src/share/vm/opto/superword.cpp

Wed, 10 Aug 2016 14:59:21 +0200

author
simonis
date
Wed, 10 Aug 2016 14:59:21 +0200
changeset 8608
0d78aecb0948
parent 8285
535618ab1c04
child 8604
04d83ba48607
child 9740
b290489738b8
permissions
-rw-r--r--

8152172: PPC64: Support AES intrinsics
Summary: Add support for AES intrinsics on PPC64.
Reviewed-by: kvn, mdoerr, simonis, zmajo
Contributed-by: Hiroshi H Horii <horii@jp.ibm.com>

duke@435 1 /*
mikael@6198 2 * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 */
duke@435 23
stefank@2314 24 #include "precompiled.hpp"
stefank@2314 25 #include "compiler/compileLog.hpp"
stefank@2314 26 #include "libadt/vectset.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/divnode.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/memnode.hpp"
stefank@2314 33 #include "opto/mulnode.hpp"
stefank@2314 34 #include "opto/opcodes.hpp"
stefank@2314 35 #include "opto/superword.hpp"
stefank@2314 36 #include "opto/vectornode.hpp"
duke@435 37
duke@435 38 //
duke@435 39 // S U P E R W O R D T R A N S F O R M
duke@435 40 //=============================================================================
duke@435 41
duke@435 42 //------------------------------SuperWord---------------------------
duke@435 43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
duke@435 44 _phase(phase),
duke@435 45 _igvn(phase->_igvn),
duke@435 46 _arena(phase->C->comp_arena()),
duke@435 47 _packset(arena(), 8, 0, NULL), // packs for the current block
duke@435 48 _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
duke@435 49 _block(arena(), 8, 0, NULL), // nodes in current block
duke@435 50 _data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside
duke@435 51 _mem_slice_head(arena(), 8, 0, NULL), // memory slice heads
duke@435 52 _mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails
duke@435 53 _node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node
duke@435 54 _align_to_ref(NULL), // memory reference to align vectors to
duke@435 55 _disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs
duke@435 56 _dg(_arena), // dependence graph
duke@435 57 _visited(arena()), // visited node set
duke@435 58 _post_visited(arena()), // post visited node set
duke@435 59 _n_idx_list(arena(), 8), // scratch list of (node,index) pairs
duke@435 60 _stk(arena(), 8, 0, NULL), // scratch stack of nodes
duke@435 61 _nlist(arena(), 8, 0, NULL), // scratch list of nodes
duke@435 62 _lpt(NULL), // loop tree node
duke@435 63 _lp(NULL), // LoopNode
duke@435 64 _bb(NULL), // basic block
duke@435 65 _iv(NULL) // induction var
duke@435 66 {}
duke@435 67
duke@435 68 //------------------------------transform_loop---------------------------
duke@435 69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
kvn@3882 70 assert(UseSuperWord, "should be");
kvn@3882 71 // Do vectors exist on this architecture?
kvn@3882 72 if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
kvn@3882 73
duke@435 74 assert(lpt->_head->is_CountedLoop(), "must be");
duke@435 75 CountedLoopNode *cl = lpt->_head->as_CountedLoop();
duke@435 76
kvn@3048 77 if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
kvn@3048 78
duke@435 79 if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
duke@435 80
duke@435 81 // Check for no control flow in body (other than exit)
duke@435 82 Node *cl_exit = cl->loopexit();
duke@435 83 if (cl_exit->in(0) != lpt->_head) return;
duke@435 84
never@540 85 // Make sure the are no extra control users of the loop backedge
never@540 86 if (cl->back_control()->outcnt() != 1) {
never@540 87 return;
never@540 88 }
never@540 89
duke@435 90 // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
duke@435 91 CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
duke@435 92 if (pre_end == NULL) return;
duke@435 93 Node *pre_opaq1 = pre_end->limit();
duke@435 94 if (pre_opaq1->Opcode() != Op_Opaque1) return;
duke@435 95
duke@435 96 init(); // initialize data structures
duke@435 97
duke@435 98 set_lpt(lpt);
duke@435 99 set_lp(cl);
duke@435 100
kvn@3882 101 // For now, define one block which is the entire loop body
duke@435 102 set_bb(cl);
duke@435 103
duke@435 104 assert(_packset.length() == 0, "packset must be empty");
duke@435 105 SLP_extract();
duke@435 106 }
duke@435 107
duke@435 108 //------------------------------SLP_extract---------------------------
duke@435 109 // Extract the superword level parallelism
duke@435 110 //
duke@435 111 // 1) A reverse post-order of nodes in the block is constructed. By scanning
duke@435 112 // this list from first to last, all definitions are visited before their uses.
duke@435 113 //
duke@435 114 // 2) A point-to-point dependence graph is constructed between memory references.
duke@435 115 // This simplies the upcoming "independence" checker.
duke@435 116 //
duke@435 117 // 3) The maximum depth in the node graph from the beginning of the block
duke@435 118 // to each node is computed. This is used to prune the graph search
duke@435 119 // in the independence checker.
duke@435 120 //
duke@435 121 // 4) For integer types, the necessary bit width is propagated backwards
duke@435 122 // from stores to allow packed operations on byte, char, and short
duke@435 123 // integers. This reverses the promotion to type "int" that javac
duke@435 124 // did for operations like: char c1,c2,c3; c1 = c2 + c3.
duke@435 125 //
duke@435 126 // 5) One of the memory references is picked to be an aligned vector reference.
duke@435 127 // The pre-loop trip count is adjusted to align this reference in the
duke@435 128 // unrolled body.
duke@435 129 //
duke@435 130 // 6) The initial set of pack pairs is seeded with memory references.
duke@435 131 //
duke@435 132 // 7) The set of pack pairs is extended by following use->def and def->use links.
duke@435 133 //
duke@435 134 // 8) The pairs are combined into vector sized packs.
duke@435 135 //
duke@435 136 // 9) Reorder the memory slices to co-locate members of the memory packs.
duke@435 137 //
duke@435 138 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
duke@435 139 // inserting scalar promotion, vector creation from multiple scalars, and
duke@435 140 // extraction of scalar values from vectors.
duke@435 141 //
duke@435 142 void SuperWord::SLP_extract() {
duke@435 143
duke@435 144 // Ready the block
duke@435 145
kvn@4620 146 if (!construct_bb())
kvn@4620 147 return; // Exit if no interesting nodes or complex graph.
duke@435 148
duke@435 149 dependence_graph();
duke@435 150
duke@435 151 compute_max_depth();
duke@435 152
duke@435 153 compute_vector_element_type();
duke@435 154
duke@435 155 // Attempt vectorization
duke@435 156
duke@435 157 find_adjacent_refs();
duke@435 158
duke@435 159 extend_packlist();
duke@435 160
duke@435 161 combine_packs();
duke@435 162
duke@435 163 construct_my_pack_map();
duke@435 164
duke@435 165 filter_packs();
duke@435 166
duke@435 167 schedule();
duke@435 168
duke@435 169 output();
duke@435 170 }
duke@435 171
duke@435 172 //------------------------------find_adjacent_refs---------------------------
duke@435 173 // Find the adjacent memory references and create pack pairs for them.
duke@435 174 // This is the initial set of packs that will then be extended by
duke@435 175 // following use->def and def->use links. The align positions are
duke@435 176 // assigned relative to the reference "align_to_ref"
duke@435 177 void SuperWord::find_adjacent_refs() {
duke@435 178 // Get list of memory operations
duke@435 179 Node_List memops;
duke@435 180 for (int i = 0; i < _block.length(); i++) {
duke@435 181 Node* n = _block.at(i);
kvn@3882 182 if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
kvn@464 183 is_java_primitive(n->as_Mem()->memory_type())) {
duke@435 184 int align = memory_alignment(n->as_Mem(), 0);
duke@435 185 if (align != bottom_align) {
duke@435 186 memops.push(n);
duke@435 187 }
duke@435 188 }
duke@435 189 }
duke@435 190
kvn@3882 191 Node_List align_to_refs;
kvn@3882 192 int best_iv_adjustment = 0;
kvn@3882 193 MemNode* best_align_to_mem_ref = NULL;
duke@435 194
kvn@3882 195 while (memops.size() != 0) {
kvn@3882 196 // Find a memory reference to align to.
kvn@3882 197 MemNode* mem_ref = find_align_to_ref(memops);
kvn@3882 198 if (mem_ref == NULL) break;
kvn@3882 199 align_to_refs.push(mem_ref);
kvn@3882 200 int iv_adjustment = get_iv_adjustment(mem_ref);
duke@435 201
kvn@3882 202 if (best_align_to_mem_ref == NULL) {
kvn@3882 203 // Set memory reference which is the best from all memory operations
kvn@3882 204 // to be used for alignment. The pre-loop trip count is modified to align
kvn@3882 205 // this reference to a vector-aligned address.
kvn@3882 206 best_align_to_mem_ref = mem_ref;
kvn@3882 207 best_iv_adjustment = iv_adjustment;
kvn@3882 208 }
duke@435 209
kvn@3882 210 SWPointer align_to_ref_p(mem_ref, this);
kvn@3882 211 // Set alignment relative to "align_to_ref" for all related memory operations.
kvn@3882 212 for (int i = memops.size() - 1; i >= 0; i--) {
kvn@3882 213 MemNode* s = memops.at(i)->as_Mem();
kvn@3882 214 if (isomorphic(s, mem_ref)) {
kvn@3882 215 SWPointer p2(s, this);
kvn@3882 216 if (p2.comparable(align_to_ref_p)) {
kvn@3882 217 int align = memory_alignment(s, iv_adjustment);
kvn@3882 218 set_alignment(s, align);
duke@435 219 }
duke@435 220 }
duke@435 221 }
kvn@3882 222
kvn@3882 223 // Create initial pack pairs of memory operations for which
kvn@3882 224 // alignment is set and vectors will be aligned.
kvn@3882 225 bool create_pack = true;
kvn@3886 226 if (memory_alignment(mem_ref, best_iv_adjustment) == 0) {
kvn@3886 227 if (!Matcher::misaligned_vectors_ok()) {
kvn@3886 228 int vw = vector_width(mem_ref);
kvn@3886 229 int vw_best = vector_width(best_align_to_mem_ref);
kvn@3886 230 if (vw > vw_best) {
kvn@3886 231 // Do not vectorize a memory access with more elements per vector
kvn@3886 232 // if unaligned memory access is not allowed because number of
kvn@3886 233 // iterations in pre-loop will be not enough to align it.
kvn@3886 234 create_pack = false;
thartmann@7819 235 } else {
thartmann@7819 236 SWPointer p2(best_align_to_mem_ref, this);
thartmann@7819 237 if (align_to_ref_p.invar() != p2.invar()) {
thartmann@7819 238 // Do not vectorize memory accesses with different invariants
thartmann@7819 239 // if unaligned memory accesses are not allowed.
thartmann@7819 240 create_pack = false;
thartmann@7819 241 }
kvn@3886 242 }
kvn@3886 243 }
kvn@3886 244 } else {
kvn@3882 245 if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
kvn@3882 246 // Can't allow vectorization of unaligned memory accesses with the
kvn@3882 247 // same type since it could be overlapped accesses to the same array.
kvn@3882 248 create_pack = false;
kvn@3882 249 } else {
kvn@3882 250 // Allow independent (different type) unaligned memory operations
kvn@3882 251 // if HW supports them.
kvn@3882 252 if (!Matcher::misaligned_vectors_ok()) {
kvn@3882 253 create_pack = false;
kvn@3882 254 } else {
kvn@3882 255 // Check if packs of the same memory type but
kvn@3882 256 // with a different alignment were created before.
kvn@3882 257 for (uint i = 0; i < align_to_refs.size(); i++) {
kvn@3882 258 MemNode* mr = align_to_refs.at(i)->as_Mem();
kvn@3882 259 if (same_velt_type(mr, mem_ref) &&
kvn@3882 260 memory_alignment(mr, iv_adjustment) != 0)
kvn@3882 261 create_pack = false;
kvn@3882 262 }
kvn@3882 263 }
kvn@3882 264 }
kvn@3882 265 }
kvn@3882 266 if (create_pack) {
kvn@3882 267 for (uint i = 0; i < memops.size(); i++) {
kvn@3882 268 Node* s1 = memops.at(i);
kvn@3882 269 int align = alignment(s1);
kvn@3882 270 if (align == top_align) continue;
kvn@3882 271 for (uint j = 0; j < memops.size(); j++) {
kvn@3882 272 Node* s2 = memops.at(j);
kvn@3882 273 if (alignment(s2) == top_align) continue;
kvn@3882 274 if (s1 != s2 && are_adjacent_refs(s1, s2)) {
kvn@3882 275 if (stmts_can_pack(s1, s2, align)) {
kvn@3882 276 Node_List* pair = new Node_List();
kvn@3882 277 pair->push(s1);
kvn@3882 278 pair->push(s2);
kvn@3882 279 _packset.append(pair);
kvn@3882 280 }
kvn@3882 281 }
kvn@3882 282 }
kvn@3882 283 }
kvn@3882 284 } else { // Don't create unaligned pack
kvn@3882 285 // First, remove remaining memory ops of the same type from the list.
kvn@3882 286 for (int i = memops.size() - 1; i >= 0; i--) {
kvn@3882 287 MemNode* s = memops.at(i)->as_Mem();
kvn@3882 288 if (same_velt_type(s, mem_ref)) {
kvn@3882 289 memops.remove(i);
kvn@3882 290 }
kvn@3882 291 }
kvn@3882 292
kvn@3882 293 // Second, remove already constructed packs of the same type.
kvn@3882 294 for (int i = _packset.length() - 1; i >= 0; i--) {
kvn@3882 295 Node_List* p = _packset.at(i);
kvn@3882 296 MemNode* s = p->at(0)->as_Mem();
kvn@3882 297 if (same_velt_type(s, mem_ref)) {
kvn@3882 298 remove_pack_at(i);
kvn@3882 299 }
kvn@3882 300 }
kvn@3882 301
kvn@3882 302 // If needed find the best memory reference for loop alignment again.
kvn@3882 303 if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
kvn@3882 304 // Put memory ops from remaining packs back on memops list for
kvn@3882 305 // the best alignment search.
kvn@3882 306 uint orig_msize = memops.size();
kvn@3882 307 for (int i = 0; i < _packset.length(); i++) {
kvn@3882 308 Node_List* p = _packset.at(i);
kvn@3882 309 MemNode* s = p->at(0)->as_Mem();
kvn@3882 310 assert(!same_velt_type(s, mem_ref), "sanity");
kvn@3882 311 memops.push(s);
kvn@3882 312 }
kvn@3882 313 MemNode* best_align_to_mem_ref = find_align_to_ref(memops);
kvn@3882 314 if (best_align_to_mem_ref == NULL) break;
kvn@3882 315 best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
kvn@3882 316 // Restore list.
kvn@3882 317 while (memops.size() > orig_msize)
kvn@3882 318 (void)memops.pop();
kvn@3882 319 }
kvn@3882 320 } // unaligned memory accesses
kvn@3882 321
kvn@3882 322 // Remove used mem nodes.
kvn@3882 323 for (int i = memops.size() - 1; i >= 0; i--) {
kvn@3882 324 MemNode* m = memops.at(i)->as_Mem();
kvn@3882 325 if (alignment(m) != top_align) {
kvn@3882 326 memops.remove(i);
kvn@3882 327 }
kvn@3882 328 }
kvn@3882 329
kvn@3882 330 } // while (memops.size() != 0
kvn@3882 331 set_align_to_ref(best_align_to_mem_ref);
duke@435 332
duke@435 333 #ifndef PRODUCT
duke@435 334 if (TraceSuperWord) {
duke@435 335 tty->print_cr("\nAfter find_adjacent_refs");
duke@435 336 print_packset();
duke@435 337 }
duke@435 338 #endif
duke@435 339 }
duke@435 340
duke@435 341 //------------------------------find_align_to_ref---------------------------
duke@435 342 // Find a memory reference to align the loop induction variable to.
duke@435 343 // Looks first at stores then at loads, looking for a memory reference
duke@435 344 // with the largest number of references similar to it.
kvn@3882 345 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
duke@435 346 GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
duke@435 347
duke@435 348 // Count number of comparable memory ops
duke@435 349 for (uint i = 0; i < memops.size(); i++) {
duke@435 350 MemNode* s1 = memops.at(i)->as_Mem();
duke@435 351 SWPointer p1(s1, this);
duke@435 352 // Discard if pre loop can't align this reference
duke@435 353 if (!ref_is_alignable(p1)) {
duke@435 354 *cmp_ct.adr_at(i) = 0;
duke@435 355 continue;
duke@435 356 }
duke@435 357 for (uint j = i+1; j < memops.size(); j++) {
duke@435 358 MemNode* s2 = memops.at(j)->as_Mem();
duke@435 359 if (isomorphic(s1, s2)) {
duke@435 360 SWPointer p2(s2, this);
duke@435 361 if (p1.comparable(p2)) {
duke@435 362 (*cmp_ct.adr_at(i))++;
duke@435 363 (*cmp_ct.adr_at(j))++;
duke@435 364 }
duke@435 365 }
duke@435 366 }
duke@435 367 }
duke@435 368
kvn@3882 369 // Find Store (or Load) with the greatest number of "comparable" references,
kvn@3882 370 // biggest vector size, smallest data size and smallest iv offset.
duke@435 371 int max_ct = 0;
kvn@3882 372 int max_vw = 0;
duke@435 373 int max_idx = -1;
duke@435 374 int min_size = max_jint;
duke@435 375 int min_iv_offset = max_jint;
duke@435 376 for (uint j = 0; j < memops.size(); j++) {
duke@435 377 MemNode* s = memops.at(j)->as_Mem();
duke@435 378 if (s->is_Store()) {
kvn@3886 379 int vw = vector_width_in_bytes(s);
kvn@3882 380 assert(vw > 1, "sanity");
duke@435 381 SWPointer p(s, this);
kvn@3882 382 if (cmp_ct.at(j) > max_ct ||
kvn@3882 383 cmp_ct.at(j) == max_ct &&
kvn@3882 384 (vw > max_vw ||
kvn@3882 385 vw == max_vw &&
kvn@3882 386 (data_size(s) < min_size ||
kvn@3882 387 data_size(s) == min_size &&
kvn@3882 388 (p.offset_in_bytes() < min_iv_offset)))) {
duke@435 389 max_ct = cmp_ct.at(j);
kvn@3882 390 max_vw = vw;
duke@435 391 max_idx = j;
duke@435 392 min_size = data_size(s);
duke@435 393 min_iv_offset = p.offset_in_bytes();
duke@435 394 }
duke@435 395 }
duke@435 396 }
duke@435 397 // If no stores, look at loads
duke@435 398 if (max_ct == 0) {
duke@435 399 for (uint j = 0; j < memops.size(); j++) {
duke@435 400 MemNode* s = memops.at(j)->as_Mem();
duke@435 401 if (s->is_Load()) {
kvn@3886 402 int vw = vector_width_in_bytes(s);
kvn@3882 403 assert(vw > 1, "sanity");
duke@435 404 SWPointer p(s, this);
kvn@3882 405 if (cmp_ct.at(j) > max_ct ||
kvn@3882 406 cmp_ct.at(j) == max_ct &&
kvn@3882 407 (vw > max_vw ||
kvn@3882 408 vw == max_vw &&
kvn@3882 409 (data_size(s) < min_size ||
kvn@3882 410 data_size(s) == min_size &&
kvn@3882 411 (p.offset_in_bytes() < min_iv_offset)))) {
duke@435 412 max_ct = cmp_ct.at(j);
kvn@3882 413 max_vw = vw;
duke@435 414 max_idx = j;
duke@435 415 min_size = data_size(s);
duke@435 416 min_iv_offset = p.offset_in_bytes();
duke@435 417 }
duke@435 418 }
duke@435 419 }
duke@435 420 }
duke@435 421
kvn@3882 422 #ifdef ASSERT
duke@435 423 if (TraceSuperWord && Verbose) {
duke@435 424 tty->print_cr("\nVector memops after find_align_to_refs");
duke@435 425 for (uint i = 0; i < memops.size(); i++) {
duke@435 426 MemNode* s = memops.at(i)->as_Mem();
duke@435 427 s->dump();
duke@435 428 }
duke@435 429 }
duke@435 430 #endif
kvn@3882 431
kvn@3882 432 if (max_ct > 0) {
kvn@3882 433 #ifdef ASSERT
kvn@3882 434 if (TraceSuperWord) {
kvn@3882 435 tty->print("\nVector align to node: ");
kvn@3882 436 memops.at(max_idx)->as_Mem()->dump();
kvn@3882 437 }
kvn@3882 438 #endif
kvn@3882 439 return memops.at(max_idx)->as_Mem();
kvn@3882 440 }
kvn@3882 441 return NULL;
duke@435 442 }
duke@435 443
duke@435 444 //------------------------------ref_is_alignable---------------------------
duke@435 445 // Can the preloop align the reference to position zero in the vector?
duke@435 446 bool SuperWord::ref_is_alignable(SWPointer& p) {
duke@435 447 if (!p.has_iv()) {
duke@435 448 return true; // no induction variable
duke@435 449 }
duke@435 450 CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
duke@435 451 assert(pre_end->stride_is_con(), "pre loop stride is constant");
duke@435 452 int preloop_stride = pre_end->stride_con();
duke@435 453
duke@435 454 int span = preloop_stride * p.scale_in_bytes();
kvn@7817 455 int mem_size = p.memory_size();
kvn@7817 456 int offset = p.offset_in_bytes();
kvn@7817 457 // Stride one accesses are alignable if offset is aligned to memory operation size.
kvn@7817 458 // Offset can be unaligned when UseUnalignedAccesses is used.
kvn@7817 459 if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) {
duke@435 460 return true;
kvn@7817 461 }
thartmann@7819 462 // If the initial offset from start of the object is computable,
thartmann@7819 463 // check if the pre-loop can align the final offset accordingly.
thartmann@7819 464 //
thartmann@7819 465 // In other words: Can we find an i such that the offset
thartmann@7819 466 // after i pre-loop iterations is aligned to vw?
thartmann@7819 467 // (init_offset + pre_loop) % vw == 0 (1)
thartmann@7819 468 // where
thartmann@7819 469 // pre_loop = i * span
thartmann@7819 470 // is the number of bytes added to the offset by i pre-loop iterations.
thartmann@7819 471 //
thartmann@7819 472 // For this to hold we need pre_loop to increase init_offset by
thartmann@7819 473 // pre_loop = vw - (init_offset % vw)
thartmann@7819 474 //
thartmann@7819 475 // This is only possible if pre_loop is divisible by span because each
thartmann@7819 476 // pre-loop iteration increases the initial offset by 'span' bytes:
thartmann@7819 477 // (vw - (init_offset % vw)) % span == 0
thartmann@7819 478 //
kvn@3886 479 int vw = vector_width_in_bytes(p.mem());
kvn@3882 480 assert(vw > 1, "sanity");
thartmann@7819 481 Node* init_nd = pre_end->init_trip();
thartmann@7819 482 if (init_nd->is_Con() && p.invar() == NULL) {
thartmann@7819 483 int init = init_nd->bottom_type()->is_int()->get_con();
thartmann@7819 484 int init_offset = init * p.scale_in_bytes() + offset;
thartmann@7819 485 assert(init_offset >= 0, "positive offset from object start");
thartmann@7819 486 if (vw % span == 0) {
thartmann@7819 487 // If vm is a multiple of span, we use formula (1).
duke@435 488 if (span > 0) {
duke@435 489 return (vw - (init_offset % vw)) % span == 0;
duke@435 490 } else {
duke@435 491 assert(span < 0, "nonzero stride * scale");
duke@435 492 return (init_offset % vw) % -span == 0;
duke@435 493 }
thartmann@7819 494 } else if (span % vw == 0) {
thartmann@7819 495 // If span is a multiple of vw, we can simplify formula (1) to:
thartmann@7819 496 // (init_offset + i * span) % vw == 0
thartmann@7819 497 // =>
thartmann@7819 498 // (init_offset % vw) + ((i * span) % vw) == 0
thartmann@7819 499 // =>
thartmann@7819 500 // init_offset % vw == 0
thartmann@7819 501 //
thartmann@7819 502 // Because we add a multiple of vw to the initial offset, the final
thartmann@7819 503 // offset is a multiple of vw if and only if init_offset is a multiple.
thartmann@7819 504 //
thartmann@7819 505 return (init_offset % vw) == 0;
duke@435 506 }
duke@435 507 }
duke@435 508 return false;
duke@435 509 }
duke@435 510
kvn@3882 511 //---------------------------get_iv_adjustment---------------------------
kvn@3882 512 // Calculate loop's iv adjustment for this memory ops.
kvn@3882 513 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
kvn@3882 514 SWPointer align_to_ref_p(mem_ref, this);
kvn@3882 515 int offset = align_to_ref_p.offset_in_bytes();
kvn@3882 516 int scale = align_to_ref_p.scale_in_bytes();
thartmann@7819 517 int elt_size = align_to_ref_p.memory_size();
kvn@3886 518 int vw = vector_width_in_bytes(mem_ref);
kvn@3882 519 assert(vw > 1, "sanity");
thartmann@7819 520 int iv_adjustment;
thartmann@7819 521 if (scale != 0) {
thartmann@7819 522 int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
thartmann@7819 523 // At least one iteration is executed in pre-loop by default. As result
thartmann@7819 524 // several iterations are needed to align memory operations in main-loop even
thartmann@7819 525 // if offset is 0.
thartmann@7819 526 int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
thartmann@7819 527 assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
thartmann@7819 528 err_msg_res("(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size));
thartmann@7819 529 iv_adjustment = iv_adjustment_in_bytes/elt_size;
thartmann@7819 530 } else {
thartmann@7819 531 // This memory op is not dependent on iv (scale == 0)
thartmann@7819 532 iv_adjustment = 0;
thartmann@7819 533 }
kvn@3882 534
kvn@3882 535 #ifndef PRODUCT
kvn@3882 536 if (TraceSuperWord)
kvn@3882 537 tty->print_cr("\noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d",
kvn@4105 538 offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
kvn@3882 539 #endif
kvn@3882 540 return iv_adjustment;
kvn@3882 541 }
kvn@3882 542
duke@435 543 //---------------------------dependence_graph---------------------------
duke@435 544 // Construct dependency graph.
duke@435 545 // Add dependence edges to load/store nodes for memory dependence
duke@435 546 // A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
duke@435 547 void SuperWord::dependence_graph() {
duke@435 548 // First, assign a dependence node to each memory node
duke@435 549 for (int i = 0; i < _block.length(); i++ ) {
duke@435 550 Node *n = _block.at(i);
duke@435 551 if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
duke@435 552 _dg.make_node(n);
duke@435 553 }
duke@435 554 }
duke@435 555
duke@435 556 // For each memory slice, create the dependences
duke@435 557 for (int i = 0; i < _mem_slice_head.length(); i++) {
duke@435 558 Node* n = _mem_slice_head.at(i);
duke@435 559 Node* n_tail = _mem_slice_tail.at(i);
duke@435 560
duke@435 561 // Get slice in predecessor order (last is first)
duke@435 562 mem_slice_preds(n_tail, n, _nlist);
duke@435 563
duke@435 564 // Make the slice dependent on the root
duke@435 565 DepMem* slice = _dg.dep(n);
duke@435 566 _dg.make_edge(_dg.root(), slice);
duke@435 567
duke@435 568 // Create a sink for the slice
duke@435 569 DepMem* slice_sink = _dg.make_node(NULL);
duke@435 570 _dg.make_edge(slice_sink, _dg.tail());
duke@435 571
duke@435 572 // Now visit each pair of memory ops, creating the edges
duke@435 573 for (int j = _nlist.length() - 1; j >= 0 ; j--) {
duke@435 574 Node* s1 = _nlist.at(j);
duke@435 575
duke@435 576 // If no dependency yet, use slice
duke@435 577 if (_dg.dep(s1)->in_cnt() == 0) {
duke@435 578 _dg.make_edge(slice, s1);
duke@435 579 }
duke@435 580 SWPointer p1(s1->as_Mem(), this);
duke@435 581 bool sink_dependent = true;
duke@435 582 for (int k = j - 1; k >= 0; k--) {
duke@435 583 Node* s2 = _nlist.at(k);
duke@435 584 if (s1->is_Load() && s2->is_Load())
duke@435 585 continue;
duke@435 586 SWPointer p2(s2->as_Mem(), this);
duke@435 587
duke@435 588 int cmp = p1.cmp(p2);
duke@435 589 if (SuperWordRTDepCheck &&
duke@435 590 p1.base() != p2.base() && p1.valid() && p2.valid()) {
duke@435 591 // Create a runtime check to disambiguate
duke@435 592 OrderedPair pp(p1.base(), p2.base());
duke@435 593 _disjoint_ptrs.append_if_missing(pp);
duke@435 594 } else if (!SWPointer::not_equal(cmp)) {
duke@435 595 // Possibly same address
duke@435 596 _dg.make_edge(s1, s2);
duke@435 597 sink_dependent = false;
duke@435 598 }
duke@435 599 }
duke@435 600 if (sink_dependent) {
duke@435 601 _dg.make_edge(s1, slice_sink);
duke@435 602 }
duke@435 603 }
duke@435 604 #ifndef PRODUCT
duke@435 605 if (TraceSuperWord) {
duke@435 606 tty->print_cr("\nDependence graph for slice: %d", n->_idx);
duke@435 607 for (int q = 0; q < _nlist.length(); q++) {
duke@435 608 _dg.print(_nlist.at(q));
duke@435 609 }
duke@435 610 tty->cr();
duke@435 611 }
duke@435 612 #endif
duke@435 613 _nlist.clear();
duke@435 614 }
duke@435 615
duke@435 616 #ifndef PRODUCT
duke@435 617 if (TraceSuperWord) {
duke@435 618 tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
duke@435 619 for (int r = 0; r < _disjoint_ptrs.length(); r++) {
duke@435 620 _disjoint_ptrs.at(r).print();
duke@435 621 tty->cr();
duke@435 622 }
duke@435 623 tty->cr();
duke@435 624 }
duke@435 625 #endif
duke@435 626 }
duke@435 627
duke@435 628 //---------------------------mem_slice_preds---------------------------
duke@435 629 // Return a memory slice (node list) in predecessor order starting at "start"
duke@435 630 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
duke@435 631 assert(preds.length() == 0, "start empty");
duke@435 632 Node* n = start;
duke@435 633 Node* prev = NULL;
duke@435 634 while (true) {
duke@435 635 assert(in_bb(n), "must be in block");
duke@435 636 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 637 Node* out = n->fast_out(i);
duke@435 638 if (out->is_Load()) {
duke@435 639 if (in_bb(out)) {
duke@435 640 preds.push(out);
duke@435 641 }
duke@435 642 } else {
duke@435 643 // FIXME
duke@435 644 if (out->is_MergeMem() && !in_bb(out)) {
duke@435 645 // Either unrolling is causing a memory edge not to disappear,
duke@435 646 // or need to run igvn.optimize() again before SLP
duke@435 647 } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
duke@435 648 // Ditto. Not sure what else to check further.
cfang@1102 649 } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
duke@435 650 // StoreCM has an input edge used as a precedence edge.
duke@435 651 // Maybe an issue when oop stores are vectorized.
duke@435 652 } else {
duke@435 653 assert(out == prev || prev == NULL, "no branches off of store slice");
duke@435 654 }
duke@435 655 }
duke@435 656 }
duke@435 657 if (n == stop) break;
duke@435 658 preds.push(n);
duke@435 659 prev = n;
kvn@4620 660 assert(n->is_Mem(), err_msg_res("unexpected node %s", n->Name()));
duke@435 661 n = n->in(MemNode::Memory);
duke@435 662 }
duke@435 663 }
duke@435 664
duke@435 665 //------------------------------stmts_can_pack---------------------------
twisti@1040 666 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
duke@435 667 // s1 aligned at "align"
duke@435 668 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
cfang@1422 669
cfang@1422 670 // Do not use superword for non-primitives
kvn@3882 671 BasicType bt1 = velt_basic_type(s1);
kvn@3882 672 BasicType bt2 = velt_basic_type(s2);
kvn@3882 673 if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
cfang@1422 674 return false;
kvn@3882 675 if (Matcher::max_vector_size(bt1) < 2) {
kvn@3882 676 return false; // No vectors for this type
kvn@3882 677 }
cfang@1422 678
duke@435 679 if (isomorphic(s1, s2)) {
duke@435 680 if (independent(s1, s2)) {
duke@435 681 if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
duke@435 682 if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
duke@435 683 int s1_align = alignment(s1);
duke@435 684 int s2_align = alignment(s2);
duke@435 685 if (s1_align == top_align || s1_align == align) {
duke@435 686 if (s2_align == top_align || s2_align == align + data_size(s1)) {
duke@435 687 return true;
duke@435 688 }
duke@435 689 }
duke@435 690 }
duke@435 691 }
duke@435 692 }
duke@435 693 }
duke@435 694 return false;
duke@435 695 }
duke@435 696
duke@435 697 //------------------------------exists_at---------------------------
duke@435 698 // Does s exist in a pack at position pos?
duke@435 699 bool SuperWord::exists_at(Node* s, uint pos) {
duke@435 700 for (int i = 0; i < _packset.length(); i++) {
duke@435 701 Node_List* p = _packset.at(i);
duke@435 702 if (p->at(pos) == s) {
duke@435 703 return true;
duke@435 704 }
duke@435 705 }
duke@435 706 return false;
duke@435 707 }
duke@435 708
duke@435 709 //------------------------------are_adjacent_refs---------------------------
duke@435 710 // Is s1 immediately before s2 in memory?
duke@435 711 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
duke@435 712 if (!s1->is_Mem() || !s2->is_Mem()) return false;
duke@435 713 if (!in_bb(s1) || !in_bb(s2)) return false;
never@1940 714
never@1940 715 // Do not use superword for non-primitives
never@1940 716 if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
never@1940 717 !is_java_primitive(s2->as_Mem()->memory_type())) {
never@1940 718 return false;
never@1940 719 }
never@1940 720
duke@435 721 // FIXME - co_locate_pack fails on Stores in different mem-slices, so
duke@435 722 // only pack memops that are in the same alias set until that's fixed.
duke@435 723 if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
duke@435 724 _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
duke@435 725 return false;
duke@435 726 SWPointer p1(s1->as_Mem(), this);
duke@435 727 SWPointer p2(s2->as_Mem(), this);
duke@435 728 if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
duke@435 729 int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
duke@435 730 return diff == data_size(s1);
duke@435 731 }
duke@435 732
duke@435 733 //------------------------------isomorphic---------------------------
duke@435 734 // Are s1 and s2 similar?
duke@435 735 bool SuperWord::isomorphic(Node* s1, Node* s2) {
duke@435 736 if (s1->Opcode() != s2->Opcode()) return false;
duke@435 737 if (s1->req() != s2->req()) return false;
duke@435 738 if (s1->in(0) != s2->in(0)) return false;
kvn@3882 739 if (!same_velt_type(s1, s2)) return false;
duke@435 740 return true;
duke@435 741 }
duke@435 742
duke@435 743 //------------------------------independent---------------------------
duke@435 744 // Is there no data path from s1 to s2 or s2 to s1?
duke@435 745 bool SuperWord::independent(Node* s1, Node* s2) {
duke@435 746 // assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
duke@435 747 int d1 = depth(s1);
duke@435 748 int d2 = depth(s2);
duke@435 749 if (d1 == d2) return s1 != s2;
duke@435 750 Node* deep = d1 > d2 ? s1 : s2;
duke@435 751 Node* shallow = d1 > d2 ? s2 : s1;
duke@435 752
duke@435 753 visited_clear();
duke@435 754
duke@435 755 return independent_path(shallow, deep);
duke@435 756 }
duke@435 757
duke@435 758 //------------------------------independent_path------------------------------
duke@435 759 // Helper for independent
duke@435 760 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
duke@435 761 if (dp >= 1000) return false; // stop deep recursion
duke@435 762 visited_set(deep);
duke@435 763 int shal_depth = depth(shallow);
duke@435 764 assert(shal_depth <= depth(deep), "must be");
duke@435 765 for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
duke@435 766 Node* pred = preds.current();
duke@435 767 if (in_bb(pred) && !visited_test(pred)) {
duke@435 768 if (shallow == pred) {
duke@435 769 return false;
duke@435 770 }
duke@435 771 if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
duke@435 772 return false;
duke@435 773 }
duke@435 774 }
duke@435 775 }
duke@435 776 return true;
duke@435 777 }
duke@435 778
duke@435 779 //------------------------------set_alignment---------------------------
duke@435 780 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
duke@435 781 set_alignment(s1, align);
kvn@3882 782 if (align == top_align || align == bottom_align) {
kvn@3882 783 set_alignment(s2, align);
kvn@3882 784 } else {
kvn@3882 785 set_alignment(s2, align + data_size(s1));
kvn@3882 786 }
duke@435 787 }
duke@435 788
duke@435 789 //------------------------------data_size---------------------------
duke@435 790 int SuperWord::data_size(Node* s) {
kvn@3882 791 int bsize = type2aelembytes(velt_basic_type(s));
duke@435 792 assert(bsize != 0, "valid size");
duke@435 793 return bsize;
duke@435 794 }
duke@435 795
duke@435 796 //------------------------------extend_packlist---------------------------
duke@435 797 // Extend packset by following use->def and def->use links from pack members.
duke@435 798 void SuperWord::extend_packlist() {
duke@435 799 bool changed;
duke@435 800 do {
duke@435 801 changed = false;
duke@435 802 for (int i = 0; i < _packset.length(); i++) {
duke@435 803 Node_List* p = _packset.at(i);
duke@435 804 changed |= follow_use_defs(p);
duke@435 805 changed |= follow_def_uses(p);
duke@435 806 }
duke@435 807 } while (changed);
duke@435 808
duke@435 809 #ifndef PRODUCT
duke@435 810 if (TraceSuperWord) {
duke@435 811 tty->print_cr("\nAfter extend_packlist");
duke@435 812 print_packset();
duke@435 813 }
duke@435 814 #endif
duke@435 815 }
duke@435 816
duke@435 817 //------------------------------follow_use_defs---------------------------
duke@435 818 // Extend the packset by visiting operand definitions of nodes in pack p
duke@435 819 bool SuperWord::follow_use_defs(Node_List* p) {
kvn@3882 820 assert(p->size() == 2, "just checking");
duke@435 821 Node* s1 = p->at(0);
duke@435 822 Node* s2 = p->at(1);
duke@435 823 assert(s1->req() == s2->req(), "just checking");
duke@435 824 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 825
duke@435 826 if (s1->is_Load()) return false;
duke@435 827
duke@435 828 int align = alignment(s1);
duke@435 829 bool changed = false;
duke@435 830 int start = s1->is_Store() ? MemNode::ValueIn : 1;
duke@435 831 int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
duke@435 832 for (int j = start; j < end; j++) {
duke@435 833 Node* t1 = s1->in(j);
duke@435 834 Node* t2 = s2->in(j);
duke@435 835 if (!in_bb(t1) || !in_bb(t2))
duke@435 836 continue;
duke@435 837 if (stmts_can_pack(t1, t2, align)) {
duke@435 838 if (est_savings(t1, t2) >= 0) {
duke@435 839 Node_List* pair = new Node_List();
duke@435 840 pair->push(t1);
duke@435 841 pair->push(t2);
duke@435 842 _packset.append(pair);
duke@435 843 set_alignment(t1, t2, align);
duke@435 844 changed = true;
duke@435 845 }
duke@435 846 }
duke@435 847 }
duke@435 848 return changed;
duke@435 849 }
duke@435 850
duke@435 851 //------------------------------follow_def_uses---------------------------
duke@435 852 // Extend the packset by visiting uses of nodes in pack p
duke@435 853 bool SuperWord::follow_def_uses(Node_List* p) {
duke@435 854 bool changed = false;
duke@435 855 Node* s1 = p->at(0);
duke@435 856 Node* s2 = p->at(1);
duke@435 857 assert(p->size() == 2, "just checking");
duke@435 858 assert(s1->req() == s2->req(), "just checking");
duke@435 859 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 860
duke@435 861 if (s1->is_Store()) return false;
duke@435 862
duke@435 863 int align = alignment(s1);
duke@435 864 int savings = -1;
duke@435 865 Node* u1 = NULL;
duke@435 866 Node* u2 = NULL;
duke@435 867 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 868 Node* t1 = s1->fast_out(i);
duke@435 869 if (!in_bb(t1)) continue;
duke@435 870 for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
duke@435 871 Node* t2 = s2->fast_out(j);
duke@435 872 if (!in_bb(t2)) continue;
duke@435 873 if (!opnd_positions_match(s1, t1, s2, t2))
duke@435 874 continue;
duke@435 875 if (stmts_can_pack(t1, t2, align)) {
duke@435 876 int my_savings = est_savings(t1, t2);
duke@435 877 if (my_savings > savings) {
duke@435 878 savings = my_savings;
duke@435 879 u1 = t1;
duke@435 880 u2 = t2;
duke@435 881 }
duke@435 882 }
duke@435 883 }
duke@435 884 }
duke@435 885 if (savings >= 0) {
duke@435 886 Node_List* pair = new Node_List();
duke@435 887 pair->push(u1);
duke@435 888 pair->push(u2);
duke@435 889 _packset.append(pair);
duke@435 890 set_alignment(u1, u2, align);
duke@435 891 changed = true;
duke@435 892 }
duke@435 893 return changed;
duke@435 894 }
duke@435 895
duke@435 896 //---------------------------opnd_positions_match-------------------------
duke@435 897 // Is the use of d1 in u1 at the same operand position as d2 in u2?
duke@435 898 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
duke@435 899 uint ct = u1->req();
duke@435 900 if (ct != u2->req()) return false;
duke@435 901 uint i1 = 0;
duke@435 902 uint i2 = 0;
duke@435 903 do {
duke@435 904 for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
duke@435 905 for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
duke@435 906 if (i1 != i2) {
kvn@3882 907 if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
kvn@3882 908 // Further analysis relies on operands position matching.
kvn@3882 909 u2->swap_edges(i1, i2);
kvn@3882 910 } else {
kvn@3882 911 return false;
kvn@3882 912 }
duke@435 913 }
duke@435 914 } while (i1 < ct);
duke@435 915 return true;
duke@435 916 }
duke@435 917
duke@435 918 //------------------------------est_savings---------------------------
duke@435 919 // Estimate the savings from executing s1 and s2 as a pack
duke@435 920 int SuperWord::est_savings(Node* s1, Node* s2) {
kvn@3882 921 int save_in = 2 - 1; // 2 operations per instruction in packed form
duke@435 922
duke@435 923 // inputs
duke@435 924 for (uint i = 1; i < s1->req(); i++) {
duke@435 925 Node* x1 = s1->in(i);
duke@435 926 Node* x2 = s2->in(i);
duke@435 927 if (x1 != x2) {
duke@435 928 if (are_adjacent_refs(x1, x2)) {
kvn@3882 929 save_in += adjacent_profit(x1, x2);
duke@435 930 } else if (!in_packset(x1, x2)) {
kvn@3882 931 save_in -= pack_cost(2);
duke@435 932 } else {
kvn@3882 933 save_in += unpack_cost(2);
duke@435 934 }
duke@435 935 }
duke@435 936 }
duke@435 937
duke@435 938 // uses of result
duke@435 939 uint ct = 0;
kvn@3882 940 int save_use = 0;
duke@435 941 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 942 Node* s1_use = s1->fast_out(i);
duke@435 943 for (int j = 0; j < _packset.length(); j++) {
duke@435 944 Node_List* p = _packset.at(j);
duke@435 945 if (p->at(0) == s1_use) {
duke@435 946 for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
duke@435 947 Node* s2_use = s2->fast_out(k);
duke@435 948 if (p->at(p->size()-1) == s2_use) {
duke@435 949 ct++;
duke@435 950 if (are_adjacent_refs(s1_use, s2_use)) {
kvn@3882 951 save_use += adjacent_profit(s1_use, s2_use);
duke@435 952 }
duke@435 953 }
duke@435 954 }
duke@435 955 }
duke@435 956 }
duke@435 957 }
duke@435 958
kvn@3882 959 if (ct < s1->outcnt()) save_use += unpack_cost(1);
kvn@3882 960 if (ct < s2->outcnt()) save_use += unpack_cost(1);
duke@435 961
kvn@3882 962 return MAX2(save_in, save_use);
duke@435 963 }
duke@435 964
duke@435 965 //------------------------------costs---------------------------
duke@435 966 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
duke@435 967 int SuperWord::pack_cost(int ct) { return ct; }
duke@435 968 int SuperWord::unpack_cost(int ct) { return ct; }
duke@435 969
duke@435 970 //------------------------------combine_packs---------------------------
duke@435 971 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
duke@435 972 void SuperWord::combine_packs() {
kvn@3882 973 bool changed = true;
kvn@3882 974 // Combine packs regardless max vector size.
kvn@3882 975 while (changed) {
duke@435 976 changed = false;
duke@435 977 for (int i = 0; i < _packset.length(); i++) {
duke@435 978 Node_List* p1 = _packset.at(i);
duke@435 979 if (p1 == NULL) continue;
duke@435 980 for (int j = 0; j < _packset.length(); j++) {
duke@435 981 Node_List* p2 = _packset.at(j);
duke@435 982 if (p2 == NULL) continue;
kvn@3882 983 if (i == j) continue;
duke@435 984 if (p1->at(p1->size()-1) == p2->at(0)) {
duke@435 985 for (uint k = 1; k < p2->size(); k++) {
duke@435 986 p1->push(p2->at(k));
duke@435 987 }
duke@435 988 _packset.at_put(j, NULL);
duke@435 989 changed = true;
duke@435 990 }
duke@435 991 }
duke@435 992 }
kvn@3882 993 }
duke@435 994
kvn@3882 995 // Split packs which have size greater then max vector size.
kvn@3882 996 for (int i = 0; i < _packset.length(); i++) {
kvn@3882 997 Node_List* p1 = _packset.at(i);
kvn@3882 998 if (p1 != NULL) {
kvn@3882 999 BasicType bt = velt_basic_type(p1->at(0));
kvn@3882 1000 uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
kvn@3882 1001 assert(is_power_of_2(max_vlen), "sanity");
kvn@3882 1002 uint psize = p1->size();
kvn@3882 1003 if (!is_power_of_2(psize)) {
kvn@3882 1004 // Skip pack which can't be vector.
kvn@3882 1005 // case1: for(...) { a[i] = i; } elements values are different (i+x)
kvn@3882 1006 // case2: for(...) { a[i] = b[i+1]; } can't align both, load and store
kvn@3882 1007 _packset.at_put(i, NULL);
kvn@3882 1008 continue;
kvn@3882 1009 }
kvn@3882 1010 if (psize > max_vlen) {
kvn@3882 1011 Node_List* pack = new Node_List();
kvn@3882 1012 for (uint j = 0; j < psize; j++) {
kvn@3882 1013 pack->push(p1->at(j));
kvn@3882 1014 if (pack->size() >= max_vlen) {
kvn@3882 1015 assert(is_power_of_2(pack->size()), "sanity");
kvn@3882 1016 _packset.append(pack);
kvn@3882 1017 pack = new Node_List();
kvn@3882 1018 }
kvn@3882 1019 }
kvn@3882 1020 _packset.at_put(i, NULL);
kvn@3882 1021 }
kvn@3882 1022 }
kvn@3882 1023 }
kvn@3882 1024
kvn@3882 1025 // Compress list.
duke@435 1026 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 1027 Node_List* p1 = _packset.at(i);
duke@435 1028 if (p1 == NULL) {
duke@435 1029 _packset.remove_at(i);
duke@435 1030 }
duke@435 1031 }
duke@435 1032
duke@435 1033 #ifndef PRODUCT
duke@435 1034 if (TraceSuperWord) {
duke@435 1035 tty->print_cr("\nAfter combine_packs");
duke@435 1036 print_packset();
duke@435 1037 }
duke@435 1038 #endif
duke@435 1039 }
duke@435 1040
duke@435 1041 //-----------------------------construct_my_pack_map--------------------------
duke@435 1042 // Construct the map from nodes to packs. Only valid after the
duke@435 1043 // point where a node is only in one pack (after combine_packs).
duke@435 1044 void SuperWord::construct_my_pack_map() {
duke@435 1045 Node_List* rslt = NULL;
duke@435 1046 for (int i = 0; i < _packset.length(); i++) {
duke@435 1047 Node_List* p = _packset.at(i);
duke@435 1048 for (uint j = 0; j < p->size(); j++) {
duke@435 1049 Node* s = p->at(j);
duke@435 1050 assert(my_pack(s) == NULL, "only in one pack");
duke@435 1051 set_my_pack(s, p);
duke@435 1052 }
duke@435 1053 }
duke@435 1054 }
duke@435 1055
duke@435 1056 //------------------------------filter_packs---------------------------
duke@435 1057 // Remove packs that are not implemented or not profitable.
duke@435 1058 void SuperWord::filter_packs() {
duke@435 1059
duke@435 1060 // Remove packs that are not implemented
duke@435 1061 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 1062 Node_List* pk = _packset.at(i);
duke@435 1063 bool impl = implemented(pk);
duke@435 1064 if (!impl) {
duke@435 1065 #ifndef PRODUCT
duke@435 1066 if (TraceSuperWord && Verbose) {
duke@435 1067 tty->print_cr("Unimplemented");
duke@435 1068 pk->at(0)->dump();
duke@435 1069 }
duke@435 1070 #endif
duke@435 1071 remove_pack_at(i);
duke@435 1072 }
duke@435 1073 }
duke@435 1074
duke@435 1075 // Remove packs that are not profitable
duke@435 1076 bool changed;
duke@435 1077 do {
duke@435 1078 changed = false;
duke@435 1079 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 1080 Node_List* pk = _packset.at(i);
duke@435 1081 bool prof = profitable(pk);
duke@435 1082 if (!prof) {
duke@435 1083 #ifndef PRODUCT
duke@435 1084 if (TraceSuperWord && Verbose) {
duke@435 1085 tty->print_cr("Unprofitable");
duke@435 1086 pk->at(0)->dump();
duke@435 1087 }
duke@435 1088 #endif
duke@435 1089 remove_pack_at(i);
duke@435 1090 changed = true;
duke@435 1091 }
duke@435 1092 }
duke@435 1093 } while (changed);
duke@435 1094
duke@435 1095 #ifndef PRODUCT
duke@435 1096 if (TraceSuperWord) {
duke@435 1097 tty->print_cr("\nAfter filter_packs");
duke@435 1098 print_packset();
duke@435 1099 tty->cr();
duke@435 1100 }
duke@435 1101 #endif
duke@435 1102 }
duke@435 1103
duke@435 1104 //------------------------------implemented---------------------------
duke@435 1105 // Can code be generated for pack p?
duke@435 1106 bool SuperWord::implemented(Node_List* p) {
duke@435 1107 Node* p0 = p->at(0);
kvn@4006 1108 return VectorNode::implemented(p0->Opcode(), p->size(), velt_basic_type(p0));
kvn@4006 1109 }
kvn@4006 1110
kvn@4006 1111 //------------------------------same_inputs--------------------------
kvn@4006 1112 // For pack p, are all idx operands the same?
kvn@4006 1113 static bool same_inputs(Node_List* p, int idx) {
kvn@4006 1114 Node* p0 = p->at(0);
kvn@4006 1115 uint vlen = p->size();
kvn@4006 1116 Node* p0_def = p0->in(idx);
kvn@4006 1117 for (uint i = 1; i < vlen; i++) {
kvn@4006 1118 Node* pi = p->at(i);
kvn@4006 1119 Node* pi_def = pi->in(idx);
kvn@4006 1120 if (p0_def != pi_def)
kvn@4006 1121 return false;
kvn@4004 1122 }
kvn@4006 1123 return true;
duke@435 1124 }
duke@435 1125
duke@435 1126 //------------------------------profitable---------------------------
duke@435 1127 // For pack p, are all operands and all uses (with in the block) vector?
duke@435 1128 bool SuperWord::profitable(Node_List* p) {
duke@435 1129 Node* p0 = p->at(0);
duke@435 1130 uint start, end;
kvn@4006 1131 VectorNode::vector_operands(p0, &start, &end);
duke@435 1132
kvn@4114 1133 // Return false if some inputs are not vectors or vectors with different
kvn@4114 1134 // size or alignment.
kvn@4114 1135 // Also, for now, return false if not scalar promotion case when inputs are
kvn@4114 1136 // the same. Later, implement PackNode and allow differing, non-vector inputs
kvn@4114 1137 // (maybe just the ones from outside the block.)
duke@435 1138 for (uint i = start; i < end; i++) {
kvn@4114 1139 if (!is_vector_use(p0, i))
kvn@4114 1140 return false;
duke@435 1141 }
kvn@4006 1142 if (VectorNode::is_shift(p0)) {
kvn@4114 1143 // For now, return false if shift count is vector or not scalar promotion
kvn@4114 1144 // case (different shift counts) because it is not supported yet.
kvn@4114 1145 Node* cnt = p0->in(2);
kvn@4114 1146 Node_List* cnt_pk = my_pack(cnt);
kvn@4114 1147 if (cnt_pk != NULL)
kvn@4006 1148 return false;
kvn@4006 1149 if (!same_inputs(p, 2))
kvn@4006 1150 return false;
kvn@4006 1151 }
duke@435 1152 if (!p0->is_Store()) {
duke@435 1153 // For now, return false if not all uses are vector.
duke@435 1154 // Later, implement ExtractNode and allow non-vector uses (maybe
duke@435 1155 // just the ones outside the block.)
duke@435 1156 for (uint i = 0; i < p->size(); i++) {
duke@435 1157 Node* def = p->at(i);
duke@435 1158 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 1159 Node* use = def->fast_out(j);
duke@435 1160 for (uint k = 0; k < use->req(); k++) {
duke@435 1161 Node* n = use->in(k);
duke@435 1162 if (def == n) {
duke@435 1163 if (!is_vector_use(use, k)) {
duke@435 1164 return false;
duke@435 1165 }
duke@435 1166 }
duke@435 1167 }
duke@435 1168 }
duke@435 1169 }
duke@435 1170 }
duke@435 1171 return true;
duke@435 1172 }
duke@435 1173
duke@435 1174 //------------------------------schedule---------------------------
duke@435 1175 // Adjust the memory graph for the packed operations
duke@435 1176 void SuperWord::schedule() {
duke@435 1177
duke@435 1178 // Co-locate in the memory graph the members of each memory pack
duke@435 1179 for (int i = 0; i < _packset.length(); i++) {
duke@435 1180 co_locate_pack(_packset.at(i));
duke@435 1181 }
duke@435 1182 }
duke@435 1183
cfang@1102 1184 //-------------------------------remove_and_insert-------------------
kvn@3882 1185 // Remove "current" from its current position in the memory graph and insert
kvn@3882 1186 // it after the appropriate insertion point (lip or uip).
cfang@1102 1187 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
cfang@1102 1188 Node *uip, Unique_Node_List &sched_before) {
cfang@1102 1189 Node* my_mem = current->in(MemNode::Memory);
kvn@3882 1190 bool sched_up = sched_before.member(current);
cfang@1102 1191
kvn@3882 1192 // remove current_store from its current position in the memmory graph
cfang@1102 1193 for (DUIterator i = current->outs(); current->has_out(i); i++) {
cfang@1102 1194 Node* use = current->out(i);
cfang@1102 1195 if (use->is_Mem()) {
cfang@1102 1196 assert(use->in(MemNode::Memory) == current, "must be");
cfang@1102 1197 if (use == prev) { // connect prev to my_mem
kvn@3882 1198 _igvn.replace_input_of(use, MemNode::Memory, my_mem);
kvn@3882 1199 --i; //deleted this edge; rescan position
cfang@1102 1200 } else if (sched_before.member(use)) {
kvn@3882 1201 if (!sched_up) { // Will be moved together with current
kvn@3882 1202 _igvn.replace_input_of(use, MemNode::Memory, uip);
kvn@3882 1203 --i; //deleted this edge; rescan position
kvn@3882 1204 }
cfang@1102 1205 } else {
kvn@3882 1206 if (sched_up) { // Will be moved together with current
kvn@3882 1207 _igvn.replace_input_of(use, MemNode::Memory, lip);
kvn@3882 1208 --i; //deleted this edge; rescan position
kvn@3882 1209 }
cfang@1102 1210 }
cfang@1102 1211 }
cfang@1102 1212 }
cfang@1102 1213
cfang@1102 1214 Node *insert_pt = sched_up ? uip : lip;
cfang@1102 1215
cfang@1102 1216 // all uses of insert_pt's memory state should use current's instead
cfang@1102 1217 for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
cfang@1102 1218 Node* use = insert_pt->out(i);
cfang@1102 1219 if (use->is_Mem()) {
cfang@1102 1220 assert(use->in(MemNode::Memory) == insert_pt, "must be");
kvn@3847 1221 _igvn.replace_input_of(use, MemNode::Memory, current);
cfang@1102 1222 --i; //deleted this edge; rescan position
cfang@1102 1223 } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
cfang@1102 1224 uint pos; //lip (lower insert point) must be the last one in the memory slice
cfang@1102 1225 for (pos=1; pos < use->req(); pos++) {
cfang@1102 1226 if (use->in(pos) == insert_pt) break;
cfang@1102 1227 }
kvn@3847 1228 _igvn.replace_input_of(use, pos, current);
cfang@1102 1229 --i;
cfang@1102 1230 }
cfang@1102 1231 }
cfang@1102 1232
cfang@1102 1233 //connect current to insert_pt
kvn@3882 1234 _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
cfang@1102 1235 }
cfang@1102 1236
cfang@1102 1237 //------------------------------co_locate_pack----------------------------------
cfang@1102 1238 // To schedule a store pack, we need to move any sandwiched memory ops either before
cfang@1102 1239 // or after the pack, based upon dependence information:
cfang@1102 1240 // (1) If any store in the pack depends on the sandwiched memory op, the
cfang@1102 1241 // sandwiched memory op must be scheduled BEFORE the pack;
cfang@1102 1242 // (2) If a sandwiched memory op depends on any store in the pack, the
cfang@1102 1243 // sandwiched memory op must be scheduled AFTER the pack;
cfang@1102 1244 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
cfang@1102 1245 // memory op (say memB), memB must be scheduled before memA. So, if memA is
cfang@1102 1246 // scheduled before the pack, memB must also be scheduled before the pack;
cfang@1102 1247 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
cfang@1102 1248 // schedule this store AFTER the pack
cfang@1102 1249 // (5) We know there is no dependence cycle, so there in no other case;
cfang@1102 1250 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
cfang@1102 1251 //
cfang@1387 1252 // To schedule a load pack, we use the memory state of either the first or the last load in
cfang@1387 1253 // the pack, based on the dependence constraint.
duke@435 1254 void SuperWord::co_locate_pack(Node_List* pk) {
duke@435 1255 if (pk->at(0)->is_Store()) {
duke@435 1256 MemNode* first = executed_first(pk)->as_Mem();
duke@435 1257 MemNode* last = executed_last(pk)->as_Mem();
cfang@1102 1258 Unique_Node_List schedule_before_pack;
cfang@1102 1259 Unique_Node_List memops;
cfang@1102 1260
duke@435 1261 MemNode* current = last->in(MemNode::Memory)->as_Mem();
cfang@1102 1262 MemNode* previous = last;
duke@435 1263 while (true) {
duke@435 1264 assert(in_bb(current), "stay in block");
cfang@1102 1265 memops.push(previous);
cfang@1102 1266 for (DUIterator i = current->outs(); current->has_out(i); i++) {
cfang@1102 1267 Node* use = current->out(i);
cfang@1102 1268 if (use->is_Mem() && use != previous)
cfang@1102 1269 memops.push(use);
cfang@1102 1270 }
kvn@3882 1271 if (current == first) break;
cfang@1102 1272 previous = current;
cfang@1102 1273 current = current->in(MemNode::Memory)->as_Mem();
cfang@1102 1274 }
cfang@1102 1275
cfang@1102 1276 // determine which memory operations should be scheduled before the pack
cfang@1102 1277 for (uint i = 1; i < memops.size(); i++) {
cfang@1102 1278 Node *s1 = memops.at(i);
cfang@1102 1279 if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
cfang@1102 1280 for (uint j = 0; j< i; j++) {
cfang@1102 1281 Node *s2 = memops.at(j);
cfang@1102 1282 if (!independent(s1, s2)) {
cfang@1102 1283 if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
kvn@3882 1284 schedule_before_pack.push(s1); // s1 must be scheduled before
cfang@1102 1285 Node_List* mem_pk = my_pack(s1);
cfang@1102 1286 if (mem_pk != NULL) {
cfang@1102 1287 for (uint ii = 0; ii < mem_pk->size(); ii++) {
kvn@3882 1288 Node* s = mem_pk->at(ii); // follow partner
cfang@1102 1289 if (memops.member(s) && !schedule_before_pack.member(s))
cfang@1102 1290 schedule_before_pack.push(s);
cfang@1102 1291 }
cfang@1102 1292 }
kvn@3882 1293 break;
cfang@1102 1294 }
cfang@1102 1295 }
cfang@1102 1296 }
cfang@1102 1297 }
cfang@1102 1298 }
cfang@1102 1299
kvn@3882 1300 Node* upper_insert_pt = first->in(MemNode::Memory);
kvn@3882 1301 // Following code moves loads connected to upper_insert_pt below aliased stores.
kvn@3882 1302 // Collect such loads here and reconnect them back to upper_insert_pt later.
kvn@3882 1303 memops.clear();
kvn@3882 1304 for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
kvn@3882 1305 Node* use = upper_insert_pt->out(i);
kvn@6639 1306 if (use->is_Mem() && !use->is_Store()) {
kvn@3882 1307 memops.push(use);
kvn@6639 1308 }
kvn@3882 1309 }
kvn@3882 1310
cfang@1102 1311 MemNode* lower_insert_pt = last;
cfang@1102 1312 previous = last; //previous store in pk
cfang@1102 1313 current = last->in(MemNode::Memory)->as_Mem();
cfang@1102 1314
kvn@3882 1315 // start scheduling from "last" to "first"
cfang@1102 1316 while (true) {
cfang@1102 1317 assert(in_bb(current), "stay in block");
cfang@1102 1318 assert(in_pack(previous, pk), "previous stays in pack");
duke@435 1319 Node* my_mem = current->in(MemNode::Memory);
cfang@1102 1320
duke@435 1321 if (in_pack(current, pk)) {
cfang@1102 1322 // Forward users of my memory state (except "previous) to my input memory state
duke@435 1323 for (DUIterator i = current->outs(); current->has_out(i); i++) {
duke@435 1324 Node* use = current->out(i);
cfang@1102 1325 if (use->is_Mem() && use != previous) {
duke@435 1326 assert(use->in(MemNode::Memory) == current, "must be");
cfang@1102 1327 if (schedule_before_pack.member(use)) {
kvn@3847 1328 _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
cfang@1102 1329 } else {
kvn@3847 1330 _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
cfang@1102 1331 }
duke@435 1332 --i; // deleted this edge; rescan position
duke@435 1333 }
duke@435 1334 }
cfang@1102 1335 previous = current;
cfang@1102 1336 } else { // !in_pack(current, pk) ==> a sandwiched store
cfang@1102 1337 remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
duke@435 1338 }
cfang@1102 1339
duke@435 1340 if (current == first) break;
duke@435 1341 current = my_mem->as_Mem();
cfang@1102 1342 } // end while
kvn@3882 1343
kvn@3882 1344 // Reconnect loads back to upper_insert_pt.
kvn@3882 1345 for (uint i = 0; i < memops.size(); i++) {
kvn@3882 1346 Node *ld = memops.at(i);
kvn@3882 1347 if (ld->in(MemNode::Memory) != upper_insert_pt) {
kvn@3882 1348 _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
kvn@3882 1349 }
kvn@3882 1350 }
cfang@1102 1351 } else if (pk->at(0)->is_Load()) { //load
cfang@1387 1352 // all loads in the pack should have the same memory state. By default,
cfang@1387 1353 // we use the memory state of the last load. However, if any load could
cfang@1387 1354 // not be moved down due to the dependence constraint, we use the memory
cfang@1387 1355 // state of the first load.
cfang@1387 1356 Node* last_mem = executed_last(pk)->in(MemNode::Memory);
cfang@1387 1357 Node* first_mem = executed_first(pk)->in(MemNode::Memory);
cfang@1387 1358 bool schedule_last = true;
cfang@1387 1359 for (uint i = 0; i < pk->size(); i++) {
cfang@1387 1360 Node* ld = pk->at(i);
cfang@1387 1361 for (Node* current = last_mem; current != ld->in(MemNode::Memory);
cfang@1387 1362 current=current->in(MemNode::Memory)) {
cfang@1387 1363 assert(current != first_mem, "corrupted memory graph");
cfang@1387 1364 if(current->is_Mem() && !independent(current, ld)){
cfang@1387 1365 schedule_last = false; // a later store depends on this load
cfang@1387 1366 break;
cfang@1387 1367 }
cfang@1387 1368 }
cfang@1387 1369 }
cfang@1387 1370
cfang@1387 1371 Node* mem_input = schedule_last ? last_mem : first_mem;
cfang@1387 1372 _igvn.hash_delete(mem_input);
cfang@1387 1373 // Give each load the same memory state
duke@435 1374 for (uint i = 0; i < pk->size(); i++) {
duke@435 1375 LoadNode* ld = pk->at(i)->as_Load();
kvn@3847 1376 _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
duke@435 1377 }
duke@435 1378 }
duke@435 1379 }
duke@435 1380
duke@435 1381 //------------------------------output---------------------------
duke@435 1382 // Convert packs into vector node operations
duke@435 1383 void SuperWord::output() {
duke@435 1384 if (_packset.length() == 0) return;
duke@435 1385
kvn@2727 1386 #ifndef PRODUCT
kvn@2727 1387 if (TraceLoopOpts) {
kvn@2727 1388 tty->print("SuperWord ");
kvn@2727 1389 lpt()->dump_head();
kvn@2727 1390 }
kvn@2727 1391 #endif
kvn@2727 1392
duke@435 1393 // MUST ENSURE main loop's initial value is properly aligned:
duke@435 1394 // (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
duke@435 1395
duke@435 1396 align_initial_loop_index(align_to_ref());
duke@435 1397
duke@435 1398 // Insert extract (unpack) operations for scalar uses
duke@435 1399 for (int i = 0; i < _packset.length(); i++) {
duke@435 1400 insert_extracts(_packset.at(i));
duke@435 1401 }
duke@435 1402
kvn@4103 1403 Compile* C = _phase->C;
kvn@4103 1404 uint max_vlen_in_bytes = 0;
duke@435 1405 for (int i = 0; i < _block.length(); i++) {
duke@435 1406 Node* n = _block.at(i);
duke@435 1407 Node_List* p = my_pack(n);
duke@435 1408 if (p && n == executed_last(p)) {
duke@435 1409 uint vlen = p->size();
kvn@4103 1410 uint vlen_in_bytes = 0;
duke@435 1411 Node* vn = NULL;
duke@435 1412 Node* low_adr = p->at(0);
duke@435 1413 Node* first = executed_first(p);
kvn@3882 1414 int opc = n->Opcode();
duke@435 1415 if (n->is_Load()) {
duke@435 1416 Node* ctl = n->in(MemNode::Control);
duke@435 1417 Node* mem = first->in(MemNode::Memory);
kvn@7025 1418 SWPointer p1(n->as_Mem(), this);
kvn@7025 1419 // Identify the memory dependency for the new loadVector node by
kvn@7025 1420 // walking up through memory chain.
kvn@7025 1421 // This is done to give flexibility to the new loadVector node so that
kvn@7025 1422 // it can move above independent storeVector nodes.
kvn@7025 1423 while (mem->is_StoreVector()) {
kvn@7025 1424 SWPointer p2(mem->as_Mem(), this);
kvn@7025 1425 int cmp = p1.cmp(p2);
kvn@7025 1426 if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
kvn@7025 1427 mem = mem->in(MemNode::Memory);
kvn@7025 1428 } else {
kvn@7025 1429 break; // dependent memory
kvn@7025 1430 }
kvn@7025 1431 }
duke@435 1432 Node* adr = low_adr->in(MemNode::Address);
duke@435 1433 const TypePtr* atyp = n->adr_type();
roland@7859 1434 vn = LoadVectorNode::make(C, opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
kvn@4103 1435 vlen_in_bytes = vn->as_LoadVector()->memory_size();
duke@435 1436 } else if (n->is_Store()) {
duke@435 1437 // Promote value to be stored to vector
kvn@3040 1438 Node* val = vector_opd(p, MemNode::ValueIn);
duke@435 1439 Node* ctl = n->in(MemNode::Control);
duke@435 1440 Node* mem = first->in(MemNode::Memory);
duke@435 1441 Node* adr = low_adr->in(MemNode::Address);
duke@435 1442 const TypePtr* atyp = n->adr_type();
kvn@4103 1443 vn = StoreVectorNode::make(C, opc, ctl, mem, adr, atyp, val, vlen);
kvn@4103 1444 vlen_in_bytes = vn->as_StoreVector()->memory_size();
duke@435 1445 } else if (n->req() == 3) {
duke@435 1446 // Promote operands to vector
duke@435 1447 Node* in1 = vector_opd(p, 1);
duke@435 1448 Node* in2 = vector_opd(p, 2);
kvn@4001 1449 if (VectorNode::is_invariant_vector(in1) && (n->is_Add() || n->is_Mul())) {
kvn@4001 1450 // Move invariant vector input into second position to avoid register spilling.
kvn@4001 1451 Node* tmp = in1;
kvn@4001 1452 in1 = in2;
kvn@4001 1453 in2 = tmp;
kvn@4001 1454 }
kvn@4103 1455 vn = VectorNode::make(C, opc, in1, in2, vlen, velt_basic_type(n));
kvn@4103 1456 vlen_in_bytes = vn->as_Vector()->length_in_bytes();
duke@435 1457 } else {
duke@435 1458 ShouldNotReachHere();
duke@435 1459 }
kvn@3882 1460 assert(vn != NULL, "sanity");
kvn@4114 1461 _igvn.register_new_node_with_optimizer(vn);
duke@435 1462 _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
duke@435 1463 for (uint j = 0; j < p->size(); j++) {
duke@435 1464 Node* pm = p->at(j);
kvn@1976 1465 _igvn.replace_node(pm, vn);
duke@435 1466 }
duke@435 1467 _igvn._worklist.push(vn);
kvn@4103 1468
kvn@4103 1469 if (vlen_in_bytes > max_vlen_in_bytes) {
kvn@4103 1470 max_vlen_in_bytes = vlen_in_bytes;
kvn@4103 1471 }
kvn@3882 1472 #ifdef ASSERT
kvn@3886 1473 if (TraceNewVectors) {
kvn@3882 1474 tty->print("new Vector node: ");
kvn@3882 1475 vn->dump();
kvn@3882 1476 }
kvn@3882 1477 #endif
duke@435 1478 }
duke@435 1479 }
kvn@4103 1480 C->set_max_vector_size(max_vlen_in_bytes);
duke@435 1481 }
duke@435 1482
duke@435 1483 //------------------------------vector_opd---------------------------
duke@435 1484 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
kvn@3040 1485 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
duke@435 1486 Node* p0 = p->at(0);
duke@435 1487 uint vlen = p->size();
duke@435 1488 Node* opd = p0->in(opd_idx);
duke@435 1489
kvn@4006 1490 if (same_inputs(p, opd_idx)) {
kvn@3882 1491 if (opd->is_Vector() || opd->is_LoadVector()) {
kvn@4004 1492 assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
kvn@3040 1493 return opd; // input is matching vector
duke@435 1494 }
kvn@4001 1495 if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
kvn@4001 1496 Compile* C = _phase->C;
kvn@4001 1497 Node* cnt = opd;
kvn@4134 1498 // Vector instructions do not mask shift count, do it here.
kvn@4001 1499 juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
kvn@4001 1500 const TypeInt* t = opd->find_int_type();
kvn@4001 1501 if (t != NULL && t->is_con()) {
kvn@4001 1502 juint shift = t->get_con();
kvn@4001 1503 if (shift > mask) { // Unsigned cmp
kvn@4001 1504 cnt = ConNode::make(C, TypeInt::make(shift & mask));
kvn@4001 1505 }
kvn@4001 1506 } else {
kvn@4001 1507 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
kvn@4001 1508 cnt = ConNode::make(C, TypeInt::make(mask));
kvn@4114 1509 _igvn.register_new_node_with_optimizer(cnt);
kvn@4115 1510 cnt = new (C) AndINode(opd, cnt);
kvn@4114 1511 _igvn.register_new_node_with_optimizer(cnt);
kvn@4001 1512 _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
kvn@4001 1513 }
kvn@4001 1514 assert(opd->bottom_type()->isa_int(), "int type only");
kvn@4134 1515 // Move non constant shift count into vector register.
kvn@4134 1516 cnt = VectorNode::shift_count(C, p0, cnt, vlen, velt_basic_type(p0));
kvn@4001 1517 }
kvn@4001 1518 if (cnt != opd) {
kvn@4114 1519 _igvn.register_new_node_with_optimizer(cnt);
kvn@4001 1520 _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
kvn@4001 1521 }
kvn@4001 1522 return cnt;
kvn@4001 1523 }
kvn@3882 1524 assert(!opd->is_StoreVector(), "such vector is not expected here");
kvn@3748 1525 // Convert scalar input to vector with the same number of elements as
kvn@3748 1526 // p0's vector. Use p0's type because size of operand's container in
kvn@3748 1527 // vector should match p0's size regardless operand's size.
kvn@3748 1528 const Type* p0_t = velt_type(p0);
kvn@3748 1529 VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, p0_t);
duke@435 1530
kvn@4114 1531 _igvn.register_new_node_with_optimizer(vn);
duke@435 1532 _phase->set_ctrl(vn, _phase->get_ctrl(opd));
kvn@3882 1533 #ifdef ASSERT
kvn@3886 1534 if (TraceNewVectors) {
kvn@3882 1535 tty->print("new Vector node: ");
kvn@3882 1536 vn->dump();
kvn@3882 1537 }
kvn@3882 1538 #endif
duke@435 1539 return vn;
duke@435 1540 }
duke@435 1541
duke@435 1542 // Insert pack operation
kvn@3882 1543 BasicType bt = velt_basic_type(p0);
kvn@3882 1544 PackNode* pk = PackNode::make(_phase->C, opd, vlen, bt);
kvn@3748 1545 DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
duke@435 1546
duke@435 1547 for (uint i = 1; i < vlen; i++) {
duke@435 1548 Node* pi = p->at(i);
duke@435 1549 Node* in = pi->in(opd_idx);
duke@435 1550 assert(my_pack(in) == NULL, "Should already have been unpacked");
kvn@3748 1551 assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
kvn@4006 1552 pk->add_opd(in);
duke@435 1553 }
kvn@4114 1554 _igvn.register_new_node_with_optimizer(pk);
duke@435 1555 _phase->set_ctrl(pk, _phase->get_ctrl(opd));
kvn@3882 1556 #ifdef ASSERT
kvn@4103 1557 if (TraceNewVectors) {
kvn@4103 1558 tty->print("new Vector node: ");
kvn@4103 1559 pk->dump();
kvn@4103 1560 }
kvn@3882 1561 #endif
duke@435 1562 return pk;
duke@435 1563 }
duke@435 1564
duke@435 1565 //------------------------------insert_extracts---------------------------
duke@435 1566 // If a use of pack p is not a vector use, then replace the
duke@435 1567 // use with an extract operation.
duke@435 1568 void SuperWord::insert_extracts(Node_List* p) {
duke@435 1569 if (p->at(0)->is_Store()) return;
duke@435 1570 assert(_n_idx_list.is_empty(), "empty (node,index) list");
duke@435 1571
duke@435 1572 // Inspect each use of each pack member. For each use that is
duke@435 1573 // not a vector use, replace the use with an extract operation.
duke@435 1574
duke@435 1575 for (uint i = 0; i < p->size(); i++) {
duke@435 1576 Node* def = p->at(i);
duke@435 1577 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 1578 Node* use = def->fast_out(j);
duke@435 1579 for (uint k = 0; k < use->req(); k++) {
duke@435 1580 Node* n = use->in(k);
duke@435 1581 if (def == n) {
duke@435 1582 if (!is_vector_use(use, k)) {
duke@435 1583 _n_idx_list.push(use, k);
duke@435 1584 }
duke@435 1585 }
duke@435 1586 }
duke@435 1587 }
duke@435 1588 }
duke@435 1589
duke@435 1590 while (_n_idx_list.is_nonempty()) {
duke@435 1591 Node* use = _n_idx_list.node();
duke@435 1592 int idx = _n_idx_list.index();
duke@435 1593 _n_idx_list.pop();
duke@435 1594 Node* def = use->in(idx);
duke@435 1595
duke@435 1596 // Insert extract operation
duke@435 1597 _igvn.hash_delete(def);
duke@435 1598 int def_pos = alignment(def) / data_size(def);
duke@435 1599
kvn@3882 1600 Node* ex = ExtractNode::make(_phase->C, def, def_pos, velt_basic_type(def));
kvn@4114 1601 _igvn.register_new_node_with_optimizer(ex);
duke@435 1602 _phase->set_ctrl(ex, _phase->get_ctrl(def));
kvn@3847 1603 _igvn.replace_input_of(use, idx, ex);
duke@435 1604 _igvn._worklist.push(def);
duke@435 1605
duke@435 1606 bb_insert_after(ex, bb_idx(def));
kvn@3882 1607 set_velt_type(ex, velt_type(def));
duke@435 1608 }
duke@435 1609 }
duke@435 1610
duke@435 1611 //------------------------------is_vector_use---------------------------
duke@435 1612 // Is use->in(u_idx) a vector use?
duke@435 1613 bool SuperWord::is_vector_use(Node* use, int u_idx) {
duke@435 1614 Node_List* u_pk = my_pack(use);
duke@435 1615 if (u_pk == NULL) return false;
duke@435 1616 Node* def = use->in(u_idx);
duke@435 1617 Node_List* d_pk = my_pack(def);
duke@435 1618 if (d_pk == NULL) {
duke@435 1619 // check for scalar promotion
duke@435 1620 Node* n = u_pk->at(0)->in(u_idx);
duke@435 1621 for (uint i = 1; i < u_pk->size(); i++) {
duke@435 1622 if (u_pk->at(i)->in(u_idx) != n) return false;
duke@435 1623 }
duke@435 1624 return true;
duke@435 1625 }
duke@435 1626 if (u_pk->size() != d_pk->size())
duke@435 1627 return false;
duke@435 1628 for (uint i = 0; i < u_pk->size(); i++) {
duke@435 1629 Node* ui = u_pk->at(i);
duke@435 1630 Node* di = d_pk->at(i);
duke@435 1631 if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
duke@435 1632 return false;
duke@435 1633 }
duke@435 1634 return true;
duke@435 1635 }
duke@435 1636
duke@435 1637 //------------------------------construct_bb---------------------------
duke@435 1638 // Construct reverse postorder list of block members
kvn@4620 1639 bool SuperWord::construct_bb() {
duke@435 1640 Node* entry = bb();
duke@435 1641
duke@435 1642 assert(_stk.length() == 0, "stk is empty");
duke@435 1643 assert(_block.length() == 0, "block is empty");
duke@435 1644 assert(_data_entry.length() == 0, "data_entry is empty");
duke@435 1645 assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
duke@435 1646 assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
duke@435 1647
duke@435 1648 // Find non-control nodes with no inputs from within block,
duke@435 1649 // create a temporary map from node _idx to bb_idx for use
duke@435 1650 // by the visited and post_visited sets,
duke@435 1651 // and count number of nodes in block.
duke@435 1652 int bb_ct = 0;
duke@435 1653 for (uint i = 0; i < lpt()->_body.size(); i++ ) {
duke@435 1654 Node *n = lpt()->_body.at(i);
duke@435 1655 set_bb_idx(n, i); // Create a temporary map
duke@435 1656 if (in_bb(n)) {
kvn@4620 1657 if (n->is_LoadStore() || n->is_MergeMem() ||
kvn@4620 1658 (n->is_Proj() && !n->as_Proj()->is_CFG())) {
kvn@4620 1659 // Bailout if the loop has LoadStore, MergeMem or data Proj
kvn@4620 1660 // nodes. Superword optimization does not work with them.
kvn@4620 1661 return false;
kvn@4620 1662 }
duke@435 1663 bb_ct++;
duke@435 1664 if (!n->is_CFG()) {
duke@435 1665 bool found = false;
duke@435 1666 for (uint j = 0; j < n->req(); j++) {
duke@435 1667 Node* def = n->in(j);
duke@435 1668 if (def && in_bb(def)) {
duke@435 1669 found = true;
duke@435 1670 break;
duke@435 1671 }
duke@435 1672 }
duke@435 1673 if (!found) {
duke@435 1674 assert(n != entry, "can't be entry");
duke@435 1675 _data_entry.push(n);
duke@435 1676 }
duke@435 1677 }
duke@435 1678 }
duke@435 1679 }
duke@435 1680
duke@435 1681 // Find memory slices (head and tail)
duke@435 1682 for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
duke@435 1683 Node *n = lp()->fast_out(i);
duke@435 1684 if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
duke@435 1685 Node* n_tail = n->in(LoopNode::LoopBackControl);
kvn@688 1686 if (n_tail != n->in(LoopNode::EntryControl)) {
kvn@4620 1687 if (!n_tail->is_Mem()) {
kvn@4620 1688 assert(n_tail->is_Mem(), err_msg_res("unexpected node for memory slice: %s", n_tail->Name()));
kvn@4620 1689 return false; // Bailout
kvn@4620 1690 }
kvn@688 1691 _mem_slice_head.push(n);
kvn@688 1692 _mem_slice_tail.push(n_tail);
kvn@688 1693 }
duke@435 1694 }
duke@435 1695 }
duke@435 1696
duke@435 1697 // Create an RPO list of nodes in block
duke@435 1698
duke@435 1699 visited_clear();
duke@435 1700 post_visited_clear();
duke@435 1701
duke@435 1702 // Push all non-control nodes with no inputs from within block, then control entry
duke@435 1703 for (int j = 0; j < _data_entry.length(); j++) {
duke@435 1704 Node* n = _data_entry.at(j);
duke@435 1705 visited_set(n);
duke@435 1706 _stk.push(n);
duke@435 1707 }
duke@435 1708 visited_set(entry);
duke@435 1709 _stk.push(entry);
duke@435 1710
duke@435 1711 // Do a depth first walk over out edges
duke@435 1712 int rpo_idx = bb_ct - 1;
duke@435 1713 int size;
duke@435 1714 while ((size = _stk.length()) > 0) {
duke@435 1715 Node* n = _stk.top(); // Leave node on stack
duke@435 1716 if (!visited_test_set(n)) {
duke@435 1717 // forward arc in graph
duke@435 1718 } else if (!post_visited_test(n)) {
duke@435 1719 // cross or back arc
duke@435 1720 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1721 Node *use = n->fast_out(i);
duke@435 1722 if (in_bb(use) && !visited_test(use) &&
duke@435 1723 // Don't go around backedge
duke@435 1724 (!use->is_Phi() || n == entry)) {
duke@435 1725 _stk.push(use);
duke@435 1726 }
duke@435 1727 }
duke@435 1728 if (_stk.length() == size) {
duke@435 1729 // There were no additional uses, post visit node now
duke@435 1730 _stk.pop(); // Remove node from stack
duke@435 1731 assert(rpo_idx >= 0, "");
duke@435 1732 _block.at_put_grow(rpo_idx, n);
duke@435 1733 rpo_idx--;
duke@435 1734 post_visited_set(n);
duke@435 1735 assert(rpo_idx >= 0 || _stk.is_empty(), "");
duke@435 1736 }
duke@435 1737 } else {
duke@435 1738 _stk.pop(); // Remove post-visited node from stack
duke@435 1739 }
duke@435 1740 }
duke@435 1741
duke@435 1742 // Create real map of block indices for nodes
duke@435 1743 for (int j = 0; j < _block.length(); j++) {
duke@435 1744 Node* n = _block.at(j);
duke@435 1745 set_bb_idx(n, j);
duke@435 1746 }
duke@435 1747
duke@435 1748 initialize_bb(); // Ensure extra info is allocated.
duke@435 1749
duke@435 1750 #ifndef PRODUCT
duke@435 1751 if (TraceSuperWord) {
duke@435 1752 print_bb();
duke@435 1753 tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
duke@435 1754 for (int m = 0; m < _data_entry.length(); m++) {
duke@435 1755 tty->print("%3d ", m);
duke@435 1756 _data_entry.at(m)->dump();
duke@435 1757 }
duke@435 1758 tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
duke@435 1759 for (int m = 0; m < _mem_slice_head.length(); m++) {
duke@435 1760 tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
duke@435 1761 tty->print(" "); _mem_slice_tail.at(m)->dump();
duke@435 1762 }
duke@435 1763 }
duke@435 1764 #endif
duke@435 1765 assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
kvn@4620 1766 return (_mem_slice_head.length() > 0) || (_data_entry.length() > 0);
duke@435 1767 }
duke@435 1768
duke@435 1769 //------------------------------initialize_bb---------------------------
duke@435 1770 // Initialize per node info
duke@435 1771 void SuperWord::initialize_bb() {
duke@435 1772 Node* last = _block.at(_block.length() - 1);
duke@435 1773 grow_node_info(bb_idx(last));
duke@435 1774 }
duke@435 1775
duke@435 1776 //------------------------------bb_insert_after---------------------------
duke@435 1777 // Insert n into block after pos
duke@435 1778 void SuperWord::bb_insert_after(Node* n, int pos) {
duke@435 1779 int n_pos = pos + 1;
duke@435 1780 // Make room
duke@435 1781 for (int i = _block.length() - 1; i >= n_pos; i--) {
duke@435 1782 _block.at_put_grow(i+1, _block.at(i));
duke@435 1783 }
duke@435 1784 for (int j = _node_info.length() - 1; j >= n_pos; j--) {
duke@435 1785 _node_info.at_put_grow(j+1, _node_info.at(j));
duke@435 1786 }
duke@435 1787 // Set value
duke@435 1788 _block.at_put_grow(n_pos, n);
duke@435 1789 _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
duke@435 1790 // Adjust map from node->_idx to _block index
duke@435 1791 for (int i = n_pos; i < _block.length(); i++) {
duke@435 1792 set_bb_idx(_block.at(i), i);
duke@435 1793 }
duke@435 1794 }
duke@435 1795
duke@435 1796 //------------------------------compute_max_depth---------------------------
duke@435 1797 // Compute max depth for expressions from beginning of block
duke@435 1798 // Use to prune search paths during test for independence.
duke@435 1799 void SuperWord::compute_max_depth() {
duke@435 1800 int ct = 0;
duke@435 1801 bool again;
duke@435 1802 do {
duke@435 1803 again = false;
duke@435 1804 for (int i = 0; i < _block.length(); i++) {
duke@435 1805 Node* n = _block.at(i);
duke@435 1806 if (!n->is_Phi()) {
duke@435 1807 int d_orig = depth(n);
duke@435 1808 int d_in = 0;
duke@435 1809 for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
duke@435 1810 Node* pred = preds.current();
duke@435 1811 if (in_bb(pred)) {
duke@435 1812 d_in = MAX2(d_in, depth(pred));
duke@435 1813 }
duke@435 1814 }
duke@435 1815 if (d_in + 1 != d_orig) {
duke@435 1816 set_depth(n, d_in + 1);
duke@435 1817 again = true;
duke@435 1818 }
duke@435 1819 }
duke@435 1820 }
duke@435 1821 ct++;
duke@435 1822 } while (again);
duke@435 1823 #ifndef PRODUCT
duke@435 1824 if (TraceSuperWord && Verbose)
duke@435 1825 tty->print_cr("compute_max_depth iterated: %d times", ct);
duke@435 1826 #endif
duke@435 1827 }
duke@435 1828
duke@435 1829 //-------------------------compute_vector_element_type-----------------------
duke@435 1830 // Compute necessary vector element type for expressions
duke@435 1831 // This propagates backwards a narrower integer type when the
duke@435 1832 // upper bits of the value are not needed.
duke@435 1833 // Example: char a,b,c; a = b + c;
duke@435 1834 // Normally the type of the add is integer, but for packed character
duke@435 1835 // operations the type of the add needs to be char.
duke@435 1836 void SuperWord::compute_vector_element_type() {
duke@435 1837 #ifndef PRODUCT
duke@435 1838 if (TraceSuperWord && Verbose)
duke@435 1839 tty->print_cr("\ncompute_velt_type:");
duke@435 1840 #endif
duke@435 1841
duke@435 1842 // Initial type
duke@435 1843 for (int i = 0; i < _block.length(); i++) {
duke@435 1844 Node* n = _block.at(i);
kvn@3882 1845 set_velt_type(n, container_type(n));
duke@435 1846 }
duke@435 1847
kvn@4204 1848 // Propagate integer narrowed type backwards through operations
duke@435 1849 // that don't depend on higher order bits
duke@435 1850 for (int i = _block.length() - 1; i >= 0; i--) {
duke@435 1851 Node* n = _block.at(i);
duke@435 1852 // Only integer types need be examined
kvn@4204 1853 const Type* vtn = velt_type(n);
kvn@4204 1854 if (vtn->basic_type() == T_INT) {
duke@435 1855 uint start, end;
kvn@4006 1856 VectorNode::vector_operands(n, &start, &end);
duke@435 1857
duke@435 1858 for (uint j = start; j < end; j++) {
duke@435 1859 Node* in = n->in(j);
kvn@4001 1860 // Don't propagate through a memory
kvn@4001 1861 if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
kvn@4001 1862 data_size(n) < data_size(in)) {
kvn@4001 1863 bool same_type = true;
kvn@4001 1864 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
kvn@4001 1865 Node *use = in->fast_out(k);
kvn@4001 1866 if (!in_bb(use) || !same_velt_type(use, n)) {
kvn@4001 1867 same_type = false;
kvn@4001 1868 break;
duke@435 1869 }
kvn@4001 1870 }
kvn@4001 1871 if (same_type) {
kvn@4204 1872 // For right shifts of small integer types (bool, byte, char, short)
kvn@4204 1873 // we need precise information about sign-ness. Only Load nodes have
kvn@4204 1874 // this information because Store nodes are the same for signed and
kvn@4204 1875 // unsigned values. And any arithmetic operation after a load may
kvn@4204 1876 // expand a value to signed Int so such right shifts can't be used
kvn@4204 1877 // because vector elements do not have upper bits of Int.
kvn@4204 1878 const Type* vt = vtn;
kvn@4204 1879 if (VectorNode::is_shift(in)) {
kvn@4204 1880 Node* load = in->in(1);
kvn@4207 1881 if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
kvn@4204 1882 vt = velt_type(load);
kvn@4204 1883 } else if (in->Opcode() != Op_LShiftI) {
kvn@4204 1884 // Widen type to Int to avoid creation of right shift vector
kvn@4204 1885 // (align + data_size(s1) check in stmts_can_pack() will fail).
kvn@4204 1886 // Note, left shifts work regardless type.
kvn@4204 1887 vt = TypeInt::INT;
kvn@4204 1888 }
kvn@4204 1889 }
kvn@4001 1890 set_velt_type(in, vt);
duke@435 1891 }
duke@435 1892 }
duke@435 1893 }
duke@435 1894 }
duke@435 1895 }
duke@435 1896 #ifndef PRODUCT
duke@435 1897 if (TraceSuperWord && Verbose) {
duke@435 1898 for (int i = 0; i < _block.length(); i++) {
duke@435 1899 Node* n = _block.at(i);
duke@435 1900 velt_type(n)->dump();
duke@435 1901 tty->print("\t");
duke@435 1902 n->dump();
duke@435 1903 }
duke@435 1904 }
duke@435 1905 #endif
duke@435 1906 }
duke@435 1907
duke@435 1908 //------------------------------memory_alignment---------------------------
duke@435 1909 // Alignment within a vector memory reference
kvn@4105 1910 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
duke@435 1911 SWPointer p(s, this);
duke@435 1912 if (!p.valid()) {
duke@435 1913 return bottom_align;
duke@435 1914 }
kvn@3886 1915 int vw = vector_width_in_bytes(s);
kvn@3882 1916 if (vw < 2) {
kvn@3882 1917 return bottom_align; // No vectors for this type
kvn@3882 1918 }
duke@435 1919 int offset = p.offset_in_bytes();
kvn@4105 1920 offset += iv_adjust*p.memory_size();
kvn@3882 1921 int off_rem = offset % vw;
kvn@3882 1922 int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
duke@435 1923 return off_mod;
duke@435 1924 }
duke@435 1925
duke@435 1926 //---------------------------container_type---------------------------
duke@435 1927 // Smallest type containing range of values
kvn@3882 1928 const Type* SuperWord::container_type(Node* n) {
kvn@3882 1929 if (n->is_Mem()) {
kvn@4204 1930 BasicType bt = n->as_Mem()->memory_type();
kvn@4204 1931 if (n->is_Store() && (bt == T_CHAR)) {
kvn@4204 1932 // Use T_SHORT type instead of T_CHAR for stored values because any
kvn@4204 1933 // preceding arithmetic operation extends values to signed Int.
kvn@4204 1934 bt = T_SHORT;
kvn@4204 1935 }
kvn@4204 1936 if (n->Opcode() == Op_LoadUB) {
kvn@4204 1937 // Adjust type for unsigned byte loads, it is important for right shifts.
kvn@4204 1938 // T_BOOLEAN is used because there is no basic type representing type
kvn@4204 1939 // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
kvn@4204 1940 // size (one byte) and sign is important.
kvn@4204 1941 bt = T_BOOLEAN;
kvn@4204 1942 }
kvn@4204 1943 return Type::get_const_basic_type(bt);
duke@435 1944 }
kvn@3882 1945 const Type* t = _igvn.type(n);
duke@435 1946 if (t->basic_type() == T_INT) {
kvn@4001 1947 // A narrow type of arithmetic operations will be determined by
kvn@4001 1948 // propagating the type of memory operations.
duke@435 1949 return TypeInt::INT;
duke@435 1950 }
duke@435 1951 return t;
duke@435 1952 }
duke@435 1953
kvn@3882 1954 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
kvn@3882 1955 const Type* vt1 = velt_type(n1);
kvn@4105 1956 const Type* vt2 = velt_type(n2);
kvn@3882 1957 if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
kvn@3882 1958 // Compare vectors element sizes for integer types.
kvn@3882 1959 return data_size(n1) == data_size(n2);
kvn@3882 1960 }
kvn@3882 1961 return vt1 == vt2;
kvn@3882 1962 }
kvn@3882 1963
duke@435 1964 //------------------------------in_packset---------------------------
duke@435 1965 // Are s1 and s2 in a pack pair and ordered as s1,s2?
duke@435 1966 bool SuperWord::in_packset(Node* s1, Node* s2) {
duke@435 1967 for (int i = 0; i < _packset.length(); i++) {
duke@435 1968 Node_List* p = _packset.at(i);
duke@435 1969 assert(p->size() == 2, "must be");
duke@435 1970 if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
duke@435 1971 return true;
duke@435 1972 }
duke@435 1973 }
duke@435 1974 return false;
duke@435 1975 }
duke@435 1976
duke@435 1977 //------------------------------in_pack---------------------------
duke@435 1978 // Is s in pack p?
duke@435 1979 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
duke@435 1980 for (uint i = 0; i < p->size(); i++) {
duke@435 1981 if (p->at(i) == s) {
duke@435 1982 return p;
duke@435 1983 }
duke@435 1984 }
duke@435 1985 return NULL;
duke@435 1986 }
duke@435 1987
duke@435 1988 //------------------------------remove_pack_at---------------------------
duke@435 1989 // Remove the pack at position pos in the packset
duke@435 1990 void SuperWord::remove_pack_at(int pos) {
duke@435 1991 Node_List* p = _packset.at(pos);
duke@435 1992 for (uint i = 0; i < p->size(); i++) {
duke@435 1993 Node* s = p->at(i);
duke@435 1994 set_my_pack(s, NULL);
duke@435 1995 }
duke@435 1996 _packset.remove_at(pos);
duke@435 1997 }
duke@435 1998
duke@435 1999 //------------------------------executed_first---------------------------
duke@435 2000 // Return the node executed first in pack p. Uses the RPO block list
duke@435 2001 // to determine order.
duke@435 2002 Node* SuperWord::executed_first(Node_List* p) {
duke@435 2003 Node* n = p->at(0);
duke@435 2004 int n_rpo = bb_idx(n);
duke@435 2005 for (uint i = 1; i < p->size(); i++) {
duke@435 2006 Node* s = p->at(i);
duke@435 2007 int s_rpo = bb_idx(s);
duke@435 2008 if (s_rpo < n_rpo) {
duke@435 2009 n = s;
duke@435 2010 n_rpo = s_rpo;
duke@435 2011 }
duke@435 2012 }
duke@435 2013 return n;
duke@435 2014 }
duke@435 2015
duke@435 2016 //------------------------------executed_last---------------------------
duke@435 2017 // Return the node executed last in pack p.
duke@435 2018 Node* SuperWord::executed_last(Node_List* p) {
duke@435 2019 Node* n = p->at(0);
duke@435 2020 int n_rpo = bb_idx(n);
duke@435 2021 for (uint i = 1; i < p->size(); i++) {
duke@435 2022 Node* s = p->at(i);
duke@435 2023 int s_rpo = bb_idx(s);
duke@435 2024 if (s_rpo > n_rpo) {
duke@435 2025 n = s;
duke@435 2026 n_rpo = s_rpo;
duke@435 2027 }
duke@435 2028 }
duke@435 2029 return n;
duke@435 2030 }
duke@435 2031
roland@7859 2032 LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
roland@7859 2033 LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
roland@7859 2034 for (uint i = 0; i < p->size(); i++) {
roland@7859 2035 Node* n = p->at(i);
roland@7859 2036 assert(n->is_Load(), "only meaningful for loads");
roland@7859 2037 if (!n->depends_only_on_test()) {
roland@7859 2038 dep = LoadNode::Pinned;
roland@7859 2039 }
roland@7859 2040 }
roland@7859 2041 return dep;
roland@7859 2042 }
roland@7859 2043
roland@7859 2044
duke@435 2045 //----------------------------align_initial_loop_index---------------------------
duke@435 2046 // Adjust pre-loop limit so that in main loop, a load/store reference
duke@435 2047 // to align_to_ref will be a position zero in the vector.
duke@435 2048 // (iv + k) mod vector_align == 0
duke@435 2049 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
duke@435 2050 CountedLoopNode *main_head = lp()->as_CountedLoop();
duke@435 2051 assert(main_head->is_main_loop(), "");
duke@435 2052 CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
duke@435 2053 assert(pre_end != NULL, "");
duke@435 2054 Node *pre_opaq1 = pre_end->limit();
duke@435 2055 assert(pre_opaq1->Opcode() == Op_Opaque1, "");
duke@435 2056 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
never@507 2057 Node *lim0 = pre_opaq->in(1);
duke@435 2058
duke@435 2059 // Where we put new limit calculations
duke@435 2060 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 2061
duke@435 2062 // Ensure the original loop limit is available from the
duke@435 2063 // pre-loop Opaque1 node.
duke@435 2064 Node *orig_limit = pre_opaq->original_loop_limit();
duke@435 2065 assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
duke@435 2066
duke@435 2067 SWPointer align_to_ref_p(align_to_ref, this);
kvn@3882 2068 assert(align_to_ref_p.valid(), "sanity");
duke@435 2069
never@507 2070 // Given:
never@507 2071 // lim0 == original pre loop limit
never@507 2072 // V == v_align (power of 2)
never@507 2073 // invar == extra invariant piece of the address expression
kvn@4001 2074 // e == offset [ +/- invar ]
duke@435 2075 //
never@507 2076 // When reassociating expressions involving '%' the basic rules are:
never@507 2077 // (a - b) % k == 0 => a % k == b % k
never@507 2078 // and:
never@507 2079 // (a + b) % k == 0 => a % k == (k - b) % k
never@507 2080 //
never@507 2081 // For stride > 0 && scale > 0,
never@507 2082 // Derive the new pre-loop limit "lim" such that the two constraints:
never@507 2083 // (1) lim = lim0 + N (where N is some positive integer < V)
never@507 2084 // (2) (e + lim) % V == 0
never@507 2085 // are true.
never@507 2086 //
never@507 2087 // Substituting (1) into (2),
never@507 2088 // (e + lim0 + N) % V == 0
never@507 2089 // solve for N:
never@507 2090 // N = (V - (e + lim0)) % V
never@507 2091 // substitute back into (1), so that new limit
never@507 2092 // lim = lim0 + (V - (e + lim0)) % V
never@507 2093 //
never@507 2094 // For stride > 0 && scale < 0
never@507 2095 // Constraints:
never@507 2096 // lim = lim0 + N
never@507 2097 // (e - lim) % V == 0
never@507 2098 // Solving for lim:
never@507 2099 // (e - lim0 - N) % V == 0
never@507 2100 // N = (e - lim0) % V
never@507 2101 // lim = lim0 + (e - lim0) % V
never@507 2102 //
never@507 2103 // For stride < 0 && scale > 0
never@507 2104 // Constraints:
never@507 2105 // lim = lim0 - N
never@507 2106 // (e + lim) % V == 0
never@507 2107 // Solving for lim:
never@507 2108 // (e + lim0 - N) % V == 0
never@507 2109 // N = (e + lim0) % V
never@507 2110 // lim = lim0 - (e + lim0) % V
never@507 2111 //
never@507 2112 // For stride < 0 && scale < 0
never@507 2113 // Constraints:
never@507 2114 // lim = lim0 - N
never@507 2115 // (e - lim) % V == 0
never@507 2116 // Solving for lim:
never@507 2117 // (e - lim0 + N) % V == 0
never@507 2118 // N = (V - (e - lim0)) % V
never@507 2119 // lim = lim0 - (V - (e - lim0)) % V
duke@435 2120
kvn@3886 2121 int vw = vector_width_in_bytes(align_to_ref);
never@507 2122 int stride = iv_stride();
never@507 2123 int scale = align_to_ref_p.scale_in_bytes();
duke@435 2124 int elt_size = align_to_ref_p.memory_size();
kvn@3882 2125 int v_align = vw / elt_size;
kvn@3886 2126 assert(v_align > 1, "sanity");
kvn@4001 2127 int offset = align_to_ref_p.offset_in_bytes() / elt_size;
kvn@4001 2128 Node *offsn = _igvn.intcon(offset);
duke@435 2129
kvn@4001 2130 Node *e = offsn;
duke@435 2131 if (align_to_ref_p.invar() != NULL) {
kvn@4001 2132 // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
duke@435 2133 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
kvn@4115 2134 Node* aref = new (_phase->C) URShiftINode(align_to_ref_p.invar(), log2_elt);
kvn@4114 2135 _igvn.register_new_node_with_optimizer(aref);
duke@435 2136 _phase->set_ctrl(aref, pre_ctrl);
never@507 2137 if (align_to_ref_p.negate_invar()) {
kvn@4115 2138 e = new (_phase->C) SubINode(e, aref);
duke@435 2139 } else {
kvn@4115 2140 e = new (_phase->C) AddINode(e, aref);
duke@435 2141 }
kvn@4114 2142 _igvn.register_new_node_with_optimizer(e);
never@507 2143 _phase->set_ctrl(e, pre_ctrl);
duke@435 2144 }
kvn@3882 2145 if (vw > ObjectAlignmentInBytes) {
kvn@3882 2146 // incorporate base e +/- base && Mask >>> log2(elt)
kvn@4115 2147 Node* xbase = new(_phase->C) CastP2XNode(NULL, align_to_ref_p.base());
kvn@4114 2148 _igvn.register_new_node_with_optimizer(xbase);
kvn@4001 2149 #ifdef _LP64
kvn@4115 2150 xbase = new (_phase->C) ConvL2INode(xbase);
kvn@4114 2151 _igvn.register_new_node_with_optimizer(xbase);
kvn@4001 2152 #endif
kvn@4001 2153 Node* mask = _igvn.intcon(vw-1);
kvn@4115 2154 Node* masked_xbase = new (_phase->C) AndINode(xbase, mask);
kvn@4114 2155 _igvn.register_new_node_with_optimizer(masked_xbase);
kvn@3882 2156 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
kvn@4115 2157 Node* bref = new (_phase->C) URShiftINode(masked_xbase, log2_elt);
kvn@4114 2158 _igvn.register_new_node_with_optimizer(bref);
kvn@3882 2159 _phase->set_ctrl(bref, pre_ctrl);
kvn@4115 2160 e = new (_phase->C) AddINode(e, bref);
kvn@4114 2161 _igvn.register_new_node_with_optimizer(e);
kvn@3882 2162 _phase->set_ctrl(e, pre_ctrl);
kvn@3882 2163 }
never@507 2164
never@507 2165 // compute e +/- lim0
never@507 2166 if (scale < 0) {
kvn@4115 2167 e = new (_phase->C) SubINode(e, lim0);
never@507 2168 } else {
kvn@4115 2169 e = new (_phase->C) AddINode(e, lim0);
never@507 2170 }
kvn@4114 2171 _igvn.register_new_node_with_optimizer(e);
never@507 2172 _phase->set_ctrl(e, pre_ctrl);
never@507 2173
never@507 2174 if (stride * scale > 0) {
never@507 2175 // compute V - (e +/- lim0)
never@507 2176 Node* va = _igvn.intcon(v_align);
kvn@4115 2177 e = new (_phase->C) SubINode(va, e);
kvn@4114 2178 _igvn.register_new_node_with_optimizer(e);
never@507 2179 _phase->set_ctrl(e, pre_ctrl);
never@507 2180 }
never@507 2181 // compute N = (exp) % V
duke@435 2182 Node* va_msk = _igvn.intcon(v_align - 1);
kvn@4115 2183 Node* N = new (_phase->C) AndINode(e, va_msk);
kvn@4114 2184 _igvn.register_new_node_with_optimizer(N);
never@507 2185 _phase->set_ctrl(N, pre_ctrl);
never@507 2186
never@507 2187 // substitute back into (1), so that new limit
never@507 2188 // lim = lim0 + N
never@507 2189 Node* lim;
never@507 2190 if (stride < 0) {
kvn@4115 2191 lim = new (_phase->C) SubINode(lim0, N);
duke@435 2192 } else {
kvn@4115 2193 lim = new (_phase->C) AddINode(lim0, N);
duke@435 2194 }
kvn@4114 2195 _igvn.register_new_node_with_optimizer(lim);
never@507 2196 _phase->set_ctrl(lim, pre_ctrl);
duke@435 2197 Node* constrained =
kvn@4115 2198 (stride > 0) ? (Node*) new (_phase->C) MinINode(lim, orig_limit)
kvn@4115 2199 : (Node*) new (_phase->C) MaxINode(lim, orig_limit);
kvn@4114 2200 _igvn.register_new_node_with_optimizer(constrained);
duke@435 2201 _phase->set_ctrl(constrained, pre_ctrl);
duke@435 2202 _igvn.hash_delete(pre_opaq);
duke@435 2203 pre_opaq->set_req(1, constrained);
duke@435 2204 }
duke@435 2205
duke@435 2206 //----------------------------get_pre_loop_end---------------------------
duke@435 2207 // Find pre loop end from main loop. Returns null if none.
duke@435 2208 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
duke@435 2209 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 2210 if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
duke@435 2211 Node *iffm = ctrl->in(0);
duke@435 2212 if (!iffm->is_If()) return NULL;
duke@435 2213 Node *p_f = iffm->in(0);
duke@435 2214 if (!p_f->is_IfFalse()) return NULL;
duke@435 2215 if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
duke@435 2216 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
duke@435 2217 if (!pre_end->loopnode()->is_pre_loop()) return NULL;
duke@435 2218 return pre_end;
duke@435 2219 }
duke@435 2220
duke@435 2221
duke@435 2222 //------------------------------init---------------------------
duke@435 2223 void SuperWord::init() {
duke@435 2224 _dg.init();
duke@435 2225 _packset.clear();
duke@435 2226 _disjoint_ptrs.clear();
duke@435 2227 _block.clear();
duke@435 2228 _data_entry.clear();
duke@435 2229 _mem_slice_head.clear();
duke@435 2230 _mem_slice_tail.clear();
duke@435 2231 _node_info.clear();
duke@435 2232 _align_to_ref = NULL;
duke@435 2233 _lpt = NULL;
duke@435 2234 _lp = NULL;
duke@435 2235 _bb = NULL;
duke@435 2236 _iv = NULL;
duke@435 2237 }
duke@435 2238
duke@435 2239 //------------------------------print_packset---------------------------
duke@435 2240 void SuperWord::print_packset() {
duke@435 2241 #ifndef PRODUCT
duke@435 2242 tty->print_cr("packset");
duke@435 2243 for (int i = 0; i < _packset.length(); i++) {
duke@435 2244 tty->print_cr("Pack: %d", i);
duke@435 2245 Node_List* p = _packset.at(i);
duke@435 2246 print_pack(p);
duke@435 2247 }
duke@435 2248 #endif
duke@435 2249 }
duke@435 2250
duke@435 2251 //------------------------------print_pack---------------------------
duke@435 2252 void SuperWord::print_pack(Node_List* p) {
duke@435 2253 for (uint i = 0; i < p->size(); i++) {
duke@435 2254 print_stmt(p->at(i));
duke@435 2255 }
duke@435 2256 }
duke@435 2257
duke@435 2258 //------------------------------print_bb---------------------------
duke@435 2259 void SuperWord::print_bb() {
duke@435 2260 #ifndef PRODUCT
duke@435 2261 tty->print_cr("\nBlock");
duke@435 2262 for (int i = 0; i < _block.length(); i++) {
duke@435 2263 Node* n = _block.at(i);
duke@435 2264 tty->print("%d ", i);
duke@435 2265 if (n) {
duke@435 2266 n->dump();
duke@435 2267 }
duke@435 2268 }
duke@435 2269 #endif
duke@435 2270 }
duke@435 2271
duke@435 2272 //------------------------------print_stmt---------------------------
duke@435 2273 void SuperWord::print_stmt(Node* s) {
duke@435 2274 #ifndef PRODUCT
duke@435 2275 tty->print(" align: %d \t", alignment(s));
duke@435 2276 s->dump();
duke@435 2277 #endif
duke@435 2278 }
duke@435 2279
duke@435 2280 //------------------------------blank---------------------------
duke@435 2281 char* SuperWord::blank(uint depth) {
duke@435 2282 static char blanks[101];
duke@435 2283 assert(depth < 101, "too deep");
duke@435 2284 for (uint i = 0; i < depth; i++) blanks[i] = ' ';
duke@435 2285 blanks[depth] = '\0';
duke@435 2286 return blanks;
duke@435 2287 }
duke@435 2288
duke@435 2289
duke@435 2290 //==============================SWPointer===========================
duke@435 2291
duke@435 2292 //----------------------------SWPointer------------------------
duke@435 2293 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
duke@435 2294 _mem(mem), _slp(slp), _base(NULL), _adr(NULL),
duke@435 2295 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
duke@435 2296
duke@435 2297 Node* adr = mem->in(MemNode::Address);
duke@435 2298 if (!adr->is_AddP()) {
duke@435 2299 assert(!valid(), "too complex");
duke@435 2300 return;
duke@435 2301 }
duke@435 2302 // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
duke@435 2303 Node* base = adr->in(AddPNode::Base);
thartmann@7818 2304 // The base address should be loop invariant
thartmann@7818 2305 if (!invariant(base)) {
thartmann@7818 2306 assert(!valid(), "base address is loop variant");
thartmann@7818 2307 return;
thartmann@7818 2308 }
cfang@1493 2309 //unsafe reference could not be aligned appropriately without runtime checking
cfang@1493 2310 if (base == NULL || base->bottom_type() == Type::TOP) {
cfang@1493 2311 assert(!valid(), "unsafe access");
cfang@1493 2312 return;
cfang@1493 2313 }
duke@435 2314 for (int i = 0; i < 3; i++) {
duke@435 2315 if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
duke@435 2316 assert(!valid(), "too complex");
duke@435 2317 return;
duke@435 2318 }
duke@435 2319 adr = adr->in(AddPNode::Address);
duke@435 2320 if (base == adr || !adr->is_AddP()) {
duke@435 2321 break; // stop looking at addp's
duke@435 2322 }
duke@435 2323 }
duke@435 2324 _base = base;
duke@435 2325 _adr = adr;
duke@435 2326 assert(valid(), "Usable");
duke@435 2327 }
duke@435 2328
duke@435 2329 // Following is used to create a temporary object during
duke@435 2330 // the pattern match of an address expression.
duke@435 2331 SWPointer::SWPointer(SWPointer* p) :
duke@435 2332 _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL),
duke@435 2333 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
duke@435 2334
duke@435 2335 //------------------------scaled_iv_plus_offset--------------------
duke@435 2336 // Match: k*iv + offset
duke@435 2337 // where: k is a constant that maybe zero, and
duke@435 2338 // offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
duke@435 2339 bool SWPointer::scaled_iv_plus_offset(Node* n) {
duke@435 2340 if (scaled_iv(n)) {
duke@435 2341 return true;
duke@435 2342 }
duke@435 2343 if (offset_plus_k(n)) {
duke@435 2344 return true;
duke@435 2345 }
duke@435 2346 int opc = n->Opcode();
duke@435 2347 if (opc == Op_AddI) {
duke@435 2348 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
duke@435 2349 return true;
duke@435 2350 }
duke@435 2351 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 2352 return true;
duke@435 2353 }
duke@435 2354 } else if (opc == Op_SubI) {
duke@435 2355 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
duke@435 2356 return true;
duke@435 2357 }
duke@435 2358 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 2359 _scale *= -1;
duke@435 2360 return true;
duke@435 2361 }
duke@435 2362 }
duke@435 2363 return false;
duke@435 2364 }
duke@435 2365
duke@435 2366 //----------------------------scaled_iv------------------------
duke@435 2367 // Match: k*iv where k is a constant that's not zero
duke@435 2368 bool SWPointer::scaled_iv(Node* n) {
duke@435 2369 if (_scale != 0) {
duke@435 2370 return false; // already found a scale
duke@435 2371 }
duke@435 2372 if (n == iv()) {
duke@435 2373 _scale = 1;
duke@435 2374 return true;
duke@435 2375 }
duke@435 2376 int opc = n->Opcode();
duke@435 2377 if (opc == Op_MulI) {
duke@435 2378 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 2379 _scale = n->in(2)->get_int();
duke@435 2380 return true;
duke@435 2381 } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
duke@435 2382 _scale = n->in(1)->get_int();
duke@435 2383 return true;
duke@435 2384 }
duke@435 2385 } else if (opc == Op_LShiftI) {
duke@435 2386 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 2387 _scale = 1 << n->in(2)->get_int();
duke@435 2388 return true;
duke@435 2389 }
duke@435 2390 } else if (opc == Op_ConvI2L) {
thartmann@8285 2391 if (n->in(1)->Opcode() == Op_CastII &&
thartmann@8285 2392 n->in(1)->as_CastII()->has_range_check()) {
thartmann@8285 2393 // Skip range check dependent CastII nodes
thartmann@8285 2394 n = n->in(1);
thartmann@8285 2395 }
duke@435 2396 if (scaled_iv_plus_offset(n->in(1))) {
duke@435 2397 return true;
duke@435 2398 }
duke@435 2399 } else if (opc == Op_LShiftL) {
duke@435 2400 if (!has_iv() && _invar == NULL) {
duke@435 2401 // Need to preserve the current _offset value, so
duke@435 2402 // create a temporary object for this expression subtree.
duke@435 2403 // Hacky, so should re-engineer the address pattern match.
duke@435 2404 SWPointer tmp(this);
duke@435 2405 if (tmp.scaled_iv_plus_offset(n->in(1))) {
duke@435 2406 if (tmp._invar == NULL) {
duke@435 2407 int mult = 1 << n->in(2)->get_int();
duke@435 2408 _scale = tmp._scale * mult;
duke@435 2409 _offset += tmp._offset * mult;
duke@435 2410 return true;
duke@435 2411 }
duke@435 2412 }
duke@435 2413 }
duke@435 2414 }
duke@435 2415 return false;
duke@435 2416 }
duke@435 2417
duke@435 2418 //----------------------------offset_plus_k------------------------
duke@435 2419 // Match: offset is (k [+/- invariant])
duke@435 2420 // where k maybe zero and invariant is optional, but not both.
duke@435 2421 bool SWPointer::offset_plus_k(Node* n, bool negate) {
duke@435 2422 int opc = n->Opcode();
duke@435 2423 if (opc == Op_ConI) {
duke@435 2424 _offset += negate ? -(n->get_int()) : n->get_int();
duke@435 2425 return true;
duke@435 2426 } else if (opc == Op_ConL) {
duke@435 2427 // Okay if value fits into an int
duke@435 2428 const TypeLong* t = n->find_long_type();
duke@435 2429 if (t->higher_equal(TypeLong::INT)) {
duke@435 2430 jlong loff = n->get_long();
duke@435 2431 jint off = (jint)loff;
duke@435 2432 _offset += negate ? -off : loff;
duke@435 2433 return true;
duke@435 2434 }
duke@435 2435 return false;
duke@435 2436 }
duke@435 2437 if (_invar != NULL) return false; // already have an invariant
duke@435 2438 if (opc == Op_AddI) {
duke@435 2439 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 2440 _negate_invar = negate;
duke@435 2441 _invar = n->in(1);
duke@435 2442 _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 2443 return true;
duke@435 2444 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 2445 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 2446 _negate_invar = negate;
duke@435 2447 _invar = n->in(2);
duke@435 2448 return true;
duke@435 2449 }
duke@435 2450 }
duke@435 2451 if (opc == Op_SubI) {
duke@435 2452 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 2453 _negate_invar = negate;
duke@435 2454 _invar = n->in(1);
duke@435 2455 _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 2456 return true;
duke@435 2457 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 2458 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 2459 _negate_invar = !negate;
duke@435 2460 _invar = n->in(2);
duke@435 2461 return true;
duke@435 2462 }
duke@435 2463 }
duke@435 2464 if (invariant(n)) {
duke@435 2465 _negate_invar = negate;
duke@435 2466 _invar = n;
duke@435 2467 return true;
duke@435 2468 }
duke@435 2469 return false;
duke@435 2470 }
duke@435 2471
duke@435 2472 //----------------------------print------------------------
duke@435 2473 void SWPointer::print() {
duke@435 2474 #ifndef PRODUCT
duke@435 2475 tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n",
duke@435 2476 _base != NULL ? _base->_idx : 0,
duke@435 2477 _adr != NULL ? _adr->_idx : 0,
duke@435 2478 _scale, _offset,
duke@435 2479 _negate_invar?'-':'+',
duke@435 2480 _invar != NULL ? _invar->_idx : 0);
duke@435 2481 #endif
duke@435 2482 }
duke@435 2483
duke@435 2484 // ========================= OrderedPair =====================
duke@435 2485
duke@435 2486 const OrderedPair OrderedPair::initial;
duke@435 2487
duke@435 2488 // ========================= SWNodeInfo =====================
duke@435 2489
duke@435 2490 const SWNodeInfo SWNodeInfo::initial;
duke@435 2491
duke@435 2492
duke@435 2493 // ============================ DepGraph ===========================
duke@435 2494
duke@435 2495 //------------------------------make_node---------------------------
duke@435 2496 // Make a new dependence graph node for an ideal node.
duke@435 2497 DepMem* DepGraph::make_node(Node* node) {
duke@435 2498 DepMem* m = new (_arena) DepMem(node);
duke@435 2499 if (node != NULL) {
duke@435 2500 assert(_map.at_grow(node->_idx) == NULL, "one init only");
duke@435 2501 _map.at_put_grow(node->_idx, m);
duke@435 2502 }
duke@435 2503 return m;
duke@435 2504 }
duke@435 2505
duke@435 2506 //------------------------------make_edge---------------------------
duke@435 2507 // Make a new dependence graph edge from dpred -> dsucc
duke@435 2508 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
duke@435 2509 DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
duke@435 2510 dpred->set_out_head(e);
duke@435 2511 dsucc->set_in_head(e);
duke@435 2512 return e;
duke@435 2513 }
duke@435 2514
duke@435 2515 // ========================== DepMem ========================
duke@435 2516
duke@435 2517 //------------------------------in_cnt---------------------------
duke@435 2518 int DepMem::in_cnt() {
duke@435 2519 int ct = 0;
duke@435 2520 for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
duke@435 2521 return ct;
duke@435 2522 }
duke@435 2523
duke@435 2524 //------------------------------out_cnt---------------------------
duke@435 2525 int DepMem::out_cnt() {
duke@435 2526 int ct = 0;
duke@435 2527 for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
duke@435 2528 return ct;
duke@435 2529 }
duke@435 2530
duke@435 2531 //------------------------------print-----------------------------
duke@435 2532 void DepMem::print() {
duke@435 2533 #ifndef PRODUCT
duke@435 2534 tty->print(" DepNode %d (", _node->_idx);
duke@435 2535 for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
duke@435 2536 Node* pred = p->pred()->node();
duke@435 2537 tty->print(" %d", pred != NULL ? pred->_idx : 0);
duke@435 2538 }
duke@435 2539 tty->print(") [");
duke@435 2540 for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
duke@435 2541 Node* succ = s->succ()->node();
duke@435 2542 tty->print(" %d", succ != NULL ? succ->_idx : 0);
duke@435 2543 }
duke@435 2544 tty->print_cr(" ]");
duke@435 2545 #endif
duke@435 2546 }
duke@435 2547
duke@435 2548 // =========================== DepEdge =========================
duke@435 2549
duke@435 2550 //------------------------------DepPreds---------------------------
duke@435 2551 void DepEdge::print() {
duke@435 2552 #ifndef PRODUCT
duke@435 2553 tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
duke@435 2554 #endif
duke@435 2555 }
duke@435 2556
duke@435 2557 // =========================== DepPreds =========================
duke@435 2558 // Iterator over predecessor edges in the dependence graph.
duke@435 2559
duke@435 2560 //------------------------------DepPreds---------------------------
duke@435 2561 DepPreds::DepPreds(Node* n, DepGraph& dg) {
duke@435 2562 _n = n;
duke@435 2563 _done = false;
duke@435 2564 if (_n->is_Store() || _n->is_Load()) {
duke@435 2565 _next_idx = MemNode::Address;
duke@435 2566 _end_idx = n->req();
duke@435 2567 _dep_next = dg.dep(_n)->in_head();
duke@435 2568 } else if (_n->is_Mem()) {
duke@435 2569 _next_idx = 0;
duke@435 2570 _end_idx = 0;
duke@435 2571 _dep_next = dg.dep(_n)->in_head();
duke@435 2572 } else {
duke@435 2573 _next_idx = 1;
duke@435 2574 _end_idx = _n->req();
duke@435 2575 _dep_next = NULL;
duke@435 2576 }
duke@435 2577 next();
duke@435 2578 }
duke@435 2579
duke@435 2580 //------------------------------next---------------------------
duke@435 2581 void DepPreds::next() {
duke@435 2582 if (_dep_next != NULL) {
duke@435 2583 _current = _dep_next->pred()->node();
duke@435 2584 _dep_next = _dep_next->next_in();
duke@435 2585 } else if (_next_idx < _end_idx) {
duke@435 2586 _current = _n->in(_next_idx++);
duke@435 2587 } else {
duke@435 2588 _done = true;
duke@435 2589 }
duke@435 2590 }
duke@435 2591
duke@435 2592 // =========================== DepSuccs =========================
duke@435 2593 // Iterator over successor edges in the dependence graph.
duke@435 2594
duke@435 2595 //------------------------------DepSuccs---------------------------
duke@435 2596 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
duke@435 2597 _n = n;
duke@435 2598 _done = false;
duke@435 2599 if (_n->is_Load()) {
duke@435 2600 _next_idx = 0;
duke@435 2601 _end_idx = _n->outcnt();
duke@435 2602 _dep_next = dg.dep(_n)->out_head();
duke@435 2603 } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
duke@435 2604 _next_idx = 0;
duke@435 2605 _end_idx = 0;
duke@435 2606 _dep_next = dg.dep(_n)->out_head();
duke@435 2607 } else {
duke@435 2608 _next_idx = 0;
duke@435 2609 _end_idx = _n->outcnt();
duke@435 2610 _dep_next = NULL;
duke@435 2611 }
duke@435 2612 next();
duke@435 2613 }
duke@435 2614
duke@435 2615 //-------------------------------next---------------------------
duke@435 2616 void DepSuccs::next() {
duke@435 2617 if (_dep_next != NULL) {
duke@435 2618 _current = _dep_next->succ()->node();
duke@435 2619 _dep_next = _dep_next->next_out();
duke@435 2620 } else if (_next_idx < _end_idx) {
duke@435 2621 _current = _n->raw_out(_next_idx++);
duke@435 2622 } else {
duke@435 2623 _done = true;
duke@435 2624 }
duke@435 2625 }

mercurial