src/cpu/x86/vm/c1_Runtime1_x86.cpp

Tue, 03 Aug 2010 08:13:38 -0400

author
bobv
date
Tue, 03 Aug 2010 08:13:38 -0400
changeset 2036
126ea7725993
parent 1934
e9ff18c4ace7
child 2138
d5d065957597
permissions
-rw-r--r--

6953477: Increase portability and flexibility of building Hotspot
Summary: A collection of portability improvements including shared code support for PPC, ARM platforms, software floating point, cross compilation support and improvements in error crash detail.
Reviewed-by: phh, never, coleenp, dholmes

duke@435 1 /*
trims@1907 2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_c1_Runtime1_x86.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 // Implementation of StubAssembler
duke@435 30
duke@435 31 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, int args_size) {
duke@435 32 // setup registers
never@739 33 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
duke@435 34 assert(!(oop_result1->is_valid() || oop_result2->is_valid()) || oop_result1 != oop_result2, "registers must be different");
duke@435 35 assert(oop_result1 != thread && oop_result2 != thread, "registers must be different");
duke@435 36 assert(args_size >= 0, "illegal args_size");
duke@435 37
never@739 38 #ifdef _LP64
never@739 39 mov(c_rarg0, thread);
never@739 40 set_num_rt_args(0); // Nothing on stack
never@739 41 #else
duke@435 42 set_num_rt_args(1 + args_size);
duke@435 43
duke@435 44 // push java thread (becomes first argument of C function)
duke@435 45 get_thread(thread);
never@739 46 push(thread);
never@739 47 #endif // _LP64
duke@435 48
duke@435 49 set_last_Java_frame(thread, noreg, rbp, NULL);
never@739 50
duke@435 51 // do the call
duke@435 52 call(RuntimeAddress(entry));
duke@435 53 int call_offset = offset();
duke@435 54 // verify callee-saved register
duke@435 55 #ifdef ASSERT
duke@435 56 guarantee(thread != rax, "change this code");
never@739 57 push(rax);
duke@435 58 { Label L;
duke@435 59 get_thread(rax);
never@739 60 cmpptr(thread, rax);
duke@435 61 jcc(Assembler::equal, L);
duke@435 62 int3();
duke@435 63 stop("StubAssembler::call_RT: rdi not callee saved?");
duke@435 64 bind(L);
duke@435 65 }
never@739 66 pop(rax);
duke@435 67 #endif
duke@435 68 reset_last_Java_frame(thread, true, false);
duke@435 69
duke@435 70 // discard thread and arguments
never@739 71 NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
duke@435 72
duke@435 73 // check for pending exceptions
duke@435 74 { Label L;
never@739 75 cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 76 jcc(Assembler::equal, L);
duke@435 77 // exception pending => remove activation and forward to exception handler
never@739 78 movptr(rax, Address(thread, Thread::pending_exception_offset()));
duke@435 79 // make sure that the vm_results are cleared
duke@435 80 if (oop_result1->is_valid()) {
xlu@947 81 movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
duke@435 82 }
duke@435 83 if (oop_result2->is_valid()) {
xlu@947 84 movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
duke@435 85 }
duke@435 86 if (frame_size() == no_frame_size) {
duke@435 87 leave();
duke@435 88 jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 89 } else if (_stub_id == Runtime1::forward_exception_id) {
duke@435 90 should_not_reach_here();
duke@435 91 } else {
duke@435 92 jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
duke@435 93 }
duke@435 94 bind(L);
duke@435 95 }
duke@435 96 // get oop results if there are any and reset the values in the thread
duke@435 97 if (oop_result1->is_valid()) {
never@739 98 movptr(oop_result1, Address(thread, JavaThread::vm_result_offset()));
xlu@947 99 movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
duke@435 100 verify_oop(oop_result1);
duke@435 101 }
duke@435 102 if (oop_result2->is_valid()) {
never@739 103 movptr(oop_result2, Address(thread, JavaThread::vm_result_2_offset()));
xlu@947 104 movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
duke@435 105 verify_oop(oop_result2);
duke@435 106 }
duke@435 107 return call_offset;
duke@435 108 }
duke@435 109
duke@435 110
duke@435 111 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1) {
never@739 112 #ifdef _LP64
never@739 113 mov(c_rarg1, arg1);
never@739 114 #else
never@739 115 push(arg1);
never@739 116 #endif // _LP64
duke@435 117 return call_RT(oop_result1, oop_result2, entry, 1);
duke@435 118 }
duke@435 119
duke@435 120
duke@435 121 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2) {
never@739 122 #ifdef _LP64
never@739 123 if (c_rarg1 == arg2) {
never@739 124 if (c_rarg2 == arg1) {
never@739 125 xchgq(arg1, arg2);
never@739 126 } else {
never@739 127 mov(c_rarg2, arg2);
never@739 128 mov(c_rarg1, arg1);
never@739 129 }
never@739 130 } else {
never@739 131 mov(c_rarg1, arg1);
never@739 132 mov(c_rarg2, arg2);
never@739 133 }
never@739 134 #else
never@739 135 push(arg2);
never@739 136 push(arg1);
never@739 137 #endif // _LP64
duke@435 138 return call_RT(oop_result1, oop_result2, entry, 2);
duke@435 139 }
duke@435 140
duke@435 141
duke@435 142 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2, Register arg3) {
never@739 143 #ifdef _LP64
never@739 144 // if there is any conflict use the stack
never@739 145 if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
never@739 146 arg2 == c_rarg1 || arg1 == c_rarg3 ||
never@739 147 arg3 == c_rarg1 || arg1 == c_rarg2) {
never@739 148 push(arg3);
never@739 149 push(arg2);
never@739 150 push(arg1);
never@739 151 pop(c_rarg1);
never@739 152 pop(c_rarg2);
never@739 153 pop(c_rarg3);
never@739 154 } else {
never@739 155 mov(c_rarg1, arg1);
never@739 156 mov(c_rarg2, arg2);
never@739 157 mov(c_rarg3, arg3);
never@739 158 }
never@739 159 #else
never@739 160 push(arg3);
never@739 161 push(arg2);
never@739 162 push(arg1);
never@739 163 #endif // _LP64
duke@435 164 return call_RT(oop_result1, oop_result2, entry, 3);
duke@435 165 }
duke@435 166
duke@435 167
duke@435 168 // Implementation of StubFrame
duke@435 169
duke@435 170 class StubFrame: public StackObj {
duke@435 171 private:
duke@435 172 StubAssembler* _sasm;
duke@435 173
duke@435 174 public:
duke@435 175 StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
duke@435 176 void load_argument(int offset_in_words, Register reg);
duke@435 177
duke@435 178 ~StubFrame();
duke@435 179 };
duke@435 180
duke@435 181
duke@435 182 #define __ _sasm->
duke@435 183
duke@435 184 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
duke@435 185 _sasm = sasm;
duke@435 186 __ set_info(name, must_gc_arguments);
duke@435 187 __ enter();
duke@435 188 }
duke@435 189
duke@435 190 // load parameters that were stored with LIR_Assembler::store_parameter
duke@435 191 // Note: offsets for store_parameter and load_argument must match
duke@435 192 void StubFrame::load_argument(int offset_in_words, Register reg) {
duke@435 193 // rbp, + 0: link
duke@435 194 // + 1: return address
duke@435 195 // + 2: argument with offset 0
duke@435 196 // + 3: argument with offset 1
duke@435 197 // + 4: ...
duke@435 198
never@739 199 __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
duke@435 200 }
duke@435 201
duke@435 202
duke@435 203 StubFrame::~StubFrame() {
duke@435 204 __ leave();
duke@435 205 __ ret(0);
duke@435 206 }
duke@435 207
duke@435 208 #undef __
duke@435 209
duke@435 210
duke@435 211 // Implementation of Runtime1
duke@435 212
duke@435 213 #define __ sasm->
duke@435 214
never@739 215 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
never@739 216 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
duke@435 217
duke@435 218 // Stack layout for saving/restoring all the registers needed during a runtime
duke@435 219 // call (this includes deoptimization)
duke@435 220 // Note: note that users of this frame may well have arguments to some runtime
duke@435 221 // while these values are on the stack. These positions neglect those arguments
duke@435 222 // but the code in save_live_registers will take the argument count into
duke@435 223 // account.
duke@435 224 //
never@739 225 #ifdef _LP64
never@739 226 #define SLOT2(x) x,
never@739 227 #define SLOT_PER_WORD 2
never@739 228 #else
never@739 229 #define SLOT2(x)
never@739 230 #define SLOT_PER_WORD 1
never@739 231 #endif // _LP64
never@739 232
duke@435 233 enum reg_save_layout {
never@739 234 // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
never@739 235 // happen and will assert if the stack size we create is misaligned
never@739 236 #ifdef _LP64
never@739 237 align_dummy_0, align_dummy_1,
never@739 238 #endif // _LP64
never@739 239 dummy1, SLOT2(dummy1H) // 0, 4
never@739 240 dummy2, SLOT2(dummy2H) // 8, 12
duke@435 241 // Two temps to be used as needed by users of save/restore callee registers
never@739 242 temp_2_off, SLOT2(temp_2H_off) // 16, 20
never@739 243 temp_1_off, SLOT2(temp_1H_off) // 24, 28
never@739 244 xmm_regs_as_doubles_off, // 32
never@739 245 float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots, // 160
never@739 246 fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots, // 224
never@739 247 // fpu_state_end_off is exclusive
never@739 248 fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD), // 352
never@739 249 marker = fpu_state_end_off, SLOT2(markerH) // 352, 356
never@739 250 extra_space_offset, // 360
never@739 251 #ifdef _LP64
never@739 252 r15_off = extra_space_offset, r15H_off, // 360, 364
never@739 253 r14_off, r14H_off, // 368, 372
never@739 254 r13_off, r13H_off, // 376, 380
never@739 255 r12_off, r12H_off, // 384, 388
never@739 256 r11_off, r11H_off, // 392, 396
never@739 257 r10_off, r10H_off, // 400, 404
never@739 258 r9_off, r9H_off, // 408, 412
never@739 259 r8_off, r8H_off, // 416, 420
never@739 260 rdi_off, rdiH_off, // 424, 428
never@739 261 #else
duke@435 262 rdi_off = extra_space_offset,
never@739 263 #endif // _LP64
never@739 264 rsi_off, SLOT2(rsiH_off) // 432, 436
never@739 265 rbp_off, SLOT2(rbpH_off) // 440, 444
never@739 266 rsp_off, SLOT2(rspH_off) // 448, 452
never@739 267 rbx_off, SLOT2(rbxH_off) // 456, 460
never@739 268 rdx_off, SLOT2(rdxH_off) // 464, 468
never@739 269 rcx_off, SLOT2(rcxH_off) // 472, 476
never@739 270 rax_off, SLOT2(raxH_off) // 480, 484
never@739 271 saved_rbp_off, SLOT2(saved_rbpH_off) // 488, 492
never@739 272 return_off, SLOT2(returnH_off) // 496, 500
never@739 273 reg_save_frame_size, // As noted: neglects any parameters to runtime // 504
never@739 274
never@739 275 #ifdef _WIN64
never@739 276 c_rarg0_off = rcx_off,
never@739 277 #else
never@739 278 c_rarg0_off = rdi_off,
never@739 279 #endif // WIN64
duke@435 280
duke@435 281 // equates
duke@435 282
duke@435 283 // illegal instruction handler
duke@435 284 continue_dest_off = temp_1_off,
duke@435 285
duke@435 286 // deoptimization equates
duke@435 287 fp0_off = float_regs_as_doubles_off, // slot for java float/double return value
duke@435 288 xmm0_off = xmm_regs_as_doubles_off, // slot for java float/double return value
duke@435 289 deopt_type = temp_2_off, // slot for type of deopt in progress
duke@435 290 ret_type = temp_1_off // slot for return type
duke@435 291 };
duke@435 292
duke@435 293
duke@435 294
duke@435 295 // Save off registers which might be killed by calls into the runtime.
duke@435 296 // Tries to smart of about FP registers. In particular we separate
duke@435 297 // saving and describing the FPU registers for deoptimization since we
duke@435 298 // have to save the FPU registers twice if we describe them and on P4
duke@435 299 // saving FPU registers which don't contain anything appears
duke@435 300 // expensive. The deopt blob is the only thing which needs to
duke@435 301 // describe FPU registers. In all other cases it should be sufficient
duke@435 302 // to simply save their current value.
duke@435 303
duke@435 304 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
duke@435 305 bool save_fpu_registers = true) {
never@739 306
never@739 307 // In 64bit all the args are in regs so there are no additional stack slots
never@739 308 LP64_ONLY(num_rt_args = 0);
never@739 309 LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
never@739 310 int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
never@739 311 sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
duke@435 312
duke@435 313 // record saved value locations in an OopMap
duke@435 314 // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
never@739 315 OopMap* map = new OopMap(frame_size_in_slots, 0);
duke@435 316 map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
duke@435 317 map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
duke@435 318 map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
duke@435 319 map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
duke@435 320 map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
duke@435 321 map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
never@739 322 #ifdef _LP64
never@739 323 map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args), r8->as_VMReg());
never@739 324 map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args), r9->as_VMReg());
never@739 325 map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
never@739 326 map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
never@739 327 map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
never@739 328 map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
never@739 329 map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
never@739 330 map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
never@739 331
never@739 332 // This is stupid but needed.
never@739 333 map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
never@739 334 map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
never@739 335 map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
never@739 336 map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
never@739 337 map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
never@739 338 map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
never@739 339
never@739 340 map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args), r8->as_VMReg()->next());
never@739 341 map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args), r9->as_VMReg()->next());
never@739 342 map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
never@739 343 map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
never@739 344 map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
never@739 345 map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
never@739 346 map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
never@739 347 map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
never@739 348 #endif // _LP64
duke@435 349
duke@435 350 if (save_fpu_registers) {
duke@435 351 if (UseSSE < 2) {
duke@435 352 int fpu_off = float_regs_as_doubles_off;
duke@435 353 for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
duke@435 354 VMReg fpu_name_0 = FrameMap::fpu_regname(n);
duke@435 355 map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + num_rt_args), fpu_name_0);
duke@435 356 // %%% This is really a waste but we'll keep things as they were for now
duke@435 357 if (true) {
duke@435 358 map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
duke@435 359 }
duke@435 360 fpu_off += 2;
duke@435 361 }
duke@435 362 assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
duke@435 363 }
duke@435 364
duke@435 365 if (UseSSE >= 2) {
duke@435 366 int xmm_off = xmm_regs_as_doubles_off;
duke@435 367 for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
duke@435 368 VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
duke@435 369 map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
duke@435 370 // %%% This is really a waste but we'll keep things as they were for now
duke@435 371 if (true) {
duke@435 372 map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
duke@435 373 }
duke@435 374 xmm_off += 2;
duke@435 375 }
duke@435 376 assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
duke@435 377
duke@435 378 } else if (UseSSE == 1) {
duke@435 379 int xmm_off = xmm_regs_as_doubles_off;
duke@435 380 for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
duke@435 381 VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
duke@435 382 map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
duke@435 383 xmm_off += 2;
duke@435 384 }
duke@435 385 assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
duke@435 386 }
duke@435 387 }
duke@435 388
duke@435 389 return map;
duke@435 390 }
duke@435 391
duke@435 392 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
duke@435 393 bool save_fpu_registers = true) {
duke@435 394 __ block_comment("save_live_registers");
duke@435 395
never@739 396 // 64bit passes the args in regs to the c++ runtime
never@739 397 int frame_size_in_slots = reg_save_frame_size NOT_LP64(+ num_rt_args); // args + thread
duke@435 398 // frame_size = round_to(frame_size, 4);
never@739 399 sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
duke@435 400
never@739 401 __ pusha(); // integer registers
duke@435 402
duke@435 403 // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
duke@435 404 // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
duke@435 405
never@739 406 __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
duke@435 407
duke@435 408 #ifdef ASSERT
never@739 409 __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
duke@435 410 #endif
duke@435 411
duke@435 412 if (save_fpu_registers) {
duke@435 413 if (UseSSE < 2) {
duke@435 414 // save FPU stack
never@739 415 __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
duke@435 416 __ fwait();
duke@435 417
duke@435 418 #ifdef ASSERT
duke@435 419 Label ok;
never@739 420 __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
duke@435 421 __ jccb(Assembler::equal, ok);
duke@435 422 __ stop("corrupted control word detected");
duke@435 423 __ bind(ok);
duke@435 424 #endif
duke@435 425
duke@435 426 // Reset the control word to guard against exceptions being unmasked
duke@435 427 // since fstp_d can cause FPU stack underflow exceptions. Write it
duke@435 428 // into the on stack copy and then reload that to make sure that the
duke@435 429 // current and future values are correct.
never@739 430 __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
never@739 431 __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
duke@435 432
duke@435 433 // Save the FPU registers in de-opt-able form
never@739 434 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0));
never@739 435 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8));
never@739 436 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
never@739 437 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
never@739 438 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
never@739 439 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
never@739 440 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
never@739 441 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
duke@435 442 }
duke@435 443
duke@435 444 if (UseSSE >= 2) {
duke@435 445 // save XMM registers
duke@435 446 // XMM registers can contain float or double values, but this is not known here,
duke@435 447 // so always save them as doubles.
duke@435 448 // note that float values are _not_ converted automatically, so for float values
duke@435 449 // the second word contains only garbage data.
never@739 450 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0), xmm0);
never@739 451 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8), xmm1);
never@739 452 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
never@739 453 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
never@739 454 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
never@739 455 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
never@739 456 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
never@739 457 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
never@739 458 #ifdef _LP64
never@739 459 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
never@739 460 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
never@739 461 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
never@739 462 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
never@739 463 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
never@739 464 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
never@739 465 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
never@739 466 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
never@739 467 #endif // _LP64
duke@435 468 } else if (UseSSE == 1) {
duke@435 469 // save XMM registers as float because double not supported without SSE2
never@739 470 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0), xmm0);
never@739 471 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8), xmm1);
never@739 472 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
never@739 473 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
never@739 474 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
never@739 475 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
never@739 476 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
never@739 477 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
duke@435 478 }
duke@435 479 }
duke@435 480
duke@435 481 // FPU stack must be empty now
duke@435 482 __ verify_FPU(0, "save_live_registers");
duke@435 483
duke@435 484 return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
duke@435 485 }
duke@435 486
duke@435 487
duke@435 488 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
duke@435 489 if (restore_fpu_registers) {
duke@435 490 if (UseSSE >= 2) {
duke@435 491 // restore XMM registers
never@739 492 __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0));
never@739 493 __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8));
never@739 494 __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
never@739 495 __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
never@739 496 __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
never@739 497 __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
never@739 498 __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
never@739 499 __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
never@739 500 #ifdef _LP64
never@739 501 __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
never@739 502 __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
never@739 503 __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
never@739 504 __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
never@739 505 __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
never@739 506 __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
never@739 507 __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
never@739 508 __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
never@739 509 #endif // _LP64
duke@435 510 } else if (UseSSE == 1) {
duke@435 511 // restore XMM registers
never@739 512 __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0));
never@739 513 __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8));
never@739 514 __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
never@739 515 __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
never@739 516 __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
never@739 517 __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
never@739 518 __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
never@739 519 __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
duke@435 520 }
duke@435 521
duke@435 522 if (UseSSE < 2) {
never@739 523 __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
duke@435 524 } else {
duke@435 525 // check that FPU stack is really empty
duke@435 526 __ verify_FPU(0, "restore_live_registers");
duke@435 527 }
duke@435 528
duke@435 529 } else {
duke@435 530 // check that FPU stack is really empty
duke@435 531 __ verify_FPU(0, "restore_live_registers");
duke@435 532 }
duke@435 533
duke@435 534 #ifdef ASSERT
duke@435 535 {
duke@435 536 Label ok;
never@739 537 __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
duke@435 538 __ jcc(Assembler::equal, ok);
duke@435 539 __ stop("bad offsets in frame");
duke@435 540 __ bind(ok);
duke@435 541 }
never@739 542 #endif // ASSERT
duke@435 543
never@739 544 __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
duke@435 545 }
duke@435 546
duke@435 547
duke@435 548 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
duke@435 549 __ block_comment("restore_live_registers");
duke@435 550
duke@435 551 restore_fpu(sasm, restore_fpu_registers);
never@739 552 __ popa();
duke@435 553 }
duke@435 554
duke@435 555
duke@435 556 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
duke@435 557 __ block_comment("restore_live_registers_except_rax");
duke@435 558
duke@435 559 restore_fpu(sasm, restore_fpu_registers);
duke@435 560
never@739 561 #ifdef _LP64
never@739 562 __ movptr(r15, Address(rsp, 0));
never@739 563 __ movptr(r14, Address(rsp, wordSize));
never@739 564 __ movptr(r13, Address(rsp, 2 * wordSize));
never@739 565 __ movptr(r12, Address(rsp, 3 * wordSize));
never@739 566 __ movptr(r11, Address(rsp, 4 * wordSize));
never@739 567 __ movptr(r10, Address(rsp, 5 * wordSize));
never@739 568 __ movptr(r9, Address(rsp, 6 * wordSize));
never@739 569 __ movptr(r8, Address(rsp, 7 * wordSize));
never@739 570 __ movptr(rdi, Address(rsp, 8 * wordSize));
never@739 571 __ movptr(rsi, Address(rsp, 9 * wordSize));
never@739 572 __ movptr(rbp, Address(rsp, 10 * wordSize));
never@739 573 // skip rsp
never@739 574 __ movptr(rbx, Address(rsp, 12 * wordSize));
never@739 575 __ movptr(rdx, Address(rsp, 13 * wordSize));
never@739 576 __ movptr(rcx, Address(rsp, 14 * wordSize));
never@739 577
never@739 578 __ addptr(rsp, 16 * wordSize);
never@739 579 #else
never@739 580
never@739 581 __ pop(rdi);
never@739 582 __ pop(rsi);
never@739 583 __ pop(rbp);
never@739 584 __ pop(rbx); // skip this value
never@739 585 __ pop(rbx);
never@739 586 __ pop(rdx);
never@739 587 __ pop(rcx);
never@739 588 __ addptr(rsp, BytesPerWord);
never@739 589 #endif // _LP64
duke@435 590 }
duke@435 591
duke@435 592
duke@435 593 void Runtime1::initialize_pd() {
duke@435 594 // nothing to do
duke@435 595 }
duke@435 596
duke@435 597
duke@435 598 // target: the entry point of the method that creates and posts the exception oop
duke@435 599 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
duke@435 600
duke@435 601 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
duke@435 602 // preserve all registers
duke@435 603 int num_rt_args = has_argument ? 2 : 1;
duke@435 604 OopMap* oop_map = save_live_registers(sasm, num_rt_args);
duke@435 605
duke@435 606 // now all registers are saved and can be used freely
duke@435 607 // verify that no old value is used accidentally
duke@435 608 __ invalidate_registers(true, true, true, true, true, true);
duke@435 609
duke@435 610 // registers used by this stub
duke@435 611 const Register temp_reg = rbx;
duke@435 612
duke@435 613 // load argument for exception that is passed as an argument into the stub
duke@435 614 if (has_argument) {
never@739 615 #ifdef _LP64
never@739 616 __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
never@739 617 #else
never@739 618 __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
never@739 619 __ push(temp_reg);
never@739 620 #endif // _LP64
duke@435 621 }
duke@435 622 int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
duke@435 623
duke@435 624 OopMapSet* oop_maps = new OopMapSet();
duke@435 625 oop_maps->add_gc_map(call_offset, oop_map);
duke@435 626
duke@435 627 __ stop("should not reach here");
duke@435 628
duke@435 629 return oop_maps;
duke@435 630 }
duke@435 631
duke@435 632
duke@435 633 void Runtime1::generate_handle_exception(StubAssembler *sasm, OopMapSet* oop_maps, OopMap* oop_map, bool save_fpu_registers) {
duke@435 634 // incoming parameters
duke@435 635 const Register exception_oop = rax;
duke@435 636 const Register exception_pc = rdx;
duke@435 637 // other registers used in this stub
duke@435 638 const Register real_return_addr = rbx;
never@739 639 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
duke@435 640
duke@435 641 __ block_comment("generate_handle_exception");
duke@435 642
duke@435 643 #ifdef TIERED
duke@435 644 // C2 can leave the fpu stack dirty
duke@435 645 if (UseSSE < 2 ) {
duke@435 646 __ empty_FPU_stack();
duke@435 647 }
duke@435 648 #endif // TIERED
duke@435 649
duke@435 650 // verify that only rax, and rdx is valid at this time
duke@435 651 __ invalidate_registers(false, true, true, false, true, true);
duke@435 652 // verify that rax, contains a valid exception
duke@435 653 __ verify_not_null_oop(exception_oop);
duke@435 654
duke@435 655 // load address of JavaThread object for thread-local data
never@739 656 NOT_LP64(__ get_thread(thread);)
duke@435 657
duke@435 658 #ifdef ASSERT
duke@435 659 // check that fields in JavaThread for exception oop and issuing pc are
duke@435 660 // empty before writing to them
duke@435 661 Label oop_empty;
never@739 662 __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
duke@435 663 __ jcc(Assembler::equal, oop_empty);
duke@435 664 __ stop("exception oop already set");
duke@435 665 __ bind(oop_empty);
duke@435 666
duke@435 667 Label pc_empty;
never@739 668 __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
duke@435 669 __ jcc(Assembler::equal, pc_empty);
duke@435 670 __ stop("exception pc already set");
duke@435 671 __ bind(pc_empty);
duke@435 672 #endif
duke@435 673
duke@435 674 // save exception oop and issuing pc into JavaThread
duke@435 675 // (exception handler will load it from here)
never@739 676 __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
never@739 677 __ movptr(Address(thread, JavaThread::exception_pc_offset()), exception_pc);
duke@435 678
duke@435 679 // save real return address (pc that called this stub)
never@739 680 __ movptr(real_return_addr, Address(rbp, 1*BytesPerWord));
never@739 681 __ movptr(Address(rsp, temp_1_off * VMRegImpl::stack_slot_size), real_return_addr);
duke@435 682
duke@435 683 // patch throwing pc into return address (has bci & oop map)
never@739 684 __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
duke@435 685
duke@435 686 // compute the exception handler.
duke@435 687 // the exception oop and the throwing pc are read from the fields in JavaThread
duke@435 688 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
duke@435 689 oop_maps->add_gc_map(call_offset, oop_map);
duke@435 690
twisti@1730 691 // rax,: handler address
duke@435 692 // will be the deopt blob if nmethod was deoptimized while we looked up
duke@435 693 // handler regardless of whether handler existed in the nmethod.
duke@435 694
duke@435 695 // only rax, is valid at this time, all other registers have been destroyed by the runtime call
duke@435 696 __ invalidate_registers(false, true, true, true, true, true);
duke@435 697
twisti@1730 698 #ifdef ASSERT
duke@435 699 // Do we have an exception handler in the nmethod?
duke@435 700 Label done;
never@739 701 __ testptr(rax, rax);
twisti@1730 702 __ jcc(Assembler::notZero, done);
twisti@1730 703 __ stop("no handler found");
twisti@1730 704 __ bind(done);
twisti@1730 705 #endif
duke@435 706
duke@435 707 // exception handler found
duke@435 708 // patch the return address -> the stub will directly return to the exception handler
never@739 709 __ movptr(Address(rbp, 1*BytesPerWord), rax);
duke@435 710
duke@435 711 // restore registers
duke@435 712 restore_live_registers(sasm, save_fpu_registers);
duke@435 713
duke@435 714 // return to exception handler
duke@435 715 __ leave();
duke@435 716 __ ret(0);
duke@435 717
duke@435 718 }
duke@435 719
duke@435 720
duke@435 721 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
duke@435 722 // incoming parameters
duke@435 723 const Register exception_oop = rax;
twisti@1730 724 // callee-saved copy of exception_oop during runtime call
twisti@1730 725 const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
duke@435 726 // other registers used in this stub
duke@435 727 const Register exception_pc = rdx;
duke@435 728 const Register handler_addr = rbx;
never@739 729 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
duke@435 730
duke@435 731 // verify that only rax, is valid at this time
duke@435 732 __ invalidate_registers(false, true, true, true, true, true);
duke@435 733
duke@435 734 #ifdef ASSERT
duke@435 735 // check that fields in JavaThread for exception oop and issuing pc are empty
never@739 736 NOT_LP64(__ get_thread(thread);)
duke@435 737 Label oop_empty;
never@739 738 __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
duke@435 739 __ jcc(Assembler::equal, oop_empty);
duke@435 740 __ stop("exception oop must be empty");
duke@435 741 __ bind(oop_empty);
duke@435 742
duke@435 743 Label pc_empty;
never@739 744 __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
duke@435 745 __ jcc(Assembler::equal, pc_empty);
duke@435 746 __ stop("exception pc must be empty");
duke@435 747 __ bind(pc_empty);
duke@435 748 #endif
duke@435 749
duke@435 750 // clear the FPU stack in case any FPU results are left behind
duke@435 751 __ empty_FPU_stack();
duke@435 752
twisti@1730 753 // save exception_oop in callee-saved register to preserve it during runtime calls
twisti@1730 754 __ verify_not_null_oop(exception_oop);
twisti@1730 755 __ movptr(exception_oop_callee_saved, exception_oop);
twisti@1730 756
twisti@1730 757 NOT_LP64(__ get_thread(thread);)
twisti@1730 758 // Get return address (is on top of stack after leave).
never@739 759 __ movptr(exception_pc, Address(rsp, 0));
duke@435 760
twisti@1730 761 // search the exception handler address of the caller (using the return address)
twisti@1730 762 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
twisti@1730 763 // rax: exception handler address of the caller
duke@435 764
twisti@1730 765 // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
twisti@1730 766 __ invalidate_registers(false, true, true, true, false, true);
duke@435 767
duke@435 768 // move result of call into correct register
never@739 769 __ movptr(handler_addr, rax);
duke@435 770
twisti@1730 771 // Restore exception oop to RAX (required convention of exception handler).
twisti@1730 772 __ movptr(exception_oop, exception_oop_callee_saved);
duke@435 773
twisti@1730 774 // verify that there is really a valid exception in rax
twisti@1730 775 __ verify_not_null_oop(exception_oop);
duke@435 776
duke@435 777 // get throwing pc (= return address).
duke@435 778 // rdx has been destroyed by the call, so it must be set again
duke@435 779 // the pop is also necessary to simulate the effect of a ret(0)
never@739 780 __ pop(exception_pc);
duke@435 781
twisti@1730 782 // Restore SP from BP if the exception PC is a MethodHandle call site.
twisti@1730 783 NOT_LP64(__ get_thread(thread);)
twisti@1803 784 __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
twisti@1919 785 __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
duke@435 786
duke@435 787 // continue at exception handler (return address removed)
duke@435 788 // note: do *not* remove arguments when unwinding the
duke@435 789 // activation since the caller assumes having
duke@435 790 // all arguments on the stack when entering the
duke@435 791 // runtime to determine the exception handler
duke@435 792 // (GC happens at call site with arguments!)
twisti@1730 793 // rax: exception oop
duke@435 794 // rdx: throwing pc
twisti@1730 795 // rbx: exception handler
duke@435 796 __ jmp(handler_addr);
duke@435 797 }
duke@435 798
duke@435 799
duke@435 800 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
duke@435 801 // use the maximum number of runtime-arguments here because it is difficult to
duke@435 802 // distinguish each RT-Call.
duke@435 803 // Note: This number affects also the RT-Call in generate_handle_exception because
duke@435 804 // the oop-map is shared for all calls.
duke@435 805 const int num_rt_args = 2; // thread + dummy
duke@435 806
duke@435 807 DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
duke@435 808 assert(deopt_blob != NULL, "deoptimization blob must have been created");
duke@435 809
duke@435 810 OopMap* oop_map = save_live_registers(sasm, num_rt_args);
duke@435 811
never@739 812 #ifdef _LP64
never@739 813 const Register thread = r15_thread;
never@739 814 // No need to worry about dummy
never@739 815 __ mov(c_rarg0, thread);
never@739 816 #else
never@739 817 __ push(rax); // push dummy
duke@435 818
duke@435 819 const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
duke@435 820 // push java thread (becomes first argument of C function)
duke@435 821 __ get_thread(thread);
never@739 822 __ push(thread);
never@739 823 #endif // _LP64
duke@435 824 __ set_last_Java_frame(thread, noreg, rbp, NULL);
duke@435 825 // do the call
duke@435 826 __ call(RuntimeAddress(target));
duke@435 827 OopMapSet* oop_maps = new OopMapSet();
duke@435 828 oop_maps->add_gc_map(__ offset(), oop_map);
duke@435 829 // verify callee-saved register
duke@435 830 #ifdef ASSERT
duke@435 831 guarantee(thread != rax, "change this code");
never@739 832 __ push(rax);
duke@435 833 { Label L;
duke@435 834 __ get_thread(rax);
never@739 835 __ cmpptr(thread, rax);
duke@435 836 __ jcc(Assembler::equal, L);
never@739 837 __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
duke@435 838 __ bind(L);
duke@435 839 }
never@739 840 __ pop(rax);
duke@435 841 #endif
duke@435 842 __ reset_last_Java_frame(thread, true, false);
never@739 843 #ifndef _LP64
never@739 844 __ pop(rcx); // discard thread arg
never@739 845 __ pop(rcx); // discard dummy
never@739 846 #endif // _LP64
duke@435 847
duke@435 848 // check for pending exceptions
duke@435 849 { Label L;
never@739 850 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 851 __ jcc(Assembler::equal, L);
duke@435 852 // exception pending => remove activation and forward to exception handler
duke@435 853
never@739 854 __ testptr(rax, rax); // have we deoptimized?
duke@435 855 __ jump_cc(Assembler::equal,
duke@435 856 RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
duke@435 857
duke@435 858 // the deopt blob expects exceptions in the special fields of
duke@435 859 // JavaThread, so copy and clear pending exception.
duke@435 860
duke@435 861 // load and clear pending exception
never@739 862 __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
xlu@947 863 __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
duke@435 864
duke@435 865 // check that there is really a valid exception
duke@435 866 __ verify_not_null_oop(rax);
duke@435 867
duke@435 868 // load throwing pc: this is the return address of the stub
never@739 869 __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
duke@435 870
duke@435 871 #ifdef ASSERT
duke@435 872 // check that fields in JavaThread for exception oop and issuing pc are empty
duke@435 873 Label oop_empty;
never@739 874 __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
duke@435 875 __ jcc(Assembler::equal, oop_empty);
duke@435 876 __ stop("exception oop must be empty");
duke@435 877 __ bind(oop_empty);
duke@435 878
duke@435 879 Label pc_empty;
never@739 880 __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
duke@435 881 __ jcc(Assembler::equal, pc_empty);
duke@435 882 __ stop("exception pc must be empty");
duke@435 883 __ bind(pc_empty);
duke@435 884 #endif
duke@435 885
duke@435 886 // store exception oop and throwing pc to JavaThread
never@739 887 __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
never@739 888 __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
duke@435 889
duke@435 890 restore_live_registers(sasm);
duke@435 891
duke@435 892 __ leave();
never@739 893 __ addptr(rsp, BytesPerWord); // remove return address from stack
duke@435 894
duke@435 895 // Forward the exception directly to deopt blob. We can blow no
duke@435 896 // registers and must leave throwing pc on the stack. A patch may
duke@435 897 // have values live in registers so the entry point with the
duke@435 898 // exception in tls.
duke@435 899 __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
duke@435 900
duke@435 901 __ bind(L);
duke@435 902 }
duke@435 903
duke@435 904
duke@435 905 // Runtime will return true if the nmethod has been deoptimized during
duke@435 906 // the patching process. In that case we must do a deopt reexecute instead.
duke@435 907
duke@435 908 Label reexecuteEntry, cont;
duke@435 909
never@739 910 __ testptr(rax, rax); // have we deoptimized?
duke@435 911 __ jcc(Assembler::equal, cont); // no
duke@435 912
duke@435 913 // Will reexecute. Proper return address is already on the stack we just restore
duke@435 914 // registers, pop all of our frame but the return address and jump to the deopt blob
duke@435 915 restore_live_registers(sasm);
duke@435 916 __ leave();
duke@435 917 __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
duke@435 918
duke@435 919 __ bind(cont);
duke@435 920 restore_live_registers(sasm);
duke@435 921 __ leave();
duke@435 922 __ ret(0);
duke@435 923
duke@435 924 return oop_maps;
duke@435 925
duke@435 926 }
duke@435 927
duke@435 928
duke@435 929 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
duke@435 930
duke@435 931 // for better readability
duke@435 932 const bool must_gc_arguments = true;
duke@435 933 const bool dont_gc_arguments = false;
duke@435 934
duke@435 935 // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
duke@435 936 bool save_fpu_registers = true;
duke@435 937
duke@435 938 // stub code & info for the different stubs
duke@435 939 OopMapSet* oop_maps = NULL;
duke@435 940 switch (id) {
duke@435 941 case forward_exception_id:
duke@435 942 {
duke@435 943 // we're handling an exception in the context of a compiled
duke@435 944 // frame. The registers have been saved in the standard
duke@435 945 // places. Perform an exception lookup in the caller and
duke@435 946 // dispatch to the handler if found. Otherwise unwind and
duke@435 947 // dispatch to the callers exception handler.
duke@435 948
never@739 949 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
duke@435 950 const Register exception_oop = rax;
duke@435 951 const Register exception_pc = rdx;
duke@435 952
duke@435 953 // load pending exception oop into rax,
never@739 954 __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
duke@435 955 // clear pending exception
xlu@947 956 __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
duke@435 957
duke@435 958 // load issuing PC (the return address for this stub) into rdx
never@739 959 __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
duke@435 960
duke@435 961 // make sure that the vm_results are cleared (may be unnecessary)
xlu@947 962 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
xlu@947 963 __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
duke@435 964
duke@435 965 // verify that that there is really a valid exception in rax,
duke@435 966 __ verify_not_null_oop(exception_oop);
duke@435 967
duke@435 968
duke@435 969 oop_maps = new OopMapSet();
duke@435 970 OopMap* oop_map = generate_oop_map(sasm, 1);
duke@435 971 generate_handle_exception(sasm, oop_maps, oop_map);
duke@435 972 __ stop("should not reach here");
duke@435 973 }
duke@435 974 break;
duke@435 975
duke@435 976 case new_instance_id:
duke@435 977 case fast_new_instance_id:
duke@435 978 case fast_new_instance_init_check_id:
duke@435 979 {
duke@435 980 Register klass = rdx; // Incoming
duke@435 981 Register obj = rax; // Result
duke@435 982
duke@435 983 if (id == new_instance_id) {
duke@435 984 __ set_info("new_instance", dont_gc_arguments);
duke@435 985 } else if (id == fast_new_instance_id) {
duke@435 986 __ set_info("fast new_instance", dont_gc_arguments);
duke@435 987 } else {
duke@435 988 assert(id == fast_new_instance_init_check_id, "bad StubID");
duke@435 989 __ set_info("fast new_instance init check", dont_gc_arguments);
duke@435 990 }
duke@435 991
duke@435 992 if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
duke@435 993 UseTLAB && FastTLABRefill) {
duke@435 994 Label slow_path;
duke@435 995 Register obj_size = rcx;
duke@435 996 Register t1 = rbx;
duke@435 997 Register t2 = rsi;
duke@435 998 assert_different_registers(klass, obj, obj_size, t1, t2);
duke@435 999
never@739 1000 __ push(rdi);
never@739 1001 __ push(rbx);
duke@435 1002
duke@435 1003 if (id == fast_new_instance_init_check_id) {
duke@435 1004 // make sure the klass is initialized
duke@435 1005 __ cmpl(Address(klass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
duke@435 1006 __ jcc(Assembler::notEqual, slow_path);
duke@435 1007 }
duke@435 1008
duke@435 1009 #ifdef ASSERT
duke@435 1010 // assert object can be fast path allocated
duke@435 1011 {
duke@435 1012 Label ok, not_ok;
duke@435 1013 __ movl(obj_size, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
duke@435 1014 __ cmpl(obj_size, 0); // make sure it's an instance (LH > 0)
duke@435 1015 __ jcc(Assembler::lessEqual, not_ok);
duke@435 1016 __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
duke@435 1017 __ jcc(Assembler::zero, ok);
duke@435 1018 __ bind(not_ok);
duke@435 1019 __ stop("assert(can be fast path allocated)");
duke@435 1020 __ should_not_reach_here();
duke@435 1021 __ bind(ok);
duke@435 1022 }
duke@435 1023 #endif // ASSERT
duke@435 1024
duke@435 1025 // if we got here then the TLAB allocation failed, so try
duke@435 1026 // refilling the TLAB or allocating directly from eden.
duke@435 1027 Label retry_tlab, try_eden;
duke@435 1028 __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass)
duke@435 1029
duke@435 1030 __ bind(retry_tlab);
duke@435 1031
never@739 1032 // get the instance size (size is postive so movl is fine for 64bit)
duke@435 1033 __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
duke@435 1034 __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
duke@435 1035 __ initialize_object(obj, klass, obj_size, 0, t1, t2);
duke@435 1036 __ verify_oop(obj);
never@739 1037 __ pop(rbx);
never@739 1038 __ pop(rdi);
duke@435 1039 __ ret(0);
duke@435 1040
duke@435 1041 __ bind(try_eden);
never@739 1042 // get the instance size (size is postive so movl is fine for 64bit)
duke@435 1043 __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
duke@435 1044 __ eden_allocate(obj, obj_size, 0, t1, slow_path);
duke@435 1045 __ initialize_object(obj, klass, obj_size, 0, t1, t2);
duke@435 1046 __ verify_oop(obj);
never@739 1047 __ pop(rbx);
never@739 1048 __ pop(rdi);
duke@435 1049 __ ret(0);
duke@435 1050
duke@435 1051 __ bind(slow_path);
never@739 1052 __ pop(rbx);
never@739 1053 __ pop(rdi);
duke@435 1054 }
duke@435 1055
duke@435 1056 __ enter();
duke@435 1057 OopMap* map = save_live_registers(sasm, 2);
duke@435 1058 int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
duke@435 1059 oop_maps = new OopMapSet();
duke@435 1060 oop_maps->add_gc_map(call_offset, map);
duke@435 1061 restore_live_registers_except_rax(sasm);
duke@435 1062 __ verify_oop(obj);
duke@435 1063 __ leave();
duke@435 1064 __ ret(0);
duke@435 1065
duke@435 1066 // rax,: new instance
duke@435 1067 }
duke@435 1068
duke@435 1069 break;
duke@435 1070
duke@435 1071 #ifdef TIERED
duke@435 1072 case counter_overflow_id:
duke@435 1073 {
duke@435 1074 Register bci = rax;
duke@435 1075 __ enter();
duke@435 1076 OopMap* map = save_live_registers(sasm, 2);
duke@435 1077 // Retrieve bci
duke@435 1078 __ movl(bci, Address(rbp, 2*BytesPerWord));
duke@435 1079 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci);
duke@435 1080 oop_maps = new OopMapSet();
duke@435 1081 oop_maps->add_gc_map(call_offset, map);
duke@435 1082 restore_live_registers(sasm);
duke@435 1083 __ leave();
duke@435 1084 __ ret(0);
duke@435 1085 }
duke@435 1086 break;
duke@435 1087 #endif // TIERED
duke@435 1088
duke@435 1089 case new_type_array_id:
duke@435 1090 case new_object_array_id:
duke@435 1091 {
duke@435 1092 Register length = rbx; // Incoming
duke@435 1093 Register klass = rdx; // Incoming
duke@435 1094 Register obj = rax; // Result
duke@435 1095
duke@435 1096 if (id == new_type_array_id) {
duke@435 1097 __ set_info("new_type_array", dont_gc_arguments);
duke@435 1098 } else {
duke@435 1099 __ set_info("new_object_array", dont_gc_arguments);
duke@435 1100 }
duke@435 1101
duke@435 1102 #ifdef ASSERT
duke@435 1103 // assert object type is really an array of the proper kind
duke@435 1104 {
duke@435 1105 Label ok;
duke@435 1106 Register t0 = obj;
duke@435 1107 __ movl(t0, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
duke@435 1108 __ sarl(t0, Klass::_lh_array_tag_shift);
duke@435 1109 int tag = ((id == new_type_array_id)
duke@435 1110 ? Klass::_lh_array_tag_type_value
duke@435 1111 : Klass::_lh_array_tag_obj_value);
duke@435 1112 __ cmpl(t0, tag);
duke@435 1113 __ jcc(Assembler::equal, ok);
duke@435 1114 __ stop("assert(is an array klass)");
duke@435 1115 __ should_not_reach_here();
duke@435 1116 __ bind(ok);
duke@435 1117 }
duke@435 1118 #endif // ASSERT
duke@435 1119
duke@435 1120 if (UseTLAB && FastTLABRefill) {
duke@435 1121 Register arr_size = rsi;
duke@435 1122 Register t1 = rcx; // must be rcx for use as shift count
duke@435 1123 Register t2 = rdi;
duke@435 1124 Label slow_path;
duke@435 1125 assert_different_registers(length, klass, obj, arr_size, t1, t2);
duke@435 1126
duke@435 1127 // check that array length is small enough for fast path.
duke@435 1128 __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
duke@435 1129 __ jcc(Assembler::above, slow_path);
duke@435 1130
duke@435 1131 // if we got here then the TLAB allocation failed, so try
duke@435 1132 // refilling the TLAB or allocating directly from eden.
duke@435 1133 Label retry_tlab, try_eden;
duke@435 1134 __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx, & rdx
duke@435 1135
duke@435 1136 __ bind(retry_tlab);
duke@435 1137
duke@435 1138 // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
never@739 1139 // since size is postive movl does right thing on 64bit
duke@435 1140 __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
never@739 1141 // since size is postive movl does right thing on 64bit
duke@435 1142 __ movl(arr_size, length);
duke@435 1143 assert(t1 == rcx, "fixed register usage");
never@739 1144 __ shlptr(arr_size /* by t1=rcx, mod 32 */);
never@739 1145 __ shrptr(t1, Klass::_lh_header_size_shift);
never@739 1146 __ andptr(t1, Klass::_lh_header_size_mask);
never@739 1147 __ addptr(arr_size, t1);
never@739 1148 __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
never@739 1149 __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
duke@435 1150
duke@435 1151 __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path); // preserves arr_size
duke@435 1152
duke@435 1153 __ initialize_header(obj, klass, length, t1, t2);
duke@435 1154 __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
duke@435 1155 assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
duke@435 1156 assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
never@739 1157 __ andptr(t1, Klass::_lh_header_size_mask);
never@739 1158 __ subptr(arr_size, t1); // body length
never@739 1159 __ addptr(t1, obj); // body start
duke@435 1160 __ initialize_body(t1, arr_size, 0, t2);
duke@435 1161 __ verify_oop(obj);
duke@435 1162 __ ret(0);
duke@435 1163
duke@435 1164 __ bind(try_eden);
duke@435 1165 // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
never@739 1166 // since size is postive movl does right thing on 64bit
duke@435 1167 __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
never@739 1168 // since size is postive movl does right thing on 64bit
duke@435 1169 __ movl(arr_size, length);
duke@435 1170 assert(t1 == rcx, "fixed register usage");
never@739 1171 __ shlptr(arr_size /* by t1=rcx, mod 32 */);
never@739 1172 __ shrptr(t1, Klass::_lh_header_size_shift);
never@739 1173 __ andptr(t1, Klass::_lh_header_size_mask);
never@739 1174 __ addptr(arr_size, t1);
never@739 1175 __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
never@739 1176 __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
duke@435 1177
duke@435 1178 __ eden_allocate(obj, arr_size, 0, t1, slow_path); // preserves arr_size
duke@435 1179
duke@435 1180 __ initialize_header(obj, klass, length, t1, t2);
duke@435 1181 __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
duke@435 1182 assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
duke@435 1183 assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
never@739 1184 __ andptr(t1, Klass::_lh_header_size_mask);
never@739 1185 __ subptr(arr_size, t1); // body length
never@739 1186 __ addptr(t1, obj); // body start
duke@435 1187 __ initialize_body(t1, arr_size, 0, t2);
duke@435 1188 __ verify_oop(obj);
duke@435 1189 __ ret(0);
duke@435 1190
duke@435 1191 __ bind(slow_path);
duke@435 1192 }
duke@435 1193
duke@435 1194 __ enter();
duke@435 1195 OopMap* map = save_live_registers(sasm, 3);
duke@435 1196 int call_offset;
duke@435 1197 if (id == new_type_array_id) {
duke@435 1198 call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
duke@435 1199 } else {
duke@435 1200 call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
duke@435 1201 }
duke@435 1202
duke@435 1203 oop_maps = new OopMapSet();
duke@435 1204 oop_maps->add_gc_map(call_offset, map);
duke@435 1205 restore_live_registers_except_rax(sasm);
duke@435 1206
duke@435 1207 __ verify_oop(obj);
duke@435 1208 __ leave();
duke@435 1209 __ ret(0);
duke@435 1210
duke@435 1211 // rax,: new array
duke@435 1212 }
duke@435 1213 break;
duke@435 1214
duke@435 1215 case new_multi_array_id:
duke@435 1216 { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
duke@435 1217 // rax,: klass
duke@435 1218 // rbx,: rank
duke@435 1219 // rcx: address of 1st dimension
duke@435 1220 OopMap* map = save_live_registers(sasm, 4);
duke@435 1221 int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
duke@435 1222
duke@435 1223 oop_maps = new OopMapSet();
duke@435 1224 oop_maps->add_gc_map(call_offset, map);
duke@435 1225 restore_live_registers_except_rax(sasm);
duke@435 1226
duke@435 1227 // rax,: new multi array
duke@435 1228 __ verify_oop(rax);
duke@435 1229 }
duke@435 1230 break;
duke@435 1231
duke@435 1232 case register_finalizer_id:
duke@435 1233 {
duke@435 1234 __ set_info("register_finalizer", dont_gc_arguments);
duke@435 1235
never@739 1236 // This is called via call_runtime so the arguments
never@739 1237 // will be place in C abi locations
never@739 1238
never@739 1239 #ifdef _LP64
never@739 1240 __ verify_oop(c_rarg0);
never@739 1241 __ mov(rax, c_rarg0);
never@739 1242 #else
duke@435 1243 // The object is passed on the stack and we haven't pushed a
duke@435 1244 // frame yet so it's one work away from top of stack.
never@739 1245 __ movptr(rax, Address(rsp, 1 * BytesPerWord));
duke@435 1246 __ verify_oop(rax);
never@739 1247 #endif // _LP64
duke@435 1248
duke@435 1249 // load the klass and check the has finalizer flag
duke@435 1250 Label register_finalizer;
duke@435 1251 Register t = rsi;
never@739 1252 __ movptr(t, Address(rax, oopDesc::klass_offset_in_bytes()));
duke@435 1253 __ movl(t, Address(t, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
duke@435 1254 __ testl(t, JVM_ACC_HAS_FINALIZER);
duke@435 1255 __ jcc(Assembler::notZero, register_finalizer);
duke@435 1256 __ ret(0);
duke@435 1257
duke@435 1258 __ bind(register_finalizer);
duke@435 1259 __ enter();
duke@435 1260 OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
duke@435 1261 int call_offset = __ call_RT(noreg, noreg,
duke@435 1262 CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
duke@435 1263 oop_maps = new OopMapSet();
duke@435 1264 oop_maps->add_gc_map(call_offset, oop_map);
duke@435 1265
duke@435 1266 // Now restore all the live registers
duke@435 1267 restore_live_registers(sasm);
duke@435 1268
duke@435 1269 __ leave();
duke@435 1270 __ ret(0);
duke@435 1271 }
duke@435 1272 break;
duke@435 1273
duke@435 1274 case throw_range_check_failed_id:
duke@435 1275 { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
duke@435 1276 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
duke@435 1277 }
duke@435 1278 break;
duke@435 1279
duke@435 1280 case throw_index_exception_id:
duke@435 1281 { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
duke@435 1282 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
duke@435 1283 }
duke@435 1284 break;
duke@435 1285
duke@435 1286 case throw_div0_exception_id:
duke@435 1287 { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
duke@435 1288 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
duke@435 1289 }
duke@435 1290 break;
duke@435 1291
duke@435 1292 case throw_null_pointer_exception_id:
duke@435 1293 { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
duke@435 1294 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
duke@435 1295 }
duke@435 1296 break;
duke@435 1297
duke@435 1298 case handle_exception_nofpu_id:
duke@435 1299 save_fpu_registers = false;
duke@435 1300 // fall through
duke@435 1301 case handle_exception_id:
duke@435 1302 { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
duke@435 1303 oop_maps = new OopMapSet();
duke@435 1304 OopMap* oop_map = save_live_registers(sasm, 1, save_fpu_registers);
duke@435 1305 generate_handle_exception(sasm, oop_maps, oop_map, save_fpu_registers);
duke@435 1306 }
duke@435 1307 break;
duke@435 1308
duke@435 1309 case unwind_exception_id:
duke@435 1310 { __ set_info("unwind_exception", dont_gc_arguments);
duke@435 1311 // note: no stubframe since we are about to leave the current
duke@435 1312 // activation and we are calling a leaf VM function only.
duke@435 1313 generate_unwind_exception(sasm);
duke@435 1314 }
duke@435 1315 break;
duke@435 1316
duke@435 1317 case throw_array_store_exception_id:
duke@435 1318 { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
duke@435 1319 // tos + 0: link
duke@435 1320 // + 1: return address
duke@435 1321 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), false);
duke@435 1322 }
duke@435 1323 break;
duke@435 1324
duke@435 1325 case throw_class_cast_exception_id:
duke@435 1326 { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
duke@435 1327 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
duke@435 1328 }
duke@435 1329 break;
duke@435 1330
duke@435 1331 case throw_incompatible_class_change_error_id:
duke@435 1332 { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
duke@435 1333 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
duke@435 1334 }
duke@435 1335 break;
duke@435 1336
duke@435 1337 case slow_subtype_check_id:
duke@435 1338 {
jrose@1079 1339 // Typical calling sequence:
jrose@1079 1340 // __ push(klass_RInfo); // object klass or other subclass
jrose@1079 1341 // __ push(sup_k_RInfo); // array element klass or other superclass
jrose@1079 1342 // __ call(slow_subtype_check);
jrose@1079 1343 // Note that the subclass is pushed first, and is therefore deepest.
jrose@1079 1344 // Previous versions of this code reversed the names 'sub' and 'super'.
jrose@1079 1345 // This was operationally harmless but made the code unreadable.
duke@435 1346 enum layout {
never@739 1347 rax_off, SLOT2(raxH_off)
never@739 1348 rcx_off, SLOT2(rcxH_off)
never@739 1349 rsi_off, SLOT2(rsiH_off)
never@739 1350 rdi_off, SLOT2(rdiH_off)
never@739 1351 // saved_rbp_off, SLOT2(saved_rbpH_off)
never@739 1352 return_off, SLOT2(returnH_off)
jrose@1079 1353 sup_k_off, SLOT2(sup_kH_off)
jrose@1079 1354 klass_off, SLOT2(superH_off)
jrose@1079 1355 framesize,
jrose@1079 1356 result_off = klass_off // deepest argument is also the return value
duke@435 1357 };
duke@435 1358
duke@435 1359 __ set_info("slow_subtype_check", dont_gc_arguments);
never@739 1360 __ push(rdi);
never@739 1361 __ push(rsi);
never@739 1362 __ push(rcx);
never@739 1363 __ push(rax);
duke@435 1364
never@739 1365 // This is called by pushing args and not with C abi
jrose@1079 1366 __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
jrose@1079 1367 __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
duke@435 1368
duke@435 1369 Label miss;
jrose@1079 1370 __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
jrose@1079 1371
jrose@1079 1372 // fallthrough on success:
jrose@1079 1373 __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
never@739 1374 __ pop(rax);
never@739 1375 __ pop(rcx);
never@739 1376 __ pop(rsi);
never@739 1377 __ pop(rdi);
duke@435 1378 __ ret(0);
duke@435 1379
duke@435 1380 __ bind(miss);
jrose@1079 1381 __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
never@739 1382 __ pop(rax);
never@739 1383 __ pop(rcx);
never@739 1384 __ pop(rsi);
never@739 1385 __ pop(rdi);
duke@435 1386 __ ret(0);
duke@435 1387 }
duke@435 1388 break;
duke@435 1389
duke@435 1390 case monitorenter_nofpu_id:
duke@435 1391 save_fpu_registers = false;
duke@435 1392 // fall through
duke@435 1393 case monitorenter_id:
duke@435 1394 {
duke@435 1395 StubFrame f(sasm, "monitorenter", dont_gc_arguments);
duke@435 1396 OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
duke@435 1397
never@739 1398 // Called with store_parameter and not C abi
never@739 1399
duke@435 1400 f.load_argument(1, rax); // rax,: object
duke@435 1401 f.load_argument(0, rbx); // rbx,: lock address
duke@435 1402
duke@435 1403 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
duke@435 1404
duke@435 1405 oop_maps = new OopMapSet();
duke@435 1406 oop_maps->add_gc_map(call_offset, map);
duke@435 1407 restore_live_registers(sasm, save_fpu_registers);
duke@435 1408 }
duke@435 1409 break;
duke@435 1410
duke@435 1411 case monitorexit_nofpu_id:
duke@435 1412 save_fpu_registers = false;
duke@435 1413 // fall through
duke@435 1414 case monitorexit_id:
duke@435 1415 {
duke@435 1416 StubFrame f(sasm, "monitorexit", dont_gc_arguments);
duke@435 1417 OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
duke@435 1418
never@739 1419 // Called with store_parameter and not C abi
never@739 1420
duke@435 1421 f.load_argument(0, rax); // rax,: lock address
duke@435 1422
duke@435 1423 // note: really a leaf routine but must setup last java sp
duke@435 1424 // => use call_RT for now (speed can be improved by
duke@435 1425 // doing last java sp setup manually)
duke@435 1426 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
duke@435 1427
duke@435 1428 oop_maps = new OopMapSet();
duke@435 1429 oop_maps->add_gc_map(call_offset, map);
duke@435 1430 restore_live_registers(sasm, save_fpu_registers);
duke@435 1431
duke@435 1432 }
duke@435 1433 break;
duke@435 1434
duke@435 1435 case access_field_patching_id:
duke@435 1436 { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
duke@435 1437 // we should set up register map
duke@435 1438 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
duke@435 1439 }
duke@435 1440 break;
duke@435 1441
duke@435 1442 case load_klass_patching_id:
duke@435 1443 { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
duke@435 1444 // we should set up register map
duke@435 1445 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
duke@435 1446 }
duke@435 1447 break;
duke@435 1448
duke@435 1449 case jvmti_exception_throw_id:
duke@435 1450 { // rax,: exception oop
duke@435 1451 StubFrame f(sasm, "jvmti_exception_throw", dont_gc_arguments);
duke@435 1452 // Preserve all registers across this potentially blocking call
duke@435 1453 const int num_rt_args = 2; // thread, exception oop
duke@435 1454 OopMap* map = save_live_registers(sasm, num_rt_args);
duke@435 1455 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, Runtime1::post_jvmti_exception_throw), rax);
duke@435 1456 oop_maps = new OopMapSet();
duke@435 1457 oop_maps->add_gc_map(call_offset, map);
duke@435 1458 restore_live_registers(sasm);
duke@435 1459 }
duke@435 1460 break;
duke@435 1461
duke@435 1462 case dtrace_object_alloc_id:
duke@435 1463 { // rax,: object
duke@435 1464 StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
duke@435 1465 // we can't gc here so skip the oopmap but make sure that all
duke@435 1466 // the live registers get saved.
duke@435 1467 save_live_registers(sasm, 1);
duke@435 1468
never@739 1469 __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
duke@435 1470 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
never@739 1471 NOT_LP64(__ pop(rax));
duke@435 1472
duke@435 1473 restore_live_registers(sasm);
duke@435 1474 }
duke@435 1475 break;
duke@435 1476
duke@435 1477 case fpu2long_stub_id:
duke@435 1478 {
duke@435 1479 // rax, and rdx are destroyed, but should be free since the result is returned there
duke@435 1480 // preserve rsi,ecx
never@739 1481 __ push(rsi);
never@739 1482 __ push(rcx);
never@739 1483 LP64_ONLY(__ push(rdx);)
duke@435 1484
duke@435 1485 // check for NaN
duke@435 1486 Label return0, do_return, return_min_jlong, do_convert;
duke@435 1487
never@739 1488 Address value_high_word(rsp, wordSize + 4);
never@739 1489 Address value_low_word(rsp, wordSize);
never@739 1490 Address result_high_word(rsp, 3*wordSize + 4);
never@739 1491 Address result_low_word(rsp, 3*wordSize);
duke@435 1492
never@739 1493 __ subptr(rsp, 32); // more than enough on 32bit
duke@435 1494 __ fst_d(value_low_word);
duke@435 1495 __ movl(rax, value_high_word);
duke@435 1496 __ andl(rax, 0x7ff00000);
duke@435 1497 __ cmpl(rax, 0x7ff00000);
duke@435 1498 __ jcc(Assembler::notEqual, do_convert);
duke@435 1499 __ movl(rax, value_high_word);
duke@435 1500 __ andl(rax, 0xfffff);
duke@435 1501 __ orl(rax, value_low_word);
duke@435 1502 __ jcc(Assembler::notZero, return0);
duke@435 1503
duke@435 1504 __ bind(do_convert);
duke@435 1505 __ fnstcw(Address(rsp, 0));
never@739 1506 __ movzwl(rax, Address(rsp, 0));
duke@435 1507 __ orl(rax, 0xc00);
duke@435 1508 __ movw(Address(rsp, 2), rax);
duke@435 1509 __ fldcw(Address(rsp, 2));
duke@435 1510 __ fwait();
duke@435 1511 __ fistp_d(result_low_word);
duke@435 1512 __ fldcw(Address(rsp, 0));
duke@435 1513 __ fwait();
never@739 1514 // This gets the entire long in rax on 64bit
never@739 1515 __ movptr(rax, result_low_word);
never@739 1516 // testing of high bits
duke@435 1517 __ movl(rdx, result_high_word);
never@739 1518 __ mov(rcx, rax);
duke@435 1519 // What the heck is the point of the next instruction???
duke@435 1520 __ xorl(rcx, 0x0);
duke@435 1521 __ movl(rsi, 0x80000000);
duke@435 1522 __ xorl(rsi, rdx);
duke@435 1523 __ orl(rcx, rsi);
duke@435 1524 __ jcc(Assembler::notEqual, do_return);
duke@435 1525 __ fldz();
duke@435 1526 __ fcomp_d(value_low_word);
duke@435 1527 __ fnstsw_ax();
never@739 1528 #ifdef _LP64
never@739 1529 __ testl(rax, 0x4100); // ZF & CF == 0
never@739 1530 __ jcc(Assembler::equal, return_min_jlong);
never@739 1531 #else
duke@435 1532 __ sahf();
duke@435 1533 __ jcc(Assembler::above, return_min_jlong);
never@739 1534 #endif // _LP64
duke@435 1535 // return max_jlong
never@739 1536 #ifndef _LP64
duke@435 1537 __ movl(rdx, 0x7fffffff);
duke@435 1538 __ movl(rax, 0xffffffff);
never@739 1539 #else
never@739 1540 __ mov64(rax, CONST64(0x7fffffffffffffff));
never@739 1541 #endif // _LP64
duke@435 1542 __ jmp(do_return);
duke@435 1543
duke@435 1544 __ bind(return_min_jlong);
never@739 1545 #ifndef _LP64
duke@435 1546 __ movl(rdx, 0x80000000);
duke@435 1547 __ xorl(rax, rax);
never@739 1548 #else
never@739 1549 __ mov64(rax, CONST64(0x8000000000000000));
never@739 1550 #endif // _LP64
duke@435 1551 __ jmp(do_return);
duke@435 1552
duke@435 1553 __ bind(return0);
duke@435 1554 __ fpop();
never@739 1555 #ifndef _LP64
never@739 1556 __ xorptr(rdx,rdx);
never@739 1557 __ xorptr(rax,rax);
never@739 1558 #else
never@739 1559 __ xorptr(rax, rax);
never@739 1560 #endif // _LP64
duke@435 1561
duke@435 1562 __ bind(do_return);
never@739 1563 __ addptr(rsp, 32);
never@739 1564 LP64_ONLY(__ pop(rdx);)
never@739 1565 __ pop(rcx);
never@739 1566 __ pop(rsi);
duke@435 1567 __ ret(0);
duke@435 1568 }
duke@435 1569 break;
duke@435 1570
ysr@777 1571 #ifndef SERIALGC
ysr@777 1572 case g1_pre_barrier_slow_id:
ysr@777 1573 {
ysr@777 1574 StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
ysr@777 1575 // arg0 : previous value of memory
ysr@777 1576
ysr@777 1577 BarrierSet* bs = Universe::heap()->barrier_set();
ysr@777 1578 if (bs->kind() != BarrierSet::G1SATBCTLogging) {
apetrusenko@797 1579 __ movptr(rax, (int)id);
ysr@777 1580 __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
ysr@777 1581 __ should_not_reach_here();
ysr@777 1582 break;
ysr@777 1583 }
apetrusenko@797 1584 __ push(rax);
apetrusenko@797 1585 __ push(rdx);
ysr@777 1586
ysr@777 1587 const Register pre_val = rax;
apetrusenko@797 1588 const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
ysr@777 1589 const Register tmp = rdx;
ysr@777 1590
apetrusenko@797 1591 NOT_LP64(__ get_thread(thread);)
ysr@777 1592
ysr@777 1593 Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 1594 PtrQueue::byte_offset_of_active()));
ysr@777 1595
ysr@777 1596 Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 1597 PtrQueue::byte_offset_of_index()));
ysr@777 1598 Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 1599 PtrQueue::byte_offset_of_buf()));
ysr@777 1600
ysr@777 1601
ysr@777 1602 Label done;
ysr@777 1603 Label runtime;
ysr@777 1604
ysr@777 1605 // Can we store original value in the thread's buffer?
ysr@777 1606
apetrusenko@797 1607 #ifdef _LP64
iveresov@1927 1608 __ movslq(tmp, queue_index);
apetrusenko@797 1609 __ cmpq(tmp, 0);
apetrusenko@797 1610 #else
ysr@777 1611 __ cmpl(queue_index, 0);
apetrusenko@797 1612 #endif
ysr@777 1613 __ jcc(Assembler::equal, runtime);
apetrusenko@797 1614 #ifdef _LP64
apetrusenko@797 1615 __ subq(tmp, wordSize);
apetrusenko@797 1616 __ movl(queue_index, tmp);
apetrusenko@797 1617 __ addq(tmp, buffer);
apetrusenko@797 1618 #else
ysr@777 1619 __ subl(queue_index, wordSize);
ysr@777 1620 __ movl(tmp, buffer);
ysr@777 1621 __ addl(tmp, queue_index);
apetrusenko@797 1622 #endif
apetrusenko@797 1623
ysr@777 1624 // prev_val (rax)
ysr@777 1625 f.load_argument(0, pre_val);
apetrusenko@797 1626 __ movptr(Address(tmp, 0), pre_val);
ysr@777 1627 __ jmp(done);
ysr@777 1628
ysr@777 1629 __ bind(runtime);
iveresov@1927 1630 __ push(rcx);
iveresov@1927 1631 #ifdef _LP64
iveresov@1927 1632 __ push(r8);
iveresov@1927 1633 __ push(r9);
iveresov@1927 1634 __ push(r10);
iveresov@1927 1635 __ push(r11);
iveresov@1927 1636 # ifndef _WIN64
iveresov@1927 1637 __ push(rdi);
iveresov@1927 1638 __ push(rsi);
iveresov@1927 1639 # endif
iveresov@1927 1640 #endif
ysr@777 1641 // load the pre-value
ysr@777 1642 f.load_argument(0, rcx);
ysr@777 1643 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
iveresov@1927 1644 #ifdef _LP64
iveresov@1927 1645 # ifndef _WIN64
iveresov@1927 1646 __ pop(rsi);
iveresov@1927 1647 __ pop(rdi);
iveresov@1927 1648 # endif
iveresov@1927 1649 __ pop(r11);
iveresov@1927 1650 __ pop(r10);
iveresov@1927 1651 __ pop(r9);
iveresov@1927 1652 __ pop(r8);
iveresov@1927 1653 #endif
apetrusenko@797 1654 __ pop(rcx);
iveresov@1927 1655 __ bind(done);
ysr@777 1656
apetrusenko@797 1657 __ pop(rdx);
apetrusenko@797 1658 __ pop(rax);
ysr@777 1659 }
ysr@777 1660 break;
ysr@777 1661
ysr@777 1662 case g1_post_barrier_slow_id:
ysr@777 1663 {
ysr@777 1664 StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
ysr@777 1665
ysr@777 1666
ysr@777 1667 // arg0: store_address
ysr@777 1668 Address store_addr(rbp, 2*BytesPerWord);
ysr@777 1669
ysr@777 1670 BarrierSet* bs = Universe::heap()->barrier_set();
ysr@777 1671 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
ysr@777 1672 Label done;
ysr@777 1673 Label runtime;
ysr@777 1674
ysr@777 1675 // At this point we know new_value is non-NULL and the new_value crosses regsion.
ysr@777 1676 // Must check to see if card is already dirty
ysr@777 1677
apetrusenko@797 1678 const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
ysr@777 1679
ysr@777 1680 Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 1681 PtrQueue::byte_offset_of_index()));
ysr@777 1682 Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 1683 PtrQueue::byte_offset_of_buf()));
ysr@777 1684
apetrusenko@797 1685 __ push(rax);
iveresov@1927 1686 __ push(rcx);
ysr@777 1687
apetrusenko@797 1688 NOT_LP64(__ get_thread(thread);)
apetrusenko@797 1689 ExternalAddress cardtable((address)ct->byte_map_base);
ysr@777 1690 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
ysr@777 1691
iveresov@1927 1692 const Register card_addr = rcx;
apetrusenko@797 1693 #ifdef _LP64
apetrusenko@797 1694 const Register tmp = rscratch1;
apetrusenko@797 1695 f.load_argument(0, card_addr);
apetrusenko@797 1696 __ shrq(card_addr, CardTableModRefBS::card_shift);
apetrusenko@797 1697 __ lea(tmp, cardtable);
apetrusenko@797 1698 // get the address of the card
apetrusenko@797 1699 __ addq(card_addr, tmp);
apetrusenko@797 1700 #else
iveresov@1927 1701 const Register card_index = rcx;
apetrusenko@797 1702 f.load_argument(0, card_index);
apetrusenko@797 1703 __ shrl(card_index, CardTableModRefBS::card_shift);
apetrusenko@797 1704
ysr@777 1705 Address index(noreg, card_index, Address::times_1);
ysr@777 1706 __ leal(card_addr, __ as_Address(ArrayAddress(cardtable, index)));
apetrusenko@797 1707 #endif
apetrusenko@797 1708
ysr@777 1709 __ cmpb(Address(card_addr, 0), 0);
ysr@777 1710 __ jcc(Assembler::equal, done);
ysr@777 1711
ysr@777 1712 // storing region crossing non-NULL, card is clean.
ysr@777 1713 // dirty card and log.
ysr@777 1714
ysr@777 1715 __ movb(Address(card_addr, 0), 0);
ysr@777 1716
ysr@777 1717 __ cmpl(queue_index, 0);
ysr@777 1718 __ jcc(Assembler::equal, runtime);
ysr@777 1719 __ subl(queue_index, wordSize);
ysr@777 1720
ysr@777 1721 const Register buffer_addr = rbx;
apetrusenko@797 1722 __ push(rbx);
ysr@777 1723
apetrusenko@797 1724 __ movptr(buffer_addr, buffer);
apetrusenko@797 1725
apetrusenko@797 1726 #ifdef _LP64
apetrusenko@797 1727 __ movslq(rscratch1, queue_index);
apetrusenko@797 1728 __ addptr(buffer_addr, rscratch1);
apetrusenko@797 1729 #else
apetrusenko@797 1730 __ addptr(buffer_addr, queue_index);
apetrusenko@797 1731 #endif
apetrusenko@797 1732 __ movptr(Address(buffer_addr, 0), card_addr);
apetrusenko@797 1733
apetrusenko@797 1734 __ pop(rbx);
ysr@777 1735 __ jmp(done);
ysr@777 1736
ysr@777 1737 __ bind(runtime);
iveresov@1927 1738 __ push(rdx);
iveresov@1927 1739 #ifdef _LP64
iveresov@1927 1740 __ push(r8);
iveresov@1927 1741 __ push(r9);
iveresov@1927 1742 __ push(r10);
iveresov@1927 1743 __ push(r11);
iveresov@1927 1744 # ifndef _WIN64
iveresov@1927 1745 __ push(rdi);
iveresov@1927 1746 __ push(rsi);
iveresov@1927 1747 # endif
iveresov@1927 1748 #endif
ysr@777 1749 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
iveresov@1927 1750 #ifdef _LP64
iveresov@1927 1751 # ifndef _WIN64
iveresov@1927 1752 __ pop(rsi);
iveresov@1927 1753 __ pop(rdi);
iveresov@1927 1754 # endif
iveresov@1927 1755 __ pop(r11);
iveresov@1927 1756 __ pop(r10);
iveresov@1927 1757 __ pop(r9);
iveresov@1927 1758 __ pop(r8);
iveresov@1927 1759 #endif
iveresov@1927 1760 __ pop(rdx);
iveresov@1927 1761 __ bind(done);
ysr@777 1762
iveresov@1927 1763 __ pop(rcx);
apetrusenko@797 1764 __ pop(rax);
ysr@777 1765
ysr@777 1766 }
ysr@777 1767 break;
ysr@777 1768 #endif // !SERIALGC
ysr@777 1769
duke@435 1770 default:
duke@435 1771 { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
never@739 1772 __ movptr(rax, (int)id);
duke@435 1773 __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
duke@435 1774 __ should_not_reach_here();
duke@435 1775 }
duke@435 1776 break;
duke@435 1777 }
duke@435 1778 return oop_maps;
duke@435 1779 }
duke@435 1780
duke@435 1781 #undef __
bobv@2036 1782
bobv@2036 1783 const char *Runtime1::pd_name_for_address(address entry) {
bobv@2036 1784 return "<unknown function>";
bobv@2036 1785 }

mercurial