src/share/vm/utilities/taskqueue.hpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 1
2d8a650513c2
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
aoqi@0 26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
aoqi@0 27
aoqi@0 28 #include "memory/allocation.hpp"
aoqi@0 29 #include "memory/allocation.inline.hpp"
aoqi@0 30 #include "runtime/mutex.hpp"
aoqi@0 31 #include "utilities/stack.hpp"
aoqi@0 32 #ifdef TARGET_OS_ARCH_linux_x86
aoqi@0 33 # include "orderAccess_linux_x86.inline.hpp"
aoqi@0 34 #endif
aoqi@0 35 #ifdef TARGET_OS_ARCH_linux_sparc
aoqi@0 36 # include "orderAccess_linux_sparc.inline.hpp"
aoqi@0 37 #endif
aoqi@0 38 #ifdef TARGET_OS_ARCH_linux_zero
aoqi@0 39 # include "orderAccess_linux_zero.inline.hpp"
aoqi@0 40 #endif
aoqi@0 41 #ifdef TARGET_OS_ARCH_solaris_x86
aoqi@0 42 # include "orderAccess_solaris_x86.inline.hpp"
aoqi@0 43 #endif
aoqi@0 44 #ifdef TARGET_OS_ARCH_solaris_sparc
aoqi@0 45 # include "orderAccess_solaris_sparc.inline.hpp"
aoqi@0 46 #endif
aoqi@0 47 #ifdef TARGET_OS_ARCH_windows_x86
aoqi@0 48 # include "orderAccess_windows_x86.inline.hpp"
aoqi@0 49 #endif
aoqi@0 50 #ifdef TARGET_OS_ARCH_linux_arm
aoqi@0 51 # include "orderAccess_linux_arm.inline.hpp"
aoqi@0 52 #endif
aoqi@0 53 #ifdef TARGET_OS_ARCH_linux_ppc
aoqi@0 54 # include "orderAccess_linux_ppc.inline.hpp"
aoqi@0 55 #endif
aoqi@0 56 #ifdef TARGET_OS_ARCH_aix_ppc
aoqi@0 57 # include "orderAccess_aix_ppc.inline.hpp"
aoqi@0 58 #endif
aoqi@0 59 #ifdef TARGET_OS_ARCH_bsd_x86
aoqi@0 60 # include "orderAccess_bsd_x86.inline.hpp"
aoqi@0 61 #endif
aoqi@0 62 #ifdef TARGET_OS_ARCH_bsd_zero
aoqi@0 63 # include "orderAccess_bsd_zero.inline.hpp"
aoqi@0 64 #endif
aoqi@0 65
aoqi@0 66 // Simple TaskQueue stats that are collected by default in debug builds.
aoqi@0 67
aoqi@0 68 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
aoqi@0 69 #define TASKQUEUE_STATS 1
aoqi@0 70 #elif !defined(TASKQUEUE_STATS)
aoqi@0 71 #define TASKQUEUE_STATS 0
aoqi@0 72 #endif
aoqi@0 73
aoqi@0 74 #if TASKQUEUE_STATS
aoqi@0 75 #define TASKQUEUE_STATS_ONLY(code) code
aoqi@0 76 #else
aoqi@0 77 #define TASKQUEUE_STATS_ONLY(code)
aoqi@0 78 #endif // TASKQUEUE_STATS
aoqi@0 79
aoqi@0 80 #if TASKQUEUE_STATS
aoqi@0 81 class TaskQueueStats {
aoqi@0 82 public:
aoqi@0 83 enum StatId {
aoqi@0 84 push, // number of taskqueue pushes
aoqi@0 85 pop, // number of taskqueue pops
aoqi@0 86 pop_slow, // subset of taskqueue pops that were done slow-path
aoqi@0 87 steal_attempt, // number of taskqueue steal attempts
aoqi@0 88 steal, // number of taskqueue steals
aoqi@0 89 overflow, // number of overflow pushes
aoqi@0 90 overflow_max_len, // max length of overflow stack
aoqi@0 91 last_stat_id
aoqi@0 92 };
aoqi@0 93
aoqi@0 94 public:
aoqi@0 95 inline TaskQueueStats() { reset(); }
aoqi@0 96
aoqi@0 97 inline void record_push() { ++_stats[push]; }
aoqi@0 98 inline void record_pop() { ++_stats[pop]; }
aoqi@0 99 inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
aoqi@0 100 inline void record_steal(bool success);
aoqi@0 101 inline void record_overflow(size_t new_length);
aoqi@0 102
aoqi@0 103 TaskQueueStats & operator +=(const TaskQueueStats & addend);
aoqi@0 104
aoqi@0 105 inline size_t get(StatId id) const { return _stats[id]; }
aoqi@0 106 inline const size_t* get() const { return _stats; }
aoqi@0 107
aoqi@0 108 inline void reset();
aoqi@0 109
aoqi@0 110 // Print the specified line of the header (does not include a line separator).
aoqi@0 111 static void print_header(unsigned int line, outputStream* const stream = tty,
aoqi@0 112 unsigned int width = 10);
aoqi@0 113 // Print the statistics (does not include a line separator).
aoqi@0 114 void print(outputStream* const stream = tty, unsigned int width = 10) const;
aoqi@0 115
aoqi@0 116 DEBUG_ONLY(void verify() const;)
aoqi@0 117
aoqi@0 118 private:
aoqi@0 119 size_t _stats[last_stat_id];
aoqi@0 120 static const char * const _names[last_stat_id];
aoqi@0 121 };
aoqi@0 122
aoqi@0 123 void TaskQueueStats::record_steal(bool success) {
aoqi@0 124 ++_stats[steal_attempt];
aoqi@0 125 if (success) ++_stats[steal];
aoqi@0 126 }
aoqi@0 127
aoqi@0 128 void TaskQueueStats::record_overflow(size_t new_len) {
aoqi@0 129 ++_stats[overflow];
aoqi@0 130 if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
aoqi@0 131 }
aoqi@0 132
aoqi@0 133 void TaskQueueStats::reset() {
aoqi@0 134 memset(_stats, 0, sizeof(_stats));
aoqi@0 135 }
aoqi@0 136 #endif // TASKQUEUE_STATS
aoqi@0 137
aoqi@0 138 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
aoqi@0 139
aoqi@0 140 template <unsigned int N, MEMFLAGS F>
aoqi@0 141 class TaskQueueSuper: public CHeapObj<F> {
aoqi@0 142 protected:
aoqi@0 143 // Internal type for indexing the queue; also used for the tag.
aoqi@0 144 typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
aoqi@0 145
aoqi@0 146 // The first free element after the last one pushed (mod N).
aoqi@0 147 volatile uint _bottom;
aoqi@0 148
aoqi@0 149 enum { MOD_N_MASK = N - 1 };
aoqi@0 150
aoqi@0 151 class Age {
aoqi@0 152 public:
aoqi@0 153 Age(size_t data = 0) { _data = data; }
aoqi@0 154 Age(const Age& age) { _data = age._data; }
aoqi@0 155 Age(idx_t top, idx_t tag) { _fields._top = top; _fields._tag = tag; }
aoqi@0 156
aoqi@0 157 Age get() const volatile { return _data; }
aoqi@0 158 void set(Age age) volatile { _data = age._data; }
aoqi@0 159
aoqi@0 160 idx_t top() const volatile { return _fields._top; }
aoqi@0 161 idx_t tag() const volatile { return _fields._tag; }
aoqi@0 162
aoqi@0 163 // Increment top; if it wraps, increment tag also.
aoqi@0 164 void increment() {
aoqi@0 165 _fields._top = increment_index(_fields._top);
aoqi@0 166 if (_fields._top == 0) ++_fields._tag;
aoqi@0 167 }
aoqi@0 168
aoqi@0 169 Age cmpxchg(const Age new_age, const Age old_age) volatile {
aoqi@0 170 return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
aoqi@0 171 (volatile intptr_t *)&_data,
aoqi@0 172 (intptr_t)old_age._data);
aoqi@0 173 }
aoqi@0 174
aoqi@0 175 bool operator ==(const Age& other) const { return _data == other._data; }
aoqi@0 176
aoqi@0 177 private:
aoqi@0 178 struct fields {
aoqi@0 179 idx_t _top;
aoqi@0 180 idx_t _tag;
aoqi@0 181 };
aoqi@0 182 union {
aoqi@0 183 size_t _data;
aoqi@0 184 fields _fields;
aoqi@0 185 };
aoqi@0 186 };
aoqi@0 187
aoqi@0 188 volatile Age _age;
aoqi@0 189
aoqi@0 190 // These both operate mod N.
aoqi@0 191 static uint increment_index(uint ind) {
aoqi@0 192 return (ind + 1) & MOD_N_MASK;
aoqi@0 193 }
aoqi@0 194 static uint decrement_index(uint ind) {
aoqi@0 195 return (ind - 1) & MOD_N_MASK;
aoqi@0 196 }
aoqi@0 197
aoqi@0 198 // Returns a number in the range [0..N). If the result is "N-1", it should be
aoqi@0 199 // interpreted as 0.
aoqi@0 200 uint dirty_size(uint bot, uint top) const {
aoqi@0 201 return (bot - top) & MOD_N_MASK;
aoqi@0 202 }
aoqi@0 203
aoqi@0 204 // Returns the size corresponding to the given "bot" and "top".
aoqi@0 205 uint size(uint bot, uint top) const {
aoqi@0 206 uint sz = dirty_size(bot, top);
aoqi@0 207 // Has the queue "wrapped", so that bottom is less than top? There's a
aoqi@0 208 // complicated special case here. A pair of threads could perform pop_local
aoqi@0 209 // and pop_global operations concurrently, starting from a state in which
aoqi@0 210 // _bottom == _top+1. The pop_local could succeed in decrementing _bottom,
aoqi@0 211 // and the pop_global in incrementing _top (in which case the pop_global
aoqi@0 212 // will be awarded the contested queue element.) The resulting state must
aoqi@0 213 // be interpreted as an empty queue. (We only need to worry about one such
aoqi@0 214 // event: only the queue owner performs pop_local's, and several concurrent
aoqi@0 215 // threads attempting to perform the pop_global will all perform the same
aoqi@0 216 // CAS, and only one can succeed.) Any stealing thread that reads after
aoqi@0 217 // either the increment or decrement will see an empty queue, and will not
aoqi@0 218 // join the competitors. The "sz == -1 || sz == N-1" state will not be
aoqi@0 219 // modified by concurrent queues, so the owner thread can reset the state to
aoqi@0 220 // _bottom == top so subsequent pushes will be performed normally.
aoqi@0 221 return (sz == N - 1) ? 0 : sz;
aoqi@0 222 }
aoqi@0 223
aoqi@0 224 public:
aoqi@0 225 TaskQueueSuper() : _bottom(0), _age() {}
aoqi@0 226
aoqi@0 227 // Return true if the TaskQueue contains/does not contain any tasks.
aoqi@0 228 bool peek() const { return _bottom != _age.top(); }
aoqi@0 229 bool is_empty() const { return size() == 0; }
aoqi@0 230
aoqi@0 231 // Return an estimate of the number of elements in the queue.
aoqi@0 232 // The "careful" version admits the possibility of pop_local/pop_global
aoqi@0 233 // races.
aoqi@0 234 uint size() const {
aoqi@0 235 return size(_bottom, _age.top());
aoqi@0 236 }
aoqi@0 237
aoqi@0 238 uint dirty_size() const {
aoqi@0 239 return dirty_size(_bottom, _age.top());
aoqi@0 240 }
aoqi@0 241
aoqi@0 242 void set_empty() {
aoqi@0 243 _bottom = 0;
aoqi@0 244 _age.set(0);
aoqi@0 245 }
aoqi@0 246
aoqi@0 247 // Maximum number of elements allowed in the queue. This is two less
aoqi@0 248 // than the actual queue size, for somewhat complicated reasons.
aoqi@0 249 uint max_elems() const { return N - 2; }
aoqi@0 250
aoqi@0 251 // Total size of queue.
aoqi@0 252 static const uint total_size() { return N; }
aoqi@0 253
aoqi@0 254 TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
aoqi@0 255 };
aoqi@0 256
aoqi@0 257 //
aoqi@0 258 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
aoqi@0 259 // ended-queue (deque), intended for use in work stealing. Queue operations
aoqi@0 260 // are non-blocking.
aoqi@0 261 //
aoqi@0 262 // A queue owner thread performs push() and pop_local() operations on one end
aoqi@0 263 // of the queue, while other threads may steal work using the pop_global()
aoqi@0 264 // method.
aoqi@0 265 //
aoqi@0 266 // The main difference to the original algorithm is that this
aoqi@0 267 // implementation allows wrap-around at the end of its allocated
aoqi@0 268 // storage, which is an array.
aoqi@0 269 //
aoqi@0 270 // The original paper is:
aoqi@0 271 //
aoqi@0 272 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
aoqi@0 273 // Thread scheduling for multiprogrammed multiprocessors.
aoqi@0 274 // Theory of Computing Systems 34, 2 (2001), 115-144.
aoqi@0 275 //
aoqi@0 276 // The following paper provides an correctness proof and an
aoqi@0 277 // implementation for weakly ordered memory models including (pseudo-)
aoqi@0 278 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
aoqi@0 279 // similar to ABP, with the main difference that it allows resizing of the
aoqi@0 280 // underlying storage:
aoqi@0 281 //
aoqi@0 282 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
aoqi@0 283 // Correct and efficient work-stealing for weak memory models
aoqi@0 284 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
aoqi@0 285 // practice of parallel programming (PPoPP 2013), 69-80
aoqi@0 286 //
aoqi@0 287
aoqi@0 288 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
aoqi@0 289 class GenericTaskQueue: public TaskQueueSuper<N, F> {
aoqi@0 290 ArrayAllocator<E, F> _array_allocator;
aoqi@0 291 protected:
aoqi@0 292 typedef typename TaskQueueSuper<N, F>::Age Age;
aoqi@0 293 typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
aoqi@0 294
aoqi@0 295 using TaskQueueSuper<N, F>::_bottom;
aoqi@0 296 using TaskQueueSuper<N, F>::_age;
aoqi@0 297 using TaskQueueSuper<N, F>::increment_index;
aoqi@0 298 using TaskQueueSuper<N, F>::decrement_index;
aoqi@0 299 using TaskQueueSuper<N, F>::dirty_size;
aoqi@0 300
aoqi@0 301 public:
aoqi@0 302 using TaskQueueSuper<N, F>::max_elems;
aoqi@0 303 using TaskQueueSuper<N, F>::size;
aoqi@0 304
aoqi@0 305 #if TASKQUEUE_STATS
aoqi@0 306 using TaskQueueSuper<N, F>::stats;
aoqi@0 307 #endif
aoqi@0 308
aoqi@0 309 private:
aoqi@0 310 // Slow paths for push, pop_local. (pop_global has no fast path.)
aoqi@0 311 bool push_slow(E t, uint dirty_n_elems);
aoqi@0 312 bool pop_local_slow(uint localBot, Age oldAge);
aoqi@0 313
aoqi@0 314 public:
aoqi@0 315 typedef E element_type;
aoqi@0 316
aoqi@0 317 // Initializes the queue to empty.
aoqi@0 318 GenericTaskQueue();
aoqi@0 319
aoqi@0 320 void initialize();
aoqi@0 321
aoqi@0 322 // Push the task "t" on the queue. Returns "false" iff the queue is full.
aoqi@0 323 inline bool push(E t);
aoqi@0 324
aoqi@0 325 // Attempts to claim a task from the "local" end of the queue (the most
aoqi@0 326 // recently pushed). If successful, returns true and sets t to the task;
aoqi@0 327 // otherwise, returns false (the queue is empty).
aoqi@0 328 inline bool pop_local(volatile E& t);
aoqi@0 329
aoqi@0 330 // Like pop_local(), but uses the "global" end of the queue (the least
aoqi@0 331 // recently pushed).
aoqi@0 332 bool pop_global(volatile E& t);
aoqi@0 333
aoqi@0 334 // Delete any resource associated with the queue.
aoqi@0 335 ~GenericTaskQueue();
aoqi@0 336
aoqi@0 337 // apply the closure to all elements in the task queue
aoqi@0 338 void oops_do(OopClosure* f);
aoqi@0 339
aoqi@0 340 private:
aoqi@0 341 // Element array.
aoqi@0 342 volatile E* _elems;
aoqi@0 343 };
aoqi@0 344
aoqi@0 345 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 346 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
aoqi@0 347 assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
aoqi@0 348 }
aoqi@0 349
aoqi@0 350 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 351 void GenericTaskQueue<E, F, N>::initialize() {
aoqi@0 352 _elems = _array_allocator.allocate(N);
aoqi@0 353 }
aoqi@0 354
aoqi@0 355 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 356 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
aoqi@0 357 // tty->print_cr("START OopTaskQueue::oops_do");
aoqi@0 358 uint iters = size();
aoqi@0 359 uint index = _bottom;
aoqi@0 360 for (uint i = 0; i < iters; ++i) {
aoqi@0 361 index = decrement_index(index);
aoqi@0 362 // tty->print_cr(" doing entry %d," INTPTR_T " -> " INTPTR_T,
aoqi@0 363 // index, &_elems[index], _elems[index]);
aoqi@0 364 E* t = (E*)&_elems[index]; // cast away volatility
aoqi@0 365 oop* p = (oop*)t;
aoqi@0 366 assert((*t)->is_oop_or_null(), "Not an oop or null");
aoqi@0 367 f->do_oop(p);
aoqi@0 368 }
aoqi@0 369 // tty->print_cr("END OopTaskQueue::oops_do");
aoqi@0 370 }
aoqi@0 371
aoqi@0 372 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 373 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
aoqi@0 374 if (dirty_n_elems == N - 1) {
aoqi@0 375 // Actually means 0, so do the push.
aoqi@0 376 uint localBot = _bottom;
aoqi@0 377 // g++ complains if the volatile result of the assignment is
aoqi@0 378 // unused, so we cast the volatile away. We cannot cast directly
aoqi@0 379 // to void, because gcc treats that as not using the result of the
aoqi@0 380 // assignment. However, casting to E& means that we trigger an
aoqi@0 381 // unused-value warning. So, we cast the E& to void.
aoqi@0 382 (void)const_cast<E&>(_elems[localBot] = t);
aoqi@0 383 OrderAccess::release_store(&_bottom, increment_index(localBot));
aoqi@0 384 TASKQUEUE_STATS_ONLY(stats.record_push());
aoqi@0 385 return true;
aoqi@0 386 }
aoqi@0 387 return false;
aoqi@0 388 }
aoqi@0 389
aoqi@0 390 // pop_local_slow() is done by the owning thread and is trying to
aoqi@0 391 // get the last task in the queue. It will compete with pop_global()
aoqi@0 392 // that will be used by other threads. The tag age is incremented
aoqi@0 393 // whenever the queue goes empty which it will do here if this thread
aoqi@0 394 // gets the last task or in pop_global() if the queue wraps (top == 0
aoqi@0 395 // and pop_global() succeeds, see pop_global()).
aoqi@0 396 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 397 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
aoqi@0 398 // This queue was observed to contain exactly one element; either this
aoqi@0 399 // thread will claim it, or a competing "pop_global". In either case,
aoqi@0 400 // the queue will be logically empty afterwards. Create a new Age value
aoqi@0 401 // that represents the empty queue for the given value of "_bottom". (We
aoqi@0 402 // must also increment "tag" because of the case where "bottom == 1",
aoqi@0 403 // "top == 0". A pop_global could read the queue element in that case,
aoqi@0 404 // then have the owner thread do a pop followed by another push. Without
aoqi@0 405 // the incrementing of "tag", the pop_global's CAS could succeed,
aoqi@0 406 // allowing it to believe it has claimed the stale element.)
aoqi@0 407 Age newAge((idx_t)localBot, oldAge.tag() + 1);
aoqi@0 408 // Perhaps a competing pop_global has already incremented "top", in which
aoqi@0 409 // case it wins the element.
aoqi@0 410 if (localBot == oldAge.top()) {
aoqi@0 411 // No competing pop_global has yet incremented "top"; we'll try to
aoqi@0 412 // install new_age, thus claiming the element.
aoqi@0 413 Age tempAge = _age.cmpxchg(newAge, oldAge);
aoqi@0 414 if (tempAge == oldAge) {
aoqi@0 415 // We win.
aoqi@0 416 assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
aoqi@0 417 TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
aoqi@0 418 return true;
aoqi@0 419 }
aoqi@0 420 }
aoqi@0 421 // We lose; a completing pop_global gets the element. But the queue is empty
aoqi@0 422 // and top is greater than bottom. Fix this representation of the empty queue
aoqi@0 423 // to become the canonical one.
aoqi@0 424 _age.set(newAge);
aoqi@0 425 assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
aoqi@0 426 return false;
aoqi@0 427 }
aoqi@0 428
aoqi@0 429 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 430 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
aoqi@0 431 Age oldAge = _age.get();
aoqi@0 432 // Architectures with weak memory model require a barrier here
aoqi@0 433 // to guarantee that bottom is not older than age,
aoqi@0 434 // which is crucial for the correctness of the algorithm.
aoqi@0 435 #if !(defined SPARC || defined IA32 || defined AMD64)
aoqi@0 436 OrderAccess::fence();
aoqi@0 437 #endif
aoqi@0 438 uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
aoqi@0 439 uint n_elems = size(localBot, oldAge.top());
aoqi@0 440 if (n_elems == 0) {
aoqi@0 441 return false;
aoqi@0 442 }
aoqi@0 443
aoqi@0 444 // g++ complains if the volatile result of the assignment is
aoqi@0 445 // unused, so we cast the volatile away. We cannot cast directly
aoqi@0 446 // to void, because gcc treats that as not using the result of the
aoqi@0 447 // assignment. However, casting to E& means that we trigger an
aoqi@0 448 // unused-value warning. So, we cast the E& to void.
aoqi@0 449 (void) const_cast<E&>(t = _elems[oldAge.top()]);
aoqi@0 450 Age newAge(oldAge);
aoqi@0 451 newAge.increment();
aoqi@0 452 Age resAge = _age.cmpxchg(newAge, oldAge);
aoqi@0 453
aoqi@0 454 // Note that using "_bottom" here might fail, since a pop_local might
aoqi@0 455 // have decremented it.
aoqi@0 456 assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
aoqi@0 457 return resAge == oldAge;
aoqi@0 458 }
aoqi@0 459
aoqi@0 460 template<class E, MEMFLAGS F, unsigned int N>
aoqi@0 461 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
aoqi@0 462 FREE_C_HEAP_ARRAY(E, _elems, F);
aoqi@0 463 }
aoqi@0 464
aoqi@0 465 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
aoqi@0 466 // elements that do not fit in the TaskQueue.
aoqi@0 467 //
aoqi@0 468 // This class hides two methods from super classes:
aoqi@0 469 //
aoqi@0 470 // push() - push onto the task queue or, if that fails, onto the overflow stack
aoqi@0 471 // is_empty() - return true if both the TaskQueue and overflow stack are empty
aoqi@0 472 //
aoqi@0 473 // Note that size() is not hidden--it returns the number of elements in the
aoqi@0 474 // TaskQueue, and does not include the size of the overflow stack. This
aoqi@0 475 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
aoqi@0 476 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
aoqi@0 477 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
aoqi@0 478 {
aoqi@0 479 public:
aoqi@0 480 typedef Stack<E, F> overflow_t;
aoqi@0 481 typedef GenericTaskQueue<E, F, N> taskqueue_t;
aoqi@0 482
aoqi@0 483 TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
aoqi@0 484
aoqi@0 485 // Push task t onto the queue or onto the overflow stack. Return true.
aoqi@0 486 inline bool push(E t);
aoqi@0 487
aoqi@0 488 // Attempt to pop from the overflow stack; return true if anything was popped.
aoqi@0 489 inline bool pop_overflow(E& t);
aoqi@0 490
aoqi@0 491 inline overflow_t* overflow_stack() { return &_overflow_stack; }
aoqi@0 492
aoqi@0 493 inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
aoqi@0 494 inline bool overflow_empty() const { return _overflow_stack.is_empty(); }
aoqi@0 495 inline bool is_empty() const {
aoqi@0 496 return taskqueue_empty() && overflow_empty();
aoqi@0 497 }
aoqi@0 498
aoqi@0 499 private:
aoqi@0 500 overflow_t _overflow_stack;
aoqi@0 501 };
aoqi@0 502
aoqi@0 503 template <class E, MEMFLAGS F, unsigned int N>
aoqi@0 504 bool OverflowTaskQueue<E, F, N>::push(E t)
aoqi@0 505 {
aoqi@0 506 if (!taskqueue_t::push(t)) {
aoqi@0 507 overflow_stack()->push(t);
aoqi@0 508 TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
aoqi@0 509 }
aoqi@0 510 return true;
aoqi@0 511 }
aoqi@0 512
aoqi@0 513 template <class E, MEMFLAGS F, unsigned int N>
aoqi@0 514 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
aoqi@0 515 {
aoqi@0 516 if (overflow_empty()) return false;
aoqi@0 517 t = overflow_stack()->pop();
aoqi@0 518 return true;
aoqi@0 519 }
aoqi@0 520
aoqi@0 521 class TaskQueueSetSuper {
aoqi@0 522 protected:
aoqi@0 523 static int randomParkAndMiller(int* seed0);
aoqi@0 524 public:
aoqi@0 525 // Returns "true" if some TaskQueue in the set contains a task.
aoqi@0 526 virtual bool peek() = 0;
aoqi@0 527 };
aoqi@0 528
aoqi@0 529 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
aoqi@0 530 };
aoqi@0 531
aoqi@0 532 template<class T, MEMFLAGS F>
aoqi@0 533 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
aoqi@0 534 private:
aoqi@0 535 uint _n;
aoqi@0 536 T** _queues;
aoqi@0 537
aoqi@0 538 public:
aoqi@0 539 typedef typename T::element_type E;
aoqi@0 540
aoqi@0 541 GenericTaskQueueSet(int n) : _n(n) {
aoqi@0 542 typedef T* GenericTaskQueuePtr;
aoqi@0 543 _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
aoqi@0 544 for (int i = 0; i < n; i++) {
aoqi@0 545 _queues[i] = NULL;
aoqi@0 546 }
aoqi@0 547 }
aoqi@0 548
aoqi@0 549 bool steal_best_of_2(uint queue_num, int* seed, E& t);
aoqi@0 550
aoqi@0 551 void register_queue(uint i, T* q);
aoqi@0 552
aoqi@0 553 T* queue(uint n);
aoqi@0 554
aoqi@0 555 // The thread with queue number "queue_num" (and whose random number seed is
aoqi@0 556 // at "seed") is trying to steal a task from some other queue. (It may try
aoqi@0 557 // several queues, according to some configuration parameter.) If some steal
aoqi@0 558 // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
aoqi@0 559 // false.
aoqi@0 560 bool steal(uint queue_num, int* seed, E& t);
aoqi@0 561
aoqi@0 562 bool peek();
aoqi@0 563 };
aoqi@0 564
aoqi@0 565 template<class T, MEMFLAGS F> void
aoqi@0 566 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
aoqi@0 567 assert(i < _n, "index out of range.");
aoqi@0 568 _queues[i] = q;
aoqi@0 569 }
aoqi@0 570
aoqi@0 571 template<class T, MEMFLAGS F> T*
aoqi@0 572 GenericTaskQueueSet<T, F>::queue(uint i) {
aoqi@0 573 return _queues[i];
aoqi@0 574 }
aoqi@0 575
aoqi@0 576 template<class T, MEMFLAGS F> bool
aoqi@0 577 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
aoqi@0 578 for (uint i = 0; i < 2 * _n; i++) {
aoqi@0 579 if (steal_best_of_2(queue_num, seed, t)) {
aoqi@0 580 TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
aoqi@0 581 return true;
aoqi@0 582 }
aoqi@0 583 }
aoqi@0 584 TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
aoqi@0 585 return false;
aoqi@0 586 }
aoqi@0 587
aoqi@0 588 template<class T, MEMFLAGS F> bool
aoqi@0 589 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
aoqi@0 590 if (_n > 2) {
aoqi@0 591 uint k1 = queue_num;
aoqi@0 592 while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
aoqi@0 593 uint k2 = queue_num;
aoqi@0 594 while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
aoqi@0 595 // Sample both and try the larger.
aoqi@0 596 uint sz1 = _queues[k1]->size();
aoqi@0 597 uint sz2 = _queues[k2]->size();
aoqi@0 598 if (sz2 > sz1) return _queues[k2]->pop_global(t);
aoqi@0 599 else return _queues[k1]->pop_global(t);
aoqi@0 600 } else if (_n == 2) {
aoqi@0 601 // Just try the other one.
aoqi@0 602 uint k = (queue_num + 1) % 2;
aoqi@0 603 return _queues[k]->pop_global(t);
aoqi@0 604 } else {
aoqi@0 605 assert(_n == 1, "can't be zero.");
aoqi@0 606 return false;
aoqi@0 607 }
aoqi@0 608 }
aoqi@0 609
aoqi@0 610 template<class T, MEMFLAGS F>
aoqi@0 611 bool GenericTaskQueueSet<T, F>::peek() {
aoqi@0 612 // Try all the queues.
aoqi@0 613 for (uint j = 0; j < _n; j++) {
aoqi@0 614 if (_queues[j]->peek())
aoqi@0 615 return true;
aoqi@0 616 }
aoqi@0 617 return false;
aoqi@0 618 }
aoqi@0 619
aoqi@0 620 // When to terminate from the termination protocol.
aoqi@0 621 class TerminatorTerminator: public CHeapObj<mtInternal> {
aoqi@0 622 public:
aoqi@0 623 virtual bool should_exit_termination() = 0;
aoqi@0 624 };
aoqi@0 625
aoqi@0 626 // A class to aid in the termination of a set of parallel tasks using
aoqi@0 627 // TaskQueueSet's for work stealing.
aoqi@0 628
aoqi@0 629 #undef TRACESPINNING
aoqi@0 630
aoqi@0 631 class ParallelTaskTerminator: public StackObj {
aoqi@0 632 private:
aoqi@0 633 int _n_threads;
aoqi@0 634 TaskQueueSetSuper* _queue_set;
aoqi@0 635 int _offered_termination;
aoqi@0 636
aoqi@0 637 #ifdef TRACESPINNING
aoqi@0 638 static uint _total_yields;
aoqi@0 639 static uint _total_spins;
aoqi@0 640 static uint _total_peeks;
aoqi@0 641 #endif
aoqi@0 642
aoqi@0 643 bool peek_in_queue_set();
aoqi@0 644 protected:
aoqi@0 645 virtual void yield();
aoqi@0 646 void sleep(uint millis);
aoqi@0 647
aoqi@0 648 public:
aoqi@0 649
aoqi@0 650 // "n_threads" is the number of threads to be terminated. "queue_set" is a
aoqi@0 651 // queue sets of work queues of other threads.
aoqi@0 652 ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
aoqi@0 653
aoqi@0 654 // The current thread has no work, and is ready to terminate if everyone
aoqi@0 655 // else is. If returns "true", all threads are terminated. If returns
aoqi@0 656 // "false", available work has been observed in one of the task queues,
aoqi@0 657 // so the global task is not complete.
aoqi@0 658 bool offer_termination() {
aoqi@0 659 return offer_termination(NULL);
aoqi@0 660 }
aoqi@0 661
aoqi@0 662 // As above, but it also terminates if the should_exit_termination()
aoqi@0 663 // method of the terminator parameter returns true. If terminator is
aoqi@0 664 // NULL, then it is ignored.
aoqi@0 665 bool offer_termination(TerminatorTerminator* terminator);
aoqi@0 666
aoqi@0 667 // Reset the terminator, so that it may be reused again.
aoqi@0 668 // The caller is responsible for ensuring that this is done
aoqi@0 669 // in an MT-safe manner, once the previous round of use of
aoqi@0 670 // the terminator is finished.
aoqi@0 671 void reset_for_reuse();
aoqi@0 672 // Same as above but the number of parallel threads is set to the
aoqi@0 673 // given number.
aoqi@0 674 void reset_for_reuse(int n_threads);
aoqi@0 675
aoqi@0 676 #ifdef TRACESPINNING
aoqi@0 677 static uint total_yields() { return _total_yields; }
aoqi@0 678 static uint total_spins() { return _total_spins; }
aoqi@0 679 static uint total_peeks() { return _total_peeks; }
aoqi@0 680 static void print_termination_counts();
aoqi@0 681 #endif
aoqi@0 682 };
aoqi@0 683
aoqi@0 684 template<class E, MEMFLAGS F, unsigned int N> inline bool
aoqi@0 685 GenericTaskQueue<E, F, N>::push(E t) {
aoqi@0 686 uint localBot = _bottom;
aoqi@0 687 assert(localBot < N, "_bottom out of range.");
aoqi@0 688 idx_t top = _age.top();
aoqi@0 689 uint dirty_n_elems = dirty_size(localBot, top);
aoqi@0 690 assert(dirty_n_elems < N, "n_elems out of range.");
aoqi@0 691 if (dirty_n_elems < max_elems()) {
aoqi@0 692 // g++ complains if the volatile result of the assignment is
aoqi@0 693 // unused, so we cast the volatile away. We cannot cast directly
aoqi@0 694 // to void, because gcc treats that as not using the result of the
aoqi@0 695 // assignment. However, casting to E& means that we trigger an
aoqi@0 696 // unused-value warning. So, we cast the E& to void.
aoqi@0 697 (void) const_cast<E&>(_elems[localBot] = t);
aoqi@0 698 OrderAccess::release_store(&_bottom, increment_index(localBot));
aoqi@0 699 TASKQUEUE_STATS_ONLY(stats.record_push());
aoqi@0 700 return true;
aoqi@0 701 } else {
aoqi@0 702 return push_slow(t, dirty_n_elems);
aoqi@0 703 }
aoqi@0 704 }
aoqi@0 705
aoqi@0 706 template<class E, MEMFLAGS F, unsigned int N> inline bool
aoqi@0 707 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
aoqi@0 708 uint localBot = _bottom;
aoqi@0 709 // This value cannot be N-1. That can only occur as a result of
aoqi@0 710 // the assignment to bottom in this method. If it does, this method
aoqi@0 711 // resets the size to 0 before the next call (which is sequential,
aoqi@0 712 // since this is pop_local.)
aoqi@0 713 uint dirty_n_elems = dirty_size(localBot, _age.top());
aoqi@0 714 assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
aoqi@0 715 if (dirty_n_elems == 0) return false;
aoqi@0 716 localBot = decrement_index(localBot);
aoqi@0 717 _bottom = localBot;
aoqi@0 718 // This is necessary to prevent any read below from being reordered
aoqi@0 719 // before the store just above.
aoqi@0 720 OrderAccess::fence();
aoqi@0 721 // g++ complains if the volatile result of the assignment is
aoqi@0 722 // unused, so we cast the volatile away. We cannot cast directly
aoqi@0 723 // to void, because gcc treats that as not using the result of the
aoqi@0 724 // assignment. However, casting to E& means that we trigger an
aoqi@0 725 // unused-value warning. So, we cast the E& to void.
aoqi@0 726 (void) const_cast<E&>(t = _elems[localBot]);
aoqi@0 727 // This is a second read of "age"; the "size()" above is the first.
aoqi@0 728 // If there's still at least one element in the queue, based on the
aoqi@0 729 // "_bottom" and "age" we've read, then there can be no interference with
aoqi@0 730 // a "pop_global" operation, and we're done.
aoqi@0 731 idx_t tp = _age.top(); // XXX
aoqi@0 732 if (size(localBot, tp) > 0) {
aoqi@0 733 assert(dirty_size(localBot, tp) != N - 1, "sanity");
aoqi@0 734 TASKQUEUE_STATS_ONLY(stats.record_pop());
aoqi@0 735 return true;
aoqi@0 736 } else {
aoqi@0 737 // Otherwise, the queue contained exactly one element; we take the slow
aoqi@0 738 // path.
aoqi@0 739 return pop_local_slow(localBot, _age.get());
aoqi@0 740 }
aoqi@0 741 }
aoqi@0 742
aoqi@0 743 typedef GenericTaskQueue<oop, mtGC> OopTaskQueue;
aoqi@0 744 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
aoqi@0 745
aoqi@0 746 #ifdef _MSC_VER
aoqi@0 747 #pragma warning(push)
aoqi@0 748 // warning C4522: multiple assignment operators specified
aoqi@0 749 #pragma warning(disable:4522)
aoqi@0 750 #endif
aoqi@0 751
aoqi@0 752 // This is a container class for either an oop* or a narrowOop*.
aoqi@0 753 // Both are pushed onto a task queue and the consumer will test is_narrow()
aoqi@0 754 // to determine which should be processed.
aoqi@0 755 class StarTask {
aoqi@0 756 void* _holder; // either union oop* or narrowOop*
aoqi@0 757
aoqi@0 758 enum { COMPRESSED_OOP_MASK = 1 };
aoqi@0 759
aoqi@0 760 public:
aoqi@0 761 StarTask(narrowOop* p) {
aoqi@0 762 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
aoqi@0 763 _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
aoqi@0 764 }
aoqi@0 765 StarTask(oop* p) {
aoqi@0 766 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
aoqi@0 767 _holder = (void*)p;
aoqi@0 768 }
aoqi@0 769 StarTask() { _holder = NULL; }
aoqi@0 770 operator oop*() { return (oop*)_holder; }
aoqi@0 771 operator narrowOop*() {
aoqi@0 772 return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
aoqi@0 773 }
aoqi@0 774
aoqi@0 775 StarTask& operator=(const StarTask& t) {
aoqi@0 776 _holder = t._holder;
aoqi@0 777 return *this;
aoqi@0 778 }
aoqi@0 779 volatile StarTask& operator=(const volatile StarTask& t) volatile {
aoqi@0 780 _holder = t._holder;
aoqi@0 781 return *this;
aoqi@0 782 }
aoqi@0 783
aoqi@0 784 bool is_narrow() const {
aoqi@0 785 return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
aoqi@0 786 }
aoqi@0 787 };
aoqi@0 788
aoqi@0 789 class ObjArrayTask
aoqi@0 790 {
aoqi@0 791 public:
aoqi@0 792 ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
aoqi@0 793 ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
aoqi@0 794 assert(idx <= size_t(max_jint), "too big");
aoqi@0 795 }
aoqi@0 796 ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
aoqi@0 797
aoqi@0 798 ObjArrayTask& operator =(const ObjArrayTask& t) {
aoqi@0 799 _obj = t._obj;
aoqi@0 800 _index = t._index;
aoqi@0 801 return *this;
aoqi@0 802 }
aoqi@0 803 volatile ObjArrayTask&
aoqi@0 804 operator =(const volatile ObjArrayTask& t) volatile {
aoqi@0 805 (void)const_cast<oop&>(_obj = t._obj);
aoqi@0 806 _index = t._index;
aoqi@0 807 return *this;
aoqi@0 808 }
aoqi@0 809
aoqi@0 810 inline oop obj() const { return _obj; }
aoqi@0 811 inline int index() const { return _index; }
aoqi@0 812
aoqi@0 813 DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
aoqi@0 814
aoqi@0 815 private:
aoqi@0 816 oop _obj;
aoqi@0 817 int _index;
aoqi@0 818 };
aoqi@0 819
aoqi@0 820 #ifdef _MSC_VER
aoqi@0 821 #pragma warning(pop)
aoqi@0 822 #endif
aoqi@0 823
aoqi@0 824 typedef OverflowTaskQueue<StarTask, mtClass> OopStarTaskQueue;
aoqi@0 825 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
aoqi@0 826
aoqi@0 827 typedef OverflowTaskQueue<size_t, mtInternal> RegionTaskQueue;
aoqi@0 828 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass> RegionTaskQueueSet;
aoqi@0 829
aoqi@0 830
aoqi@0 831 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP

mercurial