src/share/vm/opto/compile.cpp

Sat, 09 Feb 2013 12:55:09 -0800

author
drchase
date
Sat, 09 Feb 2013 12:55:09 -0800
changeset 4585
2c673161698a
parent 4448
5b8548391bf3
child 4589
8b3da8d14c93
permissions
-rw-r--r--

8007402: Code cleanup to remove Parfait false positive
Summary: add array access range check
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "code/exceptionHandlerTable.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "compiler/oopMap.hpp"
    34 #include "opto/addnode.hpp"
    35 #include "opto/block.hpp"
    36 #include "opto/c2compiler.hpp"
    37 #include "opto/callGenerator.hpp"
    38 #include "opto/callnode.hpp"
    39 #include "opto/cfgnode.hpp"
    40 #include "opto/chaitin.hpp"
    41 #include "opto/compile.hpp"
    42 #include "opto/connode.hpp"
    43 #include "opto/divnode.hpp"
    44 #include "opto/escape.hpp"
    45 #include "opto/idealGraphPrinter.hpp"
    46 #include "opto/loopnode.hpp"
    47 #include "opto/machnode.hpp"
    48 #include "opto/macro.hpp"
    49 #include "opto/matcher.hpp"
    50 #include "opto/memnode.hpp"
    51 #include "opto/mulnode.hpp"
    52 #include "opto/node.hpp"
    53 #include "opto/opcodes.hpp"
    54 #include "opto/output.hpp"
    55 #include "opto/parse.hpp"
    56 #include "opto/phaseX.hpp"
    57 #include "opto/rootnode.hpp"
    58 #include "opto/runtime.hpp"
    59 #include "opto/stringopts.hpp"
    60 #include "opto/type.hpp"
    61 #include "opto/vectornode.hpp"
    62 #include "runtime/arguments.hpp"
    63 #include "runtime/signature.hpp"
    64 #include "runtime/stubRoutines.hpp"
    65 #include "runtime/timer.hpp"
    66 #include "utilities/copy.hpp"
    67 #ifdef TARGET_ARCH_MODEL_x86_32
    68 # include "adfiles/ad_x86_32.hpp"
    69 #endif
    70 #ifdef TARGET_ARCH_MODEL_x86_64
    71 # include "adfiles/ad_x86_64.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_MODEL_sparc
    74 # include "adfiles/ad_sparc.hpp"
    75 #endif
    76 #ifdef TARGET_ARCH_MODEL_zero
    77 # include "adfiles/ad_zero.hpp"
    78 #endif
    79 #ifdef TARGET_ARCH_MODEL_arm
    80 # include "adfiles/ad_arm.hpp"
    81 #endif
    82 #ifdef TARGET_ARCH_MODEL_ppc
    83 # include "adfiles/ad_ppc.hpp"
    84 #endif
    87 // -------------------- Compile::mach_constant_base_node -----------------------
    88 // Constant table base node singleton.
    89 MachConstantBaseNode* Compile::mach_constant_base_node() {
    90   if (_mach_constant_base_node == NULL) {
    91     _mach_constant_base_node = new (C) MachConstantBaseNode();
    92     _mach_constant_base_node->add_req(C->root());
    93   }
    94   return _mach_constant_base_node;
    95 }
    98 /// Support for intrinsics.
   100 // Return the index at which m must be inserted (or already exists).
   101 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   102 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   103 #ifdef ASSERT
   104   for (int i = 1; i < _intrinsics->length(); i++) {
   105     CallGenerator* cg1 = _intrinsics->at(i-1);
   106     CallGenerator* cg2 = _intrinsics->at(i);
   107     assert(cg1->method() != cg2->method()
   108            ? cg1->method()     < cg2->method()
   109            : cg1->is_virtual() < cg2->is_virtual(),
   110            "compiler intrinsics list must stay sorted");
   111   }
   112 #endif
   113   // Binary search sorted list, in decreasing intervals [lo, hi].
   114   int lo = 0, hi = _intrinsics->length()-1;
   115   while (lo <= hi) {
   116     int mid = (uint)(hi + lo) / 2;
   117     ciMethod* mid_m = _intrinsics->at(mid)->method();
   118     if (m < mid_m) {
   119       hi = mid-1;
   120     } else if (m > mid_m) {
   121       lo = mid+1;
   122     } else {
   123       // look at minor sort key
   124       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   125       if (is_virtual < mid_virt) {
   126         hi = mid-1;
   127       } else if (is_virtual > mid_virt) {
   128         lo = mid+1;
   129       } else {
   130         return mid;  // exact match
   131       }
   132     }
   133   }
   134   return lo;  // inexact match
   135 }
   137 void Compile::register_intrinsic(CallGenerator* cg) {
   138   if (_intrinsics == NULL) {
   139     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
   140   }
   141   // This code is stolen from ciObjectFactory::insert.
   142   // Really, GrowableArray should have methods for
   143   // insert_at, remove_at, and binary_search.
   144   int len = _intrinsics->length();
   145   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   146   if (index == len) {
   147     _intrinsics->append(cg);
   148   } else {
   149 #ifdef ASSERT
   150     CallGenerator* oldcg = _intrinsics->at(index);
   151     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   152 #endif
   153     _intrinsics->append(_intrinsics->at(len-1));
   154     int pos;
   155     for (pos = len-2; pos >= index; pos--) {
   156       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   157     }
   158     _intrinsics->at_put(index, cg);
   159   }
   160   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   161 }
   163 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   164   assert(m->is_loaded(), "don't try this on unloaded methods");
   165   if (_intrinsics != NULL) {
   166     int index = intrinsic_insertion_index(m, is_virtual);
   167     if (index < _intrinsics->length()
   168         && _intrinsics->at(index)->method() == m
   169         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   170       return _intrinsics->at(index);
   171     }
   172   }
   173   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   174   if (m->intrinsic_id() != vmIntrinsics::_none &&
   175       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   176     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   177     if (cg != NULL) {
   178       // Save it for next time:
   179       register_intrinsic(cg);
   180       return cg;
   181     } else {
   182       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   183     }
   184   }
   185   return NULL;
   186 }
   188 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   189 // in library_call.cpp.
   192 #ifndef PRODUCT
   193 // statistics gathering...
   195 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   196 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   198 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   199   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   200   int oflags = _intrinsic_hist_flags[id];
   201   assert(flags != 0, "what happened?");
   202   if (is_virtual) {
   203     flags |= _intrinsic_virtual;
   204   }
   205   bool changed = (flags != oflags);
   206   if ((flags & _intrinsic_worked) != 0) {
   207     juint count = (_intrinsic_hist_count[id] += 1);
   208     if (count == 1) {
   209       changed = true;           // first time
   210     }
   211     // increment the overall count also:
   212     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   213   }
   214   if (changed) {
   215     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   216       // Something changed about the intrinsic's virtuality.
   217       if ((flags & _intrinsic_virtual) != 0) {
   218         // This is the first use of this intrinsic as a virtual call.
   219         if (oflags != 0) {
   220           // We already saw it as a non-virtual, so note both cases.
   221           flags |= _intrinsic_both;
   222         }
   223       } else if ((oflags & _intrinsic_both) == 0) {
   224         // This is the first use of this intrinsic as a non-virtual
   225         flags |= _intrinsic_both;
   226       }
   227     }
   228     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   229   }
   230   // update the overall flags also:
   231   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   232   return changed;
   233 }
   235 static char* format_flags(int flags, char* buf) {
   236   buf[0] = 0;
   237   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   238   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   239   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   240   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   241   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   242   if (buf[0] == 0)  strcat(buf, ",");
   243   assert(buf[0] == ',', "must be");
   244   return &buf[1];
   245 }
   247 void Compile::print_intrinsic_statistics() {
   248   char flagsbuf[100];
   249   ttyLocker ttyl;
   250   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   251   tty->print_cr("Compiler intrinsic usage:");
   252   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   253   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   254   #define PRINT_STAT_LINE(name, c, f) \
   255     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   256   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   257     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   258     int   flags = _intrinsic_hist_flags[id];
   259     juint count = _intrinsic_hist_count[id];
   260     if ((flags | count) != 0) {
   261       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   262     }
   263   }
   264   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   265   if (xtty != NULL)  xtty->tail("statistics");
   266 }
   268 void Compile::print_statistics() {
   269   { ttyLocker ttyl;
   270     if (xtty != NULL)  xtty->head("statistics type='opto'");
   271     Parse::print_statistics();
   272     PhaseCCP::print_statistics();
   273     PhaseRegAlloc::print_statistics();
   274     Scheduling::print_statistics();
   275     PhasePeephole::print_statistics();
   276     PhaseIdealLoop::print_statistics();
   277     if (xtty != NULL)  xtty->tail("statistics");
   278   }
   279   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   280     // put this under its own <statistics> element.
   281     print_intrinsic_statistics();
   282   }
   283 }
   284 #endif //PRODUCT
   286 // Support for bundling info
   287 Bundle* Compile::node_bundling(const Node *n) {
   288   assert(valid_bundle_info(n), "oob");
   289   return &_node_bundling_base[n->_idx];
   290 }
   292 bool Compile::valid_bundle_info(const Node *n) {
   293   return (_node_bundling_limit > n->_idx);
   294 }
   297 void Compile::gvn_replace_by(Node* n, Node* nn) {
   298   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   299     Node* use = n->last_out(i);
   300     bool is_in_table = initial_gvn()->hash_delete(use);
   301     uint uses_found = 0;
   302     for (uint j = 0; j < use->len(); j++) {
   303       if (use->in(j) == n) {
   304         if (j < use->req())
   305           use->set_req(j, nn);
   306         else
   307           use->set_prec(j, nn);
   308         uses_found++;
   309       }
   310     }
   311     if (is_in_table) {
   312       // reinsert into table
   313       initial_gvn()->hash_find_insert(use);
   314     }
   315     record_for_igvn(use);
   316     i -= uses_found;    // we deleted 1 or more copies of this edge
   317   }
   318 }
   321 static inline bool not_a_node(const Node* n) {
   322   if (n == NULL)                   return true;
   323   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
   324   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
   325   return false;
   326 }
   328 // Identify all nodes that are reachable from below, useful.
   329 // Use breadth-first pass that records state in a Unique_Node_List,
   330 // recursive traversal is slower.
   331 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   332   int estimated_worklist_size = unique();
   333   useful.map( estimated_worklist_size, NULL );  // preallocate space
   335   // Initialize worklist
   336   if (root() != NULL)     { useful.push(root()); }
   337   // If 'top' is cached, declare it useful to preserve cached node
   338   if( cached_top_node() ) { useful.push(cached_top_node()); }
   340   // Push all useful nodes onto the list, breadthfirst
   341   for( uint next = 0; next < useful.size(); ++next ) {
   342     assert( next < unique(), "Unique useful nodes < total nodes");
   343     Node *n  = useful.at(next);
   344     uint max = n->len();
   345     for( uint i = 0; i < max; ++i ) {
   346       Node *m = n->in(i);
   347       if (not_a_node(m))  continue;
   348       useful.push(m);
   349     }
   350   }
   351 }
   353 // Update dead_node_list with any missing dead nodes using useful
   354 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
   355 void Compile::update_dead_node_list(Unique_Node_List &useful) {
   356   uint max_idx = unique();
   357   VectorSet& useful_node_set = useful.member_set();
   359   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
   360     // If node with index node_idx is not in useful set,
   361     // mark it as dead in dead node list.
   362     if (! useful_node_set.test(node_idx) ) {
   363       record_dead_node(node_idx);
   364     }
   365   }
   366 }
   368 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
   369   int shift = 0;
   370   for (int i = 0; i < inlines->length(); i++) {
   371     CallGenerator* cg = inlines->at(i);
   372     CallNode* call = cg->call_node();
   373     if (shift > 0) {
   374       inlines->at_put(i-shift, cg);
   375     }
   376     if (!useful.member(call)) {
   377       shift++;
   378     }
   379   }
   380   inlines->trunc_to(inlines->length()-shift);
   381 }
   383 // Disconnect all useless nodes by disconnecting those at the boundary.
   384 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   385   uint next = 0;
   386   while (next < useful.size()) {
   387     Node *n = useful.at(next++);
   388     // Use raw traversal of out edges since this code removes out edges
   389     int max = n->outcnt();
   390     for (int j = 0; j < max; ++j) {
   391       Node* child = n->raw_out(j);
   392       if (! useful.member(child)) {
   393         assert(!child->is_top() || child != top(),
   394                "If top is cached in Compile object it is in useful list");
   395         // Only need to remove this out-edge to the useless node
   396         n->raw_del_out(j);
   397         --j;
   398         --max;
   399       }
   400     }
   401     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   402       record_for_igvn(n->unique_out());
   403     }
   404   }
   405   // Remove useless macro and predicate opaq nodes
   406   for (int i = C->macro_count()-1; i >= 0; i--) {
   407     Node* n = C->macro_node(i);
   408     if (!useful.member(n)) {
   409       remove_macro_node(n);
   410     }
   411   }
   412   // clean up the late inline lists
   413   remove_useless_late_inlines(&_string_late_inlines, useful);
   414   remove_useless_late_inlines(&_late_inlines, useful);
   415   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   416 }
   418 //------------------------------frame_size_in_words-----------------------------
   419 // frame_slots in units of words
   420 int Compile::frame_size_in_words() const {
   421   // shift is 0 in LP32 and 1 in LP64
   422   const int shift = (LogBytesPerWord - LogBytesPerInt);
   423   int words = _frame_slots >> shift;
   424   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   425   return words;
   426 }
   428 // ============================================================================
   429 //------------------------------CompileWrapper---------------------------------
   430 class CompileWrapper : public StackObj {
   431   Compile *const _compile;
   432  public:
   433   CompileWrapper(Compile* compile);
   435   ~CompileWrapper();
   436 };
   438 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   439   // the Compile* pointer is stored in the current ciEnv:
   440   ciEnv* env = compile->env();
   441   assert(env == ciEnv::current(), "must already be a ciEnv active");
   442   assert(env->compiler_data() == NULL, "compile already active?");
   443   env->set_compiler_data(compile);
   444   assert(compile == Compile::current(), "sanity");
   446   compile->set_type_dict(NULL);
   447   compile->set_type_hwm(NULL);
   448   compile->set_type_last_size(0);
   449   compile->set_last_tf(NULL, NULL);
   450   compile->set_indexSet_arena(NULL);
   451   compile->set_indexSet_free_block_list(NULL);
   452   compile->init_type_arena();
   453   Type::Initialize(compile);
   454   _compile->set_scratch_buffer_blob(NULL);
   455   _compile->begin_method();
   456 }
   457 CompileWrapper::~CompileWrapper() {
   458   _compile->end_method();
   459   if (_compile->scratch_buffer_blob() != NULL)
   460     BufferBlob::free(_compile->scratch_buffer_blob());
   461   _compile->env()->set_compiler_data(NULL);
   462 }
   465 //----------------------------print_compile_messages---------------------------
   466 void Compile::print_compile_messages() {
   467 #ifndef PRODUCT
   468   // Check if recompiling
   469   if (_subsume_loads == false && PrintOpto) {
   470     // Recompiling without allowing machine instructions to subsume loads
   471     tty->print_cr("*********************************************************");
   472     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   473     tty->print_cr("*********************************************************");
   474   }
   475   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   476     // Recompiling without escape analysis
   477     tty->print_cr("*********************************************************");
   478     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   479     tty->print_cr("*********************************************************");
   480   }
   481   if (env()->break_at_compile()) {
   482     // Open the debugger when compiling this method.
   483     tty->print("### Breaking when compiling: ");
   484     method()->print_short_name();
   485     tty->cr();
   486     BREAKPOINT;
   487   }
   489   if( PrintOpto ) {
   490     if (is_osr_compilation()) {
   491       tty->print("[OSR]%3d", _compile_id);
   492     } else {
   493       tty->print("%3d", _compile_id);
   494     }
   495   }
   496 #endif
   497 }
   500 //-----------------------init_scratch_buffer_blob------------------------------
   501 // Construct a temporary BufferBlob and cache it for this compile.
   502 void Compile::init_scratch_buffer_blob(int const_size) {
   503   // If there is already a scratch buffer blob allocated and the
   504   // constant section is big enough, use it.  Otherwise free the
   505   // current and allocate a new one.
   506   BufferBlob* blob = scratch_buffer_blob();
   507   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   508     // Use the current blob.
   509   } else {
   510     if (blob != NULL) {
   511       BufferBlob::free(blob);
   512     }
   514     ResourceMark rm;
   515     _scratch_const_size = const_size;
   516     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   517     blob = BufferBlob::create("Compile::scratch_buffer", size);
   518     // Record the buffer blob for next time.
   519     set_scratch_buffer_blob(blob);
   520     // Have we run out of code space?
   521     if (scratch_buffer_blob() == NULL) {
   522       // Let CompilerBroker disable further compilations.
   523       record_failure("Not enough space for scratch buffer in CodeCache");
   524       return;
   525     }
   526   }
   528   // Initialize the relocation buffers
   529   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   530   set_scratch_locs_memory(locs_buf);
   531 }
   534 //-----------------------scratch_emit_size-------------------------------------
   535 // Helper function that computes size by emitting code
   536 uint Compile::scratch_emit_size(const Node* n) {
   537   // Start scratch_emit_size section.
   538   set_in_scratch_emit_size(true);
   540   // Emit into a trash buffer and count bytes emitted.
   541   // This is a pretty expensive way to compute a size,
   542   // but it works well enough if seldom used.
   543   // All common fixed-size instructions are given a size
   544   // method by the AD file.
   545   // Note that the scratch buffer blob and locs memory are
   546   // allocated at the beginning of the compile task, and
   547   // may be shared by several calls to scratch_emit_size.
   548   // The allocation of the scratch buffer blob is particularly
   549   // expensive, since it has to grab the code cache lock.
   550   BufferBlob* blob = this->scratch_buffer_blob();
   551   assert(blob != NULL, "Initialize BufferBlob at start");
   552   assert(blob->size() > MAX_inst_size, "sanity");
   553   relocInfo* locs_buf = scratch_locs_memory();
   554   address blob_begin = blob->content_begin();
   555   address blob_end   = (address)locs_buf;
   556   assert(blob->content_contains(blob_end), "sanity");
   557   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   558   buf.initialize_consts_size(_scratch_const_size);
   559   buf.initialize_stubs_size(MAX_stubs_size);
   560   assert(locs_buf != NULL, "sanity");
   561   int lsize = MAX_locs_size / 3;
   562   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   563   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   564   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   566   // Do the emission.
   568   Label fakeL; // Fake label for branch instructions.
   569   Label*   saveL = NULL;
   570   uint save_bnum = 0;
   571   bool is_branch = n->is_MachBranch();
   572   if (is_branch) {
   573     MacroAssembler masm(&buf);
   574     masm.bind(fakeL);
   575     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   576     n->as_MachBranch()->label_set(&fakeL, 0);
   577   }
   578   n->emit(buf, this->regalloc());
   579   if (is_branch) // Restore label.
   580     n->as_MachBranch()->label_set(saveL, save_bnum);
   582   // End scratch_emit_size section.
   583   set_in_scratch_emit_size(false);
   585   return buf.insts_size();
   586 }
   589 // ============================================================================
   590 //------------------------------Compile standard-------------------------------
   591 debug_only( int Compile::_debug_idx = 100000; )
   593 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   594 // the continuation bci for on stack replacement.
   597 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
   598                 : Phase(Compiler),
   599                   _env(ci_env),
   600                   _log(ci_env->log()),
   601                   _compile_id(ci_env->compile_id()),
   602                   _save_argument_registers(false),
   603                   _stub_name(NULL),
   604                   _stub_function(NULL),
   605                   _stub_entry_point(NULL),
   606                   _method(target),
   607                   _entry_bci(osr_bci),
   608                   _initial_gvn(NULL),
   609                   _for_igvn(NULL),
   610                   _warm_calls(NULL),
   611                   _subsume_loads(subsume_loads),
   612                   _do_escape_analysis(do_escape_analysis),
   613                   _failure_reason(NULL),
   614                   _code_buffer("Compile::Fill_buffer"),
   615                   _orig_pc_slot(0),
   616                   _orig_pc_slot_offset_in_bytes(0),
   617                   _has_method_handle_invokes(false),
   618                   _mach_constant_base_node(NULL),
   619                   _node_bundling_limit(0),
   620                   _node_bundling_base(NULL),
   621                   _java_calls(0),
   622                   _inner_loops(0),
   623                   _scratch_const_size(-1),
   624                   _in_scratch_emit_size(false),
   625                   _dead_node_list(comp_arena()),
   626                   _dead_node_count(0),
   627 #ifndef PRODUCT
   628                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   629                   _printer(IdealGraphPrinter::printer()),
   630 #endif
   631                   _congraph(NULL),
   632                   _late_inlines(comp_arena(), 2, 0, NULL),
   633                   _string_late_inlines(comp_arena(), 2, 0, NULL),
   634                   _late_inlines_pos(0),
   635                   _number_of_mh_late_inlines(0),
   636                   _inlining_progress(false),
   637                   _inlining_incrementally(false),
   638                   _print_inlining_list(NULL),
   639                   _print_inlining(0) {
   640   C = this;
   642   CompileWrapper cw(this);
   643 #ifndef PRODUCT
   644   if (TimeCompiler2) {
   645     tty->print(" ");
   646     target->holder()->name()->print();
   647     tty->print(".");
   648     target->print_short_name();
   649     tty->print("  ");
   650   }
   651   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   652   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   653   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   654   if (!print_opto_assembly) {
   655     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   656     if (print_assembly && !Disassembler::can_decode()) {
   657       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   658       print_opto_assembly = true;
   659     }
   660   }
   661   set_print_assembly(print_opto_assembly);
   662   set_parsed_irreducible_loop(false);
   663 #endif
   665   if (ProfileTraps) {
   666     // Make sure the method being compiled gets its own MDO,
   667     // so we can at least track the decompile_count().
   668     method()->ensure_method_data();
   669   }
   671   Init(::AliasLevel);
   674   print_compile_messages();
   676   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   677     _ilt = InlineTree::build_inline_tree_root();
   678   else
   679     _ilt = NULL;
   681   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   682   assert(num_alias_types() >= AliasIdxRaw, "");
   684 #define MINIMUM_NODE_HASH  1023
   685   // Node list that Iterative GVN will start with
   686   Unique_Node_List for_igvn(comp_arena());
   687   set_for_igvn(&for_igvn);
   689   // GVN that will be run immediately on new nodes
   690   uint estimated_size = method()->code_size()*4+64;
   691   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   692   PhaseGVN gvn(node_arena(), estimated_size);
   693   set_initial_gvn(&gvn);
   695   if (PrintInlining  || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
   696     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
   697   }
   698   { // Scope for timing the parser
   699     TracePhase t3("parse", &_t_parser, true);
   701     // Put top into the hash table ASAP.
   702     initial_gvn()->transform_no_reclaim(top());
   704     // Set up tf(), start(), and find a CallGenerator.
   705     CallGenerator* cg = NULL;
   706     if (is_osr_compilation()) {
   707       const TypeTuple *domain = StartOSRNode::osr_domain();
   708       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   709       init_tf(TypeFunc::make(domain, range));
   710       StartNode* s = new (this) StartOSRNode(root(), domain);
   711       initial_gvn()->set_type_bottom(s);
   712       init_start(s);
   713       cg = CallGenerator::for_osr(method(), entry_bci());
   714     } else {
   715       // Normal case.
   716       init_tf(TypeFunc::make(method()));
   717       StartNode* s = new (this) StartNode(root(), tf()->domain());
   718       initial_gvn()->set_type_bottom(s);
   719       init_start(s);
   720       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   721         // With java.lang.ref.reference.get() we must go through the
   722         // intrinsic when G1 is enabled - even when get() is the root
   723         // method of the compile - so that, if necessary, the value in
   724         // the referent field of the reference object gets recorded by
   725         // the pre-barrier code.
   726         // Specifically, if G1 is enabled, the value in the referent
   727         // field is recorded by the G1 SATB pre barrier. This will
   728         // result in the referent being marked live and the reference
   729         // object removed from the list of discovered references during
   730         // reference processing.
   731         cg = find_intrinsic(method(), false);
   732       }
   733       if (cg == NULL) {
   734         float past_uses = method()->interpreter_invocation_count();
   735         float expected_uses = past_uses;
   736         cg = CallGenerator::for_inline(method(), expected_uses);
   737       }
   738     }
   739     if (failing())  return;
   740     if (cg == NULL) {
   741       record_method_not_compilable_all_tiers("cannot parse method");
   742       return;
   743     }
   744     JVMState* jvms = build_start_state(start(), tf());
   745     if ((jvms = cg->generate(jvms)) == NULL) {
   746       record_method_not_compilable("method parse failed");
   747       return;
   748     }
   749     GraphKit kit(jvms);
   751     if (!kit.stopped()) {
   752       // Accept return values, and transfer control we know not where.
   753       // This is done by a special, unique ReturnNode bound to root.
   754       return_values(kit.jvms());
   755     }
   757     if (kit.has_exceptions()) {
   758       // Any exceptions that escape from this call must be rethrown
   759       // to whatever caller is dynamically above us on the stack.
   760       // This is done by a special, unique RethrowNode bound to root.
   761       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   762     }
   764     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
   766     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
   767       inline_string_calls(true);
   768     }
   770     if (failing())  return;
   772     print_method("Before RemoveUseless", 3);
   774     // Remove clutter produced by parsing.
   775     if (!failing()) {
   776       ResourceMark rm;
   777       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   778     }
   779   }
   781   // Note:  Large methods are capped off in do_one_bytecode().
   782   if (failing())  return;
   784   // After parsing, node notes are no longer automagic.
   785   // They must be propagated by register_new_node_with_optimizer(),
   786   // clone(), or the like.
   787   set_default_node_notes(NULL);
   789   for (;;) {
   790     int successes = Inline_Warm();
   791     if (failing())  return;
   792     if (successes == 0)  break;
   793   }
   795   // Drain the list.
   796   Finish_Warm();
   797 #ifndef PRODUCT
   798   if (_printer) {
   799     _printer->print_inlining(this);
   800   }
   801 #endif
   803   if (failing())  return;
   804   NOT_PRODUCT( verify_graph_edges(); )
   806   // Now optimize
   807   Optimize();
   808   if (failing())  return;
   809   NOT_PRODUCT( verify_graph_edges(); )
   811 #ifndef PRODUCT
   812   if (PrintIdeal) {
   813     ttyLocker ttyl;  // keep the following output all in one block
   814     // This output goes directly to the tty, not the compiler log.
   815     // To enable tools to match it up with the compilation activity,
   816     // be sure to tag this tty output with the compile ID.
   817     if (xtty != NULL) {
   818       xtty->head("ideal compile_id='%d'%s", compile_id(),
   819                  is_osr_compilation()    ? " compile_kind='osr'" :
   820                  "");
   821     }
   822     root()->dump(9999);
   823     if (xtty != NULL) {
   824       xtty->tail("ideal");
   825     }
   826   }
   827 #endif
   829   // Now that we know the size of all the monitors we can add a fixed slot
   830   // for the original deopt pc.
   832   _orig_pc_slot =  fixed_slots();
   833   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   834   set_fixed_slots(next_slot);
   836   // Now generate code
   837   Code_Gen();
   838   if (failing())  return;
   840   // Check if we want to skip execution of all compiled code.
   841   {
   842 #ifndef PRODUCT
   843     if (OptoNoExecute) {
   844       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   845       return;
   846     }
   847     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   848 #endif
   850     if (is_osr_compilation()) {
   851       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   852       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   853     } else {
   854       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   855       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   856     }
   858     env()->register_method(_method, _entry_bci,
   859                            &_code_offsets,
   860                            _orig_pc_slot_offset_in_bytes,
   861                            code_buffer(),
   862                            frame_size_in_words(), _oop_map_set,
   863                            &_handler_table, &_inc_table,
   864                            compiler,
   865                            env()->comp_level(),
   866                            has_unsafe_access(),
   867                            SharedRuntime::is_wide_vector(max_vector_size())
   868                            );
   870     if (log() != NULL) // Print code cache state into compiler log
   871       log()->code_cache_state();
   872   }
   873 }
   875 //------------------------------Compile----------------------------------------
   876 // Compile a runtime stub
   877 Compile::Compile( ciEnv* ci_env,
   878                   TypeFunc_generator generator,
   879                   address stub_function,
   880                   const char *stub_name,
   881                   int is_fancy_jump,
   882                   bool pass_tls,
   883                   bool save_arg_registers,
   884                   bool return_pc )
   885   : Phase(Compiler),
   886     _env(ci_env),
   887     _log(ci_env->log()),
   888     _compile_id(-1),
   889     _save_argument_registers(save_arg_registers),
   890     _method(NULL),
   891     _stub_name(stub_name),
   892     _stub_function(stub_function),
   893     _stub_entry_point(NULL),
   894     _entry_bci(InvocationEntryBci),
   895     _initial_gvn(NULL),
   896     _for_igvn(NULL),
   897     _warm_calls(NULL),
   898     _orig_pc_slot(0),
   899     _orig_pc_slot_offset_in_bytes(0),
   900     _subsume_loads(true),
   901     _do_escape_analysis(false),
   902     _failure_reason(NULL),
   903     _code_buffer("Compile::Fill_buffer"),
   904     _has_method_handle_invokes(false),
   905     _mach_constant_base_node(NULL),
   906     _node_bundling_limit(0),
   907     _node_bundling_base(NULL),
   908     _java_calls(0),
   909     _inner_loops(0),
   910 #ifndef PRODUCT
   911     _trace_opto_output(TraceOptoOutput),
   912     _printer(NULL),
   913 #endif
   914     _dead_node_list(comp_arena()),
   915     _dead_node_count(0),
   916     _congraph(NULL),
   917     _number_of_mh_late_inlines(0),
   918     _inlining_progress(false),
   919     _inlining_incrementally(false),
   920     _print_inlining_list(NULL),
   921     _print_inlining(0) {
   922   C = this;
   924 #ifndef PRODUCT
   925   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   926   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   927   set_print_assembly(PrintFrameConverterAssembly);
   928   set_parsed_irreducible_loop(false);
   929 #endif
   930   CompileWrapper cw(this);
   931   Init(/*AliasLevel=*/ 0);
   932   init_tf((*generator)());
   934   {
   935     // The following is a dummy for the sake of GraphKit::gen_stub
   936     Unique_Node_List for_igvn(comp_arena());
   937     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   938     PhaseGVN gvn(Thread::current()->resource_area(),255);
   939     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   940     gvn.transform_no_reclaim(top());
   942     GraphKit kit;
   943     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   944   }
   946   NOT_PRODUCT( verify_graph_edges(); )
   947   Code_Gen();
   948   if (failing())  return;
   951   // Entry point will be accessed using compile->stub_entry_point();
   952   if (code_buffer() == NULL) {
   953     Matcher::soft_match_failure();
   954   } else {
   955     if (PrintAssembly && (WizardMode || Verbose))
   956       tty->print_cr("### Stub::%s", stub_name);
   958     if (!failing()) {
   959       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   961       // Make the NMethod
   962       // For now we mark the frame as never safe for profile stackwalking
   963       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   964                                                       code_buffer(),
   965                                                       CodeOffsets::frame_never_safe,
   966                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
   967                                                       frame_size_in_words(),
   968                                                       _oop_map_set,
   969                                                       save_arg_registers);
   970       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
   972       _stub_entry_point = rs->entry_point();
   973     }
   974   }
   975 }
   977 //------------------------------Init-------------------------------------------
   978 // Prepare for a single compilation
   979 void Compile::Init(int aliaslevel) {
   980   _unique  = 0;
   981   _regalloc = NULL;
   983   _tf      = NULL;  // filled in later
   984   _top     = NULL;  // cached later
   985   _matcher = NULL;  // filled in later
   986   _cfg     = NULL;  // filled in later
   988   set_24_bit_selection_and_mode(Use24BitFP, false);
   990   _node_note_array = NULL;
   991   _default_node_notes = NULL;
   993   _immutable_memory = NULL; // filled in at first inquiry
   995   // Globally visible Nodes
   996   // First set TOP to NULL to give safe behavior during creation of RootNode
   997   set_cached_top_node(NULL);
   998   set_root(new (this) RootNode());
   999   // Now that you have a Root to point to, create the real TOP
  1000   set_cached_top_node( new (this) ConNode(Type::TOP) );
  1001   set_recent_alloc(NULL, NULL);
  1003   // Create Debug Information Recorder to record scopes, oopmaps, etc.
  1004   env()->set_oop_recorder(new OopRecorder(env()->arena()));
  1005   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
  1006   env()->set_dependencies(new Dependencies(env()));
  1008   _fixed_slots = 0;
  1009   set_has_split_ifs(false);
  1010   set_has_loops(has_method() && method()->has_loops()); // first approximation
  1011   set_has_stringbuilder(false);
  1012   _trap_can_recompile = false;  // no traps emitted yet
  1013   _major_progress = true; // start out assuming good things will happen
  1014   set_has_unsafe_access(false);
  1015   set_max_vector_size(0);
  1016   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
  1017   set_decompile_count(0);
  1019   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
  1020   set_num_loop_opts(LoopOptsCount);
  1021   set_do_inlining(Inline);
  1022   set_max_inline_size(MaxInlineSize);
  1023   set_freq_inline_size(FreqInlineSize);
  1024   set_do_scheduling(OptoScheduling);
  1025   set_do_count_invocations(false);
  1026   set_do_method_data_update(false);
  1028   if (debug_info()->recording_non_safepoints()) {
  1029     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
  1030                         (comp_arena(), 8, 0, NULL));
  1031     set_default_node_notes(Node_Notes::make(this));
  1034   // // -- Initialize types before each compile --
  1035   // // Update cached type information
  1036   // if( _method && _method->constants() )
  1037   //   Type::update_loaded_types(_method, _method->constants());
  1039   // Init alias_type map.
  1040   if (!_do_escape_analysis && aliaslevel == 3)
  1041     aliaslevel = 2;  // No unique types without escape analysis
  1042   _AliasLevel = aliaslevel;
  1043   const int grow_ats = 16;
  1044   _max_alias_types = grow_ats;
  1045   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
  1046   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1047   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1049     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1051   // Initialize the first few types.
  1052   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1053   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1054   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1055   _num_alias_types = AliasIdxRaw+1;
  1056   // Zero out the alias type cache.
  1057   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1058   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1059   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1061   _intrinsics = NULL;
  1062   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1063   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1064   register_library_intrinsics();
  1067 //---------------------------init_start----------------------------------------
  1068 // Install the StartNode on this compile object.
  1069 void Compile::init_start(StartNode* s) {
  1070   if (failing())
  1071     return; // already failing
  1072   assert(s == start(), "");
  1075 StartNode* Compile::start() const {
  1076   assert(!failing(), "");
  1077   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1078     Node* start = root()->fast_out(i);
  1079     if( start->is_Start() )
  1080       return start->as_Start();
  1082   ShouldNotReachHere();
  1083   return NULL;
  1086 //-------------------------------immutable_memory-------------------------------------
  1087 // Access immutable memory
  1088 Node* Compile::immutable_memory() {
  1089   if (_immutable_memory != NULL) {
  1090     return _immutable_memory;
  1092   StartNode* s = start();
  1093   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1094     Node *p = s->fast_out(i);
  1095     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1096       _immutable_memory = p;
  1097       return _immutable_memory;
  1100   ShouldNotReachHere();
  1101   return NULL;
  1104 //----------------------set_cached_top_node------------------------------------
  1105 // Install the cached top node, and make sure Node::is_top works correctly.
  1106 void Compile::set_cached_top_node(Node* tn) {
  1107   if (tn != NULL)  verify_top(tn);
  1108   Node* old_top = _top;
  1109   _top = tn;
  1110   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1111   // their _out arrays.
  1112   if (_top != NULL)     _top->setup_is_top();
  1113   if (old_top != NULL)  old_top->setup_is_top();
  1114   assert(_top == NULL || top()->is_top(), "");
  1117 #ifdef ASSERT
  1118 uint Compile::count_live_nodes_by_graph_walk() {
  1119   Unique_Node_List useful(comp_arena());
  1120   // Get useful node list by walking the graph.
  1121   identify_useful_nodes(useful);
  1122   return useful.size();
  1125 void Compile::print_missing_nodes() {
  1127   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
  1128   if ((_log == NULL) && (! PrintIdealNodeCount)) {
  1129     return;
  1132   // This is an expensive function. It is executed only when the user
  1133   // specifies VerifyIdealNodeCount option or otherwise knows the
  1134   // additional work that needs to be done to identify reachable nodes
  1135   // by walking the flow graph and find the missing ones using
  1136   // _dead_node_list.
  1138   Unique_Node_List useful(comp_arena());
  1139   // Get useful node list by walking the graph.
  1140   identify_useful_nodes(useful);
  1142   uint l_nodes = C->live_nodes();
  1143   uint l_nodes_by_walk = useful.size();
  1145   if (l_nodes != l_nodes_by_walk) {
  1146     if (_log != NULL) {
  1147       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
  1148       _log->stamp();
  1149       _log->end_head();
  1151     VectorSet& useful_member_set = useful.member_set();
  1152     int last_idx = l_nodes_by_walk;
  1153     for (int i = 0; i < last_idx; i++) {
  1154       if (useful_member_set.test(i)) {
  1155         if (_dead_node_list.test(i)) {
  1156           if (_log != NULL) {
  1157             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
  1159           if (PrintIdealNodeCount) {
  1160             // Print the log message to tty
  1161               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
  1162               useful.at(i)->dump();
  1166       else if (! _dead_node_list.test(i)) {
  1167         if (_log != NULL) {
  1168           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
  1170         if (PrintIdealNodeCount) {
  1171           // Print the log message to tty
  1172           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
  1176     if (_log != NULL) {
  1177       _log->tail("mismatched_nodes");
  1181 #endif
  1183 #ifndef PRODUCT
  1184 void Compile::verify_top(Node* tn) const {
  1185   if (tn != NULL) {
  1186     assert(tn->is_Con(), "top node must be a constant");
  1187     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1188     assert(tn->in(0) != NULL, "must have live top node");
  1191 #endif
  1194 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1196 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1197   guarantee(arr != NULL, "");
  1198   int num_blocks = arr->length();
  1199   if (grow_by < num_blocks)  grow_by = num_blocks;
  1200   int num_notes = grow_by * _node_notes_block_size;
  1201   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1202   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1203   while (num_notes > 0) {
  1204     arr->append(notes);
  1205     notes     += _node_notes_block_size;
  1206     num_notes -= _node_notes_block_size;
  1208   assert(num_notes == 0, "exact multiple, please");
  1211 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1212   if (source == NULL || dest == NULL)  return false;
  1214   if (dest->is_Con())
  1215     return false;               // Do not push debug info onto constants.
  1217 #ifdef ASSERT
  1218   // Leave a bread crumb trail pointing to the original node:
  1219   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1220     dest->set_debug_orig(source);
  1222 #endif
  1224   if (node_note_array() == NULL)
  1225     return false;               // Not collecting any notes now.
  1227   // This is a copy onto a pre-existing node, which may already have notes.
  1228   // If both nodes have notes, do not overwrite any pre-existing notes.
  1229   Node_Notes* source_notes = node_notes_at(source->_idx);
  1230   if (source_notes == NULL || source_notes->is_clear())  return false;
  1231   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1232   if (dest_notes == NULL || dest_notes->is_clear()) {
  1233     return set_node_notes_at(dest->_idx, source_notes);
  1236   Node_Notes merged_notes = (*source_notes);
  1237   // The order of operations here ensures that dest notes will win...
  1238   merged_notes.update_from(dest_notes);
  1239   return set_node_notes_at(dest->_idx, &merged_notes);
  1243 //--------------------------allow_range_check_smearing-------------------------
  1244 // Gating condition for coalescing similar range checks.
  1245 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1246 // single covering check that is at least as strong as any of them.
  1247 // If the optimization succeeds, the simplified (strengthened) range check
  1248 // will always succeed.  If it fails, we will deopt, and then give up
  1249 // on the optimization.
  1250 bool Compile::allow_range_check_smearing() const {
  1251   // If this method has already thrown a range-check,
  1252   // assume it was because we already tried range smearing
  1253   // and it failed.
  1254   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1255   return !already_trapped;
  1259 //------------------------------flatten_alias_type-----------------------------
  1260 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1261   int offset = tj->offset();
  1262   TypePtr::PTR ptr = tj->ptr();
  1264   // Known instance (scalarizable allocation) alias only with itself.
  1265   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1266                        tj->is_oopptr()->is_known_instance();
  1268   // Process weird unsafe references.
  1269   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1270     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1271     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1272     tj = TypeOopPtr::BOTTOM;
  1273     ptr = tj->ptr();
  1274     offset = tj->offset();
  1277   // Array pointers need some flattening
  1278   const TypeAryPtr *ta = tj->isa_aryptr();
  1279   if( ta && is_known_inst ) {
  1280     if ( offset != Type::OffsetBot &&
  1281          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1282       offset = Type::OffsetBot; // Flatten constant access into array body only
  1283       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1285   } else if( ta && _AliasLevel >= 2 ) {
  1286     // For arrays indexed by constant indices, we flatten the alias
  1287     // space to include all of the array body.  Only the header, klass
  1288     // and array length can be accessed un-aliased.
  1289     if( offset != Type::OffsetBot ) {
  1290       if( ta->const_oop() ) { // MethodData* or Method*
  1291         offset = Type::OffsetBot;   // Flatten constant access into array body
  1292         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1293       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1294         // range is OK as-is.
  1295         tj = ta = TypeAryPtr::RANGE;
  1296       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1297         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1298         ta = TypeAryPtr::RANGE; // generic ignored junk
  1299         ptr = TypePtr::BotPTR;
  1300       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1301         tj = TypeInstPtr::MARK;
  1302         ta = TypeAryPtr::RANGE; // generic ignored junk
  1303         ptr = TypePtr::BotPTR;
  1304       } else {                  // Random constant offset into array body
  1305         offset = Type::OffsetBot;   // Flatten constant access into array body
  1306         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1309     // Arrays of fixed size alias with arrays of unknown size.
  1310     if (ta->size() != TypeInt::POS) {
  1311       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1312       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1314     // Arrays of known objects become arrays of unknown objects.
  1315     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1316       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1317       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1319     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1320       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1321       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1323     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1324     // cannot be distinguished by bytecode alone.
  1325     if (ta->elem() == TypeInt::BOOL) {
  1326       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1327       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1328       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1330     // During the 2nd round of IterGVN, NotNull castings are removed.
  1331     // Make sure the Bottom and NotNull variants alias the same.
  1332     // Also, make sure exact and non-exact variants alias the same.
  1333     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
  1334       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1338   // Oop pointers need some flattening
  1339   const TypeInstPtr *to = tj->isa_instptr();
  1340   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1341     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1342     if( ptr == TypePtr::Constant ) {
  1343       if (to->klass() != ciEnv::current()->Class_klass() ||
  1344           offset < k->size_helper() * wordSize) {
  1345         // No constant oop pointers (such as Strings); they alias with
  1346         // unknown strings.
  1347         assert(!is_known_inst, "not scalarizable allocation");
  1348         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1350     } else if( is_known_inst ) {
  1351       tj = to; // Keep NotNull and klass_is_exact for instance type
  1352     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1353       // During the 2nd round of IterGVN, NotNull castings are removed.
  1354       // Make sure the Bottom and NotNull variants alias the same.
  1355       // Also, make sure exact and non-exact variants alias the same.
  1356       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1358     // Canonicalize the holder of this field
  1359     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1360       // First handle header references such as a LoadKlassNode, even if the
  1361       // object's klass is unloaded at compile time (4965979).
  1362       if (!is_known_inst) { // Do it only for non-instance types
  1363         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1365     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1366       // Static fields are in the space above the normal instance
  1367       // fields in the java.lang.Class instance.
  1368       if (to->klass() != ciEnv::current()->Class_klass()) {
  1369         to = NULL;
  1370         tj = TypeOopPtr::BOTTOM;
  1371         offset = tj->offset();
  1373     } else {
  1374       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1375       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1376         if( is_known_inst ) {
  1377           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1378         } else {
  1379           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1385   // Klass pointers to object array klasses need some flattening
  1386   const TypeKlassPtr *tk = tj->isa_klassptr();
  1387   if( tk ) {
  1388     // If we are referencing a field within a Klass, we need
  1389     // to assume the worst case of an Object.  Both exact and
  1390     // inexact types must flatten to the same alias class so
  1391     // use NotNull as the PTR.
  1392     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1394       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
  1395                                    TypeKlassPtr::OBJECT->klass(),
  1396                                    offset);
  1399     ciKlass* klass = tk->klass();
  1400     if( klass->is_obj_array_klass() ) {
  1401       ciKlass* k = TypeAryPtr::OOPS->klass();
  1402       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1403         k = TypeInstPtr::BOTTOM->klass();
  1404       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1407     // Check for precise loads from the primary supertype array and force them
  1408     // to the supertype cache alias index.  Check for generic array loads from
  1409     // the primary supertype array and also force them to the supertype cache
  1410     // alias index.  Since the same load can reach both, we need to merge
  1411     // these 2 disparate memories into the same alias class.  Since the
  1412     // primary supertype array is read-only, there's no chance of confusion
  1413     // where we bypass an array load and an array store.
  1414     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
  1415     if (offset == Type::OffsetBot ||
  1416         (offset >= primary_supers_offset &&
  1417          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
  1418         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
  1419       offset = in_bytes(Klass::secondary_super_cache_offset());
  1420       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1424   // Flatten all Raw pointers together.
  1425   if (tj->base() == Type::RawPtr)
  1426     tj = TypeRawPtr::BOTTOM;
  1428   if (tj->base() == Type::AnyPtr)
  1429     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1431   // Flatten all to bottom for now
  1432   switch( _AliasLevel ) {
  1433   case 0:
  1434     tj = TypePtr::BOTTOM;
  1435     break;
  1436   case 1:                       // Flatten to: oop, static, field or array
  1437     switch (tj->base()) {
  1438     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1439     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1440     case Type::AryPtr:   // do not distinguish arrays at all
  1441     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1442     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1443     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1444     default: ShouldNotReachHere();
  1446     break;
  1447   case 2:                       // No collapsing at level 2; keep all splits
  1448   case 3:                       // No collapsing at level 3; keep all splits
  1449     break;
  1450   default:
  1451     Unimplemented();
  1454   offset = tj->offset();
  1455   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1457   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1458           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1459           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1460           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1461           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1462           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1463           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1464           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1465   assert( tj->ptr() != TypePtr::TopPTR &&
  1466           tj->ptr() != TypePtr::AnyNull &&
  1467           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1468 //    assert( tj->ptr() != TypePtr::Constant ||
  1469 //            tj->base() == Type::RawPtr ||
  1470 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1472   return tj;
  1475 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1476   _index = i;
  1477   _adr_type = at;
  1478   _field = NULL;
  1479   _is_rewritable = true; // default
  1480   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1481   if (atoop != NULL && atoop->is_known_instance()) {
  1482     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1483     _general_index = Compile::current()->get_alias_index(gt);
  1484   } else {
  1485     _general_index = 0;
  1489 //---------------------------------print_on------------------------------------
  1490 #ifndef PRODUCT
  1491 void Compile::AliasType::print_on(outputStream* st) {
  1492   if (index() < 10)
  1493         st->print("@ <%d> ", index());
  1494   else  st->print("@ <%d>",  index());
  1495   st->print(is_rewritable() ? "   " : " RO");
  1496   int offset = adr_type()->offset();
  1497   if (offset == Type::OffsetBot)
  1498         st->print(" +any");
  1499   else  st->print(" +%-3d", offset);
  1500   st->print(" in ");
  1501   adr_type()->dump_on(st);
  1502   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1503   if (field() != NULL && tjp) {
  1504     if (tjp->klass()  != field()->holder() ||
  1505         tjp->offset() != field()->offset_in_bytes()) {
  1506       st->print(" != ");
  1507       field()->print();
  1508       st->print(" ***");
  1513 void print_alias_types() {
  1514   Compile* C = Compile::current();
  1515   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1516   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1517     C->alias_type(idx)->print_on(tty);
  1518     tty->cr();
  1521 #endif
  1524 //----------------------------probe_alias_cache--------------------------------
  1525 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1526   intptr_t key = (intptr_t) adr_type;
  1527   key ^= key >> logAliasCacheSize;
  1528   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1532 //-----------------------------grow_alias_types--------------------------------
  1533 void Compile::grow_alias_types() {
  1534   const int old_ats  = _max_alias_types; // how many before?
  1535   const int new_ats  = old_ats;          // how many more?
  1536   const int grow_ats = old_ats+new_ats;  // how many now?
  1537   _max_alias_types = grow_ats;
  1538   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1539   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1540   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1541   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1545 //--------------------------------find_alias_type------------------------------
  1546 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1547   if (_AliasLevel == 0)
  1548     return alias_type(AliasIdxBot);
  1550   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1551   if (ace->_adr_type == adr_type) {
  1552     return alias_type(ace->_index);
  1555   // Handle special cases.
  1556   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1557   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1559   // Do it the slow way.
  1560   const TypePtr* flat = flatten_alias_type(adr_type);
  1562 #ifdef ASSERT
  1563   assert(flat == flatten_alias_type(flat), "idempotent");
  1564   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1565   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1566     const TypeOopPtr* foop = flat->is_oopptr();
  1567     // Scalarizable allocations have exact klass always.
  1568     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1569     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1570     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1572   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1573 #endif
  1575   int idx = AliasIdxTop;
  1576   for (int i = 0; i < num_alias_types(); i++) {
  1577     if (alias_type(i)->adr_type() == flat) {
  1578       idx = i;
  1579       break;
  1583   if (idx == AliasIdxTop) {
  1584     if (no_create)  return NULL;
  1585     // Grow the array if necessary.
  1586     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1587     // Add a new alias type.
  1588     idx = _num_alias_types++;
  1589     _alias_types[idx]->Init(idx, flat);
  1590     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1591     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1592     if (flat->isa_instptr()) {
  1593       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1594           && flat->is_instptr()->klass() == env()->Class_klass())
  1595         alias_type(idx)->set_rewritable(false);
  1597     if (flat->isa_klassptr()) {
  1598       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
  1599         alias_type(idx)->set_rewritable(false);
  1600       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
  1601         alias_type(idx)->set_rewritable(false);
  1602       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
  1603         alias_type(idx)->set_rewritable(false);
  1604       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
  1605         alias_type(idx)->set_rewritable(false);
  1607     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1608     // but the base pointer type is not distinctive enough to identify
  1609     // references into JavaThread.)
  1611     // Check for final fields.
  1612     const TypeInstPtr* tinst = flat->isa_instptr();
  1613     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1614       ciField* field;
  1615       if (tinst->const_oop() != NULL &&
  1616           tinst->klass() == ciEnv::current()->Class_klass() &&
  1617           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1618         // static field
  1619         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1620         field = k->get_field_by_offset(tinst->offset(), true);
  1621       } else {
  1622         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1623         field = k->get_field_by_offset(tinst->offset(), false);
  1625       assert(field == NULL ||
  1626              original_field == NULL ||
  1627              (field->holder() == original_field->holder() &&
  1628               field->offset() == original_field->offset() &&
  1629               field->is_static() == original_field->is_static()), "wrong field?");
  1630       // Set field() and is_rewritable() attributes.
  1631       if (field != NULL)  alias_type(idx)->set_field(field);
  1635   // Fill the cache for next time.
  1636   ace->_adr_type = adr_type;
  1637   ace->_index    = idx;
  1638   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1640   // Might as well try to fill the cache for the flattened version, too.
  1641   AliasCacheEntry* face = probe_alias_cache(flat);
  1642   if (face->_adr_type == NULL) {
  1643     face->_adr_type = flat;
  1644     face->_index    = idx;
  1645     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1648   return alias_type(idx);
  1652 Compile::AliasType* Compile::alias_type(ciField* field) {
  1653   const TypeOopPtr* t;
  1654   if (field->is_static())
  1655     t = TypeInstPtr::make(field->holder()->java_mirror());
  1656   else
  1657     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1658   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1659   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
  1660   return atp;
  1664 //------------------------------have_alias_type--------------------------------
  1665 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1666   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1667   if (ace->_adr_type == adr_type) {
  1668     return true;
  1671   // Handle special cases.
  1672   if (adr_type == NULL)             return true;
  1673   if (adr_type == TypePtr::BOTTOM)  return true;
  1675   return find_alias_type(adr_type, true, NULL) != NULL;
  1678 //-----------------------------must_alias--------------------------------------
  1679 // True if all values of the given address type are in the given alias category.
  1680 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1681   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1682   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1683   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1684   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1686   // the only remaining possible overlap is identity
  1687   int adr_idx = get_alias_index(adr_type);
  1688   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1689   assert(adr_idx == alias_idx ||
  1690          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1691           && adr_type                       != TypeOopPtr::BOTTOM),
  1692          "should not be testing for overlap with an unsafe pointer");
  1693   return adr_idx == alias_idx;
  1696 //------------------------------can_alias--------------------------------------
  1697 // True if any values of the given address type are in the given alias category.
  1698 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1699   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1700   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1701   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1702   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1704   // the only remaining possible overlap is identity
  1705   int adr_idx = get_alias_index(adr_type);
  1706   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1707   return adr_idx == alias_idx;
  1712 //---------------------------pop_warm_call-------------------------------------
  1713 WarmCallInfo* Compile::pop_warm_call() {
  1714   WarmCallInfo* wci = _warm_calls;
  1715   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1716   return wci;
  1719 //----------------------------Inline_Warm--------------------------------------
  1720 int Compile::Inline_Warm() {
  1721   // If there is room, try to inline some more warm call sites.
  1722   // %%% Do a graph index compaction pass when we think we're out of space?
  1723   if (!InlineWarmCalls)  return 0;
  1725   int calls_made_hot = 0;
  1726   int room_to_grow   = NodeCountInliningCutoff - unique();
  1727   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1728   int amount_grown   = 0;
  1729   WarmCallInfo* call;
  1730   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1731     int est_size = (int)call->size();
  1732     if (est_size > (room_to_grow - amount_grown)) {
  1733       // This one won't fit anyway.  Get rid of it.
  1734       call->make_cold();
  1735       continue;
  1737     call->make_hot();
  1738     calls_made_hot++;
  1739     amount_grown   += est_size;
  1740     amount_to_grow -= est_size;
  1743   if (calls_made_hot > 0)  set_major_progress();
  1744   return calls_made_hot;
  1748 //----------------------------Finish_Warm--------------------------------------
  1749 void Compile::Finish_Warm() {
  1750   if (!InlineWarmCalls)  return;
  1751   if (failing())  return;
  1752   if (warm_calls() == NULL)  return;
  1754   // Clean up loose ends, if we are out of space for inlining.
  1755   WarmCallInfo* call;
  1756   while ((call = pop_warm_call()) != NULL) {
  1757     call->make_cold();
  1761 //---------------------cleanup_loop_predicates-----------------------
  1762 // Remove the opaque nodes that protect the predicates so that all unused
  1763 // checks and uncommon_traps will be eliminated from the ideal graph
  1764 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1765   if (predicate_count()==0) return;
  1766   for (int i = predicate_count(); i > 0; i--) {
  1767     Node * n = predicate_opaque1_node(i-1);
  1768     assert(n->Opcode() == Op_Opaque1, "must be");
  1769     igvn.replace_node(n, n->in(1));
  1771   assert(predicate_count()==0, "should be clean!");
  1774 // StringOpts and late inlining of string methods
  1775 void Compile::inline_string_calls(bool parse_time) {
  1777     // remove useless nodes to make the usage analysis simpler
  1778     ResourceMark rm;
  1779     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1783     ResourceMark rm;
  1784     print_method("Before StringOpts", 3);
  1785     PhaseStringOpts pso(initial_gvn(), for_igvn());
  1786     print_method("After StringOpts", 3);
  1789   // now inline anything that we skipped the first time around
  1790   if (!parse_time) {
  1791     _late_inlines_pos = _late_inlines.length();
  1794   while (_string_late_inlines.length() > 0) {
  1795     CallGenerator* cg = _string_late_inlines.pop();
  1796     cg->do_late_inline();
  1797     if (failing())  return;
  1799   _string_late_inlines.trunc_to(0);
  1802 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
  1803   assert(IncrementalInline, "incremental inlining should be on");
  1804   PhaseGVN* gvn = initial_gvn();
  1806   set_inlining_progress(false);
  1807   for_igvn()->clear();
  1808   gvn->replace_with(&igvn);
  1810   int i = 0;
  1812   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
  1813     CallGenerator* cg = _late_inlines.at(i);
  1814     _late_inlines_pos = i+1;
  1815     cg->do_late_inline();
  1816     if (failing())  return;
  1818   int j = 0;
  1819   for (; i < _late_inlines.length(); i++, j++) {
  1820     _late_inlines.at_put(j, _late_inlines.at(i));
  1822   _late_inlines.trunc_to(j);
  1825     ResourceMark rm;
  1826     PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
  1829   igvn = PhaseIterGVN(gvn);
  1832 // Perform incremental inlining until bound on number of live nodes is reached
  1833 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
  1834   PhaseGVN* gvn = initial_gvn();
  1836   set_inlining_incrementally(true);
  1837   set_inlining_progress(true);
  1838   uint low_live_nodes = 0;
  1840   while(inlining_progress() && _late_inlines.length() > 0) {
  1842     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1843       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
  1844         // PhaseIdealLoop is expensive so we only try it once we are
  1845         // out of loop and we only try it again if the previous helped
  1846         // got the number of nodes down significantly
  1847         PhaseIdealLoop ideal_loop( igvn, false, true );
  1848         if (failing())  return;
  1849         low_live_nodes = live_nodes();
  1850         _major_progress = true;
  1853       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1854         break;
  1858     inline_incrementally_one(igvn);
  1860     if (failing())  return;
  1862     igvn.optimize();
  1864     if (failing())  return;
  1867   assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1869   if (_string_late_inlines.length() > 0) {
  1870     assert(has_stringbuilder(), "inconsistent");
  1871     for_igvn()->clear();
  1872     initial_gvn()->replace_with(&igvn);
  1874     inline_string_calls(false);
  1876     if (failing())  return;
  1879       ResourceMark rm;
  1880       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1883     igvn = PhaseIterGVN(gvn);
  1885     igvn.optimize();
  1888   set_inlining_incrementally(false);
  1892 //------------------------------Optimize---------------------------------------
  1893 // Given a graph, optimize it.
  1894 void Compile::Optimize() {
  1895   TracePhase t1("optimizer", &_t_optimizer, true);
  1897 #ifndef PRODUCT
  1898   if (env()->break_at_compile()) {
  1899     BREAKPOINT;
  1902 #endif
  1904   ResourceMark rm;
  1905   int          loop_opts_cnt;
  1907   NOT_PRODUCT( verify_graph_edges(); )
  1909   print_method("After Parsing");
  1912   // Iterative Global Value Numbering, including ideal transforms
  1913   // Initialize IterGVN with types and values from parse-time GVN
  1914   PhaseIterGVN igvn(initial_gvn());
  1916     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  1917     igvn.optimize();
  1920   print_method("Iter GVN 1", 2);
  1922   if (failing())  return;
  1924   inline_incrementally(igvn);
  1926   print_method("Incremental Inline", 2);
  1928   if (failing())  return;
  1930   // Perform escape analysis
  1931   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  1932     if (has_loops()) {
  1933       // Cleanup graph (remove dead nodes).
  1934       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1935       PhaseIdealLoop ideal_loop( igvn, false, true );
  1936       if (major_progress()) print_method("PhaseIdealLoop before EA", 2);
  1937       if (failing())  return;
  1939     ConnectionGraph::do_analysis(this, &igvn);
  1941     if (failing())  return;
  1943     // Optimize out fields loads from scalar replaceable allocations.
  1944     igvn.optimize();
  1945     print_method("Iter GVN after EA", 2);
  1947     if (failing())  return;
  1949     if (congraph() != NULL && macro_count() > 0) {
  1950       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
  1951       PhaseMacroExpand mexp(igvn);
  1952       mexp.eliminate_macro_nodes();
  1953       igvn.set_delay_transform(false);
  1955       igvn.optimize();
  1956       print_method("Iter GVN after eliminating allocations and locks", 2);
  1958       if (failing())  return;
  1962   // Loop transforms on the ideal graph.  Range Check Elimination,
  1963   // peeling, unrolling, etc.
  1965   // Set loop opts counter
  1966   loop_opts_cnt = num_loop_opts();
  1967   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  1969       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1970       PhaseIdealLoop ideal_loop( igvn, true );
  1971       loop_opts_cnt--;
  1972       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
  1973       if (failing())  return;
  1975     // Loop opts pass if partial peeling occurred in previous pass
  1976     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  1977       TracePhase t3("idealLoop", &_t_idealLoop, true);
  1978       PhaseIdealLoop ideal_loop( igvn, false );
  1979       loop_opts_cnt--;
  1980       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
  1981       if (failing())  return;
  1983     // Loop opts pass for loop-unrolling before CCP
  1984     if(major_progress() && (loop_opts_cnt > 0)) {
  1985       TracePhase t4("idealLoop", &_t_idealLoop, true);
  1986       PhaseIdealLoop ideal_loop( igvn, false );
  1987       loop_opts_cnt--;
  1988       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
  1990     if (!failing()) {
  1991       // Verify that last round of loop opts produced a valid graph
  1992       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  1993       PhaseIdealLoop::verify(igvn);
  1996   if (failing())  return;
  1998   // Conditional Constant Propagation;
  1999   PhaseCCP ccp( &igvn );
  2000   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  2002     TracePhase t2("ccp", &_t_ccp, true);
  2003     ccp.do_transform();
  2005   print_method("PhaseCPP 1", 2);
  2007   assert( true, "Break here to ccp.dump_old2new_map()");
  2009   // Iterative Global Value Numbering, including ideal transforms
  2011     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  2012     igvn = ccp;
  2013     igvn.optimize();
  2016   print_method("Iter GVN 2", 2);
  2018   if (failing())  return;
  2020   // Loop transforms on the ideal graph.  Range Check Elimination,
  2021   // peeling, unrolling, etc.
  2022   if(loop_opts_cnt > 0) {
  2023     debug_only( int cnt = 0; );
  2024     while(major_progress() && (loop_opts_cnt > 0)) {
  2025       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2026       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  2027       PhaseIdealLoop ideal_loop( igvn, true);
  2028       loop_opts_cnt--;
  2029       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
  2030       if (failing())  return;
  2035     // Verify that all previous optimizations produced a valid graph
  2036     // at least to this point, even if no loop optimizations were done.
  2037     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2038     PhaseIdealLoop::verify(igvn);
  2042     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  2043     PhaseMacroExpand  mex(igvn);
  2044     if (mex.expand_macro_nodes()) {
  2045       assert(failing(), "must bail out w/ explicit message");
  2046       return;
  2050  } // (End scope of igvn; run destructor if necessary for asserts.)
  2052   dump_inlining();
  2053   // A method with only infinite loops has no edges entering loops from root
  2055     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  2056     if (final_graph_reshaping()) {
  2057       assert(failing(), "must bail out w/ explicit message");
  2058       return;
  2062   print_method("Optimize finished", 2);
  2066 //------------------------------Code_Gen---------------------------------------
  2067 // Given a graph, generate code for it
  2068 void Compile::Code_Gen() {
  2069   if (failing())  return;
  2071   // Perform instruction selection.  You might think we could reclaim Matcher
  2072   // memory PDQ, but actually the Matcher is used in generating spill code.
  2073   // Internals of the Matcher (including some VectorSets) must remain live
  2074   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  2075   // set a bit in reclaimed memory.
  2077   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2078   // nodes.  Mapping is only valid at the root of each matched subtree.
  2079   NOT_PRODUCT( verify_graph_edges(); )
  2081   Node_List proj_list;
  2082   Matcher m(proj_list);
  2083   _matcher = &m;
  2085     TracePhase t2("matcher", &_t_matcher, true);
  2086     m.match();
  2088   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2089   // nodes.  Mapping is only valid at the root of each matched subtree.
  2090   NOT_PRODUCT( verify_graph_edges(); )
  2092   // If you have too many nodes, or if matching has failed, bail out
  2093   check_node_count(0, "out of nodes matching instructions");
  2094   if (failing())  return;
  2096   // Build a proper-looking CFG
  2097   PhaseCFG cfg(node_arena(), root(), m);
  2098   _cfg = &cfg;
  2100     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  2101     cfg.Dominators();
  2102     if (failing())  return;
  2104     NOT_PRODUCT( verify_graph_edges(); )
  2106     cfg.Estimate_Block_Frequency();
  2107     cfg.GlobalCodeMotion(m,unique(),proj_list);
  2108     if (failing())  return;
  2110     print_method("Global code motion", 2);
  2112     NOT_PRODUCT( verify_graph_edges(); )
  2114     debug_only( cfg.verify(); )
  2116   NOT_PRODUCT( verify_graph_edges(); )
  2118   PhaseChaitin regalloc(unique(),cfg,m);
  2119   _regalloc = &regalloc;
  2121     TracePhase t2("regalloc", &_t_registerAllocation, true);
  2122     // Perform any platform dependent preallocation actions.  This is used,
  2123     // for example, to avoid taking an implicit null pointer exception
  2124     // using the frame pointer on win95.
  2125     _regalloc->pd_preallocate_hook();
  2127     // Perform register allocation.  After Chaitin, use-def chains are
  2128     // no longer accurate (at spill code) and so must be ignored.
  2129     // Node->LRG->reg mappings are still accurate.
  2130     _regalloc->Register_Allocate();
  2132     // Bail out if the allocator builds too many nodes
  2133     if (failing())  return;
  2136   // Prior to register allocation we kept empty basic blocks in case the
  2137   // the allocator needed a place to spill.  After register allocation we
  2138   // are not adding any new instructions.  If any basic block is empty, we
  2139   // can now safely remove it.
  2141     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  2142     cfg.remove_empty();
  2143     if (do_freq_based_layout()) {
  2144       PhaseBlockLayout layout(cfg);
  2145     } else {
  2146       cfg.set_loop_alignment();
  2148     cfg.fixup_flow();
  2151   // Perform any platform dependent postallocation verifications.
  2152   debug_only( _regalloc->pd_postallocate_verify_hook(); )
  2154   // Apply peephole optimizations
  2155   if( OptoPeephole ) {
  2156     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  2157     PhasePeephole peep( _regalloc, cfg);
  2158     peep.do_transform();
  2161   // Convert Nodes to instruction bits in a buffer
  2163     // %%%% workspace merge brought two timers together for one job
  2164     TracePhase t2a("output", &_t_output, true);
  2165     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  2166     Output();
  2169   print_method("Final Code");
  2171   // He's dead, Jim.
  2172   _cfg     = (PhaseCFG*)0xdeadbeef;
  2173   _regalloc = (PhaseChaitin*)0xdeadbeef;
  2177 //------------------------------dump_asm---------------------------------------
  2178 // Dump formatted assembly
  2179 #ifndef PRODUCT
  2180 void Compile::dump_asm(int *pcs, uint pc_limit) {
  2181   bool cut_short = false;
  2182   tty->print_cr("#");
  2183   tty->print("#  ");  _tf->dump();  tty->cr();
  2184   tty->print_cr("#");
  2186   // For all blocks
  2187   int pc = 0x0;                 // Program counter
  2188   char starts_bundle = ' ';
  2189   _regalloc->dump_frame();
  2191   Node *n = NULL;
  2192   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  2193     if (VMThread::should_terminate()) { cut_short = true; break; }
  2194     Block *b = _cfg->_blocks[i];
  2195     if (b->is_connector() && !Verbose) continue;
  2196     n = b->_nodes[0];
  2197     if (pcs && n->_idx < pc_limit)
  2198       tty->print("%3.3x   ", pcs[n->_idx]);
  2199     else
  2200       tty->print("      ");
  2201     b->dump_head( &_cfg->_bbs );
  2202     if (b->is_connector()) {
  2203       tty->print_cr("        # Empty connector block");
  2204     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  2205       tty->print_cr("        # Block is sole successor of call");
  2208     // For all instructions
  2209     Node *delay = NULL;
  2210     for( uint j = 0; j<b->_nodes.size(); j++ ) {
  2211       if (VMThread::should_terminate()) { cut_short = true; break; }
  2212       n = b->_nodes[j];
  2213       if (valid_bundle_info(n)) {
  2214         Bundle *bundle = node_bundling(n);
  2215         if (bundle->used_in_unconditional_delay()) {
  2216           delay = n;
  2217           continue;
  2219         if (bundle->starts_bundle())
  2220           starts_bundle = '+';
  2223       if (WizardMode) n->dump();
  2225       if( !n->is_Region() &&    // Dont print in the Assembly
  2226           !n->is_Phi() &&       // a few noisely useless nodes
  2227           !n->is_Proj() &&
  2228           !n->is_MachTemp() &&
  2229           !n->is_SafePointScalarObject() &&
  2230           !n->is_Catch() &&     // Would be nice to print exception table targets
  2231           !n->is_MergeMem() &&  // Not very interesting
  2232           !n->is_top() &&       // Debug info table constants
  2233           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  2234           ) {
  2235         if (pcs && n->_idx < pc_limit)
  2236           tty->print("%3.3x", pcs[n->_idx]);
  2237         else
  2238           tty->print("   ");
  2239         tty->print(" %c ", starts_bundle);
  2240         starts_bundle = ' ';
  2241         tty->print("\t");
  2242         n->format(_regalloc, tty);
  2243         tty->cr();
  2246       // If we have an instruction with a delay slot, and have seen a delay,
  2247       // then back up and print it
  2248       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  2249         assert(delay != NULL, "no unconditional delay instruction");
  2250         if (WizardMode) delay->dump();
  2252         if (node_bundling(delay)->starts_bundle())
  2253           starts_bundle = '+';
  2254         if (pcs && n->_idx < pc_limit)
  2255           tty->print("%3.3x", pcs[n->_idx]);
  2256         else
  2257           tty->print("   ");
  2258         tty->print(" %c ", starts_bundle);
  2259         starts_bundle = ' ';
  2260         tty->print("\t");
  2261         delay->format(_regalloc, tty);
  2262         tty->print_cr("");
  2263         delay = NULL;
  2266       // Dump the exception table as well
  2267       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2268         // Print the exception table for this offset
  2269         _handler_table.print_subtable_for(pc);
  2273     if (pcs && n->_idx < pc_limit)
  2274       tty->print_cr("%3.3x", pcs[n->_idx]);
  2275     else
  2276       tty->print_cr("");
  2278     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2280   } // End of per-block dump
  2281   tty->print_cr("");
  2283   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2285 #endif
  2287 //------------------------------Final_Reshape_Counts---------------------------
  2288 // This class defines counters to help identify when a method
  2289 // may/must be executed using hardware with only 24-bit precision.
  2290 struct Final_Reshape_Counts : public StackObj {
  2291   int  _call_count;             // count non-inlined 'common' calls
  2292   int  _float_count;            // count float ops requiring 24-bit precision
  2293   int  _double_count;           // count double ops requiring more precision
  2294   int  _java_call_count;        // count non-inlined 'java' calls
  2295   int  _inner_loop_count;       // count loops which need alignment
  2296   VectorSet _visited;           // Visitation flags
  2297   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2299   Final_Reshape_Counts() :
  2300     _call_count(0), _float_count(0), _double_count(0),
  2301     _java_call_count(0), _inner_loop_count(0),
  2302     _visited( Thread::current()->resource_area() ) { }
  2304   void inc_call_count  () { _call_count  ++; }
  2305   void inc_float_count () { _float_count ++; }
  2306   void inc_double_count() { _double_count++; }
  2307   void inc_java_call_count() { _java_call_count++; }
  2308   void inc_inner_loop_count() { _inner_loop_count++; }
  2310   int  get_call_count  () const { return _call_count  ; }
  2311   int  get_float_count () const { return _float_count ; }
  2312   int  get_double_count() const { return _double_count; }
  2313   int  get_java_call_count() const { return _java_call_count; }
  2314   int  get_inner_loop_count() const { return _inner_loop_count; }
  2315 };
  2317 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2318   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2319   // Make sure the offset goes inside the instance layout.
  2320   return k->contains_field_offset(tp->offset());
  2321   // Note that OffsetBot and OffsetTop are very negative.
  2324 // Eliminate trivially redundant StoreCMs and accumulate their
  2325 // precedence edges.
  2326 void Compile::eliminate_redundant_card_marks(Node* n) {
  2327   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2328   if (n->in(MemNode::Address)->outcnt() > 1) {
  2329     // There are multiple users of the same address so it might be
  2330     // possible to eliminate some of the StoreCMs
  2331     Node* mem = n->in(MemNode::Memory);
  2332     Node* adr = n->in(MemNode::Address);
  2333     Node* val = n->in(MemNode::ValueIn);
  2334     Node* prev = n;
  2335     bool done = false;
  2336     // Walk the chain of StoreCMs eliminating ones that match.  As
  2337     // long as it's a chain of single users then the optimization is
  2338     // safe.  Eliminating partially redundant StoreCMs would require
  2339     // cloning copies down the other paths.
  2340     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2341       if (adr == mem->in(MemNode::Address) &&
  2342           val == mem->in(MemNode::ValueIn)) {
  2343         // redundant StoreCM
  2344         if (mem->req() > MemNode::OopStore) {
  2345           // Hasn't been processed by this code yet.
  2346           n->add_prec(mem->in(MemNode::OopStore));
  2347         } else {
  2348           // Already converted to precedence edge
  2349           for (uint i = mem->req(); i < mem->len(); i++) {
  2350             // Accumulate any precedence edges
  2351             if (mem->in(i) != NULL) {
  2352               n->add_prec(mem->in(i));
  2355           // Everything above this point has been processed.
  2356           done = true;
  2358         // Eliminate the previous StoreCM
  2359         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2360         assert(mem->outcnt() == 0, "should be dead");
  2361         mem->disconnect_inputs(NULL, this);
  2362       } else {
  2363         prev = mem;
  2365       mem = prev->in(MemNode::Memory);
  2370 //------------------------------final_graph_reshaping_impl----------------------
  2371 // Implement items 1-5 from final_graph_reshaping below.
  2372 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
  2374   if ( n->outcnt() == 0 ) return; // dead node
  2375   uint nop = n->Opcode();
  2377   // Check for 2-input instruction with "last use" on right input.
  2378   // Swap to left input.  Implements item (2).
  2379   if( n->req() == 3 &&          // two-input instruction
  2380       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2381       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2382       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2383       !n->in(2)->is_Con() ) {   // right use is not a constant
  2384     // Check for commutative opcode
  2385     switch( nop ) {
  2386     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2387     case Op_MaxI:  case Op_MinI:
  2388     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2389     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2390     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2391       // Move "last use" input to left by swapping inputs
  2392       n->swap_edges(1, 2);
  2393       break;
  2395     default:
  2396       break;
  2400 #ifdef ASSERT
  2401   if( n->is_Mem() ) {
  2402     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
  2403     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2404             // oop will be recorded in oop map if load crosses safepoint
  2405             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2406                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2407             "raw memory operations should have control edge");
  2409 #endif
  2410   // Count FPU ops and common calls, implements item (3)
  2411   switch( nop ) {
  2412   // Count all float operations that may use FPU
  2413   case Op_AddF:
  2414   case Op_SubF:
  2415   case Op_MulF:
  2416   case Op_DivF:
  2417   case Op_NegF:
  2418   case Op_ModF:
  2419   case Op_ConvI2F:
  2420   case Op_ConF:
  2421   case Op_CmpF:
  2422   case Op_CmpF3:
  2423   // case Op_ConvL2F: // longs are split into 32-bit halves
  2424     frc.inc_float_count();
  2425     break;
  2427   case Op_ConvF2D:
  2428   case Op_ConvD2F:
  2429     frc.inc_float_count();
  2430     frc.inc_double_count();
  2431     break;
  2433   // Count all double operations that may use FPU
  2434   case Op_AddD:
  2435   case Op_SubD:
  2436   case Op_MulD:
  2437   case Op_DivD:
  2438   case Op_NegD:
  2439   case Op_ModD:
  2440   case Op_ConvI2D:
  2441   case Op_ConvD2I:
  2442   // case Op_ConvL2D: // handled by leaf call
  2443   // case Op_ConvD2L: // handled by leaf call
  2444   case Op_ConD:
  2445   case Op_CmpD:
  2446   case Op_CmpD3:
  2447     frc.inc_double_count();
  2448     break;
  2449   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2450   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2451     n->subsume_by(n->in(1), this);
  2452     break;
  2453   case Op_CallStaticJava:
  2454   case Op_CallJava:
  2455   case Op_CallDynamicJava:
  2456     frc.inc_java_call_count(); // Count java call site;
  2457   case Op_CallRuntime:
  2458   case Op_CallLeaf:
  2459   case Op_CallLeafNoFP: {
  2460     assert( n->is_Call(), "" );
  2461     CallNode *call = n->as_Call();
  2462     // Count call sites where the FP mode bit would have to be flipped.
  2463     // Do not count uncommon runtime calls:
  2464     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2465     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2466     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2467       frc.inc_call_count();   // Count the call site
  2468     } else {                  // See if uncommon argument is shared
  2469       Node *n = call->in(TypeFunc::Parms);
  2470       int nop = n->Opcode();
  2471       // Clone shared simple arguments to uncommon calls, item (1).
  2472       if( n->outcnt() > 1 &&
  2473           !n->is_Proj() &&
  2474           nop != Op_CreateEx &&
  2475           nop != Op_CheckCastPP &&
  2476           nop != Op_DecodeN &&
  2477           nop != Op_DecodeNKlass &&
  2478           !n->is_Mem() ) {
  2479         Node *x = n->clone();
  2480         call->set_req( TypeFunc::Parms, x );
  2483     break;
  2486   case Op_StoreD:
  2487   case Op_LoadD:
  2488   case Op_LoadD_unaligned:
  2489     frc.inc_double_count();
  2490     goto handle_mem;
  2491   case Op_StoreF:
  2492   case Op_LoadF:
  2493     frc.inc_float_count();
  2494     goto handle_mem;
  2496   case Op_StoreCM:
  2498       // Convert OopStore dependence into precedence edge
  2499       Node* prec = n->in(MemNode::OopStore);
  2500       n->del_req(MemNode::OopStore);
  2501       n->add_prec(prec);
  2502       eliminate_redundant_card_marks(n);
  2505     // fall through
  2507   case Op_StoreB:
  2508   case Op_StoreC:
  2509   case Op_StorePConditional:
  2510   case Op_StoreI:
  2511   case Op_StoreL:
  2512   case Op_StoreIConditional:
  2513   case Op_StoreLConditional:
  2514   case Op_CompareAndSwapI:
  2515   case Op_CompareAndSwapL:
  2516   case Op_CompareAndSwapP:
  2517   case Op_CompareAndSwapN:
  2518   case Op_GetAndAddI:
  2519   case Op_GetAndAddL:
  2520   case Op_GetAndSetI:
  2521   case Op_GetAndSetL:
  2522   case Op_GetAndSetP:
  2523   case Op_GetAndSetN:
  2524   case Op_StoreP:
  2525   case Op_StoreN:
  2526   case Op_StoreNKlass:
  2527   case Op_LoadB:
  2528   case Op_LoadUB:
  2529   case Op_LoadUS:
  2530   case Op_LoadI:
  2531   case Op_LoadKlass:
  2532   case Op_LoadNKlass:
  2533   case Op_LoadL:
  2534   case Op_LoadL_unaligned:
  2535   case Op_LoadPLocked:
  2536   case Op_LoadP:
  2537   case Op_LoadN:
  2538   case Op_LoadRange:
  2539   case Op_LoadS: {
  2540   handle_mem:
  2541 #ifdef ASSERT
  2542     if( VerifyOptoOopOffsets ) {
  2543       assert( n->is_Mem(), "" );
  2544       MemNode *mem  = (MemNode*)n;
  2545       // Check to see if address types have grounded out somehow.
  2546       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2547       assert( !tp || oop_offset_is_sane(tp), "" );
  2549 #endif
  2550     break;
  2553   case Op_AddP: {               // Assert sane base pointers
  2554     Node *addp = n->in(AddPNode::Address);
  2555     assert( !addp->is_AddP() ||
  2556             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2557             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2558             "Base pointers must match" );
  2559 #ifdef _LP64
  2560     if ((UseCompressedOops || UseCompressedKlassPointers) &&
  2561         addp->Opcode() == Op_ConP &&
  2562         addp == n->in(AddPNode::Base) &&
  2563         n->in(AddPNode::Offset)->is_Con()) {
  2564       // Use addressing with narrow klass to load with offset on x86.
  2565       // On sparc loading 32-bits constant and decoding it have less
  2566       // instructions (4) then load 64-bits constant (7).
  2567       // Do this transformation here since IGVN will convert ConN back to ConP.
  2568       const Type* t = addp->bottom_type();
  2569       if (t->isa_oopptr() || t->isa_klassptr()) {
  2570         Node* nn = NULL;
  2572         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
  2574         // Look for existing ConN node of the same exact type.
  2575         Node* r  = root();
  2576         uint cnt = r->outcnt();
  2577         for (uint i = 0; i < cnt; i++) {
  2578           Node* m = r->raw_out(i);
  2579           if (m!= NULL && m->Opcode() == op &&
  2580               m->bottom_type()->make_ptr() == t) {
  2581             nn = m;
  2582             break;
  2585         if (nn != NULL) {
  2586           // Decode a narrow oop to match address
  2587           // [R12 + narrow_oop_reg<<3 + offset]
  2588           if (t->isa_oopptr()) {
  2589             nn = new (this) DecodeNNode(nn, t);
  2590           } else {
  2591             nn = new (this) DecodeNKlassNode(nn, t);
  2593           n->set_req(AddPNode::Base, nn);
  2594           n->set_req(AddPNode::Address, nn);
  2595           if (addp->outcnt() == 0) {
  2596             addp->disconnect_inputs(NULL, this);
  2601 #endif
  2602     break;
  2605 #ifdef _LP64
  2606   case Op_CastPP:
  2607     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2608       Node* in1 = n->in(1);
  2609       const Type* t = n->bottom_type();
  2610       Node* new_in1 = in1->clone();
  2611       new_in1->as_DecodeN()->set_type(t);
  2613       if (!Matcher::narrow_oop_use_complex_address()) {
  2614         //
  2615         // x86, ARM and friends can handle 2 adds in addressing mode
  2616         // and Matcher can fold a DecodeN node into address by using
  2617         // a narrow oop directly and do implicit NULL check in address:
  2618         //
  2619         // [R12 + narrow_oop_reg<<3 + offset]
  2620         // NullCheck narrow_oop_reg
  2621         //
  2622         // On other platforms (Sparc) we have to keep new DecodeN node and
  2623         // use it to do implicit NULL check in address:
  2624         //
  2625         // decode_not_null narrow_oop_reg, base_reg
  2626         // [base_reg + offset]
  2627         // NullCheck base_reg
  2628         //
  2629         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2630         // to keep the information to which NULL check the new DecodeN node
  2631         // corresponds to use it as value in implicit_null_check().
  2632         //
  2633         new_in1->set_req(0, n->in(0));
  2636       n->subsume_by(new_in1, this);
  2637       if (in1->outcnt() == 0) {
  2638         in1->disconnect_inputs(NULL, this);
  2641     break;
  2643   case Op_CmpP:
  2644     // Do this transformation here to preserve CmpPNode::sub() and
  2645     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2646     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
  2647       Node* in1 = n->in(1);
  2648       Node* in2 = n->in(2);
  2649       if (!in1->is_DecodeNarrowPtr()) {
  2650         in2 = in1;
  2651         in1 = n->in(2);
  2653       assert(in1->is_DecodeNarrowPtr(), "sanity");
  2655       Node* new_in2 = NULL;
  2656       if (in2->is_DecodeNarrowPtr()) {
  2657         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
  2658         new_in2 = in2->in(1);
  2659       } else if (in2->Opcode() == Op_ConP) {
  2660         const Type* t = in2->bottom_type();
  2661         if (t == TypePtr::NULL_PTR) {
  2662           assert(in1->is_DecodeN(), "compare klass to null?");
  2663           // Don't convert CmpP null check into CmpN if compressed
  2664           // oops implicit null check is not generated.
  2665           // This will allow to generate normal oop implicit null check.
  2666           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2667             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
  2668           //
  2669           // This transformation together with CastPP transformation above
  2670           // will generated code for implicit NULL checks for compressed oops.
  2671           //
  2672           // The original code after Optimize()
  2673           //
  2674           //    LoadN memory, narrow_oop_reg
  2675           //    decode narrow_oop_reg, base_reg
  2676           //    CmpP base_reg, NULL
  2677           //    CastPP base_reg // NotNull
  2678           //    Load [base_reg + offset], val_reg
  2679           //
  2680           // after these transformations will be
  2681           //
  2682           //    LoadN memory, narrow_oop_reg
  2683           //    CmpN narrow_oop_reg, NULL
  2684           //    decode_not_null narrow_oop_reg, base_reg
  2685           //    Load [base_reg + offset], val_reg
  2686           //
  2687           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2688           // since narrow oops can be used in debug info now (see the code in
  2689           // final_graph_reshaping_walk()).
  2690           //
  2691           // At the end the code will be matched to
  2692           // on x86:
  2693           //
  2694           //    Load_narrow_oop memory, narrow_oop_reg
  2695           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2696           //    NullCheck narrow_oop_reg
  2697           //
  2698           // and on sparc:
  2699           //
  2700           //    Load_narrow_oop memory, narrow_oop_reg
  2701           //    decode_not_null narrow_oop_reg, base_reg
  2702           //    Load [base_reg + offset], val_reg
  2703           //    NullCheck base_reg
  2704           //
  2705         } else if (t->isa_oopptr()) {
  2706           new_in2 = ConNode::make(this, t->make_narrowoop());
  2707         } else if (t->isa_klassptr()) {
  2708           new_in2 = ConNode::make(this, t->make_narrowklass());
  2711       if (new_in2 != NULL) {
  2712         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
  2713         n->subsume_by(cmpN, this);
  2714         if (in1->outcnt() == 0) {
  2715           in1->disconnect_inputs(NULL, this);
  2717         if (in2->outcnt() == 0) {
  2718           in2->disconnect_inputs(NULL, this);
  2722     break;
  2724   case Op_DecodeN:
  2725   case Op_DecodeNKlass:
  2726     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
  2727     // DecodeN could be pinned when it can't be fold into
  2728     // an address expression, see the code for Op_CastPP above.
  2729     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
  2730     break;
  2732   case Op_EncodeP:
  2733   case Op_EncodePKlass: {
  2734     Node* in1 = n->in(1);
  2735     if (in1->is_DecodeNarrowPtr()) {
  2736       n->subsume_by(in1->in(1), this);
  2737     } else if (in1->Opcode() == Op_ConP) {
  2738       const Type* t = in1->bottom_type();
  2739       if (t == TypePtr::NULL_PTR) {
  2740         assert(t->isa_oopptr(), "null klass?");
  2741         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
  2742       } else if (t->isa_oopptr()) {
  2743         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
  2744       } else if (t->isa_klassptr()) {
  2745         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
  2748     if (in1->outcnt() == 0) {
  2749       in1->disconnect_inputs(NULL, this);
  2751     break;
  2754   case Op_Proj: {
  2755     if (OptimizeStringConcat) {
  2756       ProjNode* p = n->as_Proj();
  2757       if (p->_is_io_use) {
  2758         // Separate projections were used for the exception path which
  2759         // are normally removed by a late inline.  If it wasn't inlined
  2760         // then they will hang around and should just be replaced with
  2761         // the original one.
  2762         Node* proj = NULL;
  2763         // Replace with just one
  2764         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2765           Node *use = i.get();
  2766           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2767             proj = use;
  2768             break;
  2771         assert(proj != NULL, "must be found");
  2772         p->subsume_by(proj, this);
  2775     break;
  2778   case Op_Phi:
  2779     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
  2780       // The EncodeP optimization may create Phi with the same edges
  2781       // for all paths. It is not handled well by Register Allocator.
  2782       Node* unique_in = n->in(1);
  2783       assert(unique_in != NULL, "");
  2784       uint cnt = n->req();
  2785       for (uint i = 2; i < cnt; i++) {
  2786         Node* m = n->in(i);
  2787         assert(m != NULL, "");
  2788         if (unique_in != m)
  2789           unique_in = NULL;
  2791       if (unique_in != NULL) {
  2792         n->subsume_by(unique_in, this);
  2795     break;
  2797 #endif
  2799   case Op_ModI:
  2800     if (UseDivMod) {
  2801       // Check if a%b and a/b both exist
  2802       Node* d = n->find_similar(Op_DivI);
  2803       if (d) {
  2804         // Replace them with a fused divmod if supported
  2805         if (Matcher::has_match_rule(Op_DivModI)) {
  2806           DivModINode* divmod = DivModINode::make(this, n);
  2807           d->subsume_by(divmod->div_proj(), this);
  2808           n->subsume_by(divmod->mod_proj(), this);
  2809         } else {
  2810           // replace a%b with a-((a/b)*b)
  2811           Node* mult = new (this) MulINode(d, d->in(2));
  2812           Node* sub  = new (this) SubINode(d->in(1), mult);
  2813           n->subsume_by(sub, this);
  2817     break;
  2819   case Op_ModL:
  2820     if (UseDivMod) {
  2821       // Check if a%b and a/b both exist
  2822       Node* d = n->find_similar(Op_DivL);
  2823       if (d) {
  2824         // Replace them with a fused divmod if supported
  2825         if (Matcher::has_match_rule(Op_DivModL)) {
  2826           DivModLNode* divmod = DivModLNode::make(this, n);
  2827           d->subsume_by(divmod->div_proj(), this);
  2828           n->subsume_by(divmod->mod_proj(), this);
  2829         } else {
  2830           // replace a%b with a-((a/b)*b)
  2831           Node* mult = new (this) MulLNode(d, d->in(2));
  2832           Node* sub  = new (this) SubLNode(d->in(1), mult);
  2833           n->subsume_by(sub, this);
  2837     break;
  2839   case Op_LoadVector:
  2840   case Op_StoreVector:
  2841     break;
  2843   case Op_PackB:
  2844   case Op_PackS:
  2845   case Op_PackI:
  2846   case Op_PackF:
  2847   case Op_PackL:
  2848   case Op_PackD:
  2849     if (n->req()-1 > 2) {
  2850       // Replace many operand PackNodes with a binary tree for matching
  2851       PackNode* p = (PackNode*) n;
  2852       Node* btp = p->binary_tree_pack(this, 1, n->req());
  2853       n->subsume_by(btp, this);
  2855     break;
  2856   case Op_Loop:
  2857   case Op_CountedLoop:
  2858     if (n->as_Loop()->is_inner_loop()) {
  2859       frc.inc_inner_loop_count();
  2861     break;
  2862   case Op_LShiftI:
  2863   case Op_RShiftI:
  2864   case Op_URShiftI:
  2865   case Op_LShiftL:
  2866   case Op_RShiftL:
  2867   case Op_URShiftL:
  2868     if (Matcher::need_masked_shift_count) {
  2869       // The cpu's shift instructions don't restrict the count to the
  2870       // lower 5/6 bits. We need to do the masking ourselves.
  2871       Node* in2 = n->in(2);
  2872       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  2873       const TypeInt* t = in2->find_int_type();
  2874       if (t != NULL && t->is_con()) {
  2875         juint shift = t->get_con();
  2876         if (shift > mask) { // Unsigned cmp
  2877           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
  2879       } else {
  2880         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  2881           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
  2882           n->set_req(2, shift);
  2885       if (in2->outcnt() == 0) { // Remove dead node
  2886         in2->disconnect_inputs(NULL, this);
  2889     break;
  2890   default:
  2891     assert( !n->is_Call(), "" );
  2892     assert( !n->is_Mem(), "" );
  2893     break;
  2896   // Collect CFG split points
  2897   if (n->is_MultiBranch())
  2898     frc._tests.push(n);
  2901 //------------------------------final_graph_reshaping_walk---------------------
  2902 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  2903 // requires that the walk visits a node's inputs before visiting the node.
  2904 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  2905   ResourceArea *area = Thread::current()->resource_area();
  2906   Unique_Node_List sfpt(area);
  2908   frc._visited.set(root->_idx); // first, mark node as visited
  2909   uint cnt = root->req();
  2910   Node *n = root;
  2911   uint  i = 0;
  2912   while (true) {
  2913     if (i < cnt) {
  2914       // Place all non-visited non-null inputs onto stack
  2915       Node* m = n->in(i);
  2916       ++i;
  2917       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  2918         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
  2919           sfpt.push(m);
  2920         cnt = m->req();
  2921         nstack.push(n, i); // put on stack parent and next input's index
  2922         n = m;
  2923         i = 0;
  2925     } else {
  2926       // Now do post-visit work
  2927       final_graph_reshaping_impl( n, frc );
  2928       if (nstack.is_empty())
  2929         break;             // finished
  2930       n = nstack.node();   // Get node from stack
  2931       cnt = n->req();
  2932       i = nstack.index();
  2933       nstack.pop();        // Shift to the next node on stack
  2937   // Skip next transformation if compressed oops are not used.
  2938   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
  2939       (!UseCompressedOops && !UseCompressedKlassPointers))
  2940     return;
  2942   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
  2943   // It could be done for an uncommon traps or any safepoints/calls
  2944   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
  2945   while (sfpt.size() > 0) {
  2946     n = sfpt.pop();
  2947     JVMState *jvms = n->as_SafePoint()->jvms();
  2948     assert(jvms != NULL, "sanity");
  2949     int start = jvms->debug_start();
  2950     int end   = n->req();
  2951     bool is_uncommon = (n->is_CallStaticJava() &&
  2952                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  2953     for (int j = start; j < end; j++) {
  2954       Node* in = n->in(j);
  2955       if (in->is_DecodeNarrowPtr()) {
  2956         bool safe_to_skip = true;
  2957         if (!is_uncommon ) {
  2958           // Is it safe to skip?
  2959           for (uint i = 0; i < in->outcnt(); i++) {
  2960             Node* u = in->raw_out(i);
  2961             if (!u->is_SafePoint() ||
  2962                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  2963               safe_to_skip = false;
  2967         if (safe_to_skip) {
  2968           n->set_req(j, in->in(1));
  2970         if (in->outcnt() == 0) {
  2971           in->disconnect_inputs(NULL, this);
  2978 //------------------------------final_graph_reshaping--------------------------
  2979 // Final Graph Reshaping.
  2980 //
  2981 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  2982 //     and not commoned up and forced early.  Must come after regular
  2983 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  2984 //     inputs to Loop Phis; these will be split by the allocator anyways.
  2985 //     Remove Opaque nodes.
  2986 // (2) Move last-uses by commutative operations to the left input to encourage
  2987 //     Intel update-in-place two-address operations and better register usage
  2988 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  2989 //     calls canonicalizing them back.
  2990 // (3) Count the number of double-precision FP ops, single-precision FP ops
  2991 //     and call sites.  On Intel, we can get correct rounding either by
  2992 //     forcing singles to memory (requires extra stores and loads after each
  2993 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  2994 //     clearing the mode bit around call sites).  The mode bit is only used
  2995 //     if the relative frequency of single FP ops to calls is low enough.
  2996 //     This is a key transform for SPEC mpeg_audio.
  2997 // (4) Detect infinite loops; blobs of code reachable from above but not
  2998 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  2999 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  3000 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  3001 //     Detection is by looking for IfNodes where only 1 projection is
  3002 //     reachable from below or CatchNodes missing some targets.
  3003 // (5) Assert for insane oop offsets in debug mode.
  3005 bool Compile::final_graph_reshaping() {
  3006   // an infinite loop may have been eliminated by the optimizer,
  3007   // in which case the graph will be empty.
  3008   if (root()->req() == 1) {
  3009     record_method_not_compilable("trivial infinite loop");
  3010     return true;
  3013   Final_Reshape_Counts frc;
  3015   // Visit everybody reachable!
  3016   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  3017   Node_Stack nstack(unique() >> 1);
  3018   final_graph_reshaping_walk(nstack, root(), frc);
  3020   // Check for unreachable (from below) code (i.e., infinite loops).
  3021   for( uint i = 0; i < frc._tests.size(); i++ ) {
  3022     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  3023     // Get number of CFG targets.
  3024     // Note that PCTables include exception targets after calls.
  3025     uint required_outcnt = n->required_outcnt();
  3026     if (n->outcnt() != required_outcnt) {
  3027       // Check for a few special cases.  Rethrow Nodes never take the
  3028       // 'fall-thru' path, so expected kids is 1 less.
  3029       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  3030         if (n->in(0)->in(0)->is_Call()) {
  3031           CallNode *call = n->in(0)->in(0)->as_Call();
  3032           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  3033             required_outcnt--;      // Rethrow always has 1 less kid
  3034           } else if (call->req() > TypeFunc::Parms &&
  3035                      call->is_CallDynamicJava()) {
  3036             // Check for null receiver. In such case, the optimizer has
  3037             // detected that the virtual call will always result in a null
  3038             // pointer exception. The fall-through projection of this CatchNode
  3039             // will not be populated.
  3040             Node *arg0 = call->in(TypeFunc::Parms);
  3041             if (arg0->is_Type() &&
  3042                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  3043               required_outcnt--;
  3045           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  3046                      call->req() > TypeFunc::Parms+1 &&
  3047                      call->is_CallStaticJava()) {
  3048             // Check for negative array length. In such case, the optimizer has
  3049             // detected that the allocation attempt will always result in an
  3050             // exception. There is no fall-through projection of this CatchNode .
  3051             Node *arg1 = call->in(TypeFunc::Parms+1);
  3052             if (arg1->is_Type() &&
  3053                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  3054               required_outcnt--;
  3059       // Recheck with a better notion of 'required_outcnt'
  3060       if (n->outcnt() != required_outcnt) {
  3061         record_method_not_compilable("malformed control flow");
  3062         return true;            // Not all targets reachable!
  3065     // Check that I actually visited all kids.  Unreached kids
  3066     // must be infinite loops.
  3067     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  3068       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  3069         record_method_not_compilable("infinite loop");
  3070         return true;            // Found unvisited kid; must be unreach
  3074   // If original bytecodes contained a mixture of floats and doubles
  3075   // check if the optimizer has made it homogenous, item (3).
  3076   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  3077       frc.get_float_count() > 32 &&
  3078       frc.get_double_count() == 0 &&
  3079       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  3080     set_24_bit_selection_and_mode( false,  true );
  3083   set_java_calls(frc.get_java_call_count());
  3084   set_inner_loops(frc.get_inner_loop_count());
  3086   // No infinite loops, no reason to bail out.
  3087   return false;
  3090 //-----------------------------too_many_traps----------------------------------
  3091 // Report if there are too many traps at the current method and bci.
  3092 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  3093 bool Compile::too_many_traps(ciMethod* method,
  3094                              int bci,
  3095                              Deoptimization::DeoptReason reason) {
  3096   ciMethodData* md = method->method_data();
  3097   if (md->is_empty()) {
  3098     // Assume the trap has not occurred, or that it occurred only
  3099     // because of a transient condition during start-up in the interpreter.
  3100     return false;
  3102   if (md->has_trap_at(bci, reason) != 0) {
  3103     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  3104     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3105     // assume the worst.
  3106     if (log())
  3107       log()->elem("observe trap='%s' count='%d'",
  3108                   Deoptimization::trap_reason_name(reason),
  3109                   md->trap_count(reason));
  3110     return true;
  3111   } else {
  3112     // Ignore method/bci and see if there have been too many globally.
  3113     return too_many_traps(reason, md);
  3117 // Less-accurate variant which does not require a method and bci.
  3118 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  3119                              ciMethodData* logmd) {
  3120  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  3121     // Too many traps globally.
  3122     // Note that we use cumulative trap_count, not just md->trap_count.
  3123     if (log()) {
  3124       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  3125       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  3126                   Deoptimization::trap_reason_name(reason),
  3127                   mcount, trap_count(reason));
  3129     return true;
  3130   } else {
  3131     // The coast is clear.
  3132     return false;
  3136 //--------------------------too_many_recompiles--------------------------------
  3137 // Report if there are too many recompiles at the current method and bci.
  3138 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  3139 // Is not eager to return true, since this will cause the compiler to use
  3140 // Action_none for a trap point, to avoid too many recompilations.
  3141 bool Compile::too_many_recompiles(ciMethod* method,
  3142                                   int bci,
  3143                                   Deoptimization::DeoptReason reason) {
  3144   ciMethodData* md = method->method_data();
  3145   if (md->is_empty()) {
  3146     // Assume the trap has not occurred, or that it occurred only
  3147     // because of a transient condition during start-up in the interpreter.
  3148     return false;
  3150   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  3151   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  3152   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  3153   Deoptimization::DeoptReason per_bc_reason
  3154     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  3155   if ((per_bc_reason == Deoptimization::Reason_none
  3156        || md->has_trap_at(bci, reason) != 0)
  3157       // The trap frequency measure we care about is the recompile count:
  3158       && md->trap_recompiled_at(bci)
  3159       && md->overflow_recompile_count() >= bc_cutoff) {
  3160     // Do not emit a trap here if it has already caused recompilations.
  3161     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3162     // assume the worst.
  3163     if (log())
  3164       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  3165                   Deoptimization::trap_reason_name(reason),
  3166                   md->trap_count(reason),
  3167                   md->overflow_recompile_count());
  3168     return true;
  3169   } else if (trap_count(reason) != 0
  3170              && decompile_count() >= m_cutoff) {
  3171     // Too many recompiles globally, and we have seen this sort of trap.
  3172     // Use cumulative decompile_count, not just md->decompile_count.
  3173     if (log())
  3174       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  3175                   Deoptimization::trap_reason_name(reason),
  3176                   md->trap_count(reason), trap_count(reason),
  3177                   md->decompile_count(), decompile_count());
  3178     return true;
  3179   } else {
  3180     // The coast is clear.
  3181     return false;
  3186 #ifndef PRODUCT
  3187 //------------------------------verify_graph_edges---------------------------
  3188 // Walk the Graph and verify that there is a one-to-one correspondence
  3189 // between Use-Def edges and Def-Use edges in the graph.
  3190 void Compile::verify_graph_edges(bool no_dead_code) {
  3191   if (VerifyGraphEdges) {
  3192     ResourceArea *area = Thread::current()->resource_area();
  3193     Unique_Node_List visited(area);
  3194     // Call recursive graph walk to check edges
  3195     _root->verify_edges(visited);
  3196     if (no_dead_code) {
  3197       // Now make sure that no visited node is used by an unvisited node.
  3198       bool dead_nodes = 0;
  3199       Unique_Node_List checked(area);
  3200       while (visited.size() > 0) {
  3201         Node* n = visited.pop();
  3202         checked.push(n);
  3203         for (uint i = 0; i < n->outcnt(); i++) {
  3204           Node* use = n->raw_out(i);
  3205           if (checked.member(use))  continue;  // already checked
  3206           if (visited.member(use))  continue;  // already in the graph
  3207           if (use->is_Con())        continue;  // a dead ConNode is OK
  3208           // At this point, we have found a dead node which is DU-reachable.
  3209           if (dead_nodes++ == 0)
  3210             tty->print_cr("*** Dead nodes reachable via DU edges:");
  3211           use->dump(2);
  3212           tty->print_cr("---");
  3213           checked.push(use);  // No repeats; pretend it is now checked.
  3216       assert(dead_nodes == 0, "using nodes must be reachable from root");
  3220 #endif
  3222 // The Compile object keeps track of failure reasons separately from the ciEnv.
  3223 // This is required because there is not quite a 1-1 relation between the
  3224 // ciEnv and its compilation task and the Compile object.  Note that one
  3225 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  3226 // to backtrack and retry without subsuming loads.  Other than this backtracking
  3227 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  3228 // by the logic in C2Compiler.
  3229 void Compile::record_failure(const char* reason) {
  3230   if (log() != NULL) {
  3231     log()->elem("failure reason='%s' phase='compile'", reason);
  3233   if (_failure_reason == NULL) {
  3234     // Record the first failure reason.
  3235     _failure_reason = reason;
  3237   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  3238     C->print_method(_failure_reason);
  3240   _root = NULL;  // flush the graph, too
  3243 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3244   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
  3245     _phase_name(name), _dolog(dolog)
  3247   if (dolog) {
  3248     C = Compile::current();
  3249     _log = C->log();
  3250   } else {
  3251     C = NULL;
  3252     _log = NULL;
  3254   if (_log != NULL) {
  3255     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3256     _log->stamp();
  3257     _log->end_head();
  3261 Compile::TracePhase::~TracePhase() {
  3263   C = Compile::current();
  3264   if (_dolog) {
  3265     _log = C->log();
  3266   } else {
  3267     _log = NULL;
  3270 #ifdef ASSERT
  3271   if (PrintIdealNodeCount) {
  3272     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
  3273                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
  3276   if (VerifyIdealNodeCount) {
  3277     Compile::current()->print_missing_nodes();
  3279 #endif
  3281   if (_log != NULL) {
  3282     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3286 //=============================================================================
  3287 // Two Constant's are equal when the type and the value are equal.
  3288 bool Compile::Constant::operator==(const Constant& other) {
  3289   if (type()          != other.type()         )  return false;
  3290   if (can_be_reused() != other.can_be_reused())  return false;
  3291   // For floating point values we compare the bit pattern.
  3292   switch (type()) {
  3293   case T_FLOAT:   return (_v._value.i == other._v._value.i);
  3294   case T_LONG:
  3295   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
  3296   case T_OBJECT:
  3297   case T_ADDRESS: return (_v._value.l == other._v._value.l);
  3298   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
  3299   case T_METADATA: return (_v._metadata == other._v._metadata);
  3300   default: ShouldNotReachHere();
  3302   return false;
  3305 static int type_to_size_in_bytes(BasicType t) {
  3306   switch (t) {
  3307   case T_LONG:    return sizeof(jlong  );
  3308   case T_FLOAT:   return sizeof(jfloat );
  3309   case T_DOUBLE:  return sizeof(jdouble);
  3310   case T_METADATA: return sizeof(Metadata*);
  3311     // We use T_VOID as marker for jump-table entries (labels) which
  3312     // need an internal word relocation.
  3313   case T_VOID:
  3314   case T_ADDRESS:
  3315   case T_OBJECT:  return sizeof(jobject);
  3318   ShouldNotReachHere();
  3319   return -1;
  3322 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
  3323   // sort descending
  3324   if (a->freq() > b->freq())  return -1;
  3325   if (a->freq() < b->freq())  return  1;
  3326   return 0;
  3329 void Compile::ConstantTable::calculate_offsets_and_size() {
  3330   // First, sort the array by frequencies.
  3331   _constants.sort(qsort_comparator);
  3333 #ifdef ASSERT
  3334   // Make sure all jump-table entries were sorted to the end of the
  3335   // array (they have a negative frequency).
  3336   bool found_void = false;
  3337   for (int i = 0; i < _constants.length(); i++) {
  3338     Constant con = _constants.at(i);
  3339     if (con.type() == T_VOID)
  3340       found_void = true;  // jump-tables
  3341     else
  3342       assert(!found_void, "wrong sorting");
  3344 #endif
  3346   int offset = 0;
  3347   for (int i = 0; i < _constants.length(); i++) {
  3348     Constant* con = _constants.adr_at(i);
  3350     // Align offset for type.
  3351     int typesize = type_to_size_in_bytes(con->type());
  3352     offset = align_size_up(offset, typesize);
  3353     con->set_offset(offset);   // set constant's offset
  3355     if (con->type() == T_VOID) {
  3356       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
  3357       offset = offset + typesize * n->outcnt();  // expand jump-table
  3358     } else {
  3359       offset = offset + typesize;
  3363   // Align size up to the next section start (which is insts; see
  3364   // CodeBuffer::align_at_start).
  3365   assert(_size == -1, "already set?");
  3366   _size = align_size_up(offset, CodeEntryAlignment);
  3369 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3370   MacroAssembler _masm(&cb);
  3371   for (int i = 0; i < _constants.length(); i++) {
  3372     Constant con = _constants.at(i);
  3373     address constant_addr;
  3374     switch (con.type()) {
  3375     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3376     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3377     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3378     case T_OBJECT: {
  3379       jobject obj = con.get_jobject();
  3380       int oop_index = _masm.oop_recorder()->find_index(obj);
  3381       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3382       break;
  3384     case T_ADDRESS: {
  3385       address addr = (address) con.get_jobject();
  3386       constant_addr = _masm.address_constant(addr);
  3387       break;
  3389     // We use T_VOID as marker for jump-table entries (labels) which
  3390     // need an internal word relocation.
  3391     case T_VOID: {
  3392       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
  3393       // Fill the jump-table with a dummy word.  The real value is
  3394       // filled in later in fill_jump_table.
  3395       address dummy = (address) n;
  3396       constant_addr = _masm.address_constant(dummy);
  3397       // Expand jump-table
  3398       for (uint i = 1; i < n->outcnt(); i++) {
  3399         address temp_addr = _masm.address_constant(dummy + i);
  3400         assert(temp_addr, "consts section too small");
  3402       break;
  3404     case T_METADATA: {
  3405       Metadata* obj = con.get_metadata();
  3406       int metadata_index = _masm.oop_recorder()->find_index(obj);
  3407       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
  3408       break;
  3410     default: ShouldNotReachHere();
  3412     assert(constant_addr, "consts section too small");
  3413     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
  3417 int Compile::ConstantTable::find_offset(Constant& con) const {
  3418   int idx = _constants.find(con);
  3419   assert(idx != -1, "constant must be in constant table");
  3420   int offset = _constants.at(idx).offset();
  3421   assert(offset != -1, "constant table not emitted yet?");
  3422   return offset;
  3425 void Compile::ConstantTable::add(Constant& con) {
  3426   if (con.can_be_reused()) {
  3427     int idx = _constants.find(con);
  3428     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3429       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
  3430       return;
  3433   (void) _constants.append(con);
  3436 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
  3437   Block* b = Compile::current()->cfg()->_bbs[n->_idx];
  3438   Constant con(type, value, b->_freq);
  3439   add(con);
  3440   return con;
  3443 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
  3444   Constant con(metadata);
  3445   add(con);
  3446   return con;
  3449 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
  3450   jvalue value;
  3451   BasicType type = oper->type()->basic_type();
  3452   switch (type) {
  3453   case T_LONG:    value.j = oper->constantL(); break;
  3454   case T_FLOAT:   value.f = oper->constantF(); break;
  3455   case T_DOUBLE:  value.d = oper->constantD(); break;
  3456   case T_OBJECT:
  3457   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3458   case T_METADATA: return add((Metadata*)oper->constant()); break;
  3459   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
  3461   return add(n, type, value);
  3464 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
  3465   jvalue value;
  3466   // We can use the node pointer here to identify the right jump-table
  3467   // as this method is called from Compile::Fill_buffer right before
  3468   // the MachNodes are emitted and the jump-table is filled (means the
  3469   // MachNode pointers do not change anymore).
  3470   value.l = (jobject) n;
  3471   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
  3472   add(con);
  3473   return con;
  3476 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3477   // If called from Compile::scratch_emit_size do nothing.
  3478   if (Compile::current()->in_scratch_emit_size())  return;
  3480   assert(labels.is_nonempty(), "must be");
  3481   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
  3483   // Since MachConstantNode::constant_offset() also contains
  3484   // table_base_offset() we need to subtract the table_base_offset()
  3485   // to get the plain offset into the constant table.
  3486   int offset = n->constant_offset() - table_base_offset();
  3488   MacroAssembler _masm(&cb);
  3489   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3491   for (uint i = 0; i < n->outcnt(); i++) {
  3492     address* constant_addr = &jump_table_base[i];
  3493     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
  3494     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3495     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
  3499 void Compile::dump_inlining() {
  3500   if (PrintInlining || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
  3501     // Print inlining message for candidates that we couldn't inline
  3502     // for lack of space or non constant receiver
  3503     for (int i = 0; i < _late_inlines.length(); i++) {
  3504       CallGenerator* cg = _late_inlines.at(i);
  3505       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
  3507     Unique_Node_List useful;
  3508     useful.push(root());
  3509     for (uint next = 0; next < useful.size(); ++next) {
  3510       Node* n  = useful.at(next);
  3511       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
  3512         CallNode* call = n->as_Call();
  3513         CallGenerator* cg = call->generator();
  3514         cg->print_inlining_late("receiver not constant");
  3516       uint max = n->len();
  3517       for ( uint i = 0; i < max; ++i ) {
  3518         Node *m = n->in(i);
  3519         if ( m == NULL ) continue;
  3520         useful.push(m);
  3523     for (int i = 0; i < _print_inlining_list->length(); i++) {
  3524       tty->print(_print_inlining_list->at(i).ss()->as_string());

mercurial