src/share/vm/opto/superword.cpp

Sat, 09 Nov 2019 20:29:45 +0800

author
aoqi
date
Sat, 09 Nov 2019 20:29:45 +0800
changeset 9756
2be326848943
parent 8604
04d83ba48607
parent 9740
b290489738b8
child 9806
758c07667682
permissions
-rw-r--r--

Merge

duke@435 1 /*
mikael@6198 2 * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 */
duke@435 23
stefank@2314 24 #include "precompiled.hpp"
stefank@2314 25 #include "compiler/compileLog.hpp"
stefank@2314 26 #include "libadt/vectset.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/divnode.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/memnode.hpp"
stefank@2314 33 #include "opto/mulnode.hpp"
stefank@2314 34 #include "opto/opcodes.hpp"
stefank@2314 35 #include "opto/superword.hpp"
stefank@2314 36 #include "opto/vectornode.hpp"
duke@435 37
duke@435 38 //
duke@435 39 // S U P E R W O R D T R A N S F O R M
duke@435 40 //=============================================================================
duke@435 41
duke@435 42 //------------------------------SuperWord---------------------------
duke@435 43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
duke@435 44 _phase(phase),
duke@435 45 _igvn(phase->_igvn),
duke@435 46 _arena(phase->C->comp_arena()),
duke@435 47 _packset(arena(), 8, 0, NULL), // packs for the current block
duke@435 48 _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
duke@435 49 _block(arena(), 8, 0, NULL), // nodes in current block
duke@435 50 _data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside
duke@435 51 _mem_slice_head(arena(), 8, 0, NULL), // memory slice heads
duke@435 52 _mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails
duke@435 53 _node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node
duke@435 54 _align_to_ref(NULL), // memory reference to align vectors to
duke@435 55 _disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs
duke@435 56 _dg(_arena), // dependence graph
duke@435 57 _visited(arena()), // visited node set
duke@435 58 _post_visited(arena()), // post visited node set
duke@435 59 _n_idx_list(arena(), 8), // scratch list of (node,index) pairs
duke@435 60 _stk(arena(), 8, 0, NULL), // scratch stack of nodes
duke@435 61 _nlist(arena(), 8, 0, NULL), // scratch list of nodes
duke@435 62 _lpt(NULL), // loop tree node
duke@435 63 _lp(NULL), // LoopNode
duke@435 64 _bb(NULL), // basic block
duke@435 65 _iv(NULL) // induction var
duke@435 66 {}
duke@435 67
duke@435 68 //------------------------------transform_loop---------------------------
duke@435 69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
kvn@3882 70 assert(UseSuperWord, "should be");
kvn@3882 71 // Do vectors exist on this architecture?
kvn@3882 72 if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
kvn@3882 73
duke@435 74 assert(lpt->_head->is_CountedLoop(), "must be");
duke@435 75 CountedLoopNode *cl = lpt->_head->as_CountedLoop();
duke@435 76
kvn@3048 77 if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
kvn@3048 78
duke@435 79 if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
duke@435 80
duke@435 81 // Check for no control flow in body (other than exit)
duke@435 82 Node *cl_exit = cl->loopexit();
duke@435 83 if (cl_exit->in(0) != lpt->_head) return;
duke@435 84
never@540 85 // Make sure the are no extra control users of the loop backedge
never@540 86 if (cl->back_control()->outcnt() != 1) {
never@540 87 return;
never@540 88 }
never@540 89
duke@435 90 // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
duke@435 91 CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
duke@435 92 if (pre_end == NULL) return;
duke@435 93 Node *pre_opaq1 = pre_end->limit();
duke@435 94 if (pre_opaq1->Opcode() != Op_Opaque1) return;
duke@435 95
duke@435 96 init(); // initialize data structures
duke@435 97
duke@435 98 set_lpt(lpt);
duke@435 99 set_lp(cl);
duke@435 100
kvn@3882 101 // For now, define one block which is the entire loop body
duke@435 102 set_bb(cl);
duke@435 103
duke@435 104 assert(_packset.length() == 0, "packset must be empty");
duke@435 105 SLP_extract();
duke@435 106 }
duke@435 107
duke@435 108 //------------------------------SLP_extract---------------------------
duke@435 109 // Extract the superword level parallelism
duke@435 110 //
duke@435 111 // 1) A reverse post-order of nodes in the block is constructed. By scanning
duke@435 112 // this list from first to last, all definitions are visited before their uses.
duke@435 113 //
duke@435 114 // 2) A point-to-point dependence graph is constructed between memory references.
duke@435 115 // This simplies the upcoming "independence" checker.
duke@435 116 //
duke@435 117 // 3) The maximum depth in the node graph from the beginning of the block
duke@435 118 // to each node is computed. This is used to prune the graph search
duke@435 119 // in the independence checker.
duke@435 120 //
duke@435 121 // 4) For integer types, the necessary bit width is propagated backwards
duke@435 122 // from stores to allow packed operations on byte, char, and short
duke@435 123 // integers. This reverses the promotion to type "int" that javac
duke@435 124 // did for operations like: char c1,c2,c3; c1 = c2 + c3.
duke@435 125 //
duke@435 126 // 5) One of the memory references is picked to be an aligned vector reference.
duke@435 127 // The pre-loop trip count is adjusted to align this reference in the
duke@435 128 // unrolled body.
duke@435 129 //
duke@435 130 // 6) The initial set of pack pairs is seeded with memory references.
duke@435 131 //
duke@435 132 // 7) The set of pack pairs is extended by following use->def and def->use links.
duke@435 133 //
duke@435 134 // 8) The pairs are combined into vector sized packs.
duke@435 135 //
duke@435 136 // 9) Reorder the memory slices to co-locate members of the memory packs.
duke@435 137 //
duke@435 138 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
duke@435 139 // inserting scalar promotion, vector creation from multiple scalars, and
duke@435 140 // extraction of scalar values from vectors.
duke@435 141 //
duke@435 142 void SuperWord::SLP_extract() {
duke@435 143
duke@435 144 // Ready the block
duke@435 145
kvn@4620 146 if (!construct_bb())
kvn@4620 147 return; // Exit if no interesting nodes or complex graph.
duke@435 148
duke@435 149 dependence_graph();
duke@435 150
duke@435 151 compute_max_depth();
duke@435 152
duke@435 153 compute_vector_element_type();
duke@435 154
duke@435 155 // Attempt vectorization
duke@435 156
duke@435 157 find_adjacent_refs();
duke@435 158
duke@435 159 extend_packlist();
duke@435 160
duke@435 161 combine_packs();
duke@435 162
duke@435 163 construct_my_pack_map();
duke@435 164
duke@435 165 filter_packs();
duke@435 166
duke@435 167 schedule();
duke@435 168
duke@435 169 output();
duke@435 170 }
duke@435 171
duke@435 172 //------------------------------find_adjacent_refs---------------------------
duke@435 173 // Find the adjacent memory references and create pack pairs for them.
duke@435 174 // This is the initial set of packs that will then be extended by
duke@435 175 // following use->def and def->use links. The align positions are
duke@435 176 // assigned relative to the reference "align_to_ref"
duke@435 177 void SuperWord::find_adjacent_refs() {
duke@435 178 // Get list of memory operations
duke@435 179 Node_List memops;
duke@435 180 for (int i = 0; i < _block.length(); i++) {
duke@435 181 Node* n = _block.at(i);
kvn@3882 182 if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
kvn@464 183 is_java_primitive(n->as_Mem()->memory_type())) {
duke@435 184 int align = memory_alignment(n->as_Mem(), 0);
duke@435 185 if (align != bottom_align) {
duke@435 186 memops.push(n);
duke@435 187 }
duke@435 188 }
duke@435 189 }
duke@435 190
kvn@3882 191 Node_List align_to_refs;
kvn@3882 192 int best_iv_adjustment = 0;
kvn@3882 193 MemNode* best_align_to_mem_ref = NULL;
duke@435 194
kvn@3882 195 while (memops.size() != 0) {
kvn@3882 196 // Find a memory reference to align to.
kvn@3882 197 MemNode* mem_ref = find_align_to_ref(memops);
kvn@3882 198 if (mem_ref == NULL) break;
kvn@3882 199 align_to_refs.push(mem_ref);
kvn@3882 200 int iv_adjustment = get_iv_adjustment(mem_ref);
duke@435 201
kvn@3882 202 if (best_align_to_mem_ref == NULL) {
kvn@3882 203 // Set memory reference which is the best from all memory operations
kvn@3882 204 // to be used for alignment. The pre-loop trip count is modified to align
kvn@3882 205 // this reference to a vector-aligned address.
kvn@3882 206 best_align_to_mem_ref = mem_ref;
kvn@3882 207 best_iv_adjustment = iv_adjustment;
kvn@3882 208 }
duke@435 209
kvn@3882 210 SWPointer align_to_ref_p(mem_ref, this);
kvn@3882 211 // Set alignment relative to "align_to_ref" for all related memory operations.
kvn@3882 212 for (int i = memops.size() - 1; i >= 0; i--) {
kvn@3882 213 MemNode* s = memops.at(i)->as_Mem();
kvn@3882 214 if (isomorphic(s, mem_ref)) {
kvn@3882 215 SWPointer p2(s, this);
kvn@3882 216 if (p2.comparable(align_to_ref_p)) {
kvn@3882 217 int align = memory_alignment(s, iv_adjustment);
kvn@3882 218 set_alignment(s, align);
duke@435 219 }
duke@435 220 }
duke@435 221 }
kvn@3882 222
kvn@3882 223 // Create initial pack pairs of memory operations for which
kvn@3882 224 // alignment is set and vectors will be aligned.
kvn@3882 225 bool create_pack = true;
kvn@3886 226 if (memory_alignment(mem_ref, best_iv_adjustment) == 0) {
kvn@3886 227 if (!Matcher::misaligned_vectors_ok()) {
kvn@3886 228 int vw = vector_width(mem_ref);
kvn@3886 229 int vw_best = vector_width(best_align_to_mem_ref);
kvn@3886 230 if (vw > vw_best) {
kvn@3886 231 // Do not vectorize a memory access with more elements per vector
kvn@3886 232 // if unaligned memory access is not allowed because number of
kvn@3886 233 // iterations in pre-loop will be not enough to align it.
kvn@3886 234 create_pack = false;
thartmann@7819 235 } else {
thartmann@7819 236 SWPointer p2(best_align_to_mem_ref, this);
thartmann@7819 237 if (align_to_ref_p.invar() != p2.invar()) {
thartmann@7819 238 // Do not vectorize memory accesses with different invariants
thartmann@7819 239 // if unaligned memory accesses are not allowed.
thartmann@7819 240 create_pack = false;
thartmann@7819 241 }
kvn@3886 242 }
kvn@3886 243 }
kvn@3886 244 } else {
kvn@3882 245 if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
kvn@3882 246 // Can't allow vectorization of unaligned memory accesses with the
kvn@3882 247 // same type since it could be overlapped accesses to the same array.
kvn@3882 248 create_pack = false;
kvn@3882 249 } else {
kvn@3882 250 // Allow independent (different type) unaligned memory operations
kvn@3882 251 // if HW supports them.
kvn@3882 252 if (!Matcher::misaligned_vectors_ok()) {
kvn@3882 253 create_pack = false;
kvn@3882 254 } else {
kvn@3882 255 // Check if packs of the same memory type but
kvn@3882 256 // with a different alignment were created before.
kvn@3882 257 for (uint i = 0; i < align_to_refs.size(); i++) {
kvn@3882 258 MemNode* mr = align_to_refs.at(i)->as_Mem();
kvn@3882 259 if (same_velt_type(mr, mem_ref) &&
kvn@3882 260 memory_alignment(mr, iv_adjustment) != 0)
kvn@3882 261 create_pack = false;
kvn@3882 262 }
kvn@3882 263 }
kvn@3882 264 }
kvn@3882 265 }
kvn@3882 266 if (create_pack) {
kvn@3882 267 for (uint i = 0; i < memops.size(); i++) {
kvn@3882 268 Node* s1 = memops.at(i);
kvn@3882 269 int align = alignment(s1);
kvn@3882 270 if (align == top_align) continue;
kvn@3882 271 for (uint j = 0; j < memops.size(); j++) {
kvn@3882 272 Node* s2 = memops.at(j);
kvn@3882 273 if (alignment(s2) == top_align) continue;
kvn@3882 274 if (s1 != s2 && are_adjacent_refs(s1, s2)) {
kvn@3882 275 if (stmts_can_pack(s1, s2, align)) {
kvn@3882 276 Node_List* pair = new Node_List();
kvn@3882 277 pair->push(s1);
kvn@3882 278 pair->push(s2);
kvn@3882 279 _packset.append(pair);
kvn@3882 280 }
kvn@3882 281 }
kvn@3882 282 }
kvn@3882 283 }
kvn@3882 284 } else { // Don't create unaligned pack
kvn@3882 285 // First, remove remaining memory ops of the same type from the list.
kvn@3882 286 for (int i = memops.size() - 1; i >= 0; i--) {
kvn@3882 287 MemNode* s = memops.at(i)->as_Mem();
kvn@3882 288 if (same_velt_type(s, mem_ref)) {
kvn@3882 289 memops.remove(i);
kvn@3882 290 }
kvn@3882 291 }
kvn@3882 292
kvn@3882 293 // Second, remove already constructed packs of the same type.
kvn@3882 294 for (int i = _packset.length() - 1; i >= 0; i--) {
kvn@3882 295 Node_List* p = _packset.at(i);
kvn@3882 296 MemNode* s = p->at(0)->as_Mem();
kvn@3882 297 if (same_velt_type(s, mem_ref)) {
kvn@3882 298 remove_pack_at(i);
kvn@3882 299 }
kvn@3882 300 }
kvn@3882 301
kvn@3882 302 // If needed find the best memory reference for loop alignment again.
kvn@3882 303 if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
kvn@3882 304 // Put memory ops from remaining packs back on memops list for
kvn@3882 305 // the best alignment search.
kvn@3882 306 uint orig_msize = memops.size();
kvn@3882 307 for (int i = 0; i < _packset.length(); i++) {
kvn@3882 308 Node_List* p = _packset.at(i);
kvn@3882 309 MemNode* s = p->at(0)->as_Mem();
kvn@3882 310 assert(!same_velt_type(s, mem_ref), "sanity");
kvn@3882 311 memops.push(s);
kvn@3882 312 }
kvn@3882 313 MemNode* best_align_to_mem_ref = find_align_to_ref(memops);
kvn@3882 314 if (best_align_to_mem_ref == NULL) break;
kvn@3882 315 best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
kvn@3882 316 // Restore list.
kvn@3882 317 while (memops.size() > orig_msize)
kvn@3882 318 (void)memops.pop();
kvn@3882 319 }
kvn@3882 320 } // unaligned memory accesses
kvn@3882 321
kvn@3882 322 // Remove used mem nodes.
kvn@3882 323 for (int i = memops.size() - 1; i >= 0; i--) {
kvn@3882 324 MemNode* m = memops.at(i)->as_Mem();
kvn@3882 325 if (alignment(m) != top_align) {
kvn@3882 326 memops.remove(i);
kvn@3882 327 }
kvn@3882 328 }
kvn@3882 329
kvn@3882 330 } // while (memops.size() != 0
kvn@3882 331 set_align_to_ref(best_align_to_mem_ref);
duke@435 332
duke@435 333 #ifndef PRODUCT
duke@435 334 if (TraceSuperWord) {
duke@435 335 tty->print_cr("\nAfter find_adjacent_refs");
duke@435 336 print_packset();
duke@435 337 }
duke@435 338 #endif
duke@435 339 }
duke@435 340
duke@435 341 //------------------------------find_align_to_ref---------------------------
duke@435 342 // Find a memory reference to align the loop induction variable to.
duke@435 343 // Looks first at stores then at loads, looking for a memory reference
duke@435 344 // with the largest number of references similar to it.
kvn@3882 345 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
duke@435 346 GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
duke@435 347
duke@435 348 // Count number of comparable memory ops
duke@435 349 for (uint i = 0; i < memops.size(); i++) {
duke@435 350 MemNode* s1 = memops.at(i)->as_Mem();
duke@435 351 SWPointer p1(s1, this);
duke@435 352 // Discard if pre loop can't align this reference
duke@435 353 if (!ref_is_alignable(p1)) {
duke@435 354 *cmp_ct.adr_at(i) = 0;
duke@435 355 continue;
duke@435 356 }
duke@435 357 for (uint j = i+1; j < memops.size(); j++) {
duke@435 358 MemNode* s2 = memops.at(j)->as_Mem();
duke@435 359 if (isomorphic(s1, s2)) {
duke@435 360 SWPointer p2(s2, this);
duke@435 361 if (p1.comparable(p2)) {
duke@435 362 (*cmp_ct.adr_at(i))++;
duke@435 363 (*cmp_ct.adr_at(j))++;
duke@435 364 }
duke@435 365 }
duke@435 366 }
duke@435 367 }
duke@435 368
kvn@3882 369 // Find Store (or Load) with the greatest number of "comparable" references,
kvn@3882 370 // biggest vector size, smallest data size and smallest iv offset.
duke@435 371 int max_ct = 0;
kvn@3882 372 int max_vw = 0;
duke@435 373 int max_idx = -1;
duke@435 374 int min_size = max_jint;
duke@435 375 int min_iv_offset = max_jint;
duke@435 376 for (uint j = 0; j < memops.size(); j++) {
duke@435 377 MemNode* s = memops.at(j)->as_Mem();
duke@435 378 if (s->is_Store()) {
kvn@3886 379 int vw = vector_width_in_bytes(s);
kvn@3882 380 assert(vw > 1, "sanity");
duke@435 381 SWPointer p(s, this);
kvn@3882 382 if (cmp_ct.at(j) > max_ct ||
kvn@3882 383 cmp_ct.at(j) == max_ct &&
kvn@3882 384 (vw > max_vw ||
kvn@3882 385 vw == max_vw &&
kvn@3882 386 (data_size(s) < min_size ||
kvn@3882 387 data_size(s) == min_size &&
kvn@3882 388 (p.offset_in_bytes() < min_iv_offset)))) {
duke@435 389 max_ct = cmp_ct.at(j);
kvn@3882 390 max_vw = vw;
duke@435 391 max_idx = j;
duke@435 392 min_size = data_size(s);
duke@435 393 min_iv_offset = p.offset_in_bytes();
duke@435 394 }
duke@435 395 }
duke@435 396 }
duke@435 397 // If no stores, look at loads
duke@435 398 if (max_ct == 0) {
duke@435 399 for (uint j = 0; j < memops.size(); j++) {
duke@435 400 MemNode* s = memops.at(j)->as_Mem();
duke@435 401 if (s->is_Load()) {
kvn@3886 402 int vw = vector_width_in_bytes(s);
kvn@3882 403 assert(vw > 1, "sanity");
duke@435 404 SWPointer p(s, this);
kvn@3882 405 if (cmp_ct.at(j) > max_ct ||
kvn@3882 406 cmp_ct.at(j) == max_ct &&
kvn@3882 407 (vw > max_vw ||
kvn@3882 408 vw == max_vw &&
kvn@3882 409 (data_size(s) < min_size ||
kvn@3882 410 data_size(s) == min_size &&
kvn@3882 411 (p.offset_in_bytes() < min_iv_offset)))) {
duke@435 412 max_ct = cmp_ct.at(j);
kvn@3882 413 max_vw = vw;
duke@435 414 max_idx = j;
duke@435 415 min_size = data_size(s);
duke@435 416 min_iv_offset = p.offset_in_bytes();
duke@435 417 }
duke@435 418 }
duke@435 419 }
duke@435 420 }
duke@435 421
kvn@3882 422 #ifdef ASSERT
duke@435 423 if (TraceSuperWord && Verbose) {
duke@435 424 tty->print_cr("\nVector memops after find_align_to_refs");
duke@435 425 for (uint i = 0; i < memops.size(); i++) {
duke@435 426 MemNode* s = memops.at(i)->as_Mem();
duke@435 427 s->dump();
duke@435 428 }
duke@435 429 }
duke@435 430 #endif
kvn@3882 431
kvn@3882 432 if (max_ct > 0) {
kvn@3882 433 #ifdef ASSERT
kvn@3882 434 if (TraceSuperWord) {
kvn@3882 435 tty->print("\nVector align to node: ");
kvn@3882 436 memops.at(max_idx)->as_Mem()->dump();
kvn@3882 437 }
kvn@3882 438 #endif
kvn@3882 439 return memops.at(max_idx)->as_Mem();
kvn@3882 440 }
kvn@3882 441 return NULL;
duke@435 442 }
duke@435 443
duke@435 444 //------------------------------ref_is_alignable---------------------------
duke@435 445 // Can the preloop align the reference to position zero in the vector?
duke@435 446 bool SuperWord::ref_is_alignable(SWPointer& p) {
duke@435 447 if (!p.has_iv()) {
duke@435 448 return true; // no induction variable
duke@435 449 }
duke@435 450 CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
duke@435 451 assert(pre_end->stride_is_con(), "pre loop stride is constant");
duke@435 452 int preloop_stride = pre_end->stride_con();
duke@435 453
duke@435 454 int span = preloop_stride * p.scale_in_bytes();
kvn@7817 455 int mem_size = p.memory_size();
kvn@7817 456 int offset = p.offset_in_bytes();
kvn@7817 457 // Stride one accesses are alignable if offset is aligned to memory operation size.
kvn@7817 458 // Offset can be unaligned when UseUnalignedAccesses is used.
kvn@7817 459 if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) {
duke@435 460 return true;
kvn@7817 461 }
thartmann@7819 462 // If the initial offset from start of the object is computable,
thartmann@7819 463 // check if the pre-loop can align the final offset accordingly.
thartmann@7819 464 //
thartmann@7819 465 // In other words: Can we find an i such that the offset
thartmann@7819 466 // after i pre-loop iterations is aligned to vw?
thartmann@7819 467 // (init_offset + pre_loop) % vw == 0 (1)
thartmann@7819 468 // where
thartmann@7819 469 // pre_loop = i * span
thartmann@7819 470 // is the number of bytes added to the offset by i pre-loop iterations.
thartmann@7819 471 //
thartmann@7819 472 // For this to hold we need pre_loop to increase init_offset by
thartmann@7819 473 // pre_loop = vw - (init_offset % vw)
thartmann@7819 474 //
thartmann@7819 475 // This is only possible if pre_loop is divisible by span because each
thartmann@7819 476 // pre-loop iteration increases the initial offset by 'span' bytes:
thartmann@7819 477 // (vw - (init_offset % vw)) % span == 0
thartmann@7819 478 //
kvn@3886 479 int vw = vector_width_in_bytes(p.mem());
kvn@3882 480 assert(vw > 1, "sanity");
thartmann@7819 481 Node* init_nd = pre_end->init_trip();
thartmann@7819 482 if (init_nd->is_Con() && p.invar() == NULL) {
thartmann@7819 483 int init = init_nd->bottom_type()->is_int()->get_con();
thartmann@7819 484 int init_offset = init * p.scale_in_bytes() + offset;
kvn@9740 485 if (init_offset < 0) { // negative offset from object start?
kvn@9740 486 return false; // may happen in dead loop
kvn@9740 487 }
thartmann@7819 488 if (vw % span == 0) {
thartmann@7819 489 // If vm is a multiple of span, we use formula (1).
duke@435 490 if (span > 0) {
duke@435 491 return (vw - (init_offset % vw)) % span == 0;
duke@435 492 } else {
duke@435 493 assert(span < 0, "nonzero stride * scale");
duke@435 494 return (init_offset % vw) % -span == 0;
duke@435 495 }
thartmann@7819 496 } else if (span % vw == 0) {
thartmann@7819 497 // If span is a multiple of vw, we can simplify formula (1) to:
thartmann@7819 498 // (init_offset + i * span) % vw == 0
thartmann@7819 499 // =>
thartmann@7819 500 // (init_offset % vw) + ((i * span) % vw) == 0
thartmann@7819 501 // =>
thartmann@7819 502 // init_offset % vw == 0
thartmann@7819 503 //
thartmann@7819 504 // Because we add a multiple of vw to the initial offset, the final
thartmann@7819 505 // offset is a multiple of vw if and only if init_offset is a multiple.
thartmann@7819 506 //
thartmann@7819 507 return (init_offset % vw) == 0;
duke@435 508 }
duke@435 509 }
duke@435 510 return false;
duke@435 511 }
duke@435 512
kvn@3882 513 //---------------------------get_iv_adjustment---------------------------
kvn@3882 514 // Calculate loop's iv adjustment for this memory ops.
kvn@3882 515 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
kvn@3882 516 SWPointer align_to_ref_p(mem_ref, this);
kvn@3882 517 int offset = align_to_ref_p.offset_in_bytes();
kvn@3882 518 int scale = align_to_ref_p.scale_in_bytes();
thartmann@7819 519 int elt_size = align_to_ref_p.memory_size();
kvn@3886 520 int vw = vector_width_in_bytes(mem_ref);
kvn@3882 521 assert(vw > 1, "sanity");
thartmann@7819 522 int iv_adjustment;
thartmann@7819 523 if (scale != 0) {
thartmann@7819 524 int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
thartmann@7819 525 // At least one iteration is executed in pre-loop by default. As result
thartmann@7819 526 // several iterations are needed to align memory operations in main-loop even
thartmann@7819 527 // if offset is 0.
thartmann@7819 528 int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
thartmann@7819 529 assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
thartmann@7819 530 err_msg_res("(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size));
thartmann@7819 531 iv_adjustment = iv_adjustment_in_bytes/elt_size;
thartmann@7819 532 } else {
thartmann@7819 533 // This memory op is not dependent on iv (scale == 0)
thartmann@7819 534 iv_adjustment = 0;
thartmann@7819 535 }
kvn@3882 536
kvn@3882 537 #ifndef PRODUCT
kvn@3882 538 if (TraceSuperWord)
kvn@3882 539 tty->print_cr("\noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d",
kvn@4105 540 offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
kvn@3882 541 #endif
kvn@3882 542 return iv_adjustment;
kvn@3882 543 }
kvn@3882 544
duke@435 545 //---------------------------dependence_graph---------------------------
duke@435 546 // Construct dependency graph.
duke@435 547 // Add dependence edges to load/store nodes for memory dependence
duke@435 548 // A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
duke@435 549 void SuperWord::dependence_graph() {
duke@435 550 // First, assign a dependence node to each memory node
duke@435 551 for (int i = 0; i < _block.length(); i++ ) {
duke@435 552 Node *n = _block.at(i);
duke@435 553 if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
duke@435 554 _dg.make_node(n);
duke@435 555 }
duke@435 556 }
duke@435 557
duke@435 558 // For each memory slice, create the dependences
duke@435 559 for (int i = 0; i < _mem_slice_head.length(); i++) {
duke@435 560 Node* n = _mem_slice_head.at(i);
duke@435 561 Node* n_tail = _mem_slice_tail.at(i);
duke@435 562
duke@435 563 // Get slice in predecessor order (last is first)
duke@435 564 mem_slice_preds(n_tail, n, _nlist);
duke@435 565
duke@435 566 // Make the slice dependent on the root
duke@435 567 DepMem* slice = _dg.dep(n);
duke@435 568 _dg.make_edge(_dg.root(), slice);
duke@435 569
duke@435 570 // Create a sink for the slice
duke@435 571 DepMem* slice_sink = _dg.make_node(NULL);
duke@435 572 _dg.make_edge(slice_sink, _dg.tail());
duke@435 573
duke@435 574 // Now visit each pair of memory ops, creating the edges
duke@435 575 for (int j = _nlist.length() - 1; j >= 0 ; j--) {
duke@435 576 Node* s1 = _nlist.at(j);
duke@435 577
duke@435 578 // If no dependency yet, use slice
duke@435 579 if (_dg.dep(s1)->in_cnt() == 0) {
duke@435 580 _dg.make_edge(slice, s1);
duke@435 581 }
duke@435 582 SWPointer p1(s1->as_Mem(), this);
duke@435 583 bool sink_dependent = true;
duke@435 584 for (int k = j - 1; k >= 0; k--) {
duke@435 585 Node* s2 = _nlist.at(k);
duke@435 586 if (s1->is_Load() && s2->is_Load())
duke@435 587 continue;
duke@435 588 SWPointer p2(s2->as_Mem(), this);
duke@435 589
duke@435 590 int cmp = p1.cmp(p2);
duke@435 591 if (SuperWordRTDepCheck &&
duke@435 592 p1.base() != p2.base() && p1.valid() && p2.valid()) {
duke@435 593 // Create a runtime check to disambiguate
duke@435 594 OrderedPair pp(p1.base(), p2.base());
duke@435 595 _disjoint_ptrs.append_if_missing(pp);
duke@435 596 } else if (!SWPointer::not_equal(cmp)) {
duke@435 597 // Possibly same address
duke@435 598 _dg.make_edge(s1, s2);
duke@435 599 sink_dependent = false;
duke@435 600 }
duke@435 601 }
duke@435 602 if (sink_dependent) {
duke@435 603 _dg.make_edge(s1, slice_sink);
duke@435 604 }
duke@435 605 }
duke@435 606 #ifndef PRODUCT
duke@435 607 if (TraceSuperWord) {
duke@435 608 tty->print_cr("\nDependence graph for slice: %d", n->_idx);
duke@435 609 for (int q = 0; q < _nlist.length(); q++) {
duke@435 610 _dg.print(_nlist.at(q));
duke@435 611 }
duke@435 612 tty->cr();
duke@435 613 }
duke@435 614 #endif
duke@435 615 _nlist.clear();
duke@435 616 }
duke@435 617
duke@435 618 #ifndef PRODUCT
duke@435 619 if (TraceSuperWord) {
duke@435 620 tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
duke@435 621 for (int r = 0; r < _disjoint_ptrs.length(); r++) {
duke@435 622 _disjoint_ptrs.at(r).print();
duke@435 623 tty->cr();
duke@435 624 }
duke@435 625 tty->cr();
duke@435 626 }
duke@435 627 #endif
duke@435 628 }
duke@435 629
duke@435 630 //---------------------------mem_slice_preds---------------------------
duke@435 631 // Return a memory slice (node list) in predecessor order starting at "start"
duke@435 632 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
duke@435 633 assert(preds.length() == 0, "start empty");
duke@435 634 Node* n = start;
duke@435 635 Node* prev = NULL;
duke@435 636 while (true) {
duke@435 637 assert(in_bb(n), "must be in block");
duke@435 638 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 639 Node* out = n->fast_out(i);
duke@435 640 if (out->is_Load()) {
duke@435 641 if (in_bb(out)) {
duke@435 642 preds.push(out);
duke@435 643 }
duke@435 644 } else {
duke@435 645 // FIXME
duke@435 646 if (out->is_MergeMem() && !in_bb(out)) {
duke@435 647 // Either unrolling is causing a memory edge not to disappear,
duke@435 648 // or need to run igvn.optimize() again before SLP
duke@435 649 } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
duke@435 650 // Ditto. Not sure what else to check further.
cfang@1102 651 } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
duke@435 652 // StoreCM has an input edge used as a precedence edge.
duke@435 653 // Maybe an issue when oop stores are vectorized.
duke@435 654 } else {
duke@435 655 assert(out == prev || prev == NULL, "no branches off of store slice");
duke@435 656 }
duke@435 657 }
duke@435 658 }
duke@435 659 if (n == stop) break;
duke@435 660 preds.push(n);
duke@435 661 prev = n;
kvn@4620 662 assert(n->is_Mem(), err_msg_res("unexpected node %s", n->Name()));
duke@435 663 n = n->in(MemNode::Memory);
duke@435 664 }
duke@435 665 }
duke@435 666
duke@435 667 //------------------------------stmts_can_pack---------------------------
twisti@1040 668 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
duke@435 669 // s1 aligned at "align"
duke@435 670 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
cfang@1422 671
cfang@1422 672 // Do not use superword for non-primitives
kvn@3882 673 BasicType bt1 = velt_basic_type(s1);
kvn@3882 674 BasicType bt2 = velt_basic_type(s2);
kvn@3882 675 if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
cfang@1422 676 return false;
kvn@3882 677 if (Matcher::max_vector_size(bt1) < 2) {
kvn@3882 678 return false; // No vectors for this type
kvn@3882 679 }
cfang@1422 680
duke@435 681 if (isomorphic(s1, s2)) {
duke@435 682 if (independent(s1, s2)) {
duke@435 683 if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
duke@435 684 if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
duke@435 685 int s1_align = alignment(s1);
duke@435 686 int s2_align = alignment(s2);
duke@435 687 if (s1_align == top_align || s1_align == align) {
duke@435 688 if (s2_align == top_align || s2_align == align + data_size(s1)) {
duke@435 689 return true;
duke@435 690 }
duke@435 691 }
duke@435 692 }
duke@435 693 }
duke@435 694 }
duke@435 695 }
duke@435 696 return false;
duke@435 697 }
duke@435 698
duke@435 699 //------------------------------exists_at---------------------------
duke@435 700 // Does s exist in a pack at position pos?
duke@435 701 bool SuperWord::exists_at(Node* s, uint pos) {
duke@435 702 for (int i = 0; i < _packset.length(); i++) {
duke@435 703 Node_List* p = _packset.at(i);
duke@435 704 if (p->at(pos) == s) {
duke@435 705 return true;
duke@435 706 }
duke@435 707 }
duke@435 708 return false;
duke@435 709 }
duke@435 710
duke@435 711 //------------------------------are_adjacent_refs---------------------------
duke@435 712 // Is s1 immediately before s2 in memory?
duke@435 713 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
duke@435 714 if (!s1->is_Mem() || !s2->is_Mem()) return false;
duke@435 715 if (!in_bb(s1) || !in_bb(s2)) return false;
never@1940 716
never@1940 717 // Do not use superword for non-primitives
never@1940 718 if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
never@1940 719 !is_java_primitive(s2->as_Mem()->memory_type())) {
never@1940 720 return false;
never@1940 721 }
never@1940 722
duke@435 723 // FIXME - co_locate_pack fails on Stores in different mem-slices, so
duke@435 724 // only pack memops that are in the same alias set until that's fixed.
duke@435 725 if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
duke@435 726 _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
duke@435 727 return false;
duke@435 728 SWPointer p1(s1->as_Mem(), this);
duke@435 729 SWPointer p2(s2->as_Mem(), this);
duke@435 730 if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
duke@435 731 int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
duke@435 732 return diff == data_size(s1);
duke@435 733 }
duke@435 734
duke@435 735 //------------------------------isomorphic---------------------------
duke@435 736 // Are s1 and s2 similar?
duke@435 737 bool SuperWord::isomorphic(Node* s1, Node* s2) {
duke@435 738 if (s1->Opcode() != s2->Opcode()) return false;
duke@435 739 if (s1->req() != s2->req()) return false;
duke@435 740 if (s1->in(0) != s2->in(0)) return false;
kvn@3882 741 if (!same_velt_type(s1, s2)) return false;
duke@435 742 return true;
duke@435 743 }
duke@435 744
duke@435 745 //------------------------------independent---------------------------
duke@435 746 // Is there no data path from s1 to s2 or s2 to s1?
duke@435 747 bool SuperWord::independent(Node* s1, Node* s2) {
duke@435 748 // assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
duke@435 749 int d1 = depth(s1);
duke@435 750 int d2 = depth(s2);
duke@435 751 if (d1 == d2) return s1 != s2;
duke@435 752 Node* deep = d1 > d2 ? s1 : s2;
duke@435 753 Node* shallow = d1 > d2 ? s2 : s1;
duke@435 754
duke@435 755 visited_clear();
duke@435 756
duke@435 757 return independent_path(shallow, deep);
duke@435 758 }
duke@435 759
duke@435 760 //------------------------------independent_path------------------------------
duke@435 761 // Helper for independent
duke@435 762 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
duke@435 763 if (dp >= 1000) return false; // stop deep recursion
duke@435 764 visited_set(deep);
duke@435 765 int shal_depth = depth(shallow);
duke@435 766 assert(shal_depth <= depth(deep), "must be");
duke@435 767 for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
duke@435 768 Node* pred = preds.current();
duke@435 769 if (in_bb(pred) && !visited_test(pred)) {
duke@435 770 if (shallow == pred) {
duke@435 771 return false;
duke@435 772 }
duke@435 773 if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
duke@435 774 return false;
duke@435 775 }
duke@435 776 }
duke@435 777 }
duke@435 778 return true;
duke@435 779 }
duke@435 780
duke@435 781 //------------------------------set_alignment---------------------------
duke@435 782 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
duke@435 783 set_alignment(s1, align);
kvn@3882 784 if (align == top_align || align == bottom_align) {
kvn@3882 785 set_alignment(s2, align);
kvn@3882 786 } else {
kvn@3882 787 set_alignment(s2, align + data_size(s1));
kvn@3882 788 }
duke@435 789 }
duke@435 790
duke@435 791 //------------------------------data_size---------------------------
duke@435 792 int SuperWord::data_size(Node* s) {
kvn@3882 793 int bsize = type2aelembytes(velt_basic_type(s));
duke@435 794 assert(bsize != 0, "valid size");
duke@435 795 return bsize;
duke@435 796 }
duke@435 797
duke@435 798 //------------------------------extend_packlist---------------------------
duke@435 799 // Extend packset by following use->def and def->use links from pack members.
duke@435 800 void SuperWord::extend_packlist() {
duke@435 801 bool changed;
duke@435 802 do {
duke@435 803 changed = false;
duke@435 804 for (int i = 0; i < _packset.length(); i++) {
duke@435 805 Node_List* p = _packset.at(i);
duke@435 806 changed |= follow_use_defs(p);
duke@435 807 changed |= follow_def_uses(p);
duke@435 808 }
duke@435 809 } while (changed);
duke@435 810
duke@435 811 #ifndef PRODUCT
duke@435 812 if (TraceSuperWord) {
duke@435 813 tty->print_cr("\nAfter extend_packlist");
duke@435 814 print_packset();
duke@435 815 }
duke@435 816 #endif
duke@435 817 }
duke@435 818
duke@435 819 //------------------------------follow_use_defs---------------------------
duke@435 820 // Extend the packset by visiting operand definitions of nodes in pack p
duke@435 821 bool SuperWord::follow_use_defs(Node_List* p) {
kvn@3882 822 assert(p->size() == 2, "just checking");
duke@435 823 Node* s1 = p->at(0);
duke@435 824 Node* s2 = p->at(1);
duke@435 825 assert(s1->req() == s2->req(), "just checking");
duke@435 826 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 827
duke@435 828 if (s1->is_Load()) return false;
duke@435 829
duke@435 830 int align = alignment(s1);
duke@435 831 bool changed = false;
duke@435 832 int start = s1->is_Store() ? MemNode::ValueIn : 1;
duke@435 833 int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
duke@435 834 for (int j = start; j < end; j++) {
duke@435 835 Node* t1 = s1->in(j);
duke@435 836 Node* t2 = s2->in(j);
duke@435 837 if (!in_bb(t1) || !in_bb(t2))
duke@435 838 continue;
duke@435 839 if (stmts_can_pack(t1, t2, align)) {
duke@435 840 if (est_savings(t1, t2) >= 0) {
duke@435 841 Node_List* pair = new Node_List();
duke@435 842 pair->push(t1);
duke@435 843 pair->push(t2);
duke@435 844 _packset.append(pair);
duke@435 845 set_alignment(t1, t2, align);
duke@435 846 changed = true;
duke@435 847 }
duke@435 848 }
duke@435 849 }
duke@435 850 return changed;
duke@435 851 }
duke@435 852
duke@435 853 //------------------------------follow_def_uses---------------------------
duke@435 854 // Extend the packset by visiting uses of nodes in pack p
duke@435 855 bool SuperWord::follow_def_uses(Node_List* p) {
duke@435 856 bool changed = false;
duke@435 857 Node* s1 = p->at(0);
duke@435 858 Node* s2 = p->at(1);
duke@435 859 assert(p->size() == 2, "just checking");
duke@435 860 assert(s1->req() == s2->req(), "just checking");
duke@435 861 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 862
duke@435 863 if (s1->is_Store()) return false;
duke@435 864
duke@435 865 int align = alignment(s1);
duke@435 866 int savings = -1;
duke@435 867 Node* u1 = NULL;
duke@435 868 Node* u2 = NULL;
duke@435 869 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 870 Node* t1 = s1->fast_out(i);
duke@435 871 if (!in_bb(t1)) continue;
duke@435 872 for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
duke@435 873 Node* t2 = s2->fast_out(j);
duke@435 874 if (!in_bb(t2)) continue;
duke@435 875 if (!opnd_positions_match(s1, t1, s2, t2))
duke@435 876 continue;
duke@435 877 if (stmts_can_pack(t1, t2, align)) {
duke@435 878 int my_savings = est_savings(t1, t2);
duke@435 879 if (my_savings > savings) {
duke@435 880 savings = my_savings;
duke@435 881 u1 = t1;
duke@435 882 u2 = t2;
duke@435 883 }
duke@435 884 }
duke@435 885 }
duke@435 886 }
duke@435 887 if (savings >= 0) {
duke@435 888 Node_List* pair = new Node_List();
duke@435 889 pair->push(u1);
duke@435 890 pair->push(u2);
duke@435 891 _packset.append(pair);
duke@435 892 set_alignment(u1, u2, align);
duke@435 893 changed = true;
duke@435 894 }
duke@435 895 return changed;
duke@435 896 }
duke@435 897
duke@435 898 //---------------------------opnd_positions_match-------------------------
duke@435 899 // Is the use of d1 in u1 at the same operand position as d2 in u2?
duke@435 900 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
duke@435 901 uint ct = u1->req();
duke@435 902 if (ct != u2->req()) return false;
duke@435 903 uint i1 = 0;
duke@435 904 uint i2 = 0;
duke@435 905 do {
duke@435 906 for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
duke@435 907 for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
duke@435 908 if (i1 != i2) {
kvn@3882 909 if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
kvn@3882 910 // Further analysis relies on operands position matching.
kvn@3882 911 u2->swap_edges(i1, i2);
kvn@3882 912 } else {
kvn@3882 913 return false;
kvn@3882 914 }
duke@435 915 }
duke@435 916 } while (i1 < ct);
duke@435 917 return true;
duke@435 918 }
duke@435 919
duke@435 920 //------------------------------est_savings---------------------------
duke@435 921 // Estimate the savings from executing s1 and s2 as a pack
duke@435 922 int SuperWord::est_savings(Node* s1, Node* s2) {
kvn@3882 923 int save_in = 2 - 1; // 2 operations per instruction in packed form
duke@435 924
duke@435 925 // inputs
duke@435 926 for (uint i = 1; i < s1->req(); i++) {
duke@435 927 Node* x1 = s1->in(i);
duke@435 928 Node* x2 = s2->in(i);
duke@435 929 if (x1 != x2) {
duke@435 930 if (are_adjacent_refs(x1, x2)) {
kvn@3882 931 save_in += adjacent_profit(x1, x2);
duke@435 932 } else if (!in_packset(x1, x2)) {
kvn@3882 933 save_in -= pack_cost(2);
duke@435 934 } else {
kvn@3882 935 save_in += unpack_cost(2);
duke@435 936 }
duke@435 937 }
duke@435 938 }
duke@435 939
duke@435 940 // uses of result
duke@435 941 uint ct = 0;
kvn@3882 942 int save_use = 0;
duke@435 943 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 944 Node* s1_use = s1->fast_out(i);
duke@435 945 for (int j = 0; j < _packset.length(); j++) {
duke@435 946 Node_List* p = _packset.at(j);
duke@435 947 if (p->at(0) == s1_use) {
duke@435 948 for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
duke@435 949 Node* s2_use = s2->fast_out(k);
duke@435 950 if (p->at(p->size()-1) == s2_use) {
duke@435 951 ct++;
duke@435 952 if (are_adjacent_refs(s1_use, s2_use)) {
kvn@3882 953 save_use += adjacent_profit(s1_use, s2_use);
duke@435 954 }
duke@435 955 }
duke@435 956 }
duke@435 957 }
duke@435 958 }
duke@435 959 }
duke@435 960
kvn@3882 961 if (ct < s1->outcnt()) save_use += unpack_cost(1);
kvn@3882 962 if (ct < s2->outcnt()) save_use += unpack_cost(1);
duke@435 963
kvn@3882 964 return MAX2(save_in, save_use);
duke@435 965 }
duke@435 966
duke@435 967 //------------------------------costs---------------------------
duke@435 968 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
duke@435 969 int SuperWord::pack_cost(int ct) { return ct; }
duke@435 970 int SuperWord::unpack_cost(int ct) { return ct; }
duke@435 971
duke@435 972 //------------------------------combine_packs---------------------------
duke@435 973 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
duke@435 974 void SuperWord::combine_packs() {
kvn@3882 975 bool changed = true;
kvn@3882 976 // Combine packs regardless max vector size.
kvn@3882 977 while (changed) {
duke@435 978 changed = false;
duke@435 979 for (int i = 0; i < _packset.length(); i++) {
duke@435 980 Node_List* p1 = _packset.at(i);
duke@435 981 if (p1 == NULL) continue;
duke@435 982 for (int j = 0; j < _packset.length(); j++) {
duke@435 983 Node_List* p2 = _packset.at(j);
duke@435 984 if (p2 == NULL) continue;
kvn@3882 985 if (i == j) continue;
duke@435 986 if (p1->at(p1->size()-1) == p2->at(0)) {
duke@435 987 for (uint k = 1; k < p2->size(); k++) {
duke@435 988 p1->push(p2->at(k));
duke@435 989 }
duke@435 990 _packset.at_put(j, NULL);
duke@435 991 changed = true;
duke@435 992 }
duke@435 993 }
duke@435 994 }
kvn@3882 995 }
duke@435 996
kvn@3882 997 // Split packs which have size greater then max vector size.
kvn@3882 998 for (int i = 0; i < _packset.length(); i++) {
kvn@3882 999 Node_List* p1 = _packset.at(i);
kvn@3882 1000 if (p1 != NULL) {
kvn@3882 1001 BasicType bt = velt_basic_type(p1->at(0));
kvn@3882 1002 uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
kvn@3882 1003 assert(is_power_of_2(max_vlen), "sanity");
kvn@3882 1004 uint psize = p1->size();
kvn@3882 1005 if (!is_power_of_2(psize)) {
kvn@3882 1006 // Skip pack which can't be vector.
kvn@3882 1007 // case1: for(...) { a[i] = i; } elements values are different (i+x)
kvn@3882 1008 // case2: for(...) { a[i] = b[i+1]; } can't align both, load and store
kvn@3882 1009 _packset.at_put(i, NULL);
kvn@3882 1010 continue;
kvn@3882 1011 }
kvn@3882 1012 if (psize > max_vlen) {
kvn@3882 1013 Node_List* pack = new Node_List();
kvn@3882 1014 for (uint j = 0; j < psize; j++) {
kvn@3882 1015 pack->push(p1->at(j));
kvn@3882 1016 if (pack->size() >= max_vlen) {
kvn@3882 1017 assert(is_power_of_2(pack->size()), "sanity");
kvn@3882 1018 _packset.append(pack);
kvn@3882 1019 pack = new Node_List();
kvn@3882 1020 }
kvn@3882 1021 }
kvn@3882 1022 _packset.at_put(i, NULL);
kvn@3882 1023 }
kvn@3882 1024 }
kvn@3882 1025 }
kvn@3882 1026
kvn@3882 1027 // Compress list.
duke@435 1028 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 1029 Node_List* p1 = _packset.at(i);
duke@435 1030 if (p1 == NULL) {
duke@435 1031 _packset.remove_at(i);
duke@435 1032 }
duke@435 1033 }
duke@435 1034
duke@435 1035 #ifndef PRODUCT
duke@435 1036 if (TraceSuperWord) {
duke@435 1037 tty->print_cr("\nAfter combine_packs");
duke@435 1038 print_packset();
duke@435 1039 }
duke@435 1040 #endif
duke@435 1041 }
duke@435 1042
duke@435 1043 //-----------------------------construct_my_pack_map--------------------------
duke@435 1044 // Construct the map from nodes to packs. Only valid after the
duke@435 1045 // point where a node is only in one pack (after combine_packs).
duke@435 1046 void SuperWord::construct_my_pack_map() {
duke@435 1047 Node_List* rslt = NULL;
duke@435 1048 for (int i = 0; i < _packset.length(); i++) {
duke@435 1049 Node_List* p = _packset.at(i);
duke@435 1050 for (uint j = 0; j < p->size(); j++) {
duke@435 1051 Node* s = p->at(j);
duke@435 1052 assert(my_pack(s) == NULL, "only in one pack");
duke@435 1053 set_my_pack(s, p);
duke@435 1054 }
duke@435 1055 }
duke@435 1056 }
duke@435 1057
duke@435 1058 //------------------------------filter_packs---------------------------
duke@435 1059 // Remove packs that are not implemented or not profitable.
duke@435 1060 void SuperWord::filter_packs() {
duke@435 1061
duke@435 1062 // Remove packs that are not implemented
duke@435 1063 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 1064 Node_List* pk = _packset.at(i);
duke@435 1065 bool impl = implemented(pk);
duke@435 1066 if (!impl) {
duke@435 1067 #ifndef PRODUCT
duke@435 1068 if (TraceSuperWord && Verbose) {
duke@435 1069 tty->print_cr("Unimplemented");
duke@435 1070 pk->at(0)->dump();
duke@435 1071 }
duke@435 1072 #endif
duke@435 1073 remove_pack_at(i);
duke@435 1074 }
duke@435 1075 }
duke@435 1076
duke@435 1077 // Remove packs that are not profitable
duke@435 1078 bool changed;
duke@435 1079 do {
duke@435 1080 changed = false;
duke@435 1081 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 1082 Node_List* pk = _packset.at(i);
duke@435 1083 bool prof = profitable(pk);
duke@435 1084 if (!prof) {
duke@435 1085 #ifndef PRODUCT
duke@435 1086 if (TraceSuperWord && Verbose) {
duke@435 1087 tty->print_cr("Unprofitable");
duke@435 1088 pk->at(0)->dump();
duke@435 1089 }
duke@435 1090 #endif
duke@435 1091 remove_pack_at(i);
duke@435 1092 changed = true;
duke@435 1093 }
duke@435 1094 }
duke@435 1095 } while (changed);
duke@435 1096
duke@435 1097 #ifndef PRODUCT
duke@435 1098 if (TraceSuperWord) {
duke@435 1099 tty->print_cr("\nAfter filter_packs");
duke@435 1100 print_packset();
duke@435 1101 tty->cr();
duke@435 1102 }
duke@435 1103 #endif
duke@435 1104 }
duke@435 1105
duke@435 1106 //------------------------------implemented---------------------------
duke@435 1107 // Can code be generated for pack p?
duke@435 1108 bool SuperWord::implemented(Node_List* p) {
duke@435 1109 Node* p0 = p->at(0);
kvn@4006 1110 return VectorNode::implemented(p0->Opcode(), p->size(), velt_basic_type(p0));
kvn@4006 1111 }
kvn@4006 1112
kvn@4006 1113 //------------------------------same_inputs--------------------------
kvn@4006 1114 // For pack p, are all idx operands the same?
kvn@4006 1115 static bool same_inputs(Node_List* p, int idx) {
kvn@4006 1116 Node* p0 = p->at(0);
kvn@4006 1117 uint vlen = p->size();
kvn@4006 1118 Node* p0_def = p0->in(idx);
kvn@4006 1119 for (uint i = 1; i < vlen; i++) {
kvn@4006 1120 Node* pi = p->at(i);
kvn@4006 1121 Node* pi_def = pi->in(idx);
kvn@4006 1122 if (p0_def != pi_def)
kvn@4006 1123 return false;
kvn@4004 1124 }
kvn@4006 1125 return true;
duke@435 1126 }
duke@435 1127
duke@435 1128 //------------------------------profitable---------------------------
duke@435 1129 // For pack p, are all operands and all uses (with in the block) vector?
duke@435 1130 bool SuperWord::profitable(Node_List* p) {
duke@435 1131 Node* p0 = p->at(0);
duke@435 1132 uint start, end;
kvn@4006 1133 VectorNode::vector_operands(p0, &start, &end);
duke@435 1134
kvn@4114 1135 // Return false if some inputs are not vectors or vectors with different
kvn@4114 1136 // size or alignment.
kvn@4114 1137 // Also, for now, return false if not scalar promotion case when inputs are
kvn@4114 1138 // the same. Later, implement PackNode and allow differing, non-vector inputs
kvn@4114 1139 // (maybe just the ones from outside the block.)
duke@435 1140 for (uint i = start; i < end; i++) {
kvn@4114 1141 if (!is_vector_use(p0, i))
kvn@4114 1142 return false;
duke@435 1143 }
kvn@4006 1144 if (VectorNode::is_shift(p0)) {
kvn@4114 1145 // For now, return false if shift count is vector or not scalar promotion
kvn@4114 1146 // case (different shift counts) because it is not supported yet.
kvn@4114 1147 Node* cnt = p0->in(2);
kvn@4114 1148 Node_List* cnt_pk = my_pack(cnt);
kvn@4114 1149 if (cnt_pk != NULL)
kvn@4006 1150 return false;
kvn@4006 1151 if (!same_inputs(p, 2))
kvn@4006 1152 return false;
kvn@4006 1153 }
duke@435 1154 if (!p0->is_Store()) {
duke@435 1155 // For now, return false if not all uses are vector.
duke@435 1156 // Later, implement ExtractNode and allow non-vector uses (maybe
duke@435 1157 // just the ones outside the block.)
duke@435 1158 for (uint i = 0; i < p->size(); i++) {
duke@435 1159 Node* def = p->at(i);
duke@435 1160 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 1161 Node* use = def->fast_out(j);
duke@435 1162 for (uint k = 0; k < use->req(); k++) {
duke@435 1163 Node* n = use->in(k);
duke@435 1164 if (def == n) {
duke@435 1165 if (!is_vector_use(use, k)) {
duke@435 1166 return false;
duke@435 1167 }
duke@435 1168 }
duke@435 1169 }
duke@435 1170 }
duke@435 1171 }
duke@435 1172 }
duke@435 1173 return true;
duke@435 1174 }
duke@435 1175
duke@435 1176 //------------------------------schedule---------------------------
duke@435 1177 // Adjust the memory graph for the packed operations
duke@435 1178 void SuperWord::schedule() {
duke@435 1179
duke@435 1180 // Co-locate in the memory graph the members of each memory pack
duke@435 1181 for (int i = 0; i < _packset.length(); i++) {
duke@435 1182 co_locate_pack(_packset.at(i));
duke@435 1183 }
duke@435 1184 }
duke@435 1185
cfang@1102 1186 //-------------------------------remove_and_insert-------------------
kvn@3882 1187 // Remove "current" from its current position in the memory graph and insert
kvn@3882 1188 // it after the appropriate insertion point (lip or uip).
cfang@1102 1189 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
cfang@1102 1190 Node *uip, Unique_Node_List &sched_before) {
cfang@1102 1191 Node* my_mem = current->in(MemNode::Memory);
kvn@3882 1192 bool sched_up = sched_before.member(current);
cfang@1102 1193
kvn@3882 1194 // remove current_store from its current position in the memmory graph
cfang@1102 1195 for (DUIterator i = current->outs(); current->has_out(i); i++) {
cfang@1102 1196 Node* use = current->out(i);
cfang@1102 1197 if (use->is_Mem()) {
cfang@1102 1198 assert(use->in(MemNode::Memory) == current, "must be");
cfang@1102 1199 if (use == prev) { // connect prev to my_mem
kvn@3882 1200 _igvn.replace_input_of(use, MemNode::Memory, my_mem);
kvn@3882 1201 --i; //deleted this edge; rescan position
cfang@1102 1202 } else if (sched_before.member(use)) {
kvn@3882 1203 if (!sched_up) { // Will be moved together with current
kvn@3882 1204 _igvn.replace_input_of(use, MemNode::Memory, uip);
kvn@3882 1205 --i; //deleted this edge; rescan position
kvn@3882 1206 }
cfang@1102 1207 } else {
kvn@3882 1208 if (sched_up) { // Will be moved together with current
kvn@3882 1209 _igvn.replace_input_of(use, MemNode::Memory, lip);
kvn@3882 1210 --i; //deleted this edge; rescan position
kvn@3882 1211 }
cfang@1102 1212 }
cfang@1102 1213 }
cfang@1102 1214 }
cfang@1102 1215
cfang@1102 1216 Node *insert_pt = sched_up ? uip : lip;
cfang@1102 1217
cfang@1102 1218 // all uses of insert_pt's memory state should use current's instead
cfang@1102 1219 for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
cfang@1102 1220 Node* use = insert_pt->out(i);
cfang@1102 1221 if (use->is_Mem()) {
cfang@1102 1222 assert(use->in(MemNode::Memory) == insert_pt, "must be");
kvn@3847 1223 _igvn.replace_input_of(use, MemNode::Memory, current);
cfang@1102 1224 --i; //deleted this edge; rescan position
cfang@1102 1225 } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
cfang@1102 1226 uint pos; //lip (lower insert point) must be the last one in the memory slice
cfang@1102 1227 for (pos=1; pos < use->req(); pos++) {
cfang@1102 1228 if (use->in(pos) == insert_pt) break;
cfang@1102 1229 }
kvn@3847 1230 _igvn.replace_input_of(use, pos, current);
cfang@1102 1231 --i;
cfang@1102 1232 }
cfang@1102 1233 }
cfang@1102 1234
cfang@1102 1235 //connect current to insert_pt
kvn@3882 1236 _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
cfang@1102 1237 }
cfang@1102 1238
cfang@1102 1239 //------------------------------co_locate_pack----------------------------------
cfang@1102 1240 // To schedule a store pack, we need to move any sandwiched memory ops either before
cfang@1102 1241 // or after the pack, based upon dependence information:
cfang@1102 1242 // (1) If any store in the pack depends on the sandwiched memory op, the
cfang@1102 1243 // sandwiched memory op must be scheduled BEFORE the pack;
cfang@1102 1244 // (2) If a sandwiched memory op depends on any store in the pack, the
cfang@1102 1245 // sandwiched memory op must be scheduled AFTER the pack;
cfang@1102 1246 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
cfang@1102 1247 // memory op (say memB), memB must be scheduled before memA. So, if memA is
cfang@1102 1248 // scheduled before the pack, memB must also be scheduled before the pack;
cfang@1102 1249 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
cfang@1102 1250 // schedule this store AFTER the pack
cfang@1102 1251 // (5) We know there is no dependence cycle, so there in no other case;
cfang@1102 1252 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
cfang@1102 1253 //
cfang@1387 1254 // To schedule a load pack, we use the memory state of either the first or the last load in
cfang@1387 1255 // the pack, based on the dependence constraint.
duke@435 1256 void SuperWord::co_locate_pack(Node_List* pk) {
duke@435 1257 if (pk->at(0)->is_Store()) {
duke@435 1258 MemNode* first = executed_first(pk)->as_Mem();
duke@435 1259 MemNode* last = executed_last(pk)->as_Mem();
cfang@1102 1260 Unique_Node_List schedule_before_pack;
cfang@1102 1261 Unique_Node_List memops;
cfang@1102 1262
duke@435 1263 MemNode* current = last->in(MemNode::Memory)->as_Mem();
cfang@1102 1264 MemNode* previous = last;
duke@435 1265 while (true) {
duke@435 1266 assert(in_bb(current), "stay in block");
cfang@1102 1267 memops.push(previous);
cfang@1102 1268 for (DUIterator i = current->outs(); current->has_out(i); i++) {
cfang@1102 1269 Node* use = current->out(i);
cfang@1102 1270 if (use->is_Mem() && use != previous)
cfang@1102 1271 memops.push(use);
cfang@1102 1272 }
kvn@3882 1273 if (current == first) break;
cfang@1102 1274 previous = current;
cfang@1102 1275 current = current->in(MemNode::Memory)->as_Mem();
cfang@1102 1276 }
cfang@1102 1277
cfang@1102 1278 // determine which memory operations should be scheduled before the pack
cfang@1102 1279 for (uint i = 1; i < memops.size(); i++) {
cfang@1102 1280 Node *s1 = memops.at(i);
cfang@1102 1281 if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
cfang@1102 1282 for (uint j = 0; j< i; j++) {
cfang@1102 1283 Node *s2 = memops.at(j);
cfang@1102 1284 if (!independent(s1, s2)) {
cfang@1102 1285 if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
kvn@3882 1286 schedule_before_pack.push(s1); // s1 must be scheduled before
cfang@1102 1287 Node_List* mem_pk = my_pack(s1);
cfang@1102 1288 if (mem_pk != NULL) {
cfang@1102 1289 for (uint ii = 0; ii < mem_pk->size(); ii++) {
kvn@3882 1290 Node* s = mem_pk->at(ii); // follow partner
cfang@1102 1291 if (memops.member(s) && !schedule_before_pack.member(s))
cfang@1102 1292 schedule_before_pack.push(s);
cfang@1102 1293 }
cfang@1102 1294 }
kvn@3882 1295 break;
cfang@1102 1296 }
cfang@1102 1297 }
cfang@1102 1298 }
cfang@1102 1299 }
cfang@1102 1300 }
cfang@1102 1301
kvn@3882 1302 Node* upper_insert_pt = first->in(MemNode::Memory);
kvn@3882 1303 // Following code moves loads connected to upper_insert_pt below aliased stores.
kvn@3882 1304 // Collect such loads here and reconnect them back to upper_insert_pt later.
kvn@3882 1305 memops.clear();
kvn@3882 1306 for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
kvn@3882 1307 Node* use = upper_insert_pt->out(i);
kvn@6639 1308 if (use->is_Mem() && !use->is_Store()) {
kvn@3882 1309 memops.push(use);
kvn@6639 1310 }
kvn@3882 1311 }
kvn@3882 1312
cfang@1102 1313 MemNode* lower_insert_pt = last;
cfang@1102 1314 previous = last; //previous store in pk
cfang@1102 1315 current = last->in(MemNode::Memory)->as_Mem();
cfang@1102 1316
kvn@3882 1317 // start scheduling from "last" to "first"
cfang@1102 1318 while (true) {
cfang@1102 1319 assert(in_bb(current), "stay in block");
cfang@1102 1320 assert(in_pack(previous, pk), "previous stays in pack");
duke@435 1321 Node* my_mem = current->in(MemNode::Memory);
cfang@1102 1322
duke@435 1323 if (in_pack(current, pk)) {
cfang@1102 1324 // Forward users of my memory state (except "previous) to my input memory state
duke@435 1325 for (DUIterator i = current->outs(); current->has_out(i); i++) {
duke@435 1326 Node* use = current->out(i);
cfang@1102 1327 if (use->is_Mem() && use != previous) {
duke@435 1328 assert(use->in(MemNode::Memory) == current, "must be");
cfang@1102 1329 if (schedule_before_pack.member(use)) {
kvn@3847 1330 _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
cfang@1102 1331 } else {
kvn@3847 1332 _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
cfang@1102 1333 }
duke@435 1334 --i; // deleted this edge; rescan position
duke@435 1335 }
duke@435 1336 }
cfang@1102 1337 previous = current;
cfang@1102 1338 } else { // !in_pack(current, pk) ==> a sandwiched store
cfang@1102 1339 remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
duke@435 1340 }
cfang@1102 1341
duke@435 1342 if (current == first) break;
duke@435 1343 current = my_mem->as_Mem();
cfang@1102 1344 } // end while
kvn@3882 1345
kvn@3882 1346 // Reconnect loads back to upper_insert_pt.
kvn@3882 1347 for (uint i = 0; i < memops.size(); i++) {
kvn@3882 1348 Node *ld = memops.at(i);
kvn@3882 1349 if (ld->in(MemNode::Memory) != upper_insert_pt) {
kvn@3882 1350 _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
kvn@3882 1351 }
kvn@3882 1352 }
cfang@1102 1353 } else if (pk->at(0)->is_Load()) { //load
cfang@1387 1354 // all loads in the pack should have the same memory state. By default,
cfang@1387 1355 // we use the memory state of the last load. However, if any load could
cfang@1387 1356 // not be moved down due to the dependence constraint, we use the memory
cfang@1387 1357 // state of the first load.
cfang@1387 1358 Node* last_mem = executed_last(pk)->in(MemNode::Memory);
cfang@1387 1359 Node* first_mem = executed_first(pk)->in(MemNode::Memory);
cfang@1387 1360 bool schedule_last = true;
cfang@1387 1361 for (uint i = 0; i < pk->size(); i++) {
cfang@1387 1362 Node* ld = pk->at(i);
cfang@1387 1363 for (Node* current = last_mem; current != ld->in(MemNode::Memory);
cfang@1387 1364 current=current->in(MemNode::Memory)) {
cfang@1387 1365 assert(current != first_mem, "corrupted memory graph");
cfang@1387 1366 if(current->is_Mem() && !independent(current, ld)){
cfang@1387 1367 schedule_last = false; // a later store depends on this load
cfang@1387 1368 break;
cfang@1387 1369 }
cfang@1387 1370 }
cfang@1387 1371 }
cfang@1387 1372
cfang@1387 1373 Node* mem_input = schedule_last ? last_mem : first_mem;
cfang@1387 1374 _igvn.hash_delete(mem_input);
cfang@1387 1375 // Give each load the same memory state
duke@435 1376 for (uint i = 0; i < pk->size(); i++) {
duke@435 1377 LoadNode* ld = pk->at(i)->as_Load();
kvn@3847 1378 _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
duke@435 1379 }
duke@435 1380 }
duke@435 1381 }
duke@435 1382
duke@435 1383 //------------------------------output---------------------------
duke@435 1384 // Convert packs into vector node operations
duke@435 1385 void SuperWord::output() {
duke@435 1386 if (_packset.length() == 0) return;
duke@435 1387
kvn@2727 1388 #ifndef PRODUCT
kvn@2727 1389 if (TraceLoopOpts) {
kvn@2727 1390 tty->print("SuperWord ");
kvn@2727 1391 lpt()->dump_head();
kvn@2727 1392 }
kvn@2727 1393 #endif
kvn@2727 1394
duke@435 1395 // MUST ENSURE main loop's initial value is properly aligned:
duke@435 1396 // (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
duke@435 1397
duke@435 1398 align_initial_loop_index(align_to_ref());
duke@435 1399
duke@435 1400 // Insert extract (unpack) operations for scalar uses
duke@435 1401 for (int i = 0; i < _packset.length(); i++) {
duke@435 1402 insert_extracts(_packset.at(i));
duke@435 1403 }
duke@435 1404
kvn@4103 1405 Compile* C = _phase->C;
kvn@4103 1406 uint max_vlen_in_bytes = 0;
duke@435 1407 for (int i = 0; i < _block.length(); i++) {
duke@435 1408 Node* n = _block.at(i);
duke@435 1409 Node_List* p = my_pack(n);
duke@435 1410 if (p && n == executed_last(p)) {
duke@435 1411 uint vlen = p->size();
kvn@4103 1412 uint vlen_in_bytes = 0;
duke@435 1413 Node* vn = NULL;
duke@435 1414 Node* low_adr = p->at(0);
duke@435 1415 Node* first = executed_first(p);
kvn@3882 1416 int opc = n->Opcode();
duke@435 1417 if (n->is_Load()) {
duke@435 1418 Node* ctl = n->in(MemNode::Control);
duke@435 1419 Node* mem = first->in(MemNode::Memory);
kvn@7025 1420 SWPointer p1(n->as_Mem(), this);
kvn@7025 1421 // Identify the memory dependency for the new loadVector node by
kvn@7025 1422 // walking up through memory chain.
kvn@7025 1423 // This is done to give flexibility to the new loadVector node so that
kvn@7025 1424 // it can move above independent storeVector nodes.
kvn@7025 1425 while (mem->is_StoreVector()) {
kvn@7025 1426 SWPointer p2(mem->as_Mem(), this);
kvn@7025 1427 int cmp = p1.cmp(p2);
kvn@7025 1428 if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
kvn@7025 1429 mem = mem->in(MemNode::Memory);
kvn@7025 1430 } else {
kvn@7025 1431 break; // dependent memory
kvn@7025 1432 }
kvn@7025 1433 }
duke@435 1434 Node* adr = low_adr->in(MemNode::Address);
duke@435 1435 const TypePtr* atyp = n->adr_type();
roland@7859 1436 vn = LoadVectorNode::make(C, opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
kvn@4103 1437 vlen_in_bytes = vn->as_LoadVector()->memory_size();
duke@435 1438 } else if (n->is_Store()) {
duke@435 1439 // Promote value to be stored to vector
kvn@3040 1440 Node* val = vector_opd(p, MemNode::ValueIn);
duke@435 1441 Node* ctl = n->in(MemNode::Control);
duke@435 1442 Node* mem = first->in(MemNode::Memory);
duke@435 1443 Node* adr = low_adr->in(MemNode::Address);
duke@435 1444 const TypePtr* atyp = n->adr_type();
kvn@4103 1445 vn = StoreVectorNode::make(C, opc, ctl, mem, adr, atyp, val, vlen);
kvn@4103 1446 vlen_in_bytes = vn->as_StoreVector()->memory_size();
duke@435 1447 } else if (n->req() == 3) {
duke@435 1448 // Promote operands to vector
duke@435 1449 Node* in1 = vector_opd(p, 1);
duke@435 1450 Node* in2 = vector_opd(p, 2);
kvn@4001 1451 if (VectorNode::is_invariant_vector(in1) && (n->is_Add() || n->is_Mul())) {
kvn@4001 1452 // Move invariant vector input into second position to avoid register spilling.
kvn@4001 1453 Node* tmp = in1;
kvn@4001 1454 in1 = in2;
kvn@4001 1455 in2 = tmp;
kvn@4001 1456 }
kvn@4103 1457 vn = VectorNode::make(C, opc, in1, in2, vlen, velt_basic_type(n));
kvn@4103 1458 vlen_in_bytes = vn->as_Vector()->length_in_bytes();
duke@435 1459 } else {
duke@435 1460 ShouldNotReachHere();
duke@435 1461 }
kvn@3882 1462 assert(vn != NULL, "sanity");
kvn@4114 1463 _igvn.register_new_node_with_optimizer(vn);
duke@435 1464 _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
duke@435 1465 for (uint j = 0; j < p->size(); j++) {
duke@435 1466 Node* pm = p->at(j);
kvn@1976 1467 _igvn.replace_node(pm, vn);
duke@435 1468 }
duke@435 1469 _igvn._worklist.push(vn);
kvn@4103 1470
kvn@4103 1471 if (vlen_in_bytes > max_vlen_in_bytes) {
kvn@4103 1472 max_vlen_in_bytes = vlen_in_bytes;
kvn@4103 1473 }
kvn@3882 1474 #ifdef ASSERT
kvn@3886 1475 if (TraceNewVectors) {
kvn@3882 1476 tty->print("new Vector node: ");
kvn@3882 1477 vn->dump();
kvn@3882 1478 }
kvn@3882 1479 #endif
duke@435 1480 }
duke@435 1481 }
kvn@4103 1482 C->set_max_vector_size(max_vlen_in_bytes);
duke@435 1483 }
duke@435 1484
duke@435 1485 //------------------------------vector_opd---------------------------
duke@435 1486 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
kvn@3040 1487 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
duke@435 1488 Node* p0 = p->at(0);
duke@435 1489 uint vlen = p->size();
duke@435 1490 Node* opd = p0->in(opd_idx);
duke@435 1491
kvn@4006 1492 if (same_inputs(p, opd_idx)) {
kvn@3882 1493 if (opd->is_Vector() || opd->is_LoadVector()) {
kvn@4004 1494 assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
kvn@3040 1495 return opd; // input is matching vector
duke@435 1496 }
kvn@4001 1497 if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
kvn@4001 1498 Compile* C = _phase->C;
kvn@4001 1499 Node* cnt = opd;
kvn@4134 1500 // Vector instructions do not mask shift count, do it here.
kvn@4001 1501 juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
kvn@4001 1502 const TypeInt* t = opd->find_int_type();
kvn@4001 1503 if (t != NULL && t->is_con()) {
kvn@4001 1504 juint shift = t->get_con();
kvn@4001 1505 if (shift > mask) { // Unsigned cmp
kvn@4001 1506 cnt = ConNode::make(C, TypeInt::make(shift & mask));
kvn@4001 1507 }
kvn@4001 1508 } else {
kvn@4001 1509 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
kvn@4001 1510 cnt = ConNode::make(C, TypeInt::make(mask));
kvn@4114 1511 _igvn.register_new_node_with_optimizer(cnt);
kvn@4115 1512 cnt = new (C) AndINode(opd, cnt);
kvn@4114 1513 _igvn.register_new_node_with_optimizer(cnt);
kvn@4001 1514 _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
kvn@4001 1515 }
kvn@4001 1516 assert(opd->bottom_type()->isa_int(), "int type only");
kvn@4134 1517 // Move non constant shift count into vector register.
kvn@4134 1518 cnt = VectorNode::shift_count(C, p0, cnt, vlen, velt_basic_type(p0));
kvn@4001 1519 }
kvn@4001 1520 if (cnt != opd) {
kvn@4114 1521 _igvn.register_new_node_with_optimizer(cnt);
kvn@4001 1522 _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
kvn@4001 1523 }
kvn@4001 1524 return cnt;
kvn@4001 1525 }
kvn@3882 1526 assert(!opd->is_StoreVector(), "such vector is not expected here");
kvn@3748 1527 // Convert scalar input to vector with the same number of elements as
kvn@3748 1528 // p0's vector. Use p0's type because size of operand's container in
kvn@3748 1529 // vector should match p0's size regardless operand's size.
kvn@3748 1530 const Type* p0_t = velt_type(p0);
kvn@3748 1531 VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, p0_t);
duke@435 1532
kvn@4114 1533 _igvn.register_new_node_with_optimizer(vn);
duke@435 1534 _phase->set_ctrl(vn, _phase->get_ctrl(opd));
kvn@3882 1535 #ifdef ASSERT
kvn@3886 1536 if (TraceNewVectors) {
kvn@3882 1537 tty->print("new Vector node: ");
kvn@3882 1538 vn->dump();
kvn@3882 1539 }
kvn@3882 1540 #endif
duke@435 1541 return vn;
duke@435 1542 }
duke@435 1543
duke@435 1544 // Insert pack operation
kvn@3882 1545 BasicType bt = velt_basic_type(p0);
kvn@3882 1546 PackNode* pk = PackNode::make(_phase->C, opd, vlen, bt);
kvn@3748 1547 DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
duke@435 1548
duke@435 1549 for (uint i = 1; i < vlen; i++) {
duke@435 1550 Node* pi = p->at(i);
duke@435 1551 Node* in = pi->in(opd_idx);
duke@435 1552 assert(my_pack(in) == NULL, "Should already have been unpacked");
kvn@3748 1553 assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
kvn@4006 1554 pk->add_opd(in);
duke@435 1555 }
kvn@4114 1556 _igvn.register_new_node_with_optimizer(pk);
duke@435 1557 _phase->set_ctrl(pk, _phase->get_ctrl(opd));
kvn@3882 1558 #ifdef ASSERT
kvn@4103 1559 if (TraceNewVectors) {
kvn@4103 1560 tty->print("new Vector node: ");
kvn@4103 1561 pk->dump();
kvn@4103 1562 }
kvn@3882 1563 #endif
duke@435 1564 return pk;
duke@435 1565 }
duke@435 1566
duke@435 1567 //------------------------------insert_extracts---------------------------
duke@435 1568 // If a use of pack p is not a vector use, then replace the
duke@435 1569 // use with an extract operation.
duke@435 1570 void SuperWord::insert_extracts(Node_List* p) {
duke@435 1571 if (p->at(0)->is_Store()) return;
duke@435 1572 assert(_n_idx_list.is_empty(), "empty (node,index) list");
duke@435 1573
duke@435 1574 // Inspect each use of each pack member. For each use that is
duke@435 1575 // not a vector use, replace the use with an extract operation.
duke@435 1576
duke@435 1577 for (uint i = 0; i < p->size(); i++) {
duke@435 1578 Node* def = p->at(i);
duke@435 1579 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 1580 Node* use = def->fast_out(j);
duke@435 1581 for (uint k = 0; k < use->req(); k++) {
duke@435 1582 Node* n = use->in(k);
duke@435 1583 if (def == n) {
duke@435 1584 if (!is_vector_use(use, k)) {
duke@435 1585 _n_idx_list.push(use, k);
duke@435 1586 }
duke@435 1587 }
duke@435 1588 }
duke@435 1589 }
duke@435 1590 }
duke@435 1591
duke@435 1592 while (_n_idx_list.is_nonempty()) {
duke@435 1593 Node* use = _n_idx_list.node();
duke@435 1594 int idx = _n_idx_list.index();
duke@435 1595 _n_idx_list.pop();
duke@435 1596 Node* def = use->in(idx);
duke@435 1597
duke@435 1598 // Insert extract operation
duke@435 1599 _igvn.hash_delete(def);
duke@435 1600 int def_pos = alignment(def) / data_size(def);
duke@435 1601
kvn@3882 1602 Node* ex = ExtractNode::make(_phase->C, def, def_pos, velt_basic_type(def));
kvn@4114 1603 _igvn.register_new_node_with_optimizer(ex);
duke@435 1604 _phase->set_ctrl(ex, _phase->get_ctrl(def));
kvn@3847 1605 _igvn.replace_input_of(use, idx, ex);
duke@435 1606 _igvn._worklist.push(def);
duke@435 1607
duke@435 1608 bb_insert_after(ex, bb_idx(def));
kvn@3882 1609 set_velt_type(ex, velt_type(def));
duke@435 1610 }
duke@435 1611 }
duke@435 1612
duke@435 1613 //------------------------------is_vector_use---------------------------
duke@435 1614 // Is use->in(u_idx) a vector use?
duke@435 1615 bool SuperWord::is_vector_use(Node* use, int u_idx) {
duke@435 1616 Node_List* u_pk = my_pack(use);
duke@435 1617 if (u_pk == NULL) return false;
duke@435 1618 Node* def = use->in(u_idx);
duke@435 1619 Node_List* d_pk = my_pack(def);
duke@435 1620 if (d_pk == NULL) {
duke@435 1621 // check for scalar promotion
duke@435 1622 Node* n = u_pk->at(0)->in(u_idx);
duke@435 1623 for (uint i = 1; i < u_pk->size(); i++) {
duke@435 1624 if (u_pk->at(i)->in(u_idx) != n) return false;
duke@435 1625 }
duke@435 1626 return true;
duke@435 1627 }
duke@435 1628 if (u_pk->size() != d_pk->size())
duke@435 1629 return false;
duke@435 1630 for (uint i = 0; i < u_pk->size(); i++) {
duke@435 1631 Node* ui = u_pk->at(i);
duke@435 1632 Node* di = d_pk->at(i);
duke@435 1633 if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
duke@435 1634 return false;
duke@435 1635 }
duke@435 1636 return true;
duke@435 1637 }
duke@435 1638
duke@435 1639 //------------------------------construct_bb---------------------------
duke@435 1640 // Construct reverse postorder list of block members
kvn@4620 1641 bool SuperWord::construct_bb() {
duke@435 1642 Node* entry = bb();
duke@435 1643
duke@435 1644 assert(_stk.length() == 0, "stk is empty");
duke@435 1645 assert(_block.length() == 0, "block is empty");
duke@435 1646 assert(_data_entry.length() == 0, "data_entry is empty");
duke@435 1647 assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
duke@435 1648 assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
duke@435 1649
duke@435 1650 // Find non-control nodes with no inputs from within block,
duke@435 1651 // create a temporary map from node _idx to bb_idx for use
duke@435 1652 // by the visited and post_visited sets,
duke@435 1653 // and count number of nodes in block.
duke@435 1654 int bb_ct = 0;
duke@435 1655 for (uint i = 0; i < lpt()->_body.size(); i++ ) {
duke@435 1656 Node *n = lpt()->_body.at(i);
duke@435 1657 set_bb_idx(n, i); // Create a temporary map
duke@435 1658 if (in_bb(n)) {
kvn@4620 1659 if (n->is_LoadStore() || n->is_MergeMem() ||
kvn@4620 1660 (n->is_Proj() && !n->as_Proj()->is_CFG())) {
kvn@4620 1661 // Bailout if the loop has LoadStore, MergeMem or data Proj
kvn@4620 1662 // nodes. Superword optimization does not work with them.
kvn@4620 1663 return false;
kvn@4620 1664 }
duke@435 1665 bb_ct++;
duke@435 1666 if (!n->is_CFG()) {
duke@435 1667 bool found = false;
duke@435 1668 for (uint j = 0; j < n->req(); j++) {
duke@435 1669 Node* def = n->in(j);
duke@435 1670 if (def && in_bb(def)) {
duke@435 1671 found = true;
duke@435 1672 break;
duke@435 1673 }
duke@435 1674 }
duke@435 1675 if (!found) {
duke@435 1676 assert(n != entry, "can't be entry");
duke@435 1677 _data_entry.push(n);
duke@435 1678 }
duke@435 1679 }
duke@435 1680 }
duke@435 1681 }
duke@435 1682
duke@435 1683 // Find memory slices (head and tail)
duke@435 1684 for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
duke@435 1685 Node *n = lp()->fast_out(i);
duke@435 1686 if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
duke@435 1687 Node* n_tail = n->in(LoopNode::LoopBackControl);
kvn@688 1688 if (n_tail != n->in(LoopNode::EntryControl)) {
kvn@4620 1689 if (!n_tail->is_Mem()) {
kvn@4620 1690 assert(n_tail->is_Mem(), err_msg_res("unexpected node for memory slice: %s", n_tail->Name()));
kvn@4620 1691 return false; // Bailout
kvn@4620 1692 }
kvn@688 1693 _mem_slice_head.push(n);
kvn@688 1694 _mem_slice_tail.push(n_tail);
kvn@688 1695 }
duke@435 1696 }
duke@435 1697 }
duke@435 1698
duke@435 1699 // Create an RPO list of nodes in block
duke@435 1700
duke@435 1701 visited_clear();
duke@435 1702 post_visited_clear();
duke@435 1703
duke@435 1704 // Push all non-control nodes with no inputs from within block, then control entry
duke@435 1705 for (int j = 0; j < _data_entry.length(); j++) {
duke@435 1706 Node* n = _data_entry.at(j);
duke@435 1707 visited_set(n);
duke@435 1708 _stk.push(n);
duke@435 1709 }
duke@435 1710 visited_set(entry);
duke@435 1711 _stk.push(entry);
duke@435 1712
duke@435 1713 // Do a depth first walk over out edges
duke@435 1714 int rpo_idx = bb_ct - 1;
duke@435 1715 int size;
duke@435 1716 while ((size = _stk.length()) > 0) {
duke@435 1717 Node* n = _stk.top(); // Leave node on stack
duke@435 1718 if (!visited_test_set(n)) {
duke@435 1719 // forward arc in graph
duke@435 1720 } else if (!post_visited_test(n)) {
duke@435 1721 // cross or back arc
duke@435 1722 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1723 Node *use = n->fast_out(i);
duke@435 1724 if (in_bb(use) && !visited_test(use) &&
duke@435 1725 // Don't go around backedge
duke@435 1726 (!use->is_Phi() || n == entry)) {
duke@435 1727 _stk.push(use);
duke@435 1728 }
duke@435 1729 }
duke@435 1730 if (_stk.length() == size) {
duke@435 1731 // There were no additional uses, post visit node now
duke@435 1732 _stk.pop(); // Remove node from stack
duke@435 1733 assert(rpo_idx >= 0, "");
duke@435 1734 _block.at_put_grow(rpo_idx, n);
duke@435 1735 rpo_idx--;
duke@435 1736 post_visited_set(n);
duke@435 1737 assert(rpo_idx >= 0 || _stk.is_empty(), "");
duke@435 1738 }
duke@435 1739 } else {
duke@435 1740 _stk.pop(); // Remove post-visited node from stack
duke@435 1741 }
duke@435 1742 }
duke@435 1743
duke@435 1744 // Create real map of block indices for nodes
duke@435 1745 for (int j = 0; j < _block.length(); j++) {
duke@435 1746 Node* n = _block.at(j);
duke@435 1747 set_bb_idx(n, j);
duke@435 1748 }
duke@435 1749
duke@435 1750 initialize_bb(); // Ensure extra info is allocated.
duke@435 1751
duke@435 1752 #ifndef PRODUCT
duke@435 1753 if (TraceSuperWord) {
duke@435 1754 print_bb();
duke@435 1755 tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
duke@435 1756 for (int m = 0; m < _data_entry.length(); m++) {
duke@435 1757 tty->print("%3d ", m);
duke@435 1758 _data_entry.at(m)->dump();
duke@435 1759 }
duke@435 1760 tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
duke@435 1761 for (int m = 0; m < _mem_slice_head.length(); m++) {
duke@435 1762 tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
duke@435 1763 tty->print(" "); _mem_slice_tail.at(m)->dump();
duke@435 1764 }
duke@435 1765 }
duke@435 1766 #endif
duke@435 1767 assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
kvn@4620 1768 return (_mem_slice_head.length() > 0) || (_data_entry.length() > 0);
duke@435 1769 }
duke@435 1770
duke@435 1771 //------------------------------initialize_bb---------------------------
duke@435 1772 // Initialize per node info
duke@435 1773 void SuperWord::initialize_bb() {
duke@435 1774 Node* last = _block.at(_block.length() - 1);
duke@435 1775 grow_node_info(bb_idx(last));
duke@435 1776 }
duke@435 1777
duke@435 1778 //------------------------------bb_insert_after---------------------------
duke@435 1779 // Insert n into block after pos
duke@435 1780 void SuperWord::bb_insert_after(Node* n, int pos) {
duke@435 1781 int n_pos = pos + 1;
duke@435 1782 // Make room
duke@435 1783 for (int i = _block.length() - 1; i >= n_pos; i--) {
duke@435 1784 _block.at_put_grow(i+1, _block.at(i));
duke@435 1785 }
duke@435 1786 for (int j = _node_info.length() - 1; j >= n_pos; j--) {
duke@435 1787 _node_info.at_put_grow(j+1, _node_info.at(j));
duke@435 1788 }
duke@435 1789 // Set value
duke@435 1790 _block.at_put_grow(n_pos, n);
duke@435 1791 _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
duke@435 1792 // Adjust map from node->_idx to _block index
duke@435 1793 for (int i = n_pos; i < _block.length(); i++) {
duke@435 1794 set_bb_idx(_block.at(i), i);
duke@435 1795 }
duke@435 1796 }
duke@435 1797
duke@435 1798 //------------------------------compute_max_depth---------------------------
duke@435 1799 // Compute max depth for expressions from beginning of block
duke@435 1800 // Use to prune search paths during test for independence.
duke@435 1801 void SuperWord::compute_max_depth() {
duke@435 1802 int ct = 0;
duke@435 1803 bool again;
duke@435 1804 do {
duke@435 1805 again = false;
duke@435 1806 for (int i = 0; i < _block.length(); i++) {
duke@435 1807 Node* n = _block.at(i);
duke@435 1808 if (!n->is_Phi()) {
duke@435 1809 int d_orig = depth(n);
duke@435 1810 int d_in = 0;
duke@435 1811 for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
duke@435 1812 Node* pred = preds.current();
duke@435 1813 if (in_bb(pred)) {
duke@435 1814 d_in = MAX2(d_in, depth(pred));
duke@435 1815 }
duke@435 1816 }
duke@435 1817 if (d_in + 1 != d_orig) {
duke@435 1818 set_depth(n, d_in + 1);
duke@435 1819 again = true;
duke@435 1820 }
duke@435 1821 }
duke@435 1822 }
duke@435 1823 ct++;
duke@435 1824 } while (again);
duke@435 1825 #ifndef PRODUCT
duke@435 1826 if (TraceSuperWord && Verbose)
duke@435 1827 tty->print_cr("compute_max_depth iterated: %d times", ct);
duke@435 1828 #endif
duke@435 1829 }
duke@435 1830
duke@435 1831 //-------------------------compute_vector_element_type-----------------------
duke@435 1832 // Compute necessary vector element type for expressions
duke@435 1833 // This propagates backwards a narrower integer type when the
duke@435 1834 // upper bits of the value are not needed.
duke@435 1835 // Example: char a,b,c; a = b + c;
duke@435 1836 // Normally the type of the add is integer, but for packed character
duke@435 1837 // operations the type of the add needs to be char.
duke@435 1838 void SuperWord::compute_vector_element_type() {
duke@435 1839 #ifndef PRODUCT
duke@435 1840 if (TraceSuperWord && Verbose)
duke@435 1841 tty->print_cr("\ncompute_velt_type:");
duke@435 1842 #endif
duke@435 1843
duke@435 1844 // Initial type
duke@435 1845 for (int i = 0; i < _block.length(); i++) {
duke@435 1846 Node* n = _block.at(i);
kvn@3882 1847 set_velt_type(n, container_type(n));
duke@435 1848 }
duke@435 1849
kvn@4204 1850 // Propagate integer narrowed type backwards through operations
duke@435 1851 // that don't depend on higher order bits
duke@435 1852 for (int i = _block.length() - 1; i >= 0; i--) {
duke@435 1853 Node* n = _block.at(i);
duke@435 1854 // Only integer types need be examined
kvn@4204 1855 const Type* vtn = velt_type(n);
kvn@4204 1856 if (vtn->basic_type() == T_INT) {
duke@435 1857 uint start, end;
kvn@4006 1858 VectorNode::vector_operands(n, &start, &end);
duke@435 1859
duke@435 1860 for (uint j = start; j < end; j++) {
duke@435 1861 Node* in = n->in(j);
kvn@4001 1862 // Don't propagate through a memory
kvn@4001 1863 if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
kvn@4001 1864 data_size(n) < data_size(in)) {
kvn@4001 1865 bool same_type = true;
kvn@4001 1866 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
kvn@4001 1867 Node *use = in->fast_out(k);
kvn@4001 1868 if (!in_bb(use) || !same_velt_type(use, n)) {
kvn@4001 1869 same_type = false;
kvn@4001 1870 break;
duke@435 1871 }
kvn@4001 1872 }
kvn@4001 1873 if (same_type) {
kvn@4204 1874 // For right shifts of small integer types (bool, byte, char, short)
kvn@4204 1875 // we need precise information about sign-ness. Only Load nodes have
kvn@4204 1876 // this information because Store nodes are the same for signed and
kvn@4204 1877 // unsigned values. And any arithmetic operation after a load may
kvn@4204 1878 // expand a value to signed Int so such right shifts can't be used
kvn@4204 1879 // because vector elements do not have upper bits of Int.
kvn@4204 1880 const Type* vt = vtn;
kvn@4204 1881 if (VectorNode::is_shift(in)) {
kvn@4204 1882 Node* load = in->in(1);
kvn@4207 1883 if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
kvn@4204 1884 vt = velt_type(load);
kvn@4204 1885 } else if (in->Opcode() != Op_LShiftI) {
kvn@4204 1886 // Widen type to Int to avoid creation of right shift vector
kvn@4204 1887 // (align + data_size(s1) check in stmts_can_pack() will fail).
kvn@4204 1888 // Note, left shifts work regardless type.
kvn@4204 1889 vt = TypeInt::INT;
kvn@4204 1890 }
kvn@4204 1891 }
kvn@4001 1892 set_velt_type(in, vt);
duke@435 1893 }
duke@435 1894 }
duke@435 1895 }
duke@435 1896 }
duke@435 1897 }
duke@435 1898 #ifndef PRODUCT
duke@435 1899 if (TraceSuperWord && Verbose) {
duke@435 1900 for (int i = 0; i < _block.length(); i++) {
duke@435 1901 Node* n = _block.at(i);
duke@435 1902 velt_type(n)->dump();
duke@435 1903 tty->print("\t");
duke@435 1904 n->dump();
duke@435 1905 }
duke@435 1906 }
duke@435 1907 #endif
duke@435 1908 }
duke@435 1909
duke@435 1910 //------------------------------memory_alignment---------------------------
duke@435 1911 // Alignment within a vector memory reference
kvn@4105 1912 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
duke@435 1913 SWPointer p(s, this);
duke@435 1914 if (!p.valid()) {
duke@435 1915 return bottom_align;
duke@435 1916 }
kvn@3886 1917 int vw = vector_width_in_bytes(s);
kvn@3882 1918 if (vw < 2) {
kvn@3882 1919 return bottom_align; // No vectors for this type
kvn@3882 1920 }
duke@435 1921 int offset = p.offset_in_bytes();
kvn@4105 1922 offset += iv_adjust*p.memory_size();
kvn@3882 1923 int off_rem = offset % vw;
kvn@3882 1924 int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
duke@435 1925 return off_mod;
duke@435 1926 }
duke@435 1927
duke@435 1928 //---------------------------container_type---------------------------
duke@435 1929 // Smallest type containing range of values
kvn@3882 1930 const Type* SuperWord::container_type(Node* n) {
kvn@3882 1931 if (n->is_Mem()) {
kvn@4204 1932 BasicType bt = n->as_Mem()->memory_type();
kvn@4204 1933 if (n->is_Store() && (bt == T_CHAR)) {
kvn@4204 1934 // Use T_SHORT type instead of T_CHAR for stored values because any
kvn@4204 1935 // preceding arithmetic operation extends values to signed Int.
kvn@4204 1936 bt = T_SHORT;
kvn@4204 1937 }
kvn@4204 1938 if (n->Opcode() == Op_LoadUB) {
kvn@4204 1939 // Adjust type for unsigned byte loads, it is important for right shifts.
kvn@4204 1940 // T_BOOLEAN is used because there is no basic type representing type
kvn@4204 1941 // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
kvn@4204 1942 // size (one byte) and sign is important.
kvn@4204 1943 bt = T_BOOLEAN;
kvn@4204 1944 }
kvn@4204 1945 return Type::get_const_basic_type(bt);
duke@435 1946 }
kvn@3882 1947 const Type* t = _igvn.type(n);
duke@435 1948 if (t->basic_type() == T_INT) {
kvn@4001 1949 // A narrow type of arithmetic operations will be determined by
kvn@4001 1950 // propagating the type of memory operations.
duke@435 1951 return TypeInt::INT;
duke@435 1952 }
duke@435 1953 return t;
duke@435 1954 }
duke@435 1955
kvn@3882 1956 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
kvn@3882 1957 const Type* vt1 = velt_type(n1);
kvn@4105 1958 const Type* vt2 = velt_type(n2);
kvn@3882 1959 if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
kvn@3882 1960 // Compare vectors element sizes for integer types.
kvn@3882 1961 return data_size(n1) == data_size(n2);
kvn@3882 1962 }
kvn@3882 1963 return vt1 == vt2;
kvn@3882 1964 }
kvn@3882 1965
duke@435 1966 //------------------------------in_packset---------------------------
duke@435 1967 // Are s1 and s2 in a pack pair and ordered as s1,s2?
duke@435 1968 bool SuperWord::in_packset(Node* s1, Node* s2) {
duke@435 1969 for (int i = 0; i < _packset.length(); i++) {
duke@435 1970 Node_List* p = _packset.at(i);
duke@435 1971 assert(p->size() == 2, "must be");
duke@435 1972 if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
duke@435 1973 return true;
duke@435 1974 }
duke@435 1975 }
duke@435 1976 return false;
duke@435 1977 }
duke@435 1978
duke@435 1979 //------------------------------in_pack---------------------------
duke@435 1980 // Is s in pack p?
duke@435 1981 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
duke@435 1982 for (uint i = 0; i < p->size(); i++) {
duke@435 1983 if (p->at(i) == s) {
duke@435 1984 return p;
duke@435 1985 }
duke@435 1986 }
duke@435 1987 return NULL;
duke@435 1988 }
duke@435 1989
duke@435 1990 //------------------------------remove_pack_at---------------------------
duke@435 1991 // Remove the pack at position pos in the packset
duke@435 1992 void SuperWord::remove_pack_at(int pos) {
duke@435 1993 Node_List* p = _packset.at(pos);
duke@435 1994 for (uint i = 0; i < p->size(); i++) {
duke@435 1995 Node* s = p->at(i);
duke@435 1996 set_my_pack(s, NULL);
duke@435 1997 }
duke@435 1998 _packset.remove_at(pos);
duke@435 1999 }
duke@435 2000
duke@435 2001 //------------------------------executed_first---------------------------
duke@435 2002 // Return the node executed first in pack p. Uses the RPO block list
duke@435 2003 // to determine order.
duke@435 2004 Node* SuperWord::executed_first(Node_List* p) {
duke@435 2005 Node* n = p->at(0);
duke@435 2006 int n_rpo = bb_idx(n);
duke@435 2007 for (uint i = 1; i < p->size(); i++) {
duke@435 2008 Node* s = p->at(i);
duke@435 2009 int s_rpo = bb_idx(s);
duke@435 2010 if (s_rpo < n_rpo) {
duke@435 2011 n = s;
duke@435 2012 n_rpo = s_rpo;
duke@435 2013 }
duke@435 2014 }
duke@435 2015 return n;
duke@435 2016 }
duke@435 2017
duke@435 2018 //------------------------------executed_last---------------------------
duke@435 2019 // Return the node executed last in pack p.
duke@435 2020 Node* SuperWord::executed_last(Node_List* p) {
duke@435 2021 Node* n = p->at(0);
duke@435 2022 int n_rpo = bb_idx(n);
duke@435 2023 for (uint i = 1; i < p->size(); i++) {
duke@435 2024 Node* s = p->at(i);
duke@435 2025 int s_rpo = bb_idx(s);
duke@435 2026 if (s_rpo > n_rpo) {
duke@435 2027 n = s;
duke@435 2028 n_rpo = s_rpo;
duke@435 2029 }
duke@435 2030 }
duke@435 2031 return n;
duke@435 2032 }
duke@435 2033
roland@7859 2034 LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
roland@7859 2035 LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
roland@7859 2036 for (uint i = 0; i < p->size(); i++) {
roland@7859 2037 Node* n = p->at(i);
roland@7859 2038 assert(n->is_Load(), "only meaningful for loads");
roland@7859 2039 if (!n->depends_only_on_test()) {
roland@7859 2040 dep = LoadNode::Pinned;
roland@7859 2041 }
roland@7859 2042 }
roland@7859 2043 return dep;
roland@7859 2044 }
roland@7859 2045
roland@7859 2046
duke@435 2047 //----------------------------align_initial_loop_index---------------------------
duke@435 2048 // Adjust pre-loop limit so that in main loop, a load/store reference
duke@435 2049 // to align_to_ref will be a position zero in the vector.
duke@435 2050 // (iv + k) mod vector_align == 0
duke@435 2051 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
duke@435 2052 CountedLoopNode *main_head = lp()->as_CountedLoop();
duke@435 2053 assert(main_head->is_main_loop(), "");
duke@435 2054 CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
duke@435 2055 assert(pre_end != NULL, "");
duke@435 2056 Node *pre_opaq1 = pre_end->limit();
duke@435 2057 assert(pre_opaq1->Opcode() == Op_Opaque1, "");
duke@435 2058 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
never@507 2059 Node *lim0 = pre_opaq->in(1);
duke@435 2060
duke@435 2061 // Where we put new limit calculations
duke@435 2062 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 2063
duke@435 2064 // Ensure the original loop limit is available from the
duke@435 2065 // pre-loop Opaque1 node.
duke@435 2066 Node *orig_limit = pre_opaq->original_loop_limit();
duke@435 2067 assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
duke@435 2068
duke@435 2069 SWPointer align_to_ref_p(align_to_ref, this);
kvn@3882 2070 assert(align_to_ref_p.valid(), "sanity");
duke@435 2071
never@507 2072 // Given:
never@507 2073 // lim0 == original pre loop limit
never@507 2074 // V == v_align (power of 2)
never@507 2075 // invar == extra invariant piece of the address expression
kvn@4001 2076 // e == offset [ +/- invar ]
duke@435 2077 //
never@507 2078 // When reassociating expressions involving '%' the basic rules are:
never@507 2079 // (a - b) % k == 0 => a % k == b % k
never@507 2080 // and:
never@507 2081 // (a + b) % k == 0 => a % k == (k - b) % k
never@507 2082 //
never@507 2083 // For stride > 0 && scale > 0,
never@507 2084 // Derive the new pre-loop limit "lim" such that the two constraints:
never@507 2085 // (1) lim = lim0 + N (where N is some positive integer < V)
never@507 2086 // (2) (e + lim) % V == 0
never@507 2087 // are true.
never@507 2088 //
never@507 2089 // Substituting (1) into (2),
never@507 2090 // (e + lim0 + N) % V == 0
never@507 2091 // solve for N:
never@507 2092 // N = (V - (e + lim0)) % V
never@507 2093 // substitute back into (1), so that new limit
never@507 2094 // lim = lim0 + (V - (e + lim0)) % V
never@507 2095 //
never@507 2096 // For stride > 0 && scale < 0
never@507 2097 // Constraints:
never@507 2098 // lim = lim0 + N
never@507 2099 // (e - lim) % V == 0
never@507 2100 // Solving for lim:
never@507 2101 // (e - lim0 - N) % V == 0
never@507 2102 // N = (e - lim0) % V
never@507 2103 // lim = lim0 + (e - lim0) % V
never@507 2104 //
never@507 2105 // For stride < 0 && scale > 0
never@507 2106 // Constraints:
never@507 2107 // lim = lim0 - N
never@507 2108 // (e + lim) % V == 0
never@507 2109 // Solving for lim:
never@507 2110 // (e + lim0 - N) % V == 0
never@507 2111 // N = (e + lim0) % V
never@507 2112 // lim = lim0 - (e + lim0) % V
never@507 2113 //
never@507 2114 // For stride < 0 && scale < 0
never@507 2115 // Constraints:
never@507 2116 // lim = lim0 - N
never@507 2117 // (e - lim) % V == 0
never@507 2118 // Solving for lim:
never@507 2119 // (e - lim0 + N) % V == 0
never@507 2120 // N = (V - (e - lim0)) % V
never@507 2121 // lim = lim0 - (V - (e - lim0)) % V
duke@435 2122
kvn@3886 2123 int vw = vector_width_in_bytes(align_to_ref);
never@507 2124 int stride = iv_stride();
never@507 2125 int scale = align_to_ref_p.scale_in_bytes();
duke@435 2126 int elt_size = align_to_ref_p.memory_size();
kvn@3882 2127 int v_align = vw / elt_size;
kvn@3886 2128 assert(v_align > 1, "sanity");
kvn@4001 2129 int offset = align_to_ref_p.offset_in_bytes() / elt_size;
kvn@4001 2130 Node *offsn = _igvn.intcon(offset);
duke@435 2131
kvn@4001 2132 Node *e = offsn;
duke@435 2133 if (align_to_ref_p.invar() != NULL) {
kvn@4001 2134 // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
duke@435 2135 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
kvn@4115 2136 Node* aref = new (_phase->C) URShiftINode(align_to_ref_p.invar(), log2_elt);
kvn@4114 2137 _igvn.register_new_node_with_optimizer(aref);
duke@435 2138 _phase->set_ctrl(aref, pre_ctrl);
never@507 2139 if (align_to_ref_p.negate_invar()) {
kvn@4115 2140 e = new (_phase->C) SubINode(e, aref);
duke@435 2141 } else {
kvn@4115 2142 e = new (_phase->C) AddINode(e, aref);
duke@435 2143 }
kvn@4114 2144 _igvn.register_new_node_with_optimizer(e);
never@507 2145 _phase->set_ctrl(e, pre_ctrl);
duke@435 2146 }
kvn@3882 2147 if (vw > ObjectAlignmentInBytes) {
kvn@3882 2148 // incorporate base e +/- base && Mask >>> log2(elt)
kvn@4115 2149 Node* xbase = new(_phase->C) CastP2XNode(NULL, align_to_ref_p.base());
kvn@4114 2150 _igvn.register_new_node_with_optimizer(xbase);
kvn@4001 2151 #ifdef _LP64
kvn@4115 2152 xbase = new (_phase->C) ConvL2INode(xbase);
kvn@4114 2153 _igvn.register_new_node_with_optimizer(xbase);
kvn@4001 2154 #endif
kvn@4001 2155 Node* mask = _igvn.intcon(vw-1);
kvn@4115 2156 Node* masked_xbase = new (_phase->C) AndINode(xbase, mask);
kvn@4114 2157 _igvn.register_new_node_with_optimizer(masked_xbase);
kvn@3882 2158 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
kvn@4115 2159 Node* bref = new (_phase->C) URShiftINode(masked_xbase, log2_elt);
kvn@4114 2160 _igvn.register_new_node_with_optimizer(bref);
kvn@3882 2161 _phase->set_ctrl(bref, pre_ctrl);
kvn@4115 2162 e = new (_phase->C) AddINode(e, bref);
kvn@4114 2163 _igvn.register_new_node_with_optimizer(e);
kvn@3882 2164 _phase->set_ctrl(e, pre_ctrl);
kvn@3882 2165 }
never@507 2166
never@507 2167 // compute e +/- lim0
never@507 2168 if (scale < 0) {
kvn@4115 2169 e = new (_phase->C) SubINode(e, lim0);
never@507 2170 } else {
kvn@4115 2171 e = new (_phase->C) AddINode(e, lim0);
never@507 2172 }
kvn@4114 2173 _igvn.register_new_node_with_optimizer(e);
never@507 2174 _phase->set_ctrl(e, pre_ctrl);
never@507 2175
never@507 2176 if (stride * scale > 0) {
never@507 2177 // compute V - (e +/- lim0)
never@507 2178 Node* va = _igvn.intcon(v_align);
kvn@4115 2179 e = new (_phase->C) SubINode(va, e);
kvn@4114 2180 _igvn.register_new_node_with_optimizer(e);
never@507 2181 _phase->set_ctrl(e, pre_ctrl);
never@507 2182 }
never@507 2183 // compute N = (exp) % V
duke@435 2184 Node* va_msk = _igvn.intcon(v_align - 1);
kvn@4115 2185 Node* N = new (_phase->C) AndINode(e, va_msk);
kvn@4114 2186 _igvn.register_new_node_with_optimizer(N);
never@507 2187 _phase->set_ctrl(N, pre_ctrl);
never@507 2188
never@507 2189 // substitute back into (1), so that new limit
never@507 2190 // lim = lim0 + N
never@507 2191 Node* lim;
never@507 2192 if (stride < 0) {
kvn@4115 2193 lim = new (_phase->C) SubINode(lim0, N);
duke@435 2194 } else {
kvn@4115 2195 lim = new (_phase->C) AddINode(lim0, N);
duke@435 2196 }
kvn@4114 2197 _igvn.register_new_node_with_optimizer(lim);
never@507 2198 _phase->set_ctrl(lim, pre_ctrl);
duke@435 2199 Node* constrained =
kvn@4115 2200 (stride > 0) ? (Node*) new (_phase->C) MinINode(lim, orig_limit)
kvn@4115 2201 : (Node*) new (_phase->C) MaxINode(lim, orig_limit);
kvn@4114 2202 _igvn.register_new_node_with_optimizer(constrained);
duke@435 2203 _phase->set_ctrl(constrained, pre_ctrl);
duke@435 2204 _igvn.hash_delete(pre_opaq);
duke@435 2205 pre_opaq->set_req(1, constrained);
duke@435 2206 }
duke@435 2207
duke@435 2208 //----------------------------get_pre_loop_end---------------------------
duke@435 2209 // Find pre loop end from main loop. Returns null if none.
duke@435 2210 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
duke@435 2211 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 2212 if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
duke@435 2213 Node *iffm = ctrl->in(0);
duke@435 2214 if (!iffm->is_If()) return NULL;
duke@435 2215 Node *p_f = iffm->in(0);
duke@435 2216 if (!p_f->is_IfFalse()) return NULL;
duke@435 2217 if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
duke@435 2218 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
duke@435 2219 if (!pre_end->loopnode()->is_pre_loop()) return NULL;
duke@435 2220 return pre_end;
duke@435 2221 }
duke@435 2222
duke@435 2223
duke@435 2224 //------------------------------init---------------------------
duke@435 2225 void SuperWord::init() {
duke@435 2226 _dg.init();
duke@435 2227 _packset.clear();
duke@435 2228 _disjoint_ptrs.clear();
duke@435 2229 _block.clear();
duke@435 2230 _data_entry.clear();
duke@435 2231 _mem_slice_head.clear();
duke@435 2232 _mem_slice_tail.clear();
duke@435 2233 _node_info.clear();
duke@435 2234 _align_to_ref = NULL;
duke@435 2235 _lpt = NULL;
duke@435 2236 _lp = NULL;
duke@435 2237 _bb = NULL;
duke@435 2238 _iv = NULL;
duke@435 2239 }
duke@435 2240
duke@435 2241 //------------------------------print_packset---------------------------
duke@435 2242 void SuperWord::print_packset() {
duke@435 2243 #ifndef PRODUCT
duke@435 2244 tty->print_cr("packset");
duke@435 2245 for (int i = 0; i < _packset.length(); i++) {
duke@435 2246 tty->print_cr("Pack: %d", i);
duke@435 2247 Node_List* p = _packset.at(i);
duke@435 2248 print_pack(p);
duke@435 2249 }
duke@435 2250 #endif
duke@435 2251 }
duke@435 2252
duke@435 2253 //------------------------------print_pack---------------------------
duke@435 2254 void SuperWord::print_pack(Node_List* p) {
duke@435 2255 for (uint i = 0; i < p->size(); i++) {
duke@435 2256 print_stmt(p->at(i));
duke@435 2257 }
duke@435 2258 }
duke@435 2259
duke@435 2260 //------------------------------print_bb---------------------------
duke@435 2261 void SuperWord::print_bb() {
duke@435 2262 #ifndef PRODUCT
duke@435 2263 tty->print_cr("\nBlock");
duke@435 2264 for (int i = 0; i < _block.length(); i++) {
duke@435 2265 Node* n = _block.at(i);
duke@435 2266 tty->print("%d ", i);
duke@435 2267 if (n) {
duke@435 2268 n->dump();
duke@435 2269 }
duke@435 2270 }
duke@435 2271 #endif
duke@435 2272 }
duke@435 2273
duke@435 2274 //------------------------------print_stmt---------------------------
duke@435 2275 void SuperWord::print_stmt(Node* s) {
duke@435 2276 #ifndef PRODUCT
duke@435 2277 tty->print(" align: %d \t", alignment(s));
duke@435 2278 s->dump();
duke@435 2279 #endif
duke@435 2280 }
duke@435 2281
duke@435 2282 //------------------------------blank---------------------------
duke@435 2283 char* SuperWord::blank(uint depth) {
duke@435 2284 static char blanks[101];
duke@435 2285 assert(depth < 101, "too deep");
duke@435 2286 for (uint i = 0; i < depth; i++) blanks[i] = ' ';
duke@435 2287 blanks[depth] = '\0';
duke@435 2288 return blanks;
duke@435 2289 }
duke@435 2290
duke@435 2291
duke@435 2292 //==============================SWPointer===========================
duke@435 2293
duke@435 2294 //----------------------------SWPointer------------------------
duke@435 2295 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
duke@435 2296 _mem(mem), _slp(slp), _base(NULL), _adr(NULL),
duke@435 2297 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
duke@435 2298
duke@435 2299 Node* adr = mem->in(MemNode::Address);
duke@435 2300 if (!adr->is_AddP()) {
duke@435 2301 assert(!valid(), "too complex");
duke@435 2302 return;
duke@435 2303 }
duke@435 2304 // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
duke@435 2305 Node* base = adr->in(AddPNode::Base);
thartmann@7818 2306 // The base address should be loop invariant
thartmann@7818 2307 if (!invariant(base)) {
thartmann@7818 2308 assert(!valid(), "base address is loop variant");
thartmann@7818 2309 return;
thartmann@7818 2310 }
cfang@1493 2311 //unsafe reference could not be aligned appropriately without runtime checking
cfang@1493 2312 if (base == NULL || base->bottom_type() == Type::TOP) {
cfang@1493 2313 assert(!valid(), "unsafe access");
cfang@1493 2314 return;
cfang@1493 2315 }
duke@435 2316 for (int i = 0; i < 3; i++) {
duke@435 2317 if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
duke@435 2318 assert(!valid(), "too complex");
duke@435 2319 return;
duke@435 2320 }
duke@435 2321 adr = adr->in(AddPNode::Address);
duke@435 2322 if (base == adr || !adr->is_AddP()) {
duke@435 2323 break; // stop looking at addp's
duke@435 2324 }
duke@435 2325 }
duke@435 2326 _base = base;
duke@435 2327 _adr = adr;
duke@435 2328 assert(valid(), "Usable");
duke@435 2329 }
duke@435 2330
duke@435 2331 // Following is used to create a temporary object during
duke@435 2332 // the pattern match of an address expression.
duke@435 2333 SWPointer::SWPointer(SWPointer* p) :
duke@435 2334 _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL),
duke@435 2335 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
duke@435 2336
duke@435 2337 //------------------------scaled_iv_plus_offset--------------------
duke@435 2338 // Match: k*iv + offset
duke@435 2339 // where: k is a constant that maybe zero, and
duke@435 2340 // offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
duke@435 2341 bool SWPointer::scaled_iv_plus_offset(Node* n) {
duke@435 2342 if (scaled_iv(n)) {
duke@435 2343 return true;
duke@435 2344 }
duke@435 2345 if (offset_plus_k(n)) {
duke@435 2346 return true;
duke@435 2347 }
duke@435 2348 int opc = n->Opcode();
duke@435 2349 if (opc == Op_AddI) {
duke@435 2350 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
duke@435 2351 return true;
duke@435 2352 }
duke@435 2353 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 2354 return true;
duke@435 2355 }
duke@435 2356 } else if (opc == Op_SubI) {
duke@435 2357 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
duke@435 2358 return true;
duke@435 2359 }
duke@435 2360 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 2361 _scale *= -1;
duke@435 2362 return true;
duke@435 2363 }
duke@435 2364 }
duke@435 2365 return false;
duke@435 2366 }
duke@435 2367
duke@435 2368 //----------------------------scaled_iv------------------------
duke@435 2369 // Match: k*iv where k is a constant that's not zero
duke@435 2370 bool SWPointer::scaled_iv(Node* n) {
duke@435 2371 if (_scale != 0) {
duke@435 2372 return false; // already found a scale
duke@435 2373 }
duke@435 2374 if (n == iv()) {
duke@435 2375 _scale = 1;
duke@435 2376 return true;
duke@435 2377 }
duke@435 2378 int opc = n->Opcode();
duke@435 2379 if (opc == Op_MulI) {
duke@435 2380 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 2381 _scale = n->in(2)->get_int();
duke@435 2382 return true;
duke@435 2383 } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
duke@435 2384 _scale = n->in(1)->get_int();
duke@435 2385 return true;
duke@435 2386 }
duke@435 2387 } else if (opc == Op_LShiftI) {
duke@435 2388 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 2389 _scale = 1 << n->in(2)->get_int();
duke@435 2390 return true;
duke@435 2391 }
duke@435 2392 } else if (opc == Op_ConvI2L) {
thartmann@8285 2393 if (n->in(1)->Opcode() == Op_CastII &&
thartmann@8285 2394 n->in(1)->as_CastII()->has_range_check()) {
thartmann@8285 2395 // Skip range check dependent CastII nodes
thartmann@8285 2396 n = n->in(1);
thartmann@8285 2397 }
duke@435 2398 if (scaled_iv_plus_offset(n->in(1))) {
duke@435 2399 return true;
duke@435 2400 }
duke@435 2401 } else if (opc == Op_LShiftL) {
duke@435 2402 if (!has_iv() && _invar == NULL) {
duke@435 2403 // Need to preserve the current _offset value, so
duke@435 2404 // create a temporary object for this expression subtree.
duke@435 2405 // Hacky, so should re-engineer the address pattern match.
duke@435 2406 SWPointer tmp(this);
duke@435 2407 if (tmp.scaled_iv_plus_offset(n->in(1))) {
duke@435 2408 if (tmp._invar == NULL) {
duke@435 2409 int mult = 1 << n->in(2)->get_int();
duke@435 2410 _scale = tmp._scale * mult;
duke@435 2411 _offset += tmp._offset * mult;
duke@435 2412 return true;
duke@435 2413 }
duke@435 2414 }
duke@435 2415 }
duke@435 2416 }
duke@435 2417 return false;
duke@435 2418 }
duke@435 2419
duke@435 2420 //----------------------------offset_plus_k------------------------
duke@435 2421 // Match: offset is (k [+/- invariant])
duke@435 2422 // where k maybe zero and invariant is optional, but not both.
duke@435 2423 bool SWPointer::offset_plus_k(Node* n, bool negate) {
duke@435 2424 int opc = n->Opcode();
duke@435 2425 if (opc == Op_ConI) {
duke@435 2426 _offset += negate ? -(n->get_int()) : n->get_int();
duke@435 2427 return true;
duke@435 2428 } else if (opc == Op_ConL) {
duke@435 2429 // Okay if value fits into an int
duke@435 2430 const TypeLong* t = n->find_long_type();
duke@435 2431 if (t->higher_equal(TypeLong::INT)) {
duke@435 2432 jlong loff = n->get_long();
duke@435 2433 jint off = (jint)loff;
duke@435 2434 _offset += negate ? -off : loff;
duke@435 2435 return true;
duke@435 2436 }
duke@435 2437 return false;
duke@435 2438 }
duke@435 2439 if (_invar != NULL) return false; // already have an invariant
duke@435 2440 if (opc == Op_AddI) {
duke@435 2441 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 2442 _negate_invar = negate;
duke@435 2443 _invar = n->in(1);
duke@435 2444 _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 2445 return true;
duke@435 2446 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 2447 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 2448 _negate_invar = negate;
duke@435 2449 _invar = n->in(2);
duke@435 2450 return true;
duke@435 2451 }
duke@435 2452 }
duke@435 2453 if (opc == Op_SubI) {
duke@435 2454 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 2455 _negate_invar = negate;
duke@435 2456 _invar = n->in(1);
duke@435 2457 _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 2458 return true;
duke@435 2459 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 2460 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 2461 _negate_invar = !negate;
duke@435 2462 _invar = n->in(2);
duke@435 2463 return true;
duke@435 2464 }
duke@435 2465 }
duke@435 2466 if (invariant(n)) {
duke@435 2467 _negate_invar = negate;
duke@435 2468 _invar = n;
duke@435 2469 return true;
duke@435 2470 }
duke@435 2471 return false;
duke@435 2472 }
duke@435 2473
duke@435 2474 //----------------------------print------------------------
duke@435 2475 void SWPointer::print() {
duke@435 2476 #ifndef PRODUCT
duke@435 2477 tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n",
duke@435 2478 _base != NULL ? _base->_idx : 0,
duke@435 2479 _adr != NULL ? _adr->_idx : 0,
duke@435 2480 _scale, _offset,
duke@435 2481 _negate_invar?'-':'+',
duke@435 2482 _invar != NULL ? _invar->_idx : 0);
duke@435 2483 #endif
duke@435 2484 }
duke@435 2485
duke@435 2486 // ========================= OrderedPair =====================
duke@435 2487
duke@435 2488 const OrderedPair OrderedPair::initial;
duke@435 2489
duke@435 2490 // ========================= SWNodeInfo =====================
duke@435 2491
duke@435 2492 const SWNodeInfo SWNodeInfo::initial;
duke@435 2493
duke@435 2494
duke@435 2495 // ============================ DepGraph ===========================
duke@435 2496
duke@435 2497 //------------------------------make_node---------------------------
duke@435 2498 // Make a new dependence graph node for an ideal node.
duke@435 2499 DepMem* DepGraph::make_node(Node* node) {
duke@435 2500 DepMem* m = new (_arena) DepMem(node);
duke@435 2501 if (node != NULL) {
duke@435 2502 assert(_map.at_grow(node->_idx) == NULL, "one init only");
duke@435 2503 _map.at_put_grow(node->_idx, m);
duke@435 2504 }
duke@435 2505 return m;
duke@435 2506 }
duke@435 2507
duke@435 2508 //------------------------------make_edge---------------------------
duke@435 2509 // Make a new dependence graph edge from dpred -> dsucc
duke@435 2510 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
duke@435 2511 DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
duke@435 2512 dpred->set_out_head(e);
duke@435 2513 dsucc->set_in_head(e);
duke@435 2514 return e;
duke@435 2515 }
duke@435 2516
duke@435 2517 // ========================== DepMem ========================
duke@435 2518
duke@435 2519 //------------------------------in_cnt---------------------------
duke@435 2520 int DepMem::in_cnt() {
duke@435 2521 int ct = 0;
duke@435 2522 for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
duke@435 2523 return ct;
duke@435 2524 }
duke@435 2525
duke@435 2526 //------------------------------out_cnt---------------------------
duke@435 2527 int DepMem::out_cnt() {
duke@435 2528 int ct = 0;
duke@435 2529 for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
duke@435 2530 return ct;
duke@435 2531 }
duke@435 2532
duke@435 2533 //------------------------------print-----------------------------
duke@435 2534 void DepMem::print() {
duke@435 2535 #ifndef PRODUCT
duke@435 2536 tty->print(" DepNode %d (", _node->_idx);
duke@435 2537 for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
duke@435 2538 Node* pred = p->pred()->node();
duke@435 2539 tty->print(" %d", pred != NULL ? pred->_idx : 0);
duke@435 2540 }
duke@435 2541 tty->print(") [");
duke@435 2542 for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
duke@435 2543 Node* succ = s->succ()->node();
duke@435 2544 tty->print(" %d", succ != NULL ? succ->_idx : 0);
duke@435 2545 }
duke@435 2546 tty->print_cr(" ]");
duke@435 2547 #endif
duke@435 2548 }
duke@435 2549
duke@435 2550 // =========================== DepEdge =========================
duke@435 2551
duke@435 2552 //------------------------------DepPreds---------------------------
duke@435 2553 void DepEdge::print() {
duke@435 2554 #ifndef PRODUCT
duke@435 2555 tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
duke@435 2556 #endif
duke@435 2557 }
duke@435 2558
duke@435 2559 // =========================== DepPreds =========================
duke@435 2560 // Iterator over predecessor edges in the dependence graph.
duke@435 2561
duke@435 2562 //------------------------------DepPreds---------------------------
duke@435 2563 DepPreds::DepPreds(Node* n, DepGraph& dg) {
duke@435 2564 _n = n;
duke@435 2565 _done = false;
duke@435 2566 if (_n->is_Store() || _n->is_Load()) {
duke@435 2567 _next_idx = MemNode::Address;
duke@435 2568 _end_idx = n->req();
duke@435 2569 _dep_next = dg.dep(_n)->in_head();
duke@435 2570 } else if (_n->is_Mem()) {
duke@435 2571 _next_idx = 0;
duke@435 2572 _end_idx = 0;
duke@435 2573 _dep_next = dg.dep(_n)->in_head();
duke@435 2574 } else {
duke@435 2575 _next_idx = 1;
duke@435 2576 _end_idx = _n->req();
duke@435 2577 _dep_next = NULL;
duke@435 2578 }
duke@435 2579 next();
duke@435 2580 }
duke@435 2581
duke@435 2582 //------------------------------next---------------------------
duke@435 2583 void DepPreds::next() {
duke@435 2584 if (_dep_next != NULL) {
duke@435 2585 _current = _dep_next->pred()->node();
duke@435 2586 _dep_next = _dep_next->next_in();
duke@435 2587 } else if (_next_idx < _end_idx) {
duke@435 2588 _current = _n->in(_next_idx++);
duke@435 2589 } else {
duke@435 2590 _done = true;
duke@435 2591 }
duke@435 2592 }
duke@435 2593
duke@435 2594 // =========================== DepSuccs =========================
duke@435 2595 // Iterator over successor edges in the dependence graph.
duke@435 2596
duke@435 2597 //------------------------------DepSuccs---------------------------
duke@435 2598 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
duke@435 2599 _n = n;
duke@435 2600 _done = false;
duke@435 2601 if (_n->is_Load()) {
duke@435 2602 _next_idx = 0;
duke@435 2603 _end_idx = _n->outcnt();
duke@435 2604 _dep_next = dg.dep(_n)->out_head();
duke@435 2605 } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
duke@435 2606 _next_idx = 0;
duke@435 2607 _end_idx = 0;
duke@435 2608 _dep_next = dg.dep(_n)->out_head();
duke@435 2609 } else {
duke@435 2610 _next_idx = 0;
duke@435 2611 _end_idx = _n->outcnt();
duke@435 2612 _dep_next = NULL;
duke@435 2613 }
duke@435 2614 next();
duke@435 2615 }
duke@435 2616
duke@435 2617 //-------------------------------next---------------------------
duke@435 2618 void DepSuccs::next() {
duke@435 2619 if (_dep_next != NULL) {
duke@435 2620 _current = _dep_next->succ()->node();
duke@435 2621 _dep_next = _dep_next->next_out();
duke@435 2622 } else if (_next_idx < _end_idx) {
duke@435 2623 _current = _n->raw_out(_next_idx++);
duke@435 2624 } else {
duke@435 2625 _done = true;
duke@435 2626 }
duke@435 2627 }

mercurial