src/cpu/x86/vm/c1_Runtime1_x86.cpp

Tue, 03 Aug 2010 08:13:38 -0400

author
bobv
date
Tue, 03 Aug 2010 08:13:38 -0400
changeset 2036
126ea7725993
parent 1934
e9ff18c4ace7
child 2138
d5d065957597
permissions
-rw-r--r--

6953477: Increase portability and flexibility of building Hotspot
Summary: A collection of portability improvements including shared code support for PPC, ARM platforms, software floating point, cross compilation support and improvements in error crash detail.
Reviewed-by: phh, never, coleenp, dholmes

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_Runtime1_x86.cpp.incl"
    29 // Implementation of StubAssembler
    31 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, int args_size) {
    32   // setup registers
    33   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
    34   assert(!(oop_result1->is_valid() || oop_result2->is_valid()) || oop_result1 != oop_result2, "registers must be different");
    35   assert(oop_result1 != thread && oop_result2 != thread, "registers must be different");
    36   assert(args_size >= 0, "illegal args_size");
    38 #ifdef _LP64
    39   mov(c_rarg0, thread);
    40   set_num_rt_args(0); // Nothing on stack
    41 #else
    42   set_num_rt_args(1 + args_size);
    44   // push java thread (becomes first argument of C function)
    45   get_thread(thread);
    46   push(thread);
    47 #endif // _LP64
    49   set_last_Java_frame(thread, noreg, rbp, NULL);
    51   // do the call
    52   call(RuntimeAddress(entry));
    53   int call_offset = offset();
    54   // verify callee-saved register
    55 #ifdef ASSERT
    56   guarantee(thread != rax, "change this code");
    57   push(rax);
    58   { Label L;
    59     get_thread(rax);
    60     cmpptr(thread, rax);
    61     jcc(Assembler::equal, L);
    62     int3();
    63     stop("StubAssembler::call_RT: rdi not callee saved?");
    64     bind(L);
    65   }
    66   pop(rax);
    67 #endif
    68   reset_last_Java_frame(thread, true, false);
    70   // discard thread and arguments
    71   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
    73   // check for pending exceptions
    74   { Label L;
    75     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
    76     jcc(Assembler::equal, L);
    77     // exception pending => remove activation and forward to exception handler
    78     movptr(rax, Address(thread, Thread::pending_exception_offset()));
    79     // make sure that the vm_results are cleared
    80     if (oop_result1->is_valid()) {
    81       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
    82     }
    83     if (oop_result2->is_valid()) {
    84       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
    85     }
    86     if (frame_size() == no_frame_size) {
    87       leave();
    88       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
    89     } else if (_stub_id == Runtime1::forward_exception_id) {
    90       should_not_reach_here();
    91     } else {
    92       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
    93     }
    94     bind(L);
    95   }
    96   // get oop results if there are any and reset the values in the thread
    97   if (oop_result1->is_valid()) {
    98     movptr(oop_result1, Address(thread, JavaThread::vm_result_offset()));
    99     movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
   100     verify_oop(oop_result1);
   101   }
   102   if (oop_result2->is_valid()) {
   103     movptr(oop_result2, Address(thread, JavaThread::vm_result_2_offset()));
   104     movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
   105     verify_oop(oop_result2);
   106   }
   107   return call_offset;
   108 }
   111 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1) {
   112 #ifdef _LP64
   113   mov(c_rarg1, arg1);
   114 #else
   115   push(arg1);
   116 #endif // _LP64
   117   return call_RT(oop_result1, oop_result2, entry, 1);
   118 }
   121 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2) {
   122 #ifdef _LP64
   123   if (c_rarg1 == arg2) {
   124     if (c_rarg2 == arg1) {
   125       xchgq(arg1, arg2);
   126     } else {
   127       mov(c_rarg2, arg2);
   128       mov(c_rarg1, arg1);
   129     }
   130   } else {
   131     mov(c_rarg1, arg1);
   132     mov(c_rarg2, arg2);
   133   }
   134 #else
   135   push(arg2);
   136   push(arg1);
   137 #endif // _LP64
   138   return call_RT(oop_result1, oop_result2, entry, 2);
   139 }
   142 int StubAssembler::call_RT(Register oop_result1, Register oop_result2, address entry, Register arg1, Register arg2, Register arg3) {
   143 #ifdef _LP64
   144   // if there is any conflict use the stack
   145   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
   146       arg2 == c_rarg1 || arg1 == c_rarg3 ||
   147       arg3 == c_rarg1 || arg1 == c_rarg2) {
   148     push(arg3);
   149     push(arg2);
   150     push(arg1);
   151     pop(c_rarg1);
   152     pop(c_rarg2);
   153     pop(c_rarg3);
   154   } else {
   155     mov(c_rarg1, arg1);
   156     mov(c_rarg2, arg2);
   157     mov(c_rarg3, arg3);
   158   }
   159 #else
   160   push(arg3);
   161   push(arg2);
   162   push(arg1);
   163 #endif // _LP64
   164   return call_RT(oop_result1, oop_result2, entry, 3);
   165 }
   168 // Implementation of StubFrame
   170 class StubFrame: public StackObj {
   171  private:
   172   StubAssembler* _sasm;
   174  public:
   175   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
   176   void load_argument(int offset_in_words, Register reg);
   178   ~StubFrame();
   179 };
   182 #define __ _sasm->
   184 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
   185   _sasm = sasm;
   186   __ set_info(name, must_gc_arguments);
   187   __ enter();
   188 }
   190 // load parameters that were stored with LIR_Assembler::store_parameter
   191 // Note: offsets for store_parameter and load_argument must match
   192 void StubFrame::load_argument(int offset_in_words, Register reg) {
   193   // rbp, + 0: link
   194   //     + 1: return address
   195   //     + 2: argument with offset 0
   196   //     + 3: argument with offset 1
   197   //     + 4: ...
   199   __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
   200 }
   203 StubFrame::~StubFrame() {
   204   __ leave();
   205   __ ret(0);
   206 }
   208 #undef __
   211 // Implementation of Runtime1
   213 #define __ sasm->
   215 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
   216 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
   218 // Stack layout for saving/restoring  all the registers needed during a runtime
   219 // call (this includes deoptimization)
   220 // Note: note that users of this frame may well have arguments to some runtime
   221 // while these values are on the stack. These positions neglect those arguments
   222 // but the code in save_live_registers will take the argument count into
   223 // account.
   224 //
   225 #ifdef _LP64
   226   #define SLOT2(x) x,
   227   #define SLOT_PER_WORD 2
   228 #else
   229   #define SLOT2(x)
   230   #define SLOT_PER_WORD 1
   231 #endif // _LP64
   233 enum reg_save_layout {
   234   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
   235   // happen and will assert if the stack size we create is misaligned
   236 #ifdef _LP64
   237   align_dummy_0, align_dummy_1,
   238 #endif // _LP64
   239   dummy1, SLOT2(dummy1H)                                                                    // 0, 4
   240   dummy2, SLOT2(dummy2H)                                                                    // 8, 12
   241   // Two temps to be used as needed by users of save/restore callee registers
   242   temp_2_off, SLOT2(temp_2H_off)                                                            // 16, 20
   243   temp_1_off, SLOT2(temp_1H_off)                                                            // 24, 28
   244   xmm_regs_as_doubles_off,                                                                  // 32
   245   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
   246   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
   247   // fpu_state_end_off is exclusive
   248   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
   249   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
   250   extra_space_offset,                                                                       // 360
   251 #ifdef _LP64
   252   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
   253   r14_off, r14H_off,                                                                        // 368, 372
   254   r13_off, r13H_off,                                                                        // 376, 380
   255   r12_off, r12H_off,                                                                        // 384, 388
   256   r11_off, r11H_off,                                                                        // 392, 396
   257   r10_off, r10H_off,                                                                        // 400, 404
   258   r9_off, r9H_off,                                                                          // 408, 412
   259   r8_off, r8H_off,                                                                          // 416, 420
   260   rdi_off, rdiH_off,                                                                        // 424, 428
   261 #else
   262   rdi_off = extra_space_offset,
   263 #endif // _LP64
   264   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
   265   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
   266   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
   267   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
   268   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
   269   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
   270   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
   271   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
   272   return_off, SLOT2(returnH_off)                                                            // 496, 500
   273   reg_save_frame_size,  // As noted: neglects any parameters to runtime                     // 504
   275 #ifdef _WIN64
   276   c_rarg0_off = rcx_off,
   277 #else
   278   c_rarg0_off = rdi_off,
   279 #endif // WIN64
   281   // equates
   283   // illegal instruction handler
   284   continue_dest_off = temp_1_off,
   286   // deoptimization equates
   287   fp0_off = float_regs_as_doubles_off, // slot for java float/double return value
   288   xmm0_off = xmm_regs_as_doubles_off,  // slot for java float/double return value
   289   deopt_type = temp_2_off,             // slot for type of deopt in progress
   290   ret_type = temp_1_off                // slot for return type
   291 };
   295 // Save off registers which might be killed by calls into the runtime.
   296 // Tries to smart of about FP registers.  In particular we separate
   297 // saving and describing the FPU registers for deoptimization since we
   298 // have to save the FPU registers twice if we describe them and on P4
   299 // saving FPU registers which don't contain anything appears
   300 // expensive.  The deopt blob is the only thing which needs to
   301 // describe FPU registers.  In all other cases it should be sufficient
   302 // to simply save their current value.
   304 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
   305                                 bool save_fpu_registers = true) {
   307   // In 64bit all the args are in regs so there are no additional stack slots
   308   LP64_ONLY(num_rt_args = 0);
   309   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
   310   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
   311   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
   313   // record saved value locations in an OopMap
   314   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
   315   OopMap* map = new OopMap(frame_size_in_slots, 0);
   316   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
   317   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
   318   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
   319   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
   320   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
   321   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
   322 #ifdef _LP64
   323   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
   324   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
   325   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
   326   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
   327   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
   328   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
   329   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
   330   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
   332   // This is stupid but needed.
   333   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
   334   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
   335   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
   336   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
   337   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
   338   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
   340   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
   341   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
   342   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
   343   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
   344   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
   345   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
   346   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
   347   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
   348 #endif // _LP64
   350   if (save_fpu_registers) {
   351     if (UseSSE < 2) {
   352       int fpu_off = float_regs_as_doubles_off;
   353       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
   354         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
   355         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
   356         // %%% This is really a waste but we'll keep things as they were for now
   357         if (true) {
   358           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
   359         }
   360         fpu_off += 2;
   361       }
   362       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
   363     }
   365     if (UseSSE >= 2) {
   366       int xmm_off = xmm_regs_as_doubles_off;
   367       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
   368         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
   369         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
   370         // %%% This is really a waste but we'll keep things as they were for now
   371         if (true) {
   372           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
   373         }
   374         xmm_off += 2;
   375       }
   376       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
   378     } else if (UseSSE == 1) {
   379       int xmm_off = xmm_regs_as_doubles_off;
   380       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
   381         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
   382         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
   383         xmm_off += 2;
   384       }
   385       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
   386     }
   387   }
   389   return map;
   390 }
   392 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
   393                                    bool save_fpu_registers = true) {
   394   __ block_comment("save_live_registers");
   396   // 64bit passes the args in regs to the c++ runtime
   397   int frame_size_in_slots = reg_save_frame_size NOT_LP64(+ num_rt_args); // args + thread
   398   // frame_size = round_to(frame_size, 4);
   399   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
   401   __ pusha();         // integer registers
   403   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
   404   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
   406   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
   408 #ifdef ASSERT
   409   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
   410 #endif
   412   if (save_fpu_registers) {
   413     if (UseSSE < 2) {
   414       // save FPU stack
   415       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   416       __ fwait();
   418 #ifdef ASSERT
   419       Label ok;
   420       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
   421       __ jccb(Assembler::equal, ok);
   422       __ stop("corrupted control word detected");
   423       __ bind(ok);
   424 #endif
   426       // Reset the control word to guard against exceptions being unmasked
   427       // since fstp_d can cause FPU stack underflow exceptions.  Write it
   428       // into the on stack copy and then reload that to make sure that the
   429       // current and future values are correct.
   430       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
   431       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   433       // Save the FPU registers in de-opt-able form
   434       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   435       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   436       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   437       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   438       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   439       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   440       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   441       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   442     }
   444     if (UseSSE >= 2) {
   445       // save XMM registers
   446       // XMM registers can contain float or double values, but this is not known here,
   447       // so always save them as doubles.
   448       // note that float values are _not_ converted automatically, so for float values
   449       // the second word contains only garbage data.
   450       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
   451       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
   452       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
   453       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
   454       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
   455       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
   456       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
   457       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
   458 #ifdef _LP64
   459       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
   460       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
   461       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
   462       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
   463       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
   464       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
   465       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
   466       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
   467 #endif // _LP64
   468     } else if (UseSSE == 1) {
   469       // save XMM registers as float because double not supported without SSE2
   470       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
   471       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
   472       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
   473       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
   474       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
   475       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
   476       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
   477       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
   478     }
   479   }
   481   // FPU stack must be empty now
   482   __ verify_FPU(0, "save_live_registers");
   484   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
   485 }
   488 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
   489   if (restore_fpu_registers) {
   490     if (UseSSE >= 2) {
   491       // restore XMM registers
   492       __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   493       __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   494       __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   495       __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   496       __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   497       __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   498       __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   499       __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   500 #ifdef _LP64
   501       __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
   502       __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
   503       __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
   504       __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
   505       __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
   506       __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
   507       __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
   508       __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
   509 #endif // _LP64
   510     } else if (UseSSE == 1) {
   511       // restore XMM registers
   512       __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
   513       __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
   514       __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
   515       __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
   516       __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
   517       __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
   518       __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
   519       __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
   520     }
   522     if (UseSSE < 2) {
   523       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
   524     } else {
   525       // check that FPU stack is really empty
   526       __ verify_FPU(0, "restore_live_registers");
   527     }
   529   } else {
   530     // check that FPU stack is really empty
   531     __ verify_FPU(0, "restore_live_registers");
   532   }
   534 #ifdef ASSERT
   535   {
   536     Label ok;
   537     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
   538     __ jcc(Assembler::equal, ok);
   539     __ stop("bad offsets in frame");
   540     __ bind(ok);
   541   }
   542 #endif // ASSERT
   544   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
   545 }
   548 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
   549   __ block_comment("restore_live_registers");
   551   restore_fpu(sasm, restore_fpu_registers);
   552   __ popa();
   553 }
   556 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
   557   __ block_comment("restore_live_registers_except_rax");
   559   restore_fpu(sasm, restore_fpu_registers);
   561 #ifdef _LP64
   562   __ movptr(r15, Address(rsp, 0));
   563   __ movptr(r14, Address(rsp, wordSize));
   564   __ movptr(r13, Address(rsp, 2 * wordSize));
   565   __ movptr(r12, Address(rsp, 3 * wordSize));
   566   __ movptr(r11, Address(rsp, 4 * wordSize));
   567   __ movptr(r10, Address(rsp, 5 * wordSize));
   568   __ movptr(r9,  Address(rsp, 6 * wordSize));
   569   __ movptr(r8,  Address(rsp, 7 * wordSize));
   570   __ movptr(rdi, Address(rsp, 8 * wordSize));
   571   __ movptr(rsi, Address(rsp, 9 * wordSize));
   572   __ movptr(rbp, Address(rsp, 10 * wordSize));
   573   // skip rsp
   574   __ movptr(rbx, Address(rsp, 12 * wordSize));
   575   __ movptr(rdx, Address(rsp, 13 * wordSize));
   576   __ movptr(rcx, Address(rsp, 14 * wordSize));
   578   __ addptr(rsp, 16 * wordSize);
   579 #else
   581   __ pop(rdi);
   582   __ pop(rsi);
   583   __ pop(rbp);
   584   __ pop(rbx); // skip this value
   585   __ pop(rbx);
   586   __ pop(rdx);
   587   __ pop(rcx);
   588   __ addptr(rsp, BytesPerWord);
   589 #endif // _LP64
   590 }
   593 void Runtime1::initialize_pd() {
   594   // nothing to do
   595 }
   598 // target: the entry point of the method that creates and posts the exception oop
   599 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
   601 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
   602   // preserve all registers
   603   int num_rt_args = has_argument ? 2 : 1;
   604   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
   606   // now all registers are saved and can be used freely
   607   // verify that no old value is used accidentally
   608   __ invalidate_registers(true, true, true, true, true, true);
   610   // registers used by this stub
   611   const Register temp_reg = rbx;
   613   // load argument for exception that is passed as an argument into the stub
   614   if (has_argument) {
   615 #ifdef _LP64
   616     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
   617 #else
   618     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
   619     __ push(temp_reg);
   620 #endif // _LP64
   621   }
   622   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
   624   OopMapSet* oop_maps = new OopMapSet();
   625   oop_maps->add_gc_map(call_offset, oop_map);
   627   __ stop("should not reach here");
   629   return oop_maps;
   630 }
   633 void Runtime1::generate_handle_exception(StubAssembler *sasm, OopMapSet* oop_maps, OopMap* oop_map, bool save_fpu_registers) {
   634   // incoming parameters
   635   const Register exception_oop = rax;
   636   const Register exception_pc = rdx;
   637   // other registers used in this stub
   638   const Register real_return_addr = rbx;
   639   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   641   __ block_comment("generate_handle_exception");
   643 #ifdef TIERED
   644   // C2 can leave the fpu stack dirty
   645   if (UseSSE < 2 ) {
   646     __ empty_FPU_stack();
   647   }
   648 #endif // TIERED
   650   // verify that only rax, and rdx is valid at this time
   651   __ invalidate_registers(false, true, true, false, true, true);
   652   // verify that rax, contains a valid exception
   653   __ verify_not_null_oop(exception_oop);
   655   // load address of JavaThread object for thread-local data
   656   NOT_LP64(__ get_thread(thread);)
   658 #ifdef ASSERT
   659   // check that fields in JavaThread for exception oop and issuing pc are
   660   // empty before writing to them
   661   Label oop_empty;
   662   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
   663   __ jcc(Assembler::equal, oop_empty);
   664   __ stop("exception oop already set");
   665   __ bind(oop_empty);
   667   Label pc_empty;
   668   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
   669   __ jcc(Assembler::equal, pc_empty);
   670   __ stop("exception pc already set");
   671   __ bind(pc_empty);
   672 #endif
   674   // save exception oop and issuing pc into JavaThread
   675   // (exception handler will load it from here)
   676   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
   677   __ movptr(Address(thread, JavaThread::exception_pc_offset()), exception_pc);
   679   // save real return address (pc that called this stub)
   680   __ movptr(real_return_addr, Address(rbp, 1*BytesPerWord));
   681   __ movptr(Address(rsp, temp_1_off * VMRegImpl::stack_slot_size), real_return_addr);
   683   // patch throwing pc into return address (has bci & oop map)
   684   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
   686   // compute the exception handler.
   687   // the exception oop and the throwing pc are read from the fields in JavaThread
   688   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
   689   oop_maps->add_gc_map(call_offset, oop_map);
   691   // rax,: handler address
   692   //      will be the deopt blob if nmethod was deoptimized while we looked up
   693   //      handler regardless of whether handler existed in the nmethod.
   695   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
   696   __ invalidate_registers(false, true, true, true, true, true);
   698 #ifdef ASSERT
   699   // Do we have an exception handler in the nmethod?
   700   Label done;
   701   __ testptr(rax, rax);
   702   __ jcc(Assembler::notZero, done);
   703   __ stop("no handler found");
   704   __ bind(done);
   705 #endif
   707   // exception handler found
   708   // patch the return address -> the stub will directly return to the exception handler
   709   __ movptr(Address(rbp, 1*BytesPerWord), rax);
   711   // restore registers
   712   restore_live_registers(sasm, save_fpu_registers);
   714   // return to exception handler
   715   __ leave();
   716   __ ret(0);
   718 }
   721 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
   722   // incoming parameters
   723   const Register exception_oop = rax;
   724   // callee-saved copy of exception_oop during runtime call
   725   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
   726   // other registers used in this stub
   727   const Register exception_pc = rdx;
   728   const Register handler_addr = rbx;
   729   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   731   // verify that only rax, is valid at this time
   732   __ invalidate_registers(false, true, true, true, true, true);
   734 #ifdef ASSERT
   735   // check that fields in JavaThread for exception oop and issuing pc are empty
   736   NOT_LP64(__ get_thread(thread);)
   737   Label oop_empty;
   738   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
   739   __ jcc(Assembler::equal, oop_empty);
   740   __ stop("exception oop must be empty");
   741   __ bind(oop_empty);
   743   Label pc_empty;
   744   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
   745   __ jcc(Assembler::equal, pc_empty);
   746   __ stop("exception pc must be empty");
   747   __ bind(pc_empty);
   748 #endif
   750   // clear the FPU stack in case any FPU results are left behind
   751   __ empty_FPU_stack();
   753   // save exception_oop in callee-saved register to preserve it during runtime calls
   754   __ verify_not_null_oop(exception_oop);
   755   __ movptr(exception_oop_callee_saved, exception_oop);
   757   NOT_LP64(__ get_thread(thread);)
   758   // Get return address (is on top of stack after leave).
   759   __ movptr(exception_pc, Address(rsp, 0));
   761   // search the exception handler address of the caller (using the return address)
   762   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   763   // rax: exception handler address of the caller
   765   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
   766   __ invalidate_registers(false, true, true, true, false, true);
   768   // move result of call into correct register
   769   __ movptr(handler_addr, rax);
   771   // Restore exception oop to RAX (required convention of exception handler).
   772   __ movptr(exception_oop, exception_oop_callee_saved);
   774   // verify that there is really a valid exception in rax
   775   __ verify_not_null_oop(exception_oop);
   777   // get throwing pc (= return address).
   778   // rdx has been destroyed by the call, so it must be set again
   779   // the pop is also necessary to simulate the effect of a ret(0)
   780   __ pop(exception_pc);
   782   // Restore SP from BP if the exception PC is a MethodHandle call site.
   783   NOT_LP64(__ get_thread(thread);)
   784   __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
   785   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
   787   // continue at exception handler (return address removed)
   788   // note: do *not* remove arguments when unwinding the
   789   //       activation since the caller assumes having
   790   //       all arguments on the stack when entering the
   791   //       runtime to determine the exception handler
   792   //       (GC happens at call site with arguments!)
   793   // rax: exception oop
   794   // rdx: throwing pc
   795   // rbx: exception handler
   796   __ jmp(handler_addr);
   797 }
   800 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
   801   // use the maximum number of runtime-arguments here because it is difficult to
   802   // distinguish each RT-Call.
   803   // Note: This number affects also the RT-Call in generate_handle_exception because
   804   //       the oop-map is shared for all calls.
   805   const int num_rt_args = 2;  // thread + dummy
   807   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
   808   assert(deopt_blob != NULL, "deoptimization blob must have been created");
   810   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
   812 #ifdef _LP64
   813   const Register thread = r15_thread;
   814   // No need to worry about dummy
   815   __ mov(c_rarg0, thread);
   816 #else
   817   __ push(rax); // push dummy
   819   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
   820   // push java thread (becomes first argument of C function)
   821   __ get_thread(thread);
   822   __ push(thread);
   823 #endif // _LP64
   824   __ set_last_Java_frame(thread, noreg, rbp, NULL);
   825   // do the call
   826   __ call(RuntimeAddress(target));
   827   OopMapSet* oop_maps = new OopMapSet();
   828   oop_maps->add_gc_map(__ offset(), oop_map);
   829   // verify callee-saved register
   830 #ifdef ASSERT
   831   guarantee(thread != rax, "change this code");
   832   __ push(rax);
   833   { Label L;
   834     __ get_thread(rax);
   835     __ cmpptr(thread, rax);
   836     __ jcc(Assembler::equal, L);
   837     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
   838     __ bind(L);
   839   }
   840   __ pop(rax);
   841 #endif
   842   __ reset_last_Java_frame(thread, true, false);
   843 #ifndef _LP64
   844   __ pop(rcx); // discard thread arg
   845   __ pop(rcx); // discard dummy
   846 #endif // _LP64
   848   // check for pending exceptions
   849   { Label L;
   850     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   851     __ jcc(Assembler::equal, L);
   852     // exception pending => remove activation and forward to exception handler
   854     __ testptr(rax, rax);                                   // have we deoptimized?
   855     __ jump_cc(Assembler::equal,
   856                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
   858     // the deopt blob expects exceptions in the special fields of
   859     // JavaThread, so copy and clear pending exception.
   861     // load and clear pending exception
   862     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
   863     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   865     // check that there is really a valid exception
   866     __ verify_not_null_oop(rax);
   868     // load throwing pc: this is the return address of the stub
   869     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
   871 #ifdef ASSERT
   872     // check that fields in JavaThread for exception oop and issuing pc are empty
   873     Label oop_empty;
   874     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
   875     __ jcc(Assembler::equal, oop_empty);
   876     __ stop("exception oop must be empty");
   877     __ bind(oop_empty);
   879     Label pc_empty;
   880     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
   881     __ jcc(Assembler::equal, pc_empty);
   882     __ stop("exception pc must be empty");
   883     __ bind(pc_empty);
   884 #endif
   886     // store exception oop and throwing pc to JavaThread
   887     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
   888     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
   890     restore_live_registers(sasm);
   892     __ leave();
   893     __ addptr(rsp, BytesPerWord);  // remove return address from stack
   895     // Forward the exception directly to deopt blob. We can blow no
   896     // registers and must leave throwing pc on the stack.  A patch may
   897     // have values live in registers so the entry point with the
   898     // exception in tls.
   899     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
   901     __ bind(L);
   902   }
   905   // Runtime will return true if the nmethod has been deoptimized during
   906   // the patching process. In that case we must do a deopt reexecute instead.
   908   Label reexecuteEntry, cont;
   910   __ testptr(rax, rax);                                 // have we deoptimized?
   911   __ jcc(Assembler::equal, cont);                       // no
   913   // Will reexecute. Proper return address is already on the stack we just restore
   914   // registers, pop all of our frame but the return address and jump to the deopt blob
   915   restore_live_registers(sasm);
   916   __ leave();
   917   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
   919   __ bind(cont);
   920   restore_live_registers(sasm);
   921   __ leave();
   922   __ ret(0);
   924   return oop_maps;
   926 }
   929 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
   931   // for better readability
   932   const bool must_gc_arguments = true;
   933   const bool dont_gc_arguments = false;
   935   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
   936   bool save_fpu_registers = true;
   938   // stub code & info for the different stubs
   939   OopMapSet* oop_maps = NULL;
   940   switch (id) {
   941     case forward_exception_id:
   942       {
   943         // we're handling an exception in the context of a compiled
   944         // frame.  The registers have been saved in the standard
   945         // places.  Perform an exception lookup in the caller and
   946         // dispatch to the handler if found.  Otherwise unwind and
   947         // dispatch to the callers exception handler.
   949         const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
   950         const Register exception_oop = rax;
   951         const Register exception_pc = rdx;
   953         // load pending exception oop into rax,
   954         __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   955         // clear pending exception
   956         __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   958         // load issuing PC (the return address for this stub) into rdx
   959         __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
   961         // make sure that the vm_results are cleared (may be unnecessary)
   962         __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
   963         __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
   965         // verify that that there is really a valid exception in rax,
   966         __ verify_not_null_oop(exception_oop);
   969         oop_maps = new OopMapSet();
   970         OopMap* oop_map = generate_oop_map(sasm, 1);
   971         generate_handle_exception(sasm, oop_maps, oop_map);
   972         __ stop("should not reach here");
   973       }
   974       break;
   976     case new_instance_id:
   977     case fast_new_instance_id:
   978     case fast_new_instance_init_check_id:
   979       {
   980         Register klass = rdx; // Incoming
   981         Register obj   = rax; // Result
   983         if (id == new_instance_id) {
   984           __ set_info("new_instance", dont_gc_arguments);
   985         } else if (id == fast_new_instance_id) {
   986           __ set_info("fast new_instance", dont_gc_arguments);
   987         } else {
   988           assert(id == fast_new_instance_init_check_id, "bad StubID");
   989           __ set_info("fast new_instance init check", dont_gc_arguments);
   990         }
   992         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
   993             UseTLAB && FastTLABRefill) {
   994           Label slow_path;
   995           Register obj_size = rcx;
   996           Register t1       = rbx;
   997           Register t2       = rsi;
   998           assert_different_registers(klass, obj, obj_size, t1, t2);
  1000           __ push(rdi);
  1001           __ push(rbx);
  1003           if (id == fast_new_instance_init_check_id) {
  1004             // make sure the klass is initialized
  1005             __ cmpl(Address(klass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  1006             __ jcc(Assembler::notEqual, slow_path);
  1009 #ifdef ASSERT
  1010           // assert object can be fast path allocated
  1012             Label ok, not_ok;
  1013             __ movl(obj_size, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  1014             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
  1015             __ jcc(Assembler::lessEqual, not_ok);
  1016             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
  1017             __ jcc(Assembler::zero, ok);
  1018             __ bind(not_ok);
  1019             __ stop("assert(can be fast path allocated)");
  1020             __ should_not_reach_here();
  1021             __ bind(ok);
  1023 #endif // ASSERT
  1025           // if we got here then the TLAB allocation failed, so try
  1026           // refilling the TLAB or allocating directly from eden.
  1027           Label retry_tlab, try_eden;
  1028           __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass)
  1030           __ bind(retry_tlab);
  1032           // get the instance size (size is postive so movl is fine for 64bit)
  1033           __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1034           __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
  1035           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
  1036           __ verify_oop(obj);
  1037           __ pop(rbx);
  1038           __ pop(rdi);
  1039           __ ret(0);
  1041           __ bind(try_eden);
  1042           // get the instance size (size is postive so movl is fine for 64bit)
  1043           __ movl(obj_size, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1044           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
  1045           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
  1046           __ verify_oop(obj);
  1047           __ pop(rbx);
  1048           __ pop(rdi);
  1049           __ ret(0);
  1051           __ bind(slow_path);
  1052           __ pop(rbx);
  1053           __ pop(rdi);
  1056         __ enter();
  1057         OopMap* map = save_live_registers(sasm, 2);
  1058         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
  1059         oop_maps = new OopMapSet();
  1060         oop_maps->add_gc_map(call_offset, map);
  1061         restore_live_registers_except_rax(sasm);
  1062         __ verify_oop(obj);
  1063         __ leave();
  1064         __ ret(0);
  1066         // rax,: new instance
  1069       break;
  1071 #ifdef TIERED
  1072     case counter_overflow_id:
  1074         Register bci = rax;
  1075         __ enter();
  1076         OopMap* map = save_live_registers(sasm, 2);
  1077         // Retrieve bci
  1078         __ movl(bci, Address(rbp, 2*BytesPerWord));
  1079         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci);
  1080         oop_maps = new OopMapSet();
  1081         oop_maps->add_gc_map(call_offset, map);
  1082         restore_live_registers(sasm);
  1083         __ leave();
  1084         __ ret(0);
  1086       break;
  1087 #endif // TIERED
  1089     case new_type_array_id:
  1090     case new_object_array_id:
  1092         Register length   = rbx; // Incoming
  1093         Register klass    = rdx; // Incoming
  1094         Register obj      = rax; // Result
  1096         if (id == new_type_array_id) {
  1097           __ set_info("new_type_array", dont_gc_arguments);
  1098         } else {
  1099           __ set_info("new_object_array", dont_gc_arguments);
  1102 #ifdef ASSERT
  1103         // assert object type is really an array of the proper kind
  1105           Label ok;
  1106           Register t0 = obj;
  1107           __ movl(t0, Address(klass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  1108           __ sarl(t0, Klass::_lh_array_tag_shift);
  1109           int tag = ((id == new_type_array_id)
  1110                      ? Klass::_lh_array_tag_type_value
  1111                      : Klass::_lh_array_tag_obj_value);
  1112           __ cmpl(t0, tag);
  1113           __ jcc(Assembler::equal, ok);
  1114           __ stop("assert(is an array klass)");
  1115           __ should_not_reach_here();
  1116           __ bind(ok);
  1118 #endif // ASSERT
  1120         if (UseTLAB && FastTLABRefill) {
  1121           Register arr_size = rsi;
  1122           Register t1       = rcx;  // must be rcx for use as shift count
  1123           Register t2       = rdi;
  1124           Label slow_path;
  1125           assert_different_registers(length, klass, obj, arr_size, t1, t2);
  1127           // check that array length is small enough for fast path.
  1128           __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
  1129           __ jcc(Assembler::above, slow_path);
  1131           // if we got here then the TLAB allocation failed, so try
  1132           // refilling the TLAB or allocating directly from eden.
  1133           Label retry_tlab, try_eden;
  1134           __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx, & rdx
  1136           __ bind(retry_tlab);
  1138           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
  1139           // since size is postive movl does right thing on 64bit
  1140           __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1141           // since size is postive movl does right thing on 64bit
  1142           __ movl(arr_size, length);
  1143           assert(t1 == rcx, "fixed register usage");
  1144           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
  1145           __ shrptr(t1, Klass::_lh_header_size_shift);
  1146           __ andptr(t1, Klass::_lh_header_size_mask);
  1147           __ addptr(arr_size, t1);
  1148           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
  1149           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
  1151           __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
  1153           __ initialize_header(obj, klass, length, t1, t2);
  1154           __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
  1155           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
  1156           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
  1157           __ andptr(t1, Klass::_lh_header_size_mask);
  1158           __ subptr(arr_size, t1);  // body length
  1159           __ addptr(t1, obj);       // body start
  1160           __ initialize_body(t1, arr_size, 0, t2);
  1161           __ verify_oop(obj);
  1162           __ ret(0);
  1164           __ bind(try_eden);
  1165           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
  1166           // since size is postive movl does right thing on 64bit
  1167           __ movl(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes()));
  1168           // since size is postive movl does right thing on 64bit
  1169           __ movl(arr_size, length);
  1170           assert(t1 == rcx, "fixed register usage");
  1171           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
  1172           __ shrptr(t1, Klass::_lh_header_size_shift);
  1173           __ andptr(t1, Klass::_lh_header_size_mask);
  1174           __ addptr(arr_size, t1);
  1175           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
  1176           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
  1178           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
  1180           __ initialize_header(obj, klass, length, t1, t2);
  1181           __ movb(t1, Address(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes() + (Klass::_lh_header_size_shift / BitsPerByte)));
  1182           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
  1183           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
  1184           __ andptr(t1, Klass::_lh_header_size_mask);
  1185           __ subptr(arr_size, t1);  // body length
  1186           __ addptr(t1, obj);       // body start
  1187           __ initialize_body(t1, arr_size, 0, t2);
  1188           __ verify_oop(obj);
  1189           __ ret(0);
  1191           __ bind(slow_path);
  1194         __ enter();
  1195         OopMap* map = save_live_registers(sasm, 3);
  1196         int call_offset;
  1197         if (id == new_type_array_id) {
  1198           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
  1199         } else {
  1200           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
  1203         oop_maps = new OopMapSet();
  1204         oop_maps->add_gc_map(call_offset, map);
  1205         restore_live_registers_except_rax(sasm);
  1207         __ verify_oop(obj);
  1208         __ leave();
  1209         __ ret(0);
  1211         // rax,: new array
  1213       break;
  1215     case new_multi_array_id:
  1216       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
  1217         // rax,: klass
  1218         // rbx,: rank
  1219         // rcx: address of 1st dimension
  1220         OopMap* map = save_live_registers(sasm, 4);
  1221         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
  1223         oop_maps = new OopMapSet();
  1224         oop_maps->add_gc_map(call_offset, map);
  1225         restore_live_registers_except_rax(sasm);
  1227         // rax,: new multi array
  1228         __ verify_oop(rax);
  1230       break;
  1232     case register_finalizer_id:
  1234         __ set_info("register_finalizer", dont_gc_arguments);
  1236         // This is called via call_runtime so the arguments
  1237         // will be place in C abi locations
  1239 #ifdef _LP64
  1240         __ verify_oop(c_rarg0);
  1241         __ mov(rax, c_rarg0);
  1242 #else
  1243         // The object is passed on the stack and we haven't pushed a
  1244         // frame yet so it's one work away from top of stack.
  1245         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
  1246         __ verify_oop(rax);
  1247 #endif // _LP64
  1249         // load the klass and check the has finalizer flag
  1250         Label register_finalizer;
  1251         Register t = rsi;
  1252         __ movptr(t, Address(rax, oopDesc::klass_offset_in_bytes()));
  1253         __ movl(t, Address(t, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  1254         __ testl(t, JVM_ACC_HAS_FINALIZER);
  1255         __ jcc(Assembler::notZero, register_finalizer);
  1256         __ ret(0);
  1258         __ bind(register_finalizer);
  1259         __ enter();
  1260         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
  1261         int call_offset = __ call_RT(noreg, noreg,
  1262                                      CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
  1263         oop_maps = new OopMapSet();
  1264         oop_maps->add_gc_map(call_offset, oop_map);
  1266         // Now restore all the live registers
  1267         restore_live_registers(sasm);
  1269         __ leave();
  1270         __ ret(0);
  1272       break;
  1274     case throw_range_check_failed_id:
  1275       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
  1276         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
  1278       break;
  1280     case throw_index_exception_id:
  1281       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
  1282         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
  1284       break;
  1286     case throw_div0_exception_id:
  1287       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
  1288         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
  1290       break;
  1292     case throw_null_pointer_exception_id:
  1293       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
  1294         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
  1296       break;
  1298     case handle_exception_nofpu_id:
  1299       save_fpu_registers = false;
  1300       // fall through
  1301     case handle_exception_id:
  1302       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
  1303         oop_maps = new OopMapSet();
  1304         OopMap* oop_map = save_live_registers(sasm, 1, save_fpu_registers);
  1305         generate_handle_exception(sasm, oop_maps, oop_map, save_fpu_registers);
  1307       break;
  1309     case unwind_exception_id:
  1310       { __ set_info("unwind_exception", dont_gc_arguments);
  1311         // note: no stubframe since we are about to leave the current
  1312         //       activation and we are calling a leaf VM function only.
  1313         generate_unwind_exception(sasm);
  1315       break;
  1317     case throw_array_store_exception_id:
  1318       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
  1319         // tos + 0: link
  1320         //     + 1: return address
  1321         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), false);
  1323       break;
  1325     case throw_class_cast_exception_id:
  1326       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
  1327         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
  1329       break;
  1331     case throw_incompatible_class_change_error_id:
  1332       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
  1333         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
  1335       break;
  1337     case slow_subtype_check_id:
  1339         // Typical calling sequence:
  1340         // __ push(klass_RInfo);  // object klass or other subclass
  1341         // __ push(sup_k_RInfo);  // array element klass or other superclass
  1342         // __ call(slow_subtype_check);
  1343         // Note that the subclass is pushed first, and is therefore deepest.
  1344         // Previous versions of this code reversed the names 'sub' and 'super'.
  1345         // This was operationally harmless but made the code unreadable.
  1346         enum layout {
  1347           rax_off, SLOT2(raxH_off)
  1348           rcx_off, SLOT2(rcxH_off)
  1349           rsi_off, SLOT2(rsiH_off)
  1350           rdi_off, SLOT2(rdiH_off)
  1351           // saved_rbp_off, SLOT2(saved_rbpH_off)
  1352           return_off, SLOT2(returnH_off)
  1353           sup_k_off, SLOT2(sup_kH_off)
  1354           klass_off, SLOT2(superH_off)
  1355           framesize,
  1356           result_off = klass_off  // deepest argument is also the return value
  1357         };
  1359         __ set_info("slow_subtype_check", dont_gc_arguments);
  1360         __ push(rdi);
  1361         __ push(rsi);
  1362         __ push(rcx);
  1363         __ push(rax);
  1365         // This is called by pushing args and not with C abi
  1366         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
  1367         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
  1369         Label miss;
  1370         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
  1372         // fallthrough on success:
  1373         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
  1374         __ pop(rax);
  1375         __ pop(rcx);
  1376         __ pop(rsi);
  1377         __ pop(rdi);
  1378         __ ret(0);
  1380         __ bind(miss);
  1381         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
  1382         __ pop(rax);
  1383         __ pop(rcx);
  1384         __ pop(rsi);
  1385         __ pop(rdi);
  1386         __ ret(0);
  1388       break;
  1390     case monitorenter_nofpu_id:
  1391       save_fpu_registers = false;
  1392       // fall through
  1393     case monitorenter_id:
  1395         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
  1396         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
  1398         // Called with store_parameter and not C abi
  1400         f.load_argument(1, rax); // rax,: object
  1401         f.load_argument(0, rbx); // rbx,: lock address
  1403         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
  1405         oop_maps = new OopMapSet();
  1406         oop_maps->add_gc_map(call_offset, map);
  1407         restore_live_registers(sasm, save_fpu_registers);
  1409       break;
  1411     case monitorexit_nofpu_id:
  1412       save_fpu_registers = false;
  1413       // fall through
  1414     case monitorexit_id:
  1416         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
  1417         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
  1419         // Called with store_parameter and not C abi
  1421         f.load_argument(0, rax); // rax,: lock address
  1423         // note: really a leaf routine but must setup last java sp
  1424         //       => use call_RT for now (speed can be improved by
  1425         //       doing last java sp setup manually)
  1426         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
  1428         oop_maps = new OopMapSet();
  1429         oop_maps->add_gc_map(call_offset, map);
  1430         restore_live_registers(sasm, save_fpu_registers);
  1433       break;
  1435     case access_field_patching_id:
  1436       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
  1437         // we should set up register map
  1438         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
  1440       break;
  1442     case load_klass_patching_id:
  1443       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
  1444         // we should set up register map
  1445         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
  1447       break;
  1449     case jvmti_exception_throw_id:
  1450       { // rax,: exception oop
  1451         StubFrame f(sasm, "jvmti_exception_throw", dont_gc_arguments);
  1452         // Preserve all registers across this potentially blocking call
  1453         const int num_rt_args = 2;  // thread, exception oop
  1454         OopMap* map = save_live_registers(sasm, num_rt_args);
  1455         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, Runtime1::post_jvmti_exception_throw), rax);
  1456         oop_maps = new OopMapSet();
  1457         oop_maps->add_gc_map(call_offset, map);
  1458         restore_live_registers(sasm);
  1460       break;
  1462     case dtrace_object_alloc_id:
  1463       { // rax,: object
  1464         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
  1465         // we can't gc here so skip the oopmap but make sure that all
  1466         // the live registers get saved.
  1467         save_live_registers(sasm, 1);
  1469         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
  1470         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
  1471         NOT_LP64(__ pop(rax));
  1473         restore_live_registers(sasm);
  1475       break;
  1477     case fpu2long_stub_id:
  1479         // rax, and rdx are destroyed, but should be free since the result is returned there
  1480         // preserve rsi,ecx
  1481         __ push(rsi);
  1482         __ push(rcx);
  1483         LP64_ONLY(__ push(rdx);)
  1485         // check for NaN
  1486         Label return0, do_return, return_min_jlong, do_convert;
  1488         Address value_high_word(rsp, wordSize + 4);
  1489         Address value_low_word(rsp, wordSize);
  1490         Address result_high_word(rsp, 3*wordSize + 4);
  1491         Address result_low_word(rsp, 3*wordSize);
  1493         __ subptr(rsp, 32);                    // more than enough on 32bit
  1494         __ fst_d(value_low_word);
  1495         __ movl(rax, value_high_word);
  1496         __ andl(rax, 0x7ff00000);
  1497         __ cmpl(rax, 0x7ff00000);
  1498         __ jcc(Assembler::notEqual, do_convert);
  1499         __ movl(rax, value_high_word);
  1500         __ andl(rax, 0xfffff);
  1501         __ orl(rax, value_low_word);
  1502         __ jcc(Assembler::notZero, return0);
  1504         __ bind(do_convert);
  1505         __ fnstcw(Address(rsp, 0));
  1506         __ movzwl(rax, Address(rsp, 0));
  1507         __ orl(rax, 0xc00);
  1508         __ movw(Address(rsp, 2), rax);
  1509         __ fldcw(Address(rsp, 2));
  1510         __ fwait();
  1511         __ fistp_d(result_low_word);
  1512         __ fldcw(Address(rsp, 0));
  1513         __ fwait();
  1514         // This gets the entire long in rax on 64bit
  1515         __ movptr(rax, result_low_word);
  1516         // testing of high bits
  1517         __ movl(rdx, result_high_word);
  1518         __ mov(rcx, rax);
  1519         // What the heck is the point of the next instruction???
  1520         __ xorl(rcx, 0x0);
  1521         __ movl(rsi, 0x80000000);
  1522         __ xorl(rsi, rdx);
  1523         __ orl(rcx, rsi);
  1524         __ jcc(Assembler::notEqual, do_return);
  1525         __ fldz();
  1526         __ fcomp_d(value_low_word);
  1527         __ fnstsw_ax();
  1528 #ifdef _LP64
  1529         __ testl(rax, 0x4100);  // ZF & CF == 0
  1530         __ jcc(Assembler::equal, return_min_jlong);
  1531 #else
  1532         __ sahf();
  1533         __ jcc(Assembler::above, return_min_jlong);
  1534 #endif // _LP64
  1535         // return max_jlong
  1536 #ifndef _LP64
  1537         __ movl(rdx, 0x7fffffff);
  1538         __ movl(rax, 0xffffffff);
  1539 #else
  1540         __ mov64(rax, CONST64(0x7fffffffffffffff));
  1541 #endif // _LP64
  1542         __ jmp(do_return);
  1544         __ bind(return_min_jlong);
  1545 #ifndef _LP64
  1546         __ movl(rdx, 0x80000000);
  1547         __ xorl(rax, rax);
  1548 #else
  1549         __ mov64(rax, CONST64(0x8000000000000000));
  1550 #endif // _LP64
  1551         __ jmp(do_return);
  1553         __ bind(return0);
  1554         __ fpop();
  1555 #ifndef _LP64
  1556         __ xorptr(rdx,rdx);
  1557         __ xorptr(rax,rax);
  1558 #else
  1559         __ xorptr(rax, rax);
  1560 #endif // _LP64
  1562         __ bind(do_return);
  1563         __ addptr(rsp, 32);
  1564         LP64_ONLY(__ pop(rdx);)
  1565         __ pop(rcx);
  1566         __ pop(rsi);
  1567         __ ret(0);
  1569       break;
  1571 #ifndef SERIALGC
  1572     case g1_pre_barrier_slow_id:
  1574         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
  1575         // arg0 : previous value of memory
  1577         BarrierSet* bs = Universe::heap()->barrier_set();
  1578         if (bs->kind() != BarrierSet::G1SATBCTLogging) {
  1579           __ movptr(rax, (int)id);
  1580           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
  1581           __ should_not_reach_here();
  1582           break;
  1584         __ push(rax);
  1585         __ push(rdx);
  1587         const Register pre_val = rax;
  1588         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
  1589         const Register tmp = rdx;
  1591         NOT_LP64(__ get_thread(thread);)
  1593         Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1594                                              PtrQueue::byte_offset_of_active()));
  1596         Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1597                                              PtrQueue::byte_offset_of_index()));
  1598         Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1599                                         PtrQueue::byte_offset_of_buf()));
  1602         Label done;
  1603         Label runtime;
  1605         // Can we store original value in the thread's buffer?
  1607 #ifdef _LP64
  1608         __ movslq(tmp, queue_index);
  1609         __ cmpq(tmp, 0);
  1610 #else
  1611         __ cmpl(queue_index, 0);
  1612 #endif
  1613         __ jcc(Assembler::equal, runtime);
  1614 #ifdef _LP64
  1615         __ subq(tmp, wordSize);
  1616         __ movl(queue_index, tmp);
  1617         __ addq(tmp, buffer);
  1618 #else
  1619         __ subl(queue_index, wordSize);
  1620         __ movl(tmp, buffer);
  1621         __ addl(tmp, queue_index);
  1622 #endif
  1624         // prev_val (rax)
  1625         f.load_argument(0, pre_val);
  1626         __ movptr(Address(tmp, 0), pre_val);
  1627         __ jmp(done);
  1629         __ bind(runtime);
  1630         __ push(rcx);
  1631 #ifdef _LP64
  1632         __ push(r8);
  1633         __ push(r9);
  1634         __ push(r10);
  1635         __ push(r11);
  1636 #  ifndef _WIN64
  1637         __ push(rdi);
  1638         __ push(rsi);
  1639 #  endif
  1640 #endif
  1641         // load the pre-value
  1642         f.load_argument(0, rcx);
  1643         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
  1644 #ifdef _LP64
  1645 #  ifndef _WIN64
  1646         __ pop(rsi);
  1647         __ pop(rdi);
  1648 #  endif
  1649         __ pop(r11);
  1650         __ pop(r10);
  1651         __ pop(r9);
  1652         __ pop(r8);
  1653 #endif
  1654         __ pop(rcx);
  1655         __ bind(done);
  1657         __ pop(rdx);
  1658         __ pop(rax);
  1660       break;
  1662     case g1_post_barrier_slow_id:
  1664         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
  1667         // arg0: store_address
  1668         Address store_addr(rbp, 2*BytesPerWord);
  1670         BarrierSet* bs = Universe::heap()->barrier_set();
  1671         CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1672         Label done;
  1673         Label runtime;
  1675         // At this point we know new_value is non-NULL and the new_value crosses regsion.
  1676         // Must check to see if card is already dirty
  1678         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
  1680         Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1681                                              PtrQueue::byte_offset_of_index()));
  1682         Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1683                                         PtrQueue::byte_offset_of_buf()));
  1685         __ push(rax);
  1686         __ push(rcx);
  1688         NOT_LP64(__ get_thread(thread);)
  1689         ExternalAddress cardtable((address)ct->byte_map_base);
  1690         assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1692         const Register card_addr = rcx;
  1693 #ifdef _LP64
  1694         const Register tmp = rscratch1;
  1695         f.load_argument(0, card_addr);
  1696         __ shrq(card_addr, CardTableModRefBS::card_shift);
  1697         __ lea(tmp, cardtable);
  1698         // get the address of the card
  1699         __ addq(card_addr, tmp);
  1700 #else
  1701         const Register card_index = rcx;
  1702         f.load_argument(0, card_index);
  1703         __ shrl(card_index, CardTableModRefBS::card_shift);
  1705         Address index(noreg, card_index, Address::times_1);
  1706         __ leal(card_addr, __ as_Address(ArrayAddress(cardtable, index)));
  1707 #endif
  1709         __ cmpb(Address(card_addr, 0), 0);
  1710         __ jcc(Assembler::equal, done);
  1712         // storing region crossing non-NULL, card is clean.
  1713         // dirty card and log.
  1715         __ movb(Address(card_addr, 0), 0);
  1717         __ cmpl(queue_index, 0);
  1718         __ jcc(Assembler::equal, runtime);
  1719         __ subl(queue_index, wordSize);
  1721         const Register buffer_addr = rbx;
  1722         __ push(rbx);
  1724         __ movptr(buffer_addr, buffer);
  1726 #ifdef _LP64
  1727         __ movslq(rscratch1, queue_index);
  1728         __ addptr(buffer_addr, rscratch1);
  1729 #else
  1730         __ addptr(buffer_addr, queue_index);
  1731 #endif
  1732         __ movptr(Address(buffer_addr, 0), card_addr);
  1734         __ pop(rbx);
  1735         __ jmp(done);
  1737         __ bind(runtime);
  1738         __ push(rdx);
  1739 #ifdef _LP64
  1740         __ push(r8);
  1741         __ push(r9);
  1742         __ push(r10);
  1743         __ push(r11);
  1744 #  ifndef _WIN64
  1745         __ push(rdi);
  1746         __ push(rsi);
  1747 #  endif
  1748 #endif
  1749         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  1750 #ifdef _LP64
  1751 #  ifndef _WIN64
  1752         __ pop(rsi);
  1753         __ pop(rdi);
  1754 #  endif
  1755         __ pop(r11);
  1756         __ pop(r10);
  1757         __ pop(r9);
  1758         __ pop(r8);
  1759 #endif
  1760         __ pop(rdx);
  1761         __ bind(done);
  1763         __ pop(rcx);
  1764         __ pop(rax);
  1767       break;
  1768 #endif // !SERIALGC
  1770     default:
  1771       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
  1772         __ movptr(rax, (int)id);
  1773         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
  1774         __ should_not_reach_here();
  1776       break;
  1778   return oop_maps;
  1781 #undef __
  1783 const char *Runtime1::pd_name_for_address(address entry) {
  1784   return "<unknown function>";

mercurial