src/share/vm/gc_implementation/parNew/parNewGeneration.cpp

Thu, 26 Sep 2013 10:25:02 -0400

author
hseigel
date
Thu, 26 Sep 2013 10:25:02 -0400
changeset 5784
190899198332
parent 5516
330dfb0476f4
child 6131
86e6d691f2e1
permissions
-rw-r--r--

7195622: CheckUnhandledOops has limited usefulness now
Summary: Enable CHECK_UNHANDLED_OOPS in fastdebug builds across all supported platforms.
Reviewed-by: coleenp, hseigel, dholmes, stefank, twisti, ihse, rdurbin
Contributed-by: lois.foltan@oracle.com

duke@435 1 /*
sla@5237 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
stefank@2314 27 #include "gc_implementation/parNew/parNewGeneration.hpp"
stefank@2314 28 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
stefank@2314 29 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 30 #include "gc_implementation/shared/ageTable.hpp"
johnc@3982 31 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
sla@5237 32 #include "gc_implementation/shared/gcHeapSummary.hpp"
sla@5237 33 #include "gc_implementation/shared/gcTimer.hpp"
sla@5237 34 #include "gc_implementation/shared/gcTrace.hpp"
sla@5237 35 #include "gc_implementation/shared/gcTraceTime.hpp"
sla@5237 36 #include "gc_implementation/shared/copyFailedInfo.hpp"
stefank@2314 37 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 38 #include "memory/defNewGeneration.inline.hpp"
stefank@2314 39 #include "memory/genCollectedHeap.hpp"
stefank@2314 40 #include "memory/genOopClosures.inline.hpp"
stefank@2314 41 #include "memory/generation.hpp"
stefank@2314 42 #include "memory/generation.inline.hpp"
stefank@2314 43 #include "memory/referencePolicy.hpp"
stefank@2314 44 #include "memory/resourceArea.hpp"
stefank@2314 45 #include "memory/sharedHeap.hpp"
stefank@2314 46 #include "memory/space.hpp"
stefank@2314 47 #include "oops/objArrayOop.hpp"
stefank@2314 48 #include "oops/oop.inline.hpp"
stefank@2314 49 #include "oops/oop.pcgc.inline.hpp"
stefank@2314 50 #include "runtime/handles.hpp"
stefank@2314 51 #include "runtime/handles.inline.hpp"
stefank@2314 52 #include "runtime/java.hpp"
stefank@2314 53 #include "runtime/thread.hpp"
stefank@2314 54 #include "utilities/copy.hpp"
stefank@2314 55 #include "utilities/globalDefinitions.hpp"
stefank@2314 56 #include "utilities/workgroup.hpp"
duke@435 57
duke@435 58 #ifdef _MSC_VER
duke@435 59 #pragma warning( push )
duke@435 60 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
duke@435 61 #endif
duke@435 62 ParScanThreadState::ParScanThreadState(Space* to_space_,
duke@435 63 ParNewGeneration* gen_,
duke@435 64 Generation* old_gen_,
duke@435 65 int thread_num_,
duke@435 66 ObjToScanQueueSet* work_queue_set_,
zgu@3900 67 Stack<oop, mtGC>* overflow_stacks_,
duke@435 68 size_t desired_plab_sz_,
duke@435 69 ParallelTaskTerminator& term_) :
ysr@1114 70 _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
duke@435 71 _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
jcoomes@2191 72 _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
duke@435 73 _ageTable(false), // false ==> not the global age table, no perf data.
duke@435 74 _to_space_alloc_buffer(desired_plab_sz_),
duke@435 75 _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
duke@435 76 _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
duke@435 77 _older_gen_closure(gen_, this),
duke@435 78 _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
duke@435 79 &_to_space_root_closure, gen_, &_old_gen_root_closure,
duke@435 80 work_queue_set_, &term_),
duke@435 81 _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
duke@435 82 _keep_alive_closure(&_scan_weak_ref_closure),
duke@435 83 _strong_roots_time(0.0), _term_time(0.0)
duke@435 84 {
jcoomes@2065 85 #if TASKQUEUE_STATS
jcoomes@2065 86 _term_attempts = 0;
jcoomes@2065 87 _overflow_refills = 0;
jcoomes@2065 88 _overflow_refill_objs = 0;
jcoomes@2065 89 #endif // TASKQUEUE_STATS
jcoomes@2065 90
duke@435 91 _survivor_chunk_array =
duke@435 92 (ChunkArray*) old_gen()->get_data_recorder(thread_num());
duke@435 93 _hash_seed = 17; // Might want to take time-based random value.
duke@435 94 _start = os::elapsedTime();
duke@435 95 _old_gen_closure.set_generation(old_gen_);
duke@435 96 _old_gen_root_closure.set_generation(old_gen_);
duke@435 97 }
duke@435 98 #ifdef _MSC_VER
duke@435 99 #pragma warning( pop )
duke@435 100 #endif
duke@435 101
duke@435 102 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
duke@435 103 size_t plab_word_size) {
duke@435 104 ChunkArray* sca = survivor_chunk_array();
duke@435 105 if (sca != NULL) {
duke@435 106 // A non-null SCA implies that we want the PLAB data recorded.
duke@435 107 sca->record_sample(plab_start, plab_word_size);
duke@435 108 }
duke@435 109 }
duke@435 110
duke@435 111 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
duke@435 112 return new_obj->is_objArray() &&
duke@435 113 arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
duke@435 114 new_obj != old_obj;
duke@435 115 }
duke@435 116
duke@435 117 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
duke@435 118 assert(old->is_objArray(), "must be obj array");
duke@435 119 assert(old->is_forwarded(), "must be forwarded");
duke@435 120 assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
ysr@1114 121 assert(!old_gen()->is_in(old), "must be in young generation.");
duke@435 122
duke@435 123 objArrayOop obj = objArrayOop(old->forwardee());
duke@435 124 // Process ParGCArrayScanChunk elements now
duke@435 125 // and push the remainder back onto queue
duke@435 126 int start = arrayOop(old)->length();
duke@435 127 int end = obj->length();
duke@435 128 int remainder = end - start;
duke@435 129 assert(start <= end, "just checking");
duke@435 130 if (remainder > 2 * ParGCArrayScanChunk) {
duke@435 131 // Test above combines last partial chunk with a full chunk
duke@435 132 end = start + ParGCArrayScanChunk;
duke@435 133 arrayOop(old)->set_length(end);
duke@435 134 // Push remainder.
duke@435 135 bool ok = work_queue()->push(old);
duke@435 136 assert(ok, "just popped, push must be okay");
duke@435 137 } else {
duke@435 138 // Restore length so that it can be used if there
duke@435 139 // is a promotion failure and forwarding pointers
duke@435 140 // must be removed.
duke@435 141 arrayOop(old)->set_length(end);
duke@435 142 }
coleenp@548 143
duke@435 144 // process our set of indices (include header in first chunk)
coleenp@548 145 // should make sure end is even (aligned to HeapWord in case of compressed oops)
duke@435 146 if ((HeapWord *)obj < young_old_boundary()) {
duke@435 147 // object is in to_space
coleenp@548 148 obj->oop_iterate_range(&_to_space_closure, start, end);
duke@435 149 } else {
duke@435 150 // object is in old generation
coleenp@548 151 obj->oop_iterate_range(&_old_gen_closure, start, end);
duke@435 152 }
duke@435 153 }
duke@435 154
duke@435 155
duke@435 156 void ParScanThreadState::trim_queues(int max_size) {
duke@435 157 ObjToScanQueue* queue = work_queue();
ysr@1114 158 do {
ysr@1114 159 while (queue->size() > (juint)max_size) {
ysr@1114 160 oop obj_to_scan;
ysr@1114 161 if (queue->pop_local(obj_to_scan)) {
ysr@1114 162 if ((HeapWord *)obj_to_scan < young_old_boundary()) {
ysr@1114 163 if (obj_to_scan->is_objArray() &&
ysr@1114 164 obj_to_scan->is_forwarded() &&
ysr@1114 165 obj_to_scan->forwardee() != obj_to_scan) {
ysr@1114 166 scan_partial_array_and_push_remainder(obj_to_scan);
ysr@1114 167 } else {
ysr@1114 168 // object is in to_space
ysr@1114 169 obj_to_scan->oop_iterate(&_to_space_closure);
ysr@1114 170 }
duke@435 171 } else {
ysr@1114 172 // object is in old generation
ysr@1114 173 obj_to_scan->oop_iterate(&_old_gen_closure);
duke@435 174 }
duke@435 175 }
duke@435 176 }
ysr@1114 177 // For the case of compressed oops, we have a private, non-shared
ysr@1114 178 // overflow stack, so we eagerly drain it so as to more evenly
ysr@1114 179 // distribute load early. Note: this may be good to do in
ysr@1114 180 // general rather than delay for the final stealing phase.
ysr@1114 181 // If applicable, we'll transfer a set of objects over to our
ysr@1114 182 // work queue, allowing them to be stolen and draining our
ysr@1114 183 // private overflow stack.
ysr@1114 184 } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
ysr@1114 185 }
ysr@1114 186
ysr@1114 187 bool ParScanThreadState::take_from_overflow_stack() {
ysr@1130 188 assert(ParGCUseLocalOverflow, "Else should not call");
ysr@1114 189 assert(young_gen()->overflow_list() == NULL, "Error");
ysr@1114 190 ObjToScanQueue* queue = work_queue();
zgu@3900 191 Stack<oop, mtGC>* const of_stack = overflow_stack();
jcoomes@2191 192 const size_t num_overflow_elems = of_stack->size();
jcoomes@2191 193 const size_t space_available = queue->max_elems() - queue->size();
jcoomes@2191 194 const size_t num_take_elems = MIN3(space_available / 4,
jcoomes@2191 195 ParGCDesiredObjsFromOverflowList,
jcoomes@2191 196 num_overflow_elems);
ysr@1114 197 // Transfer the most recent num_take_elems from the overflow
ysr@1114 198 // stack to our work queue.
ysr@1114 199 for (size_t i = 0; i != num_take_elems; i++) {
ysr@1114 200 oop cur = of_stack->pop();
ysr@1114 201 oop obj_to_push = cur->forwardee();
ysr@1114 202 assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
ysr@1114 203 assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
ysr@1114 204 assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
ysr@1114 205 if (should_be_partially_scanned(obj_to_push, cur)) {
ysr@1114 206 assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
ysr@1114 207 obj_to_push = cur;
ysr@1114 208 }
ysr@1114 209 bool ok = queue->push(obj_to_push);
ysr@1114 210 assert(ok, "Should have succeeded");
duke@435 211 }
ysr@1114 212 assert(young_gen()->overflow_list() == NULL, "Error");
ysr@1114 213 return num_take_elems > 0; // was something transferred?
ysr@1114 214 }
ysr@1114 215
ysr@1114 216 void ParScanThreadState::push_on_overflow_stack(oop p) {
ysr@1130 217 assert(ParGCUseLocalOverflow, "Else should not call");
ysr@1114 218 overflow_stack()->push(p);
ysr@1114 219 assert(young_gen()->overflow_list() == NULL, "Error");
duke@435 220 }
duke@435 221
duke@435 222 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
duke@435 223
duke@435 224 // Otherwise, if the object is small enough, try to reallocate the
duke@435 225 // buffer.
duke@435 226 HeapWord* obj = NULL;
duke@435 227 if (!_to_space_full) {
duke@435 228 ParGCAllocBuffer* const plab = to_space_alloc_buffer();
duke@435 229 Space* const sp = to_space();
duke@435 230 if (word_sz * 100 <
duke@435 231 ParallelGCBufferWastePct * plab->word_sz()) {
duke@435 232 // Is small enough; abandon this buffer and start a new one.
duke@435 233 plab->retire(false, false);
duke@435 234 size_t buf_size = plab->word_sz();
duke@435 235 HeapWord* buf_space = sp->par_allocate(buf_size);
duke@435 236 if (buf_space == NULL) {
duke@435 237 const size_t min_bytes =
duke@435 238 ParGCAllocBuffer::min_size() << LogHeapWordSize;
duke@435 239 size_t free_bytes = sp->free();
duke@435 240 while(buf_space == NULL && free_bytes >= min_bytes) {
duke@435 241 buf_size = free_bytes >> LogHeapWordSize;
duke@435 242 assert(buf_size == (size_t)align_object_size(buf_size),
duke@435 243 "Invariant");
duke@435 244 buf_space = sp->par_allocate(buf_size);
duke@435 245 free_bytes = sp->free();
duke@435 246 }
duke@435 247 }
duke@435 248 if (buf_space != NULL) {
duke@435 249 plab->set_word_size(buf_size);
duke@435 250 plab->set_buf(buf_space);
duke@435 251 record_survivor_plab(buf_space, buf_size);
duke@435 252 obj = plab->allocate(word_sz);
duke@435 253 // Note that we cannot compare buf_size < word_sz below
duke@435 254 // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
duke@435 255 assert(obj != NULL || plab->words_remaining() < word_sz,
duke@435 256 "Else should have been able to allocate");
duke@435 257 // It's conceivable that we may be able to use the
duke@435 258 // buffer we just grabbed for subsequent small requests
duke@435 259 // even if not for this one.
duke@435 260 } else {
duke@435 261 // We're used up.
duke@435 262 _to_space_full = true;
duke@435 263 }
duke@435 264
duke@435 265 } else {
duke@435 266 // Too large; allocate the object individually.
duke@435 267 obj = sp->par_allocate(word_sz);
duke@435 268 }
duke@435 269 }
duke@435 270 return obj;
duke@435 271 }
duke@435 272
duke@435 273
duke@435 274 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
duke@435 275 size_t word_sz) {
duke@435 276 // Is the alloc in the current alloc buffer?
duke@435 277 if (to_space_alloc_buffer()->contains(obj)) {
duke@435 278 assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
duke@435 279 "Should contain whole object.");
duke@435 280 to_space_alloc_buffer()->undo_allocation(obj, word_sz);
duke@435 281 } else {
jcoomes@916 282 CollectedHeap::fill_with_object(obj, word_sz);
duke@435 283 }
duke@435 284 }
duke@435 285
sla@5237 286 void ParScanThreadState::print_promotion_failure_size() {
sla@5237 287 if (_promotion_failed_info.has_failed() && PrintPromotionFailure) {
sla@5237 288 gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
sla@5237 289 _thread_num, _promotion_failed_info.first_size());
ysr@1580 290 }
ysr@1580 291 }
ysr@1580 292
duke@435 293 class ParScanThreadStateSet: private ResourceArray {
duke@435 294 public:
duke@435 295 // Initializes states for the specified number of threads;
duke@435 296 ParScanThreadStateSet(int num_threads,
duke@435 297 Space& to_space,
duke@435 298 ParNewGeneration& gen,
duke@435 299 Generation& old_gen,
duke@435 300 ObjToScanQueueSet& queue_set,
zgu@3900 301 Stack<oop, mtGC>* overflow_stacks_,
duke@435 302 size_t desired_plab_sz,
duke@435 303 ParallelTaskTerminator& term);
jcoomes@2065 304
jcoomes@2065 305 ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
jcoomes@2065 306
ysr@1580 307 inline ParScanThreadState& thread_state(int i);
jcoomes@2065 308
sla@5237 309 void trace_promotion_failed(YoungGCTracer& gc_tracer);
jmasa@3294 310 void reset(int active_workers, bool promotion_failed);
duke@435 311 void flush();
jcoomes@2065 312
jcoomes@2065 313 #if TASKQUEUE_STATS
jcoomes@2065 314 static void
jcoomes@2065 315 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2065 316 void print_termination_stats(outputStream* const st = gclog_or_tty);
jcoomes@2065 317 static void
jcoomes@2065 318 print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2065 319 void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
jcoomes@2065 320 void reset_stats();
jcoomes@2065 321 #endif // TASKQUEUE_STATS
jcoomes@2065 322
duke@435 323 private:
duke@435 324 ParallelTaskTerminator& _term;
duke@435 325 ParNewGeneration& _gen;
duke@435 326 Generation& _next_gen;
jmasa@3294 327 public:
jmasa@3294 328 bool is_valid(int id) const { return id < length(); }
jmasa@3294 329 ParallelTaskTerminator* terminator() { return &_term; }
duke@435 330 };
duke@435 331
duke@435 332
duke@435 333 ParScanThreadStateSet::ParScanThreadStateSet(
duke@435 334 int num_threads, Space& to_space, ParNewGeneration& gen,
duke@435 335 Generation& old_gen, ObjToScanQueueSet& queue_set,
zgu@3900 336 Stack<oop, mtGC>* overflow_stacks,
duke@435 337 size_t desired_plab_sz, ParallelTaskTerminator& term)
duke@435 338 : ResourceArray(sizeof(ParScanThreadState), num_threads),
jcoomes@2065 339 _gen(gen), _next_gen(old_gen), _term(term)
duke@435 340 {
duke@435 341 assert(num_threads > 0, "sanity check!");
jcoomes@2191 342 assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
jcoomes@2191 343 "overflow_stack allocation mismatch");
duke@435 344 // Initialize states.
duke@435 345 for (int i = 0; i < num_threads; ++i) {
duke@435 346 new ((ParScanThreadState*)_data + i)
duke@435 347 ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
jcoomes@2191 348 overflow_stacks, desired_plab_sz, term);
duke@435 349 }
duke@435 350 }
duke@435 351
ysr@1580 352 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
duke@435 353 {
duke@435 354 assert(i >= 0 && i < length(), "sanity check!");
duke@435 355 return ((ParScanThreadState*)_data)[i];
duke@435 356 }
duke@435 357
sla@5237 358 void ParScanThreadStateSet::trace_promotion_failed(YoungGCTracer& gc_tracer) {
sla@5237 359 for (int i = 0; i < length(); ++i) {
sla@5237 360 if (thread_state(i).promotion_failed()) {
sla@5237 361 gc_tracer.report_promotion_failed(thread_state(i).promotion_failed_info());
sla@5237 362 thread_state(i).promotion_failed_info().reset();
sla@5237 363 }
sla@5237 364 }
sla@5237 365 }
duke@435 366
jmasa@3294 367 void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
duke@435 368 {
jmasa@3294 369 _term.reset_for_reuse(active_threads);
ysr@1580 370 if (promotion_failed) {
ysr@1580 371 for (int i = 0; i < length(); ++i) {
sla@5237 372 thread_state(i).print_promotion_failure_size();
ysr@1580 373 }
ysr@1580 374 }
duke@435 375 }
duke@435 376
jcoomes@2065 377 #if TASKQUEUE_STATS
jcoomes@2065 378 void
jcoomes@2065 379 ParScanThreadState::reset_stats()
jcoomes@2065 380 {
jcoomes@2065 381 taskqueue_stats().reset();
jcoomes@2065 382 _term_attempts = 0;
jcoomes@2065 383 _overflow_refills = 0;
jcoomes@2065 384 _overflow_refill_objs = 0;
jcoomes@2065 385 }
jcoomes@2065 386
jcoomes@2065 387 void ParScanThreadStateSet::reset_stats()
jcoomes@2065 388 {
jcoomes@2065 389 for (int i = 0; i < length(); ++i) {
jcoomes@2065 390 thread_state(i).reset_stats();
jcoomes@2065 391 }
jcoomes@2065 392 }
jcoomes@2065 393
jcoomes@2065 394 void
jcoomes@2065 395 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
jcoomes@2065 396 {
jcoomes@2065 397 st->print_raw_cr("GC Termination Stats");
jcoomes@2065 398 st->print_raw_cr(" elapsed --strong roots-- "
jcoomes@2065 399 "-------termination-------");
jcoomes@2065 400 st->print_raw_cr("thr ms ms % "
jcoomes@2065 401 " ms % attempts");
jcoomes@2065 402 st->print_raw_cr("--- --------- --------- ------ "
jcoomes@2065 403 "--------- ------ --------");
jcoomes@2065 404 }
jcoomes@2065 405
jcoomes@2065 406 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
jcoomes@2065 407 {
jcoomes@2065 408 print_termination_stats_hdr(st);
jcoomes@2065 409
jcoomes@2065 410 for (int i = 0; i < length(); ++i) {
jcoomes@2065 411 const ParScanThreadState & pss = thread_state(i);
jcoomes@2065 412 const double elapsed_ms = pss.elapsed_time() * 1000.0;
jcoomes@2065 413 const double s_roots_ms = pss.strong_roots_time() * 1000.0;
jcoomes@2065 414 const double term_ms = pss.term_time() * 1000.0;
jcoomes@2065 415 st->print_cr("%3d %9.2f %9.2f %6.2f "
jcoomes@2065 416 "%9.2f %6.2f " SIZE_FORMAT_W(8),
jcoomes@2065 417 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
jcoomes@2065 418 term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
jcoomes@2065 419 }
jcoomes@2065 420 }
jcoomes@2065 421
jcoomes@2065 422 // Print stats related to work queue activity.
jcoomes@2065 423 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
jcoomes@2065 424 {
jcoomes@2065 425 st->print_raw_cr("GC Task Stats");
jcoomes@2065 426 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
jcoomes@2065 427 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
jcoomes@2065 428 }
jcoomes@2065 429
jcoomes@2065 430 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
jcoomes@2065 431 {
jcoomes@2065 432 print_taskqueue_stats_hdr(st);
jcoomes@2065 433
jcoomes@2065 434 TaskQueueStats totals;
jcoomes@2065 435 for (int i = 0; i < length(); ++i) {
jcoomes@2065 436 const ParScanThreadState & pss = thread_state(i);
jcoomes@2065 437 const TaskQueueStats & stats = pss.taskqueue_stats();
jcoomes@2065 438 st->print("%3d ", i); stats.print(st); st->cr();
jcoomes@2065 439 totals += stats;
jcoomes@2065 440
jcoomes@2065 441 if (pss.overflow_refills() > 0) {
jcoomes@2065 442 st->print_cr(" " SIZE_FORMAT_W(10) " overflow refills "
jcoomes@2065 443 SIZE_FORMAT_W(10) " overflow objects",
jcoomes@2065 444 pss.overflow_refills(), pss.overflow_refill_objs());
jcoomes@2065 445 }
jcoomes@2065 446 }
jcoomes@2065 447 st->print("tot "); totals.print(st); st->cr();
jcoomes@2065 448
jcoomes@2065 449 DEBUG_ONLY(totals.verify());
jcoomes@2065 450 }
jcoomes@2065 451 #endif // TASKQUEUE_STATS
jcoomes@2065 452
duke@435 453 void ParScanThreadStateSet::flush()
duke@435 454 {
ysr@1580 455 // Work in this loop should be kept as lightweight as
ysr@1580 456 // possible since this might otherwise become a bottleneck
ysr@1580 457 // to scaling. Should we add heavy-weight work into this
ysr@1580 458 // loop, consider parallelizing the loop into the worker threads.
duke@435 459 for (int i = 0; i < length(); ++i) {
ysr@1580 460 ParScanThreadState& par_scan_state = thread_state(i);
duke@435 461
duke@435 462 // Flush stats related to To-space PLAB activity and
duke@435 463 // retire the last buffer.
duke@435 464 par_scan_state.to_space_alloc_buffer()->
duke@435 465 flush_stats_and_retire(_gen.plab_stats(),
johnc@3982 466 true /* end_of_gc */,
johnc@3982 467 false /* retain */);
duke@435 468
duke@435 469 // Every thread has its own age table. We need to merge
duke@435 470 // them all into one.
duke@435 471 ageTable *local_table = par_scan_state.age_table();
duke@435 472 _gen.age_table()->merge(local_table);
duke@435 473
duke@435 474 // Inform old gen that we're done.
duke@435 475 _next_gen.par_promote_alloc_done(i);
duke@435 476 _next_gen.par_oop_since_save_marks_iterate_done(i);
jcoomes@2065 477 }
duke@435 478
ysr@1580 479 if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
ysr@1580 480 // We need to call this even when ResizeOldPLAB is disabled
ysr@1580 481 // so as to avoid breaking some asserts. While we may be able
ysr@1580 482 // to avoid this by reorganizing the code a bit, I am loathe
ysr@1580 483 // to do that unless we find cases where ergo leads to bad
ysr@1580 484 // performance.
ysr@1580 485 CFLS_LAB::compute_desired_plab_size();
ysr@1580 486 }
duke@435 487 }
duke@435 488
duke@435 489 ParScanClosure::ParScanClosure(ParNewGeneration* g,
duke@435 490 ParScanThreadState* par_scan_state) :
coleenp@4037 491 OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g)
duke@435 492 {
duke@435 493 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 494 _boundary = _g->reserved().end();
duke@435 495 }
duke@435 496
coleenp@548 497 void ParScanWithBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, false); }
coleenp@548 498 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
coleenp@548 499
coleenp@548 500 void ParScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, false); }
coleenp@548 501 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
coleenp@548 502
coleenp@548 503 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, true); }
coleenp@548 504 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
coleenp@548 505
coleenp@548 506 void ParRootScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, true); }
coleenp@548 507 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
coleenp@548 508
duke@435 509 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
duke@435 510 ParScanThreadState* par_scan_state)
duke@435 511 : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
coleenp@548 512 {}
coleenp@548 513
coleenp@548 514 void ParScanWeakRefClosure::do_oop(oop* p) { ParScanWeakRefClosure::do_oop_work(p); }
coleenp@548 515 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
duke@435 516
duke@435 517 #ifdef WIN32
duke@435 518 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
duke@435 519 #endif
duke@435 520
duke@435 521 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
duke@435 522 ParScanThreadState* par_scan_state_,
duke@435 523 ParScanWithoutBarrierClosure* to_space_closure_,
duke@435 524 ParScanWithBarrierClosure* old_gen_closure_,
duke@435 525 ParRootScanWithoutBarrierClosure* to_space_root_closure_,
duke@435 526 ParNewGeneration* par_gen_,
duke@435 527 ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
duke@435 528 ObjToScanQueueSet* task_queues_,
duke@435 529 ParallelTaskTerminator* terminator_) :
duke@435 530
duke@435 531 _par_scan_state(par_scan_state_),
duke@435 532 _to_space_closure(to_space_closure_),
duke@435 533 _old_gen_closure(old_gen_closure_),
duke@435 534 _to_space_root_closure(to_space_root_closure_),
duke@435 535 _old_gen_root_closure(old_gen_root_closure_),
duke@435 536 _par_gen(par_gen_),
duke@435 537 _task_queues(task_queues_),
duke@435 538 _terminator(terminator_)
duke@435 539 {}
duke@435 540
duke@435 541 void ParEvacuateFollowersClosure::do_void() {
duke@435 542 ObjToScanQueue* work_q = par_scan_state()->work_queue();
duke@435 543
duke@435 544 while (true) {
duke@435 545
duke@435 546 // Scan to-space and old-gen objs until we run out of both.
duke@435 547 oop obj_to_scan;
duke@435 548 par_scan_state()->trim_queues(0);
duke@435 549
duke@435 550 // We have no local work, attempt to steal from other threads.
duke@435 551
duke@435 552 // attempt to steal work from promoted.
duke@435 553 if (task_queues()->steal(par_scan_state()->thread_num(),
duke@435 554 par_scan_state()->hash_seed(),
duke@435 555 obj_to_scan)) {
duke@435 556 bool res = work_q->push(obj_to_scan);
duke@435 557 assert(res, "Empty queue should have room for a push.");
duke@435 558
duke@435 559 // if successful, goto Start.
duke@435 560 continue;
duke@435 561
duke@435 562 // try global overflow list.
duke@435 563 } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
duke@435 564 continue;
duke@435 565 }
duke@435 566
duke@435 567 // Otherwise, offer termination.
duke@435 568 par_scan_state()->start_term_time();
duke@435 569 if (terminator()->offer_termination()) break;
duke@435 570 par_scan_state()->end_term_time();
duke@435 571 }
ysr@969 572 assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
ysr@969 573 "Broken overflow list?");
duke@435 574 // Finish the last termination pause.
duke@435 575 par_scan_state()->end_term_time();
duke@435 576 }
duke@435 577
duke@435 578 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
duke@435 579 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
duke@435 580 AbstractGangTask("ParNewGeneration collection"),
duke@435 581 _gen(gen), _next_gen(next_gen),
duke@435 582 _young_old_boundary(young_old_boundary),
duke@435 583 _state_set(state_set)
duke@435 584 {}
duke@435 585
jmasa@3294 586 // Reset the terminator for the given number of
jmasa@3294 587 // active threads.
jmasa@3294 588 void ParNewGenTask::set_for_termination(int active_workers) {
jmasa@3294 589 _state_set->reset(active_workers, _gen->promotion_failed());
jmasa@3294 590 // Should the heap be passed in? There's only 1 for now so
jmasa@3294 591 // grab it instead.
jmasa@3294 592 GenCollectedHeap* gch = GenCollectedHeap::heap();
jmasa@3294 593 gch->set_n_termination(active_workers);
jmasa@3294 594 }
jmasa@3294 595
jmasa@3357 596 void ParNewGenTask::work(uint worker_id) {
duke@435 597 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 598 // Since this is being done in a separate thread, need new resource
duke@435 599 // and handle marks.
duke@435 600 ResourceMark rm;
duke@435 601 HandleMark hm;
duke@435 602 // We would need multiple old-gen queues otherwise.
ysr@1114 603 assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
duke@435 604
duke@435 605 Generation* old_gen = gch->next_gen(_gen);
duke@435 606
jmasa@3357 607 ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
jmasa@3357 608 assert(_state_set->is_valid(worker_id), "Should not have been called");
jmasa@3294 609
duke@435 610 par_scan_state.set_young_old_boundary(_young_old_boundary);
duke@435 611
coleenp@4037 612 KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
coleenp@4037 613 gch->rem_set()->klass_rem_set());
coleenp@4037 614
coleenp@4037 615 int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
coleenp@4037 616
duke@435 617 par_scan_state.start_strong_roots();
duke@435 618 gch->gen_process_strong_roots(_gen->level(),
jrose@1424 619 true, // Process younger gens, if any,
jrose@1424 620 // as strong roots.
jrose@1424 621 false, // no scope; this is parallel code
coleenp@4037 622 true, // is scavenging
coleenp@4037 623 SharedHeap::ScanningOption(so),
jrose@1424 624 &par_scan_state.to_space_root_closure(),
jrose@1424 625 true, // walk *all* scavengable nmethods
coleenp@4037 626 &par_scan_state.older_gen_closure(),
coleenp@4037 627 &klass_scan_closure);
duke@435 628 par_scan_state.end_strong_roots();
duke@435 629
duke@435 630 // "evacuate followers".
duke@435 631 par_scan_state.evacuate_followers_closure().do_void();
duke@435 632 }
duke@435 633
duke@435 634 #ifdef _MSC_VER
duke@435 635 #pragma warning( push )
duke@435 636 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
duke@435 637 #endif
duke@435 638 ParNewGeneration::
duke@435 639 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
duke@435 640 : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
duke@435 641 _overflow_list(NULL),
duke@435 642 _is_alive_closure(this),
duke@435 643 _plab_stats(YoungPLABSize, PLABWeight)
duke@435 644 {
ysr@969 645 NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
ysr@969 646 NOT_PRODUCT(_num_par_pushes = 0;)
duke@435 647 _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
duke@435 648 guarantee(_task_queues != NULL, "task_queues allocation failure.");
duke@435 649
duke@435 650 for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
jcoomes@2020 651 ObjToScanQueue *q = new ObjToScanQueue();
jcoomes@2020 652 guarantee(q != NULL, "work_queue Allocation failure.");
jcoomes@2020 653 _task_queues->register_queue(i1, q);
duke@435 654 }
duke@435 655
duke@435 656 for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
duke@435 657 _task_queues->queue(i2)->initialize();
duke@435 658
jcoomes@2191 659 _overflow_stacks = NULL;
jcoomes@2191 660 if (ParGCUseLocalOverflow) {
zgu@3900 661
zgu@3900 662 // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
zgu@3900 663 // with ','
zgu@3900 664 typedef Stack<oop, mtGC> GCOopStack;
zgu@3900 665
zgu@3900 666 _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
jcoomes@2191 667 for (size_t i = 0; i < ParallelGCThreads; ++i) {
zgu@3900 668 new (_overflow_stacks + i) Stack<oop, mtGC>();
ysr@1130 669 }
ysr@1130 670 }
ysr@1130 671
duke@435 672 if (UsePerfData) {
duke@435 673 EXCEPTION_MARK;
duke@435 674 ResourceMark rm;
duke@435 675
duke@435 676 const char* cname =
duke@435 677 PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
duke@435 678 PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
duke@435 679 ParallelGCThreads, CHECK);
duke@435 680 }
duke@435 681 }
duke@435 682 #ifdef _MSC_VER
duke@435 683 #pragma warning( pop )
duke@435 684 #endif
duke@435 685
duke@435 686 // ParNewGeneration::
duke@435 687 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
duke@435 688 DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
duke@435 689
coleenp@548 690 template <class T>
coleenp@548 691 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
coleenp@548 692 #ifdef ASSERT
coleenp@548 693 {
coleenp@548 694 assert(!oopDesc::is_null(*p), "expected non-null ref");
coleenp@548 695 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 696 // We never expect to see a null reference being processed
coleenp@548 697 // as a weak reference.
coleenp@548 698 assert(obj->is_oop(), "expected an oop while scanning weak refs");
coleenp@548 699 }
coleenp@548 700 #endif // ASSERT
duke@435 701
duke@435 702 _par_cl->do_oop_nv(p);
duke@435 703
duke@435 704 if (Universe::heap()->is_in_reserved(p)) {
coleenp@548 705 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 706 _rs->write_ref_field_gc_par(p, obj);
duke@435 707 }
duke@435 708 }
duke@435 709
coleenp@548 710 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p) { ParKeepAliveClosure::do_oop_work(p); }
coleenp@548 711 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
coleenp@548 712
duke@435 713 // ParNewGeneration::
duke@435 714 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
duke@435 715 DefNewGeneration::KeepAliveClosure(cl) {}
duke@435 716
coleenp@548 717 template <class T>
coleenp@548 718 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
coleenp@548 719 #ifdef ASSERT
coleenp@548 720 {
coleenp@548 721 assert(!oopDesc::is_null(*p), "expected non-null ref");
coleenp@548 722 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 723 // We never expect to see a null reference being processed
coleenp@548 724 // as a weak reference.
coleenp@548 725 assert(obj->is_oop(), "expected an oop while scanning weak refs");
coleenp@548 726 }
coleenp@548 727 #endif // ASSERT
duke@435 728
duke@435 729 _cl->do_oop_nv(p);
duke@435 730
duke@435 731 if (Universe::heap()->is_in_reserved(p)) {
coleenp@548 732 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 733 _rs->write_ref_field_gc_par(p, obj);
duke@435 734 }
duke@435 735 }
duke@435 736
coleenp@548 737 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p) { KeepAliveClosure::do_oop_work(p); }
coleenp@548 738 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
coleenp@548 739
coleenp@548 740 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
coleenp@548 741 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 742 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 743 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
duke@435 744 if ((HeapWord*)obj < _boundary) {
duke@435 745 assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
coleenp@548 746 oop new_obj = obj->is_forwarded()
coleenp@548 747 ? obj->forwardee()
coleenp@548 748 : _g->DefNewGeneration::copy_to_survivor_space(obj);
coleenp@548 749 oopDesc::encode_store_heap_oop_not_null(p, new_obj);
duke@435 750 }
duke@435 751 if (_gc_barrier) {
duke@435 752 // If p points to a younger generation, mark the card.
duke@435 753 if ((HeapWord*)obj < _gen_boundary) {
duke@435 754 _rs->write_ref_field_gc_par(p, obj);
duke@435 755 }
duke@435 756 }
duke@435 757 }
duke@435 758 }
duke@435 759
coleenp@548 760 void ScanClosureWithParBarrier::do_oop(oop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
coleenp@548 761 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
coleenp@548 762
duke@435 763 class ParNewRefProcTaskProxy: public AbstractGangTask {
duke@435 764 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
duke@435 765 public:
duke@435 766 ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
duke@435 767 Generation& next_gen,
duke@435 768 HeapWord* young_old_boundary,
duke@435 769 ParScanThreadStateSet& state_set);
duke@435 770
duke@435 771 private:
jmasa@3357 772 virtual void work(uint worker_id);
jmasa@3294 773 virtual void set_for_termination(int active_workers) {
jmasa@3294 774 _state_set.terminator()->reset_for_reuse(active_workers);
jmasa@3294 775 }
duke@435 776 private:
duke@435 777 ParNewGeneration& _gen;
duke@435 778 ProcessTask& _task;
duke@435 779 Generation& _next_gen;
duke@435 780 HeapWord* _young_old_boundary;
duke@435 781 ParScanThreadStateSet& _state_set;
duke@435 782 };
duke@435 783
duke@435 784 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
duke@435 785 ProcessTask& task, ParNewGeneration& gen,
duke@435 786 Generation& next_gen,
duke@435 787 HeapWord* young_old_boundary,
duke@435 788 ParScanThreadStateSet& state_set)
duke@435 789 : AbstractGangTask("ParNewGeneration parallel reference processing"),
duke@435 790 _gen(gen),
duke@435 791 _task(task),
duke@435 792 _next_gen(next_gen),
duke@435 793 _young_old_boundary(young_old_boundary),
duke@435 794 _state_set(state_set)
duke@435 795 {
duke@435 796 }
duke@435 797
jmasa@3357 798 void ParNewRefProcTaskProxy::work(uint worker_id)
duke@435 799 {
duke@435 800 ResourceMark rm;
duke@435 801 HandleMark hm;
jmasa@3357 802 ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
duke@435 803 par_scan_state.set_young_old_boundary(_young_old_boundary);
jmasa@3357 804 _task.work(worker_id, par_scan_state.is_alive_closure(),
duke@435 805 par_scan_state.keep_alive_closure(),
duke@435 806 par_scan_state.evacuate_followers_closure());
duke@435 807 }
duke@435 808
duke@435 809 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
duke@435 810 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
duke@435 811 EnqueueTask& _task;
duke@435 812
duke@435 813 public:
duke@435 814 ParNewRefEnqueueTaskProxy(EnqueueTask& task)
duke@435 815 : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
duke@435 816 _task(task)
duke@435 817 { }
duke@435 818
jmasa@3357 819 virtual void work(uint worker_id)
duke@435 820 {
jmasa@3357 821 _task.work(worker_id);
duke@435 822 }
duke@435 823 };
duke@435 824
duke@435 825
duke@435 826 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
duke@435 827 {
duke@435 828 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 829 assert(gch->kind() == CollectedHeap::GenCollectedHeap,
duke@435 830 "not a generational heap");
jmasa@3294 831 FlexibleWorkGang* workers = gch->workers();
duke@435 832 assert(workers != NULL, "Need parallel worker threads.");
jmasa@3294 833 _state_set.reset(workers->active_workers(), _generation.promotion_failed());
duke@435 834 ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
duke@435 835 _generation.reserved().end(), _state_set);
duke@435 836 workers->run_task(&rp_task);
jmasa@3294 837 _state_set.reset(0 /* bad value in debug if not reset */,
jmasa@3294 838 _generation.promotion_failed());
duke@435 839 }
duke@435 840
duke@435 841 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
duke@435 842 {
duke@435 843 GenCollectedHeap* gch = GenCollectedHeap::heap();
jmasa@3294 844 FlexibleWorkGang* workers = gch->workers();
duke@435 845 assert(workers != NULL, "Need parallel worker threads.");
duke@435 846 ParNewRefEnqueueTaskProxy enq_task(task);
duke@435 847 workers->run_task(&enq_task);
duke@435 848 }
duke@435 849
duke@435 850 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
duke@435 851 {
duke@435 852 _state_set.flush();
duke@435 853 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 854 gch->set_par_threads(0); // 0 ==> non-parallel.
duke@435 855 gch->save_marks();
duke@435 856 }
duke@435 857
duke@435 858 ScanClosureWithParBarrier::
duke@435 859 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
duke@435 860 ScanClosure(g, gc_barrier) {}
duke@435 861
duke@435 862 EvacuateFollowersClosureGeneral::
duke@435 863 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
duke@435 864 OopsInGenClosure* cur,
duke@435 865 OopsInGenClosure* older) :
duke@435 866 _gch(gch), _level(level),
duke@435 867 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 868 {}
duke@435 869
duke@435 870 void EvacuateFollowersClosureGeneral::do_void() {
duke@435 871 do {
duke@435 872 // Beware: this call will lead to closure applications via virtual
duke@435 873 // calls.
duke@435 874 _gch->oop_since_save_marks_iterate(_level,
duke@435 875 _scan_cur_or_nonheap,
duke@435 876 _scan_older);
duke@435 877 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 878 }
duke@435 879
duke@435 880
sla@5237 881 // A Generation that does parallel young-gen collection.
sla@5237 882
duke@435 883 bool ParNewGeneration::_avoid_promotion_undo = false;
duke@435 884
sla@5237 885 void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set, ParNewTracer& gc_tracer) {
sla@5237 886 assert(_promo_failure_scan_stack.is_empty(), "post condition");
sla@5237 887 _promo_failure_scan_stack.clear(true); // Clear cached segments.
sla@5237 888
sla@5237 889 remove_forwarding_pointers();
sla@5237 890 if (PrintGCDetails) {
sla@5237 891 gclog_or_tty->print(" (promotion failed)");
sla@5237 892 }
sla@5237 893 // All the spaces are in play for mark-sweep.
sla@5237 894 swap_spaces(); // Make life simpler for CMS || rescan; see 6483690.
sla@5237 895 from()->set_next_compaction_space(to());
sla@5237 896 gch->set_incremental_collection_failed();
sla@5237 897 // Inform the next generation that a promotion failure occurred.
sla@5237 898 _next_gen->promotion_failure_occurred();
sla@5237 899
sla@5237 900 // Trace promotion failure in the parallel GC threads
sla@5237 901 thread_state_set.trace_promotion_failed(gc_tracer);
sla@5237 902 // Single threaded code may have reported promotion failure to the global state
sla@5237 903 if (_promotion_failed_info.has_failed()) {
sla@5237 904 gc_tracer.report_promotion_failed(_promotion_failed_info);
sla@5237 905 }
sla@5237 906 // Reset the PromotionFailureALot counters.
sla@5237 907 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
sla@5237 908 }
duke@435 909
duke@435 910 void ParNewGeneration::collect(bool full,
duke@435 911 bool clear_all_soft_refs,
duke@435 912 size_t size,
duke@435 913 bool is_tlab) {
duke@435 914 assert(full || size > 0, "otherwise we don't want to collect");
sla@5237 915
duke@435 916 GenCollectedHeap* gch = GenCollectedHeap::heap();
sla@5237 917
sla@5237 918 _gc_timer->register_gc_start(os::elapsed_counter());
sla@5237 919
duke@435 920 assert(gch->kind() == CollectedHeap::GenCollectedHeap,
duke@435 921 "not a CMS generational heap");
duke@435 922 AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
jmasa@3294 923 FlexibleWorkGang* workers = gch->workers();
jmasa@3294 924 assert(workers != NULL, "Need workgang for parallel work");
jmasa@3294 925 int active_workers =
jmasa@3294 926 AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
jmasa@3294 927 workers->active_workers(),
jmasa@3294 928 Threads::number_of_non_daemon_threads());
jmasa@3294 929 workers->set_active_workers(active_workers);
duke@435 930 assert(gch->n_gens() == 2,
duke@435 931 "Par collection currently only works with single older gen.");
brutisso@5516 932 _next_gen = gch->next_gen(this);
duke@435 933 // Do we have to avoid promotion_undo?
duke@435 934 if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
duke@435 935 set_avoid_promotion_undo(true);
duke@435 936 }
duke@435 937
sla@5237 938 // If the next generation is too full to accommodate worst-case promotion
duke@435 939 // from this generation, pass on collection; let the next generation
duke@435 940 // do it.
duke@435 941 if (!collection_attempt_is_safe()) {
ysr@2243 942 gch->set_incremental_collection_failed(); // slight lie, in that we did not even attempt one
duke@435 943 return;
duke@435 944 }
duke@435 945 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
duke@435 946
sla@5237 947 ParNewTracer gc_tracer;
sla@5237 948 gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
sla@5237 949 gch->trace_heap_before_gc(&gc_tracer);
sla@5237 950
duke@435 951 init_assuming_no_promotion_failure();
duke@435 952
duke@435 953 if (UseAdaptiveSizePolicy) {
duke@435 954 set_survivor_overflow(false);
duke@435 955 size_policy->minor_collection_begin();
duke@435 956 }
duke@435 957
sla@5237 958 GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL);
duke@435 959 // Capture heap used before collection (for printing).
duke@435 960 size_t gch_prev_used = gch->used();
duke@435 961
duke@435 962 SpecializationStats::clear();
duke@435 963
duke@435 964 age_table()->clear();
jmasa@698 965 to()->clear(SpaceDecorator::Mangle);
duke@435 966
duke@435 967 gch->save_marks();
duke@435 968 assert(workers != NULL, "Need parallel worker threads.");
jmasa@3294 969 int n_workers = active_workers;
jmasa@3294 970
jmasa@3294 971 // Set the correct parallelism (number of queues) in the reference processor
jmasa@3294 972 ref_processor()->set_active_mt_degree(n_workers);
jmasa@3294 973
jmasa@3294 974 // Always set the terminator for the active number of workers
jmasa@3294 975 // because only those workers go through the termination protocol.
jmasa@3294 976 ParallelTaskTerminator _term(n_workers, task_queues());
jmasa@3294 977 ParScanThreadStateSet thread_state_set(workers->active_workers(),
duke@435 978 *to(), *this, *_next_gen, *task_queues(),
ysr@1130 979 _overflow_stacks, desired_plab_sz(), _term);
duke@435 980
duke@435 981 ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
duke@435 982 gch->set_par_threads(n_workers);
duke@435 983 gch->rem_set()->prepare_for_younger_refs_iterate(true);
duke@435 984 // It turns out that even when we're using 1 thread, doing the work in a
duke@435 985 // separate thread causes wide variance in run times. We can't help this
duke@435 986 // in the multi-threaded case, but we special-case n=1 here to get
duke@435 987 // repeatable measurements of the 1-thread overhead of the parallel code.
duke@435 988 if (n_workers > 1) {
jrose@1424 989 GenCollectedHeap::StrongRootsScope srs(gch);
duke@435 990 workers->run_task(&tsk);
duke@435 991 } else {
jrose@1424 992 GenCollectedHeap::StrongRootsScope srs(gch);
duke@435 993 tsk.work(0);
duke@435 994 }
jmasa@3294 995 thread_state_set.reset(0 /* Bad value in debug if not reset */,
jmasa@3294 996 promotion_failed());
duke@435 997
duke@435 998 // Process (weak) reference objects found during scavenge.
ysr@888 999 ReferenceProcessor* rp = ref_processor();
duke@435 1000 IsAliveClosure is_alive(this);
duke@435 1001 ScanWeakRefClosure scan_weak_ref(this);
duke@435 1002 KeepAliveClosure keep_alive(&scan_weak_ref);
duke@435 1003 ScanClosure scan_without_gc_barrier(this, false);
duke@435 1004 ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
duke@435 1005 set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
duke@435 1006 EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
duke@435 1007 &scan_without_gc_barrier, &scan_with_gc_barrier);
ysr@892 1008 rp->setup_policy(clear_all_soft_refs);
jmasa@3294 1009 // Can the mt_degree be set later (at run_task() time would be best)?
jmasa@3294 1010 rp->set_active_mt_degree(active_workers);
sla@5237 1011 ReferenceProcessorStats stats;
ysr@888 1012 if (rp->processing_is_mt()) {
duke@435 1013 ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
sla@5237 1014 stats = rp->process_discovered_references(&is_alive, &keep_alive,
sla@5237 1015 &evacuate_followers, &task_executor,
sla@5237 1016 _gc_timer);
duke@435 1017 } else {
duke@435 1018 thread_state_set.flush();
duke@435 1019 gch->set_par_threads(0); // 0 ==> non-parallel.
duke@435 1020 gch->save_marks();
sla@5237 1021 stats = rp->process_discovered_references(&is_alive, &keep_alive,
sla@5237 1022 &evacuate_followers, NULL,
sla@5237 1023 _gc_timer);
duke@435 1024 }
sla@5237 1025 gc_tracer.report_gc_reference_stats(stats);
duke@435 1026 if (!promotion_failed()) {
duke@435 1027 // Swap the survivor spaces.
jmasa@698 1028 eden()->clear(SpaceDecorator::Mangle);
jmasa@698 1029 from()->clear(SpaceDecorator::Mangle);
jmasa@698 1030 if (ZapUnusedHeapArea) {
jmasa@698 1031 // This is now done here because of the piece-meal mangling which
jmasa@698 1032 // can check for valid mangling at intermediate points in the
jmasa@698 1033 // collection(s). When a minor collection fails to collect
jmasa@698 1034 // sufficient space resizing of the young generation can occur
jmasa@698 1035 // an redistribute the spaces in the young generation. Mangle
jmasa@698 1036 // here so that unzapped regions don't get distributed to
jmasa@698 1037 // other spaces.
jmasa@698 1038 to()->mangle_unused_area();
jmasa@698 1039 }
duke@435 1040 swap_spaces();
duke@435 1041
jmasa@1822 1042 // A successful scavenge should restart the GC time limit count which is
jmasa@1822 1043 // for full GC's.
jmasa@1822 1044 size_policy->reset_gc_overhead_limit_count();
jmasa@1822 1045
duke@435 1046 assert(to()->is_empty(), "to space should be empty now");
brutisso@4452 1047
brutisso@4452 1048 adjust_desired_tenuring_threshold();
duke@435 1049 } else {
sla@5237 1050 handle_promotion_failed(gch, thread_state_set, gc_tracer);
duke@435 1051 }
duke@435 1052 // set new iteration safe limit for the survivor spaces
duke@435 1053 from()->set_concurrent_iteration_safe_limit(from()->top());
duke@435 1054 to()->set_concurrent_iteration_safe_limit(to()->top());
duke@435 1055
duke@435 1056 if (ResizePLAB) {
johnc@4130 1057 plab_stats()->adjust_desired_plab_sz(n_workers);
duke@435 1058 }
duke@435 1059
duke@435 1060 if (PrintGC && !PrintGCDetails) {
duke@435 1061 gch->print_heap_change(gch_prev_used);
duke@435 1062 }
duke@435 1063
jcoomes@2067 1064 if (PrintGCDetails && ParallelGCVerbose) {
jcoomes@2067 1065 TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
jcoomes@2067 1066 TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
jcoomes@2067 1067 }
jcoomes@2065 1068
duke@435 1069 if (UseAdaptiveSizePolicy) {
duke@435 1070 size_policy->minor_collection_end(gch->gc_cause());
duke@435 1071 size_policy->avg_survived()->sample(from()->used());
duke@435 1072 }
duke@435 1073
johnc@3538 1074 // We need to use a monotonically non-deccreasing time in ms
johnc@3538 1075 // or we will see time-warp warnings and os::javaTimeMillis()
johnc@3538 1076 // does not guarantee monotonicity.
johnc@3538 1077 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
johnc@3538 1078 update_time_of_last_gc(now);
duke@435 1079
duke@435 1080 SpecializationStats::print();
duke@435 1081
ysr@888 1082 rp->set_enqueuing_is_done(true);
ysr@888 1083 if (rp->processing_is_mt()) {
duke@435 1084 ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
ysr@888 1085 rp->enqueue_discovered_references(&task_executor);
duke@435 1086 } else {
ysr@888 1087 rp->enqueue_discovered_references(NULL);
duke@435 1088 }
ysr@888 1089 rp->verify_no_references_recorded();
sla@5237 1090
sla@5237 1091 gch->trace_heap_after_gc(&gc_tracer);
sla@5237 1092 gc_tracer.report_tenuring_threshold(tenuring_threshold());
sla@5237 1093
sla@5237 1094 _gc_timer->register_gc_end(os::elapsed_counter());
sla@5237 1095
sla@5237 1096 gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
duke@435 1097 }
duke@435 1098
duke@435 1099 static int sum;
duke@435 1100 void ParNewGeneration::waste_some_time() {
duke@435 1101 for (int i = 0; i < 100; i++) {
duke@435 1102 sum += i;
duke@435 1103 }
duke@435 1104 }
duke@435 1105
hseigel@5784 1106 static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
duke@435 1107
duke@435 1108 // Because of concurrency, there are times where an object for which
duke@435 1109 // "is_forwarded()" is true contains an "interim" forwarding pointer
duke@435 1110 // value. Such a value will soon be overwritten with a real value.
duke@435 1111 // This method requires "obj" to have a forwarding pointer, and waits, if
duke@435 1112 // necessary for a real one to be inserted, and returns it.
duke@435 1113
duke@435 1114 oop ParNewGeneration::real_forwardee(oop obj) {
duke@435 1115 oop forward_ptr = obj->forwardee();
duke@435 1116 if (forward_ptr != ClaimedForwardPtr) {
duke@435 1117 return forward_ptr;
duke@435 1118 } else {
duke@435 1119 return real_forwardee_slow(obj);
duke@435 1120 }
duke@435 1121 }
duke@435 1122
duke@435 1123 oop ParNewGeneration::real_forwardee_slow(oop obj) {
duke@435 1124 // Spin-read if it is claimed but not yet written by another thread.
duke@435 1125 oop forward_ptr = obj->forwardee();
duke@435 1126 while (forward_ptr == ClaimedForwardPtr) {
duke@435 1127 waste_some_time();
duke@435 1128 assert(obj->is_forwarded(), "precondition");
duke@435 1129 forward_ptr = obj->forwardee();
duke@435 1130 }
duke@435 1131 return forward_ptr;
duke@435 1132 }
duke@435 1133
duke@435 1134 #ifdef ASSERT
duke@435 1135 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
duke@435 1136 return
duke@435 1137 (_avoid_promotion_undo && p == ClaimedForwardPtr)
duke@435 1138 || Universe::heap()->is_in_reserved(p);
duke@435 1139 }
duke@435 1140 #endif
duke@435 1141
duke@435 1142 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
ysr@2380 1143 if (m->must_be_preserved_for_promotion_failure(obj)) {
ysr@2380 1144 // We should really have separate per-worker stacks, rather
ysr@2380 1145 // than use locking of a common pair of stacks.
duke@435 1146 MutexLocker ml(ParGCRareEvent_lock);
ysr@2380 1147 preserve_mark(obj, m);
duke@435 1148 }
duke@435 1149 }
duke@435 1150
duke@435 1151 // Multiple GC threads may try to promote an object. If the object
duke@435 1152 // is successfully promoted, a forwarding pointer will be installed in
duke@435 1153 // the object in the young generation. This method claims the right
duke@435 1154 // to install the forwarding pointer before it copies the object,
duke@435 1155 // thus avoiding the need to undo the copy as in
duke@435 1156 // copy_to_survivor_space_avoiding_with_undo.
duke@435 1157
duke@435 1158 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
duke@435 1159 ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
duke@435 1160 // In the sequential version, this assert also says that the object is
duke@435 1161 // not forwarded. That might not be the case here. It is the case that
duke@435 1162 // the caller observed it to be not forwarded at some time in the past.
duke@435 1163 assert(is_in_reserved(old), "shouldn't be scavenging this oop");
duke@435 1164
duke@435 1165 // The sequential code read "old->age()" below. That doesn't work here,
duke@435 1166 // since the age is in the mark word, and that might be overwritten with
duke@435 1167 // a forwarding pointer by a parallel thread. So we must save the mark
duke@435 1168 // word in a local and then analyze it.
duke@435 1169 oopDesc dummyOld;
duke@435 1170 dummyOld.set_mark(m);
duke@435 1171 assert(!dummyOld.is_forwarded(),
duke@435 1172 "should not be called with forwarding pointer mark word.");
duke@435 1173
duke@435 1174 oop new_obj = NULL;
duke@435 1175 oop forward_ptr;
duke@435 1176
duke@435 1177 // Try allocating obj in to-space (unless too old)
duke@435 1178 if (dummyOld.age() < tenuring_threshold()) {
duke@435 1179 new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
duke@435 1180 if (new_obj == NULL) {
duke@435 1181 set_survivor_overflow(true);
duke@435 1182 }
duke@435 1183 }
duke@435 1184
duke@435 1185 if (new_obj == NULL) {
duke@435 1186 // Either to-space is full or we decided to promote
duke@435 1187 // try allocating obj tenured
duke@435 1188
duke@435 1189 // Attempt to install a null forwarding pointer (atomically),
duke@435 1190 // to claim the right to install the real forwarding pointer.
duke@435 1191 forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
duke@435 1192 if (forward_ptr != NULL) {
duke@435 1193 // someone else beat us to it.
duke@435 1194 return real_forwardee(old);
duke@435 1195 }
duke@435 1196
duke@435 1197 new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
duke@435 1198 old, m, sz);
duke@435 1199
duke@435 1200 if (new_obj == NULL) {
duke@435 1201 // promotion failed, forward to self
duke@435 1202 _promotion_failed = true;
duke@435 1203 new_obj = old;
duke@435 1204
duke@435 1205 preserve_mark_if_necessary(old, m);
sla@5237 1206 par_scan_state->register_promotion_failure(sz);
duke@435 1207 }
duke@435 1208
duke@435 1209 old->forward_to(new_obj);
duke@435 1210 forward_ptr = NULL;
duke@435 1211 } else {
duke@435 1212 // Is in to-space; do copying ourselves.
duke@435 1213 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
duke@435 1214 forward_ptr = old->forward_to_atomic(new_obj);
duke@435 1215 // Restore the mark word copied above.
duke@435 1216 new_obj->set_mark(m);
duke@435 1217 // Increment age if obj still in new generation
duke@435 1218 new_obj->incr_age();
duke@435 1219 par_scan_state->age_table()->add(new_obj, sz);
duke@435 1220 }
duke@435 1221 assert(new_obj != NULL, "just checking");
duke@435 1222
coleenp@4037 1223 #ifndef PRODUCT
coleenp@4037 1224 // This code must come after the CAS test, or it will print incorrect
coleenp@4037 1225 // information.
coleenp@4037 1226 if (TraceScavenge) {
coleenp@4037 1227 gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
coleenp@4037 1228 is_in_reserved(new_obj) ? "copying" : "tenuring",
hseigel@5784 1229 new_obj->klass()->internal_name(), (void *)old, (void *)new_obj, new_obj->size());
coleenp@4037 1230 }
coleenp@4037 1231 #endif
coleenp@4037 1232
duke@435 1233 if (forward_ptr == NULL) {
duke@435 1234 oop obj_to_push = new_obj;
duke@435 1235 if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
duke@435 1236 // Length field used as index of next element to be scanned.
duke@435 1237 // Real length can be obtained from real_forwardee()
duke@435 1238 arrayOop(old)->set_length(0);
duke@435 1239 obj_to_push = old;
duke@435 1240 assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
duke@435 1241 "push forwarded object");
duke@435 1242 }
duke@435 1243 // Push it on one of the queues of to-be-scanned objects.
ysr@969 1244 bool simulate_overflow = false;
ysr@969 1245 NOT_PRODUCT(
ysr@969 1246 if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
ysr@969 1247 // simulate a stack overflow
ysr@969 1248 simulate_overflow = true;
ysr@969 1249 }
ysr@969 1250 )
ysr@969 1251 if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
duke@435 1252 // Add stats for overflow pushes.
duke@435 1253 if (Verbose && PrintGCDetails) {
duke@435 1254 gclog_or_tty->print("queue overflow!\n");
duke@435 1255 }
ysr@969 1256 push_on_overflow_list(old, par_scan_state);
jcoomes@2065 1257 TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
duke@435 1258 }
duke@435 1259
duke@435 1260 return new_obj;
duke@435 1261 }
duke@435 1262
duke@435 1263 // Oops. Someone beat us to it. Undo the allocation. Where did we
duke@435 1264 // allocate it?
duke@435 1265 if (is_in_reserved(new_obj)) {
duke@435 1266 // Must be in to_space.
duke@435 1267 assert(to()->is_in_reserved(new_obj), "Checking");
duke@435 1268 if (forward_ptr == ClaimedForwardPtr) {
duke@435 1269 // Wait to get the real forwarding pointer value.
duke@435 1270 forward_ptr = real_forwardee(old);
duke@435 1271 }
duke@435 1272 par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
duke@435 1273 }
duke@435 1274
duke@435 1275 return forward_ptr;
duke@435 1276 }
duke@435 1277
duke@435 1278
duke@435 1279 // Multiple GC threads may try to promote the same object. If two
duke@435 1280 // or more GC threads copy the object, only one wins the race to install
duke@435 1281 // the forwarding pointer. The other threads have to undo their copy.
duke@435 1282
duke@435 1283 oop ParNewGeneration::copy_to_survivor_space_with_undo(
duke@435 1284 ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
duke@435 1285
duke@435 1286 // In the sequential version, this assert also says that the object is
duke@435 1287 // not forwarded. That might not be the case here. It is the case that
duke@435 1288 // the caller observed it to be not forwarded at some time in the past.
duke@435 1289 assert(is_in_reserved(old), "shouldn't be scavenging this oop");
duke@435 1290
duke@435 1291 // The sequential code read "old->age()" below. That doesn't work here,
duke@435 1292 // since the age is in the mark word, and that might be overwritten with
duke@435 1293 // a forwarding pointer by a parallel thread. So we must save the mark
duke@435 1294 // word here, install it in a local oopDesc, and then analyze it.
duke@435 1295 oopDesc dummyOld;
duke@435 1296 dummyOld.set_mark(m);
duke@435 1297 assert(!dummyOld.is_forwarded(),
duke@435 1298 "should not be called with forwarding pointer mark word.");
duke@435 1299
duke@435 1300 bool failed_to_promote = false;
duke@435 1301 oop new_obj = NULL;
duke@435 1302 oop forward_ptr;
duke@435 1303
duke@435 1304 // Try allocating obj in to-space (unless too old)
duke@435 1305 if (dummyOld.age() < tenuring_threshold()) {
duke@435 1306 new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
duke@435 1307 if (new_obj == NULL) {
duke@435 1308 set_survivor_overflow(true);
duke@435 1309 }
duke@435 1310 }
duke@435 1311
duke@435 1312 if (new_obj == NULL) {
duke@435 1313 // Either to-space is full or we decided to promote
duke@435 1314 // try allocating obj tenured
duke@435 1315 new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
duke@435 1316 old, m, sz);
duke@435 1317
duke@435 1318 if (new_obj == NULL) {
duke@435 1319 // promotion failed, forward to self
duke@435 1320 forward_ptr = old->forward_to_atomic(old);
duke@435 1321 new_obj = old;
duke@435 1322
duke@435 1323 if (forward_ptr != NULL) {
duke@435 1324 return forward_ptr; // someone else succeeded
duke@435 1325 }
duke@435 1326
duke@435 1327 _promotion_failed = true;
duke@435 1328 failed_to_promote = true;
duke@435 1329
duke@435 1330 preserve_mark_if_necessary(old, m);
sla@5237 1331 par_scan_state->register_promotion_failure(sz);
duke@435 1332 }
duke@435 1333 } else {
duke@435 1334 // Is in to-space; do copying ourselves.
duke@435 1335 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
duke@435 1336 // Restore the mark word copied above.
duke@435 1337 new_obj->set_mark(m);
duke@435 1338 // Increment age if new_obj still in new generation
duke@435 1339 new_obj->incr_age();
duke@435 1340 par_scan_state->age_table()->add(new_obj, sz);
duke@435 1341 }
duke@435 1342 assert(new_obj != NULL, "just checking");
duke@435 1343
coleenp@4037 1344 #ifndef PRODUCT
coleenp@4037 1345 // This code must come after the CAS test, or it will print incorrect
coleenp@4037 1346 // information.
coleenp@4037 1347 if (TraceScavenge) {
coleenp@4037 1348 gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
coleenp@4037 1349 is_in_reserved(new_obj) ? "copying" : "tenuring",
hseigel@5784 1350 new_obj->klass()->internal_name(), (void *)old, (void *)new_obj, new_obj->size());
coleenp@4037 1351 }
coleenp@4037 1352 #endif
coleenp@4037 1353
duke@435 1354 // Now attempt to install the forwarding pointer (atomically).
duke@435 1355 // We have to copy the mark word before overwriting with forwarding
duke@435 1356 // ptr, so we can restore it below in the copy.
duke@435 1357 if (!failed_to_promote) {
duke@435 1358 forward_ptr = old->forward_to_atomic(new_obj);
duke@435 1359 }
duke@435 1360
duke@435 1361 if (forward_ptr == NULL) {
duke@435 1362 oop obj_to_push = new_obj;
duke@435 1363 if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
duke@435 1364 // Length field used as index of next element to be scanned.
duke@435 1365 // Real length can be obtained from real_forwardee()
duke@435 1366 arrayOop(old)->set_length(0);
duke@435 1367 obj_to_push = old;
duke@435 1368 assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
duke@435 1369 "push forwarded object");
duke@435 1370 }
duke@435 1371 // Push it on one of the queues of to-be-scanned objects.
ysr@969 1372 bool simulate_overflow = false;
ysr@969 1373 NOT_PRODUCT(
ysr@969 1374 if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
ysr@969 1375 // simulate a stack overflow
ysr@969 1376 simulate_overflow = true;
ysr@969 1377 }
ysr@969 1378 )
ysr@969 1379 if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
duke@435 1380 // Add stats for overflow pushes.
ysr@969 1381 push_on_overflow_list(old, par_scan_state);
jcoomes@2065 1382 TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
duke@435 1383 }
duke@435 1384
duke@435 1385 return new_obj;
duke@435 1386 }
duke@435 1387
duke@435 1388 // Oops. Someone beat us to it. Undo the allocation. Where did we
duke@435 1389 // allocate it?
duke@435 1390 if (is_in_reserved(new_obj)) {
duke@435 1391 // Must be in to_space.
duke@435 1392 assert(to()->is_in_reserved(new_obj), "Checking");
duke@435 1393 par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
duke@435 1394 } else {
duke@435 1395 assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
duke@435 1396 _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
duke@435 1397 (HeapWord*)new_obj, sz);
duke@435 1398 }
duke@435 1399
duke@435 1400 return forward_ptr;
duke@435 1401 }
duke@435 1402
ysr@969 1403 #ifndef PRODUCT
ysr@969 1404 // It's OK to call this multi-threaded; the worst thing
ysr@969 1405 // that can happen is that we'll get a bunch of closely
ysr@969 1406 // spaced simulated oveflows, but that's OK, in fact
ysr@969 1407 // probably good as it would exercise the overflow code
ysr@969 1408 // under contention.
ysr@969 1409 bool ParNewGeneration::should_simulate_overflow() {
ysr@969 1410 if (_overflow_counter-- <= 0) { // just being defensive
ysr@969 1411 _overflow_counter = ParGCWorkQueueOverflowInterval;
ysr@969 1412 return true;
ysr@969 1413 } else {
ysr@969 1414 return false;
ysr@969 1415 }
ysr@969 1416 }
ysr@969 1417 #endif
ysr@969 1418
ysr@1114 1419 // In case we are using compressed oops, we need to be careful.
ysr@1114 1420 // If the object being pushed is an object array, then its length
ysr@1114 1421 // field keeps track of the "grey boundary" at which the next
ysr@1114 1422 // incremental scan will be done (see ParGCArrayScanChunk).
ysr@1114 1423 // When using compressed oops, this length field is kept in the
ysr@1114 1424 // lower 32 bits of the erstwhile klass word and cannot be used
ysr@1114 1425 // for the overflow chaining pointer (OCP below). As such the OCP
ysr@1114 1426 // would itself need to be compressed into the top 32-bits in this
ysr@1114 1427 // case. Unfortunately, see below, in the event that we have a
ysr@1114 1428 // promotion failure, the node to be pushed on the list can be
ysr@1114 1429 // outside of the Java heap, so the heap-based pointer compression
ysr@1114 1430 // would not work (we would have potential aliasing between C-heap
ysr@1114 1431 // and Java-heap pointers). For this reason, when using compressed
ysr@1114 1432 // oops, we simply use a worker-thread-local, non-shared overflow
ysr@1114 1433 // list in the form of a growable array, with a slightly different
ysr@1114 1434 // overflow stack draining strategy. If/when we start using fat
ysr@1114 1435 // stacks here, we can go back to using (fat) pointer chains
ysr@1114 1436 // (although some performance comparisons would be useful since
ysr@1114 1437 // single global lists have their own performance disadvantages
ysr@1114 1438 // as we were made painfully aware not long ago, see 6786503).
hseigel@5784 1439 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
ysr@969 1440 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
ysr@1114 1441 assert(is_in_reserved(from_space_obj), "Should be from this generation");
ysr@1130 1442 if (ParGCUseLocalOverflow) {
ysr@1114 1443 // In the case of compressed oops, we use a private, not-shared
ysr@1114 1444 // overflow stack.
ysr@1114 1445 par_scan_state->push_on_overflow_stack(from_space_obj);
ysr@1114 1446 } else {
ysr@1130 1447 assert(!UseCompressedOops, "Error");
ysr@1114 1448 // if the object has been forwarded to itself, then we cannot
ysr@1114 1449 // use the klass pointer for the linked list. Instead we have
ysr@1114 1450 // to allocate an oopDesc in the C-Heap and use that for the linked list.
ysr@1114 1451 // XXX This is horribly inefficient when a promotion failure occurs
ysr@1114 1452 // and should be fixed. XXX FIX ME !!!
ysr@969 1453 #ifndef PRODUCT
ysr@1114 1454 Atomic::inc_ptr(&_num_par_pushes);
ysr@1114 1455 assert(_num_par_pushes > 0, "Tautology");
ysr@969 1456 #endif
ysr@1114 1457 if (from_space_obj->forwardee() == from_space_obj) {
zgu@3900 1458 oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
ysr@1114 1459 listhead->forward_to(from_space_obj);
ysr@1114 1460 from_space_obj = listhead;
ysr@1114 1461 }
ysr@1114 1462 oop observed_overflow_list = _overflow_list;
ysr@1114 1463 oop cur_overflow_list;
ysr@1114 1464 do {
ysr@1114 1465 cur_overflow_list = observed_overflow_list;
ysr@1114 1466 if (cur_overflow_list != BUSY) {
ysr@1114 1467 from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
ysr@1114 1468 } else {
ysr@1114 1469 from_space_obj->set_klass_to_list_ptr(NULL);
ysr@1114 1470 }
ysr@1114 1471 observed_overflow_list =
ysr@1114 1472 (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
ysr@1114 1473 } while (cur_overflow_list != observed_overflow_list);
duke@435 1474 }
duke@435 1475 }
duke@435 1476
ysr@1114 1477 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
ysr@1114 1478 bool res;
ysr@1114 1479
ysr@1130 1480 if (ParGCUseLocalOverflow) {
ysr@1114 1481 res = par_scan_state->take_from_overflow_stack();
ysr@1114 1482 } else {
ysr@1130 1483 assert(!UseCompressedOops, "Error");
ysr@1114 1484 res = take_from_overflow_list_work(par_scan_state);
ysr@1114 1485 }
ysr@1114 1486 return res;
ysr@1114 1487 }
ysr@1114 1488
ysr@1114 1489
ysr@969 1490 // *NOTE*: The overflow list manipulation code here and
ysr@969 1491 // in CMSCollector:: are very similar in shape,
ysr@969 1492 // except that in the CMS case we thread the objects
ysr@969 1493 // directly into the list via their mark word, and do
ysr@969 1494 // not need to deal with special cases below related
ysr@969 1495 // to chunking of object arrays and promotion failure
ysr@969 1496 // handling.
ysr@969 1497 // CR 6797058 has been filed to attempt consolidation of
ysr@969 1498 // the common code.
ysr@969 1499 // Because of the common code, if you make any changes in
ysr@969 1500 // the code below, please check the CMS version to see if
ysr@969 1501 // similar changes might be needed.
ysr@969 1502 // See CMSCollector::par_take_from_overflow_list() for
ysr@969 1503 // more extensive documentation comments.
ysr@1114 1504 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
duke@435 1505 ObjToScanQueue* work_q = par_scan_state->work_queue();
duke@435 1506 // How many to take?
ysr@1114 1507 size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
ysr@969 1508 (size_t)ParGCDesiredObjsFromOverflowList);
duke@435 1509
jcoomes@2191 1510 assert(!UseCompressedOops, "Error");
ysr@1114 1511 assert(par_scan_state->overflow_stack() == NULL, "Error");
duke@435 1512 if (_overflow_list == NULL) return false;
duke@435 1513
duke@435 1514 // Otherwise, there was something there; try claiming the list.
hseigel@5784 1515 oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
ysr@969 1516 // Trim off a prefix of at most objsFromOverflow items
ysr@969 1517 Thread* tid = Thread::current();
ysr@969 1518 size_t spin_count = (size_t)ParallelGCThreads;
ysr@969 1519 size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
ysr@969 1520 for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
ysr@969 1521 // someone grabbed it before we did ...
ysr@969 1522 // ... we spin for a short while...
ysr@969 1523 os::sleep(tid, sleep_time_millis, false);
ysr@969 1524 if (_overflow_list == NULL) {
ysr@969 1525 // nothing left to take
ysr@969 1526 return false;
ysr@969 1527 } else if (_overflow_list != BUSY) {
ysr@969 1528 // try and grab the prefix
hseigel@5784 1529 prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
ysr@969 1530 }
duke@435 1531 }
ysr@969 1532 if (prefix == NULL || prefix == BUSY) {
ysr@969 1533 // Nothing to take or waited long enough
ysr@969 1534 if (prefix == NULL) {
ysr@969 1535 // Write back the NULL in case we overwrote it with BUSY above
ysr@969 1536 // and it is still the same value.
ysr@969 1537 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
ysr@969 1538 }
ysr@969 1539 return false;
ysr@969 1540 }
ysr@969 1541 assert(prefix != NULL && prefix != BUSY, "Error");
ysr@969 1542 size_t i = 1;
duke@435 1543 oop cur = prefix;
coleenp@602 1544 while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
coleenp@4037 1545 i++; cur = cur->list_ptr_from_klass();
duke@435 1546 }
duke@435 1547
duke@435 1548 // Reattach remaining (suffix) to overflow list
ysr@969 1549 if (cur->klass_or_null() == NULL) {
ysr@969 1550 // Write back the NULL in lieu of the BUSY we wrote
ysr@969 1551 // above and it is still the same value.
ysr@969 1552 if (_overflow_list == BUSY) {
ysr@969 1553 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
duke@435 1554 }
ysr@969 1555 } else {
coleenp@4037 1556 assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
coleenp@4037 1557 oop suffix = cur->list_ptr_from_klass(); // suffix will be put back on global list
ysr@969 1558 cur->set_klass_to_list_ptr(NULL); // break off suffix
ysr@969 1559 // It's possible that the list is still in the empty(busy) state
ysr@969 1560 // we left it in a short while ago; in that case we may be
ysr@969 1561 // able to place back the suffix.
ysr@969 1562 oop observed_overflow_list = _overflow_list;
ysr@969 1563 oop cur_overflow_list = observed_overflow_list;
ysr@969 1564 bool attached = false;
ysr@969 1565 while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
ysr@969 1566 observed_overflow_list =
ysr@969 1567 (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
ysr@969 1568 if (cur_overflow_list == observed_overflow_list) {
ysr@969 1569 attached = true;
ysr@969 1570 break;
ysr@969 1571 } else cur_overflow_list = observed_overflow_list;
ysr@969 1572 }
ysr@969 1573 if (!attached) {
ysr@969 1574 // Too bad, someone else got in in between; we'll need to do a splice.
ysr@969 1575 // Find the last item of suffix list
ysr@969 1576 oop last = suffix;
ysr@969 1577 while (last->klass_or_null() != NULL) {
coleenp@4037 1578 last = last->list_ptr_from_klass();
ysr@969 1579 }
ysr@969 1580 // Atomically prepend suffix to current overflow list
ysr@969 1581 observed_overflow_list = _overflow_list;
ysr@969 1582 do {
ysr@969 1583 cur_overflow_list = observed_overflow_list;
ysr@969 1584 if (cur_overflow_list != BUSY) {
ysr@969 1585 // Do the splice ...
ysr@969 1586 last->set_klass_to_list_ptr(cur_overflow_list);
ysr@969 1587 } else { // cur_overflow_list == BUSY
ysr@969 1588 last->set_klass_to_list_ptr(NULL);
ysr@969 1589 }
ysr@969 1590 observed_overflow_list =
ysr@969 1591 (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
ysr@969 1592 } while (cur_overflow_list != observed_overflow_list);
duke@435 1593 }
duke@435 1594 }
duke@435 1595
duke@435 1596 // Push objects on prefix list onto this thread's work queue
ysr@969 1597 assert(prefix != NULL && prefix != BUSY, "program logic");
duke@435 1598 cur = prefix;
ysr@969 1599 ssize_t n = 0;
duke@435 1600 while (cur != NULL) {
duke@435 1601 oop obj_to_push = cur->forwardee();
coleenp@4037 1602 oop next = cur->list_ptr_from_klass();
duke@435 1603 cur->set_klass(obj_to_push->klass());
ysr@969 1604 // This may be an array object that is self-forwarded. In that case, the list pointer
ysr@969 1605 // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
ysr@969 1606 if (!is_in_reserved(cur)) {
ysr@969 1607 // This can become a scaling bottleneck when there is work queue overflow coincident
ysr@969 1608 // with promotion failure.
ysr@969 1609 oopDesc* f = cur;
zgu@3900 1610 FREE_C_HEAP_ARRAY(oopDesc, f, mtGC);
ysr@969 1611 } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
ysr@969 1612 assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
duke@435 1613 obj_to_push = cur;
duke@435 1614 }
ysr@969 1615 bool ok = work_q->push(obj_to_push);
ysr@969 1616 assert(ok, "Should have succeeded");
duke@435 1617 cur = next;
duke@435 1618 n++;
duke@435 1619 }
jcoomes@2065 1620 TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
ysr@969 1621 #ifndef PRODUCT
ysr@969 1622 assert(_num_par_pushes >= n, "Too many pops?");
ysr@969 1623 Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
ysr@969 1624 #endif
duke@435 1625 return true;
duke@435 1626 }
ysr@969 1627 #undef BUSY
duke@435 1628
sla@5237 1629 void ParNewGeneration::ref_processor_init() {
duke@435 1630 if (_ref_processor == NULL) {
duke@435 1631 // Allocate and initialize a reference processor
ysr@2651 1632 _ref_processor =
ysr@2651 1633 new ReferenceProcessor(_reserved, // span
ysr@2651 1634 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
ysr@2651 1635 (int) ParallelGCThreads, // mt processing degree
ysr@2651 1636 refs_discovery_is_mt(), // mt discovery
ysr@2651 1637 (int) ParallelGCThreads, // mt discovery degree
ysr@2651 1638 refs_discovery_is_atomic(), // atomic_discovery
ysr@2651 1639 NULL, // is_alive_non_header
ysr@2651 1640 false); // write barrier for next field updates
duke@435 1641 }
duke@435 1642 }
duke@435 1643
duke@435 1644 const char* ParNewGeneration::name() const {
duke@435 1645 return "par new generation";
duke@435 1646 }

mercurial