src/share/vm/gc_implementation/parNew/parNewGeneration.cpp

Thu, 04 Oct 2012 10:04:13 -0700

author
johnc
date
Thu, 04 Oct 2012 10:04:13 -0700
changeset 4130
2e6857353b2c
parent 4037
da91efe96a93
child 4387
ca0a78017dc7
permissions
-rw-r--r--

8000311: G1: ParallelGCThreads==0 broken
Summary: Divide by zero error, if ParallelGCThreads is 0, when adjusting the PLAB size.
Reviewed-by: jmasa, jcoomes

duke@435 1 /*
johnc@3538 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
stefank@2314 27 #include "gc_implementation/parNew/parNewGeneration.hpp"
stefank@2314 28 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
stefank@2314 29 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 30 #include "gc_implementation/shared/ageTable.hpp"
johnc@3982 31 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "memory/defNewGeneration.inline.hpp"
stefank@2314 34 #include "memory/genCollectedHeap.hpp"
stefank@2314 35 #include "memory/genOopClosures.inline.hpp"
stefank@2314 36 #include "memory/generation.hpp"
stefank@2314 37 #include "memory/generation.inline.hpp"
stefank@2314 38 #include "memory/referencePolicy.hpp"
stefank@2314 39 #include "memory/resourceArea.hpp"
stefank@2314 40 #include "memory/sharedHeap.hpp"
stefank@2314 41 #include "memory/space.hpp"
stefank@2314 42 #include "oops/objArrayOop.hpp"
stefank@2314 43 #include "oops/oop.inline.hpp"
stefank@2314 44 #include "oops/oop.pcgc.inline.hpp"
stefank@2314 45 #include "runtime/handles.hpp"
stefank@2314 46 #include "runtime/handles.inline.hpp"
stefank@2314 47 #include "runtime/java.hpp"
stefank@2314 48 #include "runtime/thread.hpp"
stefank@2314 49 #include "utilities/copy.hpp"
stefank@2314 50 #include "utilities/globalDefinitions.hpp"
stefank@2314 51 #include "utilities/workgroup.hpp"
duke@435 52
duke@435 53 #ifdef _MSC_VER
duke@435 54 #pragma warning( push )
duke@435 55 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
duke@435 56 #endif
duke@435 57 ParScanThreadState::ParScanThreadState(Space* to_space_,
duke@435 58 ParNewGeneration* gen_,
duke@435 59 Generation* old_gen_,
duke@435 60 int thread_num_,
duke@435 61 ObjToScanQueueSet* work_queue_set_,
zgu@3900 62 Stack<oop, mtGC>* overflow_stacks_,
duke@435 63 size_t desired_plab_sz_,
duke@435 64 ParallelTaskTerminator& term_) :
ysr@1114 65 _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
duke@435 66 _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
jcoomes@2191 67 _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
duke@435 68 _ageTable(false), // false ==> not the global age table, no perf data.
duke@435 69 _to_space_alloc_buffer(desired_plab_sz_),
duke@435 70 _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
duke@435 71 _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
duke@435 72 _older_gen_closure(gen_, this),
duke@435 73 _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
duke@435 74 &_to_space_root_closure, gen_, &_old_gen_root_closure,
duke@435 75 work_queue_set_, &term_),
duke@435 76 _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
duke@435 77 _keep_alive_closure(&_scan_weak_ref_closure),
ysr@1580 78 _promotion_failure_size(0),
duke@435 79 _strong_roots_time(0.0), _term_time(0.0)
duke@435 80 {
jcoomes@2065 81 #if TASKQUEUE_STATS
jcoomes@2065 82 _term_attempts = 0;
jcoomes@2065 83 _overflow_refills = 0;
jcoomes@2065 84 _overflow_refill_objs = 0;
jcoomes@2065 85 #endif // TASKQUEUE_STATS
jcoomes@2065 86
duke@435 87 _survivor_chunk_array =
duke@435 88 (ChunkArray*) old_gen()->get_data_recorder(thread_num());
duke@435 89 _hash_seed = 17; // Might want to take time-based random value.
duke@435 90 _start = os::elapsedTime();
duke@435 91 _old_gen_closure.set_generation(old_gen_);
duke@435 92 _old_gen_root_closure.set_generation(old_gen_);
duke@435 93 }
duke@435 94 #ifdef _MSC_VER
duke@435 95 #pragma warning( pop )
duke@435 96 #endif
duke@435 97
duke@435 98 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
duke@435 99 size_t plab_word_size) {
duke@435 100 ChunkArray* sca = survivor_chunk_array();
duke@435 101 if (sca != NULL) {
duke@435 102 // A non-null SCA implies that we want the PLAB data recorded.
duke@435 103 sca->record_sample(plab_start, plab_word_size);
duke@435 104 }
duke@435 105 }
duke@435 106
duke@435 107 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
duke@435 108 return new_obj->is_objArray() &&
duke@435 109 arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
duke@435 110 new_obj != old_obj;
duke@435 111 }
duke@435 112
duke@435 113 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
duke@435 114 assert(old->is_objArray(), "must be obj array");
duke@435 115 assert(old->is_forwarded(), "must be forwarded");
duke@435 116 assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
ysr@1114 117 assert(!old_gen()->is_in(old), "must be in young generation.");
duke@435 118
duke@435 119 objArrayOop obj = objArrayOop(old->forwardee());
duke@435 120 // Process ParGCArrayScanChunk elements now
duke@435 121 // and push the remainder back onto queue
duke@435 122 int start = arrayOop(old)->length();
duke@435 123 int end = obj->length();
duke@435 124 int remainder = end - start;
duke@435 125 assert(start <= end, "just checking");
duke@435 126 if (remainder > 2 * ParGCArrayScanChunk) {
duke@435 127 // Test above combines last partial chunk with a full chunk
duke@435 128 end = start + ParGCArrayScanChunk;
duke@435 129 arrayOop(old)->set_length(end);
duke@435 130 // Push remainder.
duke@435 131 bool ok = work_queue()->push(old);
duke@435 132 assert(ok, "just popped, push must be okay");
duke@435 133 } else {
duke@435 134 // Restore length so that it can be used if there
duke@435 135 // is a promotion failure and forwarding pointers
duke@435 136 // must be removed.
duke@435 137 arrayOop(old)->set_length(end);
duke@435 138 }
coleenp@548 139
duke@435 140 // process our set of indices (include header in first chunk)
coleenp@548 141 // should make sure end is even (aligned to HeapWord in case of compressed oops)
duke@435 142 if ((HeapWord *)obj < young_old_boundary()) {
duke@435 143 // object is in to_space
coleenp@548 144 obj->oop_iterate_range(&_to_space_closure, start, end);
duke@435 145 } else {
duke@435 146 // object is in old generation
coleenp@548 147 obj->oop_iterate_range(&_old_gen_closure, start, end);
duke@435 148 }
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152 void ParScanThreadState::trim_queues(int max_size) {
duke@435 153 ObjToScanQueue* queue = work_queue();
ysr@1114 154 do {
ysr@1114 155 while (queue->size() > (juint)max_size) {
ysr@1114 156 oop obj_to_scan;
ysr@1114 157 if (queue->pop_local(obj_to_scan)) {
ysr@1114 158 if ((HeapWord *)obj_to_scan < young_old_boundary()) {
ysr@1114 159 if (obj_to_scan->is_objArray() &&
ysr@1114 160 obj_to_scan->is_forwarded() &&
ysr@1114 161 obj_to_scan->forwardee() != obj_to_scan) {
ysr@1114 162 scan_partial_array_and_push_remainder(obj_to_scan);
ysr@1114 163 } else {
ysr@1114 164 // object is in to_space
ysr@1114 165 obj_to_scan->oop_iterate(&_to_space_closure);
ysr@1114 166 }
duke@435 167 } else {
ysr@1114 168 // object is in old generation
ysr@1114 169 obj_to_scan->oop_iterate(&_old_gen_closure);
duke@435 170 }
duke@435 171 }
duke@435 172 }
ysr@1114 173 // For the case of compressed oops, we have a private, non-shared
ysr@1114 174 // overflow stack, so we eagerly drain it so as to more evenly
ysr@1114 175 // distribute load early. Note: this may be good to do in
ysr@1114 176 // general rather than delay for the final stealing phase.
ysr@1114 177 // If applicable, we'll transfer a set of objects over to our
ysr@1114 178 // work queue, allowing them to be stolen and draining our
ysr@1114 179 // private overflow stack.
ysr@1114 180 } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
ysr@1114 181 }
ysr@1114 182
ysr@1114 183 bool ParScanThreadState::take_from_overflow_stack() {
ysr@1130 184 assert(ParGCUseLocalOverflow, "Else should not call");
ysr@1114 185 assert(young_gen()->overflow_list() == NULL, "Error");
ysr@1114 186 ObjToScanQueue* queue = work_queue();
zgu@3900 187 Stack<oop, mtGC>* const of_stack = overflow_stack();
jcoomes@2191 188 const size_t num_overflow_elems = of_stack->size();
jcoomes@2191 189 const size_t space_available = queue->max_elems() - queue->size();
jcoomes@2191 190 const size_t num_take_elems = MIN3(space_available / 4,
jcoomes@2191 191 ParGCDesiredObjsFromOverflowList,
jcoomes@2191 192 num_overflow_elems);
ysr@1114 193 // Transfer the most recent num_take_elems from the overflow
ysr@1114 194 // stack to our work queue.
ysr@1114 195 for (size_t i = 0; i != num_take_elems; i++) {
ysr@1114 196 oop cur = of_stack->pop();
ysr@1114 197 oop obj_to_push = cur->forwardee();
ysr@1114 198 assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
ysr@1114 199 assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
ysr@1114 200 assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
ysr@1114 201 if (should_be_partially_scanned(obj_to_push, cur)) {
ysr@1114 202 assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
ysr@1114 203 obj_to_push = cur;
ysr@1114 204 }
ysr@1114 205 bool ok = queue->push(obj_to_push);
ysr@1114 206 assert(ok, "Should have succeeded");
duke@435 207 }
ysr@1114 208 assert(young_gen()->overflow_list() == NULL, "Error");
ysr@1114 209 return num_take_elems > 0; // was something transferred?
ysr@1114 210 }
ysr@1114 211
ysr@1114 212 void ParScanThreadState::push_on_overflow_stack(oop p) {
ysr@1130 213 assert(ParGCUseLocalOverflow, "Else should not call");
ysr@1114 214 overflow_stack()->push(p);
ysr@1114 215 assert(young_gen()->overflow_list() == NULL, "Error");
duke@435 216 }
duke@435 217
duke@435 218 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
duke@435 219
duke@435 220 // Otherwise, if the object is small enough, try to reallocate the
duke@435 221 // buffer.
duke@435 222 HeapWord* obj = NULL;
duke@435 223 if (!_to_space_full) {
duke@435 224 ParGCAllocBuffer* const plab = to_space_alloc_buffer();
duke@435 225 Space* const sp = to_space();
duke@435 226 if (word_sz * 100 <
duke@435 227 ParallelGCBufferWastePct * plab->word_sz()) {
duke@435 228 // Is small enough; abandon this buffer and start a new one.
duke@435 229 plab->retire(false, false);
duke@435 230 size_t buf_size = plab->word_sz();
duke@435 231 HeapWord* buf_space = sp->par_allocate(buf_size);
duke@435 232 if (buf_space == NULL) {
duke@435 233 const size_t min_bytes =
duke@435 234 ParGCAllocBuffer::min_size() << LogHeapWordSize;
duke@435 235 size_t free_bytes = sp->free();
duke@435 236 while(buf_space == NULL && free_bytes >= min_bytes) {
duke@435 237 buf_size = free_bytes >> LogHeapWordSize;
duke@435 238 assert(buf_size == (size_t)align_object_size(buf_size),
duke@435 239 "Invariant");
duke@435 240 buf_space = sp->par_allocate(buf_size);
duke@435 241 free_bytes = sp->free();
duke@435 242 }
duke@435 243 }
duke@435 244 if (buf_space != NULL) {
duke@435 245 plab->set_word_size(buf_size);
duke@435 246 plab->set_buf(buf_space);
duke@435 247 record_survivor_plab(buf_space, buf_size);
duke@435 248 obj = plab->allocate(word_sz);
duke@435 249 // Note that we cannot compare buf_size < word_sz below
duke@435 250 // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
duke@435 251 assert(obj != NULL || plab->words_remaining() < word_sz,
duke@435 252 "Else should have been able to allocate");
duke@435 253 // It's conceivable that we may be able to use the
duke@435 254 // buffer we just grabbed for subsequent small requests
duke@435 255 // even if not for this one.
duke@435 256 } else {
duke@435 257 // We're used up.
duke@435 258 _to_space_full = true;
duke@435 259 }
duke@435 260
duke@435 261 } else {
duke@435 262 // Too large; allocate the object individually.
duke@435 263 obj = sp->par_allocate(word_sz);
duke@435 264 }
duke@435 265 }
duke@435 266 return obj;
duke@435 267 }
duke@435 268
duke@435 269
duke@435 270 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
duke@435 271 size_t word_sz) {
duke@435 272 // Is the alloc in the current alloc buffer?
duke@435 273 if (to_space_alloc_buffer()->contains(obj)) {
duke@435 274 assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
duke@435 275 "Should contain whole object.");
duke@435 276 to_space_alloc_buffer()->undo_allocation(obj, word_sz);
duke@435 277 } else {
jcoomes@916 278 CollectedHeap::fill_with_object(obj, word_sz);
duke@435 279 }
duke@435 280 }
duke@435 281
ysr@1580 282 void ParScanThreadState::print_and_clear_promotion_failure_size() {
ysr@1580 283 if (_promotion_failure_size != 0) {
ysr@1580 284 if (PrintPromotionFailure) {
ysr@1580 285 gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
ysr@1580 286 _thread_num, _promotion_failure_size);
ysr@1580 287 }
ysr@1580 288 _promotion_failure_size = 0;
ysr@1580 289 }
ysr@1580 290 }
ysr@1580 291
duke@435 292 class ParScanThreadStateSet: private ResourceArray {
duke@435 293 public:
duke@435 294 // Initializes states for the specified number of threads;
duke@435 295 ParScanThreadStateSet(int num_threads,
duke@435 296 Space& to_space,
duke@435 297 ParNewGeneration& gen,
duke@435 298 Generation& old_gen,
duke@435 299 ObjToScanQueueSet& queue_set,
zgu@3900 300 Stack<oop, mtGC>* overflow_stacks_,
duke@435 301 size_t desired_plab_sz,
duke@435 302 ParallelTaskTerminator& term);
jcoomes@2065 303
jcoomes@2065 304 ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
jcoomes@2065 305
ysr@1580 306 inline ParScanThreadState& thread_state(int i);
jcoomes@2065 307
jmasa@3294 308 void reset(int active_workers, bool promotion_failed);
duke@435 309 void flush();
jcoomes@2065 310
jcoomes@2065 311 #if TASKQUEUE_STATS
jcoomes@2065 312 static void
jcoomes@2065 313 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2065 314 void print_termination_stats(outputStream* const st = gclog_or_tty);
jcoomes@2065 315 static void
jcoomes@2065 316 print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2065 317 void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
jcoomes@2065 318 void reset_stats();
jcoomes@2065 319 #endif // TASKQUEUE_STATS
jcoomes@2065 320
duke@435 321 private:
duke@435 322 ParallelTaskTerminator& _term;
duke@435 323 ParNewGeneration& _gen;
duke@435 324 Generation& _next_gen;
jmasa@3294 325 public:
jmasa@3294 326 bool is_valid(int id) const { return id < length(); }
jmasa@3294 327 ParallelTaskTerminator* terminator() { return &_term; }
duke@435 328 };
duke@435 329
duke@435 330
duke@435 331 ParScanThreadStateSet::ParScanThreadStateSet(
duke@435 332 int num_threads, Space& to_space, ParNewGeneration& gen,
duke@435 333 Generation& old_gen, ObjToScanQueueSet& queue_set,
zgu@3900 334 Stack<oop, mtGC>* overflow_stacks,
duke@435 335 size_t desired_plab_sz, ParallelTaskTerminator& term)
duke@435 336 : ResourceArray(sizeof(ParScanThreadState), num_threads),
jcoomes@2065 337 _gen(gen), _next_gen(old_gen), _term(term)
duke@435 338 {
duke@435 339 assert(num_threads > 0, "sanity check!");
jcoomes@2191 340 assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
jcoomes@2191 341 "overflow_stack allocation mismatch");
duke@435 342 // Initialize states.
duke@435 343 for (int i = 0; i < num_threads; ++i) {
duke@435 344 new ((ParScanThreadState*)_data + i)
duke@435 345 ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
jcoomes@2191 346 overflow_stacks, desired_plab_sz, term);
duke@435 347 }
duke@435 348 }
duke@435 349
ysr@1580 350 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
duke@435 351 {
duke@435 352 assert(i >= 0 && i < length(), "sanity check!");
duke@435 353 return ((ParScanThreadState*)_data)[i];
duke@435 354 }
duke@435 355
duke@435 356
jmasa@3294 357 void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
duke@435 358 {
jmasa@3294 359 _term.reset_for_reuse(active_threads);
ysr@1580 360 if (promotion_failed) {
ysr@1580 361 for (int i = 0; i < length(); ++i) {
ysr@1580 362 thread_state(i).print_and_clear_promotion_failure_size();
ysr@1580 363 }
ysr@1580 364 }
duke@435 365 }
duke@435 366
jcoomes@2065 367 #if TASKQUEUE_STATS
jcoomes@2065 368 void
jcoomes@2065 369 ParScanThreadState::reset_stats()
jcoomes@2065 370 {
jcoomes@2065 371 taskqueue_stats().reset();
jcoomes@2065 372 _term_attempts = 0;
jcoomes@2065 373 _overflow_refills = 0;
jcoomes@2065 374 _overflow_refill_objs = 0;
jcoomes@2065 375 }
jcoomes@2065 376
jcoomes@2065 377 void ParScanThreadStateSet::reset_stats()
jcoomes@2065 378 {
jcoomes@2065 379 for (int i = 0; i < length(); ++i) {
jcoomes@2065 380 thread_state(i).reset_stats();
jcoomes@2065 381 }
jcoomes@2065 382 }
jcoomes@2065 383
jcoomes@2065 384 void
jcoomes@2065 385 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
jcoomes@2065 386 {
jcoomes@2065 387 st->print_raw_cr("GC Termination Stats");
jcoomes@2065 388 st->print_raw_cr(" elapsed --strong roots-- "
jcoomes@2065 389 "-------termination-------");
jcoomes@2065 390 st->print_raw_cr("thr ms ms % "
jcoomes@2065 391 " ms % attempts");
jcoomes@2065 392 st->print_raw_cr("--- --------- --------- ------ "
jcoomes@2065 393 "--------- ------ --------");
jcoomes@2065 394 }
jcoomes@2065 395
jcoomes@2065 396 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
jcoomes@2065 397 {
jcoomes@2065 398 print_termination_stats_hdr(st);
jcoomes@2065 399
jcoomes@2065 400 for (int i = 0; i < length(); ++i) {
jcoomes@2065 401 const ParScanThreadState & pss = thread_state(i);
jcoomes@2065 402 const double elapsed_ms = pss.elapsed_time() * 1000.0;
jcoomes@2065 403 const double s_roots_ms = pss.strong_roots_time() * 1000.0;
jcoomes@2065 404 const double term_ms = pss.term_time() * 1000.0;
jcoomes@2065 405 st->print_cr("%3d %9.2f %9.2f %6.2f "
jcoomes@2065 406 "%9.2f %6.2f " SIZE_FORMAT_W(8),
jcoomes@2065 407 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
jcoomes@2065 408 term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
jcoomes@2065 409 }
jcoomes@2065 410 }
jcoomes@2065 411
jcoomes@2065 412 // Print stats related to work queue activity.
jcoomes@2065 413 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
jcoomes@2065 414 {
jcoomes@2065 415 st->print_raw_cr("GC Task Stats");
jcoomes@2065 416 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
jcoomes@2065 417 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
jcoomes@2065 418 }
jcoomes@2065 419
jcoomes@2065 420 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
jcoomes@2065 421 {
jcoomes@2065 422 print_taskqueue_stats_hdr(st);
jcoomes@2065 423
jcoomes@2065 424 TaskQueueStats totals;
jcoomes@2065 425 for (int i = 0; i < length(); ++i) {
jcoomes@2065 426 const ParScanThreadState & pss = thread_state(i);
jcoomes@2065 427 const TaskQueueStats & stats = pss.taskqueue_stats();
jcoomes@2065 428 st->print("%3d ", i); stats.print(st); st->cr();
jcoomes@2065 429 totals += stats;
jcoomes@2065 430
jcoomes@2065 431 if (pss.overflow_refills() > 0) {
jcoomes@2065 432 st->print_cr(" " SIZE_FORMAT_W(10) " overflow refills "
jcoomes@2065 433 SIZE_FORMAT_W(10) " overflow objects",
jcoomes@2065 434 pss.overflow_refills(), pss.overflow_refill_objs());
jcoomes@2065 435 }
jcoomes@2065 436 }
jcoomes@2065 437 st->print("tot "); totals.print(st); st->cr();
jcoomes@2065 438
jcoomes@2065 439 DEBUG_ONLY(totals.verify());
jcoomes@2065 440 }
jcoomes@2065 441 #endif // TASKQUEUE_STATS
jcoomes@2065 442
duke@435 443 void ParScanThreadStateSet::flush()
duke@435 444 {
ysr@1580 445 // Work in this loop should be kept as lightweight as
ysr@1580 446 // possible since this might otherwise become a bottleneck
ysr@1580 447 // to scaling. Should we add heavy-weight work into this
ysr@1580 448 // loop, consider parallelizing the loop into the worker threads.
duke@435 449 for (int i = 0; i < length(); ++i) {
ysr@1580 450 ParScanThreadState& par_scan_state = thread_state(i);
duke@435 451
duke@435 452 // Flush stats related to To-space PLAB activity and
duke@435 453 // retire the last buffer.
duke@435 454 par_scan_state.to_space_alloc_buffer()->
duke@435 455 flush_stats_and_retire(_gen.plab_stats(),
johnc@3982 456 true /* end_of_gc */,
johnc@3982 457 false /* retain */);
duke@435 458
duke@435 459 // Every thread has its own age table. We need to merge
duke@435 460 // them all into one.
duke@435 461 ageTable *local_table = par_scan_state.age_table();
duke@435 462 _gen.age_table()->merge(local_table);
duke@435 463
duke@435 464 // Inform old gen that we're done.
duke@435 465 _next_gen.par_promote_alloc_done(i);
duke@435 466 _next_gen.par_oop_since_save_marks_iterate_done(i);
jcoomes@2065 467 }
duke@435 468
ysr@1580 469 if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
ysr@1580 470 // We need to call this even when ResizeOldPLAB is disabled
ysr@1580 471 // so as to avoid breaking some asserts. While we may be able
ysr@1580 472 // to avoid this by reorganizing the code a bit, I am loathe
ysr@1580 473 // to do that unless we find cases where ergo leads to bad
ysr@1580 474 // performance.
ysr@1580 475 CFLS_LAB::compute_desired_plab_size();
ysr@1580 476 }
duke@435 477 }
duke@435 478
duke@435 479 ParScanClosure::ParScanClosure(ParNewGeneration* g,
duke@435 480 ParScanThreadState* par_scan_state) :
coleenp@4037 481 OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g)
duke@435 482 {
duke@435 483 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 484 _boundary = _g->reserved().end();
duke@435 485 }
duke@435 486
coleenp@548 487 void ParScanWithBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, false); }
coleenp@548 488 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
coleenp@548 489
coleenp@548 490 void ParScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, false); }
coleenp@548 491 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
coleenp@548 492
coleenp@548 493 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, true); }
coleenp@548 494 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
coleenp@548 495
coleenp@548 496 void ParRootScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, true); }
coleenp@548 497 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
coleenp@548 498
duke@435 499 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
duke@435 500 ParScanThreadState* par_scan_state)
duke@435 501 : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
coleenp@548 502 {}
coleenp@548 503
coleenp@548 504 void ParScanWeakRefClosure::do_oop(oop* p) { ParScanWeakRefClosure::do_oop_work(p); }
coleenp@548 505 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
duke@435 506
duke@435 507 #ifdef WIN32
duke@435 508 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
duke@435 509 #endif
duke@435 510
duke@435 511 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
duke@435 512 ParScanThreadState* par_scan_state_,
duke@435 513 ParScanWithoutBarrierClosure* to_space_closure_,
duke@435 514 ParScanWithBarrierClosure* old_gen_closure_,
duke@435 515 ParRootScanWithoutBarrierClosure* to_space_root_closure_,
duke@435 516 ParNewGeneration* par_gen_,
duke@435 517 ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
duke@435 518 ObjToScanQueueSet* task_queues_,
duke@435 519 ParallelTaskTerminator* terminator_) :
duke@435 520
duke@435 521 _par_scan_state(par_scan_state_),
duke@435 522 _to_space_closure(to_space_closure_),
duke@435 523 _old_gen_closure(old_gen_closure_),
duke@435 524 _to_space_root_closure(to_space_root_closure_),
duke@435 525 _old_gen_root_closure(old_gen_root_closure_),
duke@435 526 _par_gen(par_gen_),
duke@435 527 _task_queues(task_queues_),
duke@435 528 _terminator(terminator_)
duke@435 529 {}
duke@435 530
duke@435 531 void ParEvacuateFollowersClosure::do_void() {
duke@435 532 ObjToScanQueue* work_q = par_scan_state()->work_queue();
duke@435 533
duke@435 534 while (true) {
duke@435 535
duke@435 536 // Scan to-space and old-gen objs until we run out of both.
duke@435 537 oop obj_to_scan;
duke@435 538 par_scan_state()->trim_queues(0);
duke@435 539
duke@435 540 // We have no local work, attempt to steal from other threads.
duke@435 541
duke@435 542 // attempt to steal work from promoted.
duke@435 543 if (task_queues()->steal(par_scan_state()->thread_num(),
duke@435 544 par_scan_state()->hash_seed(),
duke@435 545 obj_to_scan)) {
duke@435 546 bool res = work_q->push(obj_to_scan);
duke@435 547 assert(res, "Empty queue should have room for a push.");
duke@435 548
duke@435 549 // if successful, goto Start.
duke@435 550 continue;
duke@435 551
duke@435 552 // try global overflow list.
duke@435 553 } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
duke@435 554 continue;
duke@435 555 }
duke@435 556
duke@435 557 // Otherwise, offer termination.
duke@435 558 par_scan_state()->start_term_time();
duke@435 559 if (terminator()->offer_termination()) break;
duke@435 560 par_scan_state()->end_term_time();
duke@435 561 }
ysr@969 562 assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
ysr@969 563 "Broken overflow list?");
duke@435 564 // Finish the last termination pause.
duke@435 565 par_scan_state()->end_term_time();
duke@435 566 }
duke@435 567
duke@435 568 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
duke@435 569 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
duke@435 570 AbstractGangTask("ParNewGeneration collection"),
duke@435 571 _gen(gen), _next_gen(next_gen),
duke@435 572 _young_old_boundary(young_old_boundary),
duke@435 573 _state_set(state_set)
duke@435 574 {}
duke@435 575
jmasa@3294 576 // Reset the terminator for the given number of
jmasa@3294 577 // active threads.
jmasa@3294 578 void ParNewGenTask::set_for_termination(int active_workers) {
jmasa@3294 579 _state_set->reset(active_workers, _gen->promotion_failed());
jmasa@3294 580 // Should the heap be passed in? There's only 1 for now so
jmasa@3294 581 // grab it instead.
jmasa@3294 582 GenCollectedHeap* gch = GenCollectedHeap::heap();
jmasa@3294 583 gch->set_n_termination(active_workers);
jmasa@3294 584 }
jmasa@3294 585
jmasa@3294 586 // The "i" passed to this method is the part of the work for
jmasa@3294 587 // this thread. It is not the worker ID. The "i" is derived
jmasa@3294 588 // from _started_workers which is incremented in internal_note_start()
jmasa@3294 589 // called in GangWorker loop() and which is called under the
jmasa@3294 590 // which is called under the protection of the gang monitor and is
jmasa@3294 591 // called after a task is started. So "i" is based on
jmasa@3294 592 // first-come-first-served.
jmasa@3294 593
jmasa@3357 594 void ParNewGenTask::work(uint worker_id) {
duke@435 595 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 596 // Since this is being done in a separate thread, need new resource
duke@435 597 // and handle marks.
duke@435 598 ResourceMark rm;
duke@435 599 HandleMark hm;
duke@435 600 // We would need multiple old-gen queues otherwise.
ysr@1114 601 assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
duke@435 602
duke@435 603 Generation* old_gen = gch->next_gen(_gen);
duke@435 604
jmasa@3357 605 ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
jmasa@3357 606 assert(_state_set->is_valid(worker_id), "Should not have been called");
jmasa@3294 607
duke@435 608 par_scan_state.set_young_old_boundary(_young_old_boundary);
duke@435 609
coleenp@4037 610 KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
coleenp@4037 611 gch->rem_set()->klass_rem_set());
coleenp@4037 612
coleenp@4037 613 int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
coleenp@4037 614
duke@435 615 par_scan_state.start_strong_roots();
duke@435 616 gch->gen_process_strong_roots(_gen->level(),
jrose@1424 617 true, // Process younger gens, if any,
jrose@1424 618 // as strong roots.
jrose@1424 619 false, // no scope; this is parallel code
coleenp@4037 620 true, // is scavenging
coleenp@4037 621 SharedHeap::ScanningOption(so),
jrose@1424 622 &par_scan_state.to_space_root_closure(),
jrose@1424 623 true, // walk *all* scavengable nmethods
coleenp@4037 624 &par_scan_state.older_gen_closure(),
coleenp@4037 625 &klass_scan_closure);
duke@435 626 par_scan_state.end_strong_roots();
duke@435 627
duke@435 628 // "evacuate followers".
duke@435 629 par_scan_state.evacuate_followers_closure().do_void();
duke@435 630 }
duke@435 631
duke@435 632 #ifdef _MSC_VER
duke@435 633 #pragma warning( push )
duke@435 634 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
duke@435 635 #endif
duke@435 636 ParNewGeneration::
duke@435 637 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
duke@435 638 : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
duke@435 639 _overflow_list(NULL),
duke@435 640 _is_alive_closure(this),
duke@435 641 _plab_stats(YoungPLABSize, PLABWeight)
duke@435 642 {
ysr@969 643 NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
ysr@969 644 NOT_PRODUCT(_num_par_pushes = 0;)
duke@435 645 _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
duke@435 646 guarantee(_task_queues != NULL, "task_queues allocation failure.");
duke@435 647
duke@435 648 for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
jcoomes@2020 649 ObjToScanQueue *q = new ObjToScanQueue();
jcoomes@2020 650 guarantee(q != NULL, "work_queue Allocation failure.");
jcoomes@2020 651 _task_queues->register_queue(i1, q);
duke@435 652 }
duke@435 653
duke@435 654 for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
duke@435 655 _task_queues->queue(i2)->initialize();
duke@435 656
jcoomes@2191 657 _overflow_stacks = NULL;
jcoomes@2191 658 if (ParGCUseLocalOverflow) {
zgu@3900 659
zgu@3900 660 // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
zgu@3900 661 // with ','
zgu@3900 662 typedef Stack<oop, mtGC> GCOopStack;
zgu@3900 663
zgu@3900 664 _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
jcoomes@2191 665 for (size_t i = 0; i < ParallelGCThreads; ++i) {
zgu@3900 666 new (_overflow_stacks + i) Stack<oop, mtGC>();
ysr@1130 667 }
ysr@1130 668 }
ysr@1130 669
duke@435 670 if (UsePerfData) {
duke@435 671 EXCEPTION_MARK;
duke@435 672 ResourceMark rm;
duke@435 673
duke@435 674 const char* cname =
duke@435 675 PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
duke@435 676 PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
duke@435 677 ParallelGCThreads, CHECK);
duke@435 678 }
duke@435 679 }
duke@435 680 #ifdef _MSC_VER
duke@435 681 #pragma warning( pop )
duke@435 682 #endif
duke@435 683
duke@435 684 // ParNewGeneration::
duke@435 685 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
duke@435 686 DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
duke@435 687
coleenp@548 688 template <class T>
coleenp@548 689 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
coleenp@548 690 #ifdef ASSERT
coleenp@548 691 {
coleenp@548 692 assert(!oopDesc::is_null(*p), "expected non-null ref");
coleenp@548 693 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 694 // We never expect to see a null reference being processed
coleenp@548 695 // as a weak reference.
coleenp@548 696 assert(obj->is_oop(), "expected an oop while scanning weak refs");
coleenp@548 697 }
coleenp@548 698 #endif // ASSERT
duke@435 699
duke@435 700 _par_cl->do_oop_nv(p);
duke@435 701
duke@435 702 if (Universe::heap()->is_in_reserved(p)) {
coleenp@548 703 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 704 _rs->write_ref_field_gc_par(p, obj);
duke@435 705 }
duke@435 706 }
duke@435 707
coleenp@548 708 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p) { ParKeepAliveClosure::do_oop_work(p); }
coleenp@548 709 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
coleenp@548 710
duke@435 711 // ParNewGeneration::
duke@435 712 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
duke@435 713 DefNewGeneration::KeepAliveClosure(cl) {}
duke@435 714
coleenp@548 715 template <class T>
coleenp@548 716 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
coleenp@548 717 #ifdef ASSERT
coleenp@548 718 {
coleenp@548 719 assert(!oopDesc::is_null(*p), "expected non-null ref");
coleenp@548 720 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 721 // We never expect to see a null reference being processed
coleenp@548 722 // as a weak reference.
coleenp@548 723 assert(obj->is_oop(), "expected an oop while scanning weak refs");
coleenp@548 724 }
coleenp@548 725 #endif // ASSERT
duke@435 726
duke@435 727 _cl->do_oop_nv(p);
duke@435 728
duke@435 729 if (Universe::heap()->is_in_reserved(p)) {
coleenp@548 730 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 731 _rs->write_ref_field_gc_par(p, obj);
duke@435 732 }
duke@435 733 }
duke@435 734
coleenp@548 735 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p) { KeepAliveClosure::do_oop_work(p); }
coleenp@548 736 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
coleenp@548 737
coleenp@548 738 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
coleenp@548 739 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 740 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 741 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
duke@435 742 if ((HeapWord*)obj < _boundary) {
duke@435 743 assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
coleenp@548 744 oop new_obj = obj->is_forwarded()
coleenp@548 745 ? obj->forwardee()
coleenp@548 746 : _g->DefNewGeneration::copy_to_survivor_space(obj);
coleenp@548 747 oopDesc::encode_store_heap_oop_not_null(p, new_obj);
duke@435 748 }
duke@435 749 if (_gc_barrier) {
duke@435 750 // If p points to a younger generation, mark the card.
duke@435 751 if ((HeapWord*)obj < _gen_boundary) {
duke@435 752 _rs->write_ref_field_gc_par(p, obj);
duke@435 753 }
duke@435 754 }
duke@435 755 }
duke@435 756 }
duke@435 757
coleenp@548 758 void ScanClosureWithParBarrier::do_oop(oop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
coleenp@548 759 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
coleenp@548 760
duke@435 761 class ParNewRefProcTaskProxy: public AbstractGangTask {
duke@435 762 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
duke@435 763 public:
duke@435 764 ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
duke@435 765 Generation& next_gen,
duke@435 766 HeapWord* young_old_boundary,
duke@435 767 ParScanThreadStateSet& state_set);
duke@435 768
duke@435 769 private:
jmasa@3357 770 virtual void work(uint worker_id);
jmasa@3294 771 virtual void set_for_termination(int active_workers) {
jmasa@3294 772 _state_set.terminator()->reset_for_reuse(active_workers);
jmasa@3294 773 }
duke@435 774 private:
duke@435 775 ParNewGeneration& _gen;
duke@435 776 ProcessTask& _task;
duke@435 777 Generation& _next_gen;
duke@435 778 HeapWord* _young_old_boundary;
duke@435 779 ParScanThreadStateSet& _state_set;
duke@435 780 };
duke@435 781
duke@435 782 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
duke@435 783 ProcessTask& task, ParNewGeneration& gen,
duke@435 784 Generation& next_gen,
duke@435 785 HeapWord* young_old_boundary,
duke@435 786 ParScanThreadStateSet& state_set)
duke@435 787 : AbstractGangTask("ParNewGeneration parallel reference processing"),
duke@435 788 _gen(gen),
duke@435 789 _task(task),
duke@435 790 _next_gen(next_gen),
duke@435 791 _young_old_boundary(young_old_boundary),
duke@435 792 _state_set(state_set)
duke@435 793 {
duke@435 794 }
duke@435 795
jmasa@3357 796 void ParNewRefProcTaskProxy::work(uint worker_id)
duke@435 797 {
duke@435 798 ResourceMark rm;
duke@435 799 HandleMark hm;
jmasa@3357 800 ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
duke@435 801 par_scan_state.set_young_old_boundary(_young_old_boundary);
jmasa@3357 802 _task.work(worker_id, par_scan_state.is_alive_closure(),
duke@435 803 par_scan_state.keep_alive_closure(),
duke@435 804 par_scan_state.evacuate_followers_closure());
duke@435 805 }
duke@435 806
duke@435 807 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
duke@435 808 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
duke@435 809 EnqueueTask& _task;
duke@435 810
duke@435 811 public:
duke@435 812 ParNewRefEnqueueTaskProxy(EnqueueTask& task)
duke@435 813 : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
duke@435 814 _task(task)
duke@435 815 { }
duke@435 816
jmasa@3357 817 virtual void work(uint worker_id)
duke@435 818 {
jmasa@3357 819 _task.work(worker_id);
duke@435 820 }
duke@435 821 };
duke@435 822
duke@435 823
duke@435 824 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
duke@435 825 {
duke@435 826 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 827 assert(gch->kind() == CollectedHeap::GenCollectedHeap,
duke@435 828 "not a generational heap");
jmasa@3294 829 FlexibleWorkGang* workers = gch->workers();
duke@435 830 assert(workers != NULL, "Need parallel worker threads.");
jmasa@3294 831 _state_set.reset(workers->active_workers(), _generation.promotion_failed());
duke@435 832 ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
duke@435 833 _generation.reserved().end(), _state_set);
duke@435 834 workers->run_task(&rp_task);
jmasa@3294 835 _state_set.reset(0 /* bad value in debug if not reset */,
jmasa@3294 836 _generation.promotion_failed());
duke@435 837 }
duke@435 838
duke@435 839 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
duke@435 840 {
duke@435 841 GenCollectedHeap* gch = GenCollectedHeap::heap();
jmasa@3294 842 FlexibleWorkGang* workers = gch->workers();
duke@435 843 assert(workers != NULL, "Need parallel worker threads.");
duke@435 844 ParNewRefEnqueueTaskProxy enq_task(task);
duke@435 845 workers->run_task(&enq_task);
duke@435 846 }
duke@435 847
duke@435 848 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
duke@435 849 {
duke@435 850 _state_set.flush();
duke@435 851 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 852 gch->set_par_threads(0); // 0 ==> non-parallel.
duke@435 853 gch->save_marks();
duke@435 854 }
duke@435 855
duke@435 856 ScanClosureWithParBarrier::
duke@435 857 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
duke@435 858 ScanClosure(g, gc_barrier) {}
duke@435 859
duke@435 860 EvacuateFollowersClosureGeneral::
duke@435 861 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
duke@435 862 OopsInGenClosure* cur,
duke@435 863 OopsInGenClosure* older) :
duke@435 864 _gch(gch), _level(level),
duke@435 865 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 866 {}
duke@435 867
duke@435 868 void EvacuateFollowersClosureGeneral::do_void() {
duke@435 869 do {
duke@435 870 // Beware: this call will lead to closure applications via virtual
duke@435 871 // calls.
duke@435 872 _gch->oop_since_save_marks_iterate(_level,
duke@435 873 _scan_cur_or_nonheap,
duke@435 874 _scan_older);
duke@435 875 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 876 }
duke@435 877
duke@435 878
duke@435 879 bool ParNewGeneration::_avoid_promotion_undo = false;
duke@435 880
duke@435 881 void ParNewGeneration::adjust_desired_tenuring_threshold() {
duke@435 882 // Set the desired survivor size to half the real survivor space
duke@435 883 _tenuring_threshold =
duke@435 884 age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
duke@435 885 }
duke@435 886
duke@435 887 // A Generation that does parallel young-gen collection.
duke@435 888
duke@435 889 void ParNewGeneration::collect(bool full,
duke@435 890 bool clear_all_soft_refs,
duke@435 891 size_t size,
duke@435 892 bool is_tlab) {
duke@435 893 assert(full || size > 0, "otherwise we don't want to collect");
duke@435 894 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 895 assert(gch->kind() == CollectedHeap::GenCollectedHeap,
duke@435 896 "not a CMS generational heap");
duke@435 897 AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
jmasa@3294 898 FlexibleWorkGang* workers = gch->workers();
jmasa@3294 899 assert(workers != NULL, "Need workgang for parallel work");
jmasa@3294 900 int active_workers =
jmasa@3294 901 AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
jmasa@3294 902 workers->active_workers(),
jmasa@3294 903 Threads::number_of_non_daemon_threads());
jmasa@3294 904 workers->set_active_workers(active_workers);
duke@435 905 _next_gen = gch->next_gen(this);
duke@435 906 assert(_next_gen != NULL,
duke@435 907 "This must be the youngest gen, and not the only gen");
duke@435 908 assert(gch->n_gens() == 2,
duke@435 909 "Par collection currently only works with single older gen.");
duke@435 910 // Do we have to avoid promotion_undo?
duke@435 911 if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
duke@435 912 set_avoid_promotion_undo(true);
duke@435 913 }
duke@435 914
duke@435 915 // If the next generation is too full to accomodate worst-case promotion
duke@435 916 // from this generation, pass on collection; let the next generation
duke@435 917 // do it.
duke@435 918 if (!collection_attempt_is_safe()) {
ysr@2243 919 gch->set_incremental_collection_failed(); // slight lie, in that we did not even attempt one
duke@435 920 return;
duke@435 921 }
duke@435 922 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
duke@435 923
duke@435 924 init_assuming_no_promotion_failure();
duke@435 925
duke@435 926 if (UseAdaptiveSizePolicy) {
duke@435 927 set_survivor_overflow(false);
duke@435 928 size_policy->minor_collection_begin();
duke@435 929 }
duke@435 930
brutisso@3767 931 TraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, gclog_or_tty);
duke@435 932 // Capture heap used before collection (for printing).
duke@435 933 size_t gch_prev_used = gch->used();
duke@435 934
duke@435 935 SpecializationStats::clear();
duke@435 936
duke@435 937 age_table()->clear();
jmasa@698 938 to()->clear(SpaceDecorator::Mangle);
duke@435 939
duke@435 940 gch->save_marks();
duke@435 941 assert(workers != NULL, "Need parallel worker threads.");
jmasa@3294 942 int n_workers = active_workers;
jmasa@3294 943
jmasa@3294 944 // Set the correct parallelism (number of queues) in the reference processor
jmasa@3294 945 ref_processor()->set_active_mt_degree(n_workers);
jmasa@3294 946
jmasa@3294 947 // Always set the terminator for the active number of workers
jmasa@3294 948 // because only those workers go through the termination protocol.
jmasa@3294 949 ParallelTaskTerminator _term(n_workers, task_queues());
jmasa@3294 950 ParScanThreadStateSet thread_state_set(workers->active_workers(),
duke@435 951 *to(), *this, *_next_gen, *task_queues(),
ysr@1130 952 _overflow_stacks, desired_plab_sz(), _term);
duke@435 953
duke@435 954 ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
duke@435 955 gch->set_par_threads(n_workers);
duke@435 956 gch->rem_set()->prepare_for_younger_refs_iterate(true);
duke@435 957 // It turns out that even when we're using 1 thread, doing the work in a
duke@435 958 // separate thread causes wide variance in run times. We can't help this
duke@435 959 // in the multi-threaded case, but we special-case n=1 here to get
duke@435 960 // repeatable measurements of the 1-thread overhead of the parallel code.
duke@435 961 if (n_workers > 1) {
jrose@1424 962 GenCollectedHeap::StrongRootsScope srs(gch);
duke@435 963 workers->run_task(&tsk);
duke@435 964 } else {
jrose@1424 965 GenCollectedHeap::StrongRootsScope srs(gch);
duke@435 966 tsk.work(0);
duke@435 967 }
jmasa@3294 968 thread_state_set.reset(0 /* Bad value in debug if not reset */,
jmasa@3294 969 promotion_failed());
duke@435 970
duke@435 971 // Process (weak) reference objects found during scavenge.
ysr@888 972 ReferenceProcessor* rp = ref_processor();
duke@435 973 IsAliveClosure is_alive(this);
duke@435 974 ScanWeakRefClosure scan_weak_ref(this);
duke@435 975 KeepAliveClosure keep_alive(&scan_weak_ref);
duke@435 976 ScanClosure scan_without_gc_barrier(this, false);
duke@435 977 ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
duke@435 978 set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
duke@435 979 EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
duke@435 980 &scan_without_gc_barrier, &scan_with_gc_barrier);
ysr@892 981 rp->setup_policy(clear_all_soft_refs);
jmasa@3294 982 // Can the mt_degree be set later (at run_task() time would be best)?
jmasa@3294 983 rp->set_active_mt_degree(active_workers);
ysr@888 984 if (rp->processing_is_mt()) {
duke@435 985 ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
ysr@888 986 rp->process_discovered_references(&is_alive, &keep_alive,
ysr@888 987 &evacuate_followers, &task_executor);
duke@435 988 } else {
duke@435 989 thread_state_set.flush();
duke@435 990 gch->set_par_threads(0); // 0 ==> non-parallel.
duke@435 991 gch->save_marks();
ysr@888 992 rp->process_discovered_references(&is_alive, &keep_alive,
ysr@888 993 &evacuate_followers, NULL);
duke@435 994 }
duke@435 995 if (!promotion_failed()) {
duke@435 996 // Swap the survivor spaces.
jmasa@698 997 eden()->clear(SpaceDecorator::Mangle);
jmasa@698 998 from()->clear(SpaceDecorator::Mangle);
jmasa@698 999 if (ZapUnusedHeapArea) {
jmasa@698 1000 // This is now done here because of the piece-meal mangling which
jmasa@698 1001 // can check for valid mangling at intermediate points in the
jmasa@698 1002 // collection(s). When a minor collection fails to collect
jmasa@698 1003 // sufficient space resizing of the young generation can occur
jmasa@698 1004 // an redistribute the spaces in the young generation. Mangle
jmasa@698 1005 // here so that unzapped regions don't get distributed to
jmasa@698 1006 // other spaces.
jmasa@698 1007 to()->mangle_unused_area();
jmasa@698 1008 }
duke@435 1009 swap_spaces();
duke@435 1010
jmasa@1822 1011 // A successful scavenge should restart the GC time limit count which is
jmasa@1822 1012 // for full GC's.
jmasa@1822 1013 size_policy->reset_gc_overhead_limit_count();
jmasa@1822 1014
duke@435 1015 assert(to()->is_empty(), "to space should be empty now");
duke@435 1016 } else {
jcoomes@2191 1017 assert(_promo_failure_scan_stack.is_empty(), "post condition");
jcoomes@2191 1018 _promo_failure_scan_stack.clear(true); // Clear cached segments.
jcoomes@2191 1019
duke@435 1020 remove_forwarding_pointers();
duke@435 1021 if (PrintGCDetails) {
duke@435 1022 gclog_or_tty->print(" (promotion failed)");
duke@435 1023 }
duke@435 1024 // All the spaces are in play for mark-sweep.
duke@435 1025 swap_spaces(); // Make life simpler for CMS || rescan; see 6483690.
duke@435 1026 from()->set_next_compaction_space(to());
ysr@2243 1027 gch->set_incremental_collection_failed();
ysr@1580 1028 // Inform the next generation that a promotion failure occurred.
ysr@1580 1029 _next_gen->promotion_failure_occurred();
jmasa@441 1030
jmasa@441 1031 // Reset the PromotionFailureALot counters.
jmasa@441 1032 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
duke@435 1033 }
duke@435 1034 // set new iteration safe limit for the survivor spaces
duke@435 1035 from()->set_concurrent_iteration_safe_limit(from()->top());
duke@435 1036 to()->set_concurrent_iteration_safe_limit(to()->top());
duke@435 1037
duke@435 1038 adjust_desired_tenuring_threshold();
duke@435 1039 if (ResizePLAB) {
johnc@4130 1040 plab_stats()->adjust_desired_plab_sz(n_workers);
duke@435 1041 }
duke@435 1042
duke@435 1043 if (PrintGC && !PrintGCDetails) {
duke@435 1044 gch->print_heap_change(gch_prev_used);
duke@435 1045 }
duke@435 1046
jcoomes@2067 1047 if (PrintGCDetails && ParallelGCVerbose) {
jcoomes@2067 1048 TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
jcoomes@2067 1049 TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
jcoomes@2067 1050 }
jcoomes@2065 1051
duke@435 1052 if (UseAdaptiveSizePolicy) {
duke@435 1053 size_policy->minor_collection_end(gch->gc_cause());
duke@435 1054 size_policy->avg_survived()->sample(from()->used());
duke@435 1055 }
duke@435 1056
johnc@3538 1057 // We need to use a monotonically non-deccreasing time in ms
johnc@3538 1058 // or we will see time-warp warnings and os::javaTimeMillis()
johnc@3538 1059 // does not guarantee monotonicity.
johnc@3538 1060 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
johnc@3538 1061 update_time_of_last_gc(now);
duke@435 1062
duke@435 1063 SpecializationStats::print();
duke@435 1064
ysr@888 1065 rp->set_enqueuing_is_done(true);
ysr@888 1066 if (rp->processing_is_mt()) {
duke@435 1067 ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
ysr@888 1068 rp->enqueue_discovered_references(&task_executor);
duke@435 1069 } else {
ysr@888 1070 rp->enqueue_discovered_references(NULL);
duke@435 1071 }
ysr@888 1072 rp->verify_no_references_recorded();
duke@435 1073 }
duke@435 1074
duke@435 1075 static int sum;
duke@435 1076 void ParNewGeneration::waste_some_time() {
duke@435 1077 for (int i = 0; i < 100; i++) {
duke@435 1078 sum += i;
duke@435 1079 }
duke@435 1080 }
duke@435 1081
duke@435 1082 static const oop ClaimedForwardPtr = oop(0x4);
duke@435 1083
duke@435 1084 // Because of concurrency, there are times where an object for which
duke@435 1085 // "is_forwarded()" is true contains an "interim" forwarding pointer
duke@435 1086 // value. Such a value will soon be overwritten with a real value.
duke@435 1087 // This method requires "obj" to have a forwarding pointer, and waits, if
duke@435 1088 // necessary for a real one to be inserted, and returns it.
duke@435 1089
duke@435 1090 oop ParNewGeneration::real_forwardee(oop obj) {
duke@435 1091 oop forward_ptr = obj->forwardee();
duke@435 1092 if (forward_ptr != ClaimedForwardPtr) {
duke@435 1093 return forward_ptr;
duke@435 1094 } else {
duke@435 1095 return real_forwardee_slow(obj);
duke@435 1096 }
duke@435 1097 }
duke@435 1098
duke@435 1099 oop ParNewGeneration::real_forwardee_slow(oop obj) {
duke@435 1100 // Spin-read if it is claimed but not yet written by another thread.
duke@435 1101 oop forward_ptr = obj->forwardee();
duke@435 1102 while (forward_ptr == ClaimedForwardPtr) {
duke@435 1103 waste_some_time();
duke@435 1104 assert(obj->is_forwarded(), "precondition");
duke@435 1105 forward_ptr = obj->forwardee();
duke@435 1106 }
duke@435 1107 return forward_ptr;
duke@435 1108 }
duke@435 1109
duke@435 1110 #ifdef ASSERT
duke@435 1111 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
duke@435 1112 return
duke@435 1113 (_avoid_promotion_undo && p == ClaimedForwardPtr)
duke@435 1114 || Universe::heap()->is_in_reserved(p);
duke@435 1115 }
duke@435 1116 #endif
duke@435 1117
duke@435 1118 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
ysr@2380 1119 if (m->must_be_preserved_for_promotion_failure(obj)) {
ysr@2380 1120 // We should really have separate per-worker stacks, rather
ysr@2380 1121 // than use locking of a common pair of stacks.
duke@435 1122 MutexLocker ml(ParGCRareEvent_lock);
ysr@2380 1123 preserve_mark(obj, m);
duke@435 1124 }
duke@435 1125 }
duke@435 1126
duke@435 1127 // Multiple GC threads may try to promote an object. If the object
duke@435 1128 // is successfully promoted, a forwarding pointer will be installed in
duke@435 1129 // the object in the young generation. This method claims the right
duke@435 1130 // to install the forwarding pointer before it copies the object,
duke@435 1131 // thus avoiding the need to undo the copy as in
duke@435 1132 // copy_to_survivor_space_avoiding_with_undo.
duke@435 1133
duke@435 1134 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
duke@435 1135 ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
duke@435 1136 // In the sequential version, this assert also says that the object is
duke@435 1137 // not forwarded. That might not be the case here. It is the case that
duke@435 1138 // the caller observed it to be not forwarded at some time in the past.
duke@435 1139 assert(is_in_reserved(old), "shouldn't be scavenging this oop");
duke@435 1140
duke@435 1141 // The sequential code read "old->age()" below. That doesn't work here,
duke@435 1142 // since the age is in the mark word, and that might be overwritten with
duke@435 1143 // a forwarding pointer by a parallel thread. So we must save the mark
duke@435 1144 // word in a local and then analyze it.
duke@435 1145 oopDesc dummyOld;
duke@435 1146 dummyOld.set_mark(m);
duke@435 1147 assert(!dummyOld.is_forwarded(),
duke@435 1148 "should not be called with forwarding pointer mark word.");
duke@435 1149
duke@435 1150 oop new_obj = NULL;
duke@435 1151 oop forward_ptr;
duke@435 1152
duke@435 1153 // Try allocating obj in to-space (unless too old)
duke@435 1154 if (dummyOld.age() < tenuring_threshold()) {
duke@435 1155 new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
duke@435 1156 if (new_obj == NULL) {
duke@435 1157 set_survivor_overflow(true);
duke@435 1158 }
duke@435 1159 }
duke@435 1160
duke@435 1161 if (new_obj == NULL) {
duke@435 1162 // Either to-space is full or we decided to promote
duke@435 1163 // try allocating obj tenured
duke@435 1164
duke@435 1165 // Attempt to install a null forwarding pointer (atomically),
duke@435 1166 // to claim the right to install the real forwarding pointer.
duke@435 1167 forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
duke@435 1168 if (forward_ptr != NULL) {
duke@435 1169 // someone else beat us to it.
duke@435 1170 return real_forwardee(old);
duke@435 1171 }
duke@435 1172
duke@435 1173 new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
duke@435 1174 old, m, sz);
duke@435 1175
duke@435 1176 if (new_obj == NULL) {
duke@435 1177 // promotion failed, forward to self
duke@435 1178 _promotion_failed = true;
duke@435 1179 new_obj = old;
duke@435 1180
duke@435 1181 preserve_mark_if_necessary(old, m);
ysr@1580 1182 // Log the size of the maiden promotion failure
ysr@1580 1183 par_scan_state->log_promotion_failure(sz);
duke@435 1184 }
duke@435 1185
duke@435 1186 old->forward_to(new_obj);
duke@435 1187 forward_ptr = NULL;
duke@435 1188 } else {
duke@435 1189 // Is in to-space; do copying ourselves.
duke@435 1190 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
duke@435 1191 forward_ptr = old->forward_to_atomic(new_obj);
duke@435 1192 // Restore the mark word copied above.
duke@435 1193 new_obj->set_mark(m);
duke@435 1194 // Increment age if obj still in new generation
duke@435 1195 new_obj->incr_age();
duke@435 1196 par_scan_state->age_table()->add(new_obj, sz);
duke@435 1197 }
duke@435 1198 assert(new_obj != NULL, "just checking");
duke@435 1199
coleenp@4037 1200 #ifndef PRODUCT
coleenp@4037 1201 // This code must come after the CAS test, or it will print incorrect
coleenp@4037 1202 // information.
coleenp@4037 1203 if (TraceScavenge) {
coleenp@4037 1204 gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
coleenp@4037 1205 is_in_reserved(new_obj) ? "copying" : "tenuring",
coleenp@4037 1206 new_obj->klass()->internal_name(), old, new_obj, new_obj->size());
coleenp@4037 1207 }
coleenp@4037 1208 #endif
coleenp@4037 1209
duke@435 1210 if (forward_ptr == NULL) {
duke@435 1211 oop obj_to_push = new_obj;
duke@435 1212 if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
duke@435 1213 // Length field used as index of next element to be scanned.
duke@435 1214 // Real length can be obtained from real_forwardee()
duke@435 1215 arrayOop(old)->set_length(0);
duke@435 1216 obj_to_push = old;
duke@435 1217 assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
duke@435 1218 "push forwarded object");
duke@435 1219 }
duke@435 1220 // Push it on one of the queues of to-be-scanned objects.
ysr@969 1221 bool simulate_overflow = false;
ysr@969 1222 NOT_PRODUCT(
ysr@969 1223 if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
ysr@969 1224 // simulate a stack overflow
ysr@969 1225 simulate_overflow = true;
ysr@969 1226 }
ysr@969 1227 )
ysr@969 1228 if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
duke@435 1229 // Add stats for overflow pushes.
duke@435 1230 if (Verbose && PrintGCDetails) {
duke@435 1231 gclog_or_tty->print("queue overflow!\n");
duke@435 1232 }
ysr@969 1233 push_on_overflow_list(old, par_scan_state);
jcoomes@2065 1234 TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
duke@435 1235 }
duke@435 1236
duke@435 1237 return new_obj;
duke@435 1238 }
duke@435 1239
duke@435 1240 // Oops. Someone beat us to it. Undo the allocation. Where did we
duke@435 1241 // allocate it?
duke@435 1242 if (is_in_reserved(new_obj)) {
duke@435 1243 // Must be in to_space.
duke@435 1244 assert(to()->is_in_reserved(new_obj), "Checking");
duke@435 1245 if (forward_ptr == ClaimedForwardPtr) {
duke@435 1246 // Wait to get the real forwarding pointer value.
duke@435 1247 forward_ptr = real_forwardee(old);
duke@435 1248 }
duke@435 1249 par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
duke@435 1250 }
duke@435 1251
duke@435 1252 return forward_ptr;
duke@435 1253 }
duke@435 1254
duke@435 1255
duke@435 1256 // Multiple GC threads may try to promote the same object. If two
duke@435 1257 // or more GC threads copy the object, only one wins the race to install
duke@435 1258 // the forwarding pointer. The other threads have to undo their copy.
duke@435 1259
duke@435 1260 oop ParNewGeneration::copy_to_survivor_space_with_undo(
duke@435 1261 ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
duke@435 1262
duke@435 1263 // In the sequential version, this assert also says that the object is
duke@435 1264 // not forwarded. That might not be the case here. It is the case that
duke@435 1265 // the caller observed it to be not forwarded at some time in the past.
duke@435 1266 assert(is_in_reserved(old), "shouldn't be scavenging this oop");
duke@435 1267
duke@435 1268 // The sequential code read "old->age()" below. That doesn't work here,
duke@435 1269 // since the age is in the mark word, and that might be overwritten with
duke@435 1270 // a forwarding pointer by a parallel thread. So we must save the mark
duke@435 1271 // word here, install it in a local oopDesc, and then analyze it.
duke@435 1272 oopDesc dummyOld;
duke@435 1273 dummyOld.set_mark(m);
duke@435 1274 assert(!dummyOld.is_forwarded(),
duke@435 1275 "should not be called with forwarding pointer mark word.");
duke@435 1276
duke@435 1277 bool failed_to_promote = false;
duke@435 1278 oop new_obj = NULL;
duke@435 1279 oop forward_ptr;
duke@435 1280
duke@435 1281 // Try allocating obj in to-space (unless too old)
duke@435 1282 if (dummyOld.age() < tenuring_threshold()) {
duke@435 1283 new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
duke@435 1284 if (new_obj == NULL) {
duke@435 1285 set_survivor_overflow(true);
duke@435 1286 }
duke@435 1287 }
duke@435 1288
duke@435 1289 if (new_obj == NULL) {
duke@435 1290 // Either to-space is full or we decided to promote
duke@435 1291 // try allocating obj tenured
duke@435 1292 new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
duke@435 1293 old, m, sz);
duke@435 1294
duke@435 1295 if (new_obj == NULL) {
duke@435 1296 // promotion failed, forward to self
duke@435 1297 forward_ptr = old->forward_to_atomic(old);
duke@435 1298 new_obj = old;
duke@435 1299
duke@435 1300 if (forward_ptr != NULL) {
duke@435 1301 return forward_ptr; // someone else succeeded
duke@435 1302 }
duke@435 1303
duke@435 1304 _promotion_failed = true;
duke@435 1305 failed_to_promote = true;
duke@435 1306
duke@435 1307 preserve_mark_if_necessary(old, m);
ysr@1580 1308 // Log the size of the maiden promotion failure
ysr@1580 1309 par_scan_state->log_promotion_failure(sz);
duke@435 1310 }
duke@435 1311 } else {
duke@435 1312 // Is in to-space; do copying ourselves.
duke@435 1313 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
duke@435 1314 // Restore the mark word copied above.
duke@435 1315 new_obj->set_mark(m);
duke@435 1316 // Increment age if new_obj still in new generation
duke@435 1317 new_obj->incr_age();
duke@435 1318 par_scan_state->age_table()->add(new_obj, sz);
duke@435 1319 }
duke@435 1320 assert(new_obj != NULL, "just checking");
duke@435 1321
coleenp@4037 1322 #ifndef PRODUCT
coleenp@4037 1323 // This code must come after the CAS test, or it will print incorrect
coleenp@4037 1324 // information.
coleenp@4037 1325 if (TraceScavenge) {
coleenp@4037 1326 gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
coleenp@4037 1327 is_in_reserved(new_obj) ? "copying" : "tenuring",
coleenp@4037 1328 new_obj->klass()->internal_name(), old, new_obj, new_obj->size());
coleenp@4037 1329 }
coleenp@4037 1330 #endif
coleenp@4037 1331
duke@435 1332 // Now attempt to install the forwarding pointer (atomically).
duke@435 1333 // We have to copy the mark word before overwriting with forwarding
duke@435 1334 // ptr, so we can restore it below in the copy.
duke@435 1335 if (!failed_to_promote) {
duke@435 1336 forward_ptr = old->forward_to_atomic(new_obj);
duke@435 1337 }
duke@435 1338
duke@435 1339 if (forward_ptr == NULL) {
duke@435 1340 oop obj_to_push = new_obj;
duke@435 1341 if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
duke@435 1342 // Length field used as index of next element to be scanned.
duke@435 1343 // Real length can be obtained from real_forwardee()
duke@435 1344 arrayOop(old)->set_length(0);
duke@435 1345 obj_to_push = old;
duke@435 1346 assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
duke@435 1347 "push forwarded object");
duke@435 1348 }
duke@435 1349 // Push it on one of the queues of to-be-scanned objects.
ysr@969 1350 bool simulate_overflow = false;
ysr@969 1351 NOT_PRODUCT(
ysr@969 1352 if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
ysr@969 1353 // simulate a stack overflow
ysr@969 1354 simulate_overflow = true;
ysr@969 1355 }
ysr@969 1356 )
ysr@969 1357 if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
duke@435 1358 // Add stats for overflow pushes.
ysr@969 1359 push_on_overflow_list(old, par_scan_state);
jcoomes@2065 1360 TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
duke@435 1361 }
duke@435 1362
duke@435 1363 return new_obj;
duke@435 1364 }
duke@435 1365
duke@435 1366 // Oops. Someone beat us to it. Undo the allocation. Where did we
duke@435 1367 // allocate it?
duke@435 1368 if (is_in_reserved(new_obj)) {
duke@435 1369 // Must be in to_space.
duke@435 1370 assert(to()->is_in_reserved(new_obj), "Checking");
duke@435 1371 par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
duke@435 1372 } else {
duke@435 1373 assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
duke@435 1374 _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
duke@435 1375 (HeapWord*)new_obj, sz);
duke@435 1376 }
duke@435 1377
duke@435 1378 return forward_ptr;
duke@435 1379 }
duke@435 1380
ysr@969 1381 #ifndef PRODUCT
ysr@969 1382 // It's OK to call this multi-threaded; the worst thing
ysr@969 1383 // that can happen is that we'll get a bunch of closely
ysr@969 1384 // spaced simulated oveflows, but that's OK, in fact
ysr@969 1385 // probably good as it would exercise the overflow code
ysr@969 1386 // under contention.
ysr@969 1387 bool ParNewGeneration::should_simulate_overflow() {
ysr@969 1388 if (_overflow_counter-- <= 0) { // just being defensive
ysr@969 1389 _overflow_counter = ParGCWorkQueueOverflowInterval;
ysr@969 1390 return true;
ysr@969 1391 } else {
ysr@969 1392 return false;
ysr@969 1393 }
ysr@969 1394 }
ysr@969 1395 #endif
ysr@969 1396
ysr@1114 1397 // In case we are using compressed oops, we need to be careful.
ysr@1114 1398 // If the object being pushed is an object array, then its length
ysr@1114 1399 // field keeps track of the "grey boundary" at which the next
ysr@1114 1400 // incremental scan will be done (see ParGCArrayScanChunk).
ysr@1114 1401 // When using compressed oops, this length field is kept in the
ysr@1114 1402 // lower 32 bits of the erstwhile klass word and cannot be used
ysr@1114 1403 // for the overflow chaining pointer (OCP below). As such the OCP
ysr@1114 1404 // would itself need to be compressed into the top 32-bits in this
ysr@1114 1405 // case. Unfortunately, see below, in the event that we have a
ysr@1114 1406 // promotion failure, the node to be pushed on the list can be
ysr@1114 1407 // outside of the Java heap, so the heap-based pointer compression
ysr@1114 1408 // would not work (we would have potential aliasing between C-heap
ysr@1114 1409 // and Java-heap pointers). For this reason, when using compressed
ysr@1114 1410 // oops, we simply use a worker-thread-local, non-shared overflow
ysr@1114 1411 // list in the form of a growable array, with a slightly different
ysr@1114 1412 // overflow stack draining strategy. If/when we start using fat
ysr@1114 1413 // stacks here, we can go back to using (fat) pointer chains
ysr@1114 1414 // (although some performance comparisons would be useful since
ysr@1114 1415 // single global lists have their own performance disadvantages
ysr@1114 1416 // as we were made painfully aware not long ago, see 6786503).
ysr@969 1417 #define BUSY (oop(0x1aff1aff))
ysr@969 1418 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
ysr@1114 1419 assert(is_in_reserved(from_space_obj), "Should be from this generation");
ysr@1130 1420 if (ParGCUseLocalOverflow) {
ysr@1114 1421 // In the case of compressed oops, we use a private, not-shared
ysr@1114 1422 // overflow stack.
ysr@1114 1423 par_scan_state->push_on_overflow_stack(from_space_obj);
ysr@1114 1424 } else {
ysr@1130 1425 assert(!UseCompressedOops, "Error");
ysr@1114 1426 // if the object has been forwarded to itself, then we cannot
ysr@1114 1427 // use the klass pointer for the linked list. Instead we have
ysr@1114 1428 // to allocate an oopDesc in the C-Heap and use that for the linked list.
ysr@1114 1429 // XXX This is horribly inefficient when a promotion failure occurs
ysr@1114 1430 // and should be fixed. XXX FIX ME !!!
ysr@969 1431 #ifndef PRODUCT
ysr@1114 1432 Atomic::inc_ptr(&_num_par_pushes);
ysr@1114 1433 assert(_num_par_pushes > 0, "Tautology");
ysr@969 1434 #endif
ysr@1114 1435 if (from_space_obj->forwardee() == from_space_obj) {
zgu@3900 1436 oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
ysr@1114 1437 listhead->forward_to(from_space_obj);
ysr@1114 1438 from_space_obj = listhead;
ysr@1114 1439 }
ysr@1114 1440 oop observed_overflow_list = _overflow_list;
ysr@1114 1441 oop cur_overflow_list;
ysr@1114 1442 do {
ysr@1114 1443 cur_overflow_list = observed_overflow_list;
ysr@1114 1444 if (cur_overflow_list != BUSY) {
ysr@1114 1445 from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
ysr@1114 1446 } else {
ysr@1114 1447 from_space_obj->set_klass_to_list_ptr(NULL);
ysr@1114 1448 }
ysr@1114 1449 observed_overflow_list =
ysr@1114 1450 (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
ysr@1114 1451 } while (cur_overflow_list != observed_overflow_list);
duke@435 1452 }
duke@435 1453 }
duke@435 1454
ysr@1114 1455 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
ysr@1114 1456 bool res;
ysr@1114 1457
ysr@1130 1458 if (ParGCUseLocalOverflow) {
ysr@1114 1459 res = par_scan_state->take_from_overflow_stack();
ysr@1114 1460 } else {
ysr@1130 1461 assert(!UseCompressedOops, "Error");
ysr@1114 1462 res = take_from_overflow_list_work(par_scan_state);
ysr@1114 1463 }
ysr@1114 1464 return res;
ysr@1114 1465 }
ysr@1114 1466
ysr@1114 1467
ysr@969 1468 // *NOTE*: The overflow list manipulation code here and
ysr@969 1469 // in CMSCollector:: are very similar in shape,
ysr@969 1470 // except that in the CMS case we thread the objects
ysr@969 1471 // directly into the list via their mark word, and do
ysr@969 1472 // not need to deal with special cases below related
ysr@969 1473 // to chunking of object arrays and promotion failure
ysr@969 1474 // handling.
ysr@969 1475 // CR 6797058 has been filed to attempt consolidation of
ysr@969 1476 // the common code.
ysr@969 1477 // Because of the common code, if you make any changes in
ysr@969 1478 // the code below, please check the CMS version to see if
ysr@969 1479 // similar changes might be needed.
ysr@969 1480 // See CMSCollector::par_take_from_overflow_list() for
ysr@969 1481 // more extensive documentation comments.
ysr@1114 1482 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
duke@435 1483 ObjToScanQueue* work_q = par_scan_state->work_queue();
duke@435 1484 // How many to take?
ysr@1114 1485 size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
ysr@969 1486 (size_t)ParGCDesiredObjsFromOverflowList);
duke@435 1487
jcoomes@2191 1488 assert(!UseCompressedOops, "Error");
ysr@1114 1489 assert(par_scan_state->overflow_stack() == NULL, "Error");
duke@435 1490 if (_overflow_list == NULL) return false;
duke@435 1491
duke@435 1492 // Otherwise, there was something there; try claiming the list.
ysr@969 1493 oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
ysr@969 1494 // Trim off a prefix of at most objsFromOverflow items
ysr@969 1495 Thread* tid = Thread::current();
ysr@969 1496 size_t spin_count = (size_t)ParallelGCThreads;
ysr@969 1497 size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
ysr@969 1498 for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
ysr@969 1499 // someone grabbed it before we did ...
ysr@969 1500 // ... we spin for a short while...
ysr@969 1501 os::sleep(tid, sleep_time_millis, false);
ysr@969 1502 if (_overflow_list == NULL) {
ysr@969 1503 // nothing left to take
ysr@969 1504 return false;
ysr@969 1505 } else if (_overflow_list != BUSY) {
ysr@969 1506 // try and grab the prefix
ysr@969 1507 prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
ysr@969 1508 }
duke@435 1509 }
ysr@969 1510 if (prefix == NULL || prefix == BUSY) {
ysr@969 1511 // Nothing to take or waited long enough
ysr@969 1512 if (prefix == NULL) {
ysr@969 1513 // Write back the NULL in case we overwrote it with BUSY above
ysr@969 1514 // and it is still the same value.
ysr@969 1515 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
ysr@969 1516 }
ysr@969 1517 return false;
ysr@969 1518 }
ysr@969 1519 assert(prefix != NULL && prefix != BUSY, "Error");
ysr@969 1520 size_t i = 1;
duke@435 1521 oop cur = prefix;
coleenp@602 1522 while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
coleenp@4037 1523 i++; cur = cur->list_ptr_from_klass();
duke@435 1524 }
duke@435 1525
duke@435 1526 // Reattach remaining (suffix) to overflow list
ysr@969 1527 if (cur->klass_or_null() == NULL) {
ysr@969 1528 // Write back the NULL in lieu of the BUSY we wrote
ysr@969 1529 // above and it is still the same value.
ysr@969 1530 if (_overflow_list == BUSY) {
ysr@969 1531 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
duke@435 1532 }
ysr@969 1533 } else {
coleenp@4037 1534 assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
coleenp@4037 1535 oop suffix = cur->list_ptr_from_klass(); // suffix will be put back on global list
ysr@969 1536 cur->set_klass_to_list_ptr(NULL); // break off suffix
ysr@969 1537 // It's possible that the list is still in the empty(busy) state
ysr@969 1538 // we left it in a short while ago; in that case we may be
ysr@969 1539 // able to place back the suffix.
ysr@969 1540 oop observed_overflow_list = _overflow_list;
ysr@969 1541 oop cur_overflow_list = observed_overflow_list;
ysr@969 1542 bool attached = false;
ysr@969 1543 while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
ysr@969 1544 observed_overflow_list =
ysr@969 1545 (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
ysr@969 1546 if (cur_overflow_list == observed_overflow_list) {
ysr@969 1547 attached = true;
ysr@969 1548 break;
ysr@969 1549 } else cur_overflow_list = observed_overflow_list;
ysr@969 1550 }
ysr@969 1551 if (!attached) {
ysr@969 1552 // Too bad, someone else got in in between; we'll need to do a splice.
ysr@969 1553 // Find the last item of suffix list
ysr@969 1554 oop last = suffix;
ysr@969 1555 while (last->klass_or_null() != NULL) {
coleenp@4037 1556 last = last->list_ptr_from_klass();
ysr@969 1557 }
ysr@969 1558 // Atomically prepend suffix to current overflow list
ysr@969 1559 observed_overflow_list = _overflow_list;
ysr@969 1560 do {
ysr@969 1561 cur_overflow_list = observed_overflow_list;
ysr@969 1562 if (cur_overflow_list != BUSY) {
ysr@969 1563 // Do the splice ...
ysr@969 1564 last->set_klass_to_list_ptr(cur_overflow_list);
ysr@969 1565 } else { // cur_overflow_list == BUSY
ysr@969 1566 last->set_klass_to_list_ptr(NULL);
ysr@969 1567 }
ysr@969 1568 observed_overflow_list =
ysr@969 1569 (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
ysr@969 1570 } while (cur_overflow_list != observed_overflow_list);
duke@435 1571 }
duke@435 1572 }
duke@435 1573
duke@435 1574 // Push objects on prefix list onto this thread's work queue
ysr@969 1575 assert(prefix != NULL && prefix != BUSY, "program logic");
duke@435 1576 cur = prefix;
ysr@969 1577 ssize_t n = 0;
duke@435 1578 while (cur != NULL) {
duke@435 1579 oop obj_to_push = cur->forwardee();
coleenp@4037 1580 oop next = cur->list_ptr_from_klass();
duke@435 1581 cur->set_klass(obj_to_push->klass());
ysr@969 1582 // This may be an array object that is self-forwarded. In that case, the list pointer
ysr@969 1583 // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
ysr@969 1584 if (!is_in_reserved(cur)) {
ysr@969 1585 // This can become a scaling bottleneck when there is work queue overflow coincident
ysr@969 1586 // with promotion failure.
ysr@969 1587 oopDesc* f = cur;
zgu@3900 1588 FREE_C_HEAP_ARRAY(oopDesc, f, mtGC);
ysr@969 1589 } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
ysr@969 1590 assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
duke@435 1591 obj_to_push = cur;
duke@435 1592 }
ysr@969 1593 bool ok = work_q->push(obj_to_push);
ysr@969 1594 assert(ok, "Should have succeeded");
duke@435 1595 cur = next;
duke@435 1596 n++;
duke@435 1597 }
jcoomes@2065 1598 TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
ysr@969 1599 #ifndef PRODUCT
ysr@969 1600 assert(_num_par_pushes >= n, "Too many pops?");
ysr@969 1601 Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
ysr@969 1602 #endif
duke@435 1603 return true;
duke@435 1604 }
ysr@969 1605 #undef BUSY
duke@435 1606
duke@435 1607 void ParNewGeneration::ref_processor_init()
duke@435 1608 {
duke@435 1609 if (_ref_processor == NULL) {
duke@435 1610 // Allocate and initialize a reference processor
ysr@2651 1611 _ref_processor =
ysr@2651 1612 new ReferenceProcessor(_reserved, // span
ysr@2651 1613 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
ysr@2651 1614 (int) ParallelGCThreads, // mt processing degree
ysr@2651 1615 refs_discovery_is_mt(), // mt discovery
ysr@2651 1616 (int) ParallelGCThreads, // mt discovery degree
ysr@2651 1617 refs_discovery_is_atomic(), // atomic_discovery
ysr@2651 1618 NULL, // is_alive_non_header
ysr@2651 1619 false); // write barrier for next field updates
duke@435 1620 }
duke@435 1621 }
duke@435 1622
duke@435 1623 const char* ParNewGeneration::name() const {
duke@435 1624 return "par new generation";
duke@435 1625 }
jmasa@2188 1626
jmasa@2188 1627 bool ParNewGeneration::in_use() {
jmasa@2188 1628 return UseParNewGC && ParallelGCThreads > 0;
jmasa@2188 1629 }

mercurial