src/share/vm/opto/type.hpp

Fri, 24 Jan 2014 15:26:56 +0400

author
shade
date
Fri, 24 Jan 2014 15:26:56 +0400
changeset 6314
1419657ed891
parent 6313
de95063c0e34
child 6375
085b304a1cc5
child 6507
752ba2e5f6d0
permissions
-rw-r--r--

8032490: Remove -XX:+-UseOldInlining
Summary: Move the option to obsolete options list, purge the redundant compiler code.
Reviewed-by: kvn, jrose

duke@435 1 /*
coleenp@5614 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_TYPE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_TYPE_HPP
stefank@2314 27
stefank@2314 28 #include "libadt/port.hpp"
stefank@2314 29 #include "opto/adlcVMDeps.hpp"
stefank@2314 30 #include "runtime/handles.hpp"
stefank@2314 31
duke@435 32 // Portions of code courtesy of Clifford Click
duke@435 33
duke@435 34 // Optimization - Graph Style
duke@435 35
duke@435 36
duke@435 37 // This class defines a Type lattice. The lattice is used in the constant
duke@435 38 // propagation algorithms, and for some type-checking of the iloc code.
duke@435 39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
duke@435 40 // float & double precision constants, sets of data-labels and code-labels.
duke@435 41 // The complete lattice is described below. Subtypes have no relationship to
duke@435 42 // up or down in the lattice; that is entirely determined by the behavior of
duke@435 43 // the MEET/JOIN functions.
duke@435 44
duke@435 45 class Dict;
duke@435 46 class Type;
duke@435 47 class TypeD;
duke@435 48 class TypeF;
duke@435 49 class TypeInt;
duke@435 50 class TypeLong;
roland@4159 51 class TypeNarrowPtr;
roland@4159 52 class TypeNarrowOop;
roland@4159 53 class TypeNarrowKlass;
duke@435 54 class TypeAry;
duke@435 55 class TypeTuple;
kvn@3882 56 class TypeVect;
kvn@3882 57 class TypeVectS;
kvn@3882 58 class TypeVectD;
kvn@3882 59 class TypeVectX;
kvn@3882 60 class TypeVectY;
duke@435 61 class TypePtr;
duke@435 62 class TypeRawPtr;
duke@435 63 class TypeOopPtr;
duke@435 64 class TypeInstPtr;
duke@435 65 class TypeAryPtr;
roland@6043 66 class TypeKlassPtr;
coleenp@4037 67 class TypeMetadataPtr;
duke@435 68
duke@435 69 //------------------------------Type-------------------------------------------
duke@435 70 // Basic Type object, represents a set of primitive Values.
duke@435 71 // Types are hash-cons'd into a private class dictionary, so only one of each
duke@435 72 // different kind of Type exists. Types are never modified after creation, so
duke@435 73 // all their interesting fields are constant.
duke@435 74 class Type {
never@3138 75 friend class VMStructs;
never@3138 76
duke@435 77 public:
duke@435 78 enum TYPES {
duke@435 79 Bad=0, // Type check
duke@435 80 Control, // Control of code (not in lattice)
duke@435 81 Top, // Top of the lattice
duke@435 82 Int, // Integer range (lo-hi)
duke@435 83 Long, // Long integer range (lo-hi)
duke@435 84 Half, // Placeholder half of doubleword
coleenp@548 85 NarrowOop, // Compressed oop pointer
roland@4159 86 NarrowKlass, // Compressed klass pointer
duke@435 87
duke@435 88 Tuple, // Method signature or object layout
duke@435 89 Array, // Array types
kvn@3882 90 VectorS, // 32bit Vector types
kvn@3882 91 VectorD, // 64bit Vector types
kvn@3882 92 VectorX, // 128bit Vector types
kvn@3882 93 VectorY, // 256bit Vector types
duke@435 94
duke@435 95 AnyPtr, // Any old raw, klass, inst, or array pointer
duke@435 96 RawPtr, // Raw (non-oop) pointers
duke@435 97 OopPtr, // Any and all Java heap entities
duke@435 98 InstPtr, // Instance pointers (non-array objects)
duke@435 99 AryPtr, // Array pointers
coleenp@4037 100 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
coleenp@4037 101
coleenp@4037 102 MetadataPtr, // Generic metadata
duke@435 103 KlassPtr, // Klass pointers
duke@435 104
duke@435 105 Function, // Function signature
duke@435 106 Abio, // Abstract I/O
duke@435 107 Return_Address, // Subroutine return address
duke@435 108 Memory, // Abstract store
duke@435 109 FloatTop, // No float value
duke@435 110 FloatCon, // Floating point constant
duke@435 111 FloatBot, // Any float value
duke@435 112 DoubleTop, // No double value
duke@435 113 DoubleCon, // Double precision constant
duke@435 114 DoubleBot, // Any double value
duke@435 115 Bottom, // Bottom of lattice
duke@435 116 lastype // Bogus ending type (not in lattice)
duke@435 117 };
duke@435 118
duke@435 119 // Signal values for offsets from a base pointer
duke@435 120 enum OFFSET_SIGNALS {
duke@435 121 OffsetTop = -2000000000, // undefined offset
duke@435 122 OffsetBot = -2000000001 // any possible offset
duke@435 123 };
duke@435 124
duke@435 125 // Min and max WIDEN values.
duke@435 126 enum WIDEN {
duke@435 127 WidenMin = 0,
duke@435 128 WidenMax = 3
duke@435 129 };
duke@435 130
duke@435 131 private:
coleenp@4037 132 typedef struct {
coleenp@4037 133 const TYPES dual_type;
coleenp@4037 134 const BasicType basic_type;
coleenp@4037 135 const char* msg;
coleenp@4037 136 const bool isa_oop;
coleenp@4037 137 const int ideal_reg;
coleenp@4037 138 const relocInfo::relocType reloc;
coleenp@4037 139 } TypeInfo;
coleenp@4037 140
duke@435 141 // Dictionary of types shared among compilations.
duke@435 142 static Dict* _shared_type_dict;
coleenp@4037 143 static TypeInfo _type_info[];
duke@435 144
duke@435 145 static int uhash( const Type *const t );
duke@435 146 // Structural equality check. Assumes that cmp() has already compared
duke@435 147 // the _base types and thus knows it can cast 't' appropriately.
duke@435 148 virtual bool eq( const Type *t ) const;
duke@435 149
duke@435 150 // Top-level hash-table of types
duke@435 151 static Dict *type_dict() {
duke@435 152 return Compile::current()->type_dict();
duke@435 153 }
duke@435 154
duke@435 155 // DUAL operation: reflect around lattice centerline. Used instead of
duke@435 156 // join to ensure my lattice is symmetric up and down. Dual is computed
duke@435 157 // lazily, on demand, and cached in _dual.
duke@435 158 const Type *_dual; // Cached dual value
duke@435 159 // Table for efficient dualing of base types
duke@435 160 static const TYPES dual_type[lastype];
duke@435 161
roland@5991 162 #ifdef ASSERT
roland@5991 163 // One type is interface, the other is oop
roland@5991 164 virtual bool interface_vs_oop_helper(const Type *t) const;
roland@5991 165 #endif
roland@5991 166
roland@6313 167 const Type *meet_helper(const Type *t, bool include_speculative) const;
roland@6313 168
duke@435 169 protected:
duke@435 170 // Each class of type is also identified by its base.
duke@435 171 const TYPES _base; // Enum of Types type
duke@435 172
duke@435 173 Type( TYPES t ) : _dual(NULL), _base(t) {} // Simple types
duke@435 174 // ~Type(); // Use fast deallocation
duke@435 175 const Type *hashcons(); // Hash-cons the type
roland@6313 176 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
roland@6313 177 const Type *join_helper(const Type *t, bool include_speculative) const {
roland@6313 178 return dual()->meet_helper(t->dual(), include_speculative)->dual();
roland@6313 179 }
duke@435 180
duke@435 181 public:
duke@435 182
coleenp@5614 183 inline void* operator new( size_t x ) throw() {
duke@435 184 Compile* compile = Compile::current();
duke@435 185 compile->set_type_last_size(x);
duke@435 186 void *temp = compile->type_arena()->Amalloc_D(x);
duke@435 187 compile->set_type_hwm(temp);
duke@435 188 return temp;
duke@435 189 }
duke@435 190 inline void operator delete( void* ptr ) {
duke@435 191 Compile* compile = Compile::current();
duke@435 192 compile->type_arena()->Afree(ptr,compile->type_last_size());
duke@435 193 }
duke@435 194
duke@435 195 // Initialize the type system for a particular compilation.
duke@435 196 static void Initialize(Compile* compile);
duke@435 197
duke@435 198 // Initialize the types shared by all compilations.
duke@435 199 static void Initialize_shared(Compile* compile);
duke@435 200
duke@435 201 TYPES base() const {
duke@435 202 assert(_base > Bad && _base < lastype, "sanity");
duke@435 203 return _base;
duke@435 204 }
duke@435 205
duke@435 206 // Create a new hash-consd type
duke@435 207 static const Type *make(enum TYPES);
duke@435 208 // Test for equivalence of types
duke@435 209 static int cmp( const Type *const t1, const Type *const t2 );
duke@435 210 // Test for higher or equal in lattice
roland@6313 211 // Variant that drops the speculative part of the types
roland@6313 212 int higher_equal(const Type *t) const {
roland@6313 213 return !cmp(meet(t),t->remove_speculative());
roland@6313 214 }
roland@6313 215 // Variant that keeps the speculative part of the types
roland@6313 216 int higher_equal_speculative(const Type *t) const {
roland@6313 217 return !cmp(meet_speculative(t),t);
roland@6313 218 }
duke@435 219
duke@435 220 // MEET operation; lower in lattice.
roland@6313 221 // Variant that drops the speculative part of the types
roland@6313 222 const Type *meet(const Type *t) const {
roland@6313 223 return meet_helper(t, false);
roland@6313 224 }
roland@6313 225 // Variant that keeps the speculative part of the types
roland@6313 226 const Type *meet_speculative(const Type *t) const {
roland@6313 227 return meet_helper(t, true);
roland@6313 228 }
duke@435 229 // WIDEN: 'widens' for Ints and other range types
never@1444 230 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
duke@435 231 // NARROW: complement for widen, used by pessimistic phases
duke@435 232 virtual const Type *narrow( const Type *old ) const { return this; }
duke@435 233
duke@435 234 // DUAL operation: reflect around lattice centerline. Used instead of
duke@435 235 // join to ensure my lattice is symmetric up and down.
duke@435 236 const Type *dual() const { return _dual; }
duke@435 237
duke@435 238 // Compute meet dependent on base type
duke@435 239 virtual const Type *xmeet( const Type *t ) const;
duke@435 240 virtual const Type *xdual() const; // Compute dual right now.
duke@435 241
duke@435 242 // JOIN operation; higher in lattice. Done by finding the dual of the
duke@435 243 // meet of the dual of the 2 inputs.
roland@6313 244 // Variant that drops the speculative part of the types
roland@6313 245 const Type *join(const Type *t) const {
roland@6313 246 return join_helper(t, false);
roland@6313 247 }
roland@6313 248 // Variant that keeps the speculative part of the types
roland@6313 249 const Type *join_speculative(const Type *t) const {
roland@6313 250 return join_helper(t, true);
roland@6313 251 }
duke@435 252
duke@435 253 // Modified version of JOIN adapted to the needs Node::Value.
duke@435 254 // Normalizes all empty values to TOP. Does not kill _widen bits.
duke@435 255 // Currently, it also works around limitations involving interface types.
roland@6313 256 // Variant that drops the speculative part of the types
roland@6313 257 const Type *filter(const Type *kills) const {
roland@6313 258 return filter_helper(kills, false);
roland@6313 259 }
roland@6313 260 // Variant that keeps the speculative part of the types
roland@6313 261 const Type *filter_speculative(const Type *kills) const {
roland@6313 262 return filter_helper(kills, true);
roland@6313 263 }
duke@435 264
kvn@1255 265 #ifdef ASSERT
kvn@1255 266 // One type is interface, the other is oop
kvn@1255 267 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 268 #endif
kvn@1255 269
coleenp@548 270 // Returns true if this pointer points at memory which contains a
kvn@598 271 // compressed oop references.
kvn@598 272 bool is_ptr_to_narrowoop() const;
roland@4159 273 bool is_ptr_to_narrowklass() const;
coleenp@548 274
kvn@5110 275 bool is_ptr_to_boxing_obj() const;
kvn@5110 276
kvn@5110 277
duke@435 278 // Convenience access
duke@435 279 float getf() const;
duke@435 280 double getd() const;
duke@435 281
duke@435 282 const TypeInt *is_int() const;
duke@435 283 const TypeInt *isa_int() const; // Returns NULL if not an Int
duke@435 284 const TypeLong *is_long() const;
duke@435 285 const TypeLong *isa_long() const; // Returns NULL if not a Long
twisti@4313 286 const TypeD *isa_double() const; // Returns NULL if not a Double{Top,Con,Bot}
duke@435 287 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon
duke@435 288 const TypeD *isa_double_constant() const; // Returns NULL if not a DoubleCon
twisti@4313 289 const TypeF *isa_float() const; // Returns NULL if not a Float{Top,Con,Bot}
duke@435 290 const TypeF *is_float_constant() const; // Asserts it is a FloatCon
duke@435 291 const TypeF *isa_float_constant() const; // Returns NULL if not a FloatCon
duke@435 292 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer
duke@435 293 const TypeAry *is_ary() const; // Array, NOT array pointer
kvn@3882 294 const TypeVect *is_vect() const; // Vector
kvn@3882 295 const TypeVect *isa_vect() const; // Returns NULL if not a Vector
duke@435 296 const TypePtr *is_ptr() const; // Asserts it is a ptr type
duke@435 297 const TypePtr *isa_ptr() const; // Returns NULL if not ptr type
coleenp@548 298 const TypeRawPtr *isa_rawptr() const; // NOT Java oop
coleenp@548 299 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr
kvn@598 300 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer
kvn@598 301 const TypeNarrowOop *isa_narrowoop() const; // Returns NULL if not oop ptr type
roland@4159 302 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
roland@4159 303 const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
coleenp@548 304 const TypeOopPtr *isa_oopptr() const; // Returns NULL if not oop ptr type
coleenp@548 305 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
coleenp@548 306 const TypeInstPtr *isa_instptr() const; // Returns NULL if not InstPtr
coleenp@548 307 const TypeInstPtr *is_instptr() const; // Instance
coleenp@548 308 const TypeAryPtr *isa_aryptr() const; // Returns NULL if not AryPtr
coleenp@548 309 const TypeAryPtr *is_aryptr() const; // Array oop
coleenp@4037 310
coleenp@4037 311 const TypeMetadataPtr *isa_metadataptr() const; // Returns NULL if not oop ptr type
coleenp@4037 312 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
coleenp@4037 313 const TypeKlassPtr *isa_klassptr() const; // Returns NULL if not KlassPtr
coleenp@4037 314 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
coleenp@4037 315
duke@435 316 virtual bool is_finite() const; // Has a finite value
duke@435 317 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 318
kvn@656 319 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
kvn@656 320 const TypePtr* make_ptr() const;
never@1262 321
never@1262 322 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
never@1262 323 // Asserts if the underlying type is not an oopptr or narrowoop.
never@1262 324 const TypeOopPtr* make_oopptr() const;
never@1262 325
kvn@656 326 // Returns this compressed pointer or the equivalent compressed version
kvn@656 327 // of this pointer type.
kvn@656 328 const TypeNarrowOop* make_narrowoop() const;
kvn@656 329
roland@4159 330 // Returns this compressed klass pointer or the equivalent
roland@4159 331 // compressed version of this pointer type.
roland@4159 332 const TypeNarrowKlass* make_narrowklass() const;
roland@4159 333
duke@435 334 // Special test for register pressure heuristic
duke@435 335 bool is_floatingpoint() const; // True if Float or Double base type
duke@435 336
duke@435 337 // Do you have memory, directly or through a tuple?
duke@435 338 bool has_memory( ) const;
duke@435 339
duke@435 340 // TRUE if type is a singleton
duke@435 341 virtual bool singleton(void) const;
duke@435 342
duke@435 343 // TRUE if type is above the lattice centerline, and is therefore vacuous
duke@435 344 virtual bool empty(void) const;
duke@435 345
duke@435 346 // Return a hash for this type. The hash function is public so ConNode
duke@435 347 // (constants) can hash on their constant, which is represented by a Type.
duke@435 348 virtual int hash() const;
duke@435 349
duke@435 350 // Map ideal registers (machine types) to ideal types
duke@435 351 static const Type *mreg2type[];
duke@435 352
duke@435 353 // Printing, statistics
duke@435 354 #ifndef PRODUCT
duke@435 355 void dump_on(outputStream *st) const;
duke@435 356 void dump() const {
duke@435 357 dump_on(tty);
duke@435 358 }
duke@435 359 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 360 static void dump_stats();
duke@435 361 #endif
duke@435 362 void typerr(const Type *t) const; // Mixing types error
duke@435 363
duke@435 364 // Create basic type
duke@435 365 static const Type* get_const_basic_type(BasicType type) {
duke@435 366 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
duke@435 367 return _const_basic_type[type];
duke@435 368 }
duke@435 369
duke@435 370 // Mapping to the array element's basic type.
duke@435 371 BasicType array_element_basic_type() const;
duke@435 372
duke@435 373 // Create standard type for a ciType:
duke@435 374 static const Type* get_const_type(ciType* type);
duke@435 375
duke@435 376 // Create standard zero value:
duke@435 377 static const Type* get_zero_type(BasicType type) {
duke@435 378 assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
duke@435 379 return _zero_type[type];
duke@435 380 }
duke@435 381
duke@435 382 // Report if this is a zero value (not top).
duke@435 383 bool is_zero_type() const {
duke@435 384 BasicType type = basic_type();
duke@435 385 if (type == T_VOID || type >= T_CONFLICT)
duke@435 386 return false;
duke@435 387 else
duke@435 388 return (this == _zero_type[type]);
duke@435 389 }
duke@435 390
duke@435 391 // Convenience common pre-built types.
duke@435 392 static const Type *ABIO;
duke@435 393 static const Type *BOTTOM;
duke@435 394 static const Type *CONTROL;
duke@435 395 static const Type *DOUBLE;
duke@435 396 static const Type *FLOAT;
duke@435 397 static const Type *HALF;
duke@435 398 static const Type *MEMORY;
duke@435 399 static const Type *MULTI;
duke@435 400 static const Type *RETURN_ADDRESS;
duke@435 401 static const Type *TOP;
duke@435 402
duke@435 403 // Mapping from compiler type to VM BasicType
coleenp@4037 404 BasicType basic_type() const { return _type_info[_base].basic_type; }
coleenp@4037 405 int ideal_reg() const { return _type_info[_base].ideal_reg; }
coleenp@4037 406 const char* msg() const { return _type_info[_base].msg; }
coleenp@4037 407 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; }
coleenp@4037 408 relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
duke@435 409
duke@435 410 // Mapping from CI type system to compiler type:
duke@435 411 static const Type* get_typeflow_type(ciType* type);
duke@435 412
vlivanov@5658 413 static const Type* make_from_constant(ciConstant constant,
vlivanov@5658 414 bool require_constant = false,
vlivanov@5658 415 bool is_autobox_cache = false);
vlivanov@5658 416
roland@5991 417 // Speculative type. See TypeInstPtr
roland@5991 418 virtual ciKlass* speculative_type() const { return NULL; }
roland@6313 419 const Type* maybe_remove_speculative(bool include_speculative) const;
roland@6313 420 virtual const Type* remove_speculative() const { return this; }
roland@5991 421
duke@435 422 private:
duke@435 423 // support arrays
duke@435 424 static const BasicType _basic_type[];
duke@435 425 static const Type* _zero_type[T_CONFLICT+1];
duke@435 426 static const Type* _const_basic_type[T_CONFLICT+1];
duke@435 427 };
duke@435 428
duke@435 429 //------------------------------TypeF------------------------------------------
duke@435 430 // Class of Float-Constant Types.
duke@435 431 class TypeF : public Type {
duke@435 432 TypeF( float f ) : Type(FloatCon), _f(f) {};
duke@435 433 public:
duke@435 434 virtual bool eq( const Type *t ) const;
duke@435 435 virtual int hash() const; // Type specific hashing
duke@435 436 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 437 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 438 public:
duke@435 439 const float _f; // Float constant
duke@435 440
duke@435 441 static const TypeF *make(float f);
duke@435 442
duke@435 443 virtual bool is_finite() const; // Has a finite value
duke@435 444 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 445
duke@435 446 virtual const Type *xmeet( const Type *t ) const;
duke@435 447 virtual const Type *xdual() const; // Compute dual right now.
duke@435 448 // Convenience common pre-built types.
duke@435 449 static const TypeF *ZERO; // positive zero only
duke@435 450 static const TypeF *ONE;
duke@435 451 #ifndef PRODUCT
duke@435 452 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 453 #endif
duke@435 454 };
duke@435 455
duke@435 456 //------------------------------TypeD------------------------------------------
duke@435 457 // Class of Double-Constant Types.
duke@435 458 class TypeD : public Type {
duke@435 459 TypeD( double d ) : Type(DoubleCon), _d(d) {};
duke@435 460 public:
duke@435 461 virtual bool eq( const Type *t ) const;
duke@435 462 virtual int hash() const; // Type specific hashing
duke@435 463 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 464 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 465 public:
duke@435 466 const double _d; // Double constant
duke@435 467
duke@435 468 static const TypeD *make(double d);
duke@435 469
duke@435 470 virtual bool is_finite() const; // Has a finite value
duke@435 471 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 472
duke@435 473 virtual const Type *xmeet( const Type *t ) const;
duke@435 474 virtual const Type *xdual() const; // Compute dual right now.
duke@435 475 // Convenience common pre-built types.
duke@435 476 static const TypeD *ZERO; // positive zero only
duke@435 477 static const TypeD *ONE;
duke@435 478 #ifndef PRODUCT
duke@435 479 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 480 #endif
duke@435 481 };
duke@435 482
duke@435 483 //------------------------------TypeInt----------------------------------------
duke@435 484 // Class of integer ranges, the set of integers between a lower bound and an
duke@435 485 // upper bound, inclusive.
duke@435 486 class TypeInt : public Type {
duke@435 487 TypeInt( jint lo, jint hi, int w );
roland@6313 488 protected:
roland@6313 489 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
roland@6313 490
duke@435 491 public:
duke@435 492 virtual bool eq( const Type *t ) const;
duke@435 493 virtual int hash() const; // Type specific hashing
duke@435 494 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 495 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 496 const jint _lo, _hi; // Lower bound, upper bound
duke@435 497 const short _widen; // Limit on times we widen this sucker
duke@435 498
duke@435 499 static const TypeInt *make(jint lo);
duke@435 500 // must always specify w
duke@435 501 static const TypeInt *make(jint lo, jint hi, int w);
duke@435 502
duke@435 503 // Check for single integer
duke@435 504 int is_con() const { return _lo==_hi; }
duke@435 505 bool is_con(int i) const { return is_con() && _lo == i; }
duke@435 506 jint get_con() const { assert( is_con(), "" ); return _lo; }
duke@435 507
duke@435 508 virtual bool is_finite() const; // Has a finite value
duke@435 509
duke@435 510 virtual const Type *xmeet( const Type *t ) const;
duke@435 511 virtual const Type *xdual() const; // Compute dual right now.
never@1444 512 virtual const Type *widen( const Type *t, const Type* limit_type ) const;
duke@435 513 virtual const Type *narrow( const Type *t ) const;
duke@435 514 // Do not kill _widen bits.
duke@435 515 // Convenience common pre-built types.
duke@435 516 static const TypeInt *MINUS_1;
duke@435 517 static const TypeInt *ZERO;
duke@435 518 static const TypeInt *ONE;
duke@435 519 static const TypeInt *BOOL;
duke@435 520 static const TypeInt *CC;
duke@435 521 static const TypeInt *CC_LT; // [-1] == MINUS_1
duke@435 522 static const TypeInt *CC_GT; // [1] == ONE
duke@435 523 static const TypeInt *CC_EQ; // [0] == ZERO
duke@435 524 static const TypeInt *CC_LE; // [-1,0]
duke@435 525 static const TypeInt *CC_GE; // [0,1] == BOOL (!)
duke@435 526 static const TypeInt *BYTE;
twisti@1059 527 static const TypeInt *UBYTE;
duke@435 528 static const TypeInt *CHAR;
duke@435 529 static const TypeInt *SHORT;
duke@435 530 static const TypeInt *POS;
duke@435 531 static const TypeInt *POS1;
duke@435 532 static const TypeInt *INT;
duke@435 533 static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 534 #ifndef PRODUCT
duke@435 535 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 536 #endif
duke@435 537 };
duke@435 538
duke@435 539
duke@435 540 //------------------------------TypeLong---------------------------------------
duke@435 541 // Class of long integer ranges, the set of integers between a lower bound and
duke@435 542 // an upper bound, inclusive.
duke@435 543 class TypeLong : public Type {
duke@435 544 TypeLong( jlong lo, jlong hi, int w );
roland@6313 545 protected:
roland@6313 546 // Do not kill _widen bits.
roland@6313 547 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
duke@435 548 public:
duke@435 549 virtual bool eq( const Type *t ) const;
duke@435 550 virtual int hash() const; // Type specific hashing
duke@435 551 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 552 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 553 public:
duke@435 554 const jlong _lo, _hi; // Lower bound, upper bound
duke@435 555 const short _widen; // Limit on times we widen this sucker
duke@435 556
duke@435 557 static const TypeLong *make(jlong lo);
duke@435 558 // must always specify w
duke@435 559 static const TypeLong *make(jlong lo, jlong hi, int w);
duke@435 560
duke@435 561 // Check for single integer
duke@435 562 int is_con() const { return _lo==_hi; }
rasbold@580 563 bool is_con(int i) const { return is_con() && _lo == i; }
duke@435 564 jlong get_con() const { assert( is_con(), "" ); return _lo; }
duke@435 565
duke@435 566 virtual bool is_finite() const; // Has a finite value
duke@435 567
duke@435 568 virtual const Type *xmeet( const Type *t ) const;
duke@435 569 virtual const Type *xdual() const; // Compute dual right now.
never@1444 570 virtual const Type *widen( const Type *t, const Type* limit_type ) const;
duke@435 571 virtual const Type *narrow( const Type *t ) const;
duke@435 572 // Convenience common pre-built types.
duke@435 573 static const TypeLong *MINUS_1;
duke@435 574 static const TypeLong *ZERO;
duke@435 575 static const TypeLong *ONE;
duke@435 576 static const TypeLong *POS;
duke@435 577 static const TypeLong *LONG;
duke@435 578 static const TypeLong *INT; // 32-bit subrange [min_jint..max_jint]
duke@435 579 static const TypeLong *UINT; // 32-bit unsigned [0..max_juint]
duke@435 580 #ifndef PRODUCT
duke@435 581 virtual void dump2( Dict &d, uint, outputStream *st ) const;// Specialized per-Type dumping
duke@435 582 #endif
duke@435 583 };
duke@435 584
duke@435 585 //------------------------------TypeTuple--------------------------------------
duke@435 586 // Class of Tuple Types, essentially type collections for function signatures
duke@435 587 // and class layouts. It happens to also be a fast cache for the HotSpot
duke@435 588 // signature types.
duke@435 589 class TypeTuple : public Type {
duke@435 590 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
duke@435 591 public:
duke@435 592 virtual bool eq( const Type *t ) const;
duke@435 593 virtual int hash() const; // Type specific hashing
duke@435 594 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 595 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 596
duke@435 597 public:
duke@435 598 const uint _cnt; // Count of fields
duke@435 599 const Type ** const _fields; // Array of field types
duke@435 600
duke@435 601 // Accessors:
duke@435 602 uint cnt() const { return _cnt; }
duke@435 603 const Type* field_at(uint i) const {
duke@435 604 assert(i < _cnt, "oob");
duke@435 605 return _fields[i];
duke@435 606 }
duke@435 607 void set_field_at(uint i, const Type* t) {
duke@435 608 assert(i < _cnt, "oob");
duke@435 609 _fields[i] = t;
duke@435 610 }
duke@435 611
duke@435 612 static const TypeTuple *make( uint cnt, const Type **fields );
duke@435 613 static const TypeTuple *make_range(ciSignature *sig);
duke@435 614 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
duke@435 615
duke@435 616 // Subroutine call type with space allocated for argument types
duke@435 617 static const Type **fields( uint arg_cnt );
duke@435 618
duke@435 619 virtual const Type *xmeet( const Type *t ) const;
duke@435 620 virtual const Type *xdual() const; // Compute dual right now.
duke@435 621 // Convenience common pre-built types.
duke@435 622 static const TypeTuple *IFBOTH;
duke@435 623 static const TypeTuple *IFFALSE;
duke@435 624 static const TypeTuple *IFTRUE;
duke@435 625 static const TypeTuple *IFNEITHER;
duke@435 626 static const TypeTuple *LOOPBODY;
duke@435 627 static const TypeTuple *MEMBAR;
duke@435 628 static const TypeTuple *STORECONDITIONAL;
duke@435 629 static const TypeTuple *START_I2C;
duke@435 630 static const TypeTuple *INT_PAIR;
duke@435 631 static const TypeTuple *LONG_PAIR;
rbackman@5791 632 static const TypeTuple *INT_CC_PAIR;
rbackman@5997 633 static const TypeTuple *LONG_CC_PAIR;
duke@435 634 #ifndef PRODUCT
duke@435 635 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
duke@435 636 #endif
duke@435 637 };
duke@435 638
duke@435 639 //------------------------------TypeAry----------------------------------------
duke@435 640 // Class of Array Types
duke@435 641 class TypeAry : public Type {
vlivanov@5658 642 TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
vlivanov@5658 643 _elem(elem), _size(size), _stable(stable) {}
duke@435 644 public:
duke@435 645 virtual bool eq( const Type *t ) const;
duke@435 646 virtual int hash() const; // Type specific hashing
duke@435 647 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 648 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 649
duke@435 650 private:
duke@435 651 const Type *_elem; // Element type of array
duke@435 652 const TypeInt *_size; // Elements in array
vlivanov@5658 653 const bool _stable; // Are elements @Stable?
duke@435 654 friend class TypeAryPtr;
duke@435 655
duke@435 656 public:
vlivanov@5658 657 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
duke@435 658
duke@435 659 virtual const Type *xmeet( const Type *t ) const;
duke@435 660 virtual const Type *xdual() const; // Compute dual right now.
duke@435 661 bool ary_must_be_exact() const; // true if arrays of such are never generic
roland@6313 662 virtual const Type* remove_speculative() const;
kvn@1255 663 #ifdef ASSERT
kvn@1255 664 // One type is interface, the other is oop
kvn@1255 665 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 666 #endif
duke@435 667 #ifndef PRODUCT
duke@435 668 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
duke@435 669 #endif
duke@435 670 };
duke@435 671
kvn@3882 672 //------------------------------TypeVect---------------------------------------
kvn@3882 673 // Class of Vector Types
kvn@3882 674 class TypeVect : public Type {
kvn@3882 675 const Type* _elem; // Vector's element type
kvn@3882 676 const uint _length; // Elements in vector (power of 2)
kvn@3882 677
kvn@3882 678 protected:
kvn@3882 679 TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
kvn@3882 680 _elem(elem), _length(length) {}
kvn@3882 681
kvn@3882 682 public:
kvn@3882 683 const Type* element_type() const { return _elem; }
kvn@3882 684 BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
kvn@3882 685 uint length() const { return _length; }
kvn@3882 686 uint length_in_bytes() const {
kvn@3882 687 return _length * type2aelembytes(element_basic_type());
kvn@3882 688 }
kvn@3882 689
kvn@3882 690 virtual bool eq(const Type *t) const;
kvn@3882 691 virtual int hash() const; // Type specific hashing
kvn@3882 692 virtual bool singleton(void) const; // TRUE if type is a singleton
kvn@3882 693 virtual bool empty(void) const; // TRUE if type is vacuous
kvn@3882 694
kvn@3882 695 static const TypeVect *make(const BasicType elem_bt, uint length) {
kvn@3882 696 // Use bottom primitive type.
kvn@3882 697 return make(get_const_basic_type(elem_bt), length);
kvn@3882 698 }
kvn@3882 699 // Used directly by Replicate nodes to construct singleton vector.
kvn@3882 700 static const TypeVect *make(const Type* elem, uint length);
kvn@3882 701
kvn@3882 702 virtual const Type *xmeet( const Type *t) const;
kvn@3882 703 virtual const Type *xdual() const; // Compute dual right now.
kvn@3882 704
kvn@3882 705 static const TypeVect *VECTS;
kvn@3882 706 static const TypeVect *VECTD;
kvn@3882 707 static const TypeVect *VECTX;
kvn@3882 708 static const TypeVect *VECTY;
kvn@3882 709
kvn@3882 710 #ifndef PRODUCT
kvn@3882 711 virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
kvn@3882 712 #endif
kvn@3882 713 };
kvn@3882 714
kvn@3882 715 class TypeVectS : public TypeVect {
kvn@3882 716 friend class TypeVect;
kvn@3882 717 TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
kvn@3882 718 };
kvn@3882 719
kvn@3882 720 class TypeVectD : public TypeVect {
kvn@3882 721 friend class TypeVect;
kvn@3882 722 TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
kvn@3882 723 };
kvn@3882 724
kvn@3882 725 class TypeVectX : public TypeVect {
kvn@3882 726 friend class TypeVect;
kvn@3882 727 TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
kvn@3882 728 };
kvn@3882 729
kvn@3882 730 class TypeVectY : public TypeVect {
kvn@3882 731 friend class TypeVect;
kvn@3882 732 TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
kvn@3882 733 };
kvn@3882 734
duke@435 735 //------------------------------TypePtr----------------------------------------
duke@435 736 // Class of machine Pointer Types: raw data, instances or arrays.
duke@435 737 // If the _base enum is AnyPtr, then this refers to all of the above.
duke@435 738 // Otherwise the _base will indicate which subset of pointers is affected,
duke@435 739 // and the class will be inherited from.
duke@435 740 class TypePtr : public Type {
roland@4159 741 friend class TypeNarrowPtr;
duke@435 742 public:
duke@435 743 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
duke@435 744 protected:
duke@435 745 TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
duke@435 746 virtual bool eq( const Type *t ) const;
duke@435 747 virtual int hash() const; // Type specific hashing
duke@435 748 static const PTR ptr_meet[lastPTR][lastPTR];
duke@435 749 static const PTR ptr_dual[lastPTR];
duke@435 750 static const char * const ptr_msg[lastPTR];
duke@435 751
duke@435 752 public:
duke@435 753 const int _offset; // Offset into oop, with TOP & BOT
duke@435 754 const PTR _ptr; // Pointer equivalence class
duke@435 755
duke@435 756 const int offset() const { return _offset; }
duke@435 757 const PTR ptr() const { return _ptr; }
duke@435 758
duke@435 759 static const TypePtr *make( TYPES t, PTR ptr, int offset );
duke@435 760
duke@435 761 // Return a 'ptr' version of this type
duke@435 762 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 763
duke@435 764 virtual intptr_t get_con() const;
duke@435 765
kvn@741 766 int xadd_offset( intptr_t offset ) const;
kvn@741 767 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 768
duke@435 769 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 770 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 771 virtual const Type *xmeet( const Type *t ) const;
duke@435 772 int meet_offset( int offset ) const;
duke@435 773 int dual_offset( ) const;
duke@435 774 virtual const Type *xdual() const; // Compute dual right now.
duke@435 775
duke@435 776 // meet, dual and join over pointer equivalence sets
duke@435 777 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
duke@435 778 PTR dual_ptr() const { return ptr_dual[ptr()]; }
duke@435 779
duke@435 780 // This is textually confusing unless one recalls that
duke@435 781 // join(t) == dual()->meet(t->dual())->dual().
duke@435 782 PTR join_ptr( const PTR in_ptr ) const {
duke@435 783 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
duke@435 784 }
duke@435 785
duke@435 786 // Tests for relation to centerline of type lattice:
duke@435 787 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
duke@435 788 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
duke@435 789 // Convenience common pre-built types.
duke@435 790 static const TypePtr *NULL_PTR;
duke@435 791 static const TypePtr *NOTNULL;
duke@435 792 static const TypePtr *BOTTOM;
duke@435 793 #ifndef PRODUCT
duke@435 794 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 795 #endif
duke@435 796 };
duke@435 797
duke@435 798 //------------------------------TypeRawPtr-------------------------------------
duke@435 799 // Class of raw pointers, pointers to things other than Oops. Examples
duke@435 800 // include the stack pointer, top of heap, card-marking area, handles, etc.
duke@435 801 class TypeRawPtr : public TypePtr {
duke@435 802 protected:
duke@435 803 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
duke@435 804 public:
duke@435 805 virtual bool eq( const Type *t ) const;
duke@435 806 virtual int hash() const; // Type specific hashing
duke@435 807
duke@435 808 const address _bits; // Constant value, if applicable
duke@435 809
duke@435 810 static const TypeRawPtr *make( PTR ptr );
duke@435 811 static const TypeRawPtr *make( address bits );
duke@435 812
duke@435 813 // Return a 'ptr' version of this type
duke@435 814 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 815
duke@435 816 virtual intptr_t get_con() const;
duke@435 817
kvn@741 818 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 819
duke@435 820 virtual const Type *xmeet( const Type *t ) const;
duke@435 821 virtual const Type *xdual() const; // Compute dual right now.
duke@435 822 // Convenience common pre-built types.
duke@435 823 static const TypeRawPtr *BOTTOM;
duke@435 824 static const TypeRawPtr *NOTNULL;
duke@435 825 #ifndef PRODUCT
duke@435 826 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 827 #endif
duke@435 828 };
duke@435 829
duke@435 830 //------------------------------TypeOopPtr-------------------------------------
duke@435 831 // Some kind of oop (Java pointer), either klass or instance or array.
duke@435 832 class TypeOopPtr : public TypePtr {
duke@435 833 protected:
roland@5991 834 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative);
duke@435 835 public:
duke@435 836 virtual bool eq( const Type *t ) const;
duke@435 837 virtual int hash() const; // Type specific hashing
duke@435 838 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 839 enum {
kvn@658 840 InstanceTop = -1, // undefined instance
kvn@658 841 InstanceBot = 0 // any possible instance
duke@435 842 };
duke@435 843 protected:
duke@435 844
duke@435 845 // Oop is NULL, unless this is a constant oop.
duke@435 846 ciObject* _const_oop; // Constant oop
duke@435 847 // If _klass is NULL, then so is _sig. This is an unloaded klass.
duke@435 848 ciKlass* _klass; // Klass object
duke@435 849 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
duke@435 850 bool _klass_is_exact;
kvn@598 851 bool _is_ptr_to_narrowoop;
roland@4159 852 bool _is_ptr_to_narrowklass;
kvn@5110 853 bool _is_ptr_to_boxed_value;
duke@435 854
kvn@658 855 // If not InstanceTop or InstanceBot, indicates that this is
kvn@658 856 // a particular instance of this type which is distinct.
kvn@658 857 // This is the the node index of the allocation node creating this instance.
kvn@658 858 int _instance_id;
duke@435 859
roland@5991 860 // Extra type information profiling gave us. We propagate it the
roland@5991 861 // same way the rest of the type info is propagated. If we want to
roland@5991 862 // use it, then we have to emit a guard: this part of the type is
roland@5991 863 // not something we know but something we speculate about the type.
roland@5991 864 const TypeOopPtr* _speculative;
roland@5991 865
duke@435 866 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
duke@435 867
kvn@658 868 int dual_instance_id() const;
kvn@658 869 int meet_instance_id(int uid) const;
duke@435 870
roland@5991 871 // utility methods to work on the speculative part of the type
roland@5991 872 const TypeOopPtr* dual_speculative() const;
roland@6313 873 const TypeOopPtr* xmeet_speculative(const TypeOopPtr* other) const;
roland@5991 874 bool eq_speculative(const TypeOopPtr* other) const;
roland@5991 875 int hash_speculative() const;
roland@5991 876 const TypeOopPtr* add_offset_speculative(intptr_t offset) const;
roland@5991 877 #ifndef PRODUCT
roland@5991 878 void dump_speculative(outputStream *st) const;
roland@5991 879 #endif
roland@5991 880
roland@6313 881 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 882 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
roland@6313 883
duke@435 884 public:
duke@435 885 // Creates a type given a klass. Correctly handles multi-dimensional arrays
duke@435 886 // Respects UseUniqueSubclasses.
duke@435 887 // If the klass is final, the resulting type will be exact.
duke@435 888 static const TypeOopPtr* make_from_klass(ciKlass* klass) {
duke@435 889 return make_from_klass_common(klass, true, false);
duke@435 890 }
duke@435 891 // Same as before, but will produce an exact type, even if
duke@435 892 // the klass is not final, as long as it has exactly one implementation.
duke@435 893 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
duke@435 894 return make_from_klass_common(klass, true, true);
duke@435 895 }
duke@435 896 // Same as before, but does not respects UseUniqueSubclasses.
duke@435 897 // Use this only for creating array element types.
duke@435 898 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
duke@435 899 return make_from_klass_common(klass, false, false);
duke@435 900 }
duke@435 901 // Creates a singleton type given an object.
jrose@1424 902 // If the object cannot be rendered as a constant,
jrose@1424 903 // may return a non-singleton type.
jrose@1424 904 // If require_constant, produce a NULL if a singleton is not possible.
kvn@5110 905 static const TypeOopPtr* make_from_constant(ciObject* o,
kvn@5110 906 bool require_constant = false,
kvn@5110 907 bool not_null_elements = false);
duke@435 908
duke@435 909 // Make a generic (unclassed) pointer to an oop.
roland@5991 910 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, const TypeOopPtr* speculative);
duke@435 911
duke@435 912 ciObject* const_oop() const { return _const_oop; }
duke@435 913 virtual ciKlass* klass() const { return _klass; }
duke@435 914 bool klass_is_exact() const { return _klass_is_exact; }
kvn@598 915
kvn@598 916 // Returns true if this pointer points at memory which contains a
kvn@598 917 // compressed oop references.
kvn@598 918 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
roland@4159 919 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
kvn@5110 920 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
kvn@658 921 bool is_known_instance() const { return _instance_id > 0; }
kvn@658 922 int instance_id() const { return _instance_id; }
kvn@658 923 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
roland@5991 924 const TypeOopPtr* speculative() const { return _speculative; }
duke@435 925
duke@435 926 virtual intptr_t get_con() const;
duke@435 927
duke@435 928 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 929
duke@435 930 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 931
kvn@658 932 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 933
duke@435 934 // corresponding pointer to klass, for a given instance
duke@435 935 const TypeKlassPtr* as_klass_type() const;
duke@435 936
kvn@741 937 virtual const TypePtr *add_offset( intptr_t offset ) const;
roland@5991 938 // Return same type without a speculative part
roland@6313 939 virtual const Type* remove_speculative() const;
duke@435 940
roland@5991 941 virtual const Type *xmeet(const Type *t) const;
duke@435 942 virtual const Type *xdual() const; // Compute dual right now.
roland@5991 943 // the core of the computation of the meet for TypeOopPtr and for its subclasses
roland@5991 944 virtual const Type *xmeet_helper(const Type *t) const;
duke@435 945
duke@435 946 // Convenience common pre-built type.
duke@435 947 static const TypeOopPtr *BOTTOM;
duke@435 948 #ifndef PRODUCT
duke@435 949 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 950 #endif
roland@5991 951
roland@5991 952 // Return the speculative type if any
roland@5991 953 ciKlass* speculative_type() const {
roland@5991 954 if (_speculative != NULL) {
roland@5991 955 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
roland@5991 956 if (speculative->klass_is_exact()) {
roland@5991 957 return speculative->klass();
roland@5991 958 }
roland@5991 959 }
roland@5991 960 return NULL;
roland@5991 961 }
duke@435 962 };
duke@435 963
duke@435 964 //------------------------------TypeInstPtr------------------------------------
duke@435 965 // Class of Java object pointers, pointing either to non-array Java instances
coleenp@4037 966 // or to a Klass* (including array klasses).
duke@435 967 class TypeInstPtr : public TypeOopPtr {
roland@5991 968 TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative);
duke@435 969 virtual bool eq( const Type *t ) const;
duke@435 970 virtual int hash() const; // Type specific hashing
duke@435 971
duke@435 972 ciSymbol* _name; // class name
duke@435 973
duke@435 974 public:
duke@435 975 ciSymbol* name() const { return _name; }
duke@435 976
duke@435 977 bool is_loaded() const { return _klass->is_loaded(); }
duke@435 978
duke@435 979 // Make a pointer to a constant oop.
duke@435 980 static const TypeInstPtr *make(ciObject* o) {
roland@5991 981 return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
duke@435 982 }
duke@435 983 // Make a pointer to a constant oop with offset.
duke@435 984 static const TypeInstPtr *make(ciObject* o, int offset) {
roland@5991 985 return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
duke@435 986 }
duke@435 987
duke@435 988 // Make a pointer to some value of type klass.
duke@435 989 static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
roland@5991 990 return make(ptr, klass, false, NULL, 0, InstanceBot);
duke@435 991 }
duke@435 992
duke@435 993 // Make a pointer to some non-polymorphic value of exactly type klass.
duke@435 994 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
roland@5991 995 return make(ptr, klass, true, NULL, 0, InstanceBot);
duke@435 996 }
duke@435 997
duke@435 998 // Make a pointer to some value of type klass with offset.
duke@435 999 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
roland@5991 1000 return make(ptr, klass, false, NULL, offset, InstanceBot);
duke@435 1001 }
duke@435 1002
duke@435 1003 // Make a pointer to an oop.
roland@5991 1004 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL);
duke@435 1005
kvn@5110 1006 /** Create constant type for a constant boxed value */
kvn@5110 1007 const Type* get_const_boxed_value() const;
kvn@5110 1008
duke@435 1009 // If this is a java.lang.Class constant, return the type for it or NULL.
duke@435 1010 // Pass to Type::get_const_type to turn it to a type, which will usually
duke@435 1011 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
duke@435 1012 ciType* java_mirror_type() const;
duke@435 1013
duke@435 1014 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 1015
duke@435 1016 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 1017
kvn@658 1018 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 1019
kvn@741 1020 virtual const TypePtr *add_offset( intptr_t offset ) const;
roland@5991 1021 // Return same type without a speculative part
roland@6313 1022 virtual const Type* remove_speculative() const;
duke@435 1023
roland@5991 1024 // the core of the computation of the meet of 2 types
roland@5991 1025 virtual const Type *xmeet_helper(const Type *t) const;
duke@435 1026 virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
duke@435 1027 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1028
duke@435 1029 // Convenience common pre-built types.
duke@435 1030 static const TypeInstPtr *NOTNULL;
duke@435 1031 static const TypeInstPtr *BOTTOM;
duke@435 1032 static const TypeInstPtr *MIRROR;
duke@435 1033 static const TypeInstPtr *MARK;
duke@435 1034 static const TypeInstPtr *KLASS;
duke@435 1035 #ifndef PRODUCT
duke@435 1036 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1037 #endif
duke@435 1038 };
duke@435 1039
duke@435 1040 //------------------------------TypeAryPtr-------------------------------------
duke@435 1041 // Class of Java array pointers
duke@435 1042 class TypeAryPtr : public TypeOopPtr {
kvn@5110 1043 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
roland@5991 1044 int offset, int instance_id, bool is_autobox_cache, const TypeOopPtr* speculative)
roland@5991 1045 : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative),
kvn@5110 1046 _ary(ary),
kvn@5110 1047 _is_autobox_cache(is_autobox_cache)
kvn@5110 1048 {
kvn@2116 1049 #ifdef ASSERT
kvn@2116 1050 if (k != NULL) {
kvn@2116 1051 // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
kvn@2116 1052 ciKlass* ck = compute_klass(true);
kvn@2147 1053 if (k != ck) {
kvn@2116 1054 this->dump(); tty->cr();
kvn@2116 1055 tty->print(" k: ");
kvn@2116 1056 k->print(); tty->cr();
kvn@2116 1057 tty->print("ck: ");
kvn@2116 1058 if (ck != NULL) ck->print();
kvn@2116 1059 else tty->print("<NULL>");
kvn@2116 1060 tty->cr();
kvn@2116 1061 assert(false, "unexpected TypeAryPtr::_klass");
kvn@2116 1062 }
kvn@2116 1063 }
kvn@2116 1064 #endif
kvn@2116 1065 }
duke@435 1066 virtual bool eq( const Type *t ) const;
duke@435 1067 virtual int hash() const; // Type specific hashing
duke@435 1068 const TypeAry *_ary; // Array we point into
kvn@5110 1069 const bool _is_autobox_cache;
duke@435 1070
kvn@2116 1071 ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
kvn@2116 1072
duke@435 1073 public:
duke@435 1074 // Accessors
duke@435 1075 ciKlass* klass() const;
duke@435 1076 const TypeAry* ary() const { return _ary; }
duke@435 1077 const Type* elem() const { return _ary->_elem; }
duke@435 1078 const TypeInt* size() const { return _ary->_size; }
vlivanov@5658 1079 bool is_stable() const { return _ary->_stable; }
duke@435 1080
kvn@5110 1081 bool is_autobox_cache() const { return _is_autobox_cache; }
kvn@5110 1082
roland@5991 1083 static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL);
duke@435 1084 // Constant pointer to array
roland@5991 1085 static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, bool is_autobox_cache = false);
duke@435 1086
duke@435 1087 // Return a 'ptr' version of this type
duke@435 1088 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 1089
duke@435 1090 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 1091
kvn@658 1092 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 1093
duke@435 1094 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
rasbold@801 1095 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
duke@435 1096
duke@435 1097 virtual bool empty(void) const; // TRUE if type is vacuous
kvn@741 1098 virtual const TypePtr *add_offset( intptr_t offset ) const;
roland@5991 1099 // Return same type without a speculative part
roland@6313 1100 virtual const Type* remove_speculative() const;
duke@435 1101
roland@5991 1102 // the core of the computation of the meet of 2 types
roland@5991 1103 virtual const Type *xmeet_helper(const Type *t) const;
duke@435 1104 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1105
vlivanov@5658 1106 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
vlivanov@5658 1107 int stable_dimension() const;
vlivanov@5658 1108
duke@435 1109 // Convenience common pre-built types.
duke@435 1110 static const TypeAryPtr *RANGE;
duke@435 1111 static const TypeAryPtr *OOPS;
kvn@598 1112 static const TypeAryPtr *NARROWOOPS;
duke@435 1113 static const TypeAryPtr *BYTES;
duke@435 1114 static const TypeAryPtr *SHORTS;
duke@435 1115 static const TypeAryPtr *CHARS;
duke@435 1116 static const TypeAryPtr *INTS;
duke@435 1117 static const TypeAryPtr *LONGS;
duke@435 1118 static const TypeAryPtr *FLOATS;
duke@435 1119 static const TypeAryPtr *DOUBLES;
duke@435 1120 // selects one of the above:
duke@435 1121 static const TypeAryPtr *get_array_body_type(BasicType elem) {
duke@435 1122 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
duke@435 1123 return _array_body_type[elem];
duke@435 1124 }
duke@435 1125 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
duke@435 1126 // sharpen the type of an int which is used as an array size
kvn@1255 1127 #ifdef ASSERT
kvn@1255 1128 // One type is interface, the other is oop
kvn@1255 1129 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 1130 #endif
duke@435 1131 #ifndef PRODUCT
duke@435 1132 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1133 #endif
duke@435 1134 };
duke@435 1135
coleenp@4037 1136 //------------------------------TypeMetadataPtr-------------------------------------
coleenp@4037 1137 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
coleenp@4037 1138 class TypeMetadataPtr : public TypePtr {
coleenp@4037 1139 protected:
coleenp@4037 1140 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
roland@6313 1141 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 1142 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
coleenp@4037 1143 public:
coleenp@4037 1144 virtual bool eq( const Type *t ) const;
coleenp@4037 1145 virtual int hash() const; // Type specific hashing
coleenp@4037 1146 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@4037 1147
coleenp@4037 1148 private:
coleenp@4037 1149 ciMetadata* _metadata;
coleenp@4037 1150
coleenp@4037 1151 public:
coleenp@4037 1152 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
coleenp@4037 1153
coleenp@4037 1154 static const TypeMetadataPtr* make(ciMethod* m);
coleenp@4037 1155 static const TypeMetadataPtr* make(ciMethodData* m);
coleenp@4037 1156
coleenp@4037 1157 ciMetadata* metadata() const { return _metadata; }
coleenp@4037 1158
coleenp@4037 1159 virtual const Type *cast_to_ptr_type(PTR ptr) const;
coleenp@4037 1160
coleenp@4037 1161 virtual const TypePtr *add_offset( intptr_t offset ) const;
coleenp@4037 1162
coleenp@4037 1163 virtual const Type *xmeet( const Type *t ) const;
coleenp@4037 1164 virtual const Type *xdual() const; // Compute dual right now.
coleenp@4037 1165
coleenp@4037 1166 virtual intptr_t get_con() const;
coleenp@4037 1167
coleenp@4037 1168 // Convenience common pre-built types.
coleenp@4037 1169 static const TypeMetadataPtr *BOTTOM;
coleenp@4037 1170
coleenp@4037 1171 #ifndef PRODUCT
coleenp@4037 1172 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
coleenp@4037 1173 #endif
coleenp@4037 1174 };
coleenp@4037 1175
duke@435 1176 //------------------------------TypeKlassPtr-----------------------------------
duke@435 1177 // Class of Java Klass pointers
coleenp@4037 1178 class TypeKlassPtr : public TypePtr {
duke@435 1179 TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
duke@435 1180
roland@6313 1181 protected:
roland@6313 1182 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
coleenp@4037 1183 public:
duke@435 1184 virtual bool eq( const Type *t ) const;
duke@435 1185 virtual int hash() const; // Type specific hashing
coleenp@4037 1186 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@4037 1187 private:
coleenp@4037 1188
coleenp@4037 1189 static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
coleenp@4037 1190
coleenp@4037 1191 ciKlass* _klass;
coleenp@4037 1192
coleenp@4037 1193 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
coleenp@4037 1194 bool _klass_is_exact;
duke@435 1195
duke@435 1196 public:
coleenp@4037 1197 ciSymbol* name() const { return klass()->name(); }
duke@435 1198
coleenp@4037 1199 ciKlass* klass() const { return _klass; }
coleenp@4037 1200 bool klass_is_exact() const { return _klass_is_exact; }
coleenp@4037 1201
coleenp@4037 1202 bool is_loaded() const { return klass()->is_loaded(); }
coleenp@4037 1203
coleenp@4037 1204 // Creates a type given a klass. Correctly handles multi-dimensional arrays
coleenp@4037 1205 // Respects UseUniqueSubclasses.
coleenp@4037 1206 // If the klass is final, the resulting type will be exact.
coleenp@4037 1207 static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
coleenp@4037 1208 return make_from_klass_common(klass, true, false);
coleenp@4037 1209 }
coleenp@4037 1210 // Same as before, but will produce an exact type, even if
coleenp@4037 1211 // the klass is not final, as long as it has exactly one implementation.
coleenp@4037 1212 static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
coleenp@4037 1213 return make_from_klass_common(klass, true, true);
coleenp@4037 1214 }
coleenp@4037 1215 // Same as before, but does not respects UseUniqueSubclasses.
coleenp@4037 1216 // Use this only for creating array element types.
coleenp@4037 1217 static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
coleenp@4037 1218 return make_from_klass_common(klass, false, false);
coleenp@4037 1219 }
coleenp@4037 1220
coleenp@4037 1221 // Make a generic (unclassed) pointer to metadata.
coleenp@4037 1222 static const TypeKlassPtr* make(PTR ptr, int offset);
never@990 1223
duke@435 1224 // ptr to klass 'k'
duke@435 1225 static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
duke@435 1226 // ptr to klass 'k' with offset
duke@435 1227 static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
duke@435 1228 // ptr to klass 'k' or sub-klass
duke@435 1229 static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
duke@435 1230
duke@435 1231 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 1232
duke@435 1233 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 1234
duke@435 1235 // corresponding pointer to instance, for a given class
duke@435 1236 const TypeOopPtr* as_instance_type() const;
duke@435 1237
kvn@741 1238 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 1239 virtual const Type *xmeet( const Type *t ) const;
duke@435 1240 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1241
coleenp@4037 1242 virtual intptr_t get_con() const;
coleenp@4037 1243
duke@435 1244 // Convenience common pre-built types.
duke@435 1245 static const TypeKlassPtr* OBJECT; // Not-null object klass or below
duke@435 1246 static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
duke@435 1247 #ifndef PRODUCT
duke@435 1248 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1249 #endif
duke@435 1250 };
duke@435 1251
roland@4159 1252 class TypeNarrowPtr : public Type {
coleenp@548 1253 protected:
never@1262 1254 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
coleenp@548 1255
roland@4159 1256 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
roland@4159 1257 Type(t) {
never@1262 1258 assert(ptrtype->offset() == 0 ||
never@1262 1259 ptrtype->offset() == OffsetBot ||
never@1262 1260 ptrtype->offset() == OffsetTop, "no real offsets");
coleenp@548 1261 }
roland@4159 1262
roland@4159 1263 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
roland@4159 1264 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
roland@4159 1265 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
roland@4159 1266 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
roland@6313 1267 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 1268 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
coleenp@548 1269 public:
coleenp@548 1270 virtual bool eq( const Type *t ) const;
coleenp@548 1271 virtual int hash() const; // Type specific hashing
coleenp@548 1272 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@548 1273
coleenp@548 1274 virtual const Type *xmeet( const Type *t ) const;
coleenp@548 1275 virtual const Type *xdual() const; // Compute dual right now.
coleenp@548 1276
coleenp@548 1277 virtual intptr_t get_con() const;
coleenp@548 1278
coleenp@548 1279 virtual bool empty(void) const; // TRUE if type is vacuous
coleenp@548 1280
roland@4159 1281 // returns the equivalent ptr type for this compressed pointer
roland@4159 1282 const TypePtr *get_ptrtype() const {
roland@4159 1283 return _ptrtype;
roland@4159 1284 }
roland@4159 1285
roland@4159 1286 #ifndef PRODUCT
roland@4159 1287 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
roland@4159 1288 #endif
roland@4159 1289 };
roland@4159 1290
roland@4159 1291 //------------------------------TypeNarrowOop----------------------------------
roland@4159 1292 // A compressed reference to some kind of Oop. This type wraps around
roland@4159 1293 // a preexisting TypeOopPtr and forwards most of it's operations to
roland@4159 1294 // the underlying type. It's only real purpose is to track the
roland@4159 1295 // oopness of the compressed oop value when we expose the conversion
roland@4159 1296 // between the normal and the compressed form.
roland@4159 1297 class TypeNarrowOop : public TypeNarrowPtr {
roland@4159 1298 protected:
roland@4159 1299 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
roland@4159 1300 }
roland@4159 1301
roland@4159 1302 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
roland@4159 1303 return t->isa_narrowoop();
roland@4159 1304 }
roland@4159 1305
roland@4159 1306 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
roland@4159 1307 return t->is_narrowoop();
roland@4159 1308 }
roland@4159 1309
roland@4159 1310 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
roland@4159 1311 return new TypeNarrowOop(t);
roland@4159 1312 }
roland@4159 1313
roland@4159 1314 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
roland@4159 1315 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
roland@4159 1316 }
roland@4159 1317
roland@4159 1318 public:
roland@4159 1319
coleenp@548 1320 static const TypeNarrowOop *make( const TypePtr* type);
coleenp@548 1321
jcoomes@2661 1322 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
jcoomes@2661 1323 return make(TypeOopPtr::make_from_constant(con, require_constant));
coleenp@548 1324 }
coleenp@548 1325
roland@4159 1326 static const TypeNarrowOop *BOTTOM;
roland@4159 1327 static const TypeNarrowOop *NULL_PTR;
roland@4159 1328
roland@6313 1329 virtual const Type* remove_speculative() const {
roland@6313 1330 return make(_ptrtype->remove_speculative()->is_ptr());
roland@6313 1331 }
roland@6313 1332
roland@4159 1333 #ifndef PRODUCT
roland@4159 1334 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
roland@4159 1335 #endif
roland@4159 1336 };
roland@4159 1337
roland@4159 1338 //------------------------------TypeNarrowKlass----------------------------------
roland@4159 1339 // A compressed reference to klass pointer. This type wraps around a
roland@4159 1340 // preexisting TypeKlassPtr and forwards most of it's operations to
roland@4159 1341 // the underlying type.
roland@4159 1342 class TypeNarrowKlass : public TypeNarrowPtr {
roland@4159 1343 protected:
roland@4159 1344 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
coleenp@548 1345 }
coleenp@548 1346
roland@4159 1347 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
roland@4159 1348 return t->isa_narrowklass();
roland@4159 1349 }
roland@4159 1350
roland@4159 1351 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
roland@4159 1352 return t->is_narrowklass();
roland@4159 1353 }
roland@4159 1354
roland@4159 1355 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
roland@4159 1356 return new TypeNarrowKlass(t);
roland@4159 1357 }
roland@4159 1358
roland@4159 1359 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
roland@4159 1360 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
roland@4159 1361 }
roland@4159 1362
roland@4159 1363 public:
roland@4159 1364 static const TypeNarrowKlass *make( const TypePtr* type);
roland@4159 1365
roland@4159 1366 // static const TypeNarrowKlass *BOTTOM;
roland@4159 1367 static const TypeNarrowKlass *NULL_PTR;
coleenp@548 1368
coleenp@548 1369 #ifndef PRODUCT
coleenp@548 1370 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
coleenp@548 1371 #endif
coleenp@548 1372 };
coleenp@548 1373
duke@435 1374 //------------------------------TypeFunc---------------------------------------
duke@435 1375 // Class of Array Types
duke@435 1376 class TypeFunc : public Type {
duke@435 1377 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {}
duke@435 1378 virtual bool eq( const Type *t ) const;
duke@435 1379 virtual int hash() const; // Type specific hashing
duke@435 1380 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 1381 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 1382 public:
duke@435 1383 // Constants are shared among ADLC and VM
duke@435 1384 enum { Control = AdlcVMDeps::Control,
duke@435 1385 I_O = AdlcVMDeps::I_O,
duke@435 1386 Memory = AdlcVMDeps::Memory,
duke@435 1387 FramePtr = AdlcVMDeps::FramePtr,
duke@435 1388 ReturnAdr = AdlcVMDeps::ReturnAdr,
duke@435 1389 Parms = AdlcVMDeps::Parms
duke@435 1390 };
duke@435 1391
duke@435 1392 const TypeTuple* const _domain; // Domain of inputs
duke@435 1393 const TypeTuple* const _range; // Range of results
duke@435 1394
duke@435 1395 // Accessors:
duke@435 1396 const TypeTuple* domain() const { return _domain; }
duke@435 1397 const TypeTuple* range() const { return _range; }
duke@435 1398
duke@435 1399 static const TypeFunc *make(ciMethod* method);
duke@435 1400 static const TypeFunc *make(ciSignature signature, const Type* extra);
duke@435 1401 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
duke@435 1402
duke@435 1403 virtual const Type *xmeet( const Type *t ) const;
duke@435 1404 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1405
duke@435 1406 BasicType return_type() const;
duke@435 1407
duke@435 1408 #ifndef PRODUCT
duke@435 1409 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1410 #endif
duke@435 1411 // Convenience common pre-built types.
duke@435 1412 };
duke@435 1413
duke@435 1414 //------------------------------accessors--------------------------------------
kvn@598 1415 inline bool Type::is_ptr_to_narrowoop() const {
kvn@598 1416 #ifdef _LP64
kvn@598 1417 return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
kvn@598 1418 #else
kvn@598 1419 return false;
kvn@598 1420 #endif
kvn@598 1421 }
kvn@598 1422
roland@4159 1423 inline bool Type::is_ptr_to_narrowklass() const {
roland@4159 1424 #ifdef _LP64
roland@4159 1425 return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
roland@4159 1426 #else
roland@4159 1427 return false;
roland@4159 1428 #endif
roland@4159 1429 }
roland@4159 1430
duke@435 1431 inline float Type::getf() const {
duke@435 1432 assert( _base == FloatCon, "Not a FloatCon" );
duke@435 1433 return ((TypeF*)this)->_f;
duke@435 1434 }
duke@435 1435
duke@435 1436 inline double Type::getd() const {
duke@435 1437 assert( _base == DoubleCon, "Not a DoubleCon" );
duke@435 1438 return ((TypeD*)this)->_d;
duke@435 1439 }
duke@435 1440
duke@435 1441 inline const TypeInt *Type::is_int() const {
duke@435 1442 assert( _base == Int, "Not an Int" );
duke@435 1443 return (TypeInt*)this;
duke@435 1444 }
duke@435 1445
duke@435 1446 inline const TypeInt *Type::isa_int() const {
duke@435 1447 return ( _base == Int ? (TypeInt*)this : NULL);
duke@435 1448 }
duke@435 1449
duke@435 1450 inline const TypeLong *Type::is_long() const {
duke@435 1451 assert( _base == Long, "Not a Long" );
duke@435 1452 return (TypeLong*)this;
duke@435 1453 }
duke@435 1454
duke@435 1455 inline const TypeLong *Type::isa_long() const {
duke@435 1456 return ( _base == Long ? (TypeLong*)this : NULL);
duke@435 1457 }
duke@435 1458
twisti@4313 1459 inline const TypeF *Type::isa_float() const {
twisti@4313 1460 return ((_base == FloatTop ||
twisti@4313 1461 _base == FloatCon ||
twisti@4313 1462 _base == FloatBot) ? (TypeF*)this : NULL);
twisti@4313 1463 }
twisti@4313 1464
twisti@4313 1465 inline const TypeF *Type::is_float_constant() const {
twisti@4313 1466 assert( _base == FloatCon, "Not a Float" );
twisti@4313 1467 return (TypeF*)this;
twisti@4313 1468 }
twisti@4313 1469
twisti@4313 1470 inline const TypeF *Type::isa_float_constant() const {
twisti@4313 1471 return ( _base == FloatCon ? (TypeF*)this : NULL);
twisti@4313 1472 }
twisti@4313 1473
twisti@4313 1474 inline const TypeD *Type::isa_double() const {
twisti@4313 1475 return ((_base == DoubleTop ||
twisti@4313 1476 _base == DoubleCon ||
twisti@4313 1477 _base == DoubleBot) ? (TypeD*)this : NULL);
twisti@4313 1478 }
twisti@4313 1479
twisti@4313 1480 inline const TypeD *Type::is_double_constant() const {
twisti@4313 1481 assert( _base == DoubleCon, "Not a Double" );
twisti@4313 1482 return (TypeD*)this;
twisti@4313 1483 }
twisti@4313 1484
twisti@4313 1485 inline const TypeD *Type::isa_double_constant() const {
twisti@4313 1486 return ( _base == DoubleCon ? (TypeD*)this : NULL);
twisti@4313 1487 }
twisti@4313 1488
duke@435 1489 inline const TypeTuple *Type::is_tuple() const {
duke@435 1490 assert( _base == Tuple, "Not a Tuple" );
duke@435 1491 return (TypeTuple*)this;
duke@435 1492 }
duke@435 1493
duke@435 1494 inline const TypeAry *Type::is_ary() const {
duke@435 1495 assert( _base == Array , "Not an Array" );
duke@435 1496 return (TypeAry*)this;
duke@435 1497 }
duke@435 1498
kvn@3882 1499 inline const TypeVect *Type::is_vect() const {
kvn@3882 1500 assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
kvn@3882 1501 return (TypeVect*)this;
kvn@3882 1502 }
kvn@3882 1503
kvn@3882 1504 inline const TypeVect *Type::isa_vect() const {
kvn@3882 1505 return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
kvn@3882 1506 }
kvn@3882 1507
duke@435 1508 inline const TypePtr *Type::is_ptr() const {
duke@435 1509 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
duke@435 1510 assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
duke@435 1511 return (TypePtr*)this;
duke@435 1512 }
duke@435 1513
duke@435 1514 inline const TypePtr *Type::isa_ptr() const {
duke@435 1515 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
duke@435 1516 return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
duke@435 1517 }
duke@435 1518
duke@435 1519 inline const TypeOopPtr *Type::is_oopptr() const {
duke@435 1520 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@4037 1521 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
duke@435 1522 return (TypeOopPtr*)this;
duke@435 1523 }
duke@435 1524
duke@435 1525 inline const TypeOopPtr *Type::isa_oopptr() const {
duke@435 1526 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@4037 1527 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
duke@435 1528 }
duke@435 1529
coleenp@548 1530 inline const TypeRawPtr *Type::isa_rawptr() const {
coleenp@548 1531 return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
coleenp@548 1532 }
coleenp@548 1533
duke@435 1534 inline const TypeRawPtr *Type::is_rawptr() const {
duke@435 1535 assert( _base == RawPtr, "Not a raw pointer" );
duke@435 1536 return (TypeRawPtr*)this;
duke@435 1537 }
duke@435 1538
duke@435 1539 inline const TypeInstPtr *Type::isa_instptr() const {
duke@435 1540 return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
duke@435 1541 }
duke@435 1542
duke@435 1543 inline const TypeInstPtr *Type::is_instptr() const {
duke@435 1544 assert( _base == InstPtr, "Not an object pointer" );
duke@435 1545 return (TypeInstPtr*)this;
duke@435 1546 }
duke@435 1547
duke@435 1548 inline const TypeAryPtr *Type::isa_aryptr() const {
duke@435 1549 return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
duke@435 1550 }
duke@435 1551
duke@435 1552 inline const TypeAryPtr *Type::is_aryptr() const {
duke@435 1553 assert( _base == AryPtr, "Not an array pointer" );
duke@435 1554 return (TypeAryPtr*)this;
duke@435 1555 }
duke@435 1556
coleenp@548 1557 inline const TypeNarrowOop *Type::is_narrowoop() const {
coleenp@548 1558 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@548 1559 assert(_base == NarrowOop, "Not a narrow oop" ) ;
coleenp@548 1560 return (TypeNarrowOop*)this;
coleenp@548 1561 }
coleenp@548 1562
coleenp@548 1563 inline const TypeNarrowOop *Type::isa_narrowoop() const {
coleenp@548 1564 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@548 1565 return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
coleenp@548 1566 }
coleenp@548 1567
roland@4159 1568 inline const TypeNarrowKlass *Type::is_narrowklass() const {
roland@4159 1569 assert(_base == NarrowKlass, "Not a narrow oop" ) ;
roland@4159 1570 return (TypeNarrowKlass*)this;
roland@4159 1571 }
roland@4159 1572
roland@4159 1573 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
roland@4159 1574 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
roland@4159 1575 }
roland@4159 1576
coleenp@4037 1577 inline const TypeMetadataPtr *Type::is_metadataptr() const {
coleenp@4037 1578 // MetadataPtr is the first and CPCachePtr the last
coleenp@4037 1579 assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
coleenp@4037 1580 return (TypeMetadataPtr*)this;
coleenp@4037 1581 }
coleenp@4037 1582
coleenp@4037 1583 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
coleenp@4037 1584 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
coleenp@4037 1585 }
coleenp@4037 1586
duke@435 1587 inline const TypeKlassPtr *Type::isa_klassptr() const {
duke@435 1588 return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
duke@435 1589 }
duke@435 1590
duke@435 1591 inline const TypeKlassPtr *Type::is_klassptr() const {
duke@435 1592 assert( _base == KlassPtr, "Not a klass pointer" );
duke@435 1593 return (TypeKlassPtr*)this;
duke@435 1594 }
duke@435 1595
kvn@656 1596 inline const TypePtr* Type::make_ptr() const {
never@1262 1597 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
roland@4159 1598 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
roland@4159 1599 (isa_ptr() ? is_ptr() : NULL));
kvn@656 1600 }
kvn@656 1601
never@1262 1602 inline const TypeOopPtr* Type::make_oopptr() const {
never@1262 1603 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
never@1262 1604 }
never@1262 1605
kvn@656 1606 inline const TypeNarrowOop* Type::make_narrowoop() const {
kvn@656 1607 return (_base == NarrowOop) ? is_narrowoop() :
kvn@656 1608 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
kvn@656 1609 }
kvn@656 1610
roland@4159 1611 inline const TypeNarrowKlass* Type::make_narrowklass() const {
roland@4159 1612 return (_base == NarrowKlass) ? is_narrowklass() :
roland@4159 1613 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
roland@4159 1614 }
roland@4159 1615
duke@435 1616 inline bool Type::is_floatingpoint() const {
duke@435 1617 if( (_base == FloatCon) || (_base == FloatBot) ||
duke@435 1618 (_base == DoubleCon) || (_base == DoubleBot) )
duke@435 1619 return true;
duke@435 1620 return false;
duke@435 1621 }
duke@435 1622
kvn@5110 1623 inline bool Type::is_ptr_to_boxing_obj() const {
kvn@5110 1624 const TypeInstPtr* tp = isa_instptr();
kvn@5110 1625 return (tp != NULL) && (tp->offset() == 0) &&
kvn@5110 1626 tp->klass()->is_instance_klass() &&
kvn@5110 1627 tp->klass()->as_instance_klass()->is_box_klass();
kvn@5110 1628 }
kvn@5110 1629
duke@435 1630
duke@435 1631 // ===============================================================
duke@435 1632 // Things that need to be 64-bits in the 64-bit build but
duke@435 1633 // 32-bits in the 32-bit build. Done this way to get full
duke@435 1634 // optimization AND strong typing.
duke@435 1635 #ifdef _LP64
duke@435 1636
duke@435 1637 // For type queries and asserts
duke@435 1638 #define is_intptr_t is_long
duke@435 1639 #define isa_intptr_t isa_long
duke@435 1640 #define find_intptr_t_type find_long_type
duke@435 1641 #define find_intptr_t_con find_long_con
duke@435 1642 #define TypeX TypeLong
duke@435 1643 #define Type_X Type::Long
duke@435 1644 #define TypeX_X TypeLong::LONG
duke@435 1645 #define TypeX_ZERO TypeLong::ZERO
duke@435 1646 // For 'ideal_reg' machine registers
duke@435 1647 #define Op_RegX Op_RegL
duke@435 1648 // For phase->intcon variants
duke@435 1649 #define MakeConX longcon
duke@435 1650 #define ConXNode ConLNode
duke@435 1651 // For array index arithmetic
duke@435 1652 #define MulXNode MulLNode
duke@435 1653 #define AndXNode AndLNode
duke@435 1654 #define OrXNode OrLNode
duke@435 1655 #define CmpXNode CmpLNode
duke@435 1656 #define SubXNode SubLNode
duke@435 1657 #define LShiftXNode LShiftLNode
duke@435 1658 // For object size computation:
duke@435 1659 #define AddXNode AddLNode
never@452 1660 #define RShiftXNode RShiftLNode
duke@435 1661 // For card marks and hashcodes
duke@435 1662 #define URShiftXNode URShiftLNode
kvn@855 1663 // UseOptoBiasInlining
kvn@855 1664 #define XorXNode XorLNode
kvn@855 1665 #define StoreXConditionalNode StoreLConditionalNode
duke@435 1666 // Opcodes
duke@435 1667 #define Op_LShiftX Op_LShiftL
duke@435 1668 #define Op_AndX Op_AndL
duke@435 1669 #define Op_AddX Op_AddL
duke@435 1670 #define Op_SubX Op_SubL
kvn@1286 1671 #define Op_XorX Op_XorL
kvn@1286 1672 #define Op_URShiftX Op_URShiftL
duke@435 1673 // conversions
duke@435 1674 #define ConvI2X(x) ConvI2L(x)
duke@435 1675 #define ConvL2X(x) (x)
duke@435 1676 #define ConvX2I(x) ConvL2I(x)
duke@435 1677 #define ConvX2L(x) (x)
duke@435 1678
duke@435 1679 #else
duke@435 1680
duke@435 1681 // For type queries and asserts
duke@435 1682 #define is_intptr_t is_int
duke@435 1683 #define isa_intptr_t isa_int
duke@435 1684 #define find_intptr_t_type find_int_type
duke@435 1685 #define find_intptr_t_con find_int_con
duke@435 1686 #define TypeX TypeInt
duke@435 1687 #define Type_X Type::Int
duke@435 1688 #define TypeX_X TypeInt::INT
duke@435 1689 #define TypeX_ZERO TypeInt::ZERO
duke@435 1690 // For 'ideal_reg' machine registers
duke@435 1691 #define Op_RegX Op_RegI
duke@435 1692 // For phase->intcon variants
duke@435 1693 #define MakeConX intcon
duke@435 1694 #define ConXNode ConINode
duke@435 1695 // For array index arithmetic
duke@435 1696 #define MulXNode MulINode
duke@435 1697 #define AndXNode AndINode
duke@435 1698 #define OrXNode OrINode
duke@435 1699 #define CmpXNode CmpINode
duke@435 1700 #define SubXNode SubINode
duke@435 1701 #define LShiftXNode LShiftINode
duke@435 1702 // For object size computation:
duke@435 1703 #define AddXNode AddINode
never@452 1704 #define RShiftXNode RShiftINode
duke@435 1705 // For card marks and hashcodes
duke@435 1706 #define URShiftXNode URShiftINode
kvn@855 1707 // UseOptoBiasInlining
kvn@855 1708 #define XorXNode XorINode
kvn@855 1709 #define StoreXConditionalNode StoreIConditionalNode
duke@435 1710 // Opcodes
duke@435 1711 #define Op_LShiftX Op_LShiftI
duke@435 1712 #define Op_AndX Op_AndI
duke@435 1713 #define Op_AddX Op_AddI
duke@435 1714 #define Op_SubX Op_SubI
kvn@1286 1715 #define Op_XorX Op_XorI
kvn@1286 1716 #define Op_URShiftX Op_URShiftI
duke@435 1717 // conversions
duke@435 1718 #define ConvI2X(x) (x)
duke@435 1719 #define ConvL2X(x) ConvL2I(x)
duke@435 1720 #define ConvX2I(x) (x)
duke@435 1721 #define ConvX2L(x) ConvI2L(x)
duke@435 1722
duke@435 1723 #endif
stefank@2314 1724
stefank@2314 1725 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial