src/share/vm/c1/c1_LIRGenerator.cpp

Tue, 03 Aug 2010 08:13:38 -0400

author
bobv
date
Tue, 03 Aug 2010 08:13:38 -0400
changeset 2036
126ea7725993
parent 1939
b812ff5abc73
child 2138
d5d065957597
permissions
-rw-r--r--

6953477: Increase portability and flexibility of building Hotspot
Summary: A collection of portability improvements including shared code support for PPC, ARM platforms, software floating point, cross compilation support and improvements in error crash detail.
Reviewed-by: phh, never, coleenp, dholmes

     1 /*
     2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRGenerator.cpp.incl"
    28 #ifdef ASSERT
    29 #define __ gen()->lir(__FILE__, __LINE__)->
    30 #else
    31 #define __ gen()->lir()->
    32 #endif
    34 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
    35 #ifdef ARM
    36 #define PATCHED_ADDR  (204)
    37 #else
    38 #define PATCHED_ADDR  (max_jint)
    39 #endif
    41 void PhiResolverState::reset(int max_vregs) {
    42   // Initialize array sizes
    43   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    44   _virtual_operands.trunc_to(0);
    45   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    46   _other_operands.trunc_to(0);
    47   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    48   _vreg_table.trunc_to(0);
    49 }
    53 //--------------------------------------------------------------
    54 // PhiResolver
    56 // Resolves cycles:
    57 //
    58 //  r1 := r2  becomes  temp := r1
    59 //  r2 := r1           r1 := r2
    60 //                     r2 := temp
    61 // and orders moves:
    62 //
    63 //  r2 := r3  becomes  r1 := r2
    64 //  r1 := r2           r2 := r3
    66 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    67  : _gen(gen)
    68  , _state(gen->resolver_state())
    69  , _temp(LIR_OprFact::illegalOpr)
    70 {
    71   // reinitialize the shared state arrays
    72   _state.reset(max_vregs);
    73 }
    76 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    77   assert(src->is_valid(), "");
    78   assert(dest->is_valid(), "");
    79   __ move(src, dest);
    80 }
    83 void PhiResolver::move_temp_to(LIR_Opr dest) {
    84   assert(_temp->is_valid(), "");
    85   emit_move(_temp, dest);
    86   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
    87 }
    90 void PhiResolver::move_to_temp(LIR_Opr src) {
    91   assert(_temp->is_illegal(), "");
    92   _temp = _gen->new_register(src->type());
    93   emit_move(src, _temp);
    94 }
    97 // Traverse assignment graph in depth first order and generate moves in post order
    98 // ie. two assignments: b := c, a := b start with node c:
    99 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
   100 // Generates moves in this order: move b to a and move c to b
   101 // ie. cycle a := b, b := a start with node a
   102 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
   103 // Generates moves in this order: move b to temp, move a to b, move temp to a
   104 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
   105   if (!dest->visited()) {
   106     dest->set_visited();
   107     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   108       move(dest, dest->destination_at(i));
   109     }
   110   } else if (!dest->start_node()) {
   111     // cylce in graph detected
   112     assert(_loop == NULL, "only one loop valid!");
   113     _loop = dest;
   114     move_to_temp(src->operand());
   115     return;
   116   } // else dest is a start node
   118   if (!dest->assigned()) {
   119     if (_loop == dest) {
   120       move_temp_to(dest->operand());
   121       dest->set_assigned();
   122     } else if (src != NULL) {
   123       emit_move(src->operand(), dest->operand());
   124       dest->set_assigned();
   125     }
   126   }
   127 }
   130 PhiResolver::~PhiResolver() {
   131   int i;
   132   // resolve any cycles in moves from and to virtual registers
   133   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   134     ResolveNode* node = virtual_operands()[i];
   135     if (!node->visited()) {
   136       _loop = NULL;
   137       move(NULL, node);
   138       node->set_start_node();
   139       assert(_temp->is_illegal(), "move_temp_to() call missing");
   140     }
   141   }
   143   // generate move for move from non virtual register to abitrary destination
   144   for (i = other_operands().length() - 1; i >= 0; i --) {
   145     ResolveNode* node = other_operands()[i];
   146     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   147       emit_move(node->operand(), node->destination_at(j)->operand());
   148     }
   149   }
   150 }
   153 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   154   ResolveNode* node;
   155   if (opr->is_virtual()) {
   156     int vreg_num = opr->vreg_number();
   157     node = vreg_table().at_grow(vreg_num, NULL);
   158     assert(node == NULL || node->operand() == opr, "");
   159     if (node == NULL) {
   160       node = new ResolveNode(opr);
   161       vreg_table()[vreg_num] = node;
   162     }
   163     // Make sure that all virtual operands show up in the list when
   164     // they are used as the source of a move.
   165     if (source && !virtual_operands().contains(node)) {
   166       virtual_operands().append(node);
   167     }
   168   } else {
   169     assert(source, "");
   170     node = new ResolveNode(opr);
   171     other_operands().append(node);
   172   }
   173   return node;
   174 }
   177 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   178   assert(dest->is_virtual(), "");
   179   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   180   assert(src->is_valid(), "");
   181   assert(dest->is_valid(), "");
   182   ResolveNode* source = source_node(src);
   183   source->append(destination_node(dest));
   184 }
   187 //--------------------------------------------------------------
   188 // LIRItem
   190 void LIRItem::set_result(LIR_Opr opr) {
   191   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   192   value()->set_operand(opr);
   194   if (opr->is_virtual()) {
   195     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   196   }
   198   _result = opr;
   199 }
   201 void LIRItem::load_item() {
   202   if (result()->is_illegal()) {
   203     // update the items result
   204     _result = value()->operand();
   205   }
   206   if (!result()->is_register()) {
   207     LIR_Opr reg = _gen->new_register(value()->type());
   208     __ move(result(), reg);
   209     if (result()->is_constant()) {
   210       _result = reg;
   211     } else {
   212       set_result(reg);
   213     }
   214   }
   215 }
   218 void LIRItem::load_for_store(BasicType type) {
   219   if (_gen->can_store_as_constant(value(), type)) {
   220     _result = value()->operand();
   221     if (!_result->is_constant()) {
   222       _result = LIR_OprFact::value_type(value()->type());
   223     }
   224   } else if (type == T_BYTE || type == T_BOOLEAN) {
   225     load_byte_item();
   226   } else {
   227     load_item();
   228   }
   229 }
   231 void LIRItem::load_item_force(LIR_Opr reg) {
   232   LIR_Opr r = result();
   233   if (r != reg) {
   234 #if !defined(ARM) && !defined(E500V2)
   235     if (r->type() != reg->type()) {
   236       // moves between different types need an intervening spill slot
   237       r = _gen->force_to_spill(r, reg->type());
   238     }
   239 #endif
   240     __ move(r, reg);
   241     _result = reg;
   242   }
   243 }
   245 ciObject* LIRItem::get_jobject_constant() const {
   246   ObjectType* oc = type()->as_ObjectType();
   247   if (oc) {
   248     return oc->constant_value();
   249   }
   250   return NULL;
   251 }
   254 jint LIRItem::get_jint_constant() const {
   255   assert(is_constant() && value() != NULL, "");
   256   assert(type()->as_IntConstant() != NULL, "type check");
   257   return type()->as_IntConstant()->value();
   258 }
   261 jint LIRItem::get_address_constant() const {
   262   assert(is_constant() && value() != NULL, "");
   263   assert(type()->as_AddressConstant() != NULL, "type check");
   264   return type()->as_AddressConstant()->value();
   265 }
   268 jfloat LIRItem::get_jfloat_constant() const {
   269   assert(is_constant() && value() != NULL, "");
   270   assert(type()->as_FloatConstant() != NULL, "type check");
   271   return type()->as_FloatConstant()->value();
   272 }
   275 jdouble LIRItem::get_jdouble_constant() const {
   276   assert(is_constant() && value() != NULL, "");
   277   assert(type()->as_DoubleConstant() != NULL, "type check");
   278   return type()->as_DoubleConstant()->value();
   279 }
   282 jlong LIRItem::get_jlong_constant() const {
   283   assert(is_constant() && value() != NULL, "");
   284   assert(type()->as_LongConstant() != NULL, "type check");
   285   return type()->as_LongConstant()->value();
   286 }
   290 //--------------------------------------------------------------
   293 void LIRGenerator::init() {
   294   _bs = Universe::heap()->barrier_set();
   295 }
   298 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   299 #ifndef PRODUCT
   300   if (PrintIRWithLIR) {
   301     block->print();
   302   }
   303 #endif
   305   // set up the list of LIR instructions
   306   assert(block->lir() == NULL, "LIR list already computed for this block");
   307   _lir = new LIR_List(compilation(), block);
   308   block->set_lir(_lir);
   310   __ branch_destination(block->label());
   312   if (LIRTraceExecution &&
   313       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   314       !block->is_set(BlockBegin::exception_entry_flag)) {
   315     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   316     trace_block_entry(block);
   317   }
   318 }
   321 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   322 #ifndef PRODUCT
   323   if (PrintIRWithLIR) {
   324     tty->cr();
   325   }
   326 #endif
   328   // LIR_Opr for unpinned constants shouldn't be referenced by other
   329   // blocks so clear them out after processing the block.
   330   for (int i = 0; i < _unpinned_constants.length(); i++) {
   331     _unpinned_constants.at(i)->clear_operand();
   332   }
   333   _unpinned_constants.trunc_to(0);
   335   // clear our any registers for other local constants
   336   _constants.trunc_to(0);
   337   _reg_for_constants.trunc_to(0);
   338 }
   341 void LIRGenerator::block_do(BlockBegin* block) {
   342   CHECK_BAILOUT();
   344   block_do_prolog(block);
   345   set_block(block);
   347   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   348     if (instr->is_pinned()) do_root(instr);
   349   }
   351   set_block(NULL);
   352   block_do_epilog(block);
   353 }
   356 //-------------------------LIRGenerator-----------------------------
   358 // This is where the tree-walk starts; instr must be root;
   359 void LIRGenerator::do_root(Value instr) {
   360   CHECK_BAILOUT();
   362   InstructionMark im(compilation(), instr);
   364   assert(instr->is_pinned(), "use only with roots");
   365   assert(instr->subst() == instr, "shouldn't have missed substitution");
   367   instr->visit(this);
   369   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   370          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   371 }
   374 // This is called for each node in tree; the walk stops if a root is reached
   375 void LIRGenerator::walk(Value instr) {
   376   InstructionMark im(compilation(), instr);
   377   //stop walk when encounter a root
   378   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   379     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   380   } else {
   381     assert(instr->subst() == instr, "shouldn't have missed substitution");
   382     instr->visit(this);
   383     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   384   }
   385 }
   388 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   389   int index;
   390   Value value;
   391   for_each_stack_value(state, index, value) {
   392     assert(value->subst() == value, "missed substition");
   393     if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   394       walk(value);
   395       assert(value->operand()->is_valid(), "must be evaluated now");
   396     }
   397   }
   398   ValueStack* s = state;
   399   int bci = x->bci();
   400   for_each_state(s) {
   401     IRScope* scope = s->scope();
   402     ciMethod* method = scope->method();
   404     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   405     if (bci == SynchronizationEntryBCI) {
   406       if (x->as_ExceptionObject() || x->as_Throw()) {
   407         // all locals are dead on exit from the synthetic unlocker
   408         liveness.clear();
   409       } else {
   410         assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
   411       }
   412     }
   413     if (!liveness.is_valid()) {
   414       // Degenerate or breakpointed method.
   415       bailout("Degenerate or breakpointed method");
   416     } else {
   417       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   418       for_each_local_value(s, index, value) {
   419         assert(value->subst() == value, "missed substition");
   420         if (liveness.at(index) && !value->type()->is_illegal()) {
   421           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   422             walk(value);
   423             assert(value->operand()->is_valid(), "must be evaluated now");
   424           }
   425         } else {
   426           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   427           s->invalidate_local(index);
   428         }
   429       }
   430     }
   431     bci = scope->caller_bci();
   432   }
   434   return new CodeEmitInfo(x->bci(), state, ignore_xhandler ? NULL : x->exception_handlers());
   435 }
   438 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   439   return state_for(x, x->lock_stack());
   440 }
   443 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
   444   if (!obj->is_loaded() || PatchALot) {
   445     assert(info != NULL, "info must be set if class is not loaded");
   446     __ oop2reg_patch(NULL, r, info);
   447   } else {
   448     // no patching needed
   449     __ oop2reg(obj->constant_encoding(), r);
   450   }
   451 }
   454 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   455                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   456   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   457   if (index->is_constant()) {
   458     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   459                 index->as_jint(), null_check_info);
   460     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   461   } else {
   462     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   463                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   464     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   465   }
   466 }
   469 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   470   CodeStub* stub = new RangeCheckStub(info, index, true);
   471   if (index->is_constant()) {
   472     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   473     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   474   } else {
   475     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   476                 java_nio_Buffer::limit_offset(), T_INT, info);
   477     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   478   }
   479   __ move(index, result);
   480 }
   483 // increment a counter returning the incremented value
   484 LIR_Opr LIRGenerator::increment_and_return_counter(LIR_Opr base, int offset, int increment) {
   485   LIR_Address* counter = new LIR_Address(base, offset, T_INT);
   486   LIR_Opr result = new_register(T_INT);
   487   __ load(counter, result);
   488   __ add(result, LIR_OprFact::intConst(increment), result);
   489   __ store(result, counter);
   490   return result;
   491 }
   494 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   495   LIR_Opr result_op = result;
   496   LIR_Opr left_op   = left;
   497   LIR_Opr right_op  = right;
   499   if (TwoOperandLIRForm && left_op != result_op) {
   500     assert(right_op != result_op, "malformed");
   501     __ move(left_op, result_op);
   502     left_op = result_op;
   503   }
   505   switch(code) {
   506     case Bytecodes::_dadd:
   507     case Bytecodes::_fadd:
   508     case Bytecodes::_ladd:
   509     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   510     case Bytecodes::_fmul:
   511     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   513     case Bytecodes::_dmul:
   514       {
   515         if (is_strictfp) {
   516           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   517         } else {
   518           __ mul(left_op, right_op, result_op); break;
   519         }
   520       }
   521       break;
   523     case Bytecodes::_imul:
   524       {
   525         bool    did_strength_reduce = false;
   527         if (right->is_constant()) {
   528           int c = right->as_jint();
   529           if (is_power_of_2(c)) {
   530             // do not need tmp here
   531             __ shift_left(left_op, exact_log2(c), result_op);
   532             did_strength_reduce = true;
   533           } else {
   534             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   535           }
   536         }
   537         // we couldn't strength reduce so just emit the multiply
   538         if (!did_strength_reduce) {
   539           __ mul(left_op, right_op, result_op);
   540         }
   541       }
   542       break;
   544     case Bytecodes::_dsub:
   545     case Bytecodes::_fsub:
   546     case Bytecodes::_lsub:
   547     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   549     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   550     // ldiv and lrem are implemented with a direct runtime call
   552     case Bytecodes::_ddiv:
   553       {
   554         if (is_strictfp) {
   555           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   556         } else {
   557           __ div (left_op, right_op, result_op); break;
   558         }
   559       }
   560       break;
   562     case Bytecodes::_drem:
   563     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   565     default: ShouldNotReachHere();
   566   }
   567 }
   570 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   571   arithmetic_op(code, result, left, right, false, tmp);
   572 }
   575 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   576   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   577 }
   580 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   581   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   582 }
   585 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   586   if (TwoOperandLIRForm && value != result_op) {
   587     assert(count != result_op, "malformed");
   588     __ move(value, result_op);
   589     value = result_op;
   590   }
   592   assert(count->is_constant() || count->is_register(), "must be");
   593   switch(code) {
   594   case Bytecodes::_ishl:
   595   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   596   case Bytecodes::_ishr:
   597   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   598   case Bytecodes::_iushr:
   599   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   600   default: ShouldNotReachHere();
   601   }
   602 }
   605 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   606   if (TwoOperandLIRForm && left_op != result_op) {
   607     assert(right_op != result_op, "malformed");
   608     __ move(left_op, result_op);
   609     left_op = result_op;
   610   }
   612   switch(code) {
   613     case Bytecodes::_iand:
   614     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   616     case Bytecodes::_ior:
   617     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   619     case Bytecodes::_ixor:
   620     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   622     default: ShouldNotReachHere();
   623   }
   624 }
   627 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   628   if (!GenerateSynchronizationCode) return;
   629   // for slow path, use debug info for state after successful locking
   630   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   631   __ load_stack_address_monitor(monitor_no, lock);
   632   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   633   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   634 }
   637 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
   638   if (!GenerateSynchronizationCode) return;
   639   // setup registers
   640   LIR_Opr hdr = lock;
   641   lock = new_hdr;
   642   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   643   __ load_stack_address_monitor(monitor_no, lock);
   644   __ unlock_object(hdr, object, lock, scratch, slow_path);
   645 }
   648 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   649   jobject2reg_with_patching(klass_reg, klass, info);
   650   // If klass is not loaded we do not know if the klass has finalizers:
   651   if (UseFastNewInstance && klass->is_loaded()
   652       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   654     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   656     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   658     assert(klass->is_loaded(), "must be loaded");
   659     // allocate space for instance
   660     assert(klass->size_helper() >= 0, "illegal instance size");
   661     const int instance_size = align_object_size(klass->size_helper());
   662     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   663                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   664   } else {
   665     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   666     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   667     __ branch_destination(slow_path->continuation());
   668   }
   669 }
   672 static bool is_constant_zero(Instruction* inst) {
   673   IntConstant* c = inst->type()->as_IntConstant();
   674   if (c) {
   675     return (c->value() == 0);
   676   }
   677   return false;
   678 }
   681 static bool positive_constant(Instruction* inst) {
   682   IntConstant* c = inst->type()->as_IntConstant();
   683   if (c) {
   684     return (c->value() >= 0);
   685   }
   686   return false;
   687 }
   690 static ciArrayKlass* as_array_klass(ciType* type) {
   691   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   692     return (ciArrayKlass*)type;
   693   } else {
   694     return NULL;
   695   }
   696 }
   698 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   699   Instruction* src     = x->argument_at(0);
   700   Instruction* src_pos = x->argument_at(1);
   701   Instruction* dst     = x->argument_at(2);
   702   Instruction* dst_pos = x->argument_at(3);
   703   Instruction* length  = x->argument_at(4);
   705   // first try to identify the likely type of the arrays involved
   706   ciArrayKlass* expected_type = NULL;
   707   bool is_exact = false;
   708   {
   709     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   710     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   711     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   712     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   713     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   714       // the types exactly match so the type is fully known
   715       is_exact = true;
   716       expected_type = src_exact_type;
   717     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   718       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   719       ciArrayKlass* src_type = NULL;
   720       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   721         src_type = (ciArrayKlass*) src_exact_type;
   722       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   723         src_type = (ciArrayKlass*) src_declared_type;
   724       }
   725       if (src_type != NULL) {
   726         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   727           is_exact = true;
   728           expected_type = dst_type;
   729         }
   730       }
   731     }
   732     // at least pass along a good guess
   733     if (expected_type == NULL) expected_type = dst_exact_type;
   734     if (expected_type == NULL) expected_type = src_declared_type;
   735     if (expected_type == NULL) expected_type = dst_declared_type;
   736   }
   738   // if a probable array type has been identified, figure out if any
   739   // of the required checks for a fast case can be elided.
   740   int flags = LIR_OpArrayCopy::all_flags;
   741   if (expected_type != NULL) {
   742     // try to skip null checks
   743     if (src->as_NewArray() != NULL)
   744       flags &= ~LIR_OpArrayCopy::src_null_check;
   745     if (dst->as_NewArray() != NULL)
   746       flags &= ~LIR_OpArrayCopy::dst_null_check;
   748     // check from incoming constant values
   749     if (positive_constant(src_pos))
   750       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   751     if (positive_constant(dst_pos))
   752       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   753     if (positive_constant(length))
   754       flags &= ~LIR_OpArrayCopy::length_positive_check;
   756     // see if the range check can be elided, which might also imply
   757     // that src or dst is non-null.
   758     ArrayLength* al = length->as_ArrayLength();
   759     if (al != NULL) {
   760       if (al->array() == src) {
   761         // it's the length of the source array
   762         flags &= ~LIR_OpArrayCopy::length_positive_check;
   763         flags &= ~LIR_OpArrayCopy::src_null_check;
   764         if (is_constant_zero(src_pos))
   765           flags &= ~LIR_OpArrayCopy::src_range_check;
   766       }
   767       if (al->array() == dst) {
   768         // it's the length of the destination array
   769         flags &= ~LIR_OpArrayCopy::length_positive_check;
   770         flags &= ~LIR_OpArrayCopy::dst_null_check;
   771         if (is_constant_zero(dst_pos))
   772           flags &= ~LIR_OpArrayCopy::dst_range_check;
   773       }
   774     }
   775     if (is_exact) {
   776       flags &= ~LIR_OpArrayCopy::type_check;
   777     }
   778   }
   780   if (src == dst) {
   781     // moving within a single array so no type checks are needed
   782     if (flags & LIR_OpArrayCopy::type_check) {
   783       flags &= ~LIR_OpArrayCopy::type_check;
   784     }
   785   }
   786   *flagsp = flags;
   787   *expected_typep = (ciArrayKlass*)expected_type;
   788 }
   791 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   792   assert(opr->is_register(), "why spill if item is not register?");
   794   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   795     LIR_Opr result = new_register(T_FLOAT);
   796     set_vreg_flag(result, must_start_in_memory);
   797     assert(opr->is_register(), "only a register can be spilled");
   798     assert(opr->value_type()->is_float(), "rounding only for floats available");
   799     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   800     return result;
   801   }
   802   return opr;
   803 }
   806 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   807   assert(type2size[t] == type2size[value->type()], "size mismatch");
   808   if (!value->is_register()) {
   809     // force into a register
   810     LIR_Opr r = new_register(value->type());
   811     __ move(value, r);
   812     value = r;
   813   }
   815   // create a spill location
   816   LIR_Opr tmp = new_register(t);
   817   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   819   // move from register to spill
   820   __ move(value, tmp);
   821   return tmp;
   822 }
   825 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   826   if (if_instr->should_profile()) {
   827     ciMethod* method = if_instr->profiled_method();
   828     assert(method != NULL, "method should be set if branch is profiled");
   829     ciMethodData* md = method->method_data();
   830     if (md == NULL) {
   831       bailout("out of memory building methodDataOop");
   832       return;
   833     }
   834     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
   835     assert(data != NULL, "must have profiling data");
   836     assert(data->is_BranchData(), "need BranchData for two-way branches");
   837     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
   838     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
   839     LIR_Opr md_reg = new_register(T_OBJECT);
   840     __ move(LIR_OprFact::oopConst(md->constant_encoding()), md_reg);
   841     LIR_Opr data_offset_reg = new_register(T_INT);
   842     __ cmove(lir_cond(cond),
   843              LIR_OprFact::intConst(taken_count_offset),
   844              LIR_OprFact::intConst(not_taken_count_offset),
   845              data_offset_reg);
   846     LIR_Opr data_reg = new_register(T_INT);
   847     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT);
   848     __ move(LIR_OprFact::address(data_addr), data_reg);
   849     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
   850     // Use leal instead of add to avoid destroying condition codes on x86
   851     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
   852     __ move(data_reg, LIR_OprFact::address(data_addr));
   853   }
   854 }
   857 // Phi technique:
   858 // This is about passing live values from one basic block to the other.
   859 // In code generated with Java it is rather rare that more than one
   860 // value is on the stack from one basic block to the other.
   861 // We optimize our technique for efficient passing of one value
   862 // (of type long, int, double..) but it can be extended.
   863 // When entering or leaving a basic block, all registers and all spill
   864 // slots are release and empty. We use the released registers
   865 // and spill slots to pass the live values from one block
   866 // to the other. The topmost value, i.e., the value on TOS of expression
   867 // stack is passed in registers. All other values are stored in spilling
   868 // area. Every Phi has an index which designates its spill slot
   869 // At exit of a basic block, we fill the register(s) and spill slots.
   870 // At entry of a basic block, the block_prolog sets up the content of phi nodes
   871 // and locks necessary registers and spilling slots.
   874 // move current value to referenced phi function
   875 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
   876   Phi* phi = sux_val->as_Phi();
   877   // cur_val can be null without phi being null in conjunction with inlining
   878   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
   879     LIR_Opr operand = cur_val->operand();
   880     if (cur_val->operand()->is_illegal()) {
   881       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
   882              "these can be produced lazily");
   883       operand = operand_for_instruction(cur_val);
   884     }
   885     resolver->move(operand, operand_for_instruction(phi));
   886   }
   887 }
   890 // Moves all stack values into their PHI position
   891 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
   892   BlockBegin* bb = block();
   893   if (bb->number_of_sux() == 1) {
   894     BlockBegin* sux = bb->sux_at(0);
   895     assert(sux->number_of_preds() > 0, "invalid CFG");
   897     // a block with only one predecessor never has phi functions
   898     if (sux->number_of_preds() > 1) {
   899       int max_phis = cur_state->stack_size() + cur_state->locals_size();
   900       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
   902       ValueStack* sux_state = sux->state();
   903       Value sux_value;
   904       int index;
   906       for_each_stack_value(sux_state, index, sux_value) {
   907         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
   908       }
   910       // Inlining may cause the local state not to match up, so walk up
   911       // the caller state until we get to the same scope as the
   912       // successor and then start processing from there.
   913       while (cur_state->scope() != sux_state->scope()) {
   914         cur_state = cur_state->caller_state();
   915         assert(cur_state != NULL, "scopes don't match up");
   916       }
   918       for_each_local_value(sux_state, index, sux_value) {
   919         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
   920       }
   922       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
   923     }
   924   }
   925 }
   928 LIR_Opr LIRGenerator::new_register(BasicType type) {
   929   int vreg = _virtual_register_number;
   930   // add a little fudge factor for the bailout, since the bailout is
   931   // only checked periodically.  This gives a few extra registers to
   932   // hand out before we really run out, which helps us keep from
   933   // tripping over assertions.
   934   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
   935     bailout("out of virtual registers");
   936     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
   937       // wrap it around
   938       _virtual_register_number = LIR_OprDesc::vreg_base;
   939     }
   940   }
   941   _virtual_register_number += 1;
   942   if (type == T_ADDRESS) type = T_INT;
   943   return LIR_OprFact::virtual_register(vreg, type);
   944 }
   947 // Try to lock using register in hint
   948 LIR_Opr LIRGenerator::rlock(Value instr) {
   949   return new_register(instr->type());
   950 }
   953 // does an rlock and sets result
   954 LIR_Opr LIRGenerator::rlock_result(Value x) {
   955   LIR_Opr reg = rlock(x);
   956   set_result(x, reg);
   957   return reg;
   958 }
   961 // does an rlock and sets result
   962 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
   963   LIR_Opr reg;
   964   switch (type) {
   965   case T_BYTE:
   966   case T_BOOLEAN:
   967     reg = rlock_byte(type);
   968     break;
   969   default:
   970     reg = rlock(x);
   971     break;
   972   }
   974   set_result(x, reg);
   975   return reg;
   976 }
   979 //---------------------------------------------------------------------
   980 ciObject* LIRGenerator::get_jobject_constant(Value value) {
   981   ObjectType* oc = value->type()->as_ObjectType();
   982   if (oc) {
   983     return oc->constant_value();
   984   }
   985   return NULL;
   986 }
   989 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
   990   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
   991   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
   993   // no moves are created for phi functions at the begin of exception
   994   // handlers, so assign operands manually here
   995   for_each_phi_fun(block(), phi,
   996                    operand_for_instruction(phi));
   998   LIR_Opr thread_reg = getThreadPointer();
   999   __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1000           exceptionOopOpr());
  1001   __ move(LIR_OprFact::oopConst(NULL),
  1002           new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1003   __ move(LIR_OprFact::oopConst(NULL),
  1004           new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1006   LIR_Opr result = new_register(T_OBJECT);
  1007   __ move(exceptionOopOpr(), result);
  1008   set_result(x, result);
  1012 //----------------------------------------------------------------------
  1013 //----------------------------------------------------------------------
  1014 //----------------------------------------------------------------------
  1015 //----------------------------------------------------------------------
  1016 //                        visitor functions
  1017 //----------------------------------------------------------------------
  1018 //----------------------------------------------------------------------
  1019 //----------------------------------------------------------------------
  1020 //----------------------------------------------------------------------
  1022 void LIRGenerator::do_Phi(Phi* x) {
  1023   // phi functions are never visited directly
  1024   ShouldNotReachHere();
  1028 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1029 void LIRGenerator::do_Constant(Constant* x) {
  1030   if (x->state() != NULL) {
  1031     // Any constant with a ValueStack requires patching so emit the patch here
  1032     LIR_Opr reg = rlock_result(x);
  1033     CodeEmitInfo* info = state_for(x, x->state());
  1034     __ oop2reg_patch(NULL, reg, info);
  1035   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1036     if (!x->is_pinned()) {
  1037       // unpinned constants are handled specially so that they can be
  1038       // put into registers when they are used multiple times within a
  1039       // block.  After the block completes their operand will be
  1040       // cleared so that other blocks can't refer to that register.
  1041       set_result(x, load_constant(x));
  1042     } else {
  1043       LIR_Opr res = x->operand();
  1044       if (!res->is_valid()) {
  1045         res = LIR_OprFact::value_type(x->type());
  1047       if (res->is_constant()) {
  1048         LIR_Opr reg = rlock_result(x);
  1049         __ move(res, reg);
  1050       } else {
  1051         set_result(x, res);
  1054   } else {
  1055     set_result(x, LIR_OprFact::value_type(x->type()));
  1060 void LIRGenerator::do_Local(Local* x) {
  1061   // operand_for_instruction has the side effect of setting the result
  1062   // so there's no need to do it here.
  1063   operand_for_instruction(x);
  1067 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1068   Unimplemented();
  1072 void LIRGenerator::do_Return(Return* x) {
  1073   if (compilation()->env()->dtrace_method_probes()) {
  1074     BasicTypeList signature;
  1075     signature.append(T_INT);    // thread
  1076     signature.append(T_OBJECT); // methodOop
  1077     LIR_OprList* args = new LIR_OprList();
  1078     args->append(getThreadPointer());
  1079     LIR_Opr meth = new_register(T_OBJECT);
  1080     __ oop2reg(method()->constant_encoding(), meth);
  1081     args->append(meth);
  1082     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1085   if (x->type()->is_void()) {
  1086     __ return_op(LIR_OprFact::illegalOpr);
  1087   } else {
  1088     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1089     LIRItem result(x->result(), this);
  1091     result.load_item_force(reg);
  1092     __ return_op(result.result());
  1094   set_no_result(x);
  1098 // Example: object.getClass ()
  1099 void LIRGenerator::do_getClass(Intrinsic* x) {
  1100   assert(x->number_of_arguments() == 1, "wrong type");
  1102   LIRItem rcvr(x->argument_at(0), this);
  1103   rcvr.load_item();
  1104   LIR_Opr result = rlock_result(x);
  1106   // need to perform the null check on the rcvr
  1107   CodeEmitInfo* info = NULL;
  1108   if (x->needs_null_check()) {
  1109     info = state_for(x, x->state()->copy_locks());
  1111   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
  1112   __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
  1113                           klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
  1117 // Example: Thread.currentThread()
  1118 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1119   assert(x->number_of_arguments() == 0, "wrong type");
  1120   LIR_Opr reg = rlock_result(x);
  1121   __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1125 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1126   assert(x->number_of_arguments() == 1, "wrong type");
  1127   LIRItem receiver(x->argument_at(0), this);
  1129   receiver.load_item();
  1130   BasicTypeList signature;
  1131   signature.append(T_OBJECT); // receiver
  1132   LIR_OprList* args = new LIR_OprList();
  1133   args->append(receiver.result());
  1134   CodeEmitInfo* info = state_for(x, x->state());
  1135   call_runtime(&signature, args,
  1136                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1137                voidType, info);
  1139   set_no_result(x);
  1143 //------------------------local access--------------------------------------
  1145 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1146   if (x->operand()->is_illegal()) {
  1147     Constant* c = x->as_Constant();
  1148     if (c != NULL) {
  1149       x->set_operand(LIR_OprFact::value_type(c->type()));
  1150     } else {
  1151       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1152       // allocate a virtual register for this local or phi
  1153       x->set_operand(rlock(x));
  1154       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1157   return x->operand();
  1161 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1162   if (opr->is_virtual()) {
  1163     return instruction_for_vreg(opr->vreg_number());
  1165   return NULL;
  1169 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1170   if (reg_num < _instruction_for_operand.length()) {
  1171     return _instruction_for_operand.at(reg_num);
  1173   return NULL;
  1177 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1178   if (_vreg_flags.size_in_bits() == 0) {
  1179     BitMap2D temp(100, num_vreg_flags);
  1180     temp.clear();
  1181     _vreg_flags = temp;
  1183   _vreg_flags.at_put_grow(vreg_num, f, true);
  1186 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1187   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1188     return false;
  1190   return _vreg_flags.at(vreg_num, f);
  1194 // Block local constant handling.  This code is useful for keeping
  1195 // unpinned constants and constants which aren't exposed in the IR in
  1196 // registers.  Unpinned Constant instructions have their operands
  1197 // cleared when the block is finished so that other blocks can't end
  1198 // up referring to their registers.
  1200 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1201   assert(!x->is_pinned(), "only for unpinned constants");
  1202   _unpinned_constants.append(x);
  1203   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1207 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1208   BasicType t = c->type();
  1209   for (int i = 0; i < _constants.length(); i++) {
  1210     LIR_Const* other = _constants.at(i);
  1211     if (t == other->type()) {
  1212       switch (t) {
  1213       case T_INT:
  1214       case T_FLOAT:
  1215         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1216         break;
  1217       case T_LONG:
  1218       case T_DOUBLE:
  1219         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1220         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1221         break;
  1222       case T_OBJECT:
  1223         if (c->as_jobject() != other->as_jobject()) continue;
  1224         break;
  1226       return _reg_for_constants.at(i);
  1230   LIR_Opr result = new_register(t);
  1231   __ move((LIR_Opr)c, result);
  1232   _constants.append(c);
  1233   _reg_for_constants.append(result);
  1234   return result;
  1237 // Various barriers
  1239 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
  1240   // Do the pre-write barrier, if any.
  1241   switch (_bs->kind()) {
  1242 #ifndef SERIALGC
  1243     case BarrierSet::G1SATBCT:
  1244     case BarrierSet::G1SATBCTLogging:
  1245       G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
  1246       break;
  1247 #endif // SERIALGC
  1248     case BarrierSet::CardTableModRef:
  1249     case BarrierSet::CardTableExtension:
  1250       // No pre barriers
  1251       break;
  1252     case BarrierSet::ModRef:
  1253     case BarrierSet::Other:
  1254       // No pre barriers
  1255       break;
  1256     default      :
  1257       ShouldNotReachHere();
  1262 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1263   switch (_bs->kind()) {
  1264 #ifndef SERIALGC
  1265     case BarrierSet::G1SATBCT:
  1266     case BarrierSet::G1SATBCTLogging:
  1267       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1268       break;
  1269 #endif // SERIALGC
  1270     case BarrierSet::CardTableModRef:
  1271     case BarrierSet::CardTableExtension:
  1272       CardTableModRef_post_barrier(addr,  new_val);
  1273       break;
  1274     case BarrierSet::ModRef:
  1275     case BarrierSet::Other:
  1276       // No post barriers
  1277       break;
  1278     default      :
  1279       ShouldNotReachHere();
  1283 ////////////////////////////////////////////////////////////////////////
  1284 #ifndef SERIALGC
  1286 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
  1287   if (G1DisablePreBarrier) return;
  1289   // First we test whether marking is in progress.
  1290   BasicType flag_type;
  1291   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1292     flag_type = T_INT;
  1293   } else {
  1294     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1295               "Assumption");
  1296     flag_type = T_BYTE;
  1298   LIR_Opr thrd = getThreadPointer();
  1299   LIR_Address* mark_active_flag_addr =
  1300     new LIR_Address(thrd,
  1301                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1302                              PtrQueue::byte_offset_of_active()),
  1303                     flag_type);
  1304   // Read the marking-in-progress flag.
  1305   LIR_Opr flag_val = new_register(T_INT);
  1306   __ load(mark_active_flag_addr, flag_val);
  1308   LabelObj* start_store = new LabelObj();
  1310   LIR_PatchCode pre_val_patch_code =
  1311     patch ? lir_patch_normal : lir_patch_none;
  1313   LIR_Opr pre_val = new_register(T_OBJECT);
  1315   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1316   if (!addr_opr->is_address()) {
  1317     assert(addr_opr->is_register(), "must be");
  1318     addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1320   CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
  1321                                         info);
  1322   __ branch(lir_cond_notEqual, T_INT, slow);
  1323   __ branch_destination(slow->continuation());
  1326 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1327   if (G1DisablePostBarrier) return;
  1329   // If the "new_val" is a constant NULL, no barrier is necessary.
  1330   if (new_val->is_constant() &&
  1331       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1333   if (!new_val->is_register()) {
  1334     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1335     if (new_val->is_constant()) {
  1336       __ move(new_val, new_val_reg);
  1337     } else {
  1338       __ leal(new_val, new_val_reg);
  1340     new_val = new_val_reg;
  1342   assert(new_val->is_register(), "must be a register at this point");
  1344   if (addr->is_address()) {
  1345     LIR_Address* address = addr->as_address_ptr();
  1346     LIR_Opr ptr = new_register(T_OBJECT);
  1347     if (!address->index()->is_valid() && address->disp() == 0) {
  1348       __ move(address->base(), ptr);
  1349     } else {
  1350       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1351       __ leal(addr, ptr);
  1353     addr = ptr;
  1355   assert(addr->is_register(), "must be a register at this point");
  1357   LIR_Opr xor_res = new_pointer_register();
  1358   LIR_Opr xor_shift_res = new_pointer_register();
  1359   if (TwoOperandLIRForm ) {
  1360     __ move(addr, xor_res);
  1361     __ logical_xor(xor_res, new_val, xor_res);
  1362     __ move(xor_res, xor_shift_res);
  1363     __ unsigned_shift_right(xor_shift_res,
  1364                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1365                             xor_shift_res,
  1366                             LIR_OprDesc::illegalOpr());
  1367   } else {
  1368     __ logical_xor(addr, new_val, xor_res);
  1369     __ unsigned_shift_right(xor_res,
  1370                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1371                             xor_shift_res,
  1372                             LIR_OprDesc::illegalOpr());
  1375   if (!new_val->is_register()) {
  1376     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1377     __ leal(new_val, new_val_reg);
  1378     new_val = new_val_reg;
  1380   assert(new_val->is_register(), "must be a register at this point");
  1382   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1384   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1385   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1386   __ branch_destination(slow->continuation());
  1389 #endif // SERIALGC
  1390 ////////////////////////////////////////////////////////////////////////
  1392 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1394   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1395   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1396   if (addr->is_address()) {
  1397     LIR_Address* address = addr->as_address_ptr();
  1398     LIR_Opr ptr = new_register(T_OBJECT);
  1399     if (!address->index()->is_valid() && address->disp() == 0) {
  1400       __ move(address->base(), ptr);
  1401     } else {
  1402       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1403       __ leal(addr, ptr);
  1405     addr = ptr;
  1407   assert(addr->is_register(), "must be a register at this point");
  1409 #ifdef ARM
  1410   // TODO: ARM - move to platform-dependent code
  1411   LIR_Opr tmp = FrameMap::R14_opr;
  1412   if (VM_Version::supports_movw()) {
  1413     __ move((LIR_Opr)card_table_base, tmp);
  1414   } else {
  1415     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
  1418   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
  1419   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
  1420   if(((int)ct->byte_map_base & 0xff) == 0) {
  1421     __ move(tmp, card_addr);
  1422   } else {
  1423     LIR_Opr tmp_zero = new_register(T_INT);
  1424     __ move(LIR_OprFact::intConst(0), tmp_zero);
  1425     __ move(tmp_zero, card_addr);
  1427 #else // ARM
  1428   LIR_Opr tmp = new_pointer_register();
  1429   if (TwoOperandLIRForm) {
  1430     __ move(addr, tmp);
  1431     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1432   } else {
  1433     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1435   if (can_inline_as_constant(card_table_base)) {
  1436     __ move(LIR_OprFact::intConst(0),
  1437               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1438   } else {
  1439     __ move(LIR_OprFact::intConst(0),
  1440               new LIR_Address(tmp, load_constant(card_table_base),
  1441                               T_BYTE));
  1443 #endif // ARM
  1447 //------------------------field access--------------------------------------
  1449 // Comment copied form templateTable_i486.cpp
  1450 // ----------------------------------------------------------------------------
  1451 // Volatile variables demand their effects be made known to all CPU's in
  1452 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1453 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1454 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1455 // reorder volatile references, the hardware also must not reorder them).
  1456 //
  1457 // According to the new Java Memory Model (JMM):
  1458 // (1) All volatiles are serialized wrt to each other.
  1459 // ALSO reads & writes act as aquire & release, so:
  1460 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1461 // the read float up to before the read.  It's OK for non-volatile memory refs
  1462 // that happen before the volatile read to float down below it.
  1463 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1464 // that happen BEFORE the write float down to after the write.  It's OK for
  1465 // non-volatile memory refs that happen after the volatile write to float up
  1466 // before it.
  1467 //
  1468 // We only put in barriers around volatile refs (they are expensive), not
  1469 // _between_ memory refs (that would require us to track the flavor of the
  1470 // previous memory refs).  Requirements (2) and (3) require some barriers
  1471 // before volatile stores and after volatile loads.  These nearly cover
  1472 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1473 // case is placed after volatile-stores although it could just as well go
  1474 // before volatile-loads.
  1477 void LIRGenerator::do_StoreField(StoreField* x) {
  1478   bool needs_patching = x->needs_patching();
  1479   bool is_volatile = x->field()->is_volatile();
  1480   BasicType field_type = x->field_type();
  1481   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1483   CodeEmitInfo* info = NULL;
  1484   if (needs_patching) {
  1485     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1486     info = state_for(x, x->state_before());
  1487   } else if (x->needs_null_check()) {
  1488     NullCheck* nc = x->explicit_null_check();
  1489     if (nc == NULL) {
  1490       info = state_for(x, x->lock_stack());
  1491     } else {
  1492       info = state_for(nc);
  1497   LIRItem object(x->obj(), this);
  1498   LIRItem value(x->value(),  this);
  1500   object.load_item();
  1502   if (is_volatile || needs_patching) {
  1503     // load item if field is volatile (fewer special cases for volatiles)
  1504     // load item if field not initialized
  1505     // load item if field not constant
  1506     // because of code patching we cannot inline constants
  1507     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1508       value.load_byte_item();
  1509     } else  {
  1510       value.load_item();
  1512   } else {
  1513     value.load_for_store(field_type);
  1516   set_no_result(x);
  1518   if (PrintNotLoaded && needs_patching) {
  1519     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1520                   x->is_static() ?  "static" : "field", x->bci());
  1523   if (x->needs_null_check() &&
  1524       (needs_patching ||
  1525        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1526     // emit an explicit null check because the offset is too large
  1527     __ null_check(object.result(), new CodeEmitInfo(info));
  1530   LIR_Address* address;
  1531   if (needs_patching) {
  1532     // we need to patch the offset in the instruction so don't allow
  1533     // generate_address to try to be smart about emitting the -1.
  1534     // Otherwise the patching code won't know how to find the
  1535     // instruction to patch.
  1536     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1537   } else {
  1538     address = generate_address(object.result(), x->offset(), field_type);
  1541   if (is_volatile && os::is_MP()) {
  1542     __ membar_release();
  1545   if (is_oop) {
  1546     // Do the pre-write barrier, if any.
  1547     pre_barrier(LIR_OprFact::address(address),
  1548                 needs_patching,
  1549                 (info ? new CodeEmitInfo(info) : NULL));
  1552   if (is_volatile) {
  1553     assert(!needs_patching && x->is_loaded(),
  1554            "how do we know it's volatile if it's not loaded");
  1555     volatile_field_store(value.result(), address, info);
  1556   } else {
  1557     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1558     __ store(value.result(), address, info, patch_code);
  1561   if (is_oop) {
  1562     // Store to object so mark the card of the header
  1563     post_barrier(object.result(), value.result());
  1566   if (is_volatile && os::is_MP()) {
  1567     __ membar();
  1572 void LIRGenerator::do_LoadField(LoadField* x) {
  1573   bool needs_patching = x->needs_patching();
  1574   bool is_volatile = x->field()->is_volatile();
  1575   BasicType field_type = x->field_type();
  1577   CodeEmitInfo* info = NULL;
  1578   if (needs_patching) {
  1579     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1580     info = state_for(x, x->state_before());
  1581   } else if (x->needs_null_check()) {
  1582     NullCheck* nc = x->explicit_null_check();
  1583     if (nc == NULL) {
  1584       info = state_for(x, x->lock_stack());
  1585     } else {
  1586       info = state_for(nc);
  1590   LIRItem object(x->obj(), this);
  1592   object.load_item();
  1594   if (PrintNotLoaded && needs_patching) {
  1595     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1596                   x->is_static() ?  "static" : "field", x->bci());
  1599   if (x->needs_null_check() &&
  1600       (needs_patching ||
  1601        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1602     // emit an explicit null check because the offset is too large
  1603     __ null_check(object.result(), new CodeEmitInfo(info));
  1606   LIR_Opr reg = rlock_result(x, field_type);
  1607   LIR_Address* address;
  1608   if (needs_patching) {
  1609     // we need to patch the offset in the instruction so don't allow
  1610     // generate_address to try to be smart about emitting the -1.
  1611     // Otherwise the patching code won't know how to find the
  1612     // instruction to patch.
  1613     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1614   } else {
  1615     address = generate_address(object.result(), x->offset(), field_type);
  1618   if (is_volatile) {
  1619     assert(!needs_patching && x->is_loaded(),
  1620            "how do we know it's volatile if it's not loaded");
  1621     volatile_field_load(address, reg, info);
  1622   } else {
  1623     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1624     __ load(address, reg, info, patch_code);
  1627   if (is_volatile && os::is_MP()) {
  1628     __ membar_acquire();
  1633 //------------------------java.nio.Buffer.checkIndex------------------------
  1635 // int java.nio.Buffer.checkIndex(int)
  1636 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1637   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1638   // the buffer is non-null (because checkIndex is package-private and
  1639   // only called from within other methods in the buffer).
  1640   assert(x->number_of_arguments() == 2, "wrong type");
  1641   LIRItem buf  (x->argument_at(0), this);
  1642   LIRItem index(x->argument_at(1), this);
  1643   buf.load_item();
  1644   index.load_item();
  1646   LIR_Opr result = rlock_result(x);
  1647   if (GenerateRangeChecks) {
  1648     CodeEmitInfo* info = state_for(x);
  1649     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1650     if (index.result()->is_constant()) {
  1651       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1652       __ branch(lir_cond_belowEqual, T_INT, stub);
  1653     } else {
  1654       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  1655                   java_nio_Buffer::limit_offset(), T_INT, info);
  1656       __ branch(lir_cond_aboveEqual, T_INT, stub);
  1658     __ move(index.result(), result);
  1659   } else {
  1660     // Just load the index into the result register
  1661     __ move(index.result(), result);
  1666 //------------------------array access--------------------------------------
  1669 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  1670   LIRItem array(x->array(), this);
  1671   array.load_item();
  1672   LIR_Opr reg = rlock_result(x);
  1674   CodeEmitInfo* info = NULL;
  1675   if (x->needs_null_check()) {
  1676     NullCheck* nc = x->explicit_null_check();
  1677     if (nc == NULL) {
  1678       info = state_for(x);
  1679     } else {
  1680       info = state_for(nc);
  1683   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  1687 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  1688   bool use_length = x->length() != NULL;
  1689   LIRItem array(x->array(), this);
  1690   LIRItem index(x->index(), this);
  1691   LIRItem length(this);
  1692   bool needs_range_check = true;
  1694   if (use_length) {
  1695     needs_range_check = x->compute_needs_range_check();
  1696     if (needs_range_check) {
  1697       length.set_instruction(x->length());
  1698       length.load_item();
  1702   array.load_item();
  1703   if (index.is_constant() && can_inline_as_constant(x->index())) {
  1704     // let it be a constant
  1705     index.dont_load_item();
  1706   } else {
  1707     index.load_item();
  1710   CodeEmitInfo* range_check_info = state_for(x);
  1711   CodeEmitInfo* null_check_info = NULL;
  1712   if (x->needs_null_check()) {
  1713     NullCheck* nc = x->explicit_null_check();
  1714     if (nc != NULL) {
  1715       null_check_info = state_for(nc);
  1716     } else {
  1717       null_check_info = range_check_info;
  1721   // emit array address setup early so it schedules better
  1722   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  1724   if (GenerateRangeChecks && needs_range_check) {
  1725     if (use_length) {
  1726       // TODO: use a (modified) version of array_range_check that does not require a
  1727       //       constant length to be loaded to a register
  1728       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  1729       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  1730     } else {
  1731       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  1732       // The range check performs the null check, so clear it out for the load
  1733       null_check_info = NULL;
  1737   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  1741 void LIRGenerator::do_NullCheck(NullCheck* x) {
  1742   if (x->can_trap()) {
  1743     LIRItem value(x->obj(), this);
  1744     value.load_item();
  1745     CodeEmitInfo* info = state_for(x);
  1746     __ null_check(value.result(), info);
  1751 void LIRGenerator::do_Throw(Throw* x) {
  1752   LIRItem exception(x->exception(), this);
  1753   exception.load_item();
  1754   set_no_result(x);
  1755   LIR_Opr exception_opr = exception.result();
  1756   CodeEmitInfo* info = state_for(x, x->state());
  1758 #ifndef PRODUCT
  1759   if (PrintC1Statistics) {
  1760     increment_counter(Runtime1::throw_count_address());
  1762 #endif
  1764   // check if the instruction has an xhandler in any of the nested scopes
  1765   bool unwind = false;
  1766   if (info->exception_handlers()->length() == 0) {
  1767     // this throw is not inside an xhandler
  1768     unwind = true;
  1769   } else {
  1770     // get some idea of the throw type
  1771     bool type_is_exact = true;
  1772     ciType* throw_type = x->exception()->exact_type();
  1773     if (throw_type == NULL) {
  1774       type_is_exact = false;
  1775       throw_type = x->exception()->declared_type();
  1777     if (throw_type != NULL && throw_type->is_instance_klass()) {
  1778       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  1779       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  1783   // do null check before moving exception oop into fixed register
  1784   // to avoid a fixed interval with an oop during the null check.
  1785   // Use a copy of the CodeEmitInfo because debug information is
  1786   // different for null_check and throw.
  1787   if (GenerateCompilerNullChecks &&
  1788       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  1789     // if the exception object wasn't created using new then it might be null.
  1790     __ null_check(exception_opr, new CodeEmitInfo(info, true));
  1793   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  1794     // we need to go through the exception lookup path to get JVMTI
  1795     // notification done
  1796     unwind = false;
  1799   // move exception oop into fixed register
  1800   __ move(exception_opr, exceptionOopOpr());
  1802   if (unwind) {
  1803     __ unwind_exception(exceptionOopOpr());
  1804   } else {
  1805     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  1810 void LIRGenerator::do_RoundFP(RoundFP* x) {
  1811   LIRItem input(x->input(), this);
  1812   input.load_item();
  1813   LIR_Opr input_opr = input.result();
  1814   assert(input_opr->is_register(), "why round if value is not in a register?");
  1815   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  1816   if (input_opr->is_single_fpu()) {
  1817     set_result(x, round_item(input_opr)); // This code path not currently taken
  1818   } else {
  1819     LIR_Opr result = new_register(T_DOUBLE);
  1820     set_vreg_flag(result, must_start_in_memory);
  1821     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  1822     set_result(x, result);
  1826 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  1827   LIRItem base(x->base(), this);
  1828   LIRItem idx(this);
  1830   base.load_item();
  1831   if (x->has_index()) {
  1832     idx.set_instruction(x->index());
  1833     idx.load_nonconstant();
  1836   LIR_Opr reg = rlock_result(x, x->basic_type());
  1838   int   log2_scale = 0;
  1839   if (x->has_index()) {
  1840     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  1841     log2_scale = x->log2_scale();
  1844   assert(!x->has_index() || idx.value() == x->index(), "should match");
  1846   LIR_Opr base_op = base.result();
  1847 #ifndef _LP64
  1848   if (x->base()->type()->tag() == longTag) {
  1849     base_op = new_register(T_INT);
  1850     __ convert(Bytecodes::_l2i, base.result(), base_op);
  1851   } else {
  1852     assert(x->base()->type()->tag() == intTag, "must be");
  1854 #endif
  1856   BasicType dst_type = x->basic_type();
  1857   LIR_Opr index_op = idx.result();
  1859   LIR_Address* addr;
  1860   if (index_op->is_constant()) {
  1861     assert(log2_scale == 0, "must not have a scale");
  1862     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  1863   } else {
  1864 #ifdef X86
  1865 #ifdef _LP64
  1866     if (!index_op->is_illegal() && index_op->type() == T_INT) {
  1867       LIR_Opr tmp = new_pointer_register();
  1868       __ convert(Bytecodes::_i2l, index_op, tmp);
  1869       index_op = tmp;
  1871 #endif
  1872     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  1873 #elif defined(ARM)
  1874     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
  1875 #else
  1876     if (index_op->is_illegal() || log2_scale == 0) {
  1877 #ifdef _LP64
  1878       if (!index_op->is_illegal() && index_op->type() == T_INT) {
  1879         LIR_Opr tmp = new_pointer_register();
  1880         __ convert(Bytecodes::_i2l, index_op, tmp);
  1881         index_op = tmp;
  1883 #endif
  1884       addr = new LIR_Address(base_op, index_op, dst_type);
  1885     } else {
  1886       LIR_Opr tmp = new_pointer_register();
  1887       __ shift_left(index_op, log2_scale, tmp);
  1888       addr = new LIR_Address(base_op, tmp, dst_type);
  1890 #endif
  1893   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  1894     __ unaligned_move(addr, reg);
  1895   } else {
  1896     __ move(addr, reg);
  1901 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  1902   int  log2_scale = 0;
  1903   BasicType type = x->basic_type();
  1905   if (x->has_index()) {
  1906     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  1907     log2_scale = x->log2_scale();
  1910   LIRItem base(x->base(), this);
  1911   LIRItem value(x->value(), this);
  1912   LIRItem idx(this);
  1914   base.load_item();
  1915   if (x->has_index()) {
  1916     idx.set_instruction(x->index());
  1917     idx.load_item();
  1920   if (type == T_BYTE || type == T_BOOLEAN) {
  1921     value.load_byte_item();
  1922   } else {
  1923     value.load_item();
  1926   set_no_result(x);
  1928   LIR_Opr base_op = base.result();
  1929 #ifndef _LP64
  1930   if (x->base()->type()->tag() == longTag) {
  1931     base_op = new_register(T_INT);
  1932     __ convert(Bytecodes::_l2i, base.result(), base_op);
  1933   } else {
  1934     assert(x->base()->type()->tag() == intTag, "must be");
  1936 #endif
  1938   LIR_Opr index_op = idx.result();
  1939   if (log2_scale != 0) {
  1940     // temporary fix (platform dependent code without shift on Intel would be better)
  1941     index_op = new_pointer_register();
  1942 #ifdef _LP64
  1943     if(idx.result()->type() == T_INT) {
  1944       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  1945     } else {
  1946 #endif
  1947       // TODO: ARM also allows embedded shift in the address
  1948       __ move(idx.result(), index_op);
  1949 #ifdef _LP64
  1951 #endif
  1952     __ shift_left(index_op, log2_scale, index_op);
  1954 #ifdef _LP64
  1955   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
  1956     LIR_Opr tmp = new_pointer_register();
  1957     __ convert(Bytecodes::_i2l, index_op, tmp);
  1958     index_op = tmp;
  1960 #endif
  1962   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  1963   __ move(value.result(), addr);
  1967 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  1968   BasicType type = x->basic_type();
  1969   LIRItem src(x->object(), this);
  1970   LIRItem off(x->offset(), this);
  1972   off.load_item();
  1973   src.load_item();
  1975   LIR_Opr reg = reg = rlock_result(x, x->basic_type());
  1977   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  1978   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
  1979   if (x->is_volatile() && os::is_MP()) __ membar();
  1983 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  1984   BasicType type = x->basic_type();
  1985   LIRItem src(x->object(), this);
  1986   LIRItem off(x->offset(), this);
  1987   LIRItem data(x->value(), this);
  1989   src.load_item();
  1990   if (type == T_BOOLEAN || type == T_BYTE) {
  1991     data.load_byte_item();
  1992   } else {
  1993     data.load_item();
  1995   off.load_item();
  1997   set_no_result(x);
  1999   if (x->is_volatile() && os::is_MP()) __ membar_release();
  2000   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  2004 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  2005   LIRItem src(x->object(), this);
  2006   LIRItem off(x->offset(), this);
  2008   src.load_item();
  2009   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  2010     // let it be a constant
  2011     off.dont_load_item();
  2012   } else {
  2013     off.load_item();
  2016   set_no_result(x);
  2018   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  2019   __ prefetch(addr, is_store);
  2023 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  2024   do_UnsafePrefetch(x, false);
  2028 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2029   do_UnsafePrefetch(x, true);
  2033 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2034   int lng = x->length();
  2036   for (int i = 0; i < lng; i++) {
  2037     SwitchRange* one_range = x->at(i);
  2038     int low_key = one_range->low_key();
  2039     int high_key = one_range->high_key();
  2040     BlockBegin* dest = one_range->sux();
  2041     if (low_key == high_key) {
  2042       __ cmp(lir_cond_equal, value, low_key);
  2043       __ branch(lir_cond_equal, T_INT, dest);
  2044     } else if (high_key - low_key == 1) {
  2045       __ cmp(lir_cond_equal, value, low_key);
  2046       __ branch(lir_cond_equal, T_INT, dest);
  2047       __ cmp(lir_cond_equal, value, high_key);
  2048       __ branch(lir_cond_equal, T_INT, dest);
  2049     } else {
  2050       LabelObj* L = new LabelObj();
  2051       __ cmp(lir_cond_less, value, low_key);
  2052       __ branch(lir_cond_less, L->label());
  2053       __ cmp(lir_cond_lessEqual, value, high_key);
  2054       __ branch(lir_cond_lessEqual, T_INT, dest);
  2055       __ branch_destination(L->label());
  2058   __ jump(default_sux);
  2062 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2063   SwitchRangeList* res = new SwitchRangeList();
  2064   int len = x->length();
  2065   if (len > 0) {
  2066     BlockBegin* sux = x->sux_at(0);
  2067     int key = x->lo_key();
  2068     BlockBegin* default_sux = x->default_sux();
  2069     SwitchRange* range = new SwitchRange(key, sux);
  2070     for (int i = 0; i < len; i++, key++) {
  2071       BlockBegin* new_sux = x->sux_at(i);
  2072       if (sux == new_sux) {
  2073         // still in same range
  2074         range->set_high_key(key);
  2075       } else {
  2076         // skip tests which explicitly dispatch to the default
  2077         if (sux != default_sux) {
  2078           res->append(range);
  2080         range = new SwitchRange(key, new_sux);
  2082       sux = new_sux;
  2084     if (res->length() == 0 || res->last() != range)  res->append(range);
  2086   return res;
  2090 // we expect the keys to be sorted by increasing value
  2091 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2092   SwitchRangeList* res = new SwitchRangeList();
  2093   int len = x->length();
  2094   if (len > 0) {
  2095     BlockBegin* default_sux = x->default_sux();
  2096     int key = x->key_at(0);
  2097     BlockBegin* sux = x->sux_at(0);
  2098     SwitchRange* range = new SwitchRange(key, sux);
  2099     for (int i = 1; i < len; i++) {
  2100       int new_key = x->key_at(i);
  2101       BlockBegin* new_sux = x->sux_at(i);
  2102       if (key+1 == new_key && sux == new_sux) {
  2103         // still in same range
  2104         range->set_high_key(new_key);
  2105       } else {
  2106         // skip tests which explicitly dispatch to the default
  2107         if (range->sux() != default_sux) {
  2108           res->append(range);
  2110         range = new SwitchRange(new_key, new_sux);
  2112       key = new_key;
  2113       sux = new_sux;
  2115     if (res->length() == 0 || res->last() != range)  res->append(range);
  2117   return res;
  2121 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2122   LIRItem tag(x->tag(), this);
  2123   tag.load_item();
  2124   set_no_result(x);
  2126   if (x->is_safepoint()) {
  2127     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2130   // move values into phi locations
  2131   move_to_phi(x->state());
  2133   int lo_key = x->lo_key();
  2134   int hi_key = x->hi_key();
  2135   int len = x->length();
  2136   CodeEmitInfo* info = state_for(x, x->state());
  2137   LIR_Opr value = tag.result();
  2138   if (UseTableRanges) {
  2139     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2140   } else {
  2141     for (int i = 0; i < len; i++) {
  2142       __ cmp(lir_cond_equal, value, i + lo_key);
  2143       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2145     __ jump(x->default_sux());
  2150 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2151   LIRItem tag(x->tag(), this);
  2152   tag.load_item();
  2153   set_no_result(x);
  2155   if (x->is_safepoint()) {
  2156     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2159   // move values into phi locations
  2160   move_to_phi(x->state());
  2162   LIR_Opr value = tag.result();
  2163   if (UseTableRanges) {
  2164     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2165   } else {
  2166     int len = x->length();
  2167     for (int i = 0; i < len; i++) {
  2168       __ cmp(lir_cond_equal, value, x->key_at(i));
  2169       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2171     __ jump(x->default_sux());
  2176 void LIRGenerator::do_Goto(Goto* x) {
  2177   set_no_result(x);
  2179   if (block()->next()->as_OsrEntry()) {
  2180     // need to free up storage used for OSR entry point
  2181     LIR_Opr osrBuffer = block()->next()->operand();
  2182     BasicTypeList signature;
  2183     signature.append(T_INT);
  2184     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2185     __ move(osrBuffer, cc->args()->at(0));
  2186     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2187                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2190   if (x->is_safepoint()) {
  2191     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2193     // increment backedge counter if needed
  2194     increment_backedge_counter(state_for(x, state));
  2196     CodeEmitInfo* safepoint_info = state_for(x, state);
  2197     __ safepoint(safepoint_poll_register(), safepoint_info);
  2200   // emit phi-instruction move after safepoint since this simplifies
  2201   // describing the state as the safepoint.
  2202   move_to_phi(x->state());
  2204   __ jump(x->default_sux());
  2208 void LIRGenerator::do_Base(Base* x) {
  2209   __ std_entry(LIR_OprFact::illegalOpr);
  2210   // Emit moves from physical registers / stack slots to virtual registers
  2211   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2212   IRScope* irScope = compilation()->hir()->top_scope();
  2213   int java_index = 0;
  2214   for (int i = 0; i < args->length(); i++) {
  2215     LIR_Opr src = args->at(i);
  2216     assert(!src->is_illegal(), "check");
  2217     BasicType t = src->type();
  2219     // Types which are smaller than int are passed as int, so
  2220     // correct the type which passed.
  2221     switch (t) {
  2222     case T_BYTE:
  2223     case T_BOOLEAN:
  2224     case T_SHORT:
  2225     case T_CHAR:
  2226       t = T_INT;
  2227       break;
  2230     LIR_Opr dest = new_register(t);
  2231     __ move(src, dest);
  2233     // Assign new location to Local instruction for this local
  2234     Local* local = x->state()->local_at(java_index)->as_Local();
  2235     assert(local != NULL, "Locals for incoming arguments must have been created");
  2236 #ifndef __SOFTFP__
  2237     // The java calling convention passes double as long and float as int.
  2238     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2239 #endif // __SOFTFP__
  2240     local->set_operand(dest);
  2241     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  2242     java_index += type2size[t];
  2245   if (compilation()->env()->dtrace_method_probes()) {
  2246     BasicTypeList signature;
  2247     signature.append(T_INT);    // thread
  2248     signature.append(T_OBJECT); // methodOop
  2249     LIR_OprList* args = new LIR_OprList();
  2250     args->append(getThreadPointer());
  2251     LIR_Opr meth = new_register(T_OBJECT);
  2252     __ oop2reg(method()->constant_encoding(), meth);
  2253     args->append(meth);
  2254     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  2257   if (method()->is_synchronized()) {
  2258     LIR_Opr obj;
  2259     if (method()->is_static()) {
  2260       obj = new_register(T_OBJECT);
  2261       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  2262     } else {
  2263       Local* receiver = x->state()->local_at(0)->as_Local();
  2264       assert(receiver != NULL, "must already exist");
  2265       obj = receiver->operand();
  2267     assert(obj->is_valid(), "must be valid");
  2269     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2270       LIR_Opr lock = new_register(T_INT);
  2271       __ load_stack_address_monitor(0, lock);
  2273       CodeEmitInfo* info = new CodeEmitInfo(SynchronizationEntryBCI, scope()->start()->state(), NULL);
  2274       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  2276       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  2277       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  2281   // increment invocation counters if needed
  2282   increment_invocation_counter(new CodeEmitInfo(0, scope()->start()->state(), NULL));
  2284   // all blocks with a successor must end with an unconditional jump
  2285   // to the successor even if they are consecutive
  2286   __ jump(x->default_sux());
  2290 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  2291   // construct our frame and model the production of incoming pointer
  2292   // to the OSR buffer.
  2293   __ osr_entry(LIR_Assembler::osrBufferPointer());
  2294   LIR_Opr result = rlock_result(x);
  2295   __ move(LIR_Assembler::osrBufferPointer(), result);
  2299 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  2300   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
  2301   for (; i < args->length(); i++) {
  2302     LIRItem* param = args->at(i);
  2303     LIR_Opr loc = arg_list->at(i);
  2304     if (loc->is_register()) {
  2305       param->load_item_force(loc);
  2306     } else {
  2307       LIR_Address* addr = loc->as_address_ptr();
  2308       param->load_for_store(addr->type());
  2309       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2310         __ unaligned_move(param->result(), addr);
  2311       } else {
  2312         __ move(param->result(), addr);
  2317   if (x->has_receiver()) {
  2318     LIRItem* receiver = args->at(0);
  2319     LIR_Opr loc = arg_list->at(0);
  2320     if (loc->is_register()) {
  2321       receiver->load_item_force(loc);
  2322     } else {
  2323       assert(loc->is_address(), "just checking");
  2324       receiver->load_for_store(T_OBJECT);
  2325       __ move(receiver->result(), loc);
  2331 // Visits all arguments, returns appropriate items without loading them
  2332 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  2333   LIRItemList* argument_items = new LIRItemList();
  2334   if (x->has_receiver()) {
  2335     LIRItem* receiver = new LIRItem(x->receiver(), this);
  2336     argument_items->append(receiver);
  2338   if (x->is_invokedynamic()) {
  2339     // Insert a dummy for the synthetic MethodHandle argument.
  2340     argument_items->append(NULL);
  2342   int idx = x->has_receiver() ? 1 : 0;
  2343   for (int i = 0; i < x->number_of_arguments(); i++) {
  2344     LIRItem* param = new LIRItem(x->argument_at(i), this);
  2345     argument_items->append(param);
  2346     idx += (param->type()->is_double_word() ? 2 : 1);
  2348   return argument_items;
  2352 // The invoke with receiver has following phases:
  2353 //   a) traverse and load/lock receiver;
  2354 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  2355 //   c) push receiver on stack
  2356 //   d) load each of the items and push on stack
  2357 //   e) unlock receiver
  2358 //   f) move receiver into receiver-register %o0
  2359 //   g) lock result registers and emit call operation
  2360 //
  2361 // Before issuing a call, we must spill-save all values on stack
  2362 // that are in caller-save register. "spill-save" moves thos registers
  2363 // either in a free callee-save register or spills them if no free
  2364 // callee save register is available.
  2365 //
  2366 // The problem is where to invoke spill-save.
  2367 // - if invoked between e) and f), we may lock callee save
  2368 //   register in "spill-save" that destroys the receiver register
  2369 //   before f) is executed
  2370 // - if we rearange the f) to be earlier, by loading %o0, it
  2371 //   may destroy a value on the stack that is currently in %o0
  2372 //   and is waiting to be spilled
  2373 // - if we keep the receiver locked while doing spill-save,
  2374 //   we cannot spill it as it is spill-locked
  2375 //
  2376 void LIRGenerator::do_Invoke(Invoke* x) {
  2377   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  2379   LIR_OprList* arg_list = cc->args();
  2380   LIRItemList* args = invoke_visit_arguments(x);
  2381   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  2383   // setup result register
  2384   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  2385   if (x->type() != voidType) {
  2386     result_register = result_register_for(x->type());
  2389   CodeEmitInfo* info = state_for(x, x->state());
  2391   // invokedynamics can deoptimize.
  2392   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
  2394   invoke_load_arguments(x, args, arg_list);
  2396   if (x->has_receiver()) {
  2397     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  2398     receiver = args->at(0)->result();
  2401   // emit invoke code
  2402   bool optimized = x->target_is_loaded() && x->target_is_final();
  2403   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  2405   // JSR 292
  2406   // Preserve the SP over MethodHandle call sites.
  2407   ciMethod* target = x->target();
  2408   if (target->is_method_handle_invoke()) {
  2409     info->set_is_method_handle_invoke(true);
  2410     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  2413   switch (x->code()) {
  2414     case Bytecodes::_invokestatic:
  2415       __ call_static(target, result_register,
  2416                      SharedRuntime::get_resolve_static_call_stub(),
  2417                      arg_list, info);
  2418       break;
  2419     case Bytecodes::_invokespecial:
  2420     case Bytecodes::_invokevirtual:
  2421     case Bytecodes::_invokeinterface:
  2422       // for final target we still produce an inline cache, in order
  2423       // to be able to call mixed mode
  2424       if (x->code() == Bytecodes::_invokespecial || optimized) {
  2425         __ call_opt_virtual(target, receiver, result_register,
  2426                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2427                             arg_list, info);
  2428       } else if (x->vtable_index() < 0) {
  2429         __ call_icvirtual(target, receiver, result_register,
  2430                           SharedRuntime::get_resolve_virtual_call_stub(),
  2431                           arg_list, info);
  2432       } else {
  2433         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  2434         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  2435         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  2437       break;
  2438     case Bytecodes::_invokedynamic: {
  2439       ciBytecodeStream bcs(x->scope()->method());
  2440       bcs.force_bci(x->bci());
  2441       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
  2442       ciCPCache* cpcache = bcs.get_cpcache();
  2444       // Get CallSite offset from constant pool cache pointer.
  2445       int index = bcs.get_method_index();
  2446       size_t call_site_offset = cpcache->get_f1_offset(index);
  2448       // If this invokedynamic call site hasn't been executed yet in
  2449       // the interpreter, the CallSite object in the constant pool
  2450       // cache is still null and we need to deoptimize.
  2451       if (cpcache->is_f1_null_at(index)) {
  2452         // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
  2453         // clone all handlers.  This is handled transparently in other
  2454         // places by the CodeEmitInfo cloning logic but is handled
  2455         // specially here because a stub isn't being used.
  2456         x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  2458         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
  2459         __ jump(deopt_stub);
  2462       // Use the receiver register for the synthetic MethodHandle
  2463       // argument.
  2464       receiver = LIR_Assembler::receiverOpr();
  2465       LIR_Opr tmp = new_register(objectType);
  2467       // Load CallSite object from constant pool cache.
  2468       __ oop2reg(cpcache->constant_encoding(), tmp);
  2469       __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
  2471       // Load target MethodHandle from CallSite object.
  2472       __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
  2474       __ call_dynamic(target, receiver, result_register,
  2475                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2476                       arg_list, info);
  2477       break;
  2479     default:
  2480       ShouldNotReachHere();
  2481       break;
  2484   // JSR 292
  2485   // Restore the SP after MethodHandle call sites.
  2486   if (target->is_method_handle_invoke()) {
  2487     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  2490   if (x->type()->is_float() || x->type()->is_double()) {
  2491     // Force rounding of results from non-strictfp when in strictfp
  2492     // scope (or when we don't know the strictness of the callee, to
  2493     // be safe.)
  2494     if (method()->is_strict()) {
  2495       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  2496         result_register = round_item(result_register);
  2501   if (result_register->is_valid()) {
  2502     LIR_Opr result = rlock_result(x);
  2503     __ move(result_register, result);
  2508 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  2509   assert(x->number_of_arguments() == 1, "wrong type");
  2510   LIRItem value       (x->argument_at(0), this);
  2511   LIR_Opr reg = rlock_result(x);
  2512   value.load_item();
  2513   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  2514   __ move(tmp, reg);
  2519 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  2520 void LIRGenerator::do_IfOp(IfOp* x) {
  2521 #ifdef ASSERT
  2523     ValueTag xtag = x->x()->type()->tag();
  2524     ValueTag ttag = x->tval()->type()->tag();
  2525     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  2526     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  2527     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  2529 #endif
  2531   LIRItem left(x->x(), this);
  2532   LIRItem right(x->y(), this);
  2533   left.load_item();
  2534   if (can_inline_as_constant(right.value())) {
  2535     right.dont_load_item();
  2536   } else {
  2537     right.load_item();
  2540   LIRItem t_val(x->tval(), this);
  2541   LIRItem f_val(x->fval(), this);
  2542   t_val.dont_load_item();
  2543   f_val.dont_load_item();
  2544   LIR_Opr reg = rlock_result(x);
  2546   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  2547   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
  2551 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  2552   switch (x->id()) {
  2553   case vmIntrinsics::_intBitsToFloat      :
  2554   case vmIntrinsics::_doubleToRawLongBits :
  2555   case vmIntrinsics::_longBitsToDouble    :
  2556   case vmIntrinsics::_floatToRawIntBits   : {
  2557     do_FPIntrinsics(x);
  2558     break;
  2561   case vmIntrinsics::_currentTimeMillis: {
  2562     assert(x->number_of_arguments() == 0, "wrong type");
  2563     LIR_Opr reg = result_register_for(x->type());
  2564     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
  2565                          reg, new LIR_OprList());
  2566     LIR_Opr result = rlock_result(x);
  2567     __ move(reg, result);
  2568     break;
  2571   case vmIntrinsics::_nanoTime: {
  2572     assert(x->number_of_arguments() == 0, "wrong type");
  2573     LIR_Opr reg = result_register_for(x->type());
  2574     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
  2575                          reg, new LIR_OprList());
  2576     LIR_Opr result = rlock_result(x);
  2577     __ move(reg, result);
  2578     break;
  2581   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  2582   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  2583   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  2585   case vmIntrinsics::_dlog:           // fall through
  2586   case vmIntrinsics::_dlog10:         // fall through
  2587   case vmIntrinsics::_dabs:           // fall through
  2588   case vmIntrinsics::_dsqrt:          // fall through
  2589   case vmIntrinsics::_dtan:           // fall through
  2590   case vmIntrinsics::_dsin :          // fall through
  2591   case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
  2592   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  2594   // java.nio.Buffer.checkIndex
  2595   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  2597   case vmIntrinsics::_compareAndSwapObject:
  2598     do_CompareAndSwap(x, objectType);
  2599     break;
  2600   case vmIntrinsics::_compareAndSwapInt:
  2601     do_CompareAndSwap(x, intType);
  2602     break;
  2603   case vmIntrinsics::_compareAndSwapLong:
  2604     do_CompareAndSwap(x, longType);
  2605     break;
  2607     // sun.misc.AtomicLongCSImpl.attemptUpdate
  2608   case vmIntrinsics::_attemptUpdate:
  2609     do_AttemptUpdate(x);
  2610     break;
  2612   default: ShouldNotReachHere(); break;
  2617 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  2618   // Need recv in a temporary register so it interferes with the other temporaries
  2619   LIR_Opr recv = LIR_OprFact::illegalOpr;
  2620   LIR_Opr mdo = new_register(T_OBJECT);
  2621   LIR_Opr tmp = new_register(T_INT);
  2622   if (x->recv() != NULL) {
  2623     LIRItem value(x->recv(), this);
  2624     value.load_item();
  2625     recv = new_register(T_OBJECT);
  2626     __ move(value.result(), recv);
  2628   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
  2632 void LIRGenerator::do_ProfileCounter(ProfileCounter* x) {
  2633   LIRItem mdo(x->mdo(), this);
  2634   mdo.load_item();
  2636   increment_counter(new LIR_Address(mdo.result(), x->offset(), T_INT), x->increment());
  2640 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  2641   LIRItemList args(1);
  2642   LIRItem value(arg1, this);
  2643   args.append(&value);
  2644   BasicTypeList signature;
  2645   signature.append(as_BasicType(arg1->type()));
  2647   return call_runtime(&signature, &args, entry, result_type, info);
  2651 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  2652   LIRItemList args(2);
  2653   LIRItem value1(arg1, this);
  2654   LIRItem value2(arg2, this);
  2655   args.append(&value1);
  2656   args.append(&value2);
  2657   BasicTypeList signature;
  2658   signature.append(as_BasicType(arg1->type()));
  2659   signature.append(as_BasicType(arg2->type()));
  2661   return call_runtime(&signature, &args, entry, result_type, info);
  2665 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  2666                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  2667   // get a result register
  2668   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  2669   LIR_Opr result = LIR_OprFact::illegalOpr;
  2670   if (result_type->tag() != voidTag) {
  2671     result = new_register(result_type);
  2672     phys_reg = result_register_for(result_type);
  2675   // move the arguments into the correct location
  2676   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  2677   assert(cc->length() == args->length(), "argument mismatch");
  2678   for (int i = 0; i < args->length(); i++) {
  2679     LIR_Opr arg = args->at(i);
  2680     LIR_Opr loc = cc->at(i);
  2681     if (loc->is_register()) {
  2682       __ move(arg, loc);
  2683     } else {
  2684       LIR_Address* addr = loc->as_address_ptr();
  2685 //           if (!can_store_as_constant(arg)) {
  2686 //             LIR_Opr tmp = new_register(arg->type());
  2687 //             __ move(arg, tmp);
  2688 //             arg = tmp;
  2689 //           }
  2690       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2691         __ unaligned_move(arg, addr);
  2692       } else {
  2693         __ move(arg, addr);
  2698   if (info) {
  2699     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  2700   } else {
  2701     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  2703   if (result->is_valid()) {
  2704     __ move(phys_reg, result);
  2706   return result;
  2710 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  2711                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  2712   // get a result register
  2713   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  2714   LIR_Opr result = LIR_OprFact::illegalOpr;
  2715   if (result_type->tag() != voidTag) {
  2716     result = new_register(result_type);
  2717     phys_reg = result_register_for(result_type);
  2720   // move the arguments into the correct location
  2721   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  2723   assert(cc->length() == args->length(), "argument mismatch");
  2724   for (int i = 0; i < args->length(); i++) {
  2725     LIRItem* arg = args->at(i);
  2726     LIR_Opr loc = cc->at(i);
  2727     if (loc->is_register()) {
  2728       arg->load_item_force(loc);
  2729     } else {
  2730       LIR_Address* addr = loc->as_address_ptr();
  2731       arg->load_for_store(addr->type());
  2732       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2733         __ unaligned_move(arg->result(), addr);
  2734       } else {
  2735         __ move(arg->result(), addr);
  2740   if (info) {
  2741     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  2742   } else {
  2743     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  2745   if (result->is_valid()) {
  2746     __ move(phys_reg, result);
  2748   return result;
  2753 void LIRGenerator::increment_invocation_counter(CodeEmitInfo* info, bool backedge) {
  2754 #ifdef TIERED
  2755   if (_compilation->env()->comp_level() == CompLevel_fast_compile &&
  2756       (method()->code_size() >= Tier1BytecodeLimit || backedge)) {
  2757     int limit = InvocationCounter::Tier1InvocationLimit;
  2758     int offset = in_bytes(methodOopDesc::invocation_counter_offset() +
  2759                           InvocationCounter::counter_offset());
  2760     if (backedge) {
  2761       limit = InvocationCounter::Tier1BackEdgeLimit;
  2762       offset = in_bytes(methodOopDesc::backedge_counter_offset() +
  2763                         InvocationCounter::counter_offset());
  2766     LIR_Opr meth = new_register(T_OBJECT);
  2767     __ oop2reg(method()->constant_encoding(), meth);
  2768     LIR_Opr result = increment_and_return_counter(meth, offset, InvocationCounter::count_increment);
  2769     __ cmp(lir_cond_aboveEqual, result, LIR_OprFact::intConst(limit));
  2770     CodeStub* overflow = new CounterOverflowStub(info, info->bci());
  2771     __ branch(lir_cond_aboveEqual, T_INT, overflow);
  2772     __ branch_destination(overflow->continuation());
  2774 #endif

mercurial