src/share/vm/gc_implementation/g1/concurrentMark.hpp

Wed, 19 Jan 2011 19:30:42 -0500

author
tonyp
date
Wed, 19 Jan 2011 19:30:42 -0500
changeset 2472
0fa27f37d4d4
parent 2379
b03260081e9b
child 2494
234761c55641
permissions
-rw-r--r--

6977804: G1: remove the zero-filling thread
Summary: This changeset removes the zero-filling thread from G1 and collapses the two free region lists we had before (the "free" and "unclean" lists) into one. The new free list uses the new heap region sets / lists abstractions that we'll ultimately use it to keep track of all regions in the heap. A heap region set was also introduced for the humongous regions. Finally, this change increases the concurrency between the thread that completes freeing regions (after a cleanup pause) and the rest of the system (before we'd have to wait for said thread to complete before allocating a new region). The changest also includes a lot of refactoring and code simplification.
Reviewed-by: jcoomes, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegionSets.hpp"
    29 #include "utilities/taskqueue.hpp"
    31 class G1CollectedHeap;
    32 class CMTask;
    33 typedef GenericTaskQueue<oop>            CMTaskQueue;
    34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
    36 // Closure used by CM during concurrent reference discovery
    37 // and reference processing (during remarking) to determine
    38 // if a particular object is alive. It is primarily used
    39 // to determine if referents of discovered reference objects
    40 // are alive. An instance is also embedded into the
    41 // reference processor as the _is_alive_non_header field
    42 class G1CMIsAliveClosure: public BoolObjectClosure {
    43   G1CollectedHeap* _g1;
    44  public:
    45   G1CMIsAliveClosure(G1CollectedHeap* g1) :
    46     _g1(g1)
    47   {}
    49   void do_object(oop obj) {
    50     ShouldNotCallThis();
    51   }
    52   bool do_object_b(oop obj);
    53 };
    55 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    56 // class, with one bit per (1<<_shifter) HeapWords.
    58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    59  protected:
    60   HeapWord* _bmStartWord;      // base address of range covered by map
    61   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    62   const int _shifter;          // map to char or bit
    63   VirtualSpace _virtual_space; // underlying the bit map
    64   BitMap    _bm;               // the bit map itself
    66  public:
    67   // constructor
    68   CMBitMapRO(ReservedSpace rs, int shifter);
    70   enum { do_yield = true };
    72   // inquiries
    73   HeapWord* startWord()   const { return _bmStartWord; }
    74   size_t    sizeInWords() const { return _bmWordSize;  }
    75   // the following is one past the last word in space
    76   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    78   // read marks
    80   bool isMarked(HeapWord* addr) const {
    81     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    82            "outside underlying space?");
    83     return _bm.at(heapWordToOffset(addr));
    84   }
    86   // iteration
    87   bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
    88   bool iterate(BitMapClosure* cl, MemRegion mr);
    90   // Return the address corresponding to the next marked bit at or after
    91   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    92   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    93   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    94                                      HeapWord* limit = NULL) const;
    95   // Return the address corresponding to the next unmarked bit at or after
    96   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    97   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    98   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    99                                        HeapWord* limit = NULL) const;
   101   // conversion utilities
   102   // XXX Fix these so that offsets are size_t's...
   103   HeapWord* offsetToHeapWord(size_t offset) const {
   104     return _bmStartWord + (offset << _shifter);
   105   }
   106   size_t heapWordToOffset(HeapWord* addr) const {
   107     return pointer_delta(addr, _bmStartWord) >> _shifter;
   108   }
   109   int heapWordDiffToOffsetDiff(size_t diff) const;
   110   HeapWord* nextWord(HeapWord* addr) {
   111     return offsetToHeapWord(heapWordToOffset(addr) + 1);
   112   }
   114   void mostly_disjoint_range_union(BitMap*   from_bitmap,
   115                                    size_t    from_start_index,
   116                                    HeapWord* to_start_word,
   117                                    size_t    word_num);
   119   // debugging
   120   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   121 };
   123 class CMBitMap : public CMBitMapRO {
   125  public:
   126   // constructor
   127   CMBitMap(ReservedSpace rs, int shifter) :
   128     CMBitMapRO(rs, shifter) {}
   130   // write marks
   131   void mark(HeapWord* addr) {
   132     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   133            "outside underlying space?");
   134     _bm.at_put(heapWordToOffset(addr), true);
   135   }
   136   void clear(HeapWord* addr) {
   137     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   138            "outside underlying space?");
   139     _bm.at_put(heapWordToOffset(addr), false);
   140   }
   141   bool parMark(HeapWord* addr) {
   142     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   143            "outside underlying space?");
   144     return _bm.par_at_put(heapWordToOffset(addr), true);
   145   }
   146   bool parClear(HeapWord* addr) {
   147     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   148            "outside underlying space?");
   149     return _bm.par_at_put(heapWordToOffset(addr), false);
   150   }
   151   void markRange(MemRegion mr);
   152   void clearAll();
   153   void clearRange(MemRegion mr);
   155   // Starting at the bit corresponding to "addr" (inclusive), find the next
   156   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   157   // the end of this run (stopping at "end_addr").  Return the MemRegion
   158   // covering from the start of the region corresponding to the first bit
   159   // of the run to the end of the region corresponding to the last bit of
   160   // the run.  If there is no "1" bit at or after "addr", return an empty
   161   // MemRegion.
   162   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   163 };
   165 // Represents a marking stack used by the CM collector.
   166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   168   ConcurrentMark* _cm;
   169   oop*   _base;      // bottom of stack
   170   jint   _index;     // one more than last occupied index
   171   jint   _capacity;  // max #elements
   172   jint   _oops_do_bound;  // Number of elements to include in next iteration.
   173   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
   175   bool   _overflow;
   176   DEBUG_ONLY(bool _drain_in_progress;)
   177   DEBUG_ONLY(bool _drain_in_progress_yields;)
   179  public:
   180   CMMarkStack(ConcurrentMark* cm);
   181   ~CMMarkStack();
   183   void allocate(size_t size);
   185   oop pop() {
   186     if (!isEmpty()) {
   187       return _base[--_index] ;
   188     }
   189     return NULL;
   190   }
   192   // If overflow happens, don't do the push, and record the overflow.
   193   // *Requires* that "ptr" is already marked.
   194   void push(oop ptr) {
   195     if (isFull()) {
   196       // Record overflow.
   197       _overflow = true;
   198       return;
   199     } else {
   200       _base[_index++] = ptr;
   201       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   202     }
   203   }
   204   // Non-block impl.  Note: concurrency is allowed only with other
   205   // "par_push" operations, not with "pop" or "drain".  We would need
   206   // parallel versions of them if such concurrency was desired.
   207   void par_push(oop ptr);
   209   // Pushes the first "n" elements of "ptr_arr" on the stack.
   210   // Non-block impl.  Note: concurrency is allowed only with other
   211   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   212   void par_adjoin_arr(oop* ptr_arr, int n);
   214   // Pushes the first "n" elements of "ptr_arr" on the stack.
   215   // Locking impl: concurrency is allowed only with
   216   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   217   // locking strategy.
   218   void par_push_arr(oop* ptr_arr, int n);
   220   // If returns false, the array was empty.  Otherwise, removes up to "max"
   221   // elements from the stack, and transfers them to "ptr_arr" in an
   222   // unspecified order.  The actual number transferred is given in "n" ("n
   223   // == 0" is deliberately redundant with the return value.)  Locking impl:
   224   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   225   // operations, which use the same locking strategy.
   226   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   228   // Drain the mark stack, applying the given closure to all fields of
   229   // objects on the stack.  (That is, continue until the stack is empty,
   230   // even if closure applications add entries to the stack.)  The "bm"
   231   // argument, if non-null, may be used to verify that only marked objects
   232   // are on the mark stack.  If "yield_after" is "true", then the
   233   // concurrent marker performing the drain offers to yield after
   234   // processing each object.  If a yield occurs, stops the drain operation
   235   // and returns false.  Otherwise, returns true.
   236   template<class OopClosureClass>
   237   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   239   bool isEmpty()    { return _index == 0; }
   240   bool isFull()     { return _index == _capacity; }
   241   int maxElems()    { return _capacity; }
   243   bool overflow() { return _overflow; }
   244   void clear_overflow() { _overflow = false; }
   246   int  size() { return _index; }
   248   void setEmpty()   { _index = 0; clear_overflow(); }
   250   // Record the current size; a subsequent "oops_do" will iterate only over
   251   // indices valid at the time of this call.
   252   void set_oops_do_bound(jint bound = -1) {
   253     if (bound == -1) {
   254       _oops_do_bound = _index;
   255     } else {
   256       _oops_do_bound = bound;
   257     }
   258   }
   259   jint oops_do_bound() { return _oops_do_bound; }
   260   // iterate over the oops in the mark stack, up to the bound recorded via
   261   // the call above.
   262   void oops_do(OopClosure* f);
   263 };
   265 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
   266   MemRegion* _base;
   267   jint _capacity;
   268   jint _index;
   269   jint _oops_do_bound;
   270   bool _overflow;
   271 public:
   272   CMRegionStack();
   273   ~CMRegionStack();
   274   void allocate(size_t size);
   276   // This is lock-free; assumes that it will only be called in parallel
   277   // with other "push" operations (no pops).
   278   void push_lock_free(MemRegion mr);
   280   // Lock-free; assumes that it will only be called in parallel
   281   // with other "pop" operations (no pushes).
   282   MemRegion pop_lock_free();
   284 #if 0
   285   // The routines that manipulate the region stack with a lock are
   286   // not currently used. They should be retained, however, as a
   287   // diagnostic aid.
   289   // These two are the implementations that use a lock. They can be
   290   // called concurrently with each other but they should not be called
   291   // concurrently with the lock-free versions (push() / pop()).
   292   void push_with_lock(MemRegion mr);
   293   MemRegion pop_with_lock();
   294 #endif
   296   bool isEmpty()    { return _index == 0; }
   297   bool isFull()     { return _index == _capacity; }
   299   bool overflow() { return _overflow; }
   300   void clear_overflow() { _overflow = false; }
   302   int  size() { return _index; }
   304   // It iterates over the entries in the region stack and it
   305   // invalidates (i.e. assigns MemRegion()) the ones that point to
   306   // regions in the collection set.
   307   bool invalidate_entries_into_cset();
   309   // This gives an upper bound up to which the iteration in
   310   // invalidate_entries_into_cset() will reach. This prevents
   311   // newly-added entries to be unnecessarily scanned.
   312   void set_oops_do_bound() {
   313     _oops_do_bound = _index;
   314   }
   316   void setEmpty()   { _index = 0; clear_overflow(); }
   317 };
   319 // this will enable a variety of different statistics per GC task
   320 #define _MARKING_STATS_       0
   321 // this will enable the higher verbose levels
   322 #define _MARKING_VERBOSE_     0
   324 #if _MARKING_STATS_
   325 #define statsOnly(statement)  \
   326 do {                          \
   327   statement ;                 \
   328 } while (0)
   329 #else // _MARKING_STATS_
   330 #define statsOnly(statement)  \
   331 do {                          \
   332 } while (0)
   333 #endif // _MARKING_STATS_
   335 typedef enum {
   336   no_verbose  = 0,   // verbose turned off
   337   stats_verbose,     // only prints stats at the end of marking
   338   low_verbose,       // low verbose, mostly per region and per major event
   339   medium_verbose,    // a bit more detailed than low
   340   high_verbose       // per object verbose
   341 } CMVerboseLevel;
   344 class ConcurrentMarkThread;
   346 class ConcurrentMark: public CHeapObj {
   347   friend class ConcurrentMarkThread;
   348   friend class CMTask;
   349   friend class CMBitMapClosure;
   350   friend class CSMarkOopClosure;
   351   friend class CMGlobalObjectClosure;
   352   friend class CMRemarkTask;
   353   friend class CMConcurrentMarkingTask;
   354   friend class G1ParNoteEndTask;
   355   friend class CalcLiveObjectsClosure;
   357 protected:
   358   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   359   G1CollectedHeap*      _g1h;        // the heap.
   360   size_t                _parallel_marking_threads; // the number of marking
   361                                                    // threads we'll use
   362   double                _sleep_factor; // how much we have to sleep, with
   363                                        // respect to the work we just did, to
   364                                        // meet the marking overhead goal
   365   double                _marking_task_overhead; // marking target overhead for
   366                                                 // a single task
   368   // same as the two above, but for the cleanup task
   369   double                _cleanup_sleep_factor;
   370   double                _cleanup_task_overhead;
   372   FreeRegionList        _cleanup_list;
   374   // CMS marking support structures
   375   CMBitMap                _markBitMap1;
   376   CMBitMap                _markBitMap2;
   377   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   378   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   379   bool                    _at_least_one_mark_complete;
   381   BitMap                  _region_bm;
   382   BitMap                  _card_bm;
   384   // Heap bounds
   385   HeapWord*               _heap_start;
   386   HeapWord*               _heap_end;
   388   // For gray objects
   389   CMMarkStack             _markStack; // Grey objects behind global finger.
   390   CMRegionStack           _regionStack; // Grey regions behind global finger.
   391   HeapWord* volatile      _finger;  // the global finger, region aligned,
   392                                     // always points to the end of the
   393                                     // last claimed region
   395   // marking tasks
   396   size_t                  _max_task_num; // maximum task number
   397   size_t                  _active_tasks; // task num currently active
   398   CMTask**                _tasks;        // task queue array (max_task_num len)
   399   CMTaskQueueSet*         _task_queues;  // task queue set
   400   ParallelTaskTerminator  _terminator;   // for termination
   402   // Two sync barriers that are used to synchronise tasks when an
   403   // overflow occurs. The algorithm is the following. All tasks enter
   404   // the first one to ensure that they have all stopped manipulating
   405   // the global data structures. After they exit it, they re-initialise
   406   // their data structures and task 0 re-initialises the global data
   407   // structures. Then, they enter the second sync barrier. This
   408   // ensure, that no task starts doing work before all data
   409   // structures (local and global) have been re-initialised. When they
   410   // exit it, they are free to start working again.
   411   WorkGangBarrierSync     _first_overflow_barrier_sync;
   412   WorkGangBarrierSync     _second_overflow_barrier_sync;
   415   // this is set by any task, when an overflow on the global data
   416   // structures is detected.
   417   volatile bool           _has_overflown;
   418   // true: marking is concurrent, false: we're in remark
   419   volatile bool           _concurrent;
   420   // set at the end of a Full GC so that marking aborts
   421   volatile bool           _has_aborted;
   423   // used when remark aborts due to an overflow to indicate that
   424   // another concurrent marking phase should start
   425   volatile bool           _restart_for_overflow;
   427   // This is true from the very start of concurrent marking until the
   428   // point when all the tasks complete their work. It is really used
   429   // to determine the points between the end of concurrent marking and
   430   // time of remark.
   431   volatile bool           _concurrent_marking_in_progress;
   433   // verbose level
   434   CMVerboseLevel          _verbose_level;
   436   // These two fields are used to implement the optimisation that
   437   // avoids pushing objects on the global/region stack if there are
   438   // no collection set regions above the lowest finger.
   440   // This is the lowest finger (among the global and local fingers),
   441   // which is calculated before a new collection set is chosen.
   442   HeapWord* _min_finger;
   443   // If this flag is true, objects/regions that are marked below the
   444   // finger should be pushed on the stack(s). If this is flag is
   445   // false, it is safe not to push them on the stack(s).
   446   bool      _should_gray_objects;
   448   // All of these times are in ms.
   449   NumberSeq _init_times;
   450   NumberSeq _remark_times;
   451   NumberSeq   _remark_mark_times;
   452   NumberSeq   _remark_weak_ref_times;
   453   NumberSeq _cleanup_times;
   454   double    _total_counting_time;
   455   double    _total_rs_scrub_time;
   457   double*   _accum_task_vtime;   // accumulated task vtime
   459   WorkGang* _parallel_workers;
   461   void weakRefsWork(bool clear_all_soft_refs);
   463   void swapMarkBitMaps();
   465   // It resets the global marking data structures, as well as the
   466   // task local ones; should be called during initial mark.
   467   void reset();
   468   // It resets all the marking data structures.
   469   void clear_marking_state();
   471   // It should be called to indicate which phase we're in (concurrent
   472   // mark or remark) and how many threads are currently active.
   473   void set_phase(size_t active_tasks, bool concurrent);
   474   // We do this after we're done with marking so that the marking data
   475   // structures are initialised to a sensible and predictable state.
   476   void set_non_marking_state();
   478   // prints all gathered CM-related statistics
   479   void print_stats();
   481   bool cleanup_list_is_empty() {
   482     return _cleanup_list.is_empty();
   483   }
   485   // accessor methods
   486   size_t parallel_marking_threads() { return _parallel_marking_threads; }
   487   double sleep_factor()             { return _sleep_factor; }
   488   double marking_task_overhead()    { return _marking_task_overhead;}
   489   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
   490   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
   492   HeapWord*               finger()        { return _finger;   }
   493   bool                    concurrent()    { return _concurrent; }
   494   size_t                  active_tasks()  { return _active_tasks; }
   495   ParallelTaskTerminator* terminator()    { return &_terminator; }
   497   // It claims the next available region to be scanned by a marking
   498   // task. It might return NULL if the next region is empty or we have
   499   // run out of regions. In the latter case, out_of_regions()
   500   // determines whether we've really run out of regions or the task
   501   // should call claim_region() again.  This might seem a bit
   502   // awkward. Originally, the code was written so that claim_region()
   503   // either successfully returned with a non-empty region or there
   504   // were no more regions to be claimed. The problem with this was
   505   // that, in certain circumstances, it iterated over large chunks of
   506   // the heap finding only empty regions and, while it was working, it
   507   // was preventing the calling task to call its regular clock
   508   // method. So, this way, each task will spend very little time in
   509   // claim_region() and is allowed to call the regular clock method
   510   // frequently.
   511   HeapRegion* claim_region(int task);
   513   // It determines whether we've run out of regions to scan.
   514   bool        out_of_regions() { return _finger == _heap_end; }
   516   // Returns the task with the given id
   517   CMTask* task(int id) {
   518     assert(0 <= id && id < (int) _active_tasks,
   519            "task id not within active bounds");
   520     return _tasks[id];
   521   }
   523   // Returns the task queue with the given id
   524   CMTaskQueue* task_queue(int id) {
   525     assert(0 <= id && id < (int) _active_tasks,
   526            "task queue id not within active bounds");
   527     return (CMTaskQueue*) _task_queues->queue(id);
   528   }
   530   // Returns the task queue set
   531   CMTaskQueueSet* task_queues()  { return _task_queues; }
   533   // Access / manipulation of the overflow flag which is set to
   534   // indicate that the global stack or region stack has overflown
   535   bool has_overflown()           { return _has_overflown; }
   536   void set_has_overflown()       { _has_overflown = true; }
   537   void clear_has_overflown()     { _has_overflown = false; }
   539   bool has_aborted()             { return _has_aborted; }
   540   bool restart_for_overflow()    { return _restart_for_overflow; }
   542   // Methods to enter the two overflow sync barriers
   543   void enter_first_sync_barrier(int task_num);
   544   void enter_second_sync_barrier(int task_num);
   546 public:
   547   // Manipulation of the global mark stack.
   548   // Notice that the first mark_stack_push is CAS-based, whereas the
   549   // two below are Mutex-based. This is OK since the first one is only
   550   // called during evacuation pauses and doesn't compete with the
   551   // other two (which are called by the marking tasks during
   552   // concurrent marking or remark).
   553   bool mark_stack_push(oop p) {
   554     _markStack.par_push(p);
   555     if (_markStack.overflow()) {
   556       set_has_overflown();
   557       return false;
   558     }
   559     return true;
   560   }
   561   bool mark_stack_push(oop* arr, int n) {
   562     _markStack.par_push_arr(arr, n);
   563     if (_markStack.overflow()) {
   564       set_has_overflown();
   565       return false;
   566     }
   567     return true;
   568   }
   569   void mark_stack_pop(oop* arr, int max, int* n) {
   570     _markStack.par_pop_arr(arr, max, n);
   571   }
   572   size_t mark_stack_size()              { return _markStack.size(); }
   573   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   574   bool mark_stack_overflow()            { return _markStack.overflow(); }
   575   bool mark_stack_empty()               { return _markStack.isEmpty(); }
   577   // (Lock-free) Manipulation of the region stack
   578   bool region_stack_push_lock_free(MemRegion mr) {
   579     // Currently we only call the lock-free version during evacuation
   580     // pauses.
   581     assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
   583     _regionStack.push_lock_free(mr);
   584     if (_regionStack.overflow()) {
   585       set_has_overflown();
   586       return false;
   587     }
   588     return true;
   589   }
   591   // Lock-free version of region-stack pop. Should only be
   592   // called in tandem with other lock-free pops.
   593   MemRegion region_stack_pop_lock_free() {
   594     return _regionStack.pop_lock_free();
   595   }
   597 #if 0
   598   // The routines that manipulate the region stack with a lock are
   599   // not currently used. They should be retained, however, as a
   600   // diagnostic aid.
   602   bool region_stack_push_with_lock(MemRegion mr) {
   603     // Currently we only call the lock-based version during either
   604     // concurrent marking or remark.
   605     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   606            "if we are at a safepoint it should be the remark safepoint");
   608     _regionStack.push_with_lock(mr);
   609     if (_regionStack.overflow()) {
   610       set_has_overflown();
   611       return false;
   612     }
   613     return true;
   614   }
   616   MemRegion region_stack_pop_with_lock() {
   617     // Currently we only call the lock-based version during either
   618     // concurrent marking or remark.
   619     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   620            "if we are at a safepoint it should be the remark safepoint");
   622     return _regionStack.pop_with_lock();
   623   }
   624 #endif
   626   int region_stack_size()               { return _regionStack.size(); }
   627   bool region_stack_overflow()          { return _regionStack.overflow(); }
   628   bool region_stack_empty()             { return _regionStack.isEmpty(); }
   630   // Iterate over any regions that were aborted while draining the
   631   // region stack (any such regions are saved in the corresponding
   632   // CMTask) and invalidate (i.e. assign to the empty MemRegion())
   633   // any regions that point into the collection set.
   634   bool invalidate_aborted_regions_in_cset();
   636   // Returns true if there are any aborted memory regions.
   637   bool has_aborted_regions();
   639   bool concurrent_marking_in_progress() {
   640     return _concurrent_marking_in_progress;
   641   }
   642   void set_concurrent_marking_in_progress() {
   643     _concurrent_marking_in_progress = true;
   644   }
   645   void clear_concurrent_marking_in_progress() {
   646     _concurrent_marking_in_progress = false;
   647   }
   649   void update_accum_task_vtime(int i, double vtime) {
   650     _accum_task_vtime[i] += vtime;
   651   }
   653   double all_task_accum_vtime() {
   654     double ret = 0.0;
   655     for (int i = 0; i < (int)_max_task_num; ++i)
   656       ret += _accum_task_vtime[i];
   657     return ret;
   658   }
   660   // Attempts to steal an object from the task queues of other tasks
   661   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
   662     return _task_queues->steal(task_num, hash_seed, obj);
   663   }
   665   // It grays an object by first marking it. Then, if it's behind the
   666   // global finger, it also pushes it on the global stack.
   667   void deal_with_reference(oop obj);
   669   ConcurrentMark(ReservedSpace rs, int max_regions);
   670   ~ConcurrentMark();
   671   ConcurrentMarkThread* cmThread() { return _cmThread; }
   673   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   674   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   676   // The following three are interaction between CM and
   677   // G1CollectedHeap
   679   // This notifies CM that a root during initial-mark needs to be
   680   // grayed and it's MT-safe. Currently, we just mark it. But, in the
   681   // future, we can experiment with pushing it on the stack and we can
   682   // do this without changing G1CollectedHeap.
   683   void grayRoot(oop p);
   684   // It's used during evacuation pauses to gray a region, if
   685   // necessary, and it's MT-safe. It assumes that the caller has
   686   // marked any objects on that region. If _should_gray_objects is
   687   // true and we're still doing concurrent marking, the region is
   688   // pushed on the region stack, if it is located below the global
   689   // finger, otherwise we do nothing.
   690   void grayRegionIfNecessary(MemRegion mr);
   691   // It's used during evacuation pauses to mark and, if necessary,
   692   // gray a single object and it's MT-safe. It assumes the caller did
   693   // not mark the object. If _should_gray_objects is true and we're
   694   // still doing concurrent marking, the objects is pushed on the
   695   // global stack, if it is located below the global finger, otherwise
   696   // we do nothing.
   697   void markAndGrayObjectIfNecessary(oop p);
   699   // It iterates over the heap and for each object it comes across it
   700   // will dump the contents of its reference fields, as well as
   701   // liveness information for the object and its referents. The dump
   702   // will be written to a file with the following name:
   703   // G1PrintReachableBaseFile + "." + str. use_prev_marking decides
   704   // whether the prev (use_prev_marking == true) or next
   705   // (use_prev_marking == false) marking information will be used to
   706   // determine the liveness of each object / referent. If all is true,
   707   // all objects in the heap will be dumped, otherwise only the live
   708   // ones. In the dump the following symbols / abbreviations are used:
   709   //   M : an explicitly live object (its bitmap bit is set)
   710   //   > : an implicitly live object (over tams)
   711   //   O : an object outside the G1 heap (typically: in the perm gen)
   712   //   NOT : a reference field whose referent is not live
   713   //   AND MARKED : indicates that an object is both explicitly and
   714   //   implicitly live (it should be one or the other, not both)
   715   void print_reachable(const char* str,
   716                        bool use_prev_marking, bool all) PRODUCT_RETURN;
   718   // Clear the next marking bitmap (will be called concurrently).
   719   void clearNextBitmap();
   721   // main CMS steps and related support
   722   void checkpointRootsInitial();
   724   // These two do the work that needs to be done before and after the
   725   // initial root checkpoint. Since this checkpoint can be done at two
   726   // different points (i.e. an explicit pause or piggy-backed on a
   727   // young collection), then it's nice to be able to easily share the
   728   // pre/post code. It might be the case that we can put everything in
   729   // the post method. TP
   730   void checkpointRootsInitialPre();
   731   void checkpointRootsInitialPost();
   733   // Do concurrent phase of marking, to a tentative transitive closure.
   734   void markFromRoots();
   736   // Process all unprocessed SATB buffers. It is called at the
   737   // beginning of an evacuation pause.
   738   void drainAllSATBBuffers();
   740   void checkpointRootsFinal(bool clear_all_soft_refs);
   741   void checkpointRootsFinalWork();
   742   void calcDesiredRegions();
   743   void cleanup();
   744   void completeCleanup();
   746   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   747   // this carefully!
   748   void markPrev(oop p);
   749   void clear(oop p);
   750   // Clears marks for all objects in the given range, for both prev and
   751   // next bitmaps.  NB: the previous bitmap is usually read-only, so use
   752   // this carefully!
   753   void clearRangeBothMaps(MemRegion mr);
   755   // Record the current top of the mark and region stacks; a
   756   // subsequent oops_do() on the mark stack and
   757   // invalidate_entries_into_cset() on the region stack will iterate
   758   // only over indices valid at the time of this call.
   759   void set_oops_do_bound() {
   760     _markStack.set_oops_do_bound();
   761     _regionStack.set_oops_do_bound();
   762   }
   763   // Iterate over the oops in the mark stack and all local queues. It
   764   // also calls invalidate_entries_into_cset() on the region stack.
   765   void oops_do(OopClosure* f);
   766   // It is called at the end of an evacuation pause during marking so
   767   // that CM is notified of where the new end of the heap is. It
   768   // doesn't do anything if concurrent_marking_in_progress() is false,
   769   // unless the force parameter is true.
   770   void update_g1_committed(bool force = false);
   772   void complete_marking_in_collection_set();
   774   // It indicates that a new collection set is being chosen.
   775   void newCSet();
   776   // It registers a collection set heap region with CM. This is used
   777   // to determine whether any heap regions are located above the finger.
   778   void registerCSetRegion(HeapRegion* hr);
   780   // Registers the maximum region-end associated with a set of
   781   // regions with CM. Again this is used to determine whether any
   782   // heap regions are located above the finger.
   783   void register_collection_set_finger(HeapWord* max_finger) {
   784     // max_finger is the highest heap region end of the regions currently
   785     // contained in the collection set. If this value is larger than
   786     // _min_finger then we need to gray objects.
   787     // This routine is like registerCSetRegion but for an entire
   788     // collection of regions.
   789     if (max_finger > _min_finger)
   790       _should_gray_objects = true;
   791   }
   793   // Returns "true" if at least one mark has been completed.
   794   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
   796   bool isMarked(oop p) const {
   797     assert(p != NULL && p->is_oop(), "expected an oop");
   798     HeapWord* addr = (HeapWord*)p;
   799     assert(addr >= _nextMarkBitMap->startWord() ||
   800            addr < _nextMarkBitMap->endWord(), "in a region");
   802     return _nextMarkBitMap->isMarked(addr);
   803   }
   805   inline bool not_yet_marked(oop p) const;
   807   // XXX Debug code
   808   bool containing_card_is_marked(void* p);
   809   bool containing_cards_are_marked(void* start, void* last);
   811   bool isPrevMarked(oop p) const {
   812     assert(p != NULL && p->is_oop(), "expected an oop");
   813     HeapWord* addr = (HeapWord*)p;
   814     assert(addr >= _prevMarkBitMap->startWord() ||
   815            addr < _prevMarkBitMap->endWord(), "in a region");
   817     return _prevMarkBitMap->isMarked(addr);
   818   }
   820   inline bool do_yield_check(int worker_i = 0);
   821   inline bool should_yield();
   823   // Called to abort the marking cycle after a Full GC takes palce.
   824   void abort();
   826   // This prints the global/local fingers. It is used for debugging.
   827   NOT_PRODUCT(void print_finger();)
   829   void print_summary_info();
   831   void print_worker_threads_on(outputStream* st) const;
   833   // The following indicate whether a given verbose level has been
   834   // set. Notice that anything above stats is conditional to
   835   // _MARKING_VERBOSE_ having been set to 1
   836   bool verbose_stats()
   837     { return _verbose_level >= stats_verbose; }
   838   bool verbose_low()
   839     { return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
   840   bool verbose_medium()
   841     { return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
   842   bool verbose_high()
   843     { return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
   844 };
   846 // A class representing a marking task.
   847 class CMTask : public TerminatorTerminator {
   848 private:
   849   enum PrivateConstants {
   850     // the regular clock call is called once the scanned words reaches
   851     // this limit
   852     words_scanned_period          = 12*1024,
   853     // the regular clock call is called once the number of visited
   854     // references reaches this limit
   855     refs_reached_period           = 384,
   856     // initial value for the hash seed, used in the work stealing code
   857     init_hash_seed                = 17,
   858     // how many entries will be transferred between global stack and
   859     // local queues
   860     global_stack_transfer_size    = 16
   861   };
   863   int                         _task_id;
   864   G1CollectedHeap*            _g1h;
   865   ConcurrentMark*             _cm;
   866   CMBitMap*                   _nextMarkBitMap;
   867   // the task queue of this task
   868   CMTaskQueue*                _task_queue;
   869 private:
   870   // the task queue set---needed for stealing
   871   CMTaskQueueSet*             _task_queues;
   872   // indicates whether the task has been claimed---this is only  for
   873   // debugging purposes
   874   bool                        _claimed;
   876   // number of calls to this task
   877   int                         _calls;
   879   // when the virtual timer reaches this time, the marking step should
   880   // exit
   881   double                      _time_target_ms;
   882   // the start time of the current marking step
   883   double                      _start_time_ms;
   885   // the oop closure used for iterations over oops
   886   OopClosure*                 _oop_closure;
   888   // the region this task is scanning, NULL if we're not scanning any
   889   HeapRegion*                 _curr_region;
   890   // the local finger of this task, NULL if we're not scanning a region
   891   HeapWord*                   _finger;
   892   // limit of the region this task is scanning, NULL if we're not scanning one
   893   HeapWord*                   _region_limit;
   895   // This is used only when we scan regions popped from the region
   896   // stack. It records what the last object on such a region we
   897   // scanned was. It is used to ensure that, if we abort region
   898   // iteration, we do not rescan the first part of the region. This
   899   // should be NULL when we're not scanning a region from the region
   900   // stack.
   901   HeapWord*                   _region_finger;
   903   // If we abort while scanning a region we record the remaining
   904   // unscanned portion and check this field when marking restarts.
   905   // This avoids having to push on the region stack while other
   906   // marking threads may still be popping regions.
   907   // If we were to push the unscanned portion directly to the
   908   // region stack then we would need to using locking versions
   909   // of the push and pop operations.
   910   MemRegion                   _aborted_region;
   912   // the number of words this task has scanned
   913   size_t                      _words_scanned;
   914   // When _words_scanned reaches this limit, the regular clock is
   915   // called. Notice that this might be decreased under certain
   916   // circumstances (i.e. when we believe that we did an expensive
   917   // operation).
   918   size_t                      _words_scanned_limit;
   919   // the initial value of _words_scanned_limit (i.e. what it was
   920   // before it was decreased).
   921   size_t                      _real_words_scanned_limit;
   923   // the number of references this task has visited
   924   size_t                      _refs_reached;
   925   // When _refs_reached reaches this limit, the regular clock is
   926   // called. Notice this this might be decreased under certain
   927   // circumstances (i.e. when we believe that we did an expensive
   928   // operation).
   929   size_t                      _refs_reached_limit;
   930   // the initial value of _refs_reached_limit (i.e. what it was before
   931   // it was decreased).
   932   size_t                      _real_refs_reached_limit;
   934   // used by the work stealing stuff
   935   int                         _hash_seed;
   936   // if this is true, then the task has aborted for some reason
   937   bool                        _has_aborted;
   938   // set when the task aborts because it has met its time quota
   939   bool                        _has_aborted_timed_out;
   940   // true when we're draining SATB buffers; this avoids the task
   941   // aborting due to SATB buffers being available (as we're already
   942   // dealing with them)
   943   bool                        _draining_satb_buffers;
   945   // number sequence of past step times
   946   NumberSeq                   _step_times_ms;
   947   // elapsed time of this task
   948   double                      _elapsed_time_ms;
   949   // termination time of this task
   950   double                      _termination_time_ms;
   951   // when this task got into the termination protocol
   952   double                      _termination_start_time_ms;
   954   // true when the task is during a concurrent phase, false when it is
   955   // in the remark phase (so, in the latter case, we do not have to
   956   // check all the things that we have to check during the concurrent
   957   // phase, i.e. SATB buffer availability...)
   958   bool                        _concurrent;
   960   TruncatedSeq                _marking_step_diffs_ms;
   962   // LOTS of statistics related with this task
   963 #if _MARKING_STATS_
   964   NumberSeq                   _all_clock_intervals_ms;
   965   double                      _interval_start_time_ms;
   967   int                         _aborted;
   968   int                         _aborted_overflow;
   969   int                         _aborted_cm_aborted;
   970   int                         _aborted_yield;
   971   int                         _aborted_timed_out;
   972   int                         _aborted_satb;
   973   int                         _aborted_termination;
   975   int                         _steal_attempts;
   976   int                         _steals;
   978   int                         _clock_due_to_marking;
   979   int                         _clock_due_to_scanning;
   981   int                         _local_pushes;
   982   int                         _local_pops;
   983   int                         _local_max_size;
   984   int                         _objs_scanned;
   986   int                         _global_pushes;
   987   int                         _global_pops;
   988   int                         _global_max_size;
   990   int                         _global_transfers_to;
   991   int                         _global_transfers_from;
   993   int                         _region_stack_pops;
   995   int                         _regions_claimed;
   996   int                         _objs_found_on_bitmap;
   998   int                         _satb_buffers_processed;
   999 #endif // _MARKING_STATS_
  1001   // it updates the local fields after this task has claimed
  1002   // a new region to scan
  1003   void setup_for_region(HeapRegion* hr);
  1004   // it brings up-to-date the limit of the region
  1005   void update_region_limit();
  1006   // it resets the local fields after a task has finished scanning a
  1007   // region
  1008   void giveup_current_region();
  1010   // called when either the words scanned or the refs visited limit
  1011   // has been reached
  1012   void reached_limit();
  1013   // recalculates the words scanned and refs visited limits
  1014   void recalculate_limits();
  1015   // decreases the words scanned and refs visited limits when we reach
  1016   // an expensive operation
  1017   void decrease_limits();
  1018   // it checks whether the words scanned or refs visited reached their
  1019   // respective limit and calls reached_limit() if they have
  1020   void check_limits() {
  1021     if (_words_scanned >= _words_scanned_limit ||
  1022         _refs_reached >= _refs_reached_limit)
  1023       reached_limit();
  1025   // this is supposed to be called regularly during a marking step as
  1026   // it checks a bunch of conditions that might cause the marking step
  1027   // to abort
  1028   void regular_clock_call();
  1029   bool concurrent() { return _concurrent; }
  1031 public:
  1032   // It resets the task; it should be called right at the beginning of
  1033   // a marking phase.
  1034   void reset(CMBitMap* _nextMarkBitMap);
  1035   // it clears all the fields that correspond to a claimed region.
  1036   void clear_region_fields();
  1038   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1040   // The main method of this class which performs a marking step
  1041   // trying not to exceed the given duration. However, it might exit
  1042   // prematurely, according to some conditions (i.e. SATB buffers are
  1043   // available for processing).
  1044   void do_marking_step(double target_ms);
  1046   // These two calls start and stop the timer
  1047   void record_start_time() {
  1048     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1050   void record_end_time() {
  1051     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1054   // returns the task ID
  1055   int task_id() { return _task_id; }
  1057   // From TerminatorTerminator. It determines whether this task should
  1058   // exit the termination protocol after it's entered it.
  1059   virtual bool should_exit_termination();
  1061   HeapWord* finger()            { return _finger; }
  1063   bool has_aborted()            { return _has_aborted; }
  1064   void set_has_aborted()        { _has_aborted = true; }
  1065   void clear_has_aborted()      { _has_aborted = false; }
  1066   bool claimed() { return _claimed; }
  1068   // Support routines for the partially scanned region that may be
  1069   // recorded as a result of aborting while draining the CMRegionStack
  1070   MemRegion aborted_region()    { return _aborted_region; }
  1071   void set_aborted_region(MemRegion mr)
  1072                                 { _aborted_region = mr; }
  1074   // Clears any recorded partially scanned region
  1075   void clear_aborted_region()   { set_aborted_region(MemRegion()); }
  1077   void set_oop_closure(OopClosure* oop_closure) {
  1078     _oop_closure = oop_closure;
  1081   // It grays the object by marking it and, if necessary, pushing it
  1082   // on the local queue
  1083   void deal_with_reference(oop obj);
  1085   // It scans an object and visits its children.
  1086   void scan_object(oop obj) {
  1087     assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  1089     if (_cm->verbose_high())
  1090       gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
  1091                              _task_id, (void*) obj);
  1093     size_t obj_size = obj->size();
  1094     _words_scanned += obj_size;
  1096     obj->oop_iterate(_oop_closure);
  1097     statsOnly( ++_objs_scanned );
  1098     check_limits();
  1101   // It pushes an object on the local queue.
  1102   void push(oop obj);
  1104   // These two move entries to/from the global stack.
  1105   void move_entries_to_global_stack();
  1106   void get_entries_from_global_stack();
  1108   // It pops and scans objects from the local queue. If partially is
  1109   // true, then it stops when the queue size is of a given limit. If
  1110   // partially is false, then it stops when the queue is empty.
  1111   void drain_local_queue(bool partially);
  1112   // It moves entries from the global stack to the local queue and
  1113   // drains the local queue. If partially is true, then it stops when
  1114   // both the global stack and the local queue reach a given size. If
  1115   // partially if false, it tries to empty them totally.
  1116   void drain_global_stack(bool partially);
  1117   // It keeps picking SATB buffers and processing them until no SATB
  1118   // buffers are available.
  1119   void drain_satb_buffers();
  1120   // It keeps popping regions from the region stack and processing
  1121   // them until the region stack is empty.
  1122   void drain_region_stack(BitMapClosure* closure);
  1124   // moves the local finger to a new location
  1125   inline void move_finger_to(HeapWord* new_finger) {
  1126     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1127     _finger = new_finger;
  1130   // moves the region finger to a new location
  1131   inline void move_region_finger_to(HeapWord* new_finger) {
  1132     assert(new_finger < _cm->finger(), "invariant");
  1133     _region_finger = new_finger;
  1136   CMTask(int task_num, ConcurrentMark *cm,
  1137          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1139   // it prints statistics associated with this task
  1140   void print_stats();
  1142 #if _MARKING_STATS_
  1143   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1144 #endif // _MARKING_STATS_
  1145 };
  1147 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial