src/share/vm/opto/type.hpp

Wed, 23 Nov 2016 23:01:34 -0800

author
shshahma
date
Wed, 23 Nov 2016 23:01:34 -0800
changeset 8653
0ffee573412b
parent 8646
88235cdca8d7
child 8656
7ca49bca3c2a
child 8940
eb9e617d6f64
permissions
-rw-r--r--

8140309: [REDO] failed: no mismatched stores, except on raw memory: StoreB StoreI
Summary: Mismatched stores on same slice possible with Unsafe.Put*Unaligned methods
Reviewed-by: kvn, thartmann

duke@435 1 /*
coleenp@5614 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_TYPE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_TYPE_HPP
stefank@2314 27
stefank@2314 28 #include "libadt/port.hpp"
stefank@2314 29 #include "opto/adlcVMDeps.hpp"
stefank@2314 30 #include "runtime/handles.hpp"
stefank@2314 31
duke@435 32 // Portions of code courtesy of Clifford Click
duke@435 33
duke@435 34 // Optimization - Graph Style
duke@435 35
duke@435 36
duke@435 37 // This class defines a Type lattice. The lattice is used in the constant
duke@435 38 // propagation algorithms, and for some type-checking of the iloc code.
duke@435 39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
duke@435 40 // float & double precision constants, sets of data-labels and code-labels.
duke@435 41 // The complete lattice is described below. Subtypes have no relationship to
duke@435 42 // up or down in the lattice; that is entirely determined by the behavior of
duke@435 43 // the MEET/JOIN functions.
duke@435 44
duke@435 45 class Dict;
duke@435 46 class Type;
duke@435 47 class TypeD;
duke@435 48 class TypeF;
duke@435 49 class TypeInt;
duke@435 50 class TypeLong;
roland@4159 51 class TypeNarrowPtr;
roland@4159 52 class TypeNarrowOop;
roland@4159 53 class TypeNarrowKlass;
duke@435 54 class TypeAry;
duke@435 55 class TypeTuple;
kvn@3882 56 class TypeVect;
kvn@3882 57 class TypeVectS;
kvn@3882 58 class TypeVectD;
kvn@3882 59 class TypeVectX;
kvn@3882 60 class TypeVectY;
duke@435 61 class TypePtr;
duke@435 62 class TypeRawPtr;
duke@435 63 class TypeOopPtr;
duke@435 64 class TypeInstPtr;
duke@435 65 class TypeAryPtr;
roland@6043 66 class TypeKlassPtr;
coleenp@4037 67 class TypeMetadataPtr;
duke@435 68
duke@435 69 //------------------------------Type-------------------------------------------
duke@435 70 // Basic Type object, represents a set of primitive Values.
duke@435 71 // Types are hash-cons'd into a private class dictionary, so only one of each
duke@435 72 // different kind of Type exists. Types are never modified after creation, so
duke@435 73 // all their interesting fields are constant.
duke@435 74 class Type {
never@3138 75 friend class VMStructs;
never@3138 76
duke@435 77 public:
duke@435 78 enum TYPES {
duke@435 79 Bad=0, // Type check
duke@435 80 Control, // Control of code (not in lattice)
duke@435 81 Top, // Top of the lattice
duke@435 82 Int, // Integer range (lo-hi)
duke@435 83 Long, // Long integer range (lo-hi)
duke@435 84 Half, // Placeholder half of doubleword
coleenp@548 85 NarrowOop, // Compressed oop pointer
roland@4159 86 NarrowKlass, // Compressed klass pointer
duke@435 87
duke@435 88 Tuple, // Method signature or object layout
duke@435 89 Array, // Array types
kvn@3882 90 VectorS, // 32bit Vector types
kvn@3882 91 VectorD, // 64bit Vector types
kvn@3882 92 VectorX, // 128bit Vector types
kvn@3882 93 VectorY, // 256bit Vector types
duke@435 94
duke@435 95 AnyPtr, // Any old raw, klass, inst, or array pointer
duke@435 96 RawPtr, // Raw (non-oop) pointers
duke@435 97 OopPtr, // Any and all Java heap entities
duke@435 98 InstPtr, // Instance pointers (non-array objects)
duke@435 99 AryPtr, // Array pointers
coleenp@4037 100 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
coleenp@4037 101
coleenp@4037 102 MetadataPtr, // Generic metadata
duke@435 103 KlassPtr, // Klass pointers
duke@435 104
duke@435 105 Function, // Function signature
duke@435 106 Abio, // Abstract I/O
duke@435 107 Return_Address, // Subroutine return address
duke@435 108 Memory, // Abstract store
duke@435 109 FloatTop, // No float value
duke@435 110 FloatCon, // Floating point constant
duke@435 111 FloatBot, // Any float value
duke@435 112 DoubleTop, // No double value
duke@435 113 DoubleCon, // Double precision constant
duke@435 114 DoubleBot, // Any double value
duke@435 115 Bottom, // Bottom of lattice
duke@435 116 lastype // Bogus ending type (not in lattice)
duke@435 117 };
duke@435 118
duke@435 119 // Signal values for offsets from a base pointer
duke@435 120 enum OFFSET_SIGNALS {
duke@435 121 OffsetTop = -2000000000, // undefined offset
duke@435 122 OffsetBot = -2000000001 // any possible offset
duke@435 123 };
duke@435 124
duke@435 125 // Min and max WIDEN values.
duke@435 126 enum WIDEN {
duke@435 127 WidenMin = 0,
duke@435 128 WidenMax = 3
duke@435 129 };
duke@435 130
duke@435 131 private:
coleenp@4037 132 typedef struct {
coleenp@4037 133 const TYPES dual_type;
coleenp@4037 134 const BasicType basic_type;
coleenp@4037 135 const char* msg;
coleenp@4037 136 const bool isa_oop;
coleenp@4037 137 const int ideal_reg;
coleenp@4037 138 const relocInfo::relocType reloc;
coleenp@4037 139 } TypeInfo;
coleenp@4037 140
duke@435 141 // Dictionary of types shared among compilations.
duke@435 142 static Dict* _shared_type_dict;
coleenp@4037 143 static TypeInfo _type_info[];
duke@435 144
duke@435 145 static int uhash( const Type *const t );
duke@435 146 // Structural equality check. Assumes that cmp() has already compared
duke@435 147 // the _base types and thus knows it can cast 't' appropriately.
duke@435 148 virtual bool eq( const Type *t ) const;
duke@435 149
duke@435 150 // Top-level hash-table of types
duke@435 151 static Dict *type_dict() {
duke@435 152 return Compile::current()->type_dict();
duke@435 153 }
duke@435 154
duke@435 155 // DUAL operation: reflect around lattice centerline. Used instead of
duke@435 156 // join to ensure my lattice is symmetric up and down. Dual is computed
duke@435 157 // lazily, on demand, and cached in _dual.
duke@435 158 const Type *_dual; // Cached dual value
duke@435 159 // Table for efficient dualing of base types
duke@435 160 static const TYPES dual_type[lastype];
duke@435 161
roland@5991 162 #ifdef ASSERT
roland@5991 163 // One type is interface, the other is oop
roland@5991 164 virtual bool interface_vs_oop_helper(const Type *t) const;
roland@5991 165 #endif
roland@5991 166
roland@6313 167 const Type *meet_helper(const Type *t, bool include_speculative) const;
roland@6313 168
duke@435 169 protected:
duke@435 170 // Each class of type is also identified by its base.
duke@435 171 const TYPES _base; // Enum of Types type
duke@435 172
duke@435 173 Type( TYPES t ) : _dual(NULL), _base(t) {} // Simple types
duke@435 174 // ~Type(); // Use fast deallocation
duke@435 175 const Type *hashcons(); // Hash-cons the type
roland@6313 176 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
roland@6313 177 const Type *join_helper(const Type *t, bool include_speculative) const {
roland@6313 178 return dual()->meet_helper(t->dual(), include_speculative)->dual();
roland@6313 179 }
duke@435 180
duke@435 181 public:
duke@435 182
coleenp@5614 183 inline void* operator new( size_t x ) throw() {
duke@435 184 Compile* compile = Compile::current();
duke@435 185 compile->set_type_last_size(x);
duke@435 186 void *temp = compile->type_arena()->Amalloc_D(x);
duke@435 187 compile->set_type_hwm(temp);
duke@435 188 return temp;
duke@435 189 }
duke@435 190 inline void operator delete( void* ptr ) {
duke@435 191 Compile* compile = Compile::current();
duke@435 192 compile->type_arena()->Afree(ptr,compile->type_last_size());
duke@435 193 }
duke@435 194
duke@435 195 // Initialize the type system for a particular compilation.
duke@435 196 static void Initialize(Compile* compile);
duke@435 197
duke@435 198 // Initialize the types shared by all compilations.
duke@435 199 static void Initialize_shared(Compile* compile);
duke@435 200
duke@435 201 TYPES base() const {
duke@435 202 assert(_base > Bad && _base < lastype, "sanity");
duke@435 203 return _base;
duke@435 204 }
duke@435 205
duke@435 206 // Create a new hash-consd type
duke@435 207 static const Type *make(enum TYPES);
duke@435 208 // Test for equivalence of types
duke@435 209 static int cmp( const Type *const t1, const Type *const t2 );
duke@435 210 // Test for higher or equal in lattice
roland@6313 211 // Variant that drops the speculative part of the types
roland@6313 212 int higher_equal(const Type *t) const {
roland@6313 213 return !cmp(meet(t),t->remove_speculative());
roland@6313 214 }
roland@6313 215 // Variant that keeps the speculative part of the types
roland@6313 216 int higher_equal_speculative(const Type *t) const {
roland@6313 217 return !cmp(meet_speculative(t),t);
roland@6313 218 }
duke@435 219
duke@435 220 // MEET operation; lower in lattice.
roland@6313 221 // Variant that drops the speculative part of the types
roland@6313 222 const Type *meet(const Type *t) const {
roland@6313 223 return meet_helper(t, false);
roland@6313 224 }
roland@6313 225 // Variant that keeps the speculative part of the types
roland@6313 226 const Type *meet_speculative(const Type *t) const {
roland@6313 227 return meet_helper(t, true);
roland@6313 228 }
duke@435 229 // WIDEN: 'widens' for Ints and other range types
never@1444 230 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
duke@435 231 // NARROW: complement for widen, used by pessimistic phases
duke@435 232 virtual const Type *narrow( const Type *old ) const { return this; }
duke@435 233
duke@435 234 // DUAL operation: reflect around lattice centerline. Used instead of
duke@435 235 // join to ensure my lattice is symmetric up and down.
duke@435 236 const Type *dual() const { return _dual; }
duke@435 237
duke@435 238 // Compute meet dependent on base type
duke@435 239 virtual const Type *xmeet( const Type *t ) const;
duke@435 240 virtual const Type *xdual() const; // Compute dual right now.
duke@435 241
duke@435 242 // JOIN operation; higher in lattice. Done by finding the dual of the
duke@435 243 // meet of the dual of the 2 inputs.
roland@6313 244 // Variant that drops the speculative part of the types
roland@6313 245 const Type *join(const Type *t) const {
roland@6313 246 return join_helper(t, false);
roland@6313 247 }
roland@6313 248 // Variant that keeps the speculative part of the types
roland@6313 249 const Type *join_speculative(const Type *t) const {
roland@6313 250 return join_helper(t, true);
roland@6313 251 }
duke@435 252
duke@435 253 // Modified version of JOIN adapted to the needs Node::Value.
duke@435 254 // Normalizes all empty values to TOP. Does not kill _widen bits.
duke@435 255 // Currently, it also works around limitations involving interface types.
roland@6313 256 // Variant that drops the speculative part of the types
roland@6313 257 const Type *filter(const Type *kills) const {
roland@6313 258 return filter_helper(kills, false);
roland@6313 259 }
roland@6313 260 // Variant that keeps the speculative part of the types
roland@6313 261 const Type *filter_speculative(const Type *kills) const {
roland@6313 262 return filter_helper(kills, true);
roland@6313 263 }
duke@435 264
kvn@1255 265 #ifdef ASSERT
kvn@1255 266 // One type is interface, the other is oop
kvn@1255 267 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 268 #endif
kvn@1255 269
coleenp@548 270 // Returns true if this pointer points at memory which contains a
kvn@598 271 // compressed oop references.
kvn@598 272 bool is_ptr_to_narrowoop() const;
roland@4159 273 bool is_ptr_to_narrowklass() const;
coleenp@548 274
kvn@5110 275 bool is_ptr_to_boxing_obj() const;
kvn@5110 276
kvn@5110 277
duke@435 278 // Convenience access
duke@435 279 float getf() const;
duke@435 280 double getd() const;
duke@435 281
duke@435 282 const TypeInt *is_int() const;
duke@435 283 const TypeInt *isa_int() const; // Returns NULL if not an Int
duke@435 284 const TypeLong *is_long() const;
duke@435 285 const TypeLong *isa_long() const; // Returns NULL if not a Long
twisti@4313 286 const TypeD *isa_double() const; // Returns NULL if not a Double{Top,Con,Bot}
duke@435 287 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon
duke@435 288 const TypeD *isa_double_constant() const; // Returns NULL if not a DoubleCon
twisti@4313 289 const TypeF *isa_float() const; // Returns NULL if not a Float{Top,Con,Bot}
duke@435 290 const TypeF *is_float_constant() const; // Asserts it is a FloatCon
duke@435 291 const TypeF *isa_float_constant() const; // Returns NULL if not a FloatCon
duke@435 292 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer
duke@435 293 const TypeAry *is_ary() const; // Array, NOT array pointer
kvn@3882 294 const TypeVect *is_vect() const; // Vector
kvn@3882 295 const TypeVect *isa_vect() const; // Returns NULL if not a Vector
duke@435 296 const TypePtr *is_ptr() const; // Asserts it is a ptr type
duke@435 297 const TypePtr *isa_ptr() const; // Returns NULL if not ptr type
coleenp@548 298 const TypeRawPtr *isa_rawptr() const; // NOT Java oop
coleenp@548 299 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr
kvn@598 300 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer
kvn@598 301 const TypeNarrowOop *isa_narrowoop() const; // Returns NULL if not oop ptr type
roland@4159 302 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
roland@4159 303 const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
coleenp@548 304 const TypeOopPtr *isa_oopptr() const; // Returns NULL if not oop ptr type
coleenp@548 305 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
coleenp@548 306 const TypeInstPtr *isa_instptr() const; // Returns NULL if not InstPtr
coleenp@548 307 const TypeInstPtr *is_instptr() const; // Instance
coleenp@548 308 const TypeAryPtr *isa_aryptr() const; // Returns NULL if not AryPtr
coleenp@548 309 const TypeAryPtr *is_aryptr() const; // Array oop
coleenp@4037 310
coleenp@4037 311 const TypeMetadataPtr *isa_metadataptr() const; // Returns NULL if not oop ptr type
coleenp@4037 312 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
coleenp@4037 313 const TypeKlassPtr *isa_klassptr() const; // Returns NULL if not KlassPtr
coleenp@4037 314 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
coleenp@4037 315
duke@435 316 virtual bool is_finite() const; // Has a finite value
duke@435 317 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 318
kvn@656 319 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
kvn@656 320 const TypePtr* make_ptr() const;
never@1262 321
never@1262 322 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
never@1262 323 // Asserts if the underlying type is not an oopptr or narrowoop.
never@1262 324 const TypeOopPtr* make_oopptr() const;
never@1262 325
kvn@656 326 // Returns this compressed pointer or the equivalent compressed version
kvn@656 327 // of this pointer type.
kvn@656 328 const TypeNarrowOop* make_narrowoop() const;
kvn@656 329
roland@4159 330 // Returns this compressed klass pointer or the equivalent
roland@4159 331 // compressed version of this pointer type.
roland@4159 332 const TypeNarrowKlass* make_narrowklass() const;
roland@4159 333
duke@435 334 // Special test for register pressure heuristic
duke@435 335 bool is_floatingpoint() const; // True if Float or Double base type
duke@435 336
duke@435 337 // Do you have memory, directly or through a tuple?
duke@435 338 bool has_memory( ) const;
duke@435 339
duke@435 340 // TRUE if type is a singleton
duke@435 341 virtual bool singleton(void) const;
duke@435 342
duke@435 343 // TRUE if type is above the lattice centerline, and is therefore vacuous
duke@435 344 virtual bool empty(void) const;
duke@435 345
duke@435 346 // Return a hash for this type. The hash function is public so ConNode
duke@435 347 // (constants) can hash on their constant, which is represented by a Type.
duke@435 348 virtual int hash() const;
duke@435 349
duke@435 350 // Map ideal registers (machine types) to ideal types
duke@435 351 static const Type *mreg2type[];
duke@435 352
duke@435 353 // Printing, statistics
duke@435 354 #ifndef PRODUCT
duke@435 355 void dump_on(outputStream *st) const;
duke@435 356 void dump() const {
duke@435 357 dump_on(tty);
duke@435 358 }
duke@435 359 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 360 static void dump_stats();
duke@435 361 #endif
duke@435 362 void typerr(const Type *t) const; // Mixing types error
duke@435 363
duke@435 364 // Create basic type
duke@435 365 static const Type* get_const_basic_type(BasicType type) {
duke@435 366 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
duke@435 367 return _const_basic_type[type];
duke@435 368 }
duke@435 369
shshahma@8422 370 // For two instance arrays of same dimension, return the base element types.
shshahma@8422 371 // Otherwise or if the arrays have different dimensions, return NULL.
shshahma@8422 372 static void get_arrays_base_elements(const Type *a1, const Type *a2,
shshahma@8422 373 const TypeInstPtr **e1, const TypeInstPtr **e2);
shshahma@8422 374
duke@435 375 // Mapping to the array element's basic type.
duke@435 376 BasicType array_element_basic_type() const;
duke@435 377
duke@435 378 // Create standard type for a ciType:
duke@435 379 static const Type* get_const_type(ciType* type);
duke@435 380
duke@435 381 // Create standard zero value:
duke@435 382 static const Type* get_zero_type(BasicType type) {
duke@435 383 assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
duke@435 384 return _zero_type[type];
duke@435 385 }
duke@435 386
duke@435 387 // Report if this is a zero value (not top).
duke@435 388 bool is_zero_type() const {
duke@435 389 BasicType type = basic_type();
duke@435 390 if (type == T_VOID || type >= T_CONFLICT)
duke@435 391 return false;
duke@435 392 else
duke@435 393 return (this == _zero_type[type]);
duke@435 394 }
duke@435 395
duke@435 396 // Convenience common pre-built types.
duke@435 397 static const Type *ABIO;
duke@435 398 static const Type *BOTTOM;
duke@435 399 static const Type *CONTROL;
duke@435 400 static const Type *DOUBLE;
duke@435 401 static const Type *FLOAT;
duke@435 402 static const Type *HALF;
duke@435 403 static const Type *MEMORY;
duke@435 404 static const Type *MULTI;
duke@435 405 static const Type *RETURN_ADDRESS;
duke@435 406 static const Type *TOP;
duke@435 407
duke@435 408 // Mapping from compiler type to VM BasicType
coleenp@4037 409 BasicType basic_type() const { return _type_info[_base].basic_type; }
coleenp@4037 410 int ideal_reg() const { return _type_info[_base].ideal_reg; }
coleenp@4037 411 const char* msg() const { return _type_info[_base].msg; }
coleenp@4037 412 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; }
coleenp@4037 413 relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
duke@435 414
duke@435 415 // Mapping from CI type system to compiler type:
duke@435 416 static const Type* get_typeflow_type(ciType* type);
duke@435 417
vlivanov@5658 418 static const Type* make_from_constant(ciConstant constant,
vlivanov@5658 419 bool require_constant = false,
vlivanov@5658 420 bool is_autobox_cache = false);
vlivanov@5658 421
roland@5991 422 // Speculative type. See TypeInstPtr
roland@6380 423 virtual const TypeOopPtr* speculative() const { return NULL; }
roland@5991 424 virtual ciKlass* speculative_type() const { return NULL; }
roland@6313 425 const Type* maybe_remove_speculative(bool include_speculative) const;
roland@6313 426 virtual const Type* remove_speculative() const { return this; }
roland@5991 427
roland@6380 428 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const {
roland@6380 429 return exact_kls != NULL;
roland@6380 430 }
roland@6380 431
duke@435 432 private:
duke@435 433 // support arrays
duke@435 434 static const BasicType _basic_type[];
duke@435 435 static const Type* _zero_type[T_CONFLICT+1];
duke@435 436 static const Type* _const_basic_type[T_CONFLICT+1];
duke@435 437 };
duke@435 438
duke@435 439 //------------------------------TypeF------------------------------------------
duke@435 440 // Class of Float-Constant Types.
duke@435 441 class TypeF : public Type {
duke@435 442 TypeF( float f ) : Type(FloatCon), _f(f) {};
duke@435 443 public:
duke@435 444 virtual bool eq( const Type *t ) const;
duke@435 445 virtual int hash() const; // Type specific hashing
duke@435 446 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 447 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 448 public:
duke@435 449 const float _f; // Float constant
duke@435 450
duke@435 451 static const TypeF *make(float f);
duke@435 452
duke@435 453 virtual bool is_finite() const; // Has a finite value
duke@435 454 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 455
duke@435 456 virtual const Type *xmeet( const Type *t ) const;
duke@435 457 virtual const Type *xdual() const; // Compute dual right now.
duke@435 458 // Convenience common pre-built types.
duke@435 459 static const TypeF *ZERO; // positive zero only
duke@435 460 static const TypeF *ONE;
duke@435 461 #ifndef PRODUCT
duke@435 462 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 463 #endif
duke@435 464 };
duke@435 465
duke@435 466 //------------------------------TypeD------------------------------------------
duke@435 467 // Class of Double-Constant Types.
duke@435 468 class TypeD : public Type {
duke@435 469 TypeD( double d ) : Type(DoubleCon), _d(d) {};
duke@435 470 public:
duke@435 471 virtual bool eq( const Type *t ) const;
duke@435 472 virtual int hash() const; // Type specific hashing
duke@435 473 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 474 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 475 public:
duke@435 476 const double _d; // Double constant
duke@435 477
duke@435 478 static const TypeD *make(double d);
duke@435 479
duke@435 480 virtual bool is_finite() const; // Has a finite value
duke@435 481 virtual bool is_nan() const; // Is not a number (NaN)
duke@435 482
duke@435 483 virtual const Type *xmeet( const Type *t ) const;
duke@435 484 virtual const Type *xdual() const; // Compute dual right now.
duke@435 485 // Convenience common pre-built types.
duke@435 486 static const TypeD *ZERO; // positive zero only
duke@435 487 static const TypeD *ONE;
duke@435 488 #ifndef PRODUCT
duke@435 489 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 490 #endif
duke@435 491 };
duke@435 492
duke@435 493 //------------------------------TypeInt----------------------------------------
duke@435 494 // Class of integer ranges, the set of integers between a lower bound and an
duke@435 495 // upper bound, inclusive.
duke@435 496 class TypeInt : public Type {
duke@435 497 TypeInt( jint lo, jint hi, int w );
roland@6313 498 protected:
roland@6313 499 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
roland@6313 500
duke@435 501 public:
rbackman@6375 502 typedef jint NativeType;
duke@435 503 virtual bool eq( const Type *t ) const;
duke@435 504 virtual int hash() const; // Type specific hashing
duke@435 505 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 506 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 507 const jint _lo, _hi; // Lower bound, upper bound
duke@435 508 const short _widen; // Limit on times we widen this sucker
duke@435 509
duke@435 510 static const TypeInt *make(jint lo);
duke@435 511 // must always specify w
duke@435 512 static const TypeInt *make(jint lo, jint hi, int w);
duke@435 513
duke@435 514 // Check for single integer
duke@435 515 int is_con() const { return _lo==_hi; }
duke@435 516 bool is_con(int i) const { return is_con() && _lo == i; }
duke@435 517 jint get_con() const { assert( is_con(), "" ); return _lo; }
duke@435 518
duke@435 519 virtual bool is_finite() const; // Has a finite value
duke@435 520
duke@435 521 virtual const Type *xmeet( const Type *t ) const;
duke@435 522 virtual const Type *xdual() const; // Compute dual right now.
never@1444 523 virtual const Type *widen( const Type *t, const Type* limit_type ) const;
duke@435 524 virtual const Type *narrow( const Type *t ) const;
duke@435 525 // Do not kill _widen bits.
duke@435 526 // Convenience common pre-built types.
duke@435 527 static const TypeInt *MINUS_1;
duke@435 528 static const TypeInt *ZERO;
duke@435 529 static const TypeInt *ONE;
duke@435 530 static const TypeInt *BOOL;
duke@435 531 static const TypeInt *CC;
duke@435 532 static const TypeInt *CC_LT; // [-1] == MINUS_1
duke@435 533 static const TypeInt *CC_GT; // [1] == ONE
duke@435 534 static const TypeInt *CC_EQ; // [0] == ZERO
duke@435 535 static const TypeInt *CC_LE; // [-1,0]
duke@435 536 static const TypeInt *CC_GE; // [0,1] == BOOL (!)
duke@435 537 static const TypeInt *BYTE;
twisti@1059 538 static const TypeInt *UBYTE;
duke@435 539 static const TypeInt *CHAR;
duke@435 540 static const TypeInt *SHORT;
duke@435 541 static const TypeInt *POS;
duke@435 542 static const TypeInt *POS1;
duke@435 543 static const TypeInt *INT;
duke@435 544 static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
rbackman@6375 545 static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
rbackman@6375 546
rbackman@6375 547 static const TypeInt *as_self(const Type *t) { return t->is_int(); }
duke@435 548 #ifndef PRODUCT
duke@435 549 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 550 #endif
duke@435 551 };
duke@435 552
duke@435 553
duke@435 554 //------------------------------TypeLong---------------------------------------
duke@435 555 // Class of long integer ranges, the set of integers between a lower bound and
duke@435 556 // an upper bound, inclusive.
duke@435 557 class TypeLong : public Type {
duke@435 558 TypeLong( jlong lo, jlong hi, int w );
roland@6313 559 protected:
roland@6313 560 // Do not kill _widen bits.
roland@6313 561 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
duke@435 562 public:
rbackman@6375 563 typedef jlong NativeType;
duke@435 564 virtual bool eq( const Type *t ) const;
duke@435 565 virtual int hash() const; // Type specific hashing
duke@435 566 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 567 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 568 public:
duke@435 569 const jlong _lo, _hi; // Lower bound, upper bound
duke@435 570 const short _widen; // Limit on times we widen this sucker
duke@435 571
duke@435 572 static const TypeLong *make(jlong lo);
duke@435 573 // must always specify w
duke@435 574 static const TypeLong *make(jlong lo, jlong hi, int w);
duke@435 575
duke@435 576 // Check for single integer
duke@435 577 int is_con() const { return _lo==_hi; }
rasbold@580 578 bool is_con(int i) const { return is_con() && _lo == i; }
duke@435 579 jlong get_con() const { assert( is_con(), "" ); return _lo; }
duke@435 580
goetz@6487 581 // Check for positive 32-bit value.
goetz@6487 582 int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
goetz@6487 583
duke@435 584 virtual bool is_finite() const; // Has a finite value
duke@435 585
rbackman@6375 586
duke@435 587 virtual const Type *xmeet( const Type *t ) const;
duke@435 588 virtual const Type *xdual() const; // Compute dual right now.
never@1444 589 virtual const Type *widen( const Type *t, const Type* limit_type ) const;
duke@435 590 virtual const Type *narrow( const Type *t ) const;
duke@435 591 // Convenience common pre-built types.
duke@435 592 static const TypeLong *MINUS_1;
duke@435 593 static const TypeLong *ZERO;
duke@435 594 static const TypeLong *ONE;
duke@435 595 static const TypeLong *POS;
duke@435 596 static const TypeLong *LONG;
duke@435 597 static const TypeLong *INT; // 32-bit subrange [min_jint..max_jint]
duke@435 598 static const TypeLong *UINT; // 32-bit unsigned [0..max_juint]
rbackman@6375 599 static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
rbackman@6375 600
rbackman@6375 601 // static convenience methods.
rbackman@6375 602 static const TypeLong *as_self(const Type *t) { return t->is_long(); }
rbackman@6375 603
duke@435 604 #ifndef PRODUCT
duke@435 605 virtual void dump2( Dict &d, uint, outputStream *st ) const;// Specialized per-Type dumping
duke@435 606 #endif
duke@435 607 };
duke@435 608
duke@435 609 //------------------------------TypeTuple--------------------------------------
duke@435 610 // Class of Tuple Types, essentially type collections for function signatures
duke@435 611 // and class layouts. It happens to also be a fast cache for the HotSpot
duke@435 612 // signature types.
duke@435 613 class TypeTuple : public Type {
duke@435 614 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
duke@435 615 public:
duke@435 616 virtual bool eq( const Type *t ) const;
duke@435 617 virtual int hash() const; // Type specific hashing
duke@435 618 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 619 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 620
duke@435 621 public:
duke@435 622 const uint _cnt; // Count of fields
duke@435 623 const Type ** const _fields; // Array of field types
duke@435 624
duke@435 625 // Accessors:
duke@435 626 uint cnt() const { return _cnt; }
duke@435 627 const Type* field_at(uint i) const {
duke@435 628 assert(i < _cnt, "oob");
duke@435 629 return _fields[i];
duke@435 630 }
duke@435 631 void set_field_at(uint i, const Type* t) {
duke@435 632 assert(i < _cnt, "oob");
duke@435 633 _fields[i] = t;
duke@435 634 }
duke@435 635
duke@435 636 static const TypeTuple *make( uint cnt, const Type **fields );
duke@435 637 static const TypeTuple *make_range(ciSignature *sig);
duke@435 638 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
duke@435 639
duke@435 640 // Subroutine call type with space allocated for argument types
duke@435 641 static const Type **fields( uint arg_cnt );
duke@435 642
duke@435 643 virtual const Type *xmeet( const Type *t ) const;
duke@435 644 virtual const Type *xdual() const; // Compute dual right now.
duke@435 645 // Convenience common pre-built types.
duke@435 646 static const TypeTuple *IFBOTH;
duke@435 647 static const TypeTuple *IFFALSE;
duke@435 648 static const TypeTuple *IFTRUE;
duke@435 649 static const TypeTuple *IFNEITHER;
duke@435 650 static const TypeTuple *LOOPBODY;
duke@435 651 static const TypeTuple *MEMBAR;
duke@435 652 static const TypeTuple *STORECONDITIONAL;
duke@435 653 static const TypeTuple *START_I2C;
duke@435 654 static const TypeTuple *INT_PAIR;
duke@435 655 static const TypeTuple *LONG_PAIR;
rbackman@5791 656 static const TypeTuple *INT_CC_PAIR;
rbackman@5997 657 static const TypeTuple *LONG_CC_PAIR;
duke@435 658 #ifndef PRODUCT
duke@435 659 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
duke@435 660 #endif
duke@435 661 };
duke@435 662
duke@435 663 //------------------------------TypeAry----------------------------------------
duke@435 664 // Class of Array Types
duke@435 665 class TypeAry : public Type {
vlivanov@5658 666 TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
vlivanov@5658 667 _elem(elem), _size(size), _stable(stable) {}
duke@435 668 public:
duke@435 669 virtual bool eq( const Type *t ) const;
duke@435 670 virtual int hash() const; // Type specific hashing
duke@435 671 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 672 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 673
duke@435 674 private:
duke@435 675 const Type *_elem; // Element type of array
duke@435 676 const TypeInt *_size; // Elements in array
vlivanov@5658 677 const bool _stable; // Are elements @Stable?
duke@435 678 friend class TypeAryPtr;
duke@435 679
duke@435 680 public:
vlivanov@5658 681 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
duke@435 682
duke@435 683 virtual const Type *xmeet( const Type *t ) const;
duke@435 684 virtual const Type *xdual() const; // Compute dual right now.
duke@435 685 bool ary_must_be_exact() const; // true if arrays of such are never generic
roland@6313 686 virtual const Type* remove_speculative() const;
kvn@1255 687 #ifdef ASSERT
kvn@1255 688 // One type is interface, the other is oop
kvn@1255 689 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 690 #endif
duke@435 691 #ifndef PRODUCT
duke@435 692 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
duke@435 693 #endif
duke@435 694 };
duke@435 695
kvn@3882 696 //------------------------------TypeVect---------------------------------------
kvn@3882 697 // Class of Vector Types
kvn@3882 698 class TypeVect : public Type {
kvn@3882 699 const Type* _elem; // Vector's element type
kvn@3882 700 const uint _length; // Elements in vector (power of 2)
kvn@3882 701
kvn@3882 702 protected:
kvn@3882 703 TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
kvn@3882 704 _elem(elem), _length(length) {}
kvn@3882 705
kvn@3882 706 public:
kvn@3882 707 const Type* element_type() const { return _elem; }
kvn@3882 708 BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
kvn@3882 709 uint length() const { return _length; }
kvn@3882 710 uint length_in_bytes() const {
kvn@3882 711 return _length * type2aelembytes(element_basic_type());
kvn@3882 712 }
kvn@3882 713
kvn@3882 714 virtual bool eq(const Type *t) const;
kvn@3882 715 virtual int hash() const; // Type specific hashing
kvn@3882 716 virtual bool singleton(void) const; // TRUE if type is a singleton
kvn@3882 717 virtual bool empty(void) const; // TRUE if type is vacuous
kvn@3882 718
kvn@3882 719 static const TypeVect *make(const BasicType elem_bt, uint length) {
kvn@3882 720 // Use bottom primitive type.
kvn@3882 721 return make(get_const_basic_type(elem_bt), length);
kvn@3882 722 }
kvn@3882 723 // Used directly by Replicate nodes to construct singleton vector.
kvn@3882 724 static const TypeVect *make(const Type* elem, uint length);
kvn@3882 725
kvn@3882 726 virtual const Type *xmeet( const Type *t) const;
kvn@3882 727 virtual const Type *xdual() const; // Compute dual right now.
kvn@3882 728
kvn@3882 729 static const TypeVect *VECTS;
kvn@3882 730 static const TypeVect *VECTD;
kvn@3882 731 static const TypeVect *VECTX;
kvn@3882 732 static const TypeVect *VECTY;
kvn@3882 733
kvn@3882 734 #ifndef PRODUCT
kvn@3882 735 virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
kvn@3882 736 #endif
kvn@3882 737 };
kvn@3882 738
kvn@3882 739 class TypeVectS : public TypeVect {
kvn@3882 740 friend class TypeVect;
kvn@3882 741 TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
kvn@3882 742 };
kvn@3882 743
kvn@3882 744 class TypeVectD : public TypeVect {
kvn@3882 745 friend class TypeVect;
kvn@3882 746 TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
kvn@3882 747 };
kvn@3882 748
kvn@3882 749 class TypeVectX : public TypeVect {
kvn@3882 750 friend class TypeVect;
kvn@3882 751 TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
kvn@3882 752 };
kvn@3882 753
kvn@3882 754 class TypeVectY : public TypeVect {
kvn@3882 755 friend class TypeVect;
kvn@3882 756 TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
kvn@3882 757 };
kvn@3882 758
duke@435 759 //------------------------------TypePtr----------------------------------------
duke@435 760 // Class of machine Pointer Types: raw data, instances or arrays.
duke@435 761 // If the _base enum is AnyPtr, then this refers to all of the above.
duke@435 762 // Otherwise the _base will indicate which subset of pointers is affected,
duke@435 763 // and the class will be inherited from.
duke@435 764 class TypePtr : public Type {
roland@4159 765 friend class TypeNarrowPtr;
duke@435 766 public:
duke@435 767 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
duke@435 768 protected:
duke@435 769 TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
duke@435 770 virtual bool eq( const Type *t ) const;
duke@435 771 virtual int hash() const; // Type specific hashing
duke@435 772 static const PTR ptr_meet[lastPTR][lastPTR];
duke@435 773 static const PTR ptr_dual[lastPTR];
duke@435 774 static const char * const ptr_msg[lastPTR];
duke@435 775
duke@435 776 public:
duke@435 777 const int _offset; // Offset into oop, with TOP & BOT
duke@435 778 const PTR _ptr; // Pointer equivalence class
duke@435 779
duke@435 780 const int offset() const { return _offset; }
duke@435 781 const PTR ptr() const { return _ptr; }
duke@435 782
duke@435 783 static const TypePtr *make( TYPES t, PTR ptr, int offset );
duke@435 784
duke@435 785 // Return a 'ptr' version of this type
duke@435 786 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 787
duke@435 788 virtual intptr_t get_con() const;
duke@435 789
kvn@741 790 int xadd_offset( intptr_t offset ) const;
kvn@741 791 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 792
duke@435 793 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 794 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 795 virtual const Type *xmeet( const Type *t ) const;
duke@435 796 int meet_offset( int offset ) const;
duke@435 797 int dual_offset( ) const;
duke@435 798 virtual const Type *xdual() const; // Compute dual right now.
duke@435 799
duke@435 800 // meet, dual and join over pointer equivalence sets
duke@435 801 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
duke@435 802 PTR dual_ptr() const { return ptr_dual[ptr()]; }
duke@435 803
duke@435 804 // This is textually confusing unless one recalls that
duke@435 805 // join(t) == dual()->meet(t->dual())->dual().
duke@435 806 PTR join_ptr( const PTR in_ptr ) const {
duke@435 807 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
duke@435 808 }
duke@435 809
duke@435 810 // Tests for relation to centerline of type lattice:
duke@435 811 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
duke@435 812 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
duke@435 813 // Convenience common pre-built types.
duke@435 814 static const TypePtr *NULL_PTR;
duke@435 815 static const TypePtr *NOTNULL;
duke@435 816 static const TypePtr *BOTTOM;
duke@435 817 #ifndef PRODUCT
duke@435 818 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 819 #endif
duke@435 820 };
duke@435 821
duke@435 822 //------------------------------TypeRawPtr-------------------------------------
duke@435 823 // Class of raw pointers, pointers to things other than Oops. Examples
duke@435 824 // include the stack pointer, top of heap, card-marking area, handles, etc.
duke@435 825 class TypeRawPtr : public TypePtr {
duke@435 826 protected:
duke@435 827 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
duke@435 828 public:
duke@435 829 virtual bool eq( const Type *t ) const;
duke@435 830 virtual int hash() const; // Type specific hashing
duke@435 831
duke@435 832 const address _bits; // Constant value, if applicable
duke@435 833
duke@435 834 static const TypeRawPtr *make( PTR ptr );
duke@435 835 static const TypeRawPtr *make( address bits );
duke@435 836
duke@435 837 // Return a 'ptr' version of this type
duke@435 838 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 839
duke@435 840 virtual intptr_t get_con() const;
duke@435 841
kvn@741 842 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 843
duke@435 844 virtual const Type *xmeet( const Type *t ) const;
duke@435 845 virtual const Type *xdual() const; // Compute dual right now.
duke@435 846 // Convenience common pre-built types.
duke@435 847 static const TypeRawPtr *BOTTOM;
duke@435 848 static const TypeRawPtr *NOTNULL;
duke@435 849 #ifndef PRODUCT
duke@435 850 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 851 #endif
duke@435 852 };
duke@435 853
duke@435 854 //------------------------------TypeOopPtr-------------------------------------
duke@435 855 // Some kind of oop (Java pointer), either klass or instance or array.
duke@435 856 class TypeOopPtr : public TypePtr {
duke@435 857 protected:
roland@6380 858 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth);
duke@435 859 public:
duke@435 860 virtual bool eq( const Type *t ) const;
duke@435 861 virtual int hash() const; // Type specific hashing
duke@435 862 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 863 enum {
kvn@658 864 InstanceTop = -1, // undefined instance
kvn@658 865 InstanceBot = 0 // any possible instance
duke@435 866 };
duke@435 867 protected:
duke@435 868
roland@6380 869 enum {
roland@6380 870 InlineDepthBottom = INT_MAX,
roland@6380 871 InlineDepthTop = -InlineDepthBottom
roland@6380 872 };
duke@435 873 // Oop is NULL, unless this is a constant oop.
duke@435 874 ciObject* _const_oop; // Constant oop
duke@435 875 // If _klass is NULL, then so is _sig. This is an unloaded klass.
duke@435 876 ciKlass* _klass; // Klass object
duke@435 877 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
duke@435 878 bool _klass_is_exact;
kvn@598 879 bool _is_ptr_to_narrowoop;
roland@4159 880 bool _is_ptr_to_narrowklass;
kvn@5110 881 bool _is_ptr_to_boxed_value;
duke@435 882
kvn@658 883 // If not InstanceTop or InstanceBot, indicates that this is
kvn@658 884 // a particular instance of this type which is distinct.
poonam@8646 885 // This is the node index of the allocation node creating this instance.
kvn@658 886 int _instance_id;
duke@435 887
roland@5991 888 // Extra type information profiling gave us. We propagate it the
roland@5991 889 // same way the rest of the type info is propagated. If we want to
roland@5991 890 // use it, then we have to emit a guard: this part of the type is
roland@5991 891 // not something we know but something we speculate about the type.
roland@5991 892 const TypeOopPtr* _speculative;
roland@6380 893 // For speculative types, we record at what inlining depth the
roland@6380 894 // profiling point that provided the data is. We want to favor
roland@6380 895 // profile data coming from outer scopes which are likely better for
roland@6380 896 // the current compilation.
roland@6380 897 int _inline_depth;
roland@5991 898
duke@435 899 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
duke@435 900
kvn@658 901 int dual_instance_id() const;
kvn@658 902 int meet_instance_id(int uid) const;
duke@435 903
roland@5991 904 // utility methods to work on the speculative part of the type
roland@5991 905 const TypeOopPtr* dual_speculative() const;
roland@6313 906 const TypeOopPtr* xmeet_speculative(const TypeOopPtr* other) const;
roland@5991 907 bool eq_speculative(const TypeOopPtr* other) const;
roland@5991 908 int hash_speculative() const;
roland@5991 909 const TypeOopPtr* add_offset_speculative(intptr_t offset) const;
roland@5991 910 #ifndef PRODUCT
roland@5991 911 void dump_speculative(outputStream *st) const;
roland@5991 912 #endif
roland@6380 913 // utility methods to work on the inline depth of the type
roland@6380 914 int dual_inline_depth() const;
roland@6380 915 int meet_inline_depth(int depth) const;
roland@6380 916 #ifndef PRODUCT
roland@6380 917 void dump_inline_depth(outputStream *st) const;
roland@6380 918 #endif
roland@5991 919
roland@6313 920 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 921 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
roland@6313 922
duke@435 923 public:
duke@435 924 // Creates a type given a klass. Correctly handles multi-dimensional arrays
duke@435 925 // Respects UseUniqueSubclasses.
duke@435 926 // If the klass is final, the resulting type will be exact.
duke@435 927 static const TypeOopPtr* make_from_klass(ciKlass* klass) {
duke@435 928 return make_from_klass_common(klass, true, false);
duke@435 929 }
duke@435 930 // Same as before, but will produce an exact type, even if
duke@435 931 // the klass is not final, as long as it has exactly one implementation.
duke@435 932 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
duke@435 933 return make_from_klass_common(klass, true, true);
duke@435 934 }
duke@435 935 // Same as before, but does not respects UseUniqueSubclasses.
duke@435 936 // Use this only for creating array element types.
duke@435 937 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
duke@435 938 return make_from_klass_common(klass, false, false);
duke@435 939 }
duke@435 940 // Creates a singleton type given an object.
jrose@1424 941 // If the object cannot be rendered as a constant,
jrose@1424 942 // may return a non-singleton type.
jrose@1424 943 // If require_constant, produce a NULL if a singleton is not possible.
kvn@5110 944 static const TypeOopPtr* make_from_constant(ciObject* o,
kvn@5110 945 bool require_constant = false,
kvn@5110 946 bool not_null_elements = false);
duke@435 947
duke@435 948 // Make a generic (unclassed) pointer to an oop.
roland@6380 949 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
duke@435 950
duke@435 951 ciObject* const_oop() const { return _const_oop; }
duke@435 952 virtual ciKlass* klass() const { return _klass; }
duke@435 953 bool klass_is_exact() const { return _klass_is_exact; }
kvn@598 954
kvn@598 955 // Returns true if this pointer points at memory which contains a
kvn@598 956 // compressed oop references.
kvn@598 957 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
roland@4159 958 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
kvn@5110 959 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
kvn@658 960 bool is_known_instance() const { return _instance_id > 0; }
kvn@658 961 int instance_id() const { return _instance_id; }
kvn@658 962 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
roland@6380 963 virtual const TypeOopPtr* speculative() const { return _speculative; }
duke@435 964
duke@435 965 virtual intptr_t get_con() const;
duke@435 966
duke@435 967 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 968
duke@435 969 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 970
kvn@658 971 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 972
duke@435 973 // corresponding pointer to klass, for a given instance
duke@435 974 const TypeKlassPtr* as_klass_type() const;
duke@435 975
kvn@741 976 virtual const TypePtr *add_offset( intptr_t offset ) const;
roland@5991 977 // Return same type without a speculative part
roland@6313 978 virtual const Type* remove_speculative() const;
duke@435 979
roland@5991 980 virtual const Type *xmeet(const Type *t) const;
duke@435 981 virtual const Type *xdual() const; // Compute dual right now.
roland@5991 982 // the core of the computation of the meet for TypeOopPtr and for its subclasses
roland@5991 983 virtual const Type *xmeet_helper(const Type *t) const;
duke@435 984
duke@435 985 // Convenience common pre-built type.
duke@435 986 static const TypeOopPtr *BOTTOM;
duke@435 987 #ifndef PRODUCT
duke@435 988 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
duke@435 989 #endif
roland@5991 990
roland@5991 991 // Return the speculative type if any
roland@5991 992 ciKlass* speculative_type() const {
roland@5991 993 if (_speculative != NULL) {
roland@5991 994 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
roland@5991 995 if (speculative->klass_is_exact()) {
roland@6380 996 return speculative->klass();
roland@5991 997 }
roland@5991 998 }
roland@5991 999 return NULL;
roland@5991 1000 }
roland@6380 1001 int inline_depth() const {
roland@6380 1002 return _inline_depth;
roland@6380 1003 }
roland@6380 1004 virtual const TypeOopPtr* with_inline_depth(int depth) const;
roland@6380 1005 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
duke@435 1006 };
duke@435 1007
duke@435 1008 //------------------------------TypeInstPtr------------------------------------
duke@435 1009 // Class of Java object pointers, pointing either to non-array Java instances
coleenp@4037 1010 // or to a Klass* (including array klasses).
duke@435 1011 class TypeInstPtr : public TypeOopPtr {
roland@6380 1012 TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth);
duke@435 1013 virtual bool eq( const Type *t ) const;
duke@435 1014 virtual int hash() const; // Type specific hashing
duke@435 1015
duke@435 1016 ciSymbol* _name; // class name
duke@435 1017
duke@435 1018 public:
duke@435 1019 ciSymbol* name() const { return _name; }
duke@435 1020
duke@435 1021 bool is_loaded() const { return _klass->is_loaded(); }
duke@435 1022
duke@435 1023 // Make a pointer to a constant oop.
duke@435 1024 static const TypeInstPtr *make(ciObject* o) {
roland@5991 1025 return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
duke@435 1026 }
duke@435 1027 // Make a pointer to a constant oop with offset.
duke@435 1028 static const TypeInstPtr *make(ciObject* o, int offset) {
roland@5991 1029 return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
duke@435 1030 }
duke@435 1031
duke@435 1032 // Make a pointer to some value of type klass.
duke@435 1033 static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
roland@5991 1034 return make(ptr, klass, false, NULL, 0, InstanceBot);
duke@435 1035 }
duke@435 1036
duke@435 1037 // Make a pointer to some non-polymorphic value of exactly type klass.
duke@435 1038 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
roland@5991 1039 return make(ptr, klass, true, NULL, 0, InstanceBot);
duke@435 1040 }
duke@435 1041
duke@435 1042 // Make a pointer to some value of type klass with offset.
duke@435 1043 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
roland@5991 1044 return make(ptr, klass, false, NULL, offset, InstanceBot);
duke@435 1045 }
duke@435 1046
duke@435 1047 // Make a pointer to an oop.
roland@6380 1048 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
duke@435 1049
kvn@5110 1050 /** Create constant type for a constant boxed value */
kvn@5110 1051 const Type* get_const_boxed_value() const;
kvn@5110 1052
duke@435 1053 // If this is a java.lang.Class constant, return the type for it or NULL.
duke@435 1054 // Pass to Type::get_const_type to turn it to a type, which will usually
duke@435 1055 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
duke@435 1056 ciType* java_mirror_type() const;
duke@435 1057
duke@435 1058 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 1059
duke@435 1060 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 1061
kvn@658 1062 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 1063
kvn@741 1064 virtual const TypePtr *add_offset( intptr_t offset ) const;
roland@5991 1065 // Return same type without a speculative part
roland@6313 1066 virtual const Type* remove_speculative() const;
roland@6380 1067 virtual const TypeOopPtr* with_inline_depth(int depth) const;
duke@435 1068
roland@5991 1069 // the core of the computation of the meet of 2 types
roland@5991 1070 virtual const Type *xmeet_helper(const Type *t) const;
duke@435 1071 virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
duke@435 1072 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1073
duke@435 1074 // Convenience common pre-built types.
duke@435 1075 static const TypeInstPtr *NOTNULL;
duke@435 1076 static const TypeInstPtr *BOTTOM;
duke@435 1077 static const TypeInstPtr *MIRROR;
duke@435 1078 static const TypeInstPtr *MARK;
duke@435 1079 static const TypeInstPtr *KLASS;
duke@435 1080 #ifndef PRODUCT
duke@435 1081 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1082 #endif
duke@435 1083 };
duke@435 1084
duke@435 1085 //------------------------------TypeAryPtr-------------------------------------
duke@435 1086 // Class of Java array pointers
duke@435 1087 class TypeAryPtr : public TypeOopPtr {
kvn@5110 1088 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
roland@6380 1089 int offset, int instance_id, bool is_autobox_cache, const TypeOopPtr* speculative, int inline_depth)
roland@6380 1090 : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth),
kvn@5110 1091 _ary(ary),
kvn@5110 1092 _is_autobox_cache(is_autobox_cache)
kvn@5110 1093 {
kvn@2116 1094 #ifdef ASSERT
kvn@2116 1095 if (k != NULL) {
kvn@2116 1096 // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
kvn@2116 1097 ciKlass* ck = compute_klass(true);
kvn@2147 1098 if (k != ck) {
kvn@2116 1099 this->dump(); tty->cr();
kvn@2116 1100 tty->print(" k: ");
kvn@2116 1101 k->print(); tty->cr();
kvn@2116 1102 tty->print("ck: ");
kvn@2116 1103 if (ck != NULL) ck->print();
kvn@2116 1104 else tty->print("<NULL>");
kvn@2116 1105 tty->cr();
kvn@2116 1106 assert(false, "unexpected TypeAryPtr::_klass");
kvn@2116 1107 }
kvn@2116 1108 }
kvn@2116 1109 #endif
kvn@2116 1110 }
duke@435 1111 virtual bool eq( const Type *t ) const;
duke@435 1112 virtual int hash() const; // Type specific hashing
duke@435 1113 const TypeAry *_ary; // Array we point into
kvn@5110 1114 const bool _is_autobox_cache;
duke@435 1115
kvn@2116 1116 ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
kvn@2116 1117
duke@435 1118 public:
duke@435 1119 // Accessors
duke@435 1120 ciKlass* klass() const;
duke@435 1121 const TypeAry* ary() const { return _ary; }
duke@435 1122 const Type* elem() const { return _ary->_elem; }
duke@435 1123 const TypeInt* size() const { return _ary->_size; }
vlivanov@5658 1124 bool is_stable() const { return _ary->_stable; }
duke@435 1125
kvn@5110 1126 bool is_autobox_cache() const { return _is_autobox_cache; }
kvn@5110 1127
roland@6380 1128 static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
duke@435 1129 // Constant pointer to array
roland@6380 1130 static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom, bool is_autobox_cache= false);
duke@435 1131
duke@435 1132 // Return a 'ptr' version of this type
duke@435 1133 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 1134
duke@435 1135 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 1136
kvn@658 1137 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
duke@435 1138
duke@435 1139 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
rasbold@801 1140 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
duke@435 1141
duke@435 1142 virtual bool empty(void) const; // TRUE if type is vacuous
kvn@741 1143 virtual const TypePtr *add_offset( intptr_t offset ) const;
roland@5991 1144 // Return same type without a speculative part
roland@6313 1145 virtual const Type* remove_speculative() const;
roland@6380 1146 virtual const TypeOopPtr* with_inline_depth(int depth) const;
duke@435 1147
roland@5991 1148 // the core of the computation of the meet of 2 types
roland@5991 1149 virtual const Type *xmeet_helper(const Type *t) const;
duke@435 1150 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1151
vlivanov@5658 1152 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
vlivanov@5658 1153 int stable_dimension() const;
vlivanov@5658 1154
duke@435 1155 // Convenience common pre-built types.
duke@435 1156 static const TypeAryPtr *RANGE;
duke@435 1157 static const TypeAryPtr *OOPS;
kvn@598 1158 static const TypeAryPtr *NARROWOOPS;
duke@435 1159 static const TypeAryPtr *BYTES;
duke@435 1160 static const TypeAryPtr *SHORTS;
duke@435 1161 static const TypeAryPtr *CHARS;
duke@435 1162 static const TypeAryPtr *INTS;
duke@435 1163 static const TypeAryPtr *LONGS;
duke@435 1164 static const TypeAryPtr *FLOATS;
duke@435 1165 static const TypeAryPtr *DOUBLES;
duke@435 1166 // selects one of the above:
duke@435 1167 static const TypeAryPtr *get_array_body_type(BasicType elem) {
duke@435 1168 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
duke@435 1169 return _array_body_type[elem];
duke@435 1170 }
duke@435 1171 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
duke@435 1172 // sharpen the type of an int which is used as an array size
kvn@1255 1173 #ifdef ASSERT
kvn@1255 1174 // One type is interface, the other is oop
kvn@1255 1175 virtual bool interface_vs_oop(const Type *t) const;
kvn@1255 1176 #endif
duke@435 1177 #ifndef PRODUCT
duke@435 1178 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1179 #endif
duke@435 1180 };
duke@435 1181
coleenp@4037 1182 //------------------------------TypeMetadataPtr-------------------------------------
coleenp@4037 1183 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
coleenp@4037 1184 class TypeMetadataPtr : public TypePtr {
coleenp@4037 1185 protected:
coleenp@4037 1186 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
roland@6313 1187 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 1188 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
coleenp@4037 1189 public:
coleenp@4037 1190 virtual bool eq( const Type *t ) const;
coleenp@4037 1191 virtual int hash() const; // Type specific hashing
coleenp@4037 1192 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@4037 1193
coleenp@4037 1194 private:
coleenp@4037 1195 ciMetadata* _metadata;
coleenp@4037 1196
coleenp@4037 1197 public:
coleenp@4037 1198 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
coleenp@4037 1199
coleenp@4037 1200 static const TypeMetadataPtr* make(ciMethod* m);
coleenp@4037 1201 static const TypeMetadataPtr* make(ciMethodData* m);
coleenp@4037 1202
coleenp@4037 1203 ciMetadata* metadata() const { return _metadata; }
coleenp@4037 1204
coleenp@4037 1205 virtual const Type *cast_to_ptr_type(PTR ptr) const;
coleenp@4037 1206
coleenp@4037 1207 virtual const TypePtr *add_offset( intptr_t offset ) const;
coleenp@4037 1208
coleenp@4037 1209 virtual const Type *xmeet( const Type *t ) const;
coleenp@4037 1210 virtual const Type *xdual() const; // Compute dual right now.
coleenp@4037 1211
coleenp@4037 1212 virtual intptr_t get_con() const;
coleenp@4037 1213
coleenp@4037 1214 // Convenience common pre-built types.
coleenp@4037 1215 static const TypeMetadataPtr *BOTTOM;
coleenp@4037 1216
coleenp@4037 1217 #ifndef PRODUCT
coleenp@4037 1218 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
coleenp@4037 1219 #endif
coleenp@4037 1220 };
coleenp@4037 1221
duke@435 1222 //------------------------------TypeKlassPtr-----------------------------------
duke@435 1223 // Class of Java Klass pointers
coleenp@4037 1224 class TypeKlassPtr : public TypePtr {
duke@435 1225 TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
duke@435 1226
roland@6313 1227 protected:
roland@6313 1228 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
coleenp@4037 1229 public:
duke@435 1230 virtual bool eq( const Type *t ) const;
duke@435 1231 virtual int hash() const; // Type specific hashing
coleenp@4037 1232 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@4037 1233 private:
coleenp@4037 1234
coleenp@4037 1235 static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
coleenp@4037 1236
coleenp@4037 1237 ciKlass* _klass;
coleenp@4037 1238
coleenp@4037 1239 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
coleenp@4037 1240 bool _klass_is_exact;
duke@435 1241
duke@435 1242 public:
coleenp@4037 1243 ciSymbol* name() const { return klass()->name(); }
duke@435 1244
coleenp@4037 1245 ciKlass* klass() const { return _klass; }
coleenp@4037 1246 bool klass_is_exact() const { return _klass_is_exact; }
coleenp@4037 1247
coleenp@4037 1248 bool is_loaded() const { return klass()->is_loaded(); }
coleenp@4037 1249
coleenp@4037 1250 // Creates a type given a klass. Correctly handles multi-dimensional arrays
coleenp@4037 1251 // Respects UseUniqueSubclasses.
coleenp@4037 1252 // If the klass is final, the resulting type will be exact.
coleenp@4037 1253 static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
coleenp@4037 1254 return make_from_klass_common(klass, true, false);
coleenp@4037 1255 }
coleenp@4037 1256 // Same as before, but will produce an exact type, even if
coleenp@4037 1257 // the klass is not final, as long as it has exactly one implementation.
coleenp@4037 1258 static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
coleenp@4037 1259 return make_from_klass_common(klass, true, true);
coleenp@4037 1260 }
coleenp@4037 1261 // Same as before, but does not respects UseUniqueSubclasses.
coleenp@4037 1262 // Use this only for creating array element types.
coleenp@4037 1263 static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
coleenp@4037 1264 return make_from_klass_common(klass, false, false);
coleenp@4037 1265 }
coleenp@4037 1266
coleenp@4037 1267 // Make a generic (unclassed) pointer to metadata.
coleenp@4037 1268 static const TypeKlassPtr* make(PTR ptr, int offset);
never@990 1269
duke@435 1270 // ptr to klass 'k'
duke@435 1271 static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
duke@435 1272 // ptr to klass 'k' with offset
duke@435 1273 static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
duke@435 1274 // ptr to klass 'k' or sub-klass
duke@435 1275 static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
duke@435 1276
duke@435 1277 virtual const Type *cast_to_ptr_type(PTR ptr) const;
duke@435 1278
duke@435 1279 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
duke@435 1280
duke@435 1281 // corresponding pointer to instance, for a given class
duke@435 1282 const TypeOopPtr* as_instance_type() const;
duke@435 1283
kvn@741 1284 virtual const TypePtr *add_offset( intptr_t offset ) const;
duke@435 1285 virtual const Type *xmeet( const Type *t ) const;
duke@435 1286 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1287
coleenp@4037 1288 virtual intptr_t get_con() const;
coleenp@4037 1289
duke@435 1290 // Convenience common pre-built types.
duke@435 1291 static const TypeKlassPtr* OBJECT; // Not-null object klass or below
duke@435 1292 static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
duke@435 1293 #ifndef PRODUCT
duke@435 1294 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1295 #endif
duke@435 1296 };
duke@435 1297
roland@4159 1298 class TypeNarrowPtr : public Type {
coleenp@548 1299 protected:
never@1262 1300 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
coleenp@548 1301
roland@4159 1302 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
roland@4159 1303 Type(t) {
never@1262 1304 assert(ptrtype->offset() == 0 ||
never@1262 1305 ptrtype->offset() == OffsetBot ||
never@1262 1306 ptrtype->offset() == OffsetTop, "no real offsets");
coleenp@548 1307 }
roland@4159 1308
roland@4159 1309 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
roland@4159 1310 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
roland@4159 1311 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
roland@4159 1312 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
roland@6313 1313 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 1314 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
coleenp@548 1315 public:
coleenp@548 1316 virtual bool eq( const Type *t ) const;
coleenp@548 1317 virtual int hash() const; // Type specific hashing
coleenp@548 1318 virtual bool singleton(void) const; // TRUE if type is a singleton
coleenp@548 1319
coleenp@548 1320 virtual const Type *xmeet( const Type *t ) const;
coleenp@548 1321 virtual const Type *xdual() const; // Compute dual right now.
coleenp@548 1322
coleenp@548 1323 virtual intptr_t get_con() const;
coleenp@548 1324
coleenp@548 1325 virtual bool empty(void) const; // TRUE if type is vacuous
coleenp@548 1326
roland@4159 1327 // returns the equivalent ptr type for this compressed pointer
roland@4159 1328 const TypePtr *get_ptrtype() const {
roland@4159 1329 return _ptrtype;
roland@4159 1330 }
roland@4159 1331
roland@4159 1332 #ifndef PRODUCT
roland@4159 1333 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
roland@4159 1334 #endif
roland@4159 1335 };
roland@4159 1336
roland@4159 1337 //------------------------------TypeNarrowOop----------------------------------
roland@4159 1338 // A compressed reference to some kind of Oop. This type wraps around
roland@4159 1339 // a preexisting TypeOopPtr and forwards most of it's operations to
roland@4159 1340 // the underlying type. It's only real purpose is to track the
roland@4159 1341 // oopness of the compressed oop value when we expose the conversion
roland@4159 1342 // between the normal and the compressed form.
roland@4159 1343 class TypeNarrowOop : public TypeNarrowPtr {
roland@4159 1344 protected:
roland@4159 1345 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
roland@4159 1346 }
roland@4159 1347
roland@4159 1348 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
roland@4159 1349 return t->isa_narrowoop();
roland@4159 1350 }
roland@4159 1351
roland@4159 1352 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
roland@4159 1353 return t->is_narrowoop();
roland@4159 1354 }
roland@4159 1355
roland@4159 1356 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
roland@4159 1357 return new TypeNarrowOop(t);
roland@4159 1358 }
roland@4159 1359
roland@4159 1360 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
roland@4159 1361 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
roland@4159 1362 }
roland@4159 1363
roland@4159 1364 public:
roland@4159 1365
coleenp@548 1366 static const TypeNarrowOop *make( const TypePtr* type);
coleenp@548 1367
jcoomes@2661 1368 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
jcoomes@2661 1369 return make(TypeOopPtr::make_from_constant(con, require_constant));
coleenp@548 1370 }
coleenp@548 1371
roland@4159 1372 static const TypeNarrowOop *BOTTOM;
roland@4159 1373 static const TypeNarrowOop *NULL_PTR;
roland@4159 1374
roland@6313 1375 virtual const Type* remove_speculative() const {
roland@6313 1376 return make(_ptrtype->remove_speculative()->is_ptr());
roland@6313 1377 }
roland@6313 1378
roland@4159 1379 #ifndef PRODUCT
roland@4159 1380 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
roland@4159 1381 #endif
roland@4159 1382 };
roland@4159 1383
roland@4159 1384 //------------------------------TypeNarrowKlass----------------------------------
roland@4159 1385 // A compressed reference to klass pointer. This type wraps around a
roland@4159 1386 // preexisting TypeKlassPtr and forwards most of it's operations to
roland@4159 1387 // the underlying type.
roland@4159 1388 class TypeNarrowKlass : public TypeNarrowPtr {
roland@4159 1389 protected:
roland@4159 1390 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
coleenp@548 1391 }
coleenp@548 1392
roland@4159 1393 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
roland@4159 1394 return t->isa_narrowklass();
roland@4159 1395 }
roland@4159 1396
roland@4159 1397 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
roland@4159 1398 return t->is_narrowklass();
roland@4159 1399 }
roland@4159 1400
roland@4159 1401 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
roland@4159 1402 return new TypeNarrowKlass(t);
roland@4159 1403 }
roland@4159 1404
roland@4159 1405 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
roland@4159 1406 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
roland@4159 1407 }
roland@4159 1408
roland@4159 1409 public:
roland@4159 1410 static const TypeNarrowKlass *make( const TypePtr* type);
roland@4159 1411
roland@4159 1412 // static const TypeNarrowKlass *BOTTOM;
roland@4159 1413 static const TypeNarrowKlass *NULL_PTR;
coleenp@548 1414
coleenp@548 1415 #ifndef PRODUCT
coleenp@548 1416 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
coleenp@548 1417 #endif
coleenp@548 1418 };
coleenp@548 1419
duke@435 1420 //------------------------------TypeFunc---------------------------------------
duke@435 1421 // Class of Array Types
duke@435 1422 class TypeFunc : public Type {
duke@435 1423 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {}
duke@435 1424 virtual bool eq( const Type *t ) const;
duke@435 1425 virtual int hash() const; // Type specific hashing
duke@435 1426 virtual bool singleton(void) const; // TRUE if type is a singleton
duke@435 1427 virtual bool empty(void) const; // TRUE if type is vacuous
duke@435 1428 public:
duke@435 1429 // Constants are shared among ADLC and VM
duke@435 1430 enum { Control = AdlcVMDeps::Control,
duke@435 1431 I_O = AdlcVMDeps::I_O,
duke@435 1432 Memory = AdlcVMDeps::Memory,
duke@435 1433 FramePtr = AdlcVMDeps::FramePtr,
duke@435 1434 ReturnAdr = AdlcVMDeps::ReturnAdr,
duke@435 1435 Parms = AdlcVMDeps::Parms
duke@435 1436 };
duke@435 1437
duke@435 1438 const TypeTuple* const _domain; // Domain of inputs
duke@435 1439 const TypeTuple* const _range; // Range of results
duke@435 1440
duke@435 1441 // Accessors:
duke@435 1442 const TypeTuple* domain() const { return _domain; }
duke@435 1443 const TypeTuple* range() const { return _range; }
duke@435 1444
duke@435 1445 static const TypeFunc *make(ciMethod* method);
duke@435 1446 static const TypeFunc *make(ciSignature signature, const Type* extra);
duke@435 1447 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
duke@435 1448
duke@435 1449 virtual const Type *xmeet( const Type *t ) const;
duke@435 1450 virtual const Type *xdual() const; // Compute dual right now.
duke@435 1451
duke@435 1452 BasicType return_type() const;
duke@435 1453
duke@435 1454 #ifndef PRODUCT
duke@435 1455 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
duke@435 1456 #endif
duke@435 1457 // Convenience common pre-built types.
duke@435 1458 };
duke@435 1459
duke@435 1460 //------------------------------accessors--------------------------------------
kvn@598 1461 inline bool Type::is_ptr_to_narrowoop() const {
kvn@598 1462 #ifdef _LP64
kvn@598 1463 return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
kvn@598 1464 #else
kvn@598 1465 return false;
kvn@598 1466 #endif
kvn@598 1467 }
kvn@598 1468
roland@4159 1469 inline bool Type::is_ptr_to_narrowklass() const {
roland@4159 1470 #ifdef _LP64
roland@4159 1471 return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
roland@4159 1472 #else
roland@4159 1473 return false;
roland@4159 1474 #endif
roland@4159 1475 }
roland@4159 1476
duke@435 1477 inline float Type::getf() const {
duke@435 1478 assert( _base == FloatCon, "Not a FloatCon" );
duke@435 1479 return ((TypeF*)this)->_f;
duke@435 1480 }
duke@435 1481
duke@435 1482 inline double Type::getd() const {
duke@435 1483 assert( _base == DoubleCon, "Not a DoubleCon" );
duke@435 1484 return ((TypeD*)this)->_d;
duke@435 1485 }
duke@435 1486
duke@435 1487 inline const TypeInt *Type::is_int() const {
duke@435 1488 assert( _base == Int, "Not an Int" );
duke@435 1489 return (TypeInt*)this;
duke@435 1490 }
duke@435 1491
duke@435 1492 inline const TypeInt *Type::isa_int() const {
duke@435 1493 return ( _base == Int ? (TypeInt*)this : NULL);
duke@435 1494 }
duke@435 1495
duke@435 1496 inline const TypeLong *Type::is_long() const {
duke@435 1497 assert( _base == Long, "Not a Long" );
duke@435 1498 return (TypeLong*)this;
duke@435 1499 }
duke@435 1500
duke@435 1501 inline const TypeLong *Type::isa_long() const {
duke@435 1502 return ( _base == Long ? (TypeLong*)this : NULL);
duke@435 1503 }
duke@435 1504
twisti@4313 1505 inline const TypeF *Type::isa_float() const {
twisti@4313 1506 return ((_base == FloatTop ||
twisti@4313 1507 _base == FloatCon ||
twisti@4313 1508 _base == FloatBot) ? (TypeF*)this : NULL);
twisti@4313 1509 }
twisti@4313 1510
twisti@4313 1511 inline const TypeF *Type::is_float_constant() const {
twisti@4313 1512 assert( _base == FloatCon, "Not a Float" );
twisti@4313 1513 return (TypeF*)this;
twisti@4313 1514 }
twisti@4313 1515
twisti@4313 1516 inline const TypeF *Type::isa_float_constant() const {
twisti@4313 1517 return ( _base == FloatCon ? (TypeF*)this : NULL);
twisti@4313 1518 }
twisti@4313 1519
twisti@4313 1520 inline const TypeD *Type::isa_double() const {
twisti@4313 1521 return ((_base == DoubleTop ||
twisti@4313 1522 _base == DoubleCon ||
twisti@4313 1523 _base == DoubleBot) ? (TypeD*)this : NULL);
twisti@4313 1524 }
twisti@4313 1525
twisti@4313 1526 inline const TypeD *Type::is_double_constant() const {
twisti@4313 1527 assert( _base == DoubleCon, "Not a Double" );
twisti@4313 1528 return (TypeD*)this;
twisti@4313 1529 }
twisti@4313 1530
twisti@4313 1531 inline const TypeD *Type::isa_double_constant() const {
twisti@4313 1532 return ( _base == DoubleCon ? (TypeD*)this : NULL);
twisti@4313 1533 }
twisti@4313 1534
duke@435 1535 inline const TypeTuple *Type::is_tuple() const {
duke@435 1536 assert( _base == Tuple, "Not a Tuple" );
duke@435 1537 return (TypeTuple*)this;
duke@435 1538 }
duke@435 1539
duke@435 1540 inline const TypeAry *Type::is_ary() const {
duke@435 1541 assert( _base == Array , "Not an Array" );
duke@435 1542 return (TypeAry*)this;
duke@435 1543 }
duke@435 1544
kvn@3882 1545 inline const TypeVect *Type::is_vect() const {
kvn@3882 1546 assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
kvn@3882 1547 return (TypeVect*)this;
kvn@3882 1548 }
kvn@3882 1549
kvn@3882 1550 inline const TypeVect *Type::isa_vect() const {
kvn@3882 1551 return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
kvn@3882 1552 }
kvn@3882 1553
duke@435 1554 inline const TypePtr *Type::is_ptr() const {
duke@435 1555 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
duke@435 1556 assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
duke@435 1557 return (TypePtr*)this;
duke@435 1558 }
duke@435 1559
duke@435 1560 inline const TypePtr *Type::isa_ptr() const {
duke@435 1561 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
duke@435 1562 return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
duke@435 1563 }
duke@435 1564
duke@435 1565 inline const TypeOopPtr *Type::is_oopptr() const {
duke@435 1566 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@4037 1567 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
duke@435 1568 return (TypeOopPtr*)this;
duke@435 1569 }
duke@435 1570
duke@435 1571 inline const TypeOopPtr *Type::isa_oopptr() const {
duke@435 1572 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@4037 1573 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
duke@435 1574 }
duke@435 1575
coleenp@548 1576 inline const TypeRawPtr *Type::isa_rawptr() const {
coleenp@548 1577 return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
coleenp@548 1578 }
coleenp@548 1579
duke@435 1580 inline const TypeRawPtr *Type::is_rawptr() const {
duke@435 1581 assert( _base == RawPtr, "Not a raw pointer" );
duke@435 1582 return (TypeRawPtr*)this;
duke@435 1583 }
duke@435 1584
duke@435 1585 inline const TypeInstPtr *Type::isa_instptr() const {
duke@435 1586 return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
duke@435 1587 }
duke@435 1588
duke@435 1589 inline const TypeInstPtr *Type::is_instptr() const {
duke@435 1590 assert( _base == InstPtr, "Not an object pointer" );
duke@435 1591 return (TypeInstPtr*)this;
duke@435 1592 }
duke@435 1593
duke@435 1594 inline const TypeAryPtr *Type::isa_aryptr() const {
duke@435 1595 return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
duke@435 1596 }
duke@435 1597
duke@435 1598 inline const TypeAryPtr *Type::is_aryptr() const {
duke@435 1599 assert( _base == AryPtr, "Not an array pointer" );
duke@435 1600 return (TypeAryPtr*)this;
duke@435 1601 }
duke@435 1602
coleenp@548 1603 inline const TypeNarrowOop *Type::is_narrowoop() const {
coleenp@548 1604 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@548 1605 assert(_base == NarrowOop, "Not a narrow oop" ) ;
coleenp@548 1606 return (TypeNarrowOop*)this;
coleenp@548 1607 }
coleenp@548 1608
coleenp@548 1609 inline const TypeNarrowOop *Type::isa_narrowoop() const {
coleenp@548 1610 // OopPtr is the first and KlassPtr the last, with no non-oops between.
coleenp@548 1611 return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
coleenp@548 1612 }
coleenp@548 1613
roland@4159 1614 inline const TypeNarrowKlass *Type::is_narrowklass() const {
roland@4159 1615 assert(_base == NarrowKlass, "Not a narrow oop" ) ;
roland@4159 1616 return (TypeNarrowKlass*)this;
roland@4159 1617 }
roland@4159 1618
roland@4159 1619 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
roland@4159 1620 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
roland@4159 1621 }
roland@4159 1622
coleenp@4037 1623 inline const TypeMetadataPtr *Type::is_metadataptr() const {
coleenp@4037 1624 // MetadataPtr is the first and CPCachePtr the last
coleenp@4037 1625 assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
coleenp@4037 1626 return (TypeMetadataPtr*)this;
coleenp@4037 1627 }
coleenp@4037 1628
coleenp@4037 1629 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
coleenp@4037 1630 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
coleenp@4037 1631 }
coleenp@4037 1632
duke@435 1633 inline const TypeKlassPtr *Type::isa_klassptr() const {
duke@435 1634 return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
duke@435 1635 }
duke@435 1636
duke@435 1637 inline const TypeKlassPtr *Type::is_klassptr() const {
duke@435 1638 assert( _base == KlassPtr, "Not a klass pointer" );
duke@435 1639 return (TypeKlassPtr*)this;
duke@435 1640 }
duke@435 1641
kvn@656 1642 inline const TypePtr* Type::make_ptr() const {
never@1262 1643 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
roland@4159 1644 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
roland@4159 1645 (isa_ptr() ? is_ptr() : NULL));
kvn@656 1646 }
kvn@656 1647
never@1262 1648 inline const TypeOopPtr* Type::make_oopptr() const {
never@1262 1649 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
never@1262 1650 }
never@1262 1651
kvn@656 1652 inline const TypeNarrowOop* Type::make_narrowoop() const {
kvn@656 1653 return (_base == NarrowOop) ? is_narrowoop() :
kvn@656 1654 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
kvn@656 1655 }
kvn@656 1656
roland@4159 1657 inline const TypeNarrowKlass* Type::make_narrowklass() const {
roland@4159 1658 return (_base == NarrowKlass) ? is_narrowklass() :
roland@4159 1659 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
roland@4159 1660 }
roland@4159 1661
duke@435 1662 inline bool Type::is_floatingpoint() const {
duke@435 1663 if( (_base == FloatCon) || (_base == FloatBot) ||
duke@435 1664 (_base == DoubleCon) || (_base == DoubleBot) )
duke@435 1665 return true;
duke@435 1666 return false;
duke@435 1667 }
duke@435 1668
kvn@5110 1669 inline bool Type::is_ptr_to_boxing_obj() const {
kvn@5110 1670 const TypeInstPtr* tp = isa_instptr();
kvn@5110 1671 return (tp != NULL) && (tp->offset() == 0) &&
kvn@5110 1672 tp->klass()->is_instance_klass() &&
kvn@5110 1673 tp->klass()->as_instance_klass()->is_box_klass();
kvn@5110 1674 }
kvn@5110 1675
duke@435 1676
duke@435 1677 // ===============================================================
duke@435 1678 // Things that need to be 64-bits in the 64-bit build but
duke@435 1679 // 32-bits in the 32-bit build. Done this way to get full
duke@435 1680 // optimization AND strong typing.
duke@435 1681 #ifdef _LP64
duke@435 1682
duke@435 1683 // For type queries and asserts
duke@435 1684 #define is_intptr_t is_long
duke@435 1685 #define isa_intptr_t isa_long
duke@435 1686 #define find_intptr_t_type find_long_type
duke@435 1687 #define find_intptr_t_con find_long_con
duke@435 1688 #define TypeX TypeLong
duke@435 1689 #define Type_X Type::Long
duke@435 1690 #define TypeX_X TypeLong::LONG
duke@435 1691 #define TypeX_ZERO TypeLong::ZERO
duke@435 1692 // For 'ideal_reg' machine registers
duke@435 1693 #define Op_RegX Op_RegL
duke@435 1694 // For phase->intcon variants
duke@435 1695 #define MakeConX longcon
duke@435 1696 #define ConXNode ConLNode
duke@435 1697 // For array index arithmetic
duke@435 1698 #define MulXNode MulLNode
duke@435 1699 #define AndXNode AndLNode
duke@435 1700 #define OrXNode OrLNode
duke@435 1701 #define CmpXNode CmpLNode
duke@435 1702 #define SubXNode SubLNode
duke@435 1703 #define LShiftXNode LShiftLNode
duke@435 1704 // For object size computation:
duke@435 1705 #define AddXNode AddLNode
never@452 1706 #define RShiftXNode RShiftLNode
duke@435 1707 // For card marks and hashcodes
duke@435 1708 #define URShiftXNode URShiftLNode
kvn@855 1709 // UseOptoBiasInlining
kvn@855 1710 #define XorXNode XorLNode
kvn@855 1711 #define StoreXConditionalNode StoreLConditionalNode
duke@435 1712 // Opcodes
duke@435 1713 #define Op_LShiftX Op_LShiftL
duke@435 1714 #define Op_AndX Op_AndL
duke@435 1715 #define Op_AddX Op_AddL
duke@435 1716 #define Op_SubX Op_SubL
kvn@1286 1717 #define Op_XorX Op_XorL
kvn@1286 1718 #define Op_URShiftX Op_URShiftL
duke@435 1719 // conversions
duke@435 1720 #define ConvI2X(x) ConvI2L(x)
duke@435 1721 #define ConvL2X(x) (x)
duke@435 1722 #define ConvX2I(x) ConvL2I(x)
duke@435 1723 #define ConvX2L(x) (x)
poonam@6425 1724 #define ConvX2UL(x) (x)
duke@435 1725
duke@435 1726 #else
duke@435 1727
duke@435 1728 // For type queries and asserts
duke@435 1729 #define is_intptr_t is_int
duke@435 1730 #define isa_intptr_t isa_int
duke@435 1731 #define find_intptr_t_type find_int_type
duke@435 1732 #define find_intptr_t_con find_int_con
duke@435 1733 #define TypeX TypeInt
duke@435 1734 #define Type_X Type::Int
duke@435 1735 #define TypeX_X TypeInt::INT
duke@435 1736 #define TypeX_ZERO TypeInt::ZERO
duke@435 1737 // For 'ideal_reg' machine registers
duke@435 1738 #define Op_RegX Op_RegI
duke@435 1739 // For phase->intcon variants
duke@435 1740 #define MakeConX intcon
duke@435 1741 #define ConXNode ConINode
duke@435 1742 // For array index arithmetic
duke@435 1743 #define MulXNode MulINode
duke@435 1744 #define AndXNode AndINode
duke@435 1745 #define OrXNode OrINode
duke@435 1746 #define CmpXNode CmpINode
duke@435 1747 #define SubXNode SubINode
duke@435 1748 #define LShiftXNode LShiftINode
duke@435 1749 // For object size computation:
duke@435 1750 #define AddXNode AddINode
never@452 1751 #define RShiftXNode RShiftINode
duke@435 1752 // For card marks and hashcodes
duke@435 1753 #define URShiftXNode URShiftINode
kvn@855 1754 // UseOptoBiasInlining
kvn@855 1755 #define XorXNode XorINode
kvn@855 1756 #define StoreXConditionalNode StoreIConditionalNode
duke@435 1757 // Opcodes
duke@435 1758 #define Op_LShiftX Op_LShiftI
duke@435 1759 #define Op_AndX Op_AndI
duke@435 1760 #define Op_AddX Op_AddI
duke@435 1761 #define Op_SubX Op_SubI
kvn@1286 1762 #define Op_XorX Op_XorI
kvn@1286 1763 #define Op_URShiftX Op_URShiftI
duke@435 1764 // conversions
duke@435 1765 #define ConvI2X(x) (x)
duke@435 1766 #define ConvL2X(x) ConvL2I(x)
duke@435 1767 #define ConvX2I(x) (x)
duke@435 1768 #define ConvX2L(x) ConvI2L(x)
poonam@6425 1769 #define ConvX2UL(x) ConvI2UL(x)
duke@435 1770
duke@435 1771 #endif
stefank@2314 1772
stefank@2314 1773 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial