   787     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   788     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   789   }
   790   StarTask(oop* p)       {
   791     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   792     _holder = (void*)p;
   793   }
   794   StarTask()             { _holder = NULL; }
   795   operator oop*()        { return (oop*)_holder; }
   796   operator narrowOop*()  {
   797     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   798   }
   800   StarTask& operator=(const StarTask& t) {
   801     _holder = t._holder;
   802     return *this;
   803   }
   804   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   805     _holder = t._holder;
   806     return *this;
   807   }
   809   bool is_narrow() const {
   810     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   811   }
   812 };
   814 class ObjArrayTask
   815 {
   816 public:
   817   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   818   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   819     assert(idx <= size_t(max_jint), "too big");
   820   }
   821   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   823   ObjArrayTask& operator =(const ObjArrayTask& t) {
   824     _obj = t._obj;
   825     _index = t._index;
   826     return *this;
   827   }
   828   volatile ObjArrayTask&
   829   operator =(const volatile ObjArrayTask& t) volatile {
   830     (void)const_cast<oop&>(_obj = t._obj);
   831     _index = t._index;
   832     return *this;
   833   }
   835   inline oop obj()   const { return _obj; }
   836   inline int index() const { return _index; }
   838   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   840 private:
   841   oop _obj;
   842   int _index;
   843 };
   845 #ifdef _MSC_VER
   846 #pragma warning(pop)
   847 #endif
   849 typedef OverflowTaskQueue<StarTask, mtClass>           OopStarTaskQueue;
   850 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
   852 typedef OverflowTaskQueue<size_t, mtInternal>             RegionTaskQueue;
   853 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass>     RegionTaskQueueSet;
   856 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP

mercurial