src/share/vm/opto/compile.cpp

Sat, 09 Feb 2013 12:55:09 -0800

author
drchase
date
Sat, 09 Feb 2013 12:55:09 -0800
changeset 4585
2c673161698a
parent 4448
5b8548391bf3
child 4589
8b3da8d14c93
permissions
-rw-r--r--

8007402: Code cleanup to remove Parfait false positive
Summary: add array access range check
Reviewed-by: kvn

duke@435 1 /*
kvn@3651 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "classfile/systemDictionary.hpp"
stefank@2314 29 #include "code/exceptionHandlerTable.hpp"
stefank@2314 30 #include "code/nmethod.hpp"
stefank@2314 31 #include "compiler/compileLog.hpp"
twisti@4318 32 #include "compiler/disassembler.hpp"
stefank@2314 33 #include "compiler/oopMap.hpp"
stefank@2314 34 #include "opto/addnode.hpp"
stefank@2314 35 #include "opto/block.hpp"
stefank@2314 36 #include "opto/c2compiler.hpp"
stefank@2314 37 #include "opto/callGenerator.hpp"
stefank@2314 38 #include "opto/callnode.hpp"
stefank@2314 39 #include "opto/cfgnode.hpp"
stefank@2314 40 #include "opto/chaitin.hpp"
stefank@2314 41 #include "opto/compile.hpp"
stefank@2314 42 #include "opto/connode.hpp"
stefank@2314 43 #include "opto/divnode.hpp"
stefank@2314 44 #include "opto/escape.hpp"
stefank@2314 45 #include "opto/idealGraphPrinter.hpp"
stefank@2314 46 #include "opto/loopnode.hpp"
stefank@2314 47 #include "opto/machnode.hpp"
stefank@2314 48 #include "opto/macro.hpp"
stefank@2314 49 #include "opto/matcher.hpp"
stefank@2314 50 #include "opto/memnode.hpp"
stefank@2314 51 #include "opto/mulnode.hpp"
stefank@2314 52 #include "opto/node.hpp"
stefank@2314 53 #include "opto/opcodes.hpp"
stefank@2314 54 #include "opto/output.hpp"
stefank@2314 55 #include "opto/parse.hpp"
stefank@2314 56 #include "opto/phaseX.hpp"
stefank@2314 57 #include "opto/rootnode.hpp"
stefank@2314 58 #include "opto/runtime.hpp"
stefank@2314 59 #include "opto/stringopts.hpp"
stefank@2314 60 #include "opto/type.hpp"
stefank@2314 61 #include "opto/vectornode.hpp"
stefank@2314 62 #include "runtime/arguments.hpp"
stefank@2314 63 #include "runtime/signature.hpp"
stefank@2314 64 #include "runtime/stubRoutines.hpp"
stefank@2314 65 #include "runtime/timer.hpp"
stefank@2314 66 #include "utilities/copy.hpp"
stefank@2314 67 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 68 # include "adfiles/ad_x86_32.hpp"
stefank@2314 69 #endif
stefank@2314 70 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 71 # include "adfiles/ad_x86_64.hpp"
stefank@2314 72 #endif
stefank@2314 73 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 74 # include "adfiles/ad_sparc.hpp"
stefank@2314 75 #endif
stefank@2314 76 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 77 # include "adfiles/ad_zero.hpp"
stefank@2314 78 #endif
bobv@2508 79 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 80 # include "adfiles/ad_arm.hpp"
bobv@2508 81 #endif
bobv@2508 82 #ifdef TARGET_ARCH_MODEL_ppc
bobv@2508 83 # include "adfiles/ad_ppc.hpp"
bobv@2508 84 #endif
duke@435 85
twisti@2350 86
twisti@2350 87 // -------------------- Compile::mach_constant_base_node -----------------------
twisti@2350 88 // Constant table base node singleton.
twisti@2350 89 MachConstantBaseNode* Compile::mach_constant_base_node() {
twisti@2350 90 if (_mach_constant_base_node == NULL) {
twisti@2350 91 _mach_constant_base_node = new (C) MachConstantBaseNode();
twisti@2350 92 _mach_constant_base_node->add_req(C->root());
twisti@2350 93 }
twisti@2350 94 return _mach_constant_base_node;
twisti@2350 95 }
twisti@2350 96
twisti@2350 97
duke@435 98 /// Support for intrinsics.
duke@435 99
duke@435 100 // Return the index at which m must be inserted (or already exists).
duke@435 101 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
duke@435 102 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
duke@435 103 #ifdef ASSERT
duke@435 104 for (int i = 1; i < _intrinsics->length(); i++) {
duke@435 105 CallGenerator* cg1 = _intrinsics->at(i-1);
duke@435 106 CallGenerator* cg2 = _intrinsics->at(i);
duke@435 107 assert(cg1->method() != cg2->method()
duke@435 108 ? cg1->method() < cg2->method()
duke@435 109 : cg1->is_virtual() < cg2->is_virtual(),
duke@435 110 "compiler intrinsics list must stay sorted");
duke@435 111 }
duke@435 112 #endif
duke@435 113 // Binary search sorted list, in decreasing intervals [lo, hi].
duke@435 114 int lo = 0, hi = _intrinsics->length()-1;
duke@435 115 while (lo <= hi) {
duke@435 116 int mid = (uint)(hi + lo) / 2;
duke@435 117 ciMethod* mid_m = _intrinsics->at(mid)->method();
duke@435 118 if (m < mid_m) {
duke@435 119 hi = mid-1;
duke@435 120 } else if (m > mid_m) {
duke@435 121 lo = mid+1;
duke@435 122 } else {
duke@435 123 // look at minor sort key
duke@435 124 bool mid_virt = _intrinsics->at(mid)->is_virtual();
duke@435 125 if (is_virtual < mid_virt) {
duke@435 126 hi = mid-1;
duke@435 127 } else if (is_virtual > mid_virt) {
duke@435 128 lo = mid+1;
duke@435 129 } else {
duke@435 130 return mid; // exact match
duke@435 131 }
duke@435 132 }
duke@435 133 }
duke@435 134 return lo; // inexact match
duke@435 135 }
duke@435 136
duke@435 137 void Compile::register_intrinsic(CallGenerator* cg) {
duke@435 138 if (_intrinsics == NULL) {
roland@4409 139 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
duke@435 140 }
duke@435 141 // This code is stolen from ciObjectFactory::insert.
duke@435 142 // Really, GrowableArray should have methods for
duke@435 143 // insert_at, remove_at, and binary_search.
duke@435 144 int len = _intrinsics->length();
duke@435 145 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
duke@435 146 if (index == len) {
duke@435 147 _intrinsics->append(cg);
duke@435 148 } else {
duke@435 149 #ifdef ASSERT
duke@435 150 CallGenerator* oldcg = _intrinsics->at(index);
duke@435 151 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
duke@435 152 #endif
duke@435 153 _intrinsics->append(_intrinsics->at(len-1));
duke@435 154 int pos;
duke@435 155 for (pos = len-2; pos >= index; pos--) {
duke@435 156 _intrinsics->at_put(pos+1,_intrinsics->at(pos));
duke@435 157 }
duke@435 158 _intrinsics->at_put(index, cg);
duke@435 159 }
duke@435 160 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
duke@435 161 }
duke@435 162
duke@435 163 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 164 assert(m->is_loaded(), "don't try this on unloaded methods");
duke@435 165 if (_intrinsics != NULL) {
duke@435 166 int index = intrinsic_insertion_index(m, is_virtual);
duke@435 167 if (index < _intrinsics->length()
duke@435 168 && _intrinsics->at(index)->method() == m
duke@435 169 && _intrinsics->at(index)->is_virtual() == is_virtual) {
duke@435 170 return _intrinsics->at(index);
duke@435 171 }
duke@435 172 }
duke@435 173 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
jrose@1291 174 if (m->intrinsic_id() != vmIntrinsics::_none &&
jrose@1291 175 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
duke@435 176 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
duke@435 177 if (cg != NULL) {
duke@435 178 // Save it for next time:
duke@435 179 register_intrinsic(cg);
duke@435 180 return cg;
duke@435 181 } else {
duke@435 182 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
duke@435 183 }
duke@435 184 }
duke@435 185 return NULL;
duke@435 186 }
duke@435 187
duke@435 188 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
duke@435 189 // in library_call.cpp.
duke@435 190
duke@435 191
duke@435 192 #ifndef PRODUCT
duke@435 193 // statistics gathering...
duke@435 194
duke@435 195 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
duke@435 196 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
duke@435 197
duke@435 198 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
duke@435 199 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
duke@435 200 int oflags = _intrinsic_hist_flags[id];
duke@435 201 assert(flags != 0, "what happened?");
duke@435 202 if (is_virtual) {
duke@435 203 flags |= _intrinsic_virtual;
duke@435 204 }
duke@435 205 bool changed = (flags != oflags);
duke@435 206 if ((flags & _intrinsic_worked) != 0) {
duke@435 207 juint count = (_intrinsic_hist_count[id] += 1);
duke@435 208 if (count == 1) {
duke@435 209 changed = true; // first time
duke@435 210 }
duke@435 211 // increment the overall count also:
duke@435 212 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
duke@435 213 }
duke@435 214 if (changed) {
duke@435 215 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
duke@435 216 // Something changed about the intrinsic's virtuality.
duke@435 217 if ((flags & _intrinsic_virtual) != 0) {
duke@435 218 // This is the first use of this intrinsic as a virtual call.
duke@435 219 if (oflags != 0) {
duke@435 220 // We already saw it as a non-virtual, so note both cases.
duke@435 221 flags |= _intrinsic_both;
duke@435 222 }
duke@435 223 } else if ((oflags & _intrinsic_both) == 0) {
duke@435 224 // This is the first use of this intrinsic as a non-virtual
duke@435 225 flags |= _intrinsic_both;
duke@435 226 }
duke@435 227 }
duke@435 228 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
duke@435 229 }
duke@435 230 // update the overall flags also:
duke@435 231 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
duke@435 232 return changed;
duke@435 233 }
duke@435 234
duke@435 235 static char* format_flags(int flags, char* buf) {
duke@435 236 buf[0] = 0;
duke@435 237 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
duke@435 238 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
duke@435 239 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
duke@435 240 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
duke@435 241 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
duke@435 242 if (buf[0] == 0) strcat(buf, ",");
duke@435 243 assert(buf[0] == ',', "must be");
duke@435 244 return &buf[1];
duke@435 245 }
duke@435 246
duke@435 247 void Compile::print_intrinsic_statistics() {
duke@435 248 char flagsbuf[100];
duke@435 249 ttyLocker ttyl;
duke@435 250 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
duke@435 251 tty->print_cr("Compiler intrinsic usage:");
duke@435 252 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
duke@435 253 if (total == 0) total = 1; // avoid div0 in case of no successes
duke@435 254 #define PRINT_STAT_LINE(name, c, f) \
duke@435 255 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
duke@435 256 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
duke@435 257 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
duke@435 258 int flags = _intrinsic_hist_flags[id];
duke@435 259 juint count = _intrinsic_hist_count[id];
duke@435 260 if ((flags | count) != 0) {
duke@435 261 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
duke@435 262 }
duke@435 263 }
duke@435 264 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
duke@435 265 if (xtty != NULL) xtty->tail("statistics");
duke@435 266 }
duke@435 267
duke@435 268 void Compile::print_statistics() {
duke@435 269 { ttyLocker ttyl;
duke@435 270 if (xtty != NULL) xtty->head("statistics type='opto'");
duke@435 271 Parse::print_statistics();
duke@435 272 PhaseCCP::print_statistics();
duke@435 273 PhaseRegAlloc::print_statistics();
duke@435 274 Scheduling::print_statistics();
duke@435 275 PhasePeephole::print_statistics();
duke@435 276 PhaseIdealLoop::print_statistics();
duke@435 277 if (xtty != NULL) xtty->tail("statistics");
duke@435 278 }
duke@435 279 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
duke@435 280 // put this under its own <statistics> element.
duke@435 281 print_intrinsic_statistics();
duke@435 282 }
duke@435 283 }
duke@435 284 #endif //PRODUCT
duke@435 285
duke@435 286 // Support for bundling info
duke@435 287 Bundle* Compile::node_bundling(const Node *n) {
duke@435 288 assert(valid_bundle_info(n), "oob");
duke@435 289 return &_node_bundling_base[n->_idx];
duke@435 290 }
duke@435 291
duke@435 292 bool Compile::valid_bundle_info(const Node *n) {
duke@435 293 return (_node_bundling_limit > n->_idx);
duke@435 294 }
duke@435 295
duke@435 296
never@1515 297 void Compile::gvn_replace_by(Node* n, Node* nn) {
never@1515 298 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
never@1515 299 Node* use = n->last_out(i);
never@1515 300 bool is_in_table = initial_gvn()->hash_delete(use);
never@1515 301 uint uses_found = 0;
never@1515 302 for (uint j = 0; j < use->len(); j++) {
never@1515 303 if (use->in(j) == n) {
never@1515 304 if (j < use->req())
never@1515 305 use->set_req(j, nn);
never@1515 306 else
never@1515 307 use->set_prec(j, nn);
never@1515 308 uses_found++;
never@1515 309 }
never@1515 310 }
never@1515 311 if (is_in_table) {
never@1515 312 // reinsert into table
never@1515 313 initial_gvn()->hash_find_insert(use);
never@1515 314 }
never@1515 315 record_for_igvn(use);
never@1515 316 i -= uses_found; // we deleted 1 or more copies of this edge
never@1515 317 }
never@1515 318 }
never@1515 319
never@1515 320
bharadwaj@4315 321 static inline bool not_a_node(const Node* n) {
bharadwaj@4315 322 if (n == NULL) return true;
bharadwaj@4315 323 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
bharadwaj@4315 324 if (*(address*)n == badAddress) return true; // kill by Node::destruct
bharadwaj@4315 325 return false;
bharadwaj@4315 326 }
never@1515 327
duke@435 328 // Identify all nodes that are reachable from below, useful.
duke@435 329 // Use breadth-first pass that records state in a Unique_Node_List,
duke@435 330 // recursive traversal is slower.
duke@435 331 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
duke@435 332 int estimated_worklist_size = unique();
duke@435 333 useful.map( estimated_worklist_size, NULL ); // preallocate space
duke@435 334
duke@435 335 // Initialize worklist
duke@435 336 if (root() != NULL) { useful.push(root()); }
duke@435 337 // If 'top' is cached, declare it useful to preserve cached node
duke@435 338 if( cached_top_node() ) { useful.push(cached_top_node()); }
duke@435 339
duke@435 340 // Push all useful nodes onto the list, breadthfirst
duke@435 341 for( uint next = 0; next < useful.size(); ++next ) {
duke@435 342 assert( next < unique(), "Unique useful nodes < total nodes");
duke@435 343 Node *n = useful.at(next);
duke@435 344 uint max = n->len();
duke@435 345 for( uint i = 0; i < max; ++i ) {
duke@435 346 Node *m = n->in(i);
bharadwaj@4315 347 if (not_a_node(m)) continue;
duke@435 348 useful.push(m);
duke@435 349 }
duke@435 350 }
duke@435 351 }
duke@435 352
bharadwaj@4315 353 // Update dead_node_list with any missing dead nodes using useful
bharadwaj@4315 354 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
bharadwaj@4315 355 void Compile::update_dead_node_list(Unique_Node_List &useful) {
bharadwaj@4315 356 uint max_idx = unique();
bharadwaj@4315 357 VectorSet& useful_node_set = useful.member_set();
bharadwaj@4315 358
bharadwaj@4315 359 for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
bharadwaj@4315 360 // If node with index node_idx is not in useful set,
bharadwaj@4315 361 // mark it as dead in dead node list.
bharadwaj@4315 362 if (! useful_node_set.test(node_idx) ) {
bharadwaj@4315 363 record_dead_node(node_idx);
bharadwaj@4315 364 }
bharadwaj@4315 365 }
bharadwaj@4315 366 }
bharadwaj@4315 367
roland@4409 368 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
roland@4409 369 int shift = 0;
roland@4409 370 for (int i = 0; i < inlines->length(); i++) {
roland@4409 371 CallGenerator* cg = inlines->at(i);
roland@4409 372 CallNode* call = cg->call_node();
roland@4409 373 if (shift > 0) {
roland@4409 374 inlines->at_put(i-shift, cg);
roland@4409 375 }
roland@4409 376 if (!useful.member(call)) {
roland@4409 377 shift++;
roland@4409 378 }
roland@4409 379 }
roland@4409 380 inlines->trunc_to(inlines->length()-shift);
roland@4409 381 }
roland@4409 382
duke@435 383 // Disconnect all useless nodes by disconnecting those at the boundary.
duke@435 384 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
duke@435 385 uint next = 0;
kvn@3260 386 while (next < useful.size()) {
duke@435 387 Node *n = useful.at(next++);
duke@435 388 // Use raw traversal of out edges since this code removes out edges
duke@435 389 int max = n->outcnt();
kvn@3260 390 for (int j = 0; j < max; ++j) {
duke@435 391 Node* child = n->raw_out(j);
kvn@3260 392 if (! useful.member(child)) {
kvn@3260 393 assert(!child->is_top() || child != top(),
kvn@3260 394 "If top is cached in Compile object it is in useful list");
duke@435 395 // Only need to remove this out-edge to the useless node
duke@435 396 n->raw_del_out(j);
duke@435 397 --j;
duke@435 398 --max;
duke@435 399 }
duke@435 400 }
duke@435 401 if (n->outcnt() == 1 && n->has_special_unique_user()) {
kvn@3260 402 record_for_igvn(n->unique_out());
kvn@3260 403 }
kvn@3260 404 }
kvn@3260 405 // Remove useless macro and predicate opaq nodes
kvn@3260 406 for (int i = C->macro_count()-1; i >= 0; i--) {
kvn@3260 407 Node* n = C->macro_node(i);
kvn@3260 408 if (!useful.member(n)) {
kvn@3260 409 remove_macro_node(n);
duke@435 410 }
duke@435 411 }
roland@4409 412 // clean up the late inline lists
roland@4409 413 remove_useless_late_inlines(&_string_late_inlines, useful);
roland@4409 414 remove_useless_late_inlines(&_late_inlines, useful);
duke@435 415 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
duke@435 416 }
duke@435 417
duke@435 418 //------------------------------frame_size_in_words-----------------------------
duke@435 419 // frame_slots in units of words
duke@435 420 int Compile::frame_size_in_words() const {
duke@435 421 // shift is 0 in LP32 and 1 in LP64
duke@435 422 const int shift = (LogBytesPerWord - LogBytesPerInt);
duke@435 423 int words = _frame_slots >> shift;
duke@435 424 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
duke@435 425 return words;
duke@435 426 }
duke@435 427
duke@435 428 // ============================================================================
duke@435 429 //------------------------------CompileWrapper---------------------------------
duke@435 430 class CompileWrapper : public StackObj {
duke@435 431 Compile *const _compile;
duke@435 432 public:
duke@435 433 CompileWrapper(Compile* compile);
duke@435 434
duke@435 435 ~CompileWrapper();
duke@435 436 };
duke@435 437
duke@435 438 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
duke@435 439 // the Compile* pointer is stored in the current ciEnv:
duke@435 440 ciEnv* env = compile->env();
duke@435 441 assert(env == ciEnv::current(), "must already be a ciEnv active");
duke@435 442 assert(env->compiler_data() == NULL, "compile already active?");
duke@435 443 env->set_compiler_data(compile);
duke@435 444 assert(compile == Compile::current(), "sanity");
duke@435 445
duke@435 446 compile->set_type_dict(NULL);
duke@435 447 compile->set_type_hwm(NULL);
duke@435 448 compile->set_type_last_size(0);
duke@435 449 compile->set_last_tf(NULL, NULL);
duke@435 450 compile->set_indexSet_arena(NULL);
duke@435 451 compile->set_indexSet_free_block_list(NULL);
duke@435 452 compile->init_type_arena();
duke@435 453 Type::Initialize(compile);
duke@435 454 _compile->set_scratch_buffer_blob(NULL);
duke@435 455 _compile->begin_method();
duke@435 456 }
duke@435 457 CompileWrapper::~CompileWrapper() {
duke@435 458 _compile->end_method();
duke@435 459 if (_compile->scratch_buffer_blob() != NULL)
duke@435 460 BufferBlob::free(_compile->scratch_buffer_blob());
duke@435 461 _compile->env()->set_compiler_data(NULL);
duke@435 462 }
duke@435 463
duke@435 464
duke@435 465 //----------------------------print_compile_messages---------------------------
duke@435 466 void Compile::print_compile_messages() {
duke@435 467 #ifndef PRODUCT
duke@435 468 // Check if recompiling
duke@435 469 if (_subsume_loads == false && PrintOpto) {
duke@435 470 // Recompiling without allowing machine instructions to subsume loads
duke@435 471 tty->print_cr("*********************************************************");
duke@435 472 tty->print_cr("** Bailout: Recompile without subsuming loads **");
duke@435 473 tty->print_cr("*********************************************************");
duke@435 474 }
kvn@473 475 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
kvn@473 476 // Recompiling without escape analysis
kvn@473 477 tty->print_cr("*********************************************************");
kvn@473 478 tty->print_cr("** Bailout: Recompile without escape analysis **");
kvn@473 479 tty->print_cr("*********************************************************");
kvn@473 480 }
duke@435 481 if (env()->break_at_compile()) {
twisti@1040 482 // Open the debugger when compiling this method.
duke@435 483 tty->print("### Breaking when compiling: ");
duke@435 484 method()->print_short_name();
duke@435 485 tty->cr();
duke@435 486 BREAKPOINT;
duke@435 487 }
duke@435 488
duke@435 489 if( PrintOpto ) {
duke@435 490 if (is_osr_compilation()) {
duke@435 491 tty->print("[OSR]%3d", _compile_id);
duke@435 492 } else {
duke@435 493 tty->print("%3d", _compile_id);
duke@435 494 }
duke@435 495 }
duke@435 496 #endif
duke@435 497 }
duke@435 498
duke@435 499
kvn@2414 500 //-----------------------init_scratch_buffer_blob------------------------------
kvn@2414 501 // Construct a temporary BufferBlob and cache it for this compile.
twisti@2350 502 void Compile::init_scratch_buffer_blob(int const_size) {
kvn@2414 503 // If there is already a scratch buffer blob allocated and the
kvn@2414 504 // constant section is big enough, use it. Otherwise free the
kvn@2414 505 // current and allocate a new one.
kvn@2414 506 BufferBlob* blob = scratch_buffer_blob();
kvn@2414 507 if ((blob != NULL) && (const_size <= _scratch_const_size)) {
kvn@2414 508 // Use the current blob.
kvn@2414 509 } else {
kvn@2414 510 if (blob != NULL) {
kvn@2414 511 BufferBlob::free(blob);
kvn@2414 512 }
duke@435 513
kvn@2414 514 ResourceMark rm;
kvn@2414 515 _scratch_const_size = const_size;
kvn@2414 516 int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
kvn@2414 517 blob = BufferBlob::create("Compile::scratch_buffer", size);
kvn@2414 518 // Record the buffer blob for next time.
kvn@2414 519 set_scratch_buffer_blob(blob);
kvn@2414 520 // Have we run out of code space?
kvn@2414 521 if (scratch_buffer_blob() == NULL) {
kvn@2414 522 // Let CompilerBroker disable further compilations.
kvn@2414 523 record_failure("Not enough space for scratch buffer in CodeCache");
kvn@2414 524 return;
kvn@2414 525 }
kvn@598 526 }
duke@435 527
duke@435 528 // Initialize the relocation buffers
twisti@2103 529 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
duke@435 530 set_scratch_locs_memory(locs_buf);
duke@435 531 }
duke@435 532
duke@435 533
duke@435 534 //-----------------------scratch_emit_size-------------------------------------
duke@435 535 // Helper function that computes size by emitting code
duke@435 536 uint Compile::scratch_emit_size(const Node* n) {
twisti@2350 537 // Start scratch_emit_size section.
twisti@2350 538 set_in_scratch_emit_size(true);
twisti@2350 539
duke@435 540 // Emit into a trash buffer and count bytes emitted.
duke@435 541 // This is a pretty expensive way to compute a size,
duke@435 542 // but it works well enough if seldom used.
duke@435 543 // All common fixed-size instructions are given a size
duke@435 544 // method by the AD file.
duke@435 545 // Note that the scratch buffer blob and locs memory are
duke@435 546 // allocated at the beginning of the compile task, and
duke@435 547 // may be shared by several calls to scratch_emit_size.
duke@435 548 // The allocation of the scratch buffer blob is particularly
duke@435 549 // expensive, since it has to grab the code cache lock.
duke@435 550 BufferBlob* blob = this->scratch_buffer_blob();
duke@435 551 assert(blob != NULL, "Initialize BufferBlob at start");
duke@435 552 assert(blob->size() > MAX_inst_size, "sanity");
duke@435 553 relocInfo* locs_buf = scratch_locs_memory();
twisti@2103 554 address blob_begin = blob->content_begin();
duke@435 555 address blob_end = (address)locs_buf;
twisti@2103 556 assert(blob->content_contains(blob_end), "sanity");
duke@435 557 CodeBuffer buf(blob_begin, blob_end - blob_begin);
twisti@2350 558 buf.initialize_consts_size(_scratch_const_size);
duke@435 559 buf.initialize_stubs_size(MAX_stubs_size);
duke@435 560 assert(locs_buf != NULL, "sanity");
twisti@2350 561 int lsize = MAX_locs_size / 3;
twisti@2350 562 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
twisti@2350 563 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
twisti@2350 564 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
twisti@2350 565
twisti@2350 566 // Do the emission.
kvn@3037 567
kvn@3037 568 Label fakeL; // Fake label for branch instructions.
kvn@3051 569 Label* saveL = NULL;
kvn@3051 570 uint save_bnum = 0;
kvn@3051 571 bool is_branch = n->is_MachBranch();
kvn@3037 572 if (is_branch) {
kvn@3037 573 MacroAssembler masm(&buf);
kvn@3037 574 masm.bind(fakeL);
kvn@3051 575 n->as_MachBranch()->save_label(&saveL, &save_bnum);
kvn@3051 576 n->as_MachBranch()->label_set(&fakeL, 0);
kvn@3037 577 }
duke@435 578 n->emit(buf, this->regalloc());
kvn@3051 579 if (is_branch) // Restore label.
kvn@3051 580 n->as_MachBranch()->label_set(saveL, save_bnum);
twisti@2350 581
twisti@2350 582 // End scratch_emit_size section.
twisti@2350 583 set_in_scratch_emit_size(false);
twisti@2350 584
twisti@2103 585 return buf.insts_size();
duke@435 586 }
duke@435 587
duke@435 588
duke@435 589 // ============================================================================
duke@435 590 //------------------------------Compile standard-------------------------------
duke@435 591 debug_only( int Compile::_debug_idx = 100000; )
duke@435 592
duke@435 593 // Compile a method. entry_bci is -1 for normal compilations and indicates
duke@435 594 // the continuation bci for on stack replacement.
duke@435 595
duke@435 596
kvn@473 597 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
duke@435 598 : Phase(Compiler),
duke@435 599 _env(ci_env),
duke@435 600 _log(ci_env->log()),
duke@435 601 _compile_id(ci_env->compile_id()),
duke@435 602 _save_argument_registers(false),
duke@435 603 _stub_name(NULL),
duke@435 604 _stub_function(NULL),
duke@435 605 _stub_entry_point(NULL),
duke@435 606 _method(target),
duke@435 607 _entry_bci(osr_bci),
duke@435 608 _initial_gvn(NULL),
duke@435 609 _for_igvn(NULL),
duke@435 610 _warm_calls(NULL),
duke@435 611 _subsume_loads(subsume_loads),
kvn@473 612 _do_escape_analysis(do_escape_analysis),
duke@435 613 _failure_reason(NULL),
duke@435 614 _code_buffer("Compile::Fill_buffer"),
duke@435 615 _orig_pc_slot(0),
duke@435 616 _orig_pc_slot_offset_in_bytes(0),
twisti@1700 617 _has_method_handle_invokes(false),
twisti@2350 618 _mach_constant_base_node(NULL),
duke@435 619 _node_bundling_limit(0),
duke@435 620 _node_bundling_base(NULL),
kvn@1294 621 _java_calls(0),
kvn@1294 622 _inner_loops(0),
twisti@2350 623 _scratch_const_size(-1),
twisti@2350 624 _in_scratch_emit_size(false),
bharadwaj@4315 625 _dead_node_list(comp_arena()),
bharadwaj@4315 626 _dead_node_count(0),
duke@435 627 #ifndef PRODUCT
duke@435 628 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
duke@435 629 _printer(IdealGraphPrinter::printer()),
duke@435 630 #endif
roland@4357 631 _congraph(NULL),
roland@4409 632 _late_inlines(comp_arena(), 2, 0, NULL),
roland@4409 633 _string_late_inlines(comp_arena(), 2, 0, NULL),
roland@4409 634 _late_inlines_pos(0),
roland@4409 635 _number_of_mh_late_inlines(0),
roland@4409 636 _inlining_progress(false),
roland@4409 637 _inlining_incrementally(false),
roland@4357 638 _print_inlining_list(NULL),
roland@4357 639 _print_inlining(0) {
duke@435 640 C = this;
duke@435 641
duke@435 642 CompileWrapper cw(this);
duke@435 643 #ifndef PRODUCT
duke@435 644 if (TimeCompiler2) {
duke@435 645 tty->print(" ");
duke@435 646 target->holder()->name()->print();
duke@435 647 tty->print(".");
duke@435 648 target->print_short_name();
duke@435 649 tty->print(" ");
duke@435 650 }
duke@435 651 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
duke@435 652 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
jrose@535 653 bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
jrose@535 654 if (!print_opto_assembly) {
jrose@535 655 bool print_assembly = (PrintAssembly || _method->should_print_assembly());
jrose@535 656 if (print_assembly && !Disassembler::can_decode()) {
jrose@535 657 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
jrose@535 658 print_opto_assembly = true;
jrose@535 659 }
jrose@535 660 }
jrose@535 661 set_print_assembly(print_opto_assembly);
never@802 662 set_parsed_irreducible_loop(false);
duke@435 663 #endif
duke@435 664
duke@435 665 if (ProfileTraps) {
duke@435 666 // Make sure the method being compiled gets its own MDO,
duke@435 667 // so we can at least track the decompile_count().
iveresov@2349 668 method()->ensure_method_data();
duke@435 669 }
duke@435 670
duke@435 671 Init(::AliasLevel);
duke@435 672
duke@435 673
duke@435 674 print_compile_messages();
duke@435 675
duke@435 676 if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
duke@435 677 _ilt = InlineTree::build_inline_tree_root();
duke@435 678 else
duke@435 679 _ilt = NULL;
duke@435 680
duke@435 681 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
duke@435 682 assert(num_alias_types() >= AliasIdxRaw, "");
duke@435 683
duke@435 684 #define MINIMUM_NODE_HASH 1023
duke@435 685 // Node list that Iterative GVN will start with
duke@435 686 Unique_Node_List for_igvn(comp_arena());
duke@435 687 set_for_igvn(&for_igvn);
duke@435 688
duke@435 689 // GVN that will be run immediately on new nodes
duke@435 690 uint estimated_size = method()->code_size()*4+64;
duke@435 691 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
duke@435 692 PhaseGVN gvn(node_arena(), estimated_size);
duke@435 693 set_initial_gvn(&gvn);
duke@435 694
kvn@4448 695 if (PrintInlining || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
roland@4357 696 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
roland@4357 697 }
duke@435 698 { // Scope for timing the parser
duke@435 699 TracePhase t3("parse", &_t_parser, true);
duke@435 700
duke@435 701 // Put top into the hash table ASAP.
duke@435 702 initial_gvn()->transform_no_reclaim(top());
duke@435 703
duke@435 704 // Set up tf(), start(), and find a CallGenerator.
johnc@2781 705 CallGenerator* cg = NULL;
duke@435 706 if (is_osr_compilation()) {
duke@435 707 const TypeTuple *domain = StartOSRNode::osr_domain();
duke@435 708 const TypeTuple *range = TypeTuple::make_range(method()->signature());
duke@435 709 init_tf(TypeFunc::make(domain, range));
kvn@4115 710 StartNode* s = new (this) StartOSRNode(root(), domain);
duke@435 711 initial_gvn()->set_type_bottom(s);
duke@435 712 init_start(s);
duke@435 713 cg = CallGenerator::for_osr(method(), entry_bci());
duke@435 714 } else {
duke@435 715 // Normal case.
duke@435 716 init_tf(TypeFunc::make(method()));
kvn@4115 717 StartNode* s = new (this) StartNode(root(), tf()->domain());
duke@435 718 initial_gvn()->set_type_bottom(s);
duke@435 719 init_start(s);
johnc@2781 720 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
johnc@2781 721 // With java.lang.ref.reference.get() we must go through the
johnc@2781 722 // intrinsic when G1 is enabled - even when get() is the root
johnc@2781 723 // method of the compile - so that, if necessary, the value in
johnc@2781 724 // the referent field of the reference object gets recorded by
johnc@2781 725 // the pre-barrier code.
johnc@2781 726 // Specifically, if G1 is enabled, the value in the referent
johnc@2781 727 // field is recorded by the G1 SATB pre barrier. This will
johnc@2781 728 // result in the referent being marked live and the reference
johnc@2781 729 // object removed from the list of discovered references during
johnc@2781 730 // reference processing.
johnc@2781 731 cg = find_intrinsic(method(), false);
johnc@2781 732 }
johnc@2781 733 if (cg == NULL) {
johnc@2781 734 float past_uses = method()->interpreter_invocation_count();
johnc@2781 735 float expected_uses = past_uses;
johnc@2781 736 cg = CallGenerator::for_inline(method(), expected_uses);
johnc@2781 737 }
duke@435 738 }
duke@435 739 if (failing()) return;
duke@435 740 if (cg == NULL) {
duke@435 741 record_method_not_compilable_all_tiers("cannot parse method");
duke@435 742 return;
duke@435 743 }
duke@435 744 JVMState* jvms = build_start_state(start(), tf());
duke@435 745 if ((jvms = cg->generate(jvms)) == NULL) {
duke@435 746 record_method_not_compilable("method parse failed");
duke@435 747 return;
duke@435 748 }
duke@435 749 GraphKit kit(jvms);
duke@435 750
duke@435 751 if (!kit.stopped()) {
duke@435 752 // Accept return values, and transfer control we know not where.
duke@435 753 // This is done by a special, unique ReturnNode bound to root.
duke@435 754 return_values(kit.jvms());
duke@435 755 }
duke@435 756
duke@435 757 if (kit.has_exceptions()) {
duke@435 758 // Any exceptions that escape from this call must be rethrown
duke@435 759 // to whatever caller is dynamically above us on the stack.
duke@435 760 // This is done by a special, unique RethrowNode bound to root.
duke@435 761 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
duke@435 762 }
duke@435 763
roland@4409 764 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
roland@4409 765
roland@4409 766 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
roland@4409 767 inline_string_calls(true);
never@1515 768 }
roland@4409 769
roland@4409 770 if (failing()) return;
never@1515 771
never@852 772 print_method("Before RemoveUseless", 3);
never@802 773
duke@435 774 // Remove clutter produced by parsing.
duke@435 775 if (!failing()) {
duke@435 776 ResourceMark rm;
duke@435 777 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
duke@435 778 }
duke@435 779 }
duke@435 780
duke@435 781 // Note: Large methods are capped off in do_one_bytecode().
duke@435 782 if (failing()) return;
duke@435 783
duke@435 784 // After parsing, node notes are no longer automagic.
duke@435 785 // They must be propagated by register_new_node_with_optimizer(),
duke@435 786 // clone(), or the like.
duke@435 787 set_default_node_notes(NULL);
duke@435 788
duke@435 789 for (;;) {
duke@435 790 int successes = Inline_Warm();
duke@435 791 if (failing()) return;
duke@435 792 if (successes == 0) break;
duke@435 793 }
duke@435 794
duke@435 795 // Drain the list.
duke@435 796 Finish_Warm();
duke@435 797 #ifndef PRODUCT
duke@435 798 if (_printer) {
duke@435 799 _printer->print_inlining(this);
duke@435 800 }
duke@435 801 #endif
duke@435 802
duke@435 803 if (failing()) return;
duke@435 804 NOT_PRODUCT( verify_graph_edges(); )
duke@435 805
duke@435 806 // Now optimize
duke@435 807 Optimize();
duke@435 808 if (failing()) return;
duke@435 809 NOT_PRODUCT( verify_graph_edges(); )
duke@435 810
duke@435 811 #ifndef PRODUCT
duke@435 812 if (PrintIdeal) {
duke@435 813 ttyLocker ttyl; // keep the following output all in one block
duke@435 814 // This output goes directly to the tty, not the compiler log.
duke@435 815 // To enable tools to match it up with the compilation activity,
duke@435 816 // be sure to tag this tty output with the compile ID.
duke@435 817 if (xtty != NULL) {
duke@435 818 xtty->head("ideal compile_id='%d'%s", compile_id(),
duke@435 819 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 820 "");
duke@435 821 }
duke@435 822 root()->dump(9999);
duke@435 823 if (xtty != NULL) {
duke@435 824 xtty->tail("ideal");
duke@435 825 }
duke@435 826 }
duke@435 827 #endif
duke@435 828
duke@435 829 // Now that we know the size of all the monitors we can add a fixed slot
duke@435 830 // for the original deopt pc.
duke@435 831
duke@435 832 _orig_pc_slot = fixed_slots();
duke@435 833 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
duke@435 834 set_fixed_slots(next_slot);
duke@435 835
duke@435 836 // Now generate code
duke@435 837 Code_Gen();
duke@435 838 if (failing()) return;
duke@435 839
duke@435 840 // Check if we want to skip execution of all compiled code.
duke@435 841 {
duke@435 842 #ifndef PRODUCT
duke@435 843 if (OptoNoExecute) {
duke@435 844 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
duke@435 845 return;
duke@435 846 }
duke@435 847 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
duke@435 848 #endif
duke@435 849
duke@435 850 if (is_osr_compilation()) {
duke@435 851 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
duke@435 852 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
duke@435 853 } else {
duke@435 854 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
duke@435 855 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
duke@435 856 }
duke@435 857
duke@435 858 env()->register_method(_method, _entry_bci,
duke@435 859 &_code_offsets,
duke@435 860 _orig_pc_slot_offset_in_bytes,
duke@435 861 code_buffer(),
duke@435 862 frame_size_in_words(), _oop_map_set,
duke@435 863 &_handler_table, &_inc_table,
duke@435 864 compiler,
duke@435 865 env()->comp_level(),
kvn@4103 866 has_unsafe_access(),
kvn@4103 867 SharedRuntime::is_wide_vector(max_vector_size())
duke@435 868 );
vlivanov@4154 869
vlivanov@4154 870 if (log() != NULL) // Print code cache state into compiler log
vlivanov@4154 871 log()->code_cache_state();
duke@435 872 }
duke@435 873 }
duke@435 874
duke@435 875 //------------------------------Compile----------------------------------------
duke@435 876 // Compile a runtime stub
duke@435 877 Compile::Compile( ciEnv* ci_env,
duke@435 878 TypeFunc_generator generator,
duke@435 879 address stub_function,
duke@435 880 const char *stub_name,
duke@435 881 int is_fancy_jump,
duke@435 882 bool pass_tls,
duke@435 883 bool save_arg_registers,
duke@435 884 bool return_pc )
duke@435 885 : Phase(Compiler),
duke@435 886 _env(ci_env),
duke@435 887 _log(ci_env->log()),
duke@435 888 _compile_id(-1),
duke@435 889 _save_argument_registers(save_arg_registers),
duke@435 890 _method(NULL),
duke@435 891 _stub_name(stub_name),
duke@435 892 _stub_function(stub_function),
duke@435 893 _stub_entry_point(NULL),
duke@435 894 _entry_bci(InvocationEntryBci),
duke@435 895 _initial_gvn(NULL),
duke@435 896 _for_igvn(NULL),
duke@435 897 _warm_calls(NULL),
duke@435 898 _orig_pc_slot(0),
duke@435 899 _orig_pc_slot_offset_in_bytes(0),
duke@435 900 _subsume_loads(true),
kvn@473 901 _do_escape_analysis(false),
duke@435 902 _failure_reason(NULL),
duke@435 903 _code_buffer("Compile::Fill_buffer"),
twisti@1700 904 _has_method_handle_invokes(false),
twisti@2350 905 _mach_constant_base_node(NULL),
duke@435 906 _node_bundling_limit(0),
duke@435 907 _node_bundling_base(NULL),
kvn@1294 908 _java_calls(0),
kvn@1294 909 _inner_loops(0),
duke@435 910 #ifndef PRODUCT
duke@435 911 _trace_opto_output(TraceOptoOutput),
duke@435 912 _printer(NULL),
duke@435 913 #endif
bharadwaj@4315 914 _dead_node_list(comp_arena()),
bharadwaj@4315 915 _dead_node_count(0),
roland@4357 916 _congraph(NULL),
roland@4409 917 _number_of_mh_late_inlines(0),
roland@4409 918 _inlining_progress(false),
roland@4409 919 _inlining_incrementally(false),
roland@4357 920 _print_inlining_list(NULL),
roland@4357 921 _print_inlining(0) {
duke@435 922 C = this;
duke@435 923
duke@435 924 #ifndef PRODUCT
duke@435 925 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
duke@435 926 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
duke@435 927 set_print_assembly(PrintFrameConverterAssembly);
never@802 928 set_parsed_irreducible_loop(false);
duke@435 929 #endif
duke@435 930 CompileWrapper cw(this);
duke@435 931 Init(/*AliasLevel=*/ 0);
duke@435 932 init_tf((*generator)());
duke@435 933
duke@435 934 {
duke@435 935 // The following is a dummy for the sake of GraphKit::gen_stub
duke@435 936 Unique_Node_List for_igvn(comp_arena());
duke@435 937 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
duke@435 938 PhaseGVN gvn(Thread::current()->resource_area(),255);
duke@435 939 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
duke@435 940 gvn.transform_no_reclaim(top());
duke@435 941
duke@435 942 GraphKit kit;
duke@435 943 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
duke@435 944 }
duke@435 945
duke@435 946 NOT_PRODUCT( verify_graph_edges(); )
duke@435 947 Code_Gen();
duke@435 948 if (failing()) return;
duke@435 949
duke@435 950
duke@435 951 // Entry point will be accessed using compile->stub_entry_point();
duke@435 952 if (code_buffer() == NULL) {
duke@435 953 Matcher::soft_match_failure();
duke@435 954 } else {
duke@435 955 if (PrintAssembly && (WizardMode || Verbose))
duke@435 956 tty->print_cr("### Stub::%s", stub_name);
duke@435 957
duke@435 958 if (!failing()) {
duke@435 959 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
duke@435 960
duke@435 961 // Make the NMethod
duke@435 962 // For now we mark the frame as never safe for profile stackwalking
duke@435 963 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
duke@435 964 code_buffer(),
duke@435 965 CodeOffsets::frame_never_safe,
duke@435 966 // _code_offsets.value(CodeOffsets::Frame_Complete),
duke@435 967 frame_size_in_words(),
duke@435 968 _oop_map_set,
duke@435 969 save_arg_registers);
duke@435 970 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
duke@435 971
duke@435 972 _stub_entry_point = rs->entry_point();
duke@435 973 }
duke@435 974 }
duke@435 975 }
duke@435 976
duke@435 977 //------------------------------Init-------------------------------------------
duke@435 978 // Prepare for a single compilation
duke@435 979 void Compile::Init(int aliaslevel) {
duke@435 980 _unique = 0;
duke@435 981 _regalloc = NULL;
duke@435 982
duke@435 983 _tf = NULL; // filled in later
duke@435 984 _top = NULL; // cached later
duke@435 985 _matcher = NULL; // filled in later
duke@435 986 _cfg = NULL; // filled in later
duke@435 987
duke@435 988 set_24_bit_selection_and_mode(Use24BitFP, false);
duke@435 989
duke@435 990 _node_note_array = NULL;
duke@435 991 _default_node_notes = NULL;
duke@435 992
duke@435 993 _immutable_memory = NULL; // filled in at first inquiry
duke@435 994
duke@435 995 // Globally visible Nodes
duke@435 996 // First set TOP to NULL to give safe behavior during creation of RootNode
duke@435 997 set_cached_top_node(NULL);
kvn@4115 998 set_root(new (this) RootNode());
duke@435 999 // Now that you have a Root to point to, create the real TOP
kvn@4115 1000 set_cached_top_node( new (this) ConNode(Type::TOP) );
duke@435 1001 set_recent_alloc(NULL, NULL);
duke@435 1002
duke@435 1003 // Create Debug Information Recorder to record scopes, oopmaps, etc.
coleenp@4037 1004 env()->set_oop_recorder(new OopRecorder(env()->arena()));
duke@435 1005 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
duke@435 1006 env()->set_dependencies(new Dependencies(env()));
duke@435 1007
duke@435 1008 _fixed_slots = 0;
duke@435 1009 set_has_split_ifs(false);
duke@435 1010 set_has_loops(has_method() && method()->has_loops()); // first approximation
never@1515 1011 set_has_stringbuilder(false);
duke@435 1012 _trap_can_recompile = false; // no traps emitted yet
duke@435 1013 _major_progress = true; // start out assuming good things will happen
duke@435 1014 set_has_unsafe_access(false);
kvn@4103 1015 set_max_vector_size(0);
duke@435 1016 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
duke@435 1017 set_decompile_count(0);
duke@435 1018
rasbold@853 1019 set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
iveresov@2138 1020 set_num_loop_opts(LoopOptsCount);
iveresov@2138 1021 set_do_inlining(Inline);
iveresov@2138 1022 set_max_inline_size(MaxInlineSize);
iveresov@2138 1023 set_freq_inline_size(FreqInlineSize);
iveresov@2138 1024 set_do_scheduling(OptoScheduling);
iveresov@2138 1025 set_do_count_invocations(false);
iveresov@2138 1026 set_do_method_data_update(false);
duke@435 1027
duke@435 1028 if (debug_info()->recording_non_safepoints()) {
duke@435 1029 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
duke@435 1030 (comp_arena(), 8, 0, NULL));
duke@435 1031 set_default_node_notes(Node_Notes::make(this));
duke@435 1032 }
duke@435 1033
duke@435 1034 // // -- Initialize types before each compile --
duke@435 1035 // // Update cached type information
duke@435 1036 // if( _method && _method->constants() )
duke@435 1037 // Type::update_loaded_types(_method, _method->constants());
duke@435 1038
duke@435 1039 // Init alias_type map.
kvn@473 1040 if (!_do_escape_analysis && aliaslevel == 3)
duke@435 1041 aliaslevel = 2; // No unique types without escape analysis
duke@435 1042 _AliasLevel = aliaslevel;
duke@435 1043 const int grow_ats = 16;
duke@435 1044 _max_alias_types = grow_ats;
duke@435 1045 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
duke@435 1046 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
duke@435 1047 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
duke@435 1048 {
duke@435 1049 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
duke@435 1050 }
duke@435 1051 // Initialize the first few types.
duke@435 1052 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
duke@435 1053 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
duke@435 1054 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
duke@435 1055 _num_alias_types = AliasIdxRaw+1;
duke@435 1056 // Zero out the alias type cache.
duke@435 1057 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
duke@435 1058 // A NULL adr_type hits in the cache right away. Preload the right answer.
duke@435 1059 probe_alias_cache(NULL)->_index = AliasIdxTop;
duke@435 1060
duke@435 1061 _intrinsics = NULL;
kvn@2040 1062 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
kvn@2040 1063 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
duke@435 1064 register_library_intrinsics();
duke@435 1065 }
duke@435 1066
duke@435 1067 //---------------------------init_start----------------------------------------
duke@435 1068 // Install the StartNode on this compile object.
duke@435 1069 void Compile::init_start(StartNode* s) {
duke@435 1070 if (failing())
duke@435 1071 return; // already failing
duke@435 1072 assert(s == start(), "");
duke@435 1073 }
duke@435 1074
duke@435 1075 StartNode* Compile::start() const {
duke@435 1076 assert(!failing(), "");
duke@435 1077 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
duke@435 1078 Node* start = root()->fast_out(i);
duke@435 1079 if( start->is_Start() )
duke@435 1080 return start->as_Start();
duke@435 1081 }
duke@435 1082 ShouldNotReachHere();
duke@435 1083 return NULL;
duke@435 1084 }
duke@435 1085
duke@435 1086 //-------------------------------immutable_memory-------------------------------------
duke@435 1087 // Access immutable memory
duke@435 1088 Node* Compile::immutable_memory() {
duke@435 1089 if (_immutable_memory != NULL) {
duke@435 1090 return _immutable_memory;
duke@435 1091 }
duke@435 1092 StartNode* s = start();
duke@435 1093 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
duke@435 1094 Node *p = s->fast_out(i);
duke@435 1095 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
duke@435 1096 _immutable_memory = p;
duke@435 1097 return _immutable_memory;
duke@435 1098 }
duke@435 1099 }
duke@435 1100 ShouldNotReachHere();
duke@435 1101 return NULL;
duke@435 1102 }
duke@435 1103
duke@435 1104 //----------------------set_cached_top_node------------------------------------
duke@435 1105 // Install the cached top node, and make sure Node::is_top works correctly.
duke@435 1106 void Compile::set_cached_top_node(Node* tn) {
duke@435 1107 if (tn != NULL) verify_top(tn);
duke@435 1108 Node* old_top = _top;
duke@435 1109 _top = tn;
duke@435 1110 // Calling Node::setup_is_top allows the nodes the chance to adjust
duke@435 1111 // their _out arrays.
duke@435 1112 if (_top != NULL) _top->setup_is_top();
duke@435 1113 if (old_top != NULL) old_top->setup_is_top();
duke@435 1114 assert(_top == NULL || top()->is_top(), "");
duke@435 1115 }
duke@435 1116
bharadwaj@4315 1117 #ifdef ASSERT
bharadwaj@4315 1118 uint Compile::count_live_nodes_by_graph_walk() {
bharadwaj@4315 1119 Unique_Node_List useful(comp_arena());
bharadwaj@4315 1120 // Get useful node list by walking the graph.
bharadwaj@4315 1121 identify_useful_nodes(useful);
bharadwaj@4315 1122 return useful.size();
bharadwaj@4315 1123 }
bharadwaj@4315 1124
bharadwaj@4315 1125 void Compile::print_missing_nodes() {
bharadwaj@4315 1126
bharadwaj@4315 1127 // Return if CompileLog is NULL and PrintIdealNodeCount is false.
bharadwaj@4315 1128 if ((_log == NULL) && (! PrintIdealNodeCount)) {
bharadwaj@4315 1129 return;
bharadwaj@4315 1130 }
bharadwaj@4315 1131
bharadwaj@4315 1132 // This is an expensive function. It is executed only when the user
bharadwaj@4315 1133 // specifies VerifyIdealNodeCount option or otherwise knows the
bharadwaj@4315 1134 // additional work that needs to be done to identify reachable nodes
bharadwaj@4315 1135 // by walking the flow graph and find the missing ones using
bharadwaj@4315 1136 // _dead_node_list.
bharadwaj@4315 1137
bharadwaj@4315 1138 Unique_Node_List useful(comp_arena());
bharadwaj@4315 1139 // Get useful node list by walking the graph.
bharadwaj@4315 1140 identify_useful_nodes(useful);
bharadwaj@4315 1141
bharadwaj@4315 1142 uint l_nodes = C->live_nodes();
bharadwaj@4315 1143 uint l_nodes_by_walk = useful.size();
bharadwaj@4315 1144
bharadwaj@4315 1145 if (l_nodes != l_nodes_by_walk) {
bharadwaj@4315 1146 if (_log != NULL) {
bharadwaj@4315 1147 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
bharadwaj@4315 1148 _log->stamp();
bharadwaj@4315 1149 _log->end_head();
bharadwaj@4315 1150 }
bharadwaj@4315 1151 VectorSet& useful_member_set = useful.member_set();
bharadwaj@4315 1152 int last_idx = l_nodes_by_walk;
bharadwaj@4315 1153 for (int i = 0; i < last_idx; i++) {
bharadwaj@4315 1154 if (useful_member_set.test(i)) {
bharadwaj@4315 1155 if (_dead_node_list.test(i)) {
bharadwaj@4315 1156 if (_log != NULL) {
bharadwaj@4315 1157 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
bharadwaj@4315 1158 }
bharadwaj@4315 1159 if (PrintIdealNodeCount) {
bharadwaj@4315 1160 // Print the log message to tty
bharadwaj@4315 1161 tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
bharadwaj@4315 1162 useful.at(i)->dump();
bharadwaj@4315 1163 }
bharadwaj@4315 1164 }
bharadwaj@4315 1165 }
bharadwaj@4315 1166 else if (! _dead_node_list.test(i)) {
bharadwaj@4315 1167 if (_log != NULL) {
bharadwaj@4315 1168 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
bharadwaj@4315 1169 }
bharadwaj@4315 1170 if (PrintIdealNodeCount) {
bharadwaj@4315 1171 // Print the log message to tty
bharadwaj@4315 1172 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
bharadwaj@4315 1173 }
bharadwaj@4315 1174 }
bharadwaj@4315 1175 }
bharadwaj@4315 1176 if (_log != NULL) {
bharadwaj@4315 1177 _log->tail("mismatched_nodes");
bharadwaj@4315 1178 }
bharadwaj@4315 1179 }
bharadwaj@4315 1180 }
bharadwaj@4315 1181 #endif
bharadwaj@4315 1182
duke@435 1183 #ifndef PRODUCT
duke@435 1184 void Compile::verify_top(Node* tn) const {
duke@435 1185 if (tn != NULL) {
duke@435 1186 assert(tn->is_Con(), "top node must be a constant");
duke@435 1187 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
duke@435 1188 assert(tn->in(0) != NULL, "must have live top node");
duke@435 1189 }
duke@435 1190 }
duke@435 1191 #endif
duke@435 1192
duke@435 1193
duke@435 1194 ///-------------------Managing Per-Node Debug & Profile Info-------------------
duke@435 1195
duke@435 1196 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
duke@435 1197 guarantee(arr != NULL, "");
duke@435 1198 int num_blocks = arr->length();
duke@435 1199 if (grow_by < num_blocks) grow_by = num_blocks;
duke@435 1200 int num_notes = grow_by * _node_notes_block_size;
duke@435 1201 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
duke@435 1202 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
duke@435 1203 while (num_notes > 0) {
duke@435 1204 arr->append(notes);
duke@435 1205 notes += _node_notes_block_size;
duke@435 1206 num_notes -= _node_notes_block_size;
duke@435 1207 }
duke@435 1208 assert(num_notes == 0, "exact multiple, please");
duke@435 1209 }
duke@435 1210
duke@435 1211 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
duke@435 1212 if (source == NULL || dest == NULL) return false;
duke@435 1213
duke@435 1214 if (dest->is_Con())
duke@435 1215 return false; // Do not push debug info onto constants.
duke@435 1216
duke@435 1217 #ifdef ASSERT
duke@435 1218 // Leave a bread crumb trail pointing to the original node:
duke@435 1219 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
duke@435 1220 dest->set_debug_orig(source);
duke@435 1221 }
duke@435 1222 #endif
duke@435 1223
duke@435 1224 if (node_note_array() == NULL)
duke@435 1225 return false; // Not collecting any notes now.
duke@435 1226
duke@435 1227 // This is a copy onto a pre-existing node, which may already have notes.
duke@435 1228 // If both nodes have notes, do not overwrite any pre-existing notes.
duke@435 1229 Node_Notes* source_notes = node_notes_at(source->_idx);
duke@435 1230 if (source_notes == NULL || source_notes->is_clear()) return false;
duke@435 1231 Node_Notes* dest_notes = node_notes_at(dest->_idx);
duke@435 1232 if (dest_notes == NULL || dest_notes->is_clear()) {
duke@435 1233 return set_node_notes_at(dest->_idx, source_notes);
duke@435 1234 }
duke@435 1235
duke@435 1236 Node_Notes merged_notes = (*source_notes);
duke@435 1237 // The order of operations here ensures that dest notes will win...
duke@435 1238 merged_notes.update_from(dest_notes);
duke@435 1239 return set_node_notes_at(dest->_idx, &merged_notes);
duke@435 1240 }
duke@435 1241
duke@435 1242
duke@435 1243 //--------------------------allow_range_check_smearing-------------------------
duke@435 1244 // Gating condition for coalescing similar range checks.
duke@435 1245 // Sometimes we try 'speculatively' replacing a series of a range checks by a
duke@435 1246 // single covering check that is at least as strong as any of them.
duke@435 1247 // If the optimization succeeds, the simplified (strengthened) range check
duke@435 1248 // will always succeed. If it fails, we will deopt, and then give up
duke@435 1249 // on the optimization.
duke@435 1250 bool Compile::allow_range_check_smearing() const {
duke@435 1251 // If this method has already thrown a range-check,
duke@435 1252 // assume it was because we already tried range smearing
duke@435 1253 // and it failed.
duke@435 1254 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
duke@435 1255 return !already_trapped;
duke@435 1256 }
duke@435 1257
duke@435 1258
duke@435 1259 //------------------------------flatten_alias_type-----------------------------
duke@435 1260 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
duke@435 1261 int offset = tj->offset();
duke@435 1262 TypePtr::PTR ptr = tj->ptr();
duke@435 1263
kvn@682 1264 // Known instance (scalarizable allocation) alias only with itself.
kvn@682 1265 bool is_known_inst = tj->isa_oopptr() != NULL &&
kvn@682 1266 tj->is_oopptr()->is_known_instance();
kvn@682 1267
duke@435 1268 // Process weird unsafe references.
duke@435 1269 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
duke@435 1270 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
kvn@682 1271 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
duke@435 1272 tj = TypeOopPtr::BOTTOM;
duke@435 1273 ptr = tj->ptr();
duke@435 1274 offset = tj->offset();
duke@435 1275 }
duke@435 1276
duke@435 1277 // Array pointers need some flattening
duke@435 1278 const TypeAryPtr *ta = tj->isa_aryptr();
kvn@682 1279 if( ta && is_known_inst ) {
kvn@682 1280 if ( offset != Type::OffsetBot &&
kvn@682 1281 offset > arrayOopDesc::length_offset_in_bytes() ) {
kvn@682 1282 offset = Type::OffsetBot; // Flatten constant access into array body only
kvn@682 1283 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
kvn@682 1284 }
kvn@682 1285 } else if( ta && _AliasLevel >= 2 ) {
duke@435 1286 // For arrays indexed by constant indices, we flatten the alias
duke@435 1287 // space to include all of the array body. Only the header, klass
duke@435 1288 // and array length can be accessed un-aliased.
duke@435 1289 if( offset != Type::OffsetBot ) {
coleenp@4037 1290 if( ta->const_oop() ) { // MethodData* or Method*
duke@435 1291 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1292 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1293 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
duke@435 1294 // range is OK as-is.
duke@435 1295 tj = ta = TypeAryPtr::RANGE;
duke@435 1296 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
duke@435 1297 tj = TypeInstPtr::KLASS; // all klass loads look alike
duke@435 1298 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1299 ptr = TypePtr::BotPTR;
duke@435 1300 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
duke@435 1301 tj = TypeInstPtr::MARK;
duke@435 1302 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1303 ptr = TypePtr::BotPTR;
duke@435 1304 } else { // Random constant offset into array body
duke@435 1305 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1306 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
duke@435 1307 }
duke@435 1308 }
duke@435 1309 // Arrays of fixed size alias with arrays of unknown size.
duke@435 1310 if (ta->size() != TypeInt::POS) {
duke@435 1311 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
kvn@682 1312 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
duke@435 1313 }
duke@435 1314 // Arrays of known objects become arrays of unknown objects.
coleenp@548 1315 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
coleenp@548 1316 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
kvn@682 1317 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
coleenp@548 1318 }
duke@435 1319 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
duke@435 1320 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
kvn@682 1321 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
duke@435 1322 }
duke@435 1323 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
duke@435 1324 // cannot be distinguished by bytecode alone.
duke@435 1325 if (ta->elem() == TypeInt::BOOL) {
duke@435 1326 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
duke@435 1327 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
kvn@682 1328 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
duke@435 1329 }
duke@435 1330 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1331 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1332 // Also, make sure exact and non-exact variants alias the same.
duke@435 1333 if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
kvn@2986 1334 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
duke@435 1335 }
duke@435 1336 }
duke@435 1337
duke@435 1338 // Oop pointers need some flattening
duke@435 1339 const TypeInstPtr *to = tj->isa_instptr();
duke@435 1340 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
never@2658 1341 ciInstanceKlass *k = to->klass()->as_instance_klass();
duke@435 1342 if( ptr == TypePtr::Constant ) {
never@2658 1343 if (to->klass() != ciEnv::current()->Class_klass() ||
never@2658 1344 offset < k->size_helper() * wordSize) {
never@2658 1345 // No constant oop pointers (such as Strings); they alias with
never@2658 1346 // unknown strings.
never@2658 1347 assert(!is_known_inst, "not scalarizable allocation");
never@2658 1348 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
never@2658 1349 }
kvn@682 1350 } else if( is_known_inst ) {
kvn@598 1351 tj = to; // Keep NotNull and klass_is_exact for instance type
duke@435 1352 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
duke@435 1353 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1354 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1355 // Also, make sure exact and non-exact variants alias the same.
kvn@682 1356 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
duke@435 1357 }
duke@435 1358 // Canonicalize the holder of this field
coleenp@548 1359 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
duke@435 1360 // First handle header references such as a LoadKlassNode, even if the
duke@435 1361 // object's klass is unloaded at compile time (4965979).
kvn@682 1362 if (!is_known_inst) { // Do it only for non-instance types
kvn@682 1363 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
kvn@682 1364 }
duke@435 1365 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
never@2658 1366 // Static fields are in the space above the normal instance
never@2658 1367 // fields in the java.lang.Class instance.
never@2658 1368 if (to->klass() != ciEnv::current()->Class_klass()) {
never@2658 1369 to = NULL;
never@2658 1370 tj = TypeOopPtr::BOTTOM;
never@2658 1371 offset = tj->offset();
never@2658 1372 }
duke@435 1373 } else {
duke@435 1374 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
duke@435 1375 if (!k->equals(canonical_holder) || tj->offset() != offset) {
kvn@682 1376 if( is_known_inst ) {
kvn@682 1377 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
kvn@682 1378 } else {
kvn@682 1379 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
kvn@682 1380 }
duke@435 1381 }
duke@435 1382 }
duke@435 1383 }
duke@435 1384
duke@435 1385 // Klass pointers to object array klasses need some flattening
duke@435 1386 const TypeKlassPtr *tk = tj->isa_klassptr();
duke@435 1387 if( tk ) {
duke@435 1388 // If we are referencing a field within a Klass, we need
duke@435 1389 // to assume the worst case of an Object. Both exact and
never@3389 1390 // inexact types must flatten to the same alias class so
never@3389 1391 // use NotNull as the PTR.
duke@435 1392 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
duke@435 1393
never@3389 1394 tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
duke@435 1395 TypeKlassPtr::OBJECT->klass(),
duke@435 1396 offset);
duke@435 1397 }
duke@435 1398
duke@435 1399 ciKlass* klass = tk->klass();
duke@435 1400 if( klass->is_obj_array_klass() ) {
duke@435 1401 ciKlass* k = TypeAryPtr::OOPS->klass();
duke@435 1402 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
duke@435 1403 k = TypeInstPtr::BOTTOM->klass();
duke@435 1404 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
duke@435 1405 }
duke@435 1406
duke@435 1407 // Check for precise loads from the primary supertype array and force them
duke@435 1408 // to the supertype cache alias index. Check for generic array loads from
duke@435 1409 // the primary supertype array and also force them to the supertype cache
duke@435 1410 // alias index. Since the same load can reach both, we need to merge
duke@435 1411 // these 2 disparate memories into the same alias class. Since the
duke@435 1412 // primary supertype array is read-only, there's no chance of confusion
duke@435 1413 // where we bypass an array load and an array store.
stefank@3391 1414 int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
never@3389 1415 if (offset == Type::OffsetBot ||
never@3389 1416 (offset >= primary_supers_offset &&
never@3389 1417 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
stefank@3391 1418 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
stefank@3391 1419 offset = in_bytes(Klass::secondary_super_cache_offset());
duke@435 1420 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
duke@435 1421 }
duke@435 1422 }
duke@435 1423
duke@435 1424 // Flatten all Raw pointers together.
duke@435 1425 if (tj->base() == Type::RawPtr)
duke@435 1426 tj = TypeRawPtr::BOTTOM;
duke@435 1427
duke@435 1428 if (tj->base() == Type::AnyPtr)
duke@435 1429 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
duke@435 1430
duke@435 1431 // Flatten all to bottom for now
duke@435 1432 switch( _AliasLevel ) {
duke@435 1433 case 0:
duke@435 1434 tj = TypePtr::BOTTOM;
duke@435 1435 break;
duke@435 1436 case 1: // Flatten to: oop, static, field or array
duke@435 1437 switch (tj->base()) {
duke@435 1438 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
duke@435 1439 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
duke@435 1440 case Type::AryPtr: // do not distinguish arrays at all
duke@435 1441 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
duke@435 1442 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
duke@435 1443 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
duke@435 1444 default: ShouldNotReachHere();
duke@435 1445 }
duke@435 1446 break;
twisti@1040 1447 case 2: // No collapsing at level 2; keep all splits
twisti@1040 1448 case 3: // No collapsing at level 3; keep all splits
duke@435 1449 break;
duke@435 1450 default:
duke@435 1451 Unimplemented();
duke@435 1452 }
duke@435 1453
duke@435 1454 offset = tj->offset();
duke@435 1455 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
duke@435 1456
duke@435 1457 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
duke@435 1458 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
duke@435 1459 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
duke@435 1460 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
duke@435 1461 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1462 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1463 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
duke@435 1464 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
duke@435 1465 assert( tj->ptr() != TypePtr::TopPTR &&
duke@435 1466 tj->ptr() != TypePtr::AnyNull &&
duke@435 1467 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
duke@435 1468 // assert( tj->ptr() != TypePtr::Constant ||
duke@435 1469 // tj->base() == Type::RawPtr ||
duke@435 1470 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
duke@435 1471
duke@435 1472 return tj;
duke@435 1473 }
duke@435 1474
duke@435 1475 void Compile::AliasType::Init(int i, const TypePtr* at) {
duke@435 1476 _index = i;
duke@435 1477 _adr_type = at;
duke@435 1478 _field = NULL;
duke@435 1479 _is_rewritable = true; // default
duke@435 1480 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
kvn@658 1481 if (atoop != NULL && atoop->is_known_instance()) {
kvn@658 1482 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
duke@435 1483 _general_index = Compile::current()->get_alias_index(gt);
duke@435 1484 } else {
duke@435 1485 _general_index = 0;
duke@435 1486 }
duke@435 1487 }
duke@435 1488
duke@435 1489 //---------------------------------print_on------------------------------------
duke@435 1490 #ifndef PRODUCT
duke@435 1491 void Compile::AliasType::print_on(outputStream* st) {
duke@435 1492 if (index() < 10)
duke@435 1493 st->print("@ <%d> ", index());
duke@435 1494 else st->print("@ <%d>", index());
duke@435 1495 st->print(is_rewritable() ? " " : " RO");
duke@435 1496 int offset = adr_type()->offset();
duke@435 1497 if (offset == Type::OffsetBot)
duke@435 1498 st->print(" +any");
duke@435 1499 else st->print(" +%-3d", offset);
duke@435 1500 st->print(" in ");
duke@435 1501 adr_type()->dump_on(st);
duke@435 1502 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
duke@435 1503 if (field() != NULL && tjp) {
duke@435 1504 if (tjp->klass() != field()->holder() ||
duke@435 1505 tjp->offset() != field()->offset_in_bytes()) {
duke@435 1506 st->print(" != ");
duke@435 1507 field()->print();
duke@435 1508 st->print(" ***");
duke@435 1509 }
duke@435 1510 }
duke@435 1511 }
duke@435 1512
duke@435 1513 void print_alias_types() {
duke@435 1514 Compile* C = Compile::current();
duke@435 1515 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
duke@435 1516 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
duke@435 1517 C->alias_type(idx)->print_on(tty);
duke@435 1518 tty->cr();
duke@435 1519 }
duke@435 1520 }
duke@435 1521 #endif
duke@435 1522
duke@435 1523
duke@435 1524 //----------------------------probe_alias_cache--------------------------------
duke@435 1525 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
duke@435 1526 intptr_t key = (intptr_t) adr_type;
duke@435 1527 key ^= key >> logAliasCacheSize;
duke@435 1528 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
duke@435 1529 }
duke@435 1530
duke@435 1531
duke@435 1532 //-----------------------------grow_alias_types--------------------------------
duke@435 1533 void Compile::grow_alias_types() {
duke@435 1534 const int old_ats = _max_alias_types; // how many before?
duke@435 1535 const int new_ats = old_ats; // how many more?
duke@435 1536 const int grow_ats = old_ats+new_ats; // how many now?
duke@435 1537 _max_alias_types = grow_ats;
duke@435 1538 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
duke@435 1539 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
duke@435 1540 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
duke@435 1541 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
duke@435 1542 }
duke@435 1543
duke@435 1544
duke@435 1545 //--------------------------------find_alias_type------------------------------
never@2658 1546 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
duke@435 1547 if (_AliasLevel == 0)
duke@435 1548 return alias_type(AliasIdxBot);
duke@435 1549
duke@435 1550 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1551 if (ace->_adr_type == adr_type) {
duke@435 1552 return alias_type(ace->_index);
duke@435 1553 }
duke@435 1554
duke@435 1555 // Handle special cases.
duke@435 1556 if (adr_type == NULL) return alias_type(AliasIdxTop);
duke@435 1557 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
duke@435 1558
duke@435 1559 // Do it the slow way.
duke@435 1560 const TypePtr* flat = flatten_alias_type(adr_type);
duke@435 1561
duke@435 1562 #ifdef ASSERT
duke@435 1563 assert(flat == flatten_alias_type(flat), "idempotent");
duke@435 1564 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
duke@435 1565 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
duke@435 1566 const TypeOopPtr* foop = flat->is_oopptr();
kvn@682 1567 // Scalarizable allocations have exact klass always.
kvn@682 1568 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
kvn@682 1569 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
duke@435 1570 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
duke@435 1571 }
duke@435 1572 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
duke@435 1573 #endif
duke@435 1574
duke@435 1575 int idx = AliasIdxTop;
duke@435 1576 for (int i = 0; i < num_alias_types(); i++) {
duke@435 1577 if (alias_type(i)->adr_type() == flat) {
duke@435 1578 idx = i;
duke@435 1579 break;
duke@435 1580 }
duke@435 1581 }
duke@435 1582
duke@435 1583 if (idx == AliasIdxTop) {
duke@435 1584 if (no_create) return NULL;
duke@435 1585 // Grow the array if necessary.
duke@435 1586 if (_num_alias_types == _max_alias_types) grow_alias_types();
duke@435 1587 // Add a new alias type.
duke@435 1588 idx = _num_alias_types++;
duke@435 1589 _alias_types[idx]->Init(idx, flat);
duke@435 1590 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
duke@435 1591 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
duke@435 1592 if (flat->isa_instptr()) {
duke@435 1593 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
duke@435 1594 && flat->is_instptr()->klass() == env()->Class_klass())
duke@435 1595 alias_type(idx)->set_rewritable(false);
duke@435 1596 }
duke@435 1597 if (flat->isa_klassptr()) {
stefank@3391 1598 if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
duke@435 1599 alias_type(idx)->set_rewritable(false);
stefank@3391 1600 if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
duke@435 1601 alias_type(idx)->set_rewritable(false);
stefank@3391 1602 if (flat->offset() == in_bytes(Klass::access_flags_offset()))
duke@435 1603 alias_type(idx)->set_rewritable(false);
stefank@3391 1604 if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
duke@435 1605 alias_type(idx)->set_rewritable(false);
duke@435 1606 }
duke@435 1607 // %%% (We would like to finalize JavaThread::threadObj_offset(),
duke@435 1608 // but the base pointer type is not distinctive enough to identify
duke@435 1609 // references into JavaThread.)
duke@435 1610
never@2658 1611 // Check for final fields.
duke@435 1612 const TypeInstPtr* tinst = flat->isa_instptr();
coleenp@548 1613 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
never@2658 1614 ciField* field;
never@2658 1615 if (tinst->const_oop() != NULL &&
never@2658 1616 tinst->klass() == ciEnv::current()->Class_klass() &&
never@2658 1617 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
never@2658 1618 // static field
never@2658 1619 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 1620 field = k->get_field_by_offset(tinst->offset(), true);
never@2658 1621 } else {
never@2658 1622 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
never@2658 1623 field = k->get_field_by_offset(tinst->offset(), false);
never@2658 1624 }
never@2658 1625 assert(field == NULL ||
never@2658 1626 original_field == NULL ||
never@2658 1627 (field->holder() == original_field->holder() &&
never@2658 1628 field->offset() == original_field->offset() &&
never@2658 1629 field->is_static() == original_field->is_static()), "wrong field?");
duke@435 1630 // Set field() and is_rewritable() attributes.
duke@435 1631 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1632 }
duke@435 1633 }
duke@435 1634
duke@435 1635 // Fill the cache for next time.
duke@435 1636 ace->_adr_type = adr_type;
duke@435 1637 ace->_index = idx;
duke@435 1638 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
duke@435 1639
duke@435 1640 // Might as well try to fill the cache for the flattened version, too.
duke@435 1641 AliasCacheEntry* face = probe_alias_cache(flat);
duke@435 1642 if (face->_adr_type == NULL) {
duke@435 1643 face->_adr_type = flat;
duke@435 1644 face->_index = idx;
duke@435 1645 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
duke@435 1646 }
duke@435 1647
duke@435 1648 return alias_type(idx);
duke@435 1649 }
duke@435 1650
duke@435 1651
duke@435 1652 Compile::AliasType* Compile::alias_type(ciField* field) {
duke@435 1653 const TypeOopPtr* t;
duke@435 1654 if (field->is_static())
never@2658 1655 t = TypeInstPtr::make(field->holder()->java_mirror());
duke@435 1656 else
duke@435 1657 t = TypeOopPtr::make_from_klass_raw(field->holder());
never@2658 1658 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
duke@435 1659 assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
duke@435 1660 return atp;
duke@435 1661 }
duke@435 1662
duke@435 1663
duke@435 1664 //------------------------------have_alias_type--------------------------------
duke@435 1665 bool Compile::have_alias_type(const TypePtr* adr_type) {
duke@435 1666 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1667 if (ace->_adr_type == adr_type) {
duke@435 1668 return true;
duke@435 1669 }
duke@435 1670
duke@435 1671 // Handle special cases.
duke@435 1672 if (adr_type == NULL) return true;
duke@435 1673 if (adr_type == TypePtr::BOTTOM) return true;
duke@435 1674
never@2658 1675 return find_alias_type(adr_type, true, NULL) != NULL;
duke@435 1676 }
duke@435 1677
duke@435 1678 //-----------------------------must_alias--------------------------------------
duke@435 1679 // True if all values of the given address type are in the given alias category.
duke@435 1680 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1681 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1682 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
duke@435 1683 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1684 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
duke@435 1685
duke@435 1686 // the only remaining possible overlap is identity
duke@435 1687 int adr_idx = get_alias_index(adr_type);
duke@435 1688 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1689 assert(adr_idx == alias_idx ||
duke@435 1690 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
duke@435 1691 && adr_type != TypeOopPtr::BOTTOM),
duke@435 1692 "should not be testing for overlap with an unsafe pointer");
duke@435 1693 return adr_idx == alias_idx;
duke@435 1694 }
duke@435 1695
duke@435 1696 //------------------------------can_alias--------------------------------------
duke@435 1697 // True if any values of the given address type are in the given alias category.
duke@435 1698 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1699 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1700 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
duke@435 1701 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1702 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
duke@435 1703
duke@435 1704 // the only remaining possible overlap is identity
duke@435 1705 int adr_idx = get_alias_index(adr_type);
duke@435 1706 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1707 return adr_idx == alias_idx;
duke@435 1708 }
duke@435 1709
duke@435 1710
duke@435 1711
duke@435 1712 //---------------------------pop_warm_call-------------------------------------
duke@435 1713 WarmCallInfo* Compile::pop_warm_call() {
duke@435 1714 WarmCallInfo* wci = _warm_calls;
duke@435 1715 if (wci != NULL) _warm_calls = wci->remove_from(wci);
duke@435 1716 return wci;
duke@435 1717 }
duke@435 1718
duke@435 1719 //----------------------------Inline_Warm--------------------------------------
duke@435 1720 int Compile::Inline_Warm() {
duke@435 1721 // If there is room, try to inline some more warm call sites.
duke@435 1722 // %%% Do a graph index compaction pass when we think we're out of space?
duke@435 1723 if (!InlineWarmCalls) return 0;
duke@435 1724
duke@435 1725 int calls_made_hot = 0;
duke@435 1726 int room_to_grow = NodeCountInliningCutoff - unique();
duke@435 1727 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
duke@435 1728 int amount_grown = 0;
duke@435 1729 WarmCallInfo* call;
duke@435 1730 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
duke@435 1731 int est_size = (int)call->size();
duke@435 1732 if (est_size > (room_to_grow - amount_grown)) {
duke@435 1733 // This one won't fit anyway. Get rid of it.
duke@435 1734 call->make_cold();
duke@435 1735 continue;
duke@435 1736 }
duke@435 1737 call->make_hot();
duke@435 1738 calls_made_hot++;
duke@435 1739 amount_grown += est_size;
duke@435 1740 amount_to_grow -= est_size;
duke@435 1741 }
duke@435 1742
duke@435 1743 if (calls_made_hot > 0) set_major_progress();
duke@435 1744 return calls_made_hot;
duke@435 1745 }
duke@435 1746
duke@435 1747
duke@435 1748 //----------------------------Finish_Warm--------------------------------------
duke@435 1749 void Compile::Finish_Warm() {
duke@435 1750 if (!InlineWarmCalls) return;
duke@435 1751 if (failing()) return;
duke@435 1752 if (warm_calls() == NULL) return;
duke@435 1753
duke@435 1754 // Clean up loose ends, if we are out of space for inlining.
duke@435 1755 WarmCallInfo* call;
duke@435 1756 while ((call = pop_warm_call()) != NULL) {
duke@435 1757 call->make_cold();
duke@435 1758 }
duke@435 1759 }
duke@435 1760
cfang@1607 1761 //---------------------cleanup_loop_predicates-----------------------
cfang@1607 1762 // Remove the opaque nodes that protect the predicates so that all unused
cfang@1607 1763 // checks and uncommon_traps will be eliminated from the ideal graph
cfang@1607 1764 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
cfang@1607 1765 if (predicate_count()==0) return;
cfang@1607 1766 for (int i = predicate_count(); i > 0; i--) {
cfang@1607 1767 Node * n = predicate_opaque1_node(i-1);
cfang@1607 1768 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1769 igvn.replace_node(n, n->in(1));
cfang@1607 1770 }
cfang@1607 1771 assert(predicate_count()==0, "should be clean!");
cfang@1607 1772 }
duke@435 1773
roland@4409 1774 // StringOpts and late inlining of string methods
roland@4409 1775 void Compile::inline_string_calls(bool parse_time) {
roland@4409 1776 {
roland@4409 1777 // remove useless nodes to make the usage analysis simpler
roland@4409 1778 ResourceMark rm;
roland@4409 1779 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
roland@4409 1780 }
roland@4409 1781
roland@4409 1782 {
roland@4409 1783 ResourceMark rm;
roland@4409 1784 print_method("Before StringOpts", 3);
roland@4409 1785 PhaseStringOpts pso(initial_gvn(), for_igvn());
roland@4409 1786 print_method("After StringOpts", 3);
roland@4409 1787 }
roland@4409 1788
roland@4409 1789 // now inline anything that we skipped the first time around
roland@4409 1790 if (!parse_time) {
roland@4409 1791 _late_inlines_pos = _late_inlines.length();
roland@4409 1792 }
roland@4409 1793
roland@4409 1794 while (_string_late_inlines.length() > 0) {
roland@4409 1795 CallGenerator* cg = _string_late_inlines.pop();
roland@4409 1796 cg->do_late_inline();
roland@4409 1797 if (failing()) return;
roland@4409 1798 }
roland@4409 1799 _string_late_inlines.trunc_to(0);
roland@4409 1800 }
roland@4409 1801
roland@4409 1802 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
roland@4409 1803 assert(IncrementalInline, "incremental inlining should be on");
roland@4409 1804 PhaseGVN* gvn = initial_gvn();
roland@4409 1805
roland@4409 1806 set_inlining_progress(false);
roland@4409 1807 for_igvn()->clear();
roland@4409 1808 gvn->replace_with(&igvn);
roland@4409 1809
roland@4409 1810 int i = 0;
roland@4409 1811
roland@4409 1812 for (; i <_late_inlines.length() && !inlining_progress(); i++) {
roland@4409 1813 CallGenerator* cg = _late_inlines.at(i);
roland@4409 1814 _late_inlines_pos = i+1;
roland@4409 1815 cg->do_late_inline();
roland@4409 1816 if (failing()) return;
roland@4409 1817 }
roland@4409 1818 int j = 0;
roland@4409 1819 for (; i < _late_inlines.length(); i++, j++) {
roland@4409 1820 _late_inlines.at_put(j, _late_inlines.at(i));
roland@4409 1821 }
roland@4409 1822 _late_inlines.trunc_to(j);
roland@4409 1823
roland@4409 1824 {
roland@4409 1825 ResourceMark rm;
roland@4409 1826 PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
roland@4409 1827 }
roland@4409 1828
roland@4409 1829 igvn = PhaseIterGVN(gvn);
roland@4409 1830 }
roland@4409 1831
roland@4409 1832 // Perform incremental inlining until bound on number of live nodes is reached
roland@4409 1833 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
roland@4409 1834 PhaseGVN* gvn = initial_gvn();
roland@4409 1835
roland@4409 1836 set_inlining_incrementally(true);
roland@4409 1837 set_inlining_progress(true);
roland@4409 1838 uint low_live_nodes = 0;
roland@4409 1839
roland@4409 1840 while(inlining_progress() && _late_inlines.length() > 0) {
roland@4409 1841
roland@4409 1842 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
roland@4409 1843 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
roland@4409 1844 // PhaseIdealLoop is expensive so we only try it once we are
roland@4409 1845 // out of loop and we only try it again if the previous helped
roland@4409 1846 // got the number of nodes down significantly
roland@4409 1847 PhaseIdealLoop ideal_loop( igvn, false, true );
roland@4409 1848 if (failing()) return;
roland@4409 1849 low_live_nodes = live_nodes();
roland@4409 1850 _major_progress = true;
roland@4409 1851 }
roland@4409 1852
roland@4409 1853 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
roland@4409 1854 break;
roland@4409 1855 }
roland@4409 1856 }
roland@4409 1857
roland@4409 1858 inline_incrementally_one(igvn);
roland@4409 1859
roland@4409 1860 if (failing()) return;
roland@4409 1861
roland@4409 1862 igvn.optimize();
roland@4409 1863
roland@4409 1864 if (failing()) return;
roland@4409 1865 }
roland@4409 1866
roland@4409 1867 assert( igvn._worklist.size() == 0, "should be done with igvn" );
roland@4409 1868
roland@4409 1869 if (_string_late_inlines.length() > 0) {
roland@4409 1870 assert(has_stringbuilder(), "inconsistent");
roland@4409 1871 for_igvn()->clear();
roland@4409 1872 initial_gvn()->replace_with(&igvn);
roland@4409 1873
roland@4409 1874 inline_string_calls(false);
roland@4409 1875
roland@4409 1876 if (failing()) return;
roland@4409 1877
roland@4409 1878 {
roland@4409 1879 ResourceMark rm;
roland@4409 1880 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
roland@4409 1881 }
roland@4409 1882
roland@4409 1883 igvn = PhaseIterGVN(gvn);
roland@4409 1884
roland@4409 1885 igvn.optimize();
roland@4409 1886 }
roland@4409 1887
roland@4409 1888 set_inlining_incrementally(false);
roland@4409 1889 }
roland@4409 1890
roland@4409 1891
duke@435 1892 //------------------------------Optimize---------------------------------------
duke@435 1893 // Given a graph, optimize it.
duke@435 1894 void Compile::Optimize() {
duke@435 1895 TracePhase t1("optimizer", &_t_optimizer, true);
duke@435 1896
duke@435 1897 #ifndef PRODUCT
duke@435 1898 if (env()->break_at_compile()) {
duke@435 1899 BREAKPOINT;
duke@435 1900 }
duke@435 1901
duke@435 1902 #endif
duke@435 1903
duke@435 1904 ResourceMark rm;
duke@435 1905 int loop_opts_cnt;
duke@435 1906
duke@435 1907 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1908
never@657 1909 print_method("After Parsing");
duke@435 1910
duke@435 1911 {
duke@435 1912 // Iterative Global Value Numbering, including ideal transforms
duke@435 1913 // Initialize IterGVN with types and values from parse-time GVN
duke@435 1914 PhaseIterGVN igvn(initial_gvn());
duke@435 1915 {
duke@435 1916 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
duke@435 1917 igvn.optimize();
duke@435 1918 }
duke@435 1919
duke@435 1920 print_method("Iter GVN 1", 2);
duke@435 1921
duke@435 1922 if (failing()) return;
duke@435 1923
roland@4409 1924 inline_incrementally(igvn);
roland@4409 1925
roland@4409 1926 print_method("Incremental Inline", 2);
roland@4409 1927
roland@4409 1928 if (failing()) return;
roland@4409 1929
kvn@1989 1930 // Perform escape analysis
kvn@1989 1931 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
kvn@3260 1932 if (has_loops()) {
kvn@3260 1933 // Cleanup graph (remove dead nodes).
kvn@3260 1934 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@3260 1935 PhaseIdealLoop ideal_loop( igvn, false, true );
kvn@3260 1936 if (major_progress()) print_method("PhaseIdealLoop before EA", 2);
kvn@3260 1937 if (failing()) return;
kvn@3260 1938 }
kvn@1989 1939 ConnectionGraph::do_analysis(this, &igvn);
kvn@1989 1940
kvn@1989 1941 if (failing()) return;
kvn@1989 1942
kvn@3311 1943 // Optimize out fields loads from scalar replaceable allocations.
kvn@1989 1944 igvn.optimize();
kvn@3260 1945 print_method("Iter GVN after EA", 2);
kvn@1989 1946
kvn@1989 1947 if (failing()) return;
kvn@1989 1948
kvn@3311 1949 if (congraph() != NULL && macro_count() > 0) {
kvn@3651 1950 NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
kvn@3311 1951 PhaseMacroExpand mexp(igvn);
kvn@3311 1952 mexp.eliminate_macro_nodes();
kvn@3311 1953 igvn.set_delay_transform(false);
kvn@3311 1954
kvn@3311 1955 igvn.optimize();
kvn@3311 1956 print_method("Iter GVN after eliminating allocations and locks", 2);
kvn@3311 1957
kvn@3311 1958 if (failing()) return;
kvn@3311 1959 }
kvn@1989 1960 }
kvn@1989 1961
duke@435 1962 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1963 // peeling, unrolling, etc.
duke@435 1964
duke@435 1965 // Set loop opts counter
duke@435 1966 loop_opts_cnt = num_loop_opts();
duke@435 1967 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
duke@435 1968 {
duke@435 1969 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@2727 1970 PhaseIdealLoop ideal_loop( igvn, true );
duke@435 1971 loop_opts_cnt--;
duke@435 1972 if (major_progress()) print_method("PhaseIdealLoop 1", 2);
duke@435 1973 if (failing()) return;
duke@435 1974 }
duke@435 1975 // Loop opts pass if partial peeling occurred in previous pass
duke@435 1976 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
duke@435 1977 TracePhase t3("idealLoop", &_t_idealLoop, true);
kvn@2727 1978 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 1979 loop_opts_cnt--;
duke@435 1980 if (major_progress()) print_method("PhaseIdealLoop 2", 2);
duke@435 1981 if (failing()) return;
duke@435 1982 }
duke@435 1983 // Loop opts pass for loop-unrolling before CCP
duke@435 1984 if(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1985 TracePhase t4("idealLoop", &_t_idealLoop, true);
kvn@2727 1986 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 1987 loop_opts_cnt--;
duke@435 1988 if (major_progress()) print_method("PhaseIdealLoop 3", 2);
duke@435 1989 }
never@1356 1990 if (!failing()) {
never@1356 1991 // Verify that last round of loop opts produced a valid graph
never@1356 1992 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1993 PhaseIdealLoop::verify(igvn);
never@1356 1994 }
duke@435 1995 }
duke@435 1996 if (failing()) return;
duke@435 1997
duke@435 1998 // Conditional Constant Propagation;
duke@435 1999 PhaseCCP ccp( &igvn );
duke@435 2000 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
duke@435 2001 {
duke@435 2002 TracePhase t2("ccp", &_t_ccp, true);
duke@435 2003 ccp.do_transform();
duke@435 2004 }
duke@435 2005 print_method("PhaseCPP 1", 2);
duke@435 2006
duke@435 2007 assert( true, "Break here to ccp.dump_old2new_map()");
duke@435 2008
duke@435 2009 // Iterative Global Value Numbering, including ideal transforms
duke@435 2010 {
duke@435 2011 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
duke@435 2012 igvn = ccp;
duke@435 2013 igvn.optimize();
duke@435 2014 }
duke@435 2015
duke@435 2016 print_method("Iter GVN 2", 2);
duke@435 2017
duke@435 2018 if (failing()) return;
duke@435 2019
duke@435 2020 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 2021 // peeling, unrolling, etc.
duke@435 2022 if(loop_opts_cnt > 0) {
duke@435 2023 debug_only( int cnt = 0; );
duke@435 2024 while(major_progress() && (loop_opts_cnt > 0)) {
duke@435 2025 TracePhase t2("idealLoop", &_t_idealLoop, true);
duke@435 2026 assert( cnt++ < 40, "infinite cycle in loop optimization" );
kvn@2727 2027 PhaseIdealLoop ideal_loop( igvn, true);
duke@435 2028 loop_opts_cnt--;
duke@435 2029 if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
duke@435 2030 if (failing()) return;
duke@435 2031 }
duke@435 2032 }
never@1356 2033
never@1356 2034 {
never@1356 2035 // Verify that all previous optimizations produced a valid graph
never@1356 2036 // at least to this point, even if no loop optimizations were done.
never@1356 2037 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 2038 PhaseIdealLoop::verify(igvn);
never@1356 2039 }
never@1356 2040
duke@435 2041 {
duke@435 2042 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
duke@435 2043 PhaseMacroExpand mex(igvn);
duke@435 2044 if (mex.expand_macro_nodes()) {
duke@435 2045 assert(failing(), "must bail out w/ explicit message");
duke@435 2046 return;
duke@435 2047 }
duke@435 2048 }
duke@435 2049
duke@435 2050 } // (End scope of igvn; run destructor if necessary for asserts.)
duke@435 2051
kvn@4448 2052 dump_inlining();
duke@435 2053 // A method with only infinite loops has no edges entering loops from root
duke@435 2054 {
duke@435 2055 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
duke@435 2056 if (final_graph_reshaping()) {
duke@435 2057 assert(failing(), "must bail out w/ explicit message");
duke@435 2058 return;
duke@435 2059 }
duke@435 2060 }
duke@435 2061
duke@435 2062 print_method("Optimize finished", 2);
duke@435 2063 }
duke@435 2064
duke@435 2065
duke@435 2066 //------------------------------Code_Gen---------------------------------------
duke@435 2067 // Given a graph, generate code for it
duke@435 2068 void Compile::Code_Gen() {
duke@435 2069 if (failing()) return;
duke@435 2070
duke@435 2071 // Perform instruction selection. You might think we could reclaim Matcher
duke@435 2072 // memory PDQ, but actually the Matcher is used in generating spill code.
duke@435 2073 // Internals of the Matcher (including some VectorSets) must remain live
duke@435 2074 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
duke@435 2075 // set a bit in reclaimed memory.
duke@435 2076
duke@435 2077 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 2078 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 2079 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2080
duke@435 2081 Node_List proj_list;
duke@435 2082 Matcher m(proj_list);
duke@435 2083 _matcher = &m;
duke@435 2084 {
duke@435 2085 TracePhase t2("matcher", &_t_matcher, true);
duke@435 2086 m.match();
duke@435 2087 }
duke@435 2088 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 2089 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 2090 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2091
duke@435 2092 // If you have too many nodes, or if matching has failed, bail out
duke@435 2093 check_node_count(0, "out of nodes matching instructions");
duke@435 2094 if (failing()) return;
duke@435 2095
duke@435 2096 // Build a proper-looking CFG
duke@435 2097 PhaseCFG cfg(node_arena(), root(), m);
duke@435 2098 _cfg = &cfg;
duke@435 2099 {
duke@435 2100 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
duke@435 2101 cfg.Dominators();
duke@435 2102 if (failing()) return;
duke@435 2103
duke@435 2104 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2105
duke@435 2106 cfg.Estimate_Block_Frequency();
duke@435 2107 cfg.GlobalCodeMotion(m,unique(),proj_list);
never@3654 2108 if (failing()) return;
duke@435 2109
duke@435 2110 print_method("Global code motion", 2);
duke@435 2111
duke@435 2112 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2113
duke@435 2114 debug_only( cfg.verify(); )
duke@435 2115 }
duke@435 2116 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2117
duke@435 2118 PhaseChaitin regalloc(unique(),cfg,m);
duke@435 2119 _regalloc = &regalloc;
duke@435 2120 {
duke@435 2121 TracePhase t2("regalloc", &_t_registerAllocation, true);
duke@435 2122 // Perform any platform dependent preallocation actions. This is used,
duke@435 2123 // for example, to avoid taking an implicit null pointer exception
duke@435 2124 // using the frame pointer on win95.
duke@435 2125 _regalloc->pd_preallocate_hook();
duke@435 2126
duke@435 2127 // Perform register allocation. After Chaitin, use-def chains are
duke@435 2128 // no longer accurate (at spill code) and so must be ignored.
duke@435 2129 // Node->LRG->reg mappings are still accurate.
duke@435 2130 _regalloc->Register_Allocate();
duke@435 2131
duke@435 2132 // Bail out if the allocator builds too many nodes
duke@435 2133 if (failing()) return;
duke@435 2134 }
duke@435 2135
duke@435 2136 // Prior to register allocation we kept empty basic blocks in case the
duke@435 2137 // the allocator needed a place to spill. After register allocation we
duke@435 2138 // are not adding any new instructions. If any basic block is empty, we
duke@435 2139 // can now safely remove it.
duke@435 2140 {
rasbold@853 2141 NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
rasbold@853 2142 cfg.remove_empty();
rasbold@853 2143 if (do_freq_based_layout()) {
rasbold@853 2144 PhaseBlockLayout layout(cfg);
rasbold@853 2145 } else {
rasbold@853 2146 cfg.set_loop_alignment();
rasbold@853 2147 }
rasbold@853 2148 cfg.fixup_flow();
duke@435 2149 }
duke@435 2150
duke@435 2151 // Perform any platform dependent postallocation verifications.
duke@435 2152 debug_only( _regalloc->pd_postallocate_verify_hook(); )
duke@435 2153
duke@435 2154 // Apply peephole optimizations
duke@435 2155 if( OptoPeephole ) {
duke@435 2156 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
duke@435 2157 PhasePeephole peep( _regalloc, cfg);
duke@435 2158 peep.do_transform();
duke@435 2159 }
duke@435 2160
duke@435 2161 // Convert Nodes to instruction bits in a buffer
duke@435 2162 {
duke@435 2163 // %%%% workspace merge brought two timers together for one job
duke@435 2164 TracePhase t2a("output", &_t_output, true);
duke@435 2165 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
duke@435 2166 Output();
duke@435 2167 }
duke@435 2168
never@657 2169 print_method("Final Code");
duke@435 2170
duke@435 2171 // He's dead, Jim.
duke@435 2172 _cfg = (PhaseCFG*)0xdeadbeef;
duke@435 2173 _regalloc = (PhaseChaitin*)0xdeadbeef;
duke@435 2174 }
duke@435 2175
duke@435 2176
duke@435 2177 //------------------------------dump_asm---------------------------------------
duke@435 2178 // Dump formatted assembly
duke@435 2179 #ifndef PRODUCT
duke@435 2180 void Compile::dump_asm(int *pcs, uint pc_limit) {
duke@435 2181 bool cut_short = false;
duke@435 2182 tty->print_cr("#");
duke@435 2183 tty->print("# "); _tf->dump(); tty->cr();
duke@435 2184 tty->print_cr("#");
duke@435 2185
duke@435 2186 // For all blocks
duke@435 2187 int pc = 0x0; // Program counter
duke@435 2188 char starts_bundle = ' ';
duke@435 2189 _regalloc->dump_frame();
duke@435 2190
duke@435 2191 Node *n = NULL;
duke@435 2192 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 2193 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 2194 Block *b = _cfg->_blocks[i];
duke@435 2195 if (b->is_connector() && !Verbose) continue;
duke@435 2196 n = b->_nodes[0];
duke@435 2197 if (pcs && n->_idx < pc_limit)
duke@435 2198 tty->print("%3.3x ", pcs[n->_idx]);
duke@435 2199 else
duke@435 2200 tty->print(" ");
duke@435 2201 b->dump_head( &_cfg->_bbs );
duke@435 2202 if (b->is_connector()) {
duke@435 2203 tty->print_cr(" # Empty connector block");
duke@435 2204 } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
duke@435 2205 tty->print_cr(" # Block is sole successor of call");
duke@435 2206 }
duke@435 2207
duke@435 2208 // For all instructions
duke@435 2209 Node *delay = NULL;
duke@435 2210 for( uint j = 0; j<b->_nodes.size(); j++ ) {
duke@435 2211 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 2212 n = b->_nodes[j];
duke@435 2213 if (valid_bundle_info(n)) {
duke@435 2214 Bundle *bundle = node_bundling(n);
duke@435 2215 if (bundle->used_in_unconditional_delay()) {
duke@435 2216 delay = n;
duke@435 2217 continue;
duke@435 2218 }
duke@435 2219 if (bundle->starts_bundle())
duke@435 2220 starts_bundle = '+';
duke@435 2221 }
duke@435 2222
coleenp@548 2223 if (WizardMode) n->dump();
coleenp@548 2224
duke@435 2225 if( !n->is_Region() && // Dont print in the Assembly
duke@435 2226 !n->is_Phi() && // a few noisely useless nodes
duke@435 2227 !n->is_Proj() &&
duke@435 2228 !n->is_MachTemp() &&
kvn@1535 2229 !n->is_SafePointScalarObject() &&
duke@435 2230 !n->is_Catch() && // Would be nice to print exception table targets
duke@435 2231 !n->is_MergeMem() && // Not very interesting
duke@435 2232 !n->is_top() && // Debug info table constants
duke@435 2233 !(n->is_Con() && !n->is_Mach())// Debug info table constants
duke@435 2234 ) {
duke@435 2235 if (pcs && n->_idx < pc_limit)
duke@435 2236 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2237 else
duke@435 2238 tty->print(" ");
duke@435 2239 tty->print(" %c ", starts_bundle);
duke@435 2240 starts_bundle = ' ';
duke@435 2241 tty->print("\t");
duke@435 2242 n->format(_regalloc, tty);
duke@435 2243 tty->cr();
duke@435 2244 }
duke@435 2245
duke@435 2246 // If we have an instruction with a delay slot, and have seen a delay,
duke@435 2247 // then back up and print it
duke@435 2248 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 2249 assert(delay != NULL, "no unconditional delay instruction");
coleenp@548 2250 if (WizardMode) delay->dump();
coleenp@548 2251
duke@435 2252 if (node_bundling(delay)->starts_bundle())
duke@435 2253 starts_bundle = '+';
duke@435 2254 if (pcs && n->_idx < pc_limit)
duke@435 2255 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2256 else
duke@435 2257 tty->print(" ");
duke@435 2258 tty->print(" %c ", starts_bundle);
duke@435 2259 starts_bundle = ' ';
duke@435 2260 tty->print("\t");
duke@435 2261 delay->format(_regalloc, tty);
duke@435 2262 tty->print_cr("");
duke@435 2263 delay = NULL;
duke@435 2264 }
duke@435 2265
duke@435 2266 // Dump the exception table as well
duke@435 2267 if( n->is_Catch() && (Verbose || WizardMode) ) {
duke@435 2268 // Print the exception table for this offset
duke@435 2269 _handler_table.print_subtable_for(pc);
duke@435 2270 }
duke@435 2271 }
duke@435 2272
duke@435 2273 if (pcs && n->_idx < pc_limit)
duke@435 2274 tty->print_cr("%3.3x", pcs[n->_idx]);
duke@435 2275 else
duke@435 2276 tty->print_cr("");
duke@435 2277
duke@435 2278 assert(cut_short || delay == NULL, "no unconditional delay branch");
duke@435 2279
duke@435 2280 } // End of per-block dump
duke@435 2281 tty->print_cr("");
duke@435 2282
duke@435 2283 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
duke@435 2284 }
duke@435 2285 #endif
duke@435 2286
duke@435 2287 //------------------------------Final_Reshape_Counts---------------------------
duke@435 2288 // This class defines counters to help identify when a method
duke@435 2289 // may/must be executed using hardware with only 24-bit precision.
duke@435 2290 struct Final_Reshape_Counts : public StackObj {
duke@435 2291 int _call_count; // count non-inlined 'common' calls
duke@435 2292 int _float_count; // count float ops requiring 24-bit precision
duke@435 2293 int _double_count; // count double ops requiring more precision
duke@435 2294 int _java_call_count; // count non-inlined 'java' calls
kvn@1294 2295 int _inner_loop_count; // count loops which need alignment
duke@435 2296 VectorSet _visited; // Visitation flags
duke@435 2297 Node_List _tests; // Set of IfNodes & PCTableNodes
duke@435 2298
duke@435 2299 Final_Reshape_Counts() :
kvn@1294 2300 _call_count(0), _float_count(0), _double_count(0),
kvn@1294 2301 _java_call_count(0), _inner_loop_count(0),
duke@435 2302 _visited( Thread::current()->resource_area() ) { }
duke@435 2303
duke@435 2304 void inc_call_count () { _call_count ++; }
duke@435 2305 void inc_float_count () { _float_count ++; }
duke@435 2306 void inc_double_count() { _double_count++; }
duke@435 2307 void inc_java_call_count() { _java_call_count++; }
kvn@1294 2308 void inc_inner_loop_count() { _inner_loop_count++; }
duke@435 2309
duke@435 2310 int get_call_count () const { return _call_count ; }
duke@435 2311 int get_float_count () const { return _float_count ; }
duke@435 2312 int get_double_count() const { return _double_count; }
duke@435 2313 int get_java_call_count() const { return _java_call_count; }
kvn@1294 2314 int get_inner_loop_count() const { return _inner_loop_count; }
duke@435 2315 };
duke@435 2316
duke@435 2317 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
duke@435 2318 ciInstanceKlass *k = tp->klass()->as_instance_klass();
duke@435 2319 // Make sure the offset goes inside the instance layout.
coleenp@548 2320 return k->contains_field_offset(tp->offset());
duke@435 2321 // Note that OffsetBot and OffsetTop are very negative.
duke@435 2322 }
duke@435 2323
never@2780 2324 // Eliminate trivially redundant StoreCMs and accumulate their
never@2780 2325 // precedence edges.
bharadwaj@4315 2326 void Compile::eliminate_redundant_card_marks(Node* n) {
never@2780 2327 assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
never@2780 2328 if (n->in(MemNode::Address)->outcnt() > 1) {
never@2780 2329 // There are multiple users of the same address so it might be
never@2780 2330 // possible to eliminate some of the StoreCMs
never@2780 2331 Node* mem = n->in(MemNode::Memory);
never@2780 2332 Node* adr = n->in(MemNode::Address);
never@2780 2333 Node* val = n->in(MemNode::ValueIn);
never@2780 2334 Node* prev = n;
never@2780 2335 bool done = false;
never@2780 2336 // Walk the chain of StoreCMs eliminating ones that match. As
never@2780 2337 // long as it's a chain of single users then the optimization is
never@2780 2338 // safe. Eliminating partially redundant StoreCMs would require
never@2780 2339 // cloning copies down the other paths.
never@2780 2340 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
never@2780 2341 if (adr == mem->in(MemNode::Address) &&
never@2780 2342 val == mem->in(MemNode::ValueIn)) {
never@2780 2343 // redundant StoreCM
never@2780 2344 if (mem->req() > MemNode::OopStore) {
never@2780 2345 // Hasn't been processed by this code yet.
never@2780 2346 n->add_prec(mem->in(MemNode::OopStore));
never@2780 2347 } else {
never@2780 2348 // Already converted to precedence edge
never@2780 2349 for (uint i = mem->req(); i < mem->len(); i++) {
never@2780 2350 // Accumulate any precedence edges
never@2780 2351 if (mem->in(i) != NULL) {
never@2780 2352 n->add_prec(mem->in(i));
never@2780 2353 }
never@2780 2354 }
never@2780 2355 // Everything above this point has been processed.
never@2780 2356 done = true;
never@2780 2357 }
never@2780 2358 // Eliminate the previous StoreCM
never@2780 2359 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
never@2780 2360 assert(mem->outcnt() == 0, "should be dead");
bharadwaj@4315 2361 mem->disconnect_inputs(NULL, this);
never@2780 2362 } else {
never@2780 2363 prev = mem;
never@2780 2364 }
never@2780 2365 mem = prev->in(MemNode::Memory);
never@2780 2366 }
never@2780 2367 }
never@2780 2368 }
never@2780 2369
duke@435 2370 //------------------------------final_graph_reshaping_impl----------------------
duke@435 2371 // Implement items 1-5 from final_graph_reshaping below.
bharadwaj@4315 2372 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
duke@435 2373
kvn@603 2374 if ( n->outcnt() == 0 ) return; // dead node
duke@435 2375 uint nop = n->Opcode();
duke@435 2376
duke@435 2377 // Check for 2-input instruction with "last use" on right input.
duke@435 2378 // Swap to left input. Implements item (2).
duke@435 2379 if( n->req() == 3 && // two-input instruction
duke@435 2380 n->in(1)->outcnt() > 1 && // left use is NOT a last use
duke@435 2381 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
duke@435 2382 n->in(2)->outcnt() == 1 &&// right use IS a last use
duke@435 2383 !n->in(2)->is_Con() ) { // right use is not a constant
duke@435 2384 // Check for commutative opcode
duke@435 2385 switch( nop ) {
duke@435 2386 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
duke@435 2387 case Op_MaxI: case Op_MinI:
duke@435 2388 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
duke@435 2389 case Op_AndL: case Op_XorL: case Op_OrL:
duke@435 2390 case Op_AndI: case Op_XorI: case Op_OrI: {
duke@435 2391 // Move "last use" input to left by swapping inputs
duke@435 2392 n->swap_edges(1, 2);
duke@435 2393 break;
duke@435 2394 }
duke@435 2395 default:
duke@435 2396 break;
duke@435 2397 }
duke@435 2398 }
duke@435 2399
kvn@1964 2400 #ifdef ASSERT
kvn@1964 2401 if( n->is_Mem() ) {
bharadwaj@4315 2402 int alias_idx = get_alias_index(n->as_Mem()->adr_type());
kvn@1964 2403 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
kvn@1964 2404 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 2405 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
kvn@1964 2406 LoadNode::is_immutable_value(n->in(MemNode::Address))),
kvn@1964 2407 "raw memory operations should have control edge");
kvn@1964 2408 }
kvn@1964 2409 #endif
duke@435 2410 // Count FPU ops and common calls, implements item (3)
duke@435 2411 switch( nop ) {
duke@435 2412 // Count all float operations that may use FPU
duke@435 2413 case Op_AddF:
duke@435 2414 case Op_SubF:
duke@435 2415 case Op_MulF:
duke@435 2416 case Op_DivF:
duke@435 2417 case Op_NegF:
duke@435 2418 case Op_ModF:
duke@435 2419 case Op_ConvI2F:
duke@435 2420 case Op_ConF:
duke@435 2421 case Op_CmpF:
duke@435 2422 case Op_CmpF3:
duke@435 2423 // case Op_ConvL2F: // longs are split into 32-bit halves
kvn@1294 2424 frc.inc_float_count();
duke@435 2425 break;
duke@435 2426
duke@435 2427 case Op_ConvF2D:
duke@435 2428 case Op_ConvD2F:
kvn@1294 2429 frc.inc_float_count();
kvn@1294 2430 frc.inc_double_count();
duke@435 2431 break;
duke@435 2432
duke@435 2433 // Count all double operations that may use FPU
duke@435 2434 case Op_AddD:
duke@435 2435 case Op_SubD:
duke@435 2436 case Op_MulD:
duke@435 2437 case Op_DivD:
duke@435 2438 case Op_NegD:
duke@435 2439 case Op_ModD:
duke@435 2440 case Op_ConvI2D:
duke@435 2441 case Op_ConvD2I:
duke@435 2442 // case Op_ConvL2D: // handled by leaf call
duke@435 2443 // case Op_ConvD2L: // handled by leaf call
duke@435 2444 case Op_ConD:
duke@435 2445 case Op_CmpD:
duke@435 2446 case Op_CmpD3:
kvn@1294 2447 frc.inc_double_count();
duke@435 2448 break;
duke@435 2449 case Op_Opaque1: // Remove Opaque Nodes before matching
duke@435 2450 case Op_Opaque2: // Remove Opaque Nodes before matching
bharadwaj@4315 2451 n->subsume_by(n->in(1), this);
duke@435 2452 break;
duke@435 2453 case Op_CallStaticJava:
duke@435 2454 case Op_CallJava:
duke@435 2455 case Op_CallDynamicJava:
kvn@1294 2456 frc.inc_java_call_count(); // Count java call site;
duke@435 2457 case Op_CallRuntime:
duke@435 2458 case Op_CallLeaf:
duke@435 2459 case Op_CallLeafNoFP: {
duke@435 2460 assert( n->is_Call(), "" );
duke@435 2461 CallNode *call = n->as_Call();
duke@435 2462 // Count call sites where the FP mode bit would have to be flipped.
duke@435 2463 // Do not count uncommon runtime calls:
duke@435 2464 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
duke@435 2465 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
duke@435 2466 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
kvn@1294 2467 frc.inc_call_count(); // Count the call site
duke@435 2468 } else { // See if uncommon argument is shared
duke@435 2469 Node *n = call->in(TypeFunc::Parms);
duke@435 2470 int nop = n->Opcode();
duke@435 2471 // Clone shared simple arguments to uncommon calls, item (1).
duke@435 2472 if( n->outcnt() > 1 &&
duke@435 2473 !n->is_Proj() &&
duke@435 2474 nop != Op_CreateEx &&
duke@435 2475 nop != Op_CheckCastPP &&
kvn@766 2476 nop != Op_DecodeN &&
roland@4159 2477 nop != Op_DecodeNKlass &&
duke@435 2478 !n->is_Mem() ) {
duke@435 2479 Node *x = n->clone();
duke@435 2480 call->set_req( TypeFunc::Parms, x );
duke@435 2481 }
duke@435 2482 }
duke@435 2483 break;
duke@435 2484 }
duke@435 2485
duke@435 2486 case Op_StoreD:
duke@435 2487 case Op_LoadD:
duke@435 2488 case Op_LoadD_unaligned:
kvn@1294 2489 frc.inc_double_count();
duke@435 2490 goto handle_mem;
duke@435 2491 case Op_StoreF:
duke@435 2492 case Op_LoadF:
kvn@1294 2493 frc.inc_float_count();
duke@435 2494 goto handle_mem;
duke@435 2495
never@2780 2496 case Op_StoreCM:
never@2780 2497 {
never@2780 2498 // Convert OopStore dependence into precedence edge
never@2780 2499 Node* prec = n->in(MemNode::OopStore);
never@2780 2500 n->del_req(MemNode::OopStore);
never@2780 2501 n->add_prec(prec);
never@2780 2502 eliminate_redundant_card_marks(n);
never@2780 2503 }
never@2780 2504
never@2780 2505 // fall through
never@2780 2506
duke@435 2507 case Op_StoreB:
duke@435 2508 case Op_StoreC:
duke@435 2509 case Op_StorePConditional:
duke@435 2510 case Op_StoreI:
duke@435 2511 case Op_StoreL:
kvn@855 2512 case Op_StoreIConditional:
duke@435 2513 case Op_StoreLConditional:
duke@435 2514 case Op_CompareAndSwapI:
duke@435 2515 case Op_CompareAndSwapL:
duke@435 2516 case Op_CompareAndSwapP:
coleenp@548 2517 case Op_CompareAndSwapN:
roland@4106 2518 case Op_GetAndAddI:
roland@4106 2519 case Op_GetAndAddL:
roland@4106 2520 case Op_GetAndSetI:
roland@4106 2521 case Op_GetAndSetL:
roland@4106 2522 case Op_GetAndSetP:
roland@4106 2523 case Op_GetAndSetN:
duke@435 2524 case Op_StoreP:
coleenp@548 2525 case Op_StoreN:
roland@4159 2526 case Op_StoreNKlass:
duke@435 2527 case Op_LoadB:
twisti@1059 2528 case Op_LoadUB:
twisti@993 2529 case Op_LoadUS:
duke@435 2530 case Op_LoadI:
duke@435 2531 case Op_LoadKlass:
kvn@599 2532 case Op_LoadNKlass:
duke@435 2533 case Op_LoadL:
duke@435 2534 case Op_LoadL_unaligned:
duke@435 2535 case Op_LoadPLocked:
duke@435 2536 case Op_LoadP:
coleenp@548 2537 case Op_LoadN:
duke@435 2538 case Op_LoadRange:
duke@435 2539 case Op_LoadS: {
duke@435 2540 handle_mem:
duke@435 2541 #ifdef ASSERT
duke@435 2542 if( VerifyOptoOopOffsets ) {
duke@435 2543 assert( n->is_Mem(), "" );
duke@435 2544 MemNode *mem = (MemNode*)n;
duke@435 2545 // Check to see if address types have grounded out somehow.
duke@435 2546 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
duke@435 2547 assert( !tp || oop_offset_is_sane(tp), "" );
duke@435 2548 }
duke@435 2549 #endif
duke@435 2550 break;
duke@435 2551 }
duke@435 2552
duke@435 2553 case Op_AddP: { // Assert sane base pointers
kvn@617 2554 Node *addp = n->in(AddPNode::Address);
duke@435 2555 assert( !addp->is_AddP() ||
duke@435 2556 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
duke@435 2557 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
duke@435 2558 "Base pointers must match" );
kvn@617 2559 #ifdef _LP64
roland@4159 2560 if ((UseCompressedOops || UseCompressedKlassPointers) &&
kvn@617 2561 addp->Opcode() == Op_ConP &&
kvn@617 2562 addp == n->in(AddPNode::Base) &&
kvn@617 2563 n->in(AddPNode::Offset)->is_Con()) {
kvn@617 2564 // Use addressing with narrow klass to load with offset on x86.
kvn@617 2565 // On sparc loading 32-bits constant and decoding it have less
kvn@617 2566 // instructions (4) then load 64-bits constant (7).
kvn@617 2567 // Do this transformation here since IGVN will convert ConN back to ConP.
kvn@617 2568 const Type* t = addp->bottom_type();
roland@4159 2569 if (t->isa_oopptr() || t->isa_klassptr()) {
kvn@617 2570 Node* nn = NULL;
kvn@617 2571
roland@4159 2572 int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
roland@4159 2573
kvn@617 2574 // Look for existing ConN node of the same exact type.
bharadwaj@4315 2575 Node* r = root();
kvn@617 2576 uint cnt = r->outcnt();
kvn@617 2577 for (uint i = 0; i < cnt; i++) {
kvn@617 2578 Node* m = r->raw_out(i);
roland@4159 2579 if (m!= NULL && m->Opcode() == op &&
kvn@656 2580 m->bottom_type()->make_ptr() == t) {
kvn@617 2581 nn = m;
kvn@617 2582 break;
kvn@617 2583 }
kvn@617 2584 }
kvn@617 2585 if (nn != NULL) {
kvn@617 2586 // Decode a narrow oop to match address
kvn@617 2587 // [R12 + narrow_oop_reg<<3 + offset]
roland@4159 2588 if (t->isa_oopptr()) {
bharadwaj@4315 2589 nn = new (this) DecodeNNode(nn, t);
roland@4159 2590 } else {
bharadwaj@4315 2591 nn = new (this) DecodeNKlassNode(nn, t);
roland@4159 2592 }
kvn@617 2593 n->set_req(AddPNode::Base, nn);
kvn@617 2594 n->set_req(AddPNode::Address, nn);
kvn@617 2595 if (addp->outcnt() == 0) {
bharadwaj@4315 2596 addp->disconnect_inputs(NULL, this);
kvn@617 2597 }
kvn@617 2598 }
kvn@617 2599 }
kvn@617 2600 }
kvn@617 2601 #endif
duke@435 2602 break;
duke@435 2603 }
duke@435 2604
kvn@599 2605 #ifdef _LP64
kvn@803 2606 case Op_CastPP:
kvn@1930 2607 if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
kvn@803 2608 Node* in1 = n->in(1);
kvn@803 2609 const Type* t = n->bottom_type();
kvn@803 2610 Node* new_in1 = in1->clone();
kvn@803 2611 new_in1->as_DecodeN()->set_type(t);
kvn@803 2612
kvn@1930 2613 if (!Matcher::narrow_oop_use_complex_address()) {
kvn@803 2614 //
kvn@803 2615 // x86, ARM and friends can handle 2 adds in addressing mode
kvn@803 2616 // and Matcher can fold a DecodeN node into address by using
kvn@803 2617 // a narrow oop directly and do implicit NULL check in address:
kvn@803 2618 //
kvn@803 2619 // [R12 + narrow_oop_reg<<3 + offset]
kvn@803 2620 // NullCheck narrow_oop_reg
kvn@803 2621 //
kvn@803 2622 // On other platforms (Sparc) we have to keep new DecodeN node and
kvn@803 2623 // use it to do implicit NULL check in address:
kvn@803 2624 //
kvn@803 2625 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2626 // [base_reg + offset]
kvn@803 2627 // NullCheck base_reg
kvn@803 2628 //
twisti@1040 2629 // Pin the new DecodeN node to non-null path on these platform (Sparc)
kvn@803 2630 // to keep the information to which NULL check the new DecodeN node
kvn@803 2631 // corresponds to use it as value in implicit_null_check().
kvn@803 2632 //
kvn@803 2633 new_in1->set_req(0, n->in(0));
kvn@803 2634 }
kvn@803 2635
bharadwaj@4315 2636 n->subsume_by(new_in1, this);
kvn@803 2637 if (in1->outcnt() == 0) {
bharadwaj@4315 2638 in1->disconnect_inputs(NULL, this);
kvn@803 2639 }
kvn@803 2640 }
kvn@803 2641 break;
kvn@803 2642
kvn@599 2643 case Op_CmpP:
kvn@603 2644 // Do this transformation here to preserve CmpPNode::sub() and
kvn@603 2645 // other TypePtr related Ideal optimizations (for example, ptr nullness).
roland@4159 2646 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
kvn@766 2647 Node* in1 = n->in(1);
kvn@766 2648 Node* in2 = n->in(2);
roland@4159 2649 if (!in1->is_DecodeNarrowPtr()) {
kvn@766 2650 in2 = in1;
kvn@766 2651 in1 = n->in(2);
kvn@766 2652 }
roland@4159 2653 assert(in1->is_DecodeNarrowPtr(), "sanity");
kvn@766 2654
kvn@766 2655 Node* new_in2 = NULL;
roland@4159 2656 if (in2->is_DecodeNarrowPtr()) {
roland@4159 2657 assert(in2->Opcode() == in1->Opcode(), "must be same node type");
kvn@766 2658 new_in2 = in2->in(1);
kvn@766 2659 } else if (in2->Opcode() == Op_ConP) {
kvn@766 2660 const Type* t = in2->bottom_type();
kvn@1930 2661 if (t == TypePtr::NULL_PTR) {
roland@4159 2662 assert(in1->is_DecodeN(), "compare klass to null?");
kvn@1930 2663 // Don't convert CmpP null check into CmpN if compressed
kvn@1930 2664 // oops implicit null check is not generated.
kvn@1930 2665 // This will allow to generate normal oop implicit null check.
kvn@1930 2666 if (Matcher::gen_narrow_oop_implicit_null_checks())
bharadwaj@4315 2667 new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
kvn@803 2668 //
kvn@803 2669 // This transformation together with CastPP transformation above
kvn@803 2670 // will generated code for implicit NULL checks for compressed oops.
kvn@803 2671 //
kvn@803 2672 // The original code after Optimize()
kvn@803 2673 //
kvn@803 2674 // LoadN memory, narrow_oop_reg
kvn@803 2675 // decode narrow_oop_reg, base_reg
kvn@803 2676 // CmpP base_reg, NULL
kvn@803 2677 // CastPP base_reg // NotNull
kvn@803 2678 // Load [base_reg + offset], val_reg
kvn@803 2679 //
kvn@803 2680 // after these transformations will be
kvn@803 2681 //
kvn@803 2682 // LoadN memory, narrow_oop_reg
kvn@803 2683 // CmpN narrow_oop_reg, NULL
kvn@803 2684 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2685 // Load [base_reg + offset], val_reg
kvn@803 2686 //
kvn@803 2687 // and the uncommon path (== NULL) will use narrow_oop_reg directly
kvn@803 2688 // since narrow oops can be used in debug info now (see the code in
kvn@803 2689 // final_graph_reshaping_walk()).
kvn@803 2690 //
kvn@803 2691 // At the end the code will be matched to
kvn@803 2692 // on x86:
kvn@803 2693 //
kvn@803 2694 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2695 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
kvn@803 2696 // NullCheck narrow_oop_reg
kvn@803 2697 //
kvn@803 2698 // and on sparc:
kvn@803 2699 //
kvn@803 2700 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2701 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2702 // Load [base_reg + offset], val_reg
kvn@803 2703 // NullCheck base_reg
kvn@803 2704 //
kvn@599 2705 } else if (t->isa_oopptr()) {
bharadwaj@4315 2706 new_in2 = ConNode::make(this, t->make_narrowoop());
roland@4159 2707 } else if (t->isa_klassptr()) {
bharadwaj@4315 2708 new_in2 = ConNode::make(this, t->make_narrowklass());
kvn@599 2709 }
kvn@599 2710 }
kvn@766 2711 if (new_in2 != NULL) {
bharadwaj@4315 2712 Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
bharadwaj@4315 2713 n->subsume_by(cmpN, this);
kvn@766 2714 if (in1->outcnt() == 0) {
bharadwaj@4315 2715 in1->disconnect_inputs(NULL, this);
kvn@766 2716 }
kvn@766 2717 if (in2->outcnt() == 0) {
bharadwaj@4315 2718 in2->disconnect_inputs(NULL, this);
kvn@766 2719 }
kvn@599 2720 }
kvn@599 2721 }
kvn@728 2722 break;
kvn@803 2723
kvn@803 2724 case Op_DecodeN:
roland@4159 2725 case Op_DecodeNKlass:
roland@4159 2726 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
kvn@1930 2727 // DecodeN could be pinned when it can't be fold into
kvn@927 2728 // an address expression, see the code for Op_CastPP above.
roland@4159 2729 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
kvn@803 2730 break;
kvn@803 2731
roland@4159 2732 case Op_EncodeP:
roland@4159 2733 case Op_EncodePKlass: {
kvn@803 2734 Node* in1 = n->in(1);
roland@4159 2735 if (in1->is_DecodeNarrowPtr()) {
bharadwaj@4315 2736 n->subsume_by(in1->in(1), this);
kvn@803 2737 } else if (in1->Opcode() == Op_ConP) {
kvn@803 2738 const Type* t = in1->bottom_type();
kvn@803 2739 if (t == TypePtr::NULL_PTR) {
roland@4159 2740 assert(t->isa_oopptr(), "null klass?");
bharadwaj@4315 2741 n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
kvn@803 2742 } else if (t->isa_oopptr()) {
bharadwaj@4315 2743 n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
roland@4159 2744 } else if (t->isa_klassptr()) {
bharadwaj@4315 2745 n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
kvn@803 2746 }
kvn@803 2747 }
kvn@803 2748 if (in1->outcnt() == 0) {
bharadwaj@4315 2749 in1->disconnect_inputs(NULL, this);
kvn@803 2750 }
kvn@803 2751 break;
kvn@803 2752 }
kvn@803 2753
never@1515 2754 case Op_Proj: {
never@1515 2755 if (OptimizeStringConcat) {
never@1515 2756 ProjNode* p = n->as_Proj();
never@1515 2757 if (p->_is_io_use) {
never@1515 2758 // Separate projections were used for the exception path which
never@1515 2759 // are normally removed by a late inline. If it wasn't inlined
never@1515 2760 // then they will hang around and should just be replaced with
never@1515 2761 // the original one.
never@1515 2762 Node* proj = NULL;
never@1515 2763 // Replace with just one
never@1515 2764 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
never@1515 2765 Node *use = i.get();
never@1515 2766 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
never@1515 2767 proj = use;
never@1515 2768 break;
never@1515 2769 }
never@1515 2770 }
kvn@3396 2771 assert(proj != NULL, "must be found");
bharadwaj@4315 2772 p->subsume_by(proj, this);
never@1515 2773 }
never@1515 2774 }
never@1515 2775 break;
never@1515 2776 }
never@1515 2777
kvn@803 2778 case Op_Phi:
roland@4159 2779 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
kvn@803 2780 // The EncodeP optimization may create Phi with the same edges
kvn@803 2781 // for all paths. It is not handled well by Register Allocator.
kvn@803 2782 Node* unique_in = n->in(1);
kvn@803 2783 assert(unique_in != NULL, "");
kvn@803 2784 uint cnt = n->req();
kvn@803 2785 for (uint i = 2; i < cnt; i++) {
kvn@803 2786 Node* m = n->in(i);
kvn@803 2787 assert(m != NULL, "");
kvn@803 2788 if (unique_in != m)
kvn@803 2789 unique_in = NULL;
kvn@803 2790 }
kvn@803 2791 if (unique_in != NULL) {
bharadwaj@4315 2792 n->subsume_by(unique_in, this);
kvn@803 2793 }
kvn@803 2794 }
kvn@803 2795 break;
kvn@803 2796
kvn@599 2797 #endif
kvn@599 2798
duke@435 2799 case Op_ModI:
duke@435 2800 if (UseDivMod) {
duke@435 2801 // Check if a%b and a/b both exist
duke@435 2802 Node* d = n->find_similar(Op_DivI);
duke@435 2803 if (d) {
duke@435 2804 // Replace them with a fused divmod if supported
duke@435 2805 if (Matcher::has_match_rule(Op_DivModI)) {
bharadwaj@4315 2806 DivModINode* divmod = DivModINode::make(this, n);
bharadwaj@4315 2807 d->subsume_by(divmod->div_proj(), this);
bharadwaj@4315 2808 n->subsume_by(divmod->mod_proj(), this);
duke@435 2809 } else {
duke@435 2810 // replace a%b with a-((a/b)*b)
bharadwaj@4315 2811 Node* mult = new (this) MulINode(d, d->in(2));
bharadwaj@4315 2812 Node* sub = new (this) SubINode(d->in(1), mult);
bharadwaj@4315 2813 n->subsume_by(sub, this);
duke@435 2814 }
duke@435 2815 }
duke@435 2816 }
duke@435 2817 break;
duke@435 2818
duke@435 2819 case Op_ModL:
duke@435 2820 if (UseDivMod) {
duke@435 2821 // Check if a%b and a/b both exist
duke@435 2822 Node* d = n->find_similar(Op_DivL);
duke@435 2823 if (d) {
duke@435 2824 // Replace them with a fused divmod if supported
duke@435 2825 if (Matcher::has_match_rule(Op_DivModL)) {
bharadwaj@4315 2826 DivModLNode* divmod = DivModLNode::make(this, n);
bharadwaj@4315 2827 d->subsume_by(divmod->div_proj(), this);
bharadwaj@4315 2828 n->subsume_by(divmod->mod_proj(), this);
duke@435 2829 } else {
duke@435 2830 // replace a%b with a-((a/b)*b)
bharadwaj@4315 2831 Node* mult = new (this) MulLNode(d, d->in(2));
bharadwaj@4315 2832 Node* sub = new (this) SubLNode(d->in(1), mult);
bharadwaj@4315 2833 n->subsume_by(sub, this);
duke@435 2834 }
duke@435 2835 }
duke@435 2836 }
duke@435 2837 break;
duke@435 2838
kvn@3882 2839 case Op_LoadVector:
kvn@3882 2840 case Op_StoreVector:
duke@435 2841 break;
duke@435 2842
duke@435 2843 case Op_PackB:
duke@435 2844 case Op_PackS:
duke@435 2845 case Op_PackI:
duke@435 2846 case Op_PackF:
duke@435 2847 case Op_PackL:
duke@435 2848 case Op_PackD:
duke@435 2849 if (n->req()-1 > 2) {
duke@435 2850 // Replace many operand PackNodes with a binary tree for matching
duke@435 2851 PackNode* p = (PackNode*) n;
bharadwaj@4315 2852 Node* btp = p->binary_tree_pack(this, 1, n->req());
bharadwaj@4315 2853 n->subsume_by(btp, this);
duke@435 2854 }
duke@435 2855 break;
kvn@1294 2856 case Op_Loop:
kvn@1294 2857 case Op_CountedLoop:
kvn@1294 2858 if (n->as_Loop()->is_inner_loop()) {
kvn@1294 2859 frc.inc_inner_loop_count();
kvn@1294 2860 }
kvn@1294 2861 break;
roland@2683 2862 case Op_LShiftI:
roland@2683 2863 case Op_RShiftI:
roland@2683 2864 case Op_URShiftI:
roland@2683 2865 case Op_LShiftL:
roland@2683 2866 case Op_RShiftL:
roland@2683 2867 case Op_URShiftL:
roland@2683 2868 if (Matcher::need_masked_shift_count) {
roland@2683 2869 // The cpu's shift instructions don't restrict the count to the
roland@2683 2870 // lower 5/6 bits. We need to do the masking ourselves.
roland@2683 2871 Node* in2 = n->in(2);
roland@2683 2872 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
roland@2683 2873 const TypeInt* t = in2->find_int_type();
roland@2683 2874 if (t != NULL && t->is_con()) {
roland@2683 2875 juint shift = t->get_con();
roland@2683 2876 if (shift > mask) { // Unsigned cmp
bharadwaj@4315 2877 n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
roland@2683 2878 }
roland@2683 2879 } else {
roland@2683 2880 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
bharadwaj@4315 2881 Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
roland@2683 2882 n->set_req(2, shift);
roland@2683 2883 }
roland@2683 2884 }
roland@2683 2885 if (in2->outcnt() == 0) { // Remove dead node
bharadwaj@4315 2886 in2->disconnect_inputs(NULL, this);
roland@2683 2887 }
roland@2683 2888 }
roland@2683 2889 break;
duke@435 2890 default:
duke@435 2891 assert( !n->is_Call(), "" );
duke@435 2892 assert( !n->is_Mem(), "" );
duke@435 2893 break;
duke@435 2894 }
never@562 2895
never@562 2896 // Collect CFG split points
never@562 2897 if (n->is_MultiBranch())
kvn@1294 2898 frc._tests.push(n);
duke@435 2899 }
duke@435 2900
duke@435 2901 //------------------------------final_graph_reshaping_walk---------------------
duke@435 2902 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
duke@435 2903 // requires that the walk visits a node's inputs before visiting the node.
bharadwaj@4315 2904 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
kvn@766 2905 ResourceArea *area = Thread::current()->resource_area();
kvn@766 2906 Unique_Node_List sfpt(area);
kvn@766 2907
kvn@1294 2908 frc._visited.set(root->_idx); // first, mark node as visited
duke@435 2909 uint cnt = root->req();
duke@435 2910 Node *n = root;
duke@435 2911 uint i = 0;
duke@435 2912 while (true) {
duke@435 2913 if (i < cnt) {
duke@435 2914 // Place all non-visited non-null inputs onto stack
duke@435 2915 Node* m = n->in(i);
duke@435 2916 ++i;
kvn@1294 2917 if (m != NULL && !frc._visited.test_set(m->_idx)) {
kvn@766 2918 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
kvn@766 2919 sfpt.push(m);
duke@435 2920 cnt = m->req();
duke@435 2921 nstack.push(n, i); // put on stack parent and next input's index
duke@435 2922 n = m;
duke@435 2923 i = 0;
duke@435 2924 }
duke@435 2925 } else {
duke@435 2926 // Now do post-visit work
kvn@1294 2927 final_graph_reshaping_impl( n, frc );
duke@435 2928 if (nstack.is_empty())
duke@435 2929 break; // finished
duke@435 2930 n = nstack.node(); // Get node from stack
duke@435 2931 cnt = n->req();
duke@435 2932 i = nstack.index();
duke@435 2933 nstack.pop(); // Shift to the next node on stack
duke@435 2934 }
duke@435 2935 }
kvn@766 2936
kvn@1930 2937 // Skip next transformation if compressed oops are not used.
roland@4159 2938 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
roland@4159 2939 (!UseCompressedOops && !UseCompressedKlassPointers))
kvn@1930 2940 return;
kvn@1930 2941
roland@4159 2942 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
kvn@766 2943 // It could be done for an uncommon traps or any safepoints/calls
roland@4159 2944 // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
kvn@766 2945 while (sfpt.size() > 0) {
kvn@766 2946 n = sfpt.pop();
kvn@766 2947 JVMState *jvms = n->as_SafePoint()->jvms();
kvn@766 2948 assert(jvms != NULL, "sanity");
kvn@766 2949 int start = jvms->debug_start();
kvn@766 2950 int end = n->req();
kvn@766 2951 bool is_uncommon = (n->is_CallStaticJava() &&
kvn@766 2952 n->as_CallStaticJava()->uncommon_trap_request() != 0);
kvn@766 2953 for (int j = start; j < end; j++) {
kvn@766 2954 Node* in = n->in(j);
roland@4159 2955 if (in->is_DecodeNarrowPtr()) {
kvn@766 2956 bool safe_to_skip = true;
kvn@766 2957 if (!is_uncommon ) {
kvn@766 2958 // Is it safe to skip?
kvn@766 2959 for (uint i = 0; i < in->outcnt(); i++) {
kvn@766 2960 Node* u = in->raw_out(i);
kvn@766 2961 if (!u->is_SafePoint() ||
kvn@766 2962 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
kvn@766 2963 safe_to_skip = false;
kvn@766 2964 }
kvn@766 2965 }
kvn@766 2966 }
kvn@766 2967 if (safe_to_skip) {
kvn@766 2968 n->set_req(j, in->in(1));
kvn@766 2969 }
kvn@766 2970 if (in->outcnt() == 0) {
bharadwaj@4315 2971 in->disconnect_inputs(NULL, this);
kvn@766 2972 }
kvn@766 2973 }
kvn@766 2974 }
kvn@766 2975 }
duke@435 2976 }
duke@435 2977
duke@435 2978 //------------------------------final_graph_reshaping--------------------------
duke@435 2979 // Final Graph Reshaping.
duke@435 2980 //
duke@435 2981 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
duke@435 2982 // and not commoned up and forced early. Must come after regular
duke@435 2983 // optimizations to avoid GVN undoing the cloning. Clone constant
duke@435 2984 // inputs to Loop Phis; these will be split by the allocator anyways.
duke@435 2985 // Remove Opaque nodes.
duke@435 2986 // (2) Move last-uses by commutative operations to the left input to encourage
duke@435 2987 // Intel update-in-place two-address operations and better register usage
duke@435 2988 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
duke@435 2989 // calls canonicalizing them back.
duke@435 2990 // (3) Count the number of double-precision FP ops, single-precision FP ops
duke@435 2991 // and call sites. On Intel, we can get correct rounding either by
duke@435 2992 // forcing singles to memory (requires extra stores and loads after each
duke@435 2993 // FP bytecode) or we can set a rounding mode bit (requires setting and
duke@435 2994 // clearing the mode bit around call sites). The mode bit is only used
duke@435 2995 // if the relative frequency of single FP ops to calls is low enough.
duke@435 2996 // This is a key transform for SPEC mpeg_audio.
duke@435 2997 // (4) Detect infinite loops; blobs of code reachable from above but not
duke@435 2998 // below. Several of the Code_Gen algorithms fail on such code shapes,
duke@435 2999 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
duke@435 3000 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
duke@435 3001 // Detection is by looking for IfNodes where only 1 projection is
duke@435 3002 // reachable from below or CatchNodes missing some targets.
duke@435 3003 // (5) Assert for insane oop offsets in debug mode.
duke@435 3004
duke@435 3005 bool Compile::final_graph_reshaping() {
duke@435 3006 // an infinite loop may have been eliminated by the optimizer,
duke@435 3007 // in which case the graph will be empty.
duke@435 3008 if (root()->req() == 1) {
duke@435 3009 record_method_not_compilable("trivial infinite loop");
duke@435 3010 return true;
duke@435 3011 }
duke@435 3012
kvn@1294 3013 Final_Reshape_Counts frc;
duke@435 3014
duke@435 3015 // Visit everybody reachable!
duke@435 3016 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 3017 Node_Stack nstack(unique() >> 1);
kvn@1294 3018 final_graph_reshaping_walk(nstack, root(), frc);
duke@435 3019
duke@435 3020 // Check for unreachable (from below) code (i.e., infinite loops).
kvn@1294 3021 for( uint i = 0; i < frc._tests.size(); i++ ) {
kvn@1294 3022 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
never@562 3023 // Get number of CFG targets.
duke@435 3024 // Note that PCTables include exception targets after calls.
never@562 3025 uint required_outcnt = n->required_outcnt();
never@562 3026 if (n->outcnt() != required_outcnt) {
duke@435 3027 // Check for a few special cases. Rethrow Nodes never take the
duke@435 3028 // 'fall-thru' path, so expected kids is 1 less.
duke@435 3029 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
duke@435 3030 if (n->in(0)->in(0)->is_Call()) {
duke@435 3031 CallNode *call = n->in(0)->in(0)->as_Call();
duke@435 3032 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
never@562 3033 required_outcnt--; // Rethrow always has 1 less kid
duke@435 3034 } else if (call->req() > TypeFunc::Parms &&
duke@435 3035 call->is_CallDynamicJava()) {
duke@435 3036 // Check for null receiver. In such case, the optimizer has
duke@435 3037 // detected that the virtual call will always result in a null
duke@435 3038 // pointer exception. The fall-through projection of this CatchNode
duke@435 3039 // will not be populated.
duke@435 3040 Node *arg0 = call->in(TypeFunc::Parms);
duke@435 3041 if (arg0->is_Type() &&
duke@435 3042 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
never@562 3043 required_outcnt--;
duke@435 3044 }
duke@435 3045 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
duke@435 3046 call->req() > TypeFunc::Parms+1 &&
duke@435 3047 call->is_CallStaticJava()) {
duke@435 3048 // Check for negative array length. In such case, the optimizer has
duke@435 3049 // detected that the allocation attempt will always result in an
duke@435 3050 // exception. There is no fall-through projection of this CatchNode .
duke@435 3051 Node *arg1 = call->in(TypeFunc::Parms+1);
duke@435 3052 if (arg1->is_Type() &&
duke@435 3053 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
never@562 3054 required_outcnt--;
duke@435 3055 }
duke@435 3056 }
duke@435 3057 }
duke@435 3058 }
never@562 3059 // Recheck with a better notion of 'required_outcnt'
never@562 3060 if (n->outcnt() != required_outcnt) {
duke@435 3061 record_method_not_compilable("malformed control flow");
duke@435 3062 return true; // Not all targets reachable!
duke@435 3063 }
duke@435 3064 }
duke@435 3065 // Check that I actually visited all kids. Unreached kids
duke@435 3066 // must be infinite loops.
duke@435 3067 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
kvn@1294 3068 if (!frc._visited.test(n->fast_out(j)->_idx)) {
duke@435 3069 record_method_not_compilable("infinite loop");
duke@435 3070 return true; // Found unvisited kid; must be unreach
duke@435 3071 }
duke@435 3072 }
duke@435 3073
duke@435 3074 // If original bytecodes contained a mixture of floats and doubles
duke@435 3075 // check if the optimizer has made it homogenous, item (3).
never@1364 3076 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
kvn@1294 3077 frc.get_float_count() > 32 &&
kvn@1294 3078 frc.get_double_count() == 0 &&
kvn@1294 3079 (10 * frc.get_call_count() < frc.get_float_count()) ) {
duke@435 3080 set_24_bit_selection_and_mode( false, true );
duke@435 3081 }
duke@435 3082
kvn@1294 3083 set_java_calls(frc.get_java_call_count());
kvn@1294 3084 set_inner_loops(frc.get_inner_loop_count());
duke@435 3085
duke@435 3086 // No infinite loops, no reason to bail out.
duke@435 3087 return false;
duke@435 3088 }
duke@435 3089
duke@435 3090 //-----------------------------too_many_traps----------------------------------
duke@435 3091 // Report if there are too many traps at the current method and bci.
duke@435 3092 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
duke@435 3093 bool Compile::too_many_traps(ciMethod* method,
duke@435 3094 int bci,
duke@435 3095 Deoptimization::DeoptReason reason) {
duke@435 3096 ciMethodData* md = method->method_data();
duke@435 3097 if (md->is_empty()) {
duke@435 3098 // Assume the trap has not occurred, or that it occurred only
duke@435 3099 // because of a transient condition during start-up in the interpreter.
duke@435 3100 return false;
duke@435 3101 }
duke@435 3102 if (md->has_trap_at(bci, reason) != 0) {
duke@435 3103 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
duke@435 3104 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 3105 // assume the worst.
duke@435 3106 if (log())
duke@435 3107 log()->elem("observe trap='%s' count='%d'",
duke@435 3108 Deoptimization::trap_reason_name(reason),
duke@435 3109 md->trap_count(reason));
duke@435 3110 return true;
duke@435 3111 } else {
duke@435 3112 // Ignore method/bci and see if there have been too many globally.
duke@435 3113 return too_many_traps(reason, md);
duke@435 3114 }
duke@435 3115 }
duke@435 3116
duke@435 3117 // Less-accurate variant which does not require a method and bci.
duke@435 3118 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
duke@435 3119 ciMethodData* logmd) {
duke@435 3120 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
duke@435 3121 // Too many traps globally.
duke@435 3122 // Note that we use cumulative trap_count, not just md->trap_count.
duke@435 3123 if (log()) {
duke@435 3124 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
duke@435 3125 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
duke@435 3126 Deoptimization::trap_reason_name(reason),
duke@435 3127 mcount, trap_count(reason));
duke@435 3128 }
duke@435 3129 return true;
duke@435 3130 } else {
duke@435 3131 // The coast is clear.
duke@435 3132 return false;
duke@435 3133 }
duke@435 3134 }
duke@435 3135
duke@435 3136 //--------------------------too_many_recompiles--------------------------------
duke@435 3137 // Report if there are too many recompiles at the current method and bci.
duke@435 3138 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
duke@435 3139 // Is not eager to return true, since this will cause the compiler to use
duke@435 3140 // Action_none for a trap point, to avoid too many recompilations.
duke@435 3141 bool Compile::too_many_recompiles(ciMethod* method,
duke@435 3142 int bci,
duke@435 3143 Deoptimization::DeoptReason reason) {
duke@435 3144 ciMethodData* md = method->method_data();
duke@435 3145 if (md->is_empty()) {
duke@435 3146 // Assume the trap has not occurred, or that it occurred only
duke@435 3147 // because of a transient condition during start-up in the interpreter.
duke@435 3148 return false;
duke@435 3149 }
duke@435 3150 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
duke@435 3151 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
duke@435 3152 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
duke@435 3153 Deoptimization::DeoptReason per_bc_reason
duke@435 3154 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
duke@435 3155 if ((per_bc_reason == Deoptimization::Reason_none
duke@435 3156 || md->has_trap_at(bci, reason) != 0)
duke@435 3157 // The trap frequency measure we care about is the recompile count:
duke@435 3158 && md->trap_recompiled_at(bci)
duke@435 3159 && md->overflow_recompile_count() >= bc_cutoff) {
duke@435 3160 // Do not emit a trap here if it has already caused recompilations.
duke@435 3161 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 3162 // assume the worst.
duke@435 3163 if (log())
duke@435 3164 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
duke@435 3165 Deoptimization::trap_reason_name(reason),
duke@435 3166 md->trap_count(reason),
duke@435 3167 md->overflow_recompile_count());
duke@435 3168 return true;
duke@435 3169 } else if (trap_count(reason) != 0
duke@435 3170 && decompile_count() >= m_cutoff) {
duke@435 3171 // Too many recompiles globally, and we have seen this sort of trap.
duke@435 3172 // Use cumulative decompile_count, not just md->decompile_count.
duke@435 3173 if (log())
duke@435 3174 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
duke@435 3175 Deoptimization::trap_reason_name(reason),
duke@435 3176 md->trap_count(reason), trap_count(reason),
duke@435 3177 md->decompile_count(), decompile_count());
duke@435 3178 return true;
duke@435 3179 } else {
duke@435 3180 // The coast is clear.
duke@435 3181 return false;
duke@435 3182 }
duke@435 3183 }
duke@435 3184
duke@435 3185
duke@435 3186 #ifndef PRODUCT
duke@435 3187 //------------------------------verify_graph_edges---------------------------
duke@435 3188 // Walk the Graph and verify that there is a one-to-one correspondence
duke@435 3189 // between Use-Def edges and Def-Use edges in the graph.
duke@435 3190 void Compile::verify_graph_edges(bool no_dead_code) {
duke@435 3191 if (VerifyGraphEdges) {
duke@435 3192 ResourceArea *area = Thread::current()->resource_area();
duke@435 3193 Unique_Node_List visited(area);
duke@435 3194 // Call recursive graph walk to check edges
duke@435 3195 _root->verify_edges(visited);
duke@435 3196 if (no_dead_code) {
duke@435 3197 // Now make sure that no visited node is used by an unvisited node.
duke@435 3198 bool dead_nodes = 0;
duke@435 3199 Unique_Node_List checked(area);
duke@435 3200 while (visited.size() > 0) {
duke@435 3201 Node* n = visited.pop();
duke@435 3202 checked.push(n);
duke@435 3203 for (uint i = 0; i < n->outcnt(); i++) {
duke@435 3204 Node* use = n->raw_out(i);
duke@435 3205 if (checked.member(use)) continue; // already checked
duke@435 3206 if (visited.member(use)) continue; // already in the graph
duke@435 3207 if (use->is_Con()) continue; // a dead ConNode is OK
duke@435 3208 // At this point, we have found a dead node which is DU-reachable.
duke@435 3209 if (dead_nodes++ == 0)
duke@435 3210 tty->print_cr("*** Dead nodes reachable via DU edges:");
duke@435 3211 use->dump(2);
duke@435 3212 tty->print_cr("---");
duke@435 3213 checked.push(use); // No repeats; pretend it is now checked.
duke@435 3214 }
duke@435 3215 }
duke@435 3216 assert(dead_nodes == 0, "using nodes must be reachable from root");
duke@435 3217 }
duke@435 3218 }
duke@435 3219 }
duke@435 3220 #endif
duke@435 3221
duke@435 3222 // The Compile object keeps track of failure reasons separately from the ciEnv.
duke@435 3223 // This is required because there is not quite a 1-1 relation between the
duke@435 3224 // ciEnv and its compilation task and the Compile object. Note that one
duke@435 3225 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
duke@435 3226 // to backtrack and retry without subsuming loads. Other than this backtracking
duke@435 3227 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
duke@435 3228 // by the logic in C2Compiler.
duke@435 3229 void Compile::record_failure(const char* reason) {
duke@435 3230 if (log() != NULL) {
duke@435 3231 log()->elem("failure reason='%s' phase='compile'", reason);
duke@435 3232 }
duke@435 3233 if (_failure_reason == NULL) {
duke@435 3234 // Record the first failure reason.
duke@435 3235 _failure_reason = reason;
duke@435 3236 }
never@657 3237 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
never@657 3238 C->print_method(_failure_reason);
never@657 3239 }
duke@435 3240 _root = NULL; // flush the graph, too
duke@435 3241 }
duke@435 3242
duke@435 3243 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
bharadwaj@4315 3244 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
bharadwaj@4315 3245 _phase_name(name), _dolog(dolog)
duke@435 3246 {
duke@435 3247 if (dolog) {
duke@435 3248 C = Compile::current();
duke@435 3249 _log = C->log();
duke@435 3250 } else {
duke@435 3251 C = NULL;
duke@435 3252 _log = NULL;
duke@435 3253 }
duke@435 3254 if (_log != NULL) {
bharadwaj@4315 3255 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
duke@435 3256 _log->stamp();
duke@435 3257 _log->end_head();
duke@435 3258 }
duke@435 3259 }
duke@435 3260
duke@435 3261 Compile::TracePhase::~TracePhase() {
bharadwaj@4315 3262
bharadwaj@4315 3263 C = Compile::current();
bharadwaj@4315 3264 if (_dolog) {
bharadwaj@4315 3265 _log = C->log();
bharadwaj@4315 3266 } else {
bharadwaj@4315 3267 _log = NULL;
bharadwaj@4315 3268 }
bharadwaj@4315 3269
bharadwaj@4315 3270 #ifdef ASSERT
bharadwaj@4315 3271 if (PrintIdealNodeCount) {
bharadwaj@4315 3272 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
bharadwaj@4315 3273 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
bharadwaj@4315 3274 }
bharadwaj@4315 3275
bharadwaj@4315 3276 if (VerifyIdealNodeCount) {
bharadwaj@4315 3277 Compile::current()->print_missing_nodes();
bharadwaj@4315 3278 }
bharadwaj@4315 3279 #endif
bharadwaj@4315 3280
duke@435 3281 if (_log != NULL) {
bharadwaj@4315 3282 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
duke@435 3283 }
duke@435 3284 }
twisti@2350 3285
twisti@2350 3286 //=============================================================================
twisti@2350 3287 // Two Constant's are equal when the type and the value are equal.
twisti@2350 3288 bool Compile::Constant::operator==(const Constant& other) {
twisti@2350 3289 if (type() != other.type() ) return false;
twisti@2350 3290 if (can_be_reused() != other.can_be_reused()) return false;
twisti@2350 3291 // For floating point values we compare the bit pattern.
twisti@2350 3292 switch (type()) {
coleenp@4037 3293 case T_FLOAT: return (_v._value.i == other._v._value.i);
twisti@2350 3294 case T_LONG:
coleenp@4037 3295 case T_DOUBLE: return (_v._value.j == other._v._value.j);
twisti@2350 3296 case T_OBJECT:
coleenp@4037 3297 case T_ADDRESS: return (_v._value.l == other._v._value.l);
coleenp@4037 3298 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries
kvn@4199 3299 case T_METADATA: return (_v._metadata == other._v._metadata);
twisti@2350 3300 default: ShouldNotReachHere();
twisti@2350 3301 }
twisti@2350 3302 return false;
twisti@2350 3303 }
twisti@2350 3304
twisti@2350 3305 static int type_to_size_in_bytes(BasicType t) {
twisti@2350 3306 switch (t) {
twisti@2350 3307 case T_LONG: return sizeof(jlong );
twisti@2350 3308 case T_FLOAT: return sizeof(jfloat );
twisti@2350 3309 case T_DOUBLE: return sizeof(jdouble);
coleenp@4037 3310 case T_METADATA: return sizeof(Metadata*);
twisti@2350 3311 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3312 // need an internal word relocation.
twisti@2350 3313 case T_VOID:
twisti@2350 3314 case T_ADDRESS:
twisti@2350 3315 case T_OBJECT: return sizeof(jobject);
twisti@2350 3316 }
twisti@2350 3317
twisti@2350 3318 ShouldNotReachHere();
twisti@2350 3319 return -1;
twisti@2350 3320 }
twisti@2350 3321
twisti@3310 3322 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
twisti@3310 3323 // sort descending
twisti@3310 3324 if (a->freq() > b->freq()) return -1;
twisti@3310 3325 if (a->freq() < b->freq()) return 1;
twisti@3310 3326 return 0;
twisti@3310 3327 }
twisti@3310 3328
twisti@2350 3329 void Compile::ConstantTable::calculate_offsets_and_size() {
twisti@3310 3330 // First, sort the array by frequencies.
twisti@3310 3331 _constants.sort(qsort_comparator);
twisti@3310 3332
twisti@3310 3333 #ifdef ASSERT
twisti@3310 3334 // Make sure all jump-table entries were sorted to the end of the
twisti@3310 3335 // array (they have a negative frequency).
twisti@3310 3336 bool found_void = false;
twisti@3310 3337 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3338 Constant con = _constants.at(i);
twisti@3310 3339 if (con.type() == T_VOID)
twisti@3310 3340 found_void = true; // jump-tables
twisti@3310 3341 else
twisti@3310 3342 assert(!found_void, "wrong sorting");
twisti@3310 3343 }
twisti@3310 3344 #endif
twisti@3310 3345
twisti@3310 3346 int offset = 0;
twisti@3310 3347 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3348 Constant* con = _constants.adr_at(i);
twisti@3310 3349
twisti@3310 3350 // Align offset for type.
twisti@3310 3351 int typesize = type_to_size_in_bytes(con->type());
twisti@3310 3352 offset = align_size_up(offset, typesize);
twisti@3310 3353 con->set_offset(offset); // set constant's offset
twisti@3310 3354
twisti@3310 3355 if (con->type() == T_VOID) {
twisti@3310 3356 MachConstantNode* n = (MachConstantNode*) con->get_jobject();
twisti@3310 3357 offset = offset + typesize * n->outcnt(); // expand jump-table
twisti@3310 3358 } else {
twisti@3310 3359 offset = offset + typesize;
twisti@2350 3360 }
twisti@2350 3361 }
twisti@2350 3362
twisti@2350 3363 // Align size up to the next section start (which is insts; see
twisti@2350 3364 // CodeBuffer::align_at_start).
twisti@2350 3365 assert(_size == -1, "already set?");
twisti@3310 3366 _size = align_size_up(offset, CodeEntryAlignment);
twisti@2350 3367 }
twisti@2350 3368
twisti@2350 3369 void Compile::ConstantTable::emit(CodeBuffer& cb) {
twisti@2350 3370 MacroAssembler _masm(&cb);
twisti@3310 3371 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3372 Constant con = _constants.at(i);
twisti@3310 3373 address constant_addr;
twisti@3310 3374 switch (con.type()) {
twisti@3310 3375 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
twisti@3310 3376 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
twisti@3310 3377 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
twisti@3310 3378 case T_OBJECT: {
twisti@3310 3379 jobject obj = con.get_jobject();
twisti@3310 3380 int oop_index = _masm.oop_recorder()->find_index(obj);
twisti@3310 3381 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
twisti@3310 3382 break;
twisti@3310 3383 }
twisti@3310 3384 case T_ADDRESS: {
twisti@3310 3385 address addr = (address) con.get_jobject();
twisti@3310 3386 constant_addr = _masm.address_constant(addr);
twisti@3310 3387 break;
twisti@3310 3388 }
twisti@3310 3389 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3390 // need an internal word relocation.
twisti@3310 3391 case T_VOID: {
twisti@3310 3392 MachConstantNode* n = (MachConstantNode*) con.get_jobject();
twisti@3310 3393 // Fill the jump-table with a dummy word. The real value is
twisti@3310 3394 // filled in later in fill_jump_table.
twisti@3310 3395 address dummy = (address) n;
twisti@3310 3396 constant_addr = _masm.address_constant(dummy);
twisti@3310 3397 // Expand jump-table
twisti@3310 3398 for (uint i = 1; i < n->outcnt(); i++) {
twisti@3310 3399 address temp_addr = _masm.address_constant(dummy + i);
twisti@3310 3400 assert(temp_addr, "consts section too small");
twisti@2350 3401 }
twisti@3310 3402 break;
twisti@2350 3403 }
coleenp@4037 3404 case T_METADATA: {
coleenp@4037 3405 Metadata* obj = con.get_metadata();
coleenp@4037 3406 int metadata_index = _masm.oop_recorder()->find_index(obj);
coleenp@4037 3407 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
coleenp@4037 3408 break;
coleenp@4037 3409 }
twisti@3310 3410 default: ShouldNotReachHere();
twisti@3310 3411 }
twisti@3310 3412 assert(constant_addr, "consts section too small");
kvn@3971 3413 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
twisti@2350 3414 }
twisti@2350 3415 }
twisti@2350 3416
twisti@2350 3417 int Compile::ConstantTable::find_offset(Constant& con) const {
twisti@2350 3418 int idx = _constants.find(con);
twisti@2350 3419 assert(idx != -1, "constant must be in constant table");
twisti@2350 3420 int offset = _constants.at(idx).offset();
twisti@2350 3421 assert(offset != -1, "constant table not emitted yet?");
twisti@2350 3422 return offset;
twisti@2350 3423 }
twisti@2350 3424
twisti@2350 3425 void Compile::ConstantTable::add(Constant& con) {
twisti@2350 3426 if (con.can_be_reused()) {
twisti@2350 3427 int idx = _constants.find(con);
twisti@2350 3428 if (idx != -1 && _constants.at(idx).can_be_reused()) {
twisti@3310 3429 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
twisti@2350 3430 return;
twisti@2350 3431 }
twisti@2350 3432 }
twisti@2350 3433 (void) _constants.append(con);
twisti@2350 3434 }
twisti@2350 3435
twisti@3310 3436 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
twisti@3310 3437 Block* b = Compile::current()->cfg()->_bbs[n->_idx];
twisti@3310 3438 Constant con(type, value, b->_freq);
twisti@2350 3439 add(con);
twisti@2350 3440 return con;
twisti@2350 3441 }
twisti@2350 3442
coleenp@4037 3443 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
coleenp@4037 3444 Constant con(metadata);
coleenp@4037 3445 add(con);
coleenp@4037 3446 return con;
coleenp@4037 3447 }
coleenp@4037 3448
twisti@3310 3449 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
twisti@2350 3450 jvalue value;
twisti@2350 3451 BasicType type = oper->type()->basic_type();
twisti@2350 3452 switch (type) {
twisti@2350 3453 case T_LONG: value.j = oper->constantL(); break;
twisti@2350 3454 case T_FLOAT: value.f = oper->constantF(); break;
twisti@2350 3455 case T_DOUBLE: value.d = oper->constantD(); break;
twisti@2350 3456 case T_OBJECT:
twisti@2350 3457 case T_ADDRESS: value.l = (jobject) oper->constant(); break;
coleenp@4037 3458 case T_METADATA: return add((Metadata*)oper->constant()); break;
coleenp@4037 3459 default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
twisti@2350 3460 }
twisti@3310 3461 return add(n, type, value);
twisti@2350 3462 }
twisti@2350 3463
twisti@3310 3464 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
twisti@2350 3465 jvalue value;
twisti@2350 3466 // We can use the node pointer here to identify the right jump-table
twisti@2350 3467 // as this method is called from Compile::Fill_buffer right before
twisti@2350 3468 // the MachNodes are emitted and the jump-table is filled (means the
twisti@2350 3469 // MachNode pointers do not change anymore).
twisti@2350 3470 value.l = (jobject) n;
twisti@3310 3471 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
twisti@3310 3472 add(con);
twisti@2350 3473 return con;
twisti@2350 3474 }
twisti@2350 3475
twisti@2350 3476 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
twisti@2350 3477 // If called from Compile::scratch_emit_size do nothing.
twisti@2350 3478 if (Compile::current()->in_scratch_emit_size()) return;
twisti@2350 3479
twisti@2350 3480 assert(labels.is_nonempty(), "must be");
kvn@3971 3481 assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
twisti@2350 3482
twisti@2350 3483 // Since MachConstantNode::constant_offset() also contains
twisti@2350 3484 // table_base_offset() we need to subtract the table_base_offset()
twisti@2350 3485 // to get the plain offset into the constant table.
twisti@2350 3486 int offset = n->constant_offset() - table_base_offset();
twisti@2350 3487
twisti@2350 3488 MacroAssembler _masm(&cb);
twisti@2350 3489 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
twisti@2350 3490
twisti@3310 3491 for (uint i = 0; i < n->outcnt(); i++) {
twisti@2350 3492 address* constant_addr = &jump_table_base[i];
kvn@3971 3493 assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
twisti@2350 3494 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
twisti@2350 3495 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
twisti@2350 3496 }
twisti@2350 3497 }
roland@4357 3498
roland@4357 3499 void Compile::dump_inlining() {
kvn@4448 3500 if (PrintInlining || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
roland@4409 3501 // Print inlining message for candidates that we couldn't inline
roland@4409 3502 // for lack of space or non constant receiver
roland@4409 3503 for (int i = 0; i < _late_inlines.length(); i++) {
roland@4409 3504 CallGenerator* cg = _late_inlines.at(i);
roland@4409 3505 cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
roland@4409 3506 }
roland@4409 3507 Unique_Node_List useful;
roland@4409 3508 useful.push(root());
roland@4409 3509 for (uint next = 0; next < useful.size(); ++next) {
roland@4409 3510 Node* n = useful.at(next);
roland@4409 3511 if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
roland@4409 3512 CallNode* call = n->as_Call();
roland@4409 3513 CallGenerator* cg = call->generator();
roland@4409 3514 cg->print_inlining_late("receiver not constant");
roland@4409 3515 }
roland@4409 3516 uint max = n->len();
roland@4409 3517 for ( uint i = 0; i < max; ++i ) {
roland@4409 3518 Node *m = n->in(i);
roland@4409 3519 if ( m == NULL ) continue;
roland@4409 3520 useful.push(m);
roland@4409 3521 }
roland@4409 3522 }
roland@4357 3523 for (int i = 0; i < _print_inlining_list->length(); i++) {
roland@4357 3524 tty->print(_print_inlining_list->at(i).ss()->as_string());
roland@4357 3525 }
roland@4357 3526 }
roland@4357 3527 }

mercurial