src/share/vm/gc_implementation/parNew/parNewGeneration.cpp

Fri, 16 Jul 2010 21:33:21 -0700

author
jcoomes
date
Fri, 16 Jul 2010 21:33:21 -0700
changeset 2020
a93a9eda13f7
parent 1907
c18cbe5936b8
child 2065
94251661de76
permissions
-rw-r--r--

6962947: shared TaskQueue statistics
Reviewed-by: tonyp, ysr

duke@435 1 /*
trims@1907 2 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_parNewGeneration.cpp.incl"
duke@435 27
duke@435 28 #ifdef _MSC_VER
duke@435 29 #pragma warning( push )
duke@435 30 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
duke@435 31 #endif
duke@435 32 ParScanThreadState::ParScanThreadState(Space* to_space_,
duke@435 33 ParNewGeneration* gen_,
duke@435 34 Generation* old_gen_,
duke@435 35 int thread_num_,
duke@435 36 ObjToScanQueueSet* work_queue_set_,
ysr@1130 37 GrowableArray<oop>** overflow_stack_set_,
duke@435 38 size_t desired_plab_sz_,
duke@435 39 ParallelTaskTerminator& term_) :
ysr@1114 40 _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
duke@435 41 _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
ysr@1130 42 _overflow_stack(overflow_stack_set_[thread_num_]),
duke@435 43 _ageTable(false), // false ==> not the global age table, no perf data.
duke@435 44 _to_space_alloc_buffer(desired_plab_sz_),
duke@435 45 _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
duke@435 46 _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
duke@435 47 _older_gen_closure(gen_, this),
duke@435 48 _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
duke@435 49 &_to_space_root_closure, gen_, &_old_gen_root_closure,
duke@435 50 work_queue_set_, &term_),
duke@435 51 _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
duke@435 52 _keep_alive_closure(&_scan_weak_ref_closure),
ysr@1580 53 _promotion_failure_size(0),
duke@435 54 _pushes(0), _pops(0), _steals(0), _steal_attempts(0), _term_attempts(0),
duke@435 55 _strong_roots_time(0.0), _term_time(0.0)
duke@435 56 {
duke@435 57 _survivor_chunk_array =
duke@435 58 (ChunkArray*) old_gen()->get_data_recorder(thread_num());
duke@435 59 _hash_seed = 17; // Might want to take time-based random value.
duke@435 60 _start = os::elapsedTime();
duke@435 61 _old_gen_closure.set_generation(old_gen_);
duke@435 62 _old_gen_root_closure.set_generation(old_gen_);
duke@435 63 }
duke@435 64 #ifdef _MSC_VER
duke@435 65 #pragma warning( pop )
duke@435 66 #endif
duke@435 67
duke@435 68 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
duke@435 69 size_t plab_word_size) {
duke@435 70 ChunkArray* sca = survivor_chunk_array();
duke@435 71 if (sca != NULL) {
duke@435 72 // A non-null SCA implies that we want the PLAB data recorded.
duke@435 73 sca->record_sample(plab_start, plab_word_size);
duke@435 74 }
duke@435 75 }
duke@435 76
duke@435 77 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
duke@435 78 return new_obj->is_objArray() &&
duke@435 79 arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
duke@435 80 new_obj != old_obj;
duke@435 81 }
duke@435 82
duke@435 83 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
duke@435 84 assert(old->is_objArray(), "must be obj array");
duke@435 85 assert(old->is_forwarded(), "must be forwarded");
duke@435 86 assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
ysr@1114 87 assert(!old_gen()->is_in(old), "must be in young generation.");
duke@435 88
duke@435 89 objArrayOop obj = objArrayOop(old->forwardee());
duke@435 90 // Process ParGCArrayScanChunk elements now
duke@435 91 // and push the remainder back onto queue
duke@435 92 int start = arrayOop(old)->length();
duke@435 93 int end = obj->length();
duke@435 94 int remainder = end - start;
duke@435 95 assert(start <= end, "just checking");
duke@435 96 if (remainder > 2 * ParGCArrayScanChunk) {
duke@435 97 // Test above combines last partial chunk with a full chunk
duke@435 98 end = start + ParGCArrayScanChunk;
duke@435 99 arrayOop(old)->set_length(end);
duke@435 100 // Push remainder.
duke@435 101 bool ok = work_queue()->push(old);
duke@435 102 assert(ok, "just popped, push must be okay");
duke@435 103 note_push();
duke@435 104 } else {
duke@435 105 // Restore length so that it can be used if there
duke@435 106 // is a promotion failure and forwarding pointers
duke@435 107 // must be removed.
duke@435 108 arrayOop(old)->set_length(end);
duke@435 109 }
coleenp@548 110
duke@435 111 // process our set of indices (include header in first chunk)
coleenp@548 112 // should make sure end is even (aligned to HeapWord in case of compressed oops)
duke@435 113 if ((HeapWord *)obj < young_old_boundary()) {
duke@435 114 // object is in to_space
coleenp@548 115 obj->oop_iterate_range(&_to_space_closure, start, end);
duke@435 116 } else {
duke@435 117 // object is in old generation
coleenp@548 118 obj->oop_iterate_range(&_old_gen_closure, start, end);
duke@435 119 }
duke@435 120 }
duke@435 121
duke@435 122
duke@435 123 void ParScanThreadState::trim_queues(int max_size) {
duke@435 124 ObjToScanQueue* queue = work_queue();
ysr@1114 125 do {
ysr@1114 126 while (queue->size() > (juint)max_size) {
ysr@1114 127 oop obj_to_scan;
ysr@1114 128 if (queue->pop_local(obj_to_scan)) {
ysr@1114 129 note_pop();
ysr@1114 130 if ((HeapWord *)obj_to_scan < young_old_boundary()) {
ysr@1114 131 if (obj_to_scan->is_objArray() &&
ysr@1114 132 obj_to_scan->is_forwarded() &&
ysr@1114 133 obj_to_scan->forwardee() != obj_to_scan) {
ysr@1114 134 scan_partial_array_and_push_remainder(obj_to_scan);
ysr@1114 135 } else {
ysr@1114 136 // object is in to_space
ysr@1114 137 obj_to_scan->oop_iterate(&_to_space_closure);
ysr@1114 138 }
duke@435 139 } else {
ysr@1114 140 // object is in old generation
ysr@1114 141 obj_to_scan->oop_iterate(&_old_gen_closure);
duke@435 142 }
duke@435 143 }
duke@435 144 }
ysr@1114 145 // For the case of compressed oops, we have a private, non-shared
ysr@1114 146 // overflow stack, so we eagerly drain it so as to more evenly
ysr@1114 147 // distribute load early. Note: this may be good to do in
ysr@1114 148 // general rather than delay for the final stealing phase.
ysr@1114 149 // If applicable, we'll transfer a set of objects over to our
ysr@1114 150 // work queue, allowing them to be stolen and draining our
ysr@1114 151 // private overflow stack.
ysr@1114 152 } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
ysr@1114 153 }
ysr@1114 154
ysr@1114 155 bool ParScanThreadState::take_from_overflow_stack() {
ysr@1130 156 assert(ParGCUseLocalOverflow, "Else should not call");
ysr@1114 157 assert(young_gen()->overflow_list() == NULL, "Error");
ysr@1114 158 ObjToScanQueue* queue = work_queue();
ysr@1114 159 GrowableArray<oop>* of_stack = overflow_stack();
ysr@1114 160 uint num_overflow_elems = of_stack->length();
ysr@1114 161 uint num_take_elems = MIN2(MIN2((queue->max_elems() - queue->size())/4,
ysr@1114 162 (juint)ParGCDesiredObjsFromOverflowList),
ysr@1114 163 num_overflow_elems);
ysr@1114 164 // Transfer the most recent num_take_elems from the overflow
ysr@1114 165 // stack to our work queue.
ysr@1114 166 for (size_t i = 0; i != num_take_elems; i++) {
ysr@1114 167 oop cur = of_stack->pop();
ysr@1114 168 oop obj_to_push = cur->forwardee();
ysr@1114 169 assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
ysr@1114 170 assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
ysr@1114 171 assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
ysr@1114 172 if (should_be_partially_scanned(obj_to_push, cur)) {
ysr@1114 173 assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
ysr@1114 174 obj_to_push = cur;
ysr@1114 175 }
ysr@1114 176 bool ok = queue->push(obj_to_push);
ysr@1114 177 assert(ok, "Should have succeeded");
duke@435 178 }
ysr@1114 179 assert(young_gen()->overflow_list() == NULL, "Error");
ysr@1114 180 return num_take_elems > 0; // was something transferred?
ysr@1114 181 }
ysr@1114 182
ysr@1114 183 void ParScanThreadState::push_on_overflow_stack(oop p) {
ysr@1130 184 assert(ParGCUseLocalOverflow, "Else should not call");
ysr@1114 185 overflow_stack()->push(p);
ysr@1114 186 assert(young_gen()->overflow_list() == NULL, "Error");
duke@435 187 }
duke@435 188
duke@435 189 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
duke@435 190
duke@435 191 // Otherwise, if the object is small enough, try to reallocate the
duke@435 192 // buffer.
duke@435 193 HeapWord* obj = NULL;
duke@435 194 if (!_to_space_full) {
duke@435 195 ParGCAllocBuffer* const plab = to_space_alloc_buffer();
duke@435 196 Space* const sp = to_space();
duke@435 197 if (word_sz * 100 <
duke@435 198 ParallelGCBufferWastePct * plab->word_sz()) {
duke@435 199 // Is small enough; abandon this buffer and start a new one.
duke@435 200 plab->retire(false, false);
duke@435 201 size_t buf_size = plab->word_sz();
duke@435 202 HeapWord* buf_space = sp->par_allocate(buf_size);
duke@435 203 if (buf_space == NULL) {
duke@435 204 const size_t min_bytes =
duke@435 205 ParGCAllocBuffer::min_size() << LogHeapWordSize;
duke@435 206 size_t free_bytes = sp->free();
duke@435 207 while(buf_space == NULL && free_bytes >= min_bytes) {
duke@435 208 buf_size = free_bytes >> LogHeapWordSize;
duke@435 209 assert(buf_size == (size_t)align_object_size(buf_size),
duke@435 210 "Invariant");
duke@435 211 buf_space = sp->par_allocate(buf_size);
duke@435 212 free_bytes = sp->free();
duke@435 213 }
duke@435 214 }
duke@435 215 if (buf_space != NULL) {
duke@435 216 plab->set_word_size(buf_size);
duke@435 217 plab->set_buf(buf_space);
duke@435 218 record_survivor_plab(buf_space, buf_size);
duke@435 219 obj = plab->allocate(word_sz);
duke@435 220 // Note that we cannot compare buf_size < word_sz below
duke@435 221 // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
duke@435 222 assert(obj != NULL || plab->words_remaining() < word_sz,
duke@435 223 "Else should have been able to allocate");
duke@435 224 // It's conceivable that we may be able to use the
duke@435 225 // buffer we just grabbed for subsequent small requests
duke@435 226 // even if not for this one.
duke@435 227 } else {
duke@435 228 // We're used up.
duke@435 229 _to_space_full = true;
duke@435 230 }
duke@435 231
duke@435 232 } else {
duke@435 233 // Too large; allocate the object individually.
duke@435 234 obj = sp->par_allocate(word_sz);
duke@435 235 }
duke@435 236 }
duke@435 237 return obj;
duke@435 238 }
duke@435 239
duke@435 240
duke@435 241 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
duke@435 242 size_t word_sz) {
duke@435 243 // Is the alloc in the current alloc buffer?
duke@435 244 if (to_space_alloc_buffer()->contains(obj)) {
duke@435 245 assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
duke@435 246 "Should contain whole object.");
duke@435 247 to_space_alloc_buffer()->undo_allocation(obj, word_sz);
duke@435 248 } else {
jcoomes@916 249 CollectedHeap::fill_with_object(obj, word_sz);
duke@435 250 }
duke@435 251 }
duke@435 252
ysr@1580 253 void ParScanThreadState::print_and_clear_promotion_failure_size() {
ysr@1580 254 if (_promotion_failure_size != 0) {
ysr@1580 255 if (PrintPromotionFailure) {
ysr@1580 256 gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
ysr@1580 257 _thread_num, _promotion_failure_size);
ysr@1580 258 }
ysr@1580 259 _promotion_failure_size = 0;
ysr@1580 260 }
ysr@1580 261 }
ysr@1580 262
duke@435 263 class ParScanThreadStateSet: private ResourceArray {
duke@435 264 public:
duke@435 265 // Initializes states for the specified number of threads;
duke@435 266 ParScanThreadStateSet(int num_threads,
duke@435 267 Space& to_space,
duke@435 268 ParNewGeneration& gen,
duke@435 269 Generation& old_gen,
duke@435 270 ObjToScanQueueSet& queue_set,
ysr@1130 271 GrowableArray<oop>** overflow_stacks_,
duke@435 272 size_t desired_plab_sz,
duke@435 273 ParallelTaskTerminator& term);
ysr@1580 274 inline ParScanThreadState& thread_state(int i);
duke@435 275 int pushes() { return _pushes; }
duke@435 276 int pops() { return _pops; }
duke@435 277 int steals() { return _steals; }
ysr@1580 278 void reset(bool promotion_failed);
duke@435 279 void flush();
duke@435 280 private:
duke@435 281 ParallelTaskTerminator& _term;
duke@435 282 ParNewGeneration& _gen;
duke@435 283 Generation& _next_gen;
duke@435 284 // staticstics
duke@435 285 int _pushes;
duke@435 286 int _pops;
duke@435 287 int _steals;
duke@435 288 };
duke@435 289
duke@435 290
duke@435 291 ParScanThreadStateSet::ParScanThreadStateSet(
duke@435 292 int num_threads, Space& to_space, ParNewGeneration& gen,
duke@435 293 Generation& old_gen, ObjToScanQueueSet& queue_set,
ysr@1130 294 GrowableArray<oop>** overflow_stack_set_,
duke@435 295 size_t desired_plab_sz, ParallelTaskTerminator& term)
duke@435 296 : ResourceArray(sizeof(ParScanThreadState), num_threads),
duke@435 297 _gen(gen), _next_gen(old_gen), _term(term),
duke@435 298 _pushes(0), _pops(0), _steals(0)
duke@435 299 {
duke@435 300 assert(num_threads > 0, "sanity check!");
duke@435 301 // Initialize states.
duke@435 302 for (int i = 0; i < num_threads; ++i) {
duke@435 303 new ((ParScanThreadState*)_data + i)
duke@435 304 ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
ysr@1130 305 overflow_stack_set_, desired_plab_sz, term);
duke@435 306 }
duke@435 307 }
duke@435 308
ysr@1580 309 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
duke@435 310 {
duke@435 311 assert(i >= 0 && i < length(), "sanity check!");
duke@435 312 return ((ParScanThreadState*)_data)[i];
duke@435 313 }
duke@435 314
duke@435 315
ysr@1580 316 void ParScanThreadStateSet::reset(bool promotion_failed)
duke@435 317 {
duke@435 318 _term.reset_for_reuse();
ysr@1580 319 if (promotion_failed) {
ysr@1580 320 for (int i = 0; i < length(); ++i) {
ysr@1580 321 thread_state(i).print_and_clear_promotion_failure_size();
ysr@1580 322 }
ysr@1580 323 }
duke@435 324 }
duke@435 325
duke@435 326 void ParScanThreadStateSet::flush()
duke@435 327 {
ysr@1580 328 // Work in this loop should be kept as lightweight as
ysr@1580 329 // possible since this might otherwise become a bottleneck
ysr@1580 330 // to scaling. Should we add heavy-weight work into this
ysr@1580 331 // loop, consider parallelizing the loop into the worker threads.
duke@435 332 for (int i = 0; i < length(); ++i) {
ysr@1580 333 ParScanThreadState& par_scan_state = thread_state(i);
duke@435 334
duke@435 335 // Flush stats related to To-space PLAB activity and
duke@435 336 // retire the last buffer.
duke@435 337 par_scan_state.to_space_alloc_buffer()->
duke@435 338 flush_stats_and_retire(_gen.plab_stats(),
duke@435 339 false /* !retain */);
duke@435 340
duke@435 341 // Every thread has its own age table. We need to merge
duke@435 342 // them all into one.
duke@435 343 ageTable *local_table = par_scan_state.age_table();
duke@435 344 _gen.age_table()->merge(local_table);
duke@435 345
duke@435 346 // Inform old gen that we're done.
duke@435 347 _next_gen.par_promote_alloc_done(i);
duke@435 348 _next_gen.par_oop_since_save_marks_iterate_done(i);
duke@435 349
duke@435 350 // Flush stats related to work queue activity (push/pop/steal)
duke@435 351 // This could conceivably become a bottleneck; if so, we'll put the
duke@435 352 // stat's gathering under the flag.
duke@435 353 if (PAR_STATS_ENABLED) {
duke@435 354 _pushes += par_scan_state.pushes();
duke@435 355 _pops += par_scan_state.pops();
duke@435 356 _steals += par_scan_state.steals();
duke@435 357 if (ParallelGCVerbose) {
duke@435 358 gclog_or_tty->print("Thread %d complete:\n"
duke@435 359 " Pushes: %7d Pops: %7d Steals %7d (in %d attempts)\n",
duke@435 360 i, par_scan_state.pushes(), par_scan_state.pops(),
duke@435 361 par_scan_state.steals(), par_scan_state.steal_attempts());
duke@435 362 if (par_scan_state.overflow_pushes() > 0 ||
duke@435 363 par_scan_state.overflow_refills() > 0) {
duke@435 364 gclog_or_tty->print(" Overflow pushes: %7d "
duke@435 365 "Overflow refills: %7d for %d objs.\n",
duke@435 366 par_scan_state.overflow_pushes(),
duke@435 367 par_scan_state.overflow_refills(),
duke@435 368 par_scan_state.overflow_refill_objs());
duke@435 369 }
duke@435 370
duke@435 371 double elapsed = par_scan_state.elapsed();
duke@435 372 double strong_roots = par_scan_state.strong_roots_time();
duke@435 373 double term = par_scan_state.term_time();
duke@435 374 gclog_or_tty->print(
duke@435 375 " Elapsed: %7.2f ms.\n"
duke@435 376 " Strong roots: %7.2f ms (%6.2f%%)\n"
duke@435 377 " Termination: %7.2f ms (%6.2f%%) (in %d entries)\n",
duke@435 378 elapsed * 1000.0,
duke@435 379 strong_roots * 1000.0, (strong_roots*100.0/elapsed),
duke@435 380 term * 1000.0, (term*100.0/elapsed),
duke@435 381 par_scan_state.term_attempts());
duke@435 382 }
duke@435 383 }
duke@435 384 }
ysr@1580 385 if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
ysr@1580 386 // We need to call this even when ResizeOldPLAB is disabled
ysr@1580 387 // so as to avoid breaking some asserts. While we may be able
ysr@1580 388 // to avoid this by reorganizing the code a bit, I am loathe
ysr@1580 389 // to do that unless we find cases where ergo leads to bad
ysr@1580 390 // performance.
ysr@1580 391 CFLS_LAB::compute_desired_plab_size();
ysr@1580 392 }
duke@435 393 }
duke@435 394
duke@435 395 ParScanClosure::ParScanClosure(ParNewGeneration* g,
duke@435 396 ParScanThreadState* par_scan_state) :
duke@435 397 OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
duke@435 398 {
duke@435 399 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 400 _boundary = _g->reserved().end();
duke@435 401 }
duke@435 402
coleenp@548 403 void ParScanWithBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, false); }
coleenp@548 404 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
coleenp@548 405
coleenp@548 406 void ParScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, false); }
coleenp@548 407 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
coleenp@548 408
coleenp@548 409 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, true); }
coleenp@548 410 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
coleenp@548 411
coleenp@548 412 void ParRootScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, true); }
coleenp@548 413 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
coleenp@548 414
duke@435 415 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
duke@435 416 ParScanThreadState* par_scan_state)
duke@435 417 : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
coleenp@548 418 {}
coleenp@548 419
coleenp@548 420 void ParScanWeakRefClosure::do_oop(oop* p) { ParScanWeakRefClosure::do_oop_work(p); }
coleenp@548 421 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
duke@435 422
duke@435 423 #ifdef WIN32
duke@435 424 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
duke@435 425 #endif
duke@435 426
duke@435 427 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
duke@435 428 ParScanThreadState* par_scan_state_,
duke@435 429 ParScanWithoutBarrierClosure* to_space_closure_,
duke@435 430 ParScanWithBarrierClosure* old_gen_closure_,
duke@435 431 ParRootScanWithoutBarrierClosure* to_space_root_closure_,
duke@435 432 ParNewGeneration* par_gen_,
duke@435 433 ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
duke@435 434 ObjToScanQueueSet* task_queues_,
duke@435 435 ParallelTaskTerminator* terminator_) :
duke@435 436
duke@435 437 _par_scan_state(par_scan_state_),
duke@435 438 _to_space_closure(to_space_closure_),
duke@435 439 _old_gen_closure(old_gen_closure_),
duke@435 440 _to_space_root_closure(to_space_root_closure_),
duke@435 441 _old_gen_root_closure(old_gen_root_closure_),
duke@435 442 _par_gen(par_gen_),
duke@435 443 _task_queues(task_queues_),
duke@435 444 _terminator(terminator_)
duke@435 445 {}
duke@435 446
duke@435 447 void ParEvacuateFollowersClosure::do_void() {
duke@435 448 ObjToScanQueue* work_q = par_scan_state()->work_queue();
duke@435 449
duke@435 450 while (true) {
duke@435 451
duke@435 452 // Scan to-space and old-gen objs until we run out of both.
duke@435 453 oop obj_to_scan;
duke@435 454 par_scan_state()->trim_queues(0);
duke@435 455
duke@435 456 // We have no local work, attempt to steal from other threads.
duke@435 457
duke@435 458 // attempt to steal work from promoted.
duke@435 459 par_scan_state()->note_steal_attempt();
duke@435 460 if (task_queues()->steal(par_scan_state()->thread_num(),
duke@435 461 par_scan_state()->hash_seed(),
duke@435 462 obj_to_scan)) {
duke@435 463 par_scan_state()->note_steal();
duke@435 464 bool res = work_q->push(obj_to_scan);
duke@435 465 assert(res, "Empty queue should have room for a push.");
duke@435 466
duke@435 467 par_scan_state()->note_push();
duke@435 468 // if successful, goto Start.
duke@435 469 continue;
duke@435 470
duke@435 471 // try global overflow list.
duke@435 472 } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
duke@435 473 continue;
duke@435 474 }
duke@435 475
duke@435 476 // Otherwise, offer termination.
duke@435 477 par_scan_state()->start_term_time();
duke@435 478 if (terminator()->offer_termination()) break;
duke@435 479 par_scan_state()->end_term_time();
duke@435 480 }
ysr@969 481 assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
ysr@969 482 "Broken overflow list?");
duke@435 483 // Finish the last termination pause.
duke@435 484 par_scan_state()->end_term_time();
duke@435 485 }
duke@435 486
duke@435 487 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
duke@435 488 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
duke@435 489 AbstractGangTask("ParNewGeneration collection"),
duke@435 490 _gen(gen), _next_gen(next_gen),
duke@435 491 _young_old_boundary(young_old_boundary),
duke@435 492 _state_set(state_set)
duke@435 493 {}
duke@435 494
duke@435 495 void ParNewGenTask::work(int i) {
duke@435 496 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 497 // Since this is being done in a separate thread, need new resource
duke@435 498 // and handle marks.
duke@435 499 ResourceMark rm;
duke@435 500 HandleMark hm;
duke@435 501 // We would need multiple old-gen queues otherwise.
ysr@1114 502 assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
duke@435 503
duke@435 504 Generation* old_gen = gch->next_gen(_gen);
duke@435 505
ysr@1580 506 ParScanThreadState& par_scan_state = _state_set->thread_state(i);
duke@435 507 par_scan_state.set_young_old_boundary(_young_old_boundary);
duke@435 508
duke@435 509 par_scan_state.start_strong_roots();
duke@435 510 gch->gen_process_strong_roots(_gen->level(),
jrose@1424 511 true, // Process younger gens, if any,
jrose@1424 512 // as strong roots.
jrose@1424 513 false, // no scope; this is parallel code
jrose@1424 514 false, // not collecting perm generation.
duke@435 515 SharedHeap::SO_AllClasses,
jrose@1424 516 &par_scan_state.to_space_root_closure(),
jrose@1424 517 true, // walk *all* scavengable nmethods
jrose@1424 518 &par_scan_state.older_gen_closure());
duke@435 519 par_scan_state.end_strong_roots();
duke@435 520
duke@435 521 // "evacuate followers".
duke@435 522 par_scan_state.evacuate_followers_closure().do_void();
duke@435 523 }
duke@435 524
duke@435 525 #ifdef _MSC_VER
duke@435 526 #pragma warning( push )
duke@435 527 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
duke@435 528 #endif
duke@435 529 ParNewGeneration::
duke@435 530 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
duke@435 531 : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
duke@435 532 _overflow_list(NULL),
duke@435 533 _is_alive_closure(this),
duke@435 534 _plab_stats(YoungPLABSize, PLABWeight)
duke@435 535 {
ysr@969 536 NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
ysr@969 537 NOT_PRODUCT(_num_par_pushes = 0;)
duke@435 538 _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
duke@435 539 guarantee(_task_queues != NULL, "task_queues allocation failure.");
duke@435 540
duke@435 541 for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
jcoomes@2020 542 ObjToScanQueue *q = new ObjToScanQueue();
jcoomes@2020 543 guarantee(q != NULL, "work_queue Allocation failure.");
jcoomes@2020 544 _task_queues->register_queue(i1, q);
duke@435 545 }
duke@435 546
duke@435 547 for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
duke@435 548 _task_queues->queue(i2)->initialize();
duke@435 549
ysr@1130 550 _overflow_stacks = NEW_C_HEAP_ARRAY(GrowableArray<oop>*, ParallelGCThreads);
ysr@1130 551 guarantee(_overflow_stacks != NULL, "Overflow stack set allocation failure");
ysr@1130 552 for (uint i = 0; i < ParallelGCThreads; i++) {
ysr@1130 553 if (ParGCUseLocalOverflow) {
ysr@1130 554 _overflow_stacks[i] = new (ResourceObj::C_HEAP) GrowableArray<oop>(512, true);
ysr@1130 555 guarantee(_overflow_stacks[i] != NULL, "Overflow Stack allocation failure.");
ysr@1130 556 } else {
ysr@1130 557 _overflow_stacks[i] = NULL;
ysr@1130 558 }
ysr@1130 559 }
ysr@1130 560
duke@435 561 if (UsePerfData) {
duke@435 562 EXCEPTION_MARK;
duke@435 563 ResourceMark rm;
duke@435 564
duke@435 565 const char* cname =
duke@435 566 PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
duke@435 567 PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
duke@435 568 ParallelGCThreads, CHECK);
duke@435 569 }
duke@435 570 }
duke@435 571 #ifdef _MSC_VER
duke@435 572 #pragma warning( pop )
duke@435 573 #endif
duke@435 574
duke@435 575 // ParNewGeneration::
duke@435 576 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
duke@435 577 DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
duke@435 578
coleenp@548 579 template <class T>
coleenp@548 580 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
coleenp@548 581 #ifdef ASSERT
coleenp@548 582 {
coleenp@548 583 assert(!oopDesc::is_null(*p), "expected non-null ref");
coleenp@548 584 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 585 // We never expect to see a null reference being processed
coleenp@548 586 // as a weak reference.
coleenp@548 587 assert(obj->is_oop(), "expected an oop while scanning weak refs");
coleenp@548 588 }
coleenp@548 589 #endif // ASSERT
duke@435 590
duke@435 591 _par_cl->do_oop_nv(p);
duke@435 592
duke@435 593 if (Universe::heap()->is_in_reserved(p)) {
coleenp@548 594 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 595 _rs->write_ref_field_gc_par(p, obj);
duke@435 596 }
duke@435 597 }
duke@435 598
coleenp@548 599 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p) { ParKeepAliveClosure::do_oop_work(p); }
coleenp@548 600 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
coleenp@548 601
duke@435 602 // ParNewGeneration::
duke@435 603 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
duke@435 604 DefNewGeneration::KeepAliveClosure(cl) {}
duke@435 605
coleenp@548 606 template <class T>
coleenp@548 607 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
coleenp@548 608 #ifdef ASSERT
coleenp@548 609 {
coleenp@548 610 assert(!oopDesc::is_null(*p), "expected non-null ref");
coleenp@548 611 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 612 // We never expect to see a null reference being processed
coleenp@548 613 // as a weak reference.
coleenp@548 614 assert(obj->is_oop(), "expected an oop while scanning weak refs");
coleenp@548 615 }
coleenp@548 616 #endif // ASSERT
duke@435 617
duke@435 618 _cl->do_oop_nv(p);
duke@435 619
duke@435 620 if (Universe::heap()->is_in_reserved(p)) {
coleenp@548 621 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 622 _rs->write_ref_field_gc_par(p, obj);
duke@435 623 }
duke@435 624 }
duke@435 625
coleenp@548 626 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p) { KeepAliveClosure::do_oop_work(p); }
coleenp@548 627 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
coleenp@548 628
coleenp@548 629 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
coleenp@548 630 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 631 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 632 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
duke@435 633 if ((HeapWord*)obj < _boundary) {
duke@435 634 assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
coleenp@548 635 oop new_obj = obj->is_forwarded()
coleenp@548 636 ? obj->forwardee()
coleenp@548 637 : _g->DefNewGeneration::copy_to_survivor_space(obj);
coleenp@548 638 oopDesc::encode_store_heap_oop_not_null(p, new_obj);
duke@435 639 }
duke@435 640 if (_gc_barrier) {
duke@435 641 // If p points to a younger generation, mark the card.
duke@435 642 if ((HeapWord*)obj < _gen_boundary) {
duke@435 643 _rs->write_ref_field_gc_par(p, obj);
duke@435 644 }
duke@435 645 }
duke@435 646 }
duke@435 647 }
duke@435 648
coleenp@548 649 void ScanClosureWithParBarrier::do_oop(oop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
coleenp@548 650 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
coleenp@548 651
duke@435 652 class ParNewRefProcTaskProxy: public AbstractGangTask {
duke@435 653 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
duke@435 654 public:
duke@435 655 ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
duke@435 656 Generation& next_gen,
duke@435 657 HeapWord* young_old_boundary,
duke@435 658 ParScanThreadStateSet& state_set);
duke@435 659
duke@435 660 private:
duke@435 661 virtual void work(int i);
duke@435 662
duke@435 663 private:
duke@435 664 ParNewGeneration& _gen;
duke@435 665 ProcessTask& _task;
duke@435 666 Generation& _next_gen;
duke@435 667 HeapWord* _young_old_boundary;
duke@435 668 ParScanThreadStateSet& _state_set;
duke@435 669 };
duke@435 670
duke@435 671 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
duke@435 672 ProcessTask& task, ParNewGeneration& gen,
duke@435 673 Generation& next_gen,
duke@435 674 HeapWord* young_old_boundary,
duke@435 675 ParScanThreadStateSet& state_set)
duke@435 676 : AbstractGangTask("ParNewGeneration parallel reference processing"),
duke@435 677 _gen(gen),
duke@435 678 _task(task),
duke@435 679 _next_gen(next_gen),
duke@435 680 _young_old_boundary(young_old_boundary),
duke@435 681 _state_set(state_set)
duke@435 682 {
duke@435 683 }
duke@435 684
duke@435 685 void ParNewRefProcTaskProxy::work(int i)
duke@435 686 {
duke@435 687 ResourceMark rm;
duke@435 688 HandleMark hm;
ysr@1580 689 ParScanThreadState& par_scan_state = _state_set.thread_state(i);
duke@435 690 par_scan_state.set_young_old_boundary(_young_old_boundary);
duke@435 691 _task.work(i, par_scan_state.is_alive_closure(),
duke@435 692 par_scan_state.keep_alive_closure(),
duke@435 693 par_scan_state.evacuate_followers_closure());
duke@435 694 }
duke@435 695
duke@435 696 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
duke@435 697 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
duke@435 698 EnqueueTask& _task;
duke@435 699
duke@435 700 public:
duke@435 701 ParNewRefEnqueueTaskProxy(EnqueueTask& task)
duke@435 702 : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
duke@435 703 _task(task)
duke@435 704 { }
duke@435 705
duke@435 706 virtual void work(int i)
duke@435 707 {
duke@435 708 _task.work(i);
duke@435 709 }
duke@435 710 };
duke@435 711
duke@435 712
duke@435 713 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
duke@435 714 {
duke@435 715 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 716 assert(gch->kind() == CollectedHeap::GenCollectedHeap,
duke@435 717 "not a generational heap");
duke@435 718 WorkGang* workers = gch->workers();
duke@435 719 assert(workers != NULL, "Need parallel worker threads.");
duke@435 720 ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
duke@435 721 _generation.reserved().end(), _state_set);
duke@435 722 workers->run_task(&rp_task);
ysr@1580 723 _state_set.reset(_generation.promotion_failed());
duke@435 724 }
duke@435 725
duke@435 726 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
duke@435 727 {
duke@435 728 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 729 WorkGang* workers = gch->workers();
duke@435 730 assert(workers != NULL, "Need parallel worker threads.");
duke@435 731 ParNewRefEnqueueTaskProxy enq_task(task);
duke@435 732 workers->run_task(&enq_task);
duke@435 733 }
duke@435 734
duke@435 735 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
duke@435 736 {
duke@435 737 _state_set.flush();
duke@435 738 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 739 gch->set_par_threads(0); // 0 ==> non-parallel.
duke@435 740 gch->save_marks();
duke@435 741 }
duke@435 742
duke@435 743 ScanClosureWithParBarrier::
duke@435 744 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
duke@435 745 ScanClosure(g, gc_barrier) {}
duke@435 746
duke@435 747 EvacuateFollowersClosureGeneral::
duke@435 748 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
duke@435 749 OopsInGenClosure* cur,
duke@435 750 OopsInGenClosure* older) :
duke@435 751 _gch(gch), _level(level),
duke@435 752 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 753 {}
duke@435 754
duke@435 755 void EvacuateFollowersClosureGeneral::do_void() {
duke@435 756 do {
duke@435 757 // Beware: this call will lead to closure applications via virtual
duke@435 758 // calls.
duke@435 759 _gch->oop_since_save_marks_iterate(_level,
duke@435 760 _scan_cur_or_nonheap,
duke@435 761 _scan_older);
duke@435 762 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 763 }
duke@435 764
duke@435 765
duke@435 766 bool ParNewGeneration::_avoid_promotion_undo = false;
duke@435 767
duke@435 768 void ParNewGeneration::adjust_desired_tenuring_threshold() {
duke@435 769 // Set the desired survivor size to half the real survivor space
duke@435 770 _tenuring_threshold =
duke@435 771 age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
duke@435 772 }
duke@435 773
duke@435 774 // A Generation that does parallel young-gen collection.
duke@435 775
duke@435 776 void ParNewGeneration::collect(bool full,
duke@435 777 bool clear_all_soft_refs,
duke@435 778 size_t size,
duke@435 779 bool is_tlab) {
duke@435 780 assert(full || size > 0, "otherwise we don't want to collect");
duke@435 781 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 782 assert(gch->kind() == CollectedHeap::GenCollectedHeap,
duke@435 783 "not a CMS generational heap");
duke@435 784 AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
duke@435 785 WorkGang* workers = gch->workers();
duke@435 786 _next_gen = gch->next_gen(this);
duke@435 787 assert(_next_gen != NULL,
duke@435 788 "This must be the youngest gen, and not the only gen");
duke@435 789 assert(gch->n_gens() == 2,
duke@435 790 "Par collection currently only works with single older gen.");
duke@435 791 // Do we have to avoid promotion_undo?
duke@435 792 if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
duke@435 793 set_avoid_promotion_undo(true);
duke@435 794 }
duke@435 795
duke@435 796 // If the next generation is too full to accomodate worst-case promotion
duke@435 797 // from this generation, pass on collection; let the next generation
duke@435 798 // do it.
duke@435 799 if (!collection_attempt_is_safe()) {
duke@435 800 gch->set_incremental_collection_will_fail();
duke@435 801 return;
duke@435 802 }
duke@435 803 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
duke@435 804
duke@435 805 init_assuming_no_promotion_failure();
duke@435 806
duke@435 807 if (UseAdaptiveSizePolicy) {
duke@435 808 set_survivor_overflow(false);
duke@435 809 size_policy->minor_collection_begin();
duke@435 810 }
duke@435 811
duke@435 812 TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
duke@435 813 // Capture heap used before collection (for printing).
duke@435 814 size_t gch_prev_used = gch->used();
duke@435 815
duke@435 816 SpecializationStats::clear();
duke@435 817
duke@435 818 age_table()->clear();
jmasa@698 819 to()->clear(SpaceDecorator::Mangle);
duke@435 820
duke@435 821 gch->save_marks();
duke@435 822 assert(workers != NULL, "Need parallel worker threads.");
duke@435 823 ParallelTaskTerminator _term(workers->total_workers(), task_queues());
duke@435 824 ParScanThreadStateSet thread_state_set(workers->total_workers(),
duke@435 825 *to(), *this, *_next_gen, *task_queues(),
ysr@1130 826 _overflow_stacks, desired_plab_sz(), _term);
duke@435 827
duke@435 828 ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
duke@435 829 int n_workers = workers->total_workers();
duke@435 830 gch->set_par_threads(n_workers);
duke@435 831 gch->rem_set()->prepare_for_younger_refs_iterate(true);
duke@435 832 // It turns out that even when we're using 1 thread, doing the work in a
duke@435 833 // separate thread causes wide variance in run times. We can't help this
duke@435 834 // in the multi-threaded case, but we special-case n=1 here to get
duke@435 835 // repeatable measurements of the 1-thread overhead of the parallel code.
duke@435 836 if (n_workers > 1) {
jrose@1424 837 GenCollectedHeap::StrongRootsScope srs(gch);
duke@435 838 workers->run_task(&tsk);
duke@435 839 } else {
jrose@1424 840 GenCollectedHeap::StrongRootsScope srs(gch);
duke@435 841 tsk.work(0);
duke@435 842 }
ysr@1580 843 thread_state_set.reset(promotion_failed());
duke@435 844
duke@435 845 if (PAR_STATS_ENABLED && ParallelGCVerbose) {
duke@435 846 gclog_or_tty->print("Thread totals:\n"
duke@435 847 " Pushes: %7d Pops: %7d Steals %7d (sum = %7d).\n",
duke@435 848 thread_state_set.pushes(), thread_state_set.pops(),
duke@435 849 thread_state_set.steals(),
duke@435 850 thread_state_set.pops()+thread_state_set.steals());
duke@435 851 }
ysr@888 852 assert(thread_state_set.pushes() == thread_state_set.pops()
ysr@888 853 + thread_state_set.steals(),
duke@435 854 "Or else the queues are leaky.");
duke@435 855
duke@435 856 // Process (weak) reference objects found during scavenge.
ysr@888 857 ReferenceProcessor* rp = ref_processor();
duke@435 858 IsAliveClosure is_alive(this);
duke@435 859 ScanWeakRefClosure scan_weak_ref(this);
duke@435 860 KeepAliveClosure keep_alive(&scan_weak_ref);
duke@435 861 ScanClosure scan_without_gc_barrier(this, false);
duke@435 862 ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
duke@435 863 set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
duke@435 864 EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
duke@435 865 &scan_without_gc_barrier, &scan_with_gc_barrier);
ysr@892 866 rp->setup_policy(clear_all_soft_refs);
ysr@888 867 if (rp->processing_is_mt()) {
duke@435 868 ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
ysr@888 869 rp->process_discovered_references(&is_alive, &keep_alive,
ysr@888 870 &evacuate_followers, &task_executor);
duke@435 871 } else {
duke@435 872 thread_state_set.flush();
duke@435 873 gch->set_par_threads(0); // 0 ==> non-parallel.
duke@435 874 gch->save_marks();
ysr@888 875 rp->process_discovered_references(&is_alive, &keep_alive,
ysr@888 876 &evacuate_followers, NULL);
duke@435 877 }
duke@435 878 if (!promotion_failed()) {
duke@435 879 // Swap the survivor spaces.
jmasa@698 880 eden()->clear(SpaceDecorator::Mangle);
jmasa@698 881 from()->clear(SpaceDecorator::Mangle);
jmasa@698 882 if (ZapUnusedHeapArea) {
jmasa@698 883 // This is now done here because of the piece-meal mangling which
jmasa@698 884 // can check for valid mangling at intermediate points in the
jmasa@698 885 // collection(s). When a minor collection fails to collect
jmasa@698 886 // sufficient space resizing of the young generation can occur
jmasa@698 887 // an redistribute the spaces in the young generation. Mangle
jmasa@698 888 // here so that unzapped regions don't get distributed to
jmasa@698 889 // other spaces.
jmasa@698 890 to()->mangle_unused_area();
jmasa@698 891 }
duke@435 892 swap_spaces();
duke@435 893
jmasa@1822 894 // A successful scavenge should restart the GC time limit count which is
jmasa@1822 895 // for full GC's.
jmasa@1822 896 size_policy->reset_gc_overhead_limit_count();
jmasa@1822 897
duke@435 898 assert(to()->is_empty(), "to space should be empty now");
duke@435 899 } else {
duke@435 900 assert(HandlePromotionFailure,
duke@435 901 "Should only be here if promotion failure handling is on");
duke@435 902 if (_promo_failure_scan_stack != NULL) {
duke@435 903 // Can be non-null because of reference processing.
duke@435 904 // Free stack with its elements.
duke@435 905 delete _promo_failure_scan_stack;
duke@435 906 _promo_failure_scan_stack = NULL;
duke@435 907 }
duke@435 908 remove_forwarding_pointers();
duke@435 909 if (PrintGCDetails) {
duke@435 910 gclog_or_tty->print(" (promotion failed)");
duke@435 911 }
duke@435 912 // All the spaces are in play for mark-sweep.
duke@435 913 swap_spaces(); // Make life simpler for CMS || rescan; see 6483690.
duke@435 914 from()->set_next_compaction_space(to());
duke@435 915 gch->set_incremental_collection_will_fail();
ysr@1580 916 // Inform the next generation that a promotion failure occurred.
ysr@1580 917 _next_gen->promotion_failure_occurred();
jmasa@441 918
jmasa@441 919 // Reset the PromotionFailureALot counters.
jmasa@441 920 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
duke@435 921 }
duke@435 922 // set new iteration safe limit for the survivor spaces
duke@435 923 from()->set_concurrent_iteration_safe_limit(from()->top());
duke@435 924 to()->set_concurrent_iteration_safe_limit(to()->top());
duke@435 925
duke@435 926 adjust_desired_tenuring_threshold();
duke@435 927 if (ResizePLAB) {
duke@435 928 plab_stats()->adjust_desired_plab_sz();
duke@435 929 }
duke@435 930
duke@435 931 if (PrintGC && !PrintGCDetails) {
duke@435 932 gch->print_heap_change(gch_prev_used);
duke@435 933 }
duke@435 934
duke@435 935 if (UseAdaptiveSizePolicy) {
duke@435 936 size_policy->minor_collection_end(gch->gc_cause());
duke@435 937 size_policy->avg_survived()->sample(from()->used());
duke@435 938 }
duke@435 939
duke@435 940 update_time_of_last_gc(os::javaTimeMillis());
duke@435 941
duke@435 942 SpecializationStats::print();
duke@435 943
ysr@888 944 rp->set_enqueuing_is_done(true);
ysr@888 945 if (rp->processing_is_mt()) {
duke@435 946 ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
ysr@888 947 rp->enqueue_discovered_references(&task_executor);
duke@435 948 } else {
ysr@888 949 rp->enqueue_discovered_references(NULL);
duke@435 950 }
ysr@888 951 rp->verify_no_references_recorded();
duke@435 952 }
duke@435 953
duke@435 954 static int sum;
duke@435 955 void ParNewGeneration::waste_some_time() {
duke@435 956 for (int i = 0; i < 100; i++) {
duke@435 957 sum += i;
duke@435 958 }
duke@435 959 }
duke@435 960
duke@435 961 static const oop ClaimedForwardPtr = oop(0x4);
duke@435 962
duke@435 963 // Because of concurrency, there are times where an object for which
duke@435 964 // "is_forwarded()" is true contains an "interim" forwarding pointer
duke@435 965 // value. Such a value will soon be overwritten with a real value.
duke@435 966 // This method requires "obj" to have a forwarding pointer, and waits, if
duke@435 967 // necessary for a real one to be inserted, and returns it.
duke@435 968
duke@435 969 oop ParNewGeneration::real_forwardee(oop obj) {
duke@435 970 oop forward_ptr = obj->forwardee();
duke@435 971 if (forward_ptr != ClaimedForwardPtr) {
duke@435 972 return forward_ptr;
duke@435 973 } else {
duke@435 974 return real_forwardee_slow(obj);
duke@435 975 }
duke@435 976 }
duke@435 977
duke@435 978 oop ParNewGeneration::real_forwardee_slow(oop obj) {
duke@435 979 // Spin-read if it is claimed but not yet written by another thread.
duke@435 980 oop forward_ptr = obj->forwardee();
duke@435 981 while (forward_ptr == ClaimedForwardPtr) {
duke@435 982 waste_some_time();
duke@435 983 assert(obj->is_forwarded(), "precondition");
duke@435 984 forward_ptr = obj->forwardee();
duke@435 985 }
duke@435 986 return forward_ptr;
duke@435 987 }
duke@435 988
duke@435 989 #ifdef ASSERT
duke@435 990 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
duke@435 991 return
duke@435 992 (_avoid_promotion_undo && p == ClaimedForwardPtr)
duke@435 993 || Universe::heap()->is_in_reserved(p);
duke@435 994 }
duke@435 995 #endif
duke@435 996
duke@435 997 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
duke@435 998 if ((m != markOopDesc::prototype()) &&
duke@435 999 (!UseBiasedLocking || (m != markOopDesc::biased_locking_prototype()))) {
duke@435 1000 MutexLocker ml(ParGCRareEvent_lock);
duke@435 1001 DefNewGeneration::preserve_mark_if_necessary(obj, m);
duke@435 1002 }
duke@435 1003 }
duke@435 1004
duke@435 1005 // Multiple GC threads may try to promote an object. If the object
duke@435 1006 // is successfully promoted, a forwarding pointer will be installed in
duke@435 1007 // the object in the young generation. This method claims the right
duke@435 1008 // to install the forwarding pointer before it copies the object,
duke@435 1009 // thus avoiding the need to undo the copy as in
duke@435 1010 // copy_to_survivor_space_avoiding_with_undo.
duke@435 1011
duke@435 1012 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
duke@435 1013 ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
duke@435 1014 // In the sequential version, this assert also says that the object is
duke@435 1015 // not forwarded. That might not be the case here. It is the case that
duke@435 1016 // the caller observed it to be not forwarded at some time in the past.
duke@435 1017 assert(is_in_reserved(old), "shouldn't be scavenging this oop");
duke@435 1018
duke@435 1019 // The sequential code read "old->age()" below. That doesn't work here,
duke@435 1020 // since the age is in the mark word, and that might be overwritten with
duke@435 1021 // a forwarding pointer by a parallel thread. So we must save the mark
duke@435 1022 // word in a local and then analyze it.
duke@435 1023 oopDesc dummyOld;
duke@435 1024 dummyOld.set_mark(m);
duke@435 1025 assert(!dummyOld.is_forwarded(),
duke@435 1026 "should not be called with forwarding pointer mark word.");
duke@435 1027
duke@435 1028 oop new_obj = NULL;
duke@435 1029 oop forward_ptr;
duke@435 1030
duke@435 1031 // Try allocating obj in to-space (unless too old)
duke@435 1032 if (dummyOld.age() < tenuring_threshold()) {
duke@435 1033 new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
duke@435 1034 if (new_obj == NULL) {
duke@435 1035 set_survivor_overflow(true);
duke@435 1036 }
duke@435 1037 }
duke@435 1038
duke@435 1039 if (new_obj == NULL) {
duke@435 1040 // Either to-space is full or we decided to promote
duke@435 1041 // try allocating obj tenured
duke@435 1042
duke@435 1043 // Attempt to install a null forwarding pointer (atomically),
duke@435 1044 // to claim the right to install the real forwarding pointer.
duke@435 1045 forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
duke@435 1046 if (forward_ptr != NULL) {
duke@435 1047 // someone else beat us to it.
duke@435 1048 return real_forwardee(old);
duke@435 1049 }
duke@435 1050
duke@435 1051 new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
duke@435 1052 old, m, sz);
duke@435 1053
duke@435 1054 if (new_obj == NULL) {
duke@435 1055 if (!HandlePromotionFailure) {
duke@435 1056 // A failed promotion likely means the MaxLiveObjectEvacuationRatio flag
duke@435 1057 // is incorrectly set. In any case, its seriously wrong to be here!
duke@435 1058 vm_exit_out_of_memory(sz*wordSize, "promotion");
duke@435 1059 }
duke@435 1060 // promotion failed, forward to self
duke@435 1061 _promotion_failed = true;
duke@435 1062 new_obj = old;
duke@435 1063
duke@435 1064 preserve_mark_if_necessary(old, m);
ysr@1580 1065 // Log the size of the maiden promotion failure
ysr@1580 1066 par_scan_state->log_promotion_failure(sz);
duke@435 1067 }
duke@435 1068
duke@435 1069 old->forward_to(new_obj);
duke@435 1070 forward_ptr = NULL;
duke@435 1071 } else {
duke@435 1072 // Is in to-space; do copying ourselves.
duke@435 1073 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
duke@435 1074 forward_ptr = old->forward_to_atomic(new_obj);
duke@435 1075 // Restore the mark word copied above.
duke@435 1076 new_obj->set_mark(m);
duke@435 1077 // Increment age if obj still in new generation
duke@435 1078 new_obj->incr_age();
duke@435 1079 par_scan_state->age_table()->add(new_obj, sz);
duke@435 1080 }
duke@435 1081 assert(new_obj != NULL, "just checking");
duke@435 1082
duke@435 1083 if (forward_ptr == NULL) {
duke@435 1084 oop obj_to_push = new_obj;
duke@435 1085 if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
duke@435 1086 // Length field used as index of next element to be scanned.
duke@435 1087 // Real length can be obtained from real_forwardee()
duke@435 1088 arrayOop(old)->set_length(0);
duke@435 1089 obj_to_push = old;
duke@435 1090 assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
duke@435 1091 "push forwarded object");
duke@435 1092 }
duke@435 1093 // Push it on one of the queues of to-be-scanned objects.
ysr@969 1094 bool simulate_overflow = false;
ysr@969 1095 NOT_PRODUCT(
ysr@969 1096 if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
ysr@969 1097 // simulate a stack overflow
ysr@969 1098 simulate_overflow = true;
ysr@969 1099 }
ysr@969 1100 )
ysr@969 1101 if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
duke@435 1102 // Add stats for overflow pushes.
duke@435 1103 if (Verbose && PrintGCDetails) {
duke@435 1104 gclog_or_tty->print("queue overflow!\n");
duke@435 1105 }
ysr@969 1106 push_on_overflow_list(old, par_scan_state);
duke@435 1107 par_scan_state->note_overflow_push();
duke@435 1108 }
duke@435 1109 par_scan_state->note_push();
duke@435 1110
duke@435 1111 return new_obj;
duke@435 1112 }
duke@435 1113
duke@435 1114 // Oops. Someone beat us to it. Undo the allocation. Where did we
duke@435 1115 // allocate it?
duke@435 1116 if (is_in_reserved(new_obj)) {
duke@435 1117 // Must be in to_space.
duke@435 1118 assert(to()->is_in_reserved(new_obj), "Checking");
duke@435 1119 if (forward_ptr == ClaimedForwardPtr) {
duke@435 1120 // Wait to get the real forwarding pointer value.
duke@435 1121 forward_ptr = real_forwardee(old);
duke@435 1122 }
duke@435 1123 par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
duke@435 1124 }
duke@435 1125
duke@435 1126 return forward_ptr;
duke@435 1127 }
duke@435 1128
duke@435 1129
duke@435 1130 // Multiple GC threads may try to promote the same object. If two
duke@435 1131 // or more GC threads copy the object, only one wins the race to install
duke@435 1132 // the forwarding pointer. The other threads have to undo their copy.
duke@435 1133
duke@435 1134 oop ParNewGeneration::copy_to_survivor_space_with_undo(
duke@435 1135 ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
duke@435 1136
duke@435 1137 // In the sequential version, this assert also says that the object is
duke@435 1138 // not forwarded. That might not be the case here. It is the case that
duke@435 1139 // the caller observed it to be not forwarded at some time in the past.
duke@435 1140 assert(is_in_reserved(old), "shouldn't be scavenging this oop");
duke@435 1141
duke@435 1142 // The sequential code read "old->age()" below. That doesn't work here,
duke@435 1143 // since the age is in the mark word, and that might be overwritten with
duke@435 1144 // a forwarding pointer by a parallel thread. So we must save the mark
duke@435 1145 // word here, install it in a local oopDesc, and then analyze it.
duke@435 1146 oopDesc dummyOld;
duke@435 1147 dummyOld.set_mark(m);
duke@435 1148 assert(!dummyOld.is_forwarded(),
duke@435 1149 "should not be called with forwarding pointer mark word.");
duke@435 1150
duke@435 1151 bool failed_to_promote = false;
duke@435 1152 oop new_obj = NULL;
duke@435 1153 oop forward_ptr;
duke@435 1154
duke@435 1155 // Try allocating obj in to-space (unless too old)
duke@435 1156 if (dummyOld.age() < tenuring_threshold()) {
duke@435 1157 new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
duke@435 1158 if (new_obj == NULL) {
duke@435 1159 set_survivor_overflow(true);
duke@435 1160 }
duke@435 1161 }
duke@435 1162
duke@435 1163 if (new_obj == NULL) {
duke@435 1164 // Either to-space is full or we decided to promote
duke@435 1165 // try allocating obj tenured
duke@435 1166 new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
duke@435 1167 old, m, sz);
duke@435 1168
duke@435 1169 if (new_obj == NULL) {
duke@435 1170 if (!HandlePromotionFailure) {
duke@435 1171 // A failed promotion likely means the MaxLiveObjectEvacuationRatio
duke@435 1172 // flag is incorrectly set. In any case, its seriously wrong to be
duke@435 1173 // here!
duke@435 1174 vm_exit_out_of_memory(sz*wordSize, "promotion");
duke@435 1175 }
duke@435 1176 // promotion failed, forward to self
duke@435 1177 forward_ptr = old->forward_to_atomic(old);
duke@435 1178 new_obj = old;
duke@435 1179
duke@435 1180 if (forward_ptr != NULL) {
duke@435 1181 return forward_ptr; // someone else succeeded
duke@435 1182 }
duke@435 1183
duke@435 1184 _promotion_failed = true;
duke@435 1185 failed_to_promote = true;
duke@435 1186
duke@435 1187 preserve_mark_if_necessary(old, m);
ysr@1580 1188 // Log the size of the maiden promotion failure
ysr@1580 1189 par_scan_state->log_promotion_failure(sz);
duke@435 1190 }
duke@435 1191 } else {
duke@435 1192 // Is in to-space; do copying ourselves.
duke@435 1193 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
duke@435 1194 // Restore the mark word copied above.
duke@435 1195 new_obj->set_mark(m);
duke@435 1196 // Increment age if new_obj still in new generation
duke@435 1197 new_obj->incr_age();
duke@435 1198 par_scan_state->age_table()->add(new_obj, sz);
duke@435 1199 }
duke@435 1200 assert(new_obj != NULL, "just checking");
duke@435 1201
duke@435 1202 // Now attempt to install the forwarding pointer (atomically).
duke@435 1203 // We have to copy the mark word before overwriting with forwarding
duke@435 1204 // ptr, so we can restore it below in the copy.
duke@435 1205 if (!failed_to_promote) {
duke@435 1206 forward_ptr = old->forward_to_atomic(new_obj);
duke@435 1207 }
duke@435 1208
duke@435 1209 if (forward_ptr == NULL) {
duke@435 1210 oop obj_to_push = new_obj;
duke@435 1211 if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
duke@435 1212 // Length field used as index of next element to be scanned.
duke@435 1213 // Real length can be obtained from real_forwardee()
duke@435 1214 arrayOop(old)->set_length(0);
duke@435 1215 obj_to_push = old;
duke@435 1216 assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
duke@435 1217 "push forwarded object");
duke@435 1218 }
duke@435 1219 // Push it on one of the queues of to-be-scanned objects.
ysr@969 1220 bool simulate_overflow = false;
ysr@969 1221 NOT_PRODUCT(
ysr@969 1222 if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
ysr@969 1223 // simulate a stack overflow
ysr@969 1224 simulate_overflow = true;
ysr@969 1225 }
ysr@969 1226 )
ysr@969 1227 if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
duke@435 1228 // Add stats for overflow pushes.
ysr@969 1229 push_on_overflow_list(old, par_scan_state);
duke@435 1230 par_scan_state->note_overflow_push();
duke@435 1231 }
duke@435 1232 par_scan_state->note_push();
duke@435 1233
duke@435 1234 return new_obj;
duke@435 1235 }
duke@435 1236
duke@435 1237 // Oops. Someone beat us to it. Undo the allocation. Where did we
duke@435 1238 // allocate it?
duke@435 1239 if (is_in_reserved(new_obj)) {
duke@435 1240 // Must be in to_space.
duke@435 1241 assert(to()->is_in_reserved(new_obj), "Checking");
duke@435 1242 par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
duke@435 1243 } else {
duke@435 1244 assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
duke@435 1245 _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
duke@435 1246 (HeapWord*)new_obj, sz);
duke@435 1247 }
duke@435 1248
duke@435 1249 return forward_ptr;
duke@435 1250 }
duke@435 1251
ysr@969 1252 #ifndef PRODUCT
ysr@969 1253 // It's OK to call this multi-threaded; the worst thing
ysr@969 1254 // that can happen is that we'll get a bunch of closely
ysr@969 1255 // spaced simulated oveflows, but that's OK, in fact
ysr@969 1256 // probably good as it would exercise the overflow code
ysr@969 1257 // under contention.
ysr@969 1258 bool ParNewGeneration::should_simulate_overflow() {
ysr@969 1259 if (_overflow_counter-- <= 0) { // just being defensive
ysr@969 1260 _overflow_counter = ParGCWorkQueueOverflowInterval;
ysr@969 1261 return true;
ysr@969 1262 } else {
ysr@969 1263 return false;
ysr@969 1264 }
ysr@969 1265 }
ysr@969 1266 #endif
ysr@969 1267
ysr@1114 1268 // In case we are using compressed oops, we need to be careful.
ysr@1114 1269 // If the object being pushed is an object array, then its length
ysr@1114 1270 // field keeps track of the "grey boundary" at which the next
ysr@1114 1271 // incremental scan will be done (see ParGCArrayScanChunk).
ysr@1114 1272 // When using compressed oops, this length field is kept in the
ysr@1114 1273 // lower 32 bits of the erstwhile klass word and cannot be used
ysr@1114 1274 // for the overflow chaining pointer (OCP below). As such the OCP
ysr@1114 1275 // would itself need to be compressed into the top 32-bits in this
ysr@1114 1276 // case. Unfortunately, see below, in the event that we have a
ysr@1114 1277 // promotion failure, the node to be pushed on the list can be
ysr@1114 1278 // outside of the Java heap, so the heap-based pointer compression
ysr@1114 1279 // would not work (we would have potential aliasing between C-heap
ysr@1114 1280 // and Java-heap pointers). For this reason, when using compressed
ysr@1114 1281 // oops, we simply use a worker-thread-local, non-shared overflow
ysr@1114 1282 // list in the form of a growable array, with a slightly different
ysr@1114 1283 // overflow stack draining strategy. If/when we start using fat
ysr@1114 1284 // stacks here, we can go back to using (fat) pointer chains
ysr@1114 1285 // (although some performance comparisons would be useful since
ysr@1114 1286 // single global lists have their own performance disadvantages
ysr@1114 1287 // as we were made painfully aware not long ago, see 6786503).
ysr@969 1288 #define BUSY (oop(0x1aff1aff))
ysr@969 1289 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
ysr@1114 1290 assert(is_in_reserved(from_space_obj), "Should be from this generation");
ysr@1130 1291 if (ParGCUseLocalOverflow) {
ysr@1114 1292 // In the case of compressed oops, we use a private, not-shared
ysr@1114 1293 // overflow stack.
ysr@1114 1294 par_scan_state->push_on_overflow_stack(from_space_obj);
ysr@1114 1295 } else {
ysr@1130 1296 assert(!UseCompressedOops, "Error");
ysr@1114 1297 // if the object has been forwarded to itself, then we cannot
ysr@1114 1298 // use the klass pointer for the linked list. Instead we have
ysr@1114 1299 // to allocate an oopDesc in the C-Heap and use that for the linked list.
ysr@1114 1300 // XXX This is horribly inefficient when a promotion failure occurs
ysr@1114 1301 // and should be fixed. XXX FIX ME !!!
ysr@969 1302 #ifndef PRODUCT
ysr@1114 1303 Atomic::inc_ptr(&_num_par_pushes);
ysr@1114 1304 assert(_num_par_pushes > 0, "Tautology");
ysr@969 1305 #endif
ysr@1114 1306 if (from_space_obj->forwardee() == from_space_obj) {
ysr@1114 1307 oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1);
ysr@1114 1308 listhead->forward_to(from_space_obj);
ysr@1114 1309 from_space_obj = listhead;
ysr@1114 1310 }
ysr@1114 1311 oop observed_overflow_list = _overflow_list;
ysr@1114 1312 oop cur_overflow_list;
ysr@1114 1313 do {
ysr@1114 1314 cur_overflow_list = observed_overflow_list;
ysr@1114 1315 if (cur_overflow_list != BUSY) {
ysr@1114 1316 from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
ysr@1114 1317 } else {
ysr@1114 1318 from_space_obj->set_klass_to_list_ptr(NULL);
ysr@1114 1319 }
ysr@1114 1320 observed_overflow_list =
ysr@1114 1321 (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
ysr@1114 1322 } while (cur_overflow_list != observed_overflow_list);
duke@435 1323 }
duke@435 1324 }
duke@435 1325
ysr@1114 1326 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
ysr@1114 1327 bool res;
ysr@1114 1328
ysr@1130 1329 if (ParGCUseLocalOverflow) {
ysr@1114 1330 res = par_scan_state->take_from_overflow_stack();
ysr@1114 1331 } else {
ysr@1130 1332 assert(!UseCompressedOops, "Error");
ysr@1114 1333 res = take_from_overflow_list_work(par_scan_state);
ysr@1114 1334 }
ysr@1114 1335 return res;
ysr@1114 1336 }
ysr@1114 1337
ysr@1114 1338
ysr@969 1339 // *NOTE*: The overflow list manipulation code here and
ysr@969 1340 // in CMSCollector:: are very similar in shape,
ysr@969 1341 // except that in the CMS case we thread the objects
ysr@969 1342 // directly into the list via their mark word, and do
ysr@969 1343 // not need to deal with special cases below related
ysr@969 1344 // to chunking of object arrays and promotion failure
ysr@969 1345 // handling.
ysr@969 1346 // CR 6797058 has been filed to attempt consolidation of
ysr@969 1347 // the common code.
ysr@969 1348 // Because of the common code, if you make any changes in
ysr@969 1349 // the code below, please check the CMS version to see if
ysr@969 1350 // similar changes might be needed.
ysr@969 1351 // See CMSCollector::par_take_from_overflow_list() for
ysr@969 1352 // more extensive documentation comments.
ysr@1114 1353 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
duke@435 1354 ObjToScanQueue* work_q = par_scan_state->work_queue();
duke@435 1355 // How many to take?
ysr@1114 1356 size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
ysr@969 1357 (size_t)ParGCDesiredObjsFromOverflowList);
duke@435 1358
ysr@1114 1359 assert(par_scan_state->overflow_stack() == NULL, "Error");
ysr@1130 1360 assert(!UseCompressedOops, "Error");
duke@435 1361 if (_overflow_list == NULL) return false;
duke@435 1362
duke@435 1363 // Otherwise, there was something there; try claiming the list.
ysr@969 1364 oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
ysr@969 1365 // Trim off a prefix of at most objsFromOverflow items
ysr@969 1366 Thread* tid = Thread::current();
ysr@969 1367 size_t spin_count = (size_t)ParallelGCThreads;
ysr@969 1368 size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
ysr@969 1369 for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
ysr@969 1370 // someone grabbed it before we did ...
ysr@969 1371 // ... we spin for a short while...
ysr@969 1372 os::sleep(tid, sleep_time_millis, false);
ysr@969 1373 if (_overflow_list == NULL) {
ysr@969 1374 // nothing left to take
ysr@969 1375 return false;
ysr@969 1376 } else if (_overflow_list != BUSY) {
ysr@969 1377 // try and grab the prefix
ysr@969 1378 prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
ysr@969 1379 }
duke@435 1380 }
ysr@969 1381 if (prefix == NULL || prefix == BUSY) {
ysr@969 1382 // Nothing to take or waited long enough
ysr@969 1383 if (prefix == NULL) {
ysr@969 1384 // Write back the NULL in case we overwrote it with BUSY above
ysr@969 1385 // and it is still the same value.
ysr@969 1386 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
ysr@969 1387 }
ysr@969 1388 return false;
ysr@969 1389 }
ysr@969 1390 assert(prefix != NULL && prefix != BUSY, "Error");
ysr@969 1391 size_t i = 1;
duke@435 1392 oop cur = prefix;
coleenp@602 1393 while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
duke@435 1394 i++; cur = oop(cur->klass());
duke@435 1395 }
duke@435 1396
duke@435 1397 // Reattach remaining (suffix) to overflow list
ysr@969 1398 if (cur->klass_or_null() == NULL) {
ysr@969 1399 // Write back the NULL in lieu of the BUSY we wrote
ysr@969 1400 // above and it is still the same value.
ysr@969 1401 if (_overflow_list == BUSY) {
ysr@969 1402 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
duke@435 1403 }
ysr@969 1404 } else {
ysr@969 1405 assert(cur->klass_or_null() != BUSY, "Error");
ysr@969 1406 oop suffix = oop(cur->klass()); // suffix will be put back on global list
ysr@969 1407 cur->set_klass_to_list_ptr(NULL); // break off suffix
ysr@969 1408 // It's possible that the list is still in the empty(busy) state
ysr@969 1409 // we left it in a short while ago; in that case we may be
ysr@969 1410 // able to place back the suffix.
ysr@969 1411 oop observed_overflow_list = _overflow_list;
ysr@969 1412 oop cur_overflow_list = observed_overflow_list;
ysr@969 1413 bool attached = false;
ysr@969 1414 while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
ysr@969 1415 observed_overflow_list =
ysr@969 1416 (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
ysr@969 1417 if (cur_overflow_list == observed_overflow_list) {
ysr@969 1418 attached = true;
ysr@969 1419 break;
ysr@969 1420 } else cur_overflow_list = observed_overflow_list;
ysr@969 1421 }
ysr@969 1422 if (!attached) {
ysr@969 1423 // Too bad, someone else got in in between; we'll need to do a splice.
ysr@969 1424 // Find the last item of suffix list
ysr@969 1425 oop last = suffix;
ysr@969 1426 while (last->klass_or_null() != NULL) {
ysr@969 1427 last = oop(last->klass());
ysr@969 1428 }
ysr@969 1429 // Atomically prepend suffix to current overflow list
ysr@969 1430 observed_overflow_list = _overflow_list;
ysr@969 1431 do {
ysr@969 1432 cur_overflow_list = observed_overflow_list;
ysr@969 1433 if (cur_overflow_list != BUSY) {
ysr@969 1434 // Do the splice ...
ysr@969 1435 last->set_klass_to_list_ptr(cur_overflow_list);
ysr@969 1436 } else { // cur_overflow_list == BUSY
ysr@969 1437 last->set_klass_to_list_ptr(NULL);
ysr@969 1438 }
ysr@969 1439 observed_overflow_list =
ysr@969 1440 (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
ysr@969 1441 } while (cur_overflow_list != observed_overflow_list);
duke@435 1442 }
duke@435 1443 }
duke@435 1444
duke@435 1445 // Push objects on prefix list onto this thread's work queue
ysr@969 1446 assert(prefix != NULL && prefix != BUSY, "program logic");
duke@435 1447 cur = prefix;
ysr@969 1448 ssize_t n = 0;
duke@435 1449 while (cur != NULL) {
duke@435 1450 oop obj_to_push = cur->forwardee();
ysr@889 1451 oop next = oop(cur->klass_or_null());
duke@435 1452 cur->set_klass(obj_to_push->klass());
ysr@969 1453 // This may be an array object that is self-forwarded. In that case, the list pointer
ysr@969 1454 // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
ysr@969 1455 if (!is_in_reserved(cur)) {
ysr@969 1456 // This can become a scaling bottleneck when there is work queue overflow coincident
ysr@969 1457 // with promotion failure.
ysr@969 1458 oopDesc* f = cur;
ysr@969 1459 FREE_C_HEAP_ARRAY(oopDesc, f);
ysr@969 1460 } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
ysr@969 1461 assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
duke@435 1462 obj_to_push = cur;
duke@435 1463 }
ysr@969 1464 bool ok = work_q->push(obj_to_push);
ysr@969 1465 assert(ok, "Should have succeeded");
duke@435 1466 cur = next;
duke@435 1467 n++;
duke@435 1468 }
duke@435 1469 par_scan_state->note_overflow_refill(n);
ysr@969 1470 #ifndef PRODUCT
ysr@969 1471 assert(_num_par_pushes >= n, "Too many pops?");
ysr@969 1472 Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
ysr@969 1473 #endif
duke@435 1474 return true;
duke@435 1475 }
ysr@969 1476 #undef BUSY
duke@435 1477
duke@435 1478 void ParNewGeneration::ref_processor_init()
duke@435 1479 {
duke@435 1480 if (_ref_processor == NULL) {
duke@435 1481 // Allocate and initialize a reference processor
duke@435 1482 _ref_processor = ReferenceProcessor::create_ref_processor(
duke@435 1483 _reserved, // span
duke@435 1484 refs_discovery_is_atomic(), // atomic_discovery
duke@435 1485 refs_discovery_is_mt(), // mt_discovery
duke@435 1486 NULL, // is_alive_non_header
duke@435 1487 ParallelGCThreads,
duke@435 1488 ParallelRefProcEnabled);
duke@435 1489 }
duke@435 1490 }
duke@435 1491
duke@435 1492 const char* ParNewGeneration::name() const {
duke@435 1493 return "par new generation";
duke@435 1494 }

mercurial