src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Fri, 29 Apr 2011 14:59:04 -0400

author
tonyp
date
Fri, 29 Apr 2011 14:59:04 -0400
changeset 2849
063382f9b575
parent 2821
b52782ae3880
child 2909
2aa9ddbb9e60
permissions
-rw-r--r--

7035144: G1: nightly failure: Non-dirty cards in region that should be dirty (failures still exist...)
Summary: We should only undirty cards after we decide that they are not on a young region, not before. The fix also includes improvements to the verify_dirty_region() method which print out which cards were not found dirty.
Reviewed-by: johnc, brutisso

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1RemSet.hpp"
    31 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    32 #include "gc_implementation/g1/heapRegionSets.hpp"
    33 #include "gc_implementation/shared/hSpaceCounters.hpp"
    34 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    35 #include "memory/barrierSet.hpp"
    36 #include "memory/memRegion.hpp"
    37 #include "memory/sharedHeap.hpp"
    39 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    40 // It uses the "Garbage First" heap organization and algorithm, which
    41 // may combine concurrent marking with parallel, incremental compaction of
    42 // heap subsets that will yield large amounts of garbage.
    44 class HeapRegion;
    45 class HeapRegionSeq;
    46 class HRRSCleanupTask;
    47 class PermanentGenerationSpec;
    48 class GenerationSpec;
    49 class OopsInHeapRegionClosure;
    50 class G1ScanHeapEvacClosure;
    51 class ObjectClosure;
    52 class SpaceClosure;
    53 class CompactibleSpaceClosure;
    54 class Space;
    55 class G1CollectorPolicy;
    56 class GenRemSet;
    57 class G1RemSet;
    58 class HeapRegionRemSetIterator;
    59 class ConcurrentMark;
    60 class ConcurrentMarkThread;
    61 class ConcurrentG1Refine;
    62 class GenerationCounters;
    64 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    65 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    67 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    68 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    70 enum GCAllocPurpose {
    71   GCAllocForTenured,
    72   GCAllocForSurvived,
    73   GCAllocPurposeCount
    74 };
    76 class YoungList : public CHeapObj {
    77 private:
    78   G1CollectedHeap* _g1h;
    80   HeapRegion* _head;
    82   HeapRegion* _survivor_head;
    83   HeapRegion* _survivor_tail;
    85   HeapRegion* _curr;
    87   size_t      _length;
    88   size_t      _survivor_length;
    90   size_t      _last_sampled_rs_lengths;
    91   size_t      _sampled_rs_lengths;
    93   void         empty_list(HeapRegion* list);
    95 public:
    96   YoungList(G1CollectedHeap* g1h);
    98   void         push_region(HeapRegion* hr);
    99   void         add_survivor_region(HeapRegion* hr);
   101   void         empty_list();
   102   bool         is_empty() { return _length == 0; }
   103   size_t       length() { return _length; }
   104   size_t       survivor_length() { return _survivor_length; }
   106   void rs_length_sampling_init();
   107   bool rs_length_sampling_more();
   108   void rs_length_sampling_next();
   110   void reset_sampled_info() {
   111     _last_sampled_rs_lengths =   0;
   112   }
   113   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   115   // for development purposes
   116   void reset_auxilary_lists();
   117   void clear() { _head = NULL; _length = 0; }
   119   void clear_survivors() {
   120     _survivor_head    = NULL;
   121     _survivor_tail    = NULL;
   122     _survivor_length  = 0;
   123   }
   125   HeapRegion* first_region() { return _head; }
   126   HeapRegion* first_survivor_region() { return _survivor_head; }
   127   HeapRegion* last_survivor_region() { return _survivor_tail; }
   129   // debugging
   130   bool          check_list_well_formed();
   131   bool          check_list_empty(bool check_sample = true);
   132   void          print();
   133 };
   135 class MutatorAllocRegion : public G1AllocRegion {
   136 protected:
   137   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   138   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   139 public:
   140   MutatorAllocRegion()
   141     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   142 };
   144 class RefineCardTableEntryClosure;
   145 class G1CollectedHeap : public SharedHeap {
   146   friend class VM_G1CollectForAllocation;
   147   friend class VM_GenCollectForPermanentAllocation;
   148   friend class VM_G1CollectFull;
   149   friend class VM_G1IncCollectionPause;
   150   friend class VMStructs;
   151   friend class MutatorAllocRegion;
   153   // Closures used in implementation.
   154   friend class G1ParCopyHelper;
   155   friend class G1IsAliveClosure;
   156   friend class G1EvacuateFollowersClosure;
   157   friend class G1ParScanThreadState;
   158   friend class G1ParScanClosureSuper;
   159   friend class G1ParEvacuateFollowersClosure;
   160   friend class G1ParTask;
   161   friend class G1FreeGarbageRegionClosure;
   162   friend class RefineCardTableEntryClosure;
   163   friend class G1PrepareCompactClosure;
   164   friend class RegionSorter;
   165   friend class RegionResetter;
   166   friend class CountRCClosure;
   167   friend class EvacPopObjClosure;
   168   friend class G1ParCleanupCTTask;
   170   // Other related classes.
   171   friend class G1MarkSweep;
   173 private:
   174   // The one and only G1CollectedHeap, so static functions can find it.
   175   static G1CollectedHeap* _g1h;
   177   static size_t _humongous_object_threshold_in_words;
   179   // Storage for the G1 heap (excludes the permanent generation).
   180   VirtualSpace _g1_storage;
   181   MemRegion    _g1_reserved;
   183   // The part of _g1_storage that is currently committed.
   184   MemRegion _g1_committed;
   186   // The maximum part of _g1_storage that has ever been committed.
   187   MemRegion _g1_max_committed;
   189   // The master free list. It will satisfy all new region allocations.
   190   MasterFreeRegionList      _free_list;
   192   // The secondary free list which contains regions that have been
   193   // freed up during the cleanup process. This will be appended to the
   194   // master free list when appropriate.
   195   SecondaryFreeRegionList   _secondary_free_list;
   197   // It keeps track of the humongous regions.
   198   MasterHumongousRegionSet  _humongous_set;
   200   // The number of regions we could create by expansion.
   201   size_t _expansion_regions;
   203   // The block offset table for the G1 heap.
   204   G1BlockOffsetSharedArray* _bot_shared;
   206   // Move all of the regions off the free lists, then rebuild those free
   207   // lists, before and after full GC.
   208   void tear_down_region_lists();
   209   void rebuild_region_lists();
   211   // The sequence of all heap regions in the heap.
   212   HeapRegionSeq* _hrs;
   214   // Alloc region used to satisfy mutator allocation requests.
   215   MutatorAllocRegion _mutator_alloc_region;
   217   // It resets the mutator alloc region before new allocations can take place.
   218   void init_mutator_alloc_region();
   220   // It releases the mutator alloc region.
   221   void release_mutator_alloc_region();
   223   void abandon_gc_alloc_regions();
   225   // The to-space memory regions into which objects are being copied during
   226   // a GC.
   227   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   228   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   229   // These are the regions, one per GCAllocPurpose, that are half-full
   230   // at the end of a collection and that we want to reuse during the
   231   // next collection.
   232   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
   233   // This specifies whether we will keep the last half-full region at
   234   // the end of a collection so that it can be reused during the next
   235   // collection (this is specified per GCAllocPurpose)
   236   bool _retain_gc_alloc_region[GCAllocPurposeCount];
   238   // A list of the regions that have been set to be alloc regions in the
   239   // current collection.
   240   HeapRegion* _gc_alloc_region_list;
   242   // Helper for monitoring and management support.
   243   G1MonitoringSupport* _g1mm;
   245   // Determines PLAB size for a particular allocation purpose.
   246   static size_t desired_plab_sz(GCAllocPurpose purpose);
   248   // When called by par thread, requires the FreeList_lock to be held.
   249   void push_gc_alloc_region(HeapRegion* hr);
   251   // This should only be called single-threaded.  Undeclares all GC alloc
   252   // regions.
   253   void forget_alloc_region_list();
   255   // Should be used to set an alloc region, because there's other
   256   // associated bookkeeping.
   257   void set_gc_alloc_region(int purpose, HeapRegion* r);
   259   // Check well-formedness of alloc region list.
   260   bool check_gc_alloc_regions();
   262   // Outside of GC pauses, the number of bytes used in all regions other
   263   // than the current allocation region.
   264   size_t _summary_bytes_used;
   266   // This is used for a quick test on whether a reference points into
   267   // the collection set or not. Basically, we have an array, with one
   268   // byte per region, and that byte denotes whether the corresponding
   269   // region is in the collection set or not. The entry corresponding
   270   // the bottom of the heap, i.e., region 0, is pointed to by
   271   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   272   // biased so that it actually points to address 0 of the address
   273   // space, to make the test as fast as possible (we can simply shift
   274   // the address to address into it, instead of having to subtract the
   275   // bottom of the heap from the address before shifting it; basically
   276   // it works in the same way the card table works).
   277   bool* _in_cset_fast_test;
   279   // The allocated array used for the fast test on whether a reference
   280   // points into the collection set or not. This field is also used to
   281   // free the array.
   282   bool* _in_cset_fast_test_base;
   284   // The length of the _in_cset_fast_test_base array.
   285   size_t _in_cset_fast_test_length;
   287   volatile unsigned _gc_time_stamp;
   289   size_t* _surviving_young_words;
   291   void setup_surviving_young_words();
   292   void update_surviving_young_words(size_t* surv_young_words);
   293   void cleanup_surviving_young_words();
   295   // It decides whether an explicit GC should start a concurrent cycle
   296   // instead of doing a STW GC. Currently, a concurrent cycle is
   297   // explicitly started if:
   298   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   299   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   300   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   302   // Keeps track of how many "full collections" (i.e., Full GCs or
   303   // concurrent cycles) we have completed. The number of them we have
   304   // started is maintained in _total_full_collections in CollectedHeap.
   305   volatile unsigned int _full_collections_completed;
   307   // This is a non-product method that is helpful for testing. It is
   308   // called at the end of a GC and artificially expands the heap by
   309   // allocating a number of dead regions. This way we can induce very
   310   // frequent marking cycles and stress the cleanup / concurrent
   311   // cleanup code more (as all the regions that will be allocated by
   312   // this method will be found dead by the marking cycle).
   313   void allocate_dummy_regions() PRODUCT_RETURN;
   315   // These are macros so that, if the assert fires, we get the correct
   316   // line number, file, etc.
   318 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   319   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   320           (_extra_message_),                                                  \
   321           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   322           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   323           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   325 #define assert_heap_locked()                                                  \
   326   do {                                                                        \
   327     assert(Heap_lock->owned_by_self(),                                        \
   328            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   329   } while (0)
   331 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   332   do {                                                                        \
   333     assert(Heap_lock->owned_by_self() ||                                      \
   334            (SafepointSynchronize::is_at_safepoint() &&                        \
   335              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   336            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   337                                         "should be at a safepoint"));         \
   338   } while (0)
   340 #define assert_heap_locked_and_not_at_safepoint()                             \
   341   do {                                                                        \
   342     assert(Heap_lock->owned_by_self() &&                                      \
   343                                     !SafepointSynchronize::is_at_safepoint(), \
   344           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   345                                        "should not be at a safepoint"));      \
   346   } while (0)
   348 #define assert_heap_not_locked()                                              \
   349   do {                                                                        \
   350     assert(!Heap_lock->owned_by_self(),                                       \
   351         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   352   } while (0)
   354 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   355   do {                                                                        \
   356     assert(!Heap_lock->owned_by_self() &&                                     \
   357                                     !SafepointSynchronize::is_at_safepoint(), \
   358       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   359                                    "should not be at a safepoint"));          \
   360   } while (0)
   362 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   363   do {                                                                        \
   364     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   365               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   366            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   367   } while (0)
   369 #define assert_not_at_safepoint()                                             \
   370   do {                                                                        \
   371     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   372            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   373   } while (0)
   375 protected:
   377   // Returns "true" iff none of the gc alloc regions have any allocations
   378   // since the last call to "save_marks".
   379   bool all_alloc_regions_no_allocs_since_save_marks();
   380   // Perform finalization stuff on all allocation regions.
   381   void retire_all_alloc_regions();
   383   // The number of regions allocated to hold humongous objects.
   384   int         _num_humongous_regions;
   385   YoungList*  _young_list;
   387   // The current policy object for the collector.
   388   G1CollectorPolicy* _g1_policy;
   390   // This is the second level of trying to allocate a new region. If
   391   // new_region() didn't find a region on the free_list, this call will
   392   // check whether there's anything available on the
   393   // secondary_free_list and/or wait for more regions to appear on
   394   // that list, if _free_regions_coming is set.
   395   HeapRegion* new_region_try_secondary_free_list();
   397   // Try to allocate a single non-humongous HeapRegion sufficient for
   398   // an allocation of the given word_size. If do_expand is true,
   399   // attempt to expand the heap if necessary to satisfy the allocation
   400   // request.
   401   HeapRegion* new_region(size_t word_size, bool do_expand);
   403   // Try to allocate a new region to be used for allocation by
   404   // a GC thread. It will try to expand the heap if no region is
   405   // available.
   406   HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);
   408   // Attempt to satisfy a humongous allocation request of the given
   409   // size by finding a contiguous set of free regions of num_regions
   410   // length and remove them from the master free list. Return the
   411   // index of the first region or -1 if the search was unsuccessful.
   412   int humongous_obj_allocate_find_first(size_t num_regions, size_t word_size);
   414   // Initialize a contiguous set of free regions of length num_regions
   415   // and starting at index first so that they appear as a single
   416   // humongous region.
   417   HeapWord* humongous_obj_allocate_initialize_regions(int first,
   418                                                       size_t num_regions,
   419                                                       size_t word_size);
   421   // Attempt to allocate a humongous object of the given size. Return
   422   // NULL if unsuccessful.
   423   HeapWord* humongous_obj_allocate(size_t word_size);
   425   // The following two methods, allocate_new_tlab() and
   426   // mem_allocate(), are the two main entry points from the runtime
   427   // into the G1's allocation routines. They have the following
   428   // assumptions:
   429   //
   430   // * They should both be called outside safepoints.
   431   //
   432   // * They should both be called without holding the Heap_lock.
   433   //
   434   // * All allocation requests for new TLABs should go to
   435   //   allocate_new_tlab().
   436   //
   437   // * All non-TLAB allocation requests should go to mem_allocate()
   438   //   and mem_allocate() should never be called with is_tlab == true.
   439   //
   440   // * If either call cannot satisfy the allocation request using the
   441   //   current allocating region, they will try to get a new one. If
   442   //   this fails, they will attempt to do an evacuation pause and
   443   //   retry the allocation.
   444   //
   445   // * If all allocation attempts fail, even after trying to schedule
   446   //   an evacuation pause, allocate_new_tlab() will return NULL,
   447   //   whereas mem_allocate() will attempt a heap expansion and/or
   448   //   schedule a Full GC.
   449   //
   450   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   451   //   should never be called with word_size being humongous. All
   452   //   humongous allocation requests should go to mem_allocate() which
   453   //   will satisfy them with a special path.
   455   virtual HeapWord* allocate_new_tlab(size_t word_size);
   457   virtual HeapWord* mem_allocate(size_t word_size,
   458                                  bool   is_noref,
   459                                  bool   is_tlab, /* expected to be false */
   460                                  bool*  gc_overhead_limit_was_exceeded);
   462   // The following three methods take a gc_count_before_ret
   463   // parameter which is used to return the GC count if the method
   464   // returns NULL. Given that we are required to read the GC count
   465   // while holding the Heap_lock, and these paths will take the
   466   // Heap_lock at some point, it's easier to get them to read the GC
   467   // count while holding the Heap_lock before they return NULL instead
   468   // of the caller (namely: mem_allocate()) having to also take the
   469   // Heap_lock just to read the GC count.
   471   // First-level mutator allocation attempt: try to allocate out of
   472   // the mutator alloc region without taking the Heap_lock. This
   473   // should only be used for non-humongous allocations.
   474   inline HeapWord* attempt_allocation(size_t word_size,
   475                                       unsigned int* gc_count_before_ret);
   477   // Second-level mutator allocation attempt: take the Heap_lock and
   478   // retry the allocation attempt, potentially scheduling a GC
   479   // pause. This should only be used for non-humongous allocations.
   480   HeapWord* attempt_allocation_slow(size_t word_size,
   481                                     unsigned int* gc_count_before_ret);
   483   // Takes the Heap_lock and attempts a humongous allocation. It can
   484   // potentially schedule a GC pause.
   485   HeapWord* attempt_allocation_humongous(size_t word_size,
   486                                          unsigned int* gc_count_before_ret);
   488   // Allocation attempt that should be called during safepoints (e.g.,
   489   // at the end of a successful GC). expect_null_mutator_alloc_region
   490   // specifies whether the mutator alloc region is expected to be NULL
   491   // or not.
   492   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   493                                        bool expect_null_mutator_alloc_region);
   495   // It dirties the cards that cover the block so that so that the post
   496   // write barrier never queues anything when updating objects on this
   497   // block. It is assumed (and in fact we assert) that the block
   498   // belongs to a young region.
   499   inline void dirty_young_block(HeapWord* start, size_t word_size);
   501   // Allocate blocks during garbage collection. Will ensure an
   502   // allocation region, either by picking one or expanding the
   503   // heap, and then allocate a block of the given size. The block
   504   // may not be a humongous - it must fit into a single heap region.
   505   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   507   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   508                                     HeapRegion*    alloc_region,
   509                                     bool           par,
   510                                     size_t         word_size);
   512   // Ensure that no further allocations can happen in "r", bearing in mind
   513   // that parallel threads might be attempting allocations.
   514   void par_allocate_remaining_space(HeapRegion* r);
   516   // Retires an allocation region when it is full or at the end of a
   517   // GC pause.
   518   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   520   // These two methods are the "callbacks" from the G1AllocRegion class.
   522   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   523   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   524                                    size_t allocated_bytes);
   526   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   527   //   inspection request and should collect the entire heap
   528   // - if clear_all_soft_refs is true, all soft references should be
   529   //   cleared during the GC
   530   // - if explicit_gc is false, word_size describes the allocation that
   531   //   the GC should attempt (at least) to satisfy
   532   // - it returns false if it is unable to do the collection due to the
   533   //   GC locker being active, true otherwise
   534   bool do_collection(bool explicit_gc,
   535                      bool clear_all_soft_refs,
   536                      size_t word_size);
   538   // Callback from VM_G1CollectFull operation.
   539   // Perform a full collection.
   540   void do_full_collection(bool clear_all_soft_refs);
   542   // Resize the heap if necessary after a full collection.  If this is
   543   // after a collect-for allocation, "word_size" is the allocation size,
   544   // and will be considered part of the used portion of the heap.
   545   void resize_if_necessary_after_full_collection(size_t word_size);
   547   // Callback from VM_G1CollectForAllocation operation.
   548   // This function does everything necessary/possible to satisfy a
   549   // failed allocation request (including collection, expansion, etc.)
   550   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   552   // Attempting to expand the heap sufficiently
   553   // to support an allocation of the given "word_size".  If
   554   // successful, perform the allocation and return the address of the
   555   // allocated block, or else "NULL".
   556   HeapWord* expand_and_allocate(size_t word_size);
   558 public:
   560   G1MonitoringSupport* g1mm() { return _g1mm; }
   562   // Expand the garbage-first heap by at least the given size (in bytes!).
   563   // Returns true if the heap was expanded by the requested amount;
   564   // false otherwise.
   565   // (Rounds up to a HeapRegion boundary.)
   566   bool expand(size_t expand_bytes);
   568   // Do anything common to GC's.
   569   virtual void gc_prologue(bool full);
   570   virtual void gc_epilogue(bool full);
   572   // We register a region with the fast "in collection set" test. We
   573   // simply set to true the array slot corresponding to this region.
   574   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   575     assert(_in_cset_fast_test_base != NULL, "sanity");
   576     assert(r->in_collection_set(), "invariant");
   577     int index = r->hrs_index();
   578     assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
   579     assert(!_in_cset_fast_test_base[index], "invariant");
   580     _in_cset_fast_test_base[index] = true;
   581   }
   583   // This is a fast test on whether a reference points into the
   584   // collection set or not. It does not assume that the reference
   585   // points into the heap; if it doesn't, it will return false.
   586   bool in_cset_fast_test(oop obj) {
   587     assert(_in_cset_fast_test != NULL, "sanity");
   588     if (_g1_committed.contains((HeapWord*) obj)) {
   589       // no need to subtract the bottom of the heap from obj,
   590       // _in_cset_fast_test is biased
   591       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   592       bool ret = _in_cset_fast_test[index];
   593       // let's make sure the result is consistent with what the slower
   594       // test returns
   595       assert( ret || !obj_in_cs(obj), "sanity");
   596       assert(!ret ||  obj_in_cs(obj), "sanity");
   597       return ret;
   598     } else {
   599       return false;
   600     }
   601   }
   603   void clear_cset_fast_test() {
   604     assert(_in_cset_fast_test_base != NULL, "sanity");
   605     memset(_in_cset_fast_test_base, false,
   606         _in_cset_fast_test_length * sizeof(bool));
   607   }
   609   // This is called at the end of either a concurrent cycle or a Full
   610   // GC to update the number of full collections completed. Those two
   611   // can happen in a nested fashion, i.e., we start a concurrent
   612   // cycle, a Full GC happens half-way through it which ends first,
   613   // and then the cycle notices that a Full GC happened and ends
   614   // too. The concurrent parameter is a boolean to help us do a bit
   615   // tighter consistency checking in the method. If concurrent is
   616   // false, the caller is the inner caller in the nesting (i.e., the
   617   // Full GC). If concurrent is true, the caller is the outer caller
   618   // in this nesting (i.e., the concurrent cycle). Further nesting is
   619   // not currently supported. The end of the this call also notifies
   620   // the FullGCCount_lock in case a Java thread is waiting for a full
   621   // GC to happen (e.g., it called System.gc() with
   622   // +ExplicitGCInvokesConcurrent).
   623   void increment_full_collections_completed(bool concurrent);
   625   unsigned int full_collections_completed() {
   626     return _full_collections_completed;
   627   }
   629 protected:
   631   // Shrink the garbage-first heap by at most the given size (in bytes!).
   632   // (Rounds down to a HeapRegion boundary.)
   633   virtual void shrink(size_t expand_bytes);
   634   void shrink_helper(size_t expand_bytes);
   636   #if TASKQUEUE_STATS
   637   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   638   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   639   void reset_taskqueue_stats();
   640   #endif // TASKQUEUE_STATS
   642   // Schedule the VM operation that will do an evacuation pause to
   643   // satisfy an allocation request of word_size. *succeeded will
   644   // return whether the VM operation was successful (it did do an
   645   // evacuation pause) or not (another thread beat us to it or the GC
   646   // locker was active). Given that we should not be holding the
   647   // Heap_lock when we enter this method, we will pass the
   648   // gc_count_before (i.e., total_collections()) as a parameter since
   649   // it has to be read while holding the Heap_lock. Currently, both
   650   // methods that call do_collection_pause() release the Heap_lock
   651   // before the call, so it's easy to read gc_count_before just before.
   652   HeapWord* do_collection_pause(size_t       word_size,
   653                                 unsigned int gc_count_before,
   654                                 bool*        succeeded);
   656   // The guts of the incremental collection pause, executed by the vm
   657   // thread. It returns false if it is unable to do the collection due
   658   // to the GC locker being active, true otherwise
   659   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   661   // Actually do the work of evacuating the collection set.
   662   void evacuate_collection_set();
   664   // The g1 remembered set of the heap.
   665   G1RemSet* _g1_rem_set;
   666   // And it's mod ref barrier set, used to track updates for the above.
   667   ModRefBarrierSet* _mr_bs;
   669   // A set of cards that cover the objects for which the Rsets should be updated
   670   // concurrently after the collection.
   671   DirtyCardQueueSet _dirty_card_queue_set;
   673   // The Heap Region Rem Set Iterator.
   674   HeapRegionRemSetIterator** _rem_set_iterator;
   676   // The closure used to refine a single card.
   677   RefineCardTableEntryClosure* _refine_cte_cl;
   679   // A function to check the consistency of dirty card logs.
   680   void check_ct_logs_at_safepoint();
   682   // A DirtyCardQueueSet that is used to hold cards that contain
   683   // references into the current collection set. This is used to
   684   // update the remembered sets of the regions in the collection
   685   // set in the event of an evacuation failure.
   686   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   688   // After a collection pause, make the regions in the CS into free
   689   // regions.
   690   void free_collection_set(HeapRegion* cs_head);
   692   // Abandon the current collection set without recording policy
   693   // statistics or updating free lists.
   694   void abandon_collection_set(HeapRegion* cs_head);
   696   // Applies "scan_non_heap_roots" to roots outside the heap,
   697   // "scan_rs" to roots inside the heap (having done "set_region" to
   698   // indicate the region in which the root resides), and does "scan_perm"
   699   // (setting the generation to the perm generation.)  If "scan_rs" is
   700   // NULL, then this step is skipped.  The "worker_i"
   701   // param is for use with parallel roots processing, and should be
   702   // the "i" of the calling parallel worker thread's work(i) function.
   703   // In the sequential case this param will be ignored.
   704   void g1_process_strong_roots(bool collecting_perm_gen,
   705                                SharedHeap::ScanningOption so,
   706                                OopClosure* scan_non_heap_roots,
   707                                OopsInHeapRegionClosure* scan_rs,
   708                                OopsInGenClosure* scan_perm,
   709                                int worker_i);
   711   // Apply "blk" to all the weak roots of the system.  These include
   712   // JNI weak roots, the code cache, system dictionary, symbol table,
   713   // string table, and referents of reachable weak refs.
   714   void g1_process_weak_roots(OopClosure* root_closure,
   715                              OopClosure* non_root_closure);
   717   // Invoke "save_marks" on all heap regions.
   718   void save_marks();
   720   // Frees a non-humongous region by initializing its contents and
   721   // adding it to the free list that's passed as a parameter (this is
   722   // usually a local list which will be appended to the master free
   723   // list later). The used bytes of freed regions are accumulated in
   724   // pre_used. If par is true, the region's RSet will not be freed
   725   // up. The assumption is that this will be done later.
   726   void free_region(HeapRegion* hr,
   727                    size_t* pre_used,
   728                    FreeRegionList* free_list,
   729                    bool par);
   731   // Frees a humongous region by collapsing it into individual regions
   732   // and calling free_region() for each of them. The freed regions
   733   // will be added to the free list that's passed as a parameter (this
   734   // is usually a local list which will be appended to the master free
   735   // list later). The used bytes of freed regions are accumulated in
   736   // pre_used. If par is true, the region's RSet will not be freed
   737   // up. The assumption is that this will be done later.
   738   void free_humongous_region(HeapRegion* hr,
   739                              size_t* pre_used,
   740                              FreeRegionList* free_list,
   741                              HumongousRegionSet* humongous_proxy_set,
   742                              bool par);
   744   // The concurrent marker (and the thread it runs in.)
   745   ConcurrentMark* _cm;
   746   ConcurrentMarkThread* _cmThread;
   747   bool _mark_in_progress;
   749   // The concurrent refiner.
   750   ConcurrentG1Refine* _cg1r;
   752   // The parallel task queues
   753   RefToScanQueueSet *_task_queues;
   755   // True iff a evacuation has failed in the current collection.
   756   bool _evacuation_failed;
   758   // Set the attribute indicating whether evacuation has failed in the
   759   // current collection.
   760   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   762   // Failed evacuations cause some logical from-space objects to have
   763   // forwarding pointers to themselves.  Reset them.
   764   void remove_self_forwarding_pointers();
   766   // When one is non-null, so is the other.  Together, they each pair is
   767   // an object with a preserved mark, and its mark value.
   768   GrowableArray<oop>*     _objs_with_preserved_marks;
   769   GrowableArray<markOop>* _preserved_marks_of_objs;
   771   // Preserve the mark of "obj", if necessary, in preparation for its mark
   772   // word being overwritten with a self-forwarding-pointer.
   773   void preserve_mark_if_necessary(oop obj, markOop m);
   775   // The stack of evac-failure objects left to be scanned.
   776   GrowableArray<oop>*    _evac_failure_scan_stack;
   777   // The closure to apply to evac-failure objects.
   779   OopsInHeapRegionClosure* _evac_failure_closure;
   780   // Set the field above.
   781   void
   782   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   783     _evac_failure_closure = evac_failure_closure;
   784   }
   786   // Push "obj" on the scan stack.
   787   void push_on_evac_failure_scan_stack(oop obj);
   788   // Process scan stack entries until the stack is empty.
   789   void drain_evac_failure_scan_stack();
   790   // True iff an invocation of "drain_scan_stack" is in progress; to
   791   // prevent unnecessary recursion.
   792   bool _drain_in_progress;
   794   // Do any necessary initialization for evacuation-failure handling.
   795   // "cl" is the closure that will be used to process evac-failure
   796   // objects.
   797   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   798   // Do any necessary cleanup for evacuation-failure handling data
   799   // structures.
   800   void finalize_for_evac_failure();
   802   // An attempt to evacuate "obj" has failed; take necessary steps.
   803   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   804   void handle_evacuation_failure_common(oop obj, markOop m);
   807   // Ensure that the relevant gc_alloc regions are set.
   808   void get_gc_alloc_regions();
   809   // We're done with GC alloc regions. We are going to tear down the
   810   // gc alloc list and remove the gc alloc tag from all the regions on
   811   // that list. However, we will also retain the last (i.e., the one
   812   // that is half-full) GC alloc region, per GCAllocPurpose, for
   813   // possible reuse during the next collection, provided
   814   // _retain_gc_alloc_region[] indicates that it should be the
   815   // case. Said regions are kept in the _retained_gc_alloc_regions[]
   816   // array. If the parameter totally is set, we will not retain any
   817   // regions, irrespective of what _retain_gc_alloc_region[]
   818   // indicates.
   819   void release_gc_alloc_regions(bool totally);
   820 #ifndef PRODUCT
   821   // Useful for debugging.
   822   void print_gc_alloc_regions();
   823 #endif // !PRODUCT
   825   // Instance of the concurrent mark is_alive closure for embedding
   826   // into the reference processor as the is_alive_non_header. This
   827   // prevents unnecessary additions to the discovered lists during
   828   // concurrent discovery.
   829   G1CMIsAliveClosure _is_alive_closure;
   831   // ("Weak") Reference processing support
   832   ReferenceProcessor* _ref_processor;
   834   enum G1H_process_strong_roots_tasks {
   835     G1H_PS_mark_stack_oops_do,
   836     G1H_PS_refProcessor_oops_do,
   837     // Leave this one last.
   838     G1H_PS_NumElements
   839   };
   841   SubTasksDone* _process_strong_tasks;
   843   volatile bool _free_regions_coming;
   845 public:
   847   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   849   void set_refine_cte_cl_concurrency(bool concurrent);
   851   RefToScanQueue *task_queue(int i) const;
   853   // A set of cards where updates happened during the GC
   854   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   856   // A DirtyCardQueueSet that is used to hold cards that contain
   857   // references into the current collection set. This is used to
   858   // update the remembered sets of the regions in the collection
   859   // set in the event of an evacuation failure.
   860   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   861         { return _into_cset_dirty_card_queue_set; }
   863   // Create a G1CollectedHeap with the specified policy.
   864   // Must call the initialize method afterwards.
   865   // May not return if something goes wrong.
   866   G1CollectedHeap(G1CollectorPolicy* policy);
   868   // Initialize the G1CollectedHeap to have the initial and
   869   // maximum sizes, permanent generation, and remembered and barrier sets
   870   // specified by the policy object.
   871   jint initialize();
   873   virtual void ref_processing_init();
   875   void set_par_threads(int t) {
   876     SharedHeap::set_par_threads(t);
   877     _process_strong_tasks->set_n_threads(t);
   878   }
   880   virtual CollectedHeap::Name kind() const {
   881     return CollectedHeap::G1CollectedHeap;
   882   }
   884   // The current policy object for the collector.
   885   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   887   // Adaptive size policy.  No such thing for g1.
   888   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   890   // The rem set and barrier set.
   891   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   892   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   894   // The rem set iterator.
   895   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   896     return _rem_set_iterator[i];
   897   }
   899   HeapRegionRemSetIterator* rem_set_iterator() {
   900     return _rem_set_iterator[0];
   901   }
   903   unsigned get_gc_time_stamp() {
   904     return _gc_time_stamp;
   905   }
   907   void reset_gc_time_stamp() {
   908     _gc_time_stamp = 0;
   909     OrderAccess::fence();
   910   }
   912   void increment_gc_time_stamp() {
   913     ++_gc_time_stamp;
   914     OrderAccess::fence();
   915   }
   917   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
   918                                   DirtyCardQueue* into_cset_dcq,
   919                                   bool concurrent, int worker_i);
   921   // The shared block offset table array.
   922   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   924   // Reference Processing accessor
   925   ReferenceProcessor* ref_processor() { return _ref_processor; }
   927   virtual size_t capacity() const;
   928   virtual size_t used() const;
   929   // This should be called when we're not holding the heap lock. The
   930   // result might be a bit inaccurate.
   931   size_t used_unlocked() const;
   932   size_t recalculate_used() const;
   933 #ifndef PRODUCT
   934   size_t recalculate_used_regions() const;
   935 #endif // PRODUCT
   937   // These virtual functions do the actual allocation.
   938   // Some heaps may offer a contiguous region for shared non-blocking
   939   // allocation, via inlined code (by exporting the address of the top and
   940   // end fields defining the extent of the contiguous allocation region.)
   941   // But G1CollectedHeap doesn't yet support this.
   943   // Return an estimate of the maximum allocation that could be performed
   944   // without triggering any collection or expansion activity.  In a
   945   // generational collector, for example, this is probably the largest
   946   // allocation that could be supported (without expansion) in the youngest
   947   // generation.  It is "unsafe" because no locks are taken; the result
   948   // should be treated as an approximation, not a guarantee, for use in
   949   // heuristic resizing decisions.
   950   virtual size_t unsafe_max_alloc();
   952   virtual bool is_maximal_no_gc() const {
   953     return _g1_storage.uncommitted_size() == 0;
   954   }
   956   // The total number of regions in the heap.
   957   size_t n_regions();
   959   // The number of regions that are completely free.
   960   size_t max_regions();
   962   // The number of regions that are completely free.
   963   size_t free_regions() {
   964     return _free_list.length();
   965   }
   967   // The number of regions that are not completely free.
   968   size_t used_regions() { return n_regions() - free_regions(); }
   970   // The number of regions available for "regular" expansion.
   971   size_t expansion_regions() { return _expansion_regions; }
   973   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   974   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   975   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
   976   void verify_dirty_young_regions() PRODUCT_RETURN;
   978   // verify_region_sets() performs verification over the region
   979   // lists. It will be compiled in the product code to be used when
   980   // necessary (i.e., during heap verification).
   981   void verify_region_sets();
   983   // verify_region_sets_optional() is planted in the code for
   984   // list verification in non-product builds (and it can be enabled in
   985   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
   986 #if HEAP_REGION_SET_FORCE_VERIFY
   987   void verify_region_sets_optional() {
   988     verify_region_sets();
   989   }
   990 #else // HEAP_REGION_SET_FORCE_VERIFY
   991   void verify_region_sets_optional() { }
   992 #endif // HEAP_REGION_SET_FORCE_VERIFY
   994 #ifdef ASSERT
   995   bool is_on_master_free_list(HeapRegion* hr) {
   996     return hr->containing_set() == &_free_list;
   997   }
   999   bool is_in_humongous_set(HeapRegion* hr) {
  1000     return hr->containing_set() == &_humongous_set;
  1002 #endif // ASSERT
  1004   // Wrapper for the region list operations that can be called from
  1005   // methods outside this class.
  1007   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1008     _secondary_free_list.add_as_tail(list);
  1011   void append_secondary_free_list() {
  1012     _free_list.add_as_head(&_secondary_free_list);
  1015   void append_secondary_free_list_if_not_empty_with_lock() {
  1016     // If the secondary free list looks empty there's no reason to
  1017     // take the lock and then try to append it.
  1018     if (!_secondary_free_list.is_empty()) {
  1019       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1020       append_secondary_free_list();
  1024   void set_free_regions_coming();
  1025   void reset_free_regions_coming();
  1026   bool free_regions_coming() { return _free_regions_coming; }
  1027   void wait_while_free_regions_coming();
  1029   // Perform a collection of the heap; intended for use in implementing
  1030   // "System.gc".  This probably implies as full a collection as the
  1031   // "CollectedHeap" supports.
  1032   virtual void collect(GCCause::Cause cause);
  1034   // The same as above but assume that the caller holds the Heap_lock.
  1035   void collect_locked(GCCause::Cause cause);
  1037   // This interface assumes that it's being called by the
  1038   // vm thread. It collects the heap assuming that the
  1039   // heap lock is already held and that we are executing in
  1040   // the context of the vm thread.
  1041   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1043   // True iff a evacuation has failed in the most-recent collection.
  1044   bool evacuation_failed() { return _evacuation_failed; }
  1046   // It will free a region if it has allocated objects in it that are
  1047   // all dead. It calls either free_region() or
  1048   // free_humongous_region() depending on the type of the region that
  1049   // is passed to it.
  1050   void free_region_if_empty(HeapRegion* hr,
  1051                             size_t* pre_used,
  1052                             FreeRegionList* free_list,
  1053                             HumongousRegionSet* humongous_proxy_set,
  1054                             HRRSCleanupTask* hrrs_cleanup_task,
  1055                             bool par);
  1057   // It appends the free list to the master free list and updates the
  1058   // master humongous list according to the contents of the proxy
  1059   // list. It also adjusts the total used bytes according to pre_used
  1060   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1061   void update_sets_after_freeing_regions(size_t pre_used,
  1062                                        FreeRegionList* free_list,
  1063                                        HumongousRegionSet* humongous_proxy_set,
  1064                                        bool par);
  1066   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1067   virtual bool is_in(const void* p) const;
  1069   // Return "TRUE" iff the given object address is within the collection
  1070   // set.
  1071   inline bool obj_in_cs(oop obj);
  1073   // Return "TRUE" iff the given object address is in the reserved
  1074   // region of g1 (excluding the permanent generation).
  1075   bool is_in_g1_reserved(const void* p) const {
  1076     return _g1_reserved.contains(p);
  1079   // Returns a MemRegion that corresponds to the space that has been
  1080   // reserved for the heap
  1081   MemRegion g1_reserved() {
  1082     return _g1_reserved;
  1085   // Returns a MemRegion that corresponds to the space that has been
  1086   // committed in the heap
  1087   MemRegion g1_committed() {
  1088     return _g1_committed;
  1091   virtual bool is_in_closed_subset(const void* p) const;
  1093   // Dirty card table entries covering a list of young regions.
  1094   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
  1096   // This resets the card table to all zeros.  It is used after
  1097   // a collection pause which used the card table to claim cards.
  1098   void cleanUpCardTable();
  1100   // Iteration functions.
  1102   // Iterate over all the ref-containing fields of all objects, calling
  1103   // "cl.do_oop" on each.
  1104   virtual void oop_iterate(OopClosure* cl) {
  1105     oop_iterate(cl, true);
  1107   void oop_iterate(OopClosure* cl, bool do_perm);
  1109   // Same as above, restricted to a memory region.
  1110   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1111     oop_iterate(mr, cl, true);
  1113   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1115   // Iterate over all objects, calling "cl.do_object" on each.
  1116   virtual void object_iterate(ObjectClosure* cl) {
  1117     object_iterate(cl, true);
  1119   virtual void safe_object_iterate(ObjectClosure* cl) {
  1120     object_iterate(cl, true);
  1122   void object_iterate(ObjectClosure* cl, bool do_perm);
  1124   // Iterate over all objects allocated since the last collection, calling
  1125   // "cl.do_object" on each.  The heap must have been initialized properly
  1126   // to support this function, or else this call will fail.
  1127   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1129   // Iterate over all spaces in use in the heap, in ascending address order.
  1130   virtual void space_iterate(SpaceClosure* cl);
  1132   // Iterate over heap regions, in address order, terminating the
  1133   // iteration early if the "doHeapRegion" method returns "true".
  1134   void heap_region_iterate(HeapRegionClosure* blk);
  1136   // Iterate over heap regions starting with r (or the first region if "r"
  1137   // is NULL), in address order, terminating early if the "doHeapRegion"
  1138   // method returns "true".
  1139   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
  1141   // As above but starting from the region at index idx.
  1142   void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
  1144   HeapRegion* region_at(size_t idx);
  1146   // Divide the heap region sequence into "chunks" of some size (the number
  1147   // of regions divided by the number of parallel threads times some
  1148   // overpartition factor, currently 4).  Assumes that this will be called
  1149   // in parallel by ParallelGCThreads worker threads with discinct worker
  1150   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1151   // calls will use the same "claim_value", and that that claim value is
  1152   // different from the claim_value of any heap region before the start of
  1153   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1154   // attempting to claim the first region in each chunk, and, if
  1155   // successful, applying the closure to each region in the chunk (and
  1156   // setting the claim value of the second and subsequent regions of the
  1157   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1158   // i.e., that a closure never attempt to abort a traversal.
  1159   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1160                                        int worker,
  1161                                        jint claim_value);
  1163   // It resets all the region claim values to the default.
  1164   void reset_heap_region_claim_values();
  1166 #ifdef ASSERT
  1167   bool check_heap_region_claim_values(jint claim_value);
  1168 #endif // ASSERT
  1170   // Iterate over the regions (if any) in the current collection set.
  1171   void collection_set_iterate(HeapRegionClosure* blk);
  1173   // As above but starting from region r
  1174   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1176   // Returns the first (lowest address) compactible space in the heap.
  1177   virtual CompactibleSpace* first_compactible_space();
  1179   // A CollectedHeap will contain some number of spaces.  This finds the
  1180   // space containing a given address, or else returns NULL.
  1181   virtual Space* space_containing(const void* addr) const;
  1183   // A G1CollectedHeap will contain some number of heap regions.  This
  1184   // finds the region containing a given address, or else returns NULL.
  1185   HeapRegion* heap_region_containing(const void* addr) const;
  1187   // Like the above, but requires "addr" to be in the heap (to avoid a
  1188   // null-check), and unlike the above, may return an continuing humongous
  1189   // region.
  1190   HeapRegion* heap_region_containing_raw(const void* addr) const;
  1192   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1193   // each address in the (reserved) heap is a member of exactly
  1194   // one block.  The defining characteristic of a block is that it is
  1195   // possible to find its size, and thus to progress forward to the next
  1196   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1197   // represent Java objects, or they might be free blocks in a
  1198   // free-list-based heap (or subheap), as long as the two kinds are
  1199   // distinguishable and the size of each is determinable.
  1201   // Returns the address of the start of the "block" that contains the
  1202   // address "addr".  We say "blocks" instead of "object" since some heaps
  1203   // may not pack objects densely; a chunk may either be an object or a
  1204   // non-object.
  1205   virtual HeapWord* block_start(const void* addr) const;
  1207   // Requires "addr" to be the start of a chunk, and returns its size.
  1208   // "addr + size" is required to be the start of a new chunk, or the end
  1209   // of the active area of the heap.
  1210   virtual size_t block_size(const HeapWord* addr) const;
  1212   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1213   // the block is an object.
  1214   virtual bool block_is_obj(const HeapWord* addr) const;
  1216   // Does this heap support heap inspection? (+PrintClassHistogram)
  1217   virtual bool supports_heap_inspection() const { return true; }
  1219   // Section on thread-local allocation buffers (TLABs)
  1220   // See CollectedHeap for semantics.
  1222   virtual bool supports_tlab_allocation() const;
  1223   virtual size_t tlab_capacity(Thread* thr) const;
  1224   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1226   // Can a compiler initialize a new object without store barriers?
  1227   // This permission only extends from the creation of a new object
  1228   // via a TLAB up to the first subsequent safepoint. If such permission
  1229   // is granted for this heap type, the compiler promises to call
  1230   // defer_store_barrier() below on any slow path allocation of
  1231   // a new object for which such initializing store barriers will
  1232   // have been elided. G1, like CMS, allows this, but should be
  1233   // ready to provide a compensating write barrier as necessary
  1234   // if that storage came out of a non-young region. The efficiency
  1235   // of this implementation depends crucially on being able to
  1236   // answer very efficiently in constant time whether a piece of
  1237   // storage in the heap comes from a young region or not.
  1238   // See ReduceInitialCardMarks.
  1239   virtual bool can_elide_tlab_store_barriers() const {
  1240     // 6920090: Temporarily disabled, because of lingering
  1241     // instabilities related to RICM with G1. In the
  1242     // interim, the option ReduceInitialCardMarksForG1
  1243     // below is left solely as a debugging device at least
  1244     // until 6920109 fixes the instabilities.
  1245     return ReduceInitialCardMarksForG1;
  1248   virtual bool card_mark_must_follow_store() const {
  1249     return true;
  1252   bool is_in_young(oop obj) {
  1253     HeapRegion* hr = heap_region_containing(obj);
  1254     return hr != NULL && hr->is_young();
  1257   // We don't need barriers for initializing stores to objects
  1258   // in the young gen: for the SATB pre-barrier, there is no
  1259   // pre-value that needs to be remembered; for the remembered-set
  1260   // update logging post-barrier, we don't maintain remembered set
  1261   // information for young gen objects. Note that non-generational
  1262   // G1 does not have any "young" objects, should not elide
  1263   // the rs logging barrier and so should always answer false below.
  1264   // However, non-generational G1 (-XX:-G1Gen) appears to have
  1265   // bit-rotted so was not tested below.
  1266   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1267     // Re 6920090, 6920109 above.
  1268     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1269     assert(G1Gen || !is_in_young(new_obj),
  1270            "Non-generational G1 should never return true below");
  1271     return is_in_young(new_obj);
  1274   // Can a compiler elide a store barrier when it writes
  1275   // a permanent oop into the heap?  Applies when the compiler
  1276   // is storing x to the heap, where x->is_perm() is true.
  1277   virtual bool can_elide_permanent_oop_store_barriers() const {
  1278     // At least until perm gen collection is also G1-ified, at
  1279     // which point this should return false.
  1280     return true;
  1283   // The boundary between a "large" and "small" array of primitives, in
  1284   // words.
  1285   virtual size_t large_typearray_limit();
  1287   // Returns "true" iff the given word_size is "very large".
  1288   static bool isHumongous(size_t word_size) {
  1289     // Note this has to be strictly greater-than as the TLABs
  1290     // are capped at the humongous thresold and we want to
  1291     // ensure that we don't try to allocate a TLAB as
  1292     // humongous and that we don't allocate a humongous
  1293     // object in a TLAB.
  1294     return word_size > _humongous_object_threshold_in_words;
  1297   // Update mod union table with the set of dirty cards.
  1298   void updateModUnion();
  1300   // Set the mod union bits corresponding to the given memRegion.  Note
  1301   // that this is always a safe operation, since it doesn't clear any
  1302   // bits.
  1303   void markModUnionRange(MemRegion mr);
  1305   // Records the fact that a marking phase is no longer in progress.
  1306   void set_marking_complete() {
  1307     _mark_in_progress = false;
  1309   void set_marking_started() {
  1310     _mark_in_progress = true;
  1312   bool mark_in_progress() {
  1313     return _mark_in_progress;
  1316   // Print the maximum heap capacity.
  1317   virtual size_t max_capacity() const;
  1319   virtual jlong millis_since_last_gc();
  1321   // Perform any cleanup actions necessary before allowing a verification.
  1322   virtual void prepare_for_verify();
  1324   // Perform verification.
  1326   // use_prev_marking == true  -> use "prev" marking information,
  1327   // use_prev_marking == false -> use "next" marking information
  1328   // NOTE: Only the "prev" marking information is guaranteed to be
  1329   // consistent most of the time, so most calls to this should use
  1330   // use_prev_marking == true. Currently, there is only one case where
  1331   // this is called with use_prev_marking == false, which is to verify
  1332   // the "next" marking information at the end of remark.
  1333   void verify(bool allow_dirty, bool silent, bool use_prev_marking);
  1335   // Override; it uses the "prev" marking information
  1336   virtual void verify(bool allow_dirty, bool silent);
  1337   // Default behavior by calling print(tty);
  1338   virtual void print() const;
  1339   // This calls print_on(st, PrintHeapAtGCExtended).
  1340   virtual void print_on(outputStream* st) const;
  1341   // If extended is true, it will print out information for all
  1342   // regions in the heap by calling print_on_extended(st).
  1343   virtual void print_on(outputStream* st, bool extended) const;
  1344   virtual void print_on_extended(outputStream* st) const;
  1346   virtual void print_gc_threads_on(outputStream* st) const;
  1347   virtual void gc_threads_do(ThreadClosure* tc) const;
  1349   // Override
  1350   void print_tracing_info() const;
  1352   // If "addr" is a pointer into the (reserved?) heap, returns a positive
  1353   // number indicating the "arena" within the heap in which "addr" falls.
  1354   // Or else returns 0.
  1355   virtual int addr_to_arena_id(void* addr) const;
  1357   // Convenience function to be used in situations where the heap type can be
  1358   // asserted to be this type.
  1359   static G1CollectedHeap* heap();
  1361   void empty_young_list();
  1363   void set_region_short_lived_locked(HeapRegion* hr);
  1364   // add appropriate methods for any other surv rate groups
  1366   YoungList* young_list() { return _young_list; }
  1368   // debugging
  1369   bool check_young_list_well_formed() {
  1370     return _young_list->check_list_well_formed();
  1373   bool check_young_list_empty(bool check_heap,
  1374                               bool check_sample = true);
  1376   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1377   // many of these need to be public.
  1379   // The functions below are helper functions that a subclass of
  1380   // "CollectedHeap" can use in the implementation of its virtual
  1381   // functions.
  1382   // This performs a concurrent marking of the live objects in a
  1383   // bitmap off to the side.
  1384   void doConcurrentMark();
  1386   // This is called from the marksweep collector which then does
  1387   // a concurrent mark and verifies that the results agree with
  1388   // the stop the world marking.
  1389   void checkConcurrentMark();
  1390   void do_sync_mark();
  1392   bool isMarkedPrev(oop obj) const;
  1393   bool isMarkedNext(oop obj) const;
  1395   // use_prev_marking == true  -> use "prev" marking information,
  1396   // use_prev_marking == false -> use "next" marking information
  1397   bool is_obj_dead_cond(const oop obj,
  1398                         const HeapRegion* hr,
  1399                         const bool use_prev_marking) const {
  1400     if (use_prev_marking) {
  1401       return is_obj_dead(obj, hr);
  1402     } else {
  1403       return is_obj_ill(obj, hr);
  1407   // Determine if an object is dead, given the object and also
  1408   // the region to which the object belongs. An object is dead
  1409   // iff a) it was not allocated since the last mark and b) it
  1410   // is not marked.
  1412   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1413     return
  1414       !hr->obj_allocated_since_prev_marking(obj) &&
  1415       !isMarkedPrev(obj);
  1418   // This is used when copying an object to survivor space.
  1419   // If the object is marked live, then we mark the copy live.
  1420   // If the object is allocated since the start of this mark
  1421   // cycle, then we mark the copy live.
  1422   // If the object has been around since the previous mark
  1423   // phase, and hasn't been marked yet during this phase,
  1424   // then we don't mark it, we just wait for the
  1425   // current marking cycle to get to it.
  1427   // This function returns true when an object has been
  1428   // around since the previous marking and hasn't yet
  1429   // been marked during this marking.
  1431   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1432     return
  1433       !hr->obj_allocated_since_next_marking(obj) &&
  1434       !isMarkedNext(obj);
  1437   // Determine if an object is dead, given only the object itself.
  1438   // This will find the region to which the object belongs and
  1439   // then call the region version of the same function.
  1441   // Added if it is in permanent gen it isn't dead.
  1442   // Added if it is NULL it isn't dead.
  1444   // use_prev_marking == true  -> use "prev" marking information,
  1445   // use_prev_marking == false -> use "next" marking information
  1446   bool is_obj_dead_cond(const oop obj,
  1447                         const bool use_prev_marking) {
  1448     if (use_prev_marking) {
  1449       return is_obj_dead(obj);
  1450     } else {
  1451       return is_obj_ill(obj);
  1455   bool is_obj_dead(const oop obj) {
  1456     const HeapRegion* hr = heap_region_containing(obj);
  1457     if (hr == NULL) {
  1458       if (Universe::heap()->is_in_permanent(obj))
  1459         return false;
  1460       else if (obj == NULL) return false;
  1461       else return true;
  1463     else return is_obj_dead(obj, hr);
  1466   bool is_obj_ill(const oop obj) {
  1467     const HeapRegion* hr = heap_region_containing(obj);
  1468     if (hr == NULL) {
  1469       if (Universe::heap()->is_in_permanent(obj))
  1470         return false;
  1471       else if (obj == NULL) return false;
  1472       else return true;
  1474     else return is_obj_ill(obj, hr);
  1477   // The following is just to alert the verification code
  1478   // that a full collection has occurred and that the
  1479   // remembered sets are no longer up to date.
  1480   bool _full_collection;
  1481   void set_full_collection() { _full_collection = true;}
  1482   void clear_full_collection() {_full_collection = false;}
  1483   bool full_collection() {return _full_collection;}
  1485   ConcurrentMark* concurrent_mark() const { return _cm; }
  1486   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1488   // The dirty cards region list is used to record a subset of regions
  1489   // whose cards need clearing. The list if populated during the
  1490   // remembered set scanning and drained during the card table
  1491   // cleanup. Although the methods are reentrant, population/draining
  1492   // phases must not overlap. For synchronization purposes the last
  1493   // element on the list points to itself.
  1494   HeapRegion* _dirty_cards_region_list;
  1495   void push_dirty_cards_region(HeapRegion* hr);
  1496   HeapRegion* pop_dirty_cards_region();
  1498 public:
  1499   void stop_conc_gc_threads();
  1501   // <NEW PREDICTION>
  1503   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1504   void check_if_region_is_too_expensive(double predicted_time_ms);
  1505   size_t pending_card_num();
  1506   size_t max_pending_card_num();
  1507   size_t cards_scanned();
  1509   // </NEW PREDICTION>
  1511 protected:
  1512   size_t _max_heap_capacity;
  1513 };
  1515 #define use_local_bitmaps         1
  1516 #define verify_local_bitmaps      0
  1517 #define oop_buffer_length       256
  1519 #ifndef PRODUCT
  1520 class GCLabBitMap;
  1521 class GCLabBitMapClosure: public BitMapClosure {
  1522 private:
  1523   ConcurrentMark* _cm;
  1524   GCLabBitMap*    _bitmap;
  1526 public:
  1527   GCLabBitMapClosure(ConcurrentMark* cm,
  1528                      GCLabBitMap* bitmap) {
  1529     _cm     = cm;
  1530     _bitmap = bitmap;
  1533   virtual bool do_bit(size_t offset);
  1534 };
  1535 #endif // !PRODUCT
  1537 class GCLabBitMap: public BitMap {
  1538 private:
  1539   ConcurrentMark* _cm;
  1541   int       _shifter;
  1542   size_t    _bitmap_word_covers_words;
  1544   // beginning of the heap
  1545   HeapWord* _heap_start;
  1547   // this is the actual start of the GCLab
  1548   HeapWord* _real_start_word;
  1550   // this is the actual end of the GCLab
  1551   HeapWord* _real_end_word;
  1553   // this is the first word, possibly located before the actual start
  1554   // of the GCLab, that corresponds to the first bit of the bitmap
  1555   HeapWord* _start_word;
  1557   // size of a GCLab in words
  1558   size_t _gclab_word_size;
  1560   static int shifter() {
  1561     return MinObjAlignment - 1;
  1564   // how many heap words does a single bitmap word corresponds to?
  1565   static size_t bitmap_word_covers_words() {
  1566     return BitsPerWord << shifter();
  1569   size_t gclab_word_size() const {
  1570     return _gclab_word_size;
  1573   // Calculates actual GCLab size in words
  1574   size_t gclab_real_word_size() const {
  1575     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1576            / BitsPerWord;
  1579   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1580     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1581     // We are going to ensure that the beginning of a word in this
  1582     // bitmap also corresponds to the beginning of a word in the
  1583     // global marking bitmap. To handle the case where a GCLab
  1584     // starts from the middle of the bitmap, we need to add enough
  1585     // space (i.e. up to a bitmap word) to ensure that we have
  1586     // enough bits in the bitmap.
  1587     return bits_in_bitmap + BitsPerWord - 1;
  1589 public:
  1590   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1591     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1592       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1593       _shifter(shifter()),
  1594       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1595       _heap_start(heap_start),
  1596       _gclab_word_size(gclab_word_size),
  1597       _real_start_word(NULL),
  1598       _real_end_word(NULL),
  1599       _start_word(NULL)
  1601     guarantee( size_in_words() >= bitmap_size_in_words(),
  1602                "just making sure");
  1605   inline unsigned heapWordToOffset(HeapWord* addr) {
  1606     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1607     assert(offset < size(), "offset should be within bounds");
  1608     return offset;
  1611   inline HeapWord* offsetToHeapWord(size_t offset) {
  1612     HeapWord* addr =  _start_word + (offset << _shifter);
  1613     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1614     return addr;
  1617   bool fields_well_formed() {
  1618     bool ret1 = (_real_start_word == NULL) &&
  1619                 (_real_end_word == NULL) &&
  1620                 (_start_word == NULL);
  1621     if (ret1)
  1622       return true;
  1624     bool ret2 = _real_start_word >= _start_word &&
  1625       _start_word < _real_end_word &&
  1626       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1627       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1628                                                               > _real_end_word;
  1629     return ret2;
  1632   inline bool mark(HeapWord* addr) {
  1633     guarantee(use_local_bitmaps, "invariant");
  1634     assert(fields_well_formed(), "invariant");
  1636     if (addr >= _real_start_word && addr < _real_end_word) {
  1637       assert(!isMarked(addr), "should not have already been marked");
  1639       // first mark it on the bitmap
  1640       at_put(heapWordToOffset(addr), true);
  1642       return true;
  1643     } else {
  1644       return false;
  1648   inline bool isMarked(HeapWord* addr) {
  1649     guarantee(use_local_bitmaps, "invariant");
  1650     assert(fields_well_formed(), "invariant");
  1652     return at(heapWordToOffset(addr));
  1655   void set_buffer(HeapWord* start) {
  1656     guarantee(use_local_bitmaps, "invariant");
  1657     clear();
  1659     assert(start != NULL, "invariant");
  1660     _real_start_word = start;
  1661     _real_end_word   = start + _gclab_word_size;
  1663     size_t diff =
  1664       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1665     _start_word = start - diff;
  1667     assert(fields_well_formed(), "invariant");
  1670 #ifndef PRODUCT
  1671   void verify() {
  1672     // verify that the marks have been propagated
  1673     GCLabBitMapClosure cl(_cm, this);
  1674     iterate(&cl);
  1676 #endif // PRODUCT
  1678   void retire() {
  1679     guarantee(use_local_bitmaps, "invariant");
  1680     assert(fields_well_formed(), "invariant");
  1682     if (_start_word != NULL) {
  1683       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1685       // this means that the bitmap was set up for the GCLab
  1686       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1688       mark_bitmap->mostly_disjoint_range_union(this,
  1689                                 0, // always start from the start of the bitmap
  1690                                 _start_word,
  1691                                 gclab_real_word_size());
  1692       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1694 #ifndef PRODUCT
  1695       if (use_local_bitmaps && verify_local_bitmaps)
  1696         verify();
  1697 #endif // PRODUCT
  1698     } else {
  1699       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1703   size_t bitmap_size_in_words() const {
  1704     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1707 };
  1709 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1710 private:
  1711   bool        _retired;
  1712   bool        _during_marking;
  1713   GCLabBitMap _bitmap;
  1715 public:
  1716   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1717     ParGCAllocBuffer(gclab_word_size),
  1718     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1719     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1720     _retired(false)
  1721   { }
  1723   inline bool mark(HeapWord* addr) {
  1724     guarantee(use_local_bitmaps, "invariant");
  1725     assert(_during_marking, "invariant");
  1726     return _bitmap.mark(addr);
  1729   inline void set_buf(HeapWord* buf) {
  1730     if (use_local_bitmaps && _during_marking)
  1731       _bitmap.set_buffer(buf);
  1732     ParGCAllocBuffer::set_buf(buf);
  1733     _retired = false;
  1736   inline void retire(bool end_of_gc, bool retain) {
  1737     if (_retired)
  1738       return;
  1739     if (use_local_bitmaps && _during_marking) {
  1740       _bitmap.retire();
  1742     ParGCAllocBuffer::retire(end_of_gc, retain);
  1743     _retired = true;
  1745 };
  1747 class G1ParScanThreadState : public StackObj {
  1748 protected:
  1749   G1CollectedHeap* _g1h;
  1750   RefToScanQueue*  _refs;
  1751   DirtyCardQueue   _dcq;
  1752   CardTableModRefBS* _ct_bs;
  1753   G1RemSet* _g1_rem;
  1755   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1756   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1757   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1758   ageTable            _age_table;
  1760   size_t           _alloc_buffer_waste;
  1761   size_t           _undo_waste;
  1763   OopsInHeapRegionClosure*      _evac_failure_cl;
  1764   G1ParScanHeapEvacClosure*     _evac_cl;
  1765   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1767   int _hash_seed;
  1768   int _queue_num;
  1770   size_t _term_attempts;
  1772   double _start;
  1773   double _start_strong_roots;
  1774   double _strong_roots_time;
  1775   double _start_term;
  1776   double _term_time;
  1778   // Map from young-age-index (0 == not young, 1 is youngest) to
  1779   // surviving words. base is what we get back from the malloc call
  1780   size_t* _surviving_young_words_base;
  1781   // this points into the array, as we use the first few entries for padding
  1782   size_t* _surviving_young_words;
  1784 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1786   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1788   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1790   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1791   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1793   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1794     if (!from->is_survivor()) {
  1795       _g1_rem->par_write_ref(from, p, tid);
  1799   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1800     // If the new value of the field points to the same region or
  1801     // is the to-space, we don't need to include it in the Rset updates.
  1802     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1803       size_t card_index = ctbs()->index_for(p);
  1804       // If the card hasn't been added to the buffer, do it.
  1805       if (ctbs()->mark_card_deferred(card_index)) {
  1806         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1811 public:
  1812   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1814   ~G1ParScanThreadState() {
  1815     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1818   RefToScanQueue*   refs()            { return _refs;             }
  1819   ageTable*         age_table()       { return &_age_table;       }
  1821   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1822     return _alloc_buffers[purpose];
  1825   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1826   size_t undo_waste() const                      { return _undo_waste; }
  1828 #ifdef ASSERT
  1829   bool verify_ref(narrowOop* ref) const;
  1830   bool verify_ref(oop* ref) const;
  1831   bool verify_task(StarTask ref) const;
  1832 #endif // ASSERT
  1834   template <class T> void push_on_queue(T* ref) {
  1835     assert(verify_ref(ref), "sanity");
  1836     refs()->push(ref);
  1839   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1840     if (G1DeferredRSUpdate) {
  1841       deferred_rs_update(from, p, tid);
  1842     } else {
  1843       immediate_rs_update(from, p, tid);
  1847   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1849     HeapWord* obj = NULL;
  1850     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1851     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1852       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1853       assert(gclab_word_size == alloc_buf->word_sz(),
  1854              "dynamic resizing is not supported");
  1855       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1856       alloc_buf->retire(false, false);
  1858       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1859       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1860       // Otherwise.
  1861       alloc_buf->set_buf(buf);
  1863       obj = alloc_buf->allocate(word_sz);
  1864       assert(obj != NULL, "buffer was definitely big enough...");
  1865     } else {
  1866       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1868     return obj;
  1871   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1872     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1873     if (obj != NULL) return obj;
  1874     return allocate_slow(purpose, word_sz);
  1877   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1878     if (alloc_buffer(purpose)->contains(obj)) {
  1879       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1880              "should contain whole object");
  1881       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1882     } else {
  1883       CollectedHeap::fill_with_object(obj, word_sz);
  1884       add_to_undo_waste(word_sz);
  1888   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1889     _evac_failure_cl = evac_failure_cl;
  1891   OopsInHeapRegionClosure* evac_failure_closure() {
  1892     return _evac_failure_cl;
  1895   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1896     _evac_cl = evac_cl;
  1899   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1900     _partial_scan_cl = partial_scan_cl;
  1903   int* hash_seed() { return &_hash_seed; }
  1904   int  queue_num() { return _queue_num; }
  1906   size_t term_attempts() const  { return _term_attempts; }
  1907   void note_term_attempt() { _term_attempts++; }
  1909   void start_strong_roots() {
  1910     _start_strong_roots = os::elapsedTime();
  1912   void end_strong_roots() {
  1913     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1915   double strong_roots_time() const { return _strong_roots_time; }
  1917   void start_term_time() {
  1918     note_term_attempt();
  1919     _start_term = os::elapsedTime();
  1921   void end_term_time() {
  1922     _term_time += (os::elapsedTime() - _start_term);
  1924   double term_time() const { return _term_time; }
  1926   double elapsed_time() const {
  1927     return os::elapsedTime() - _start;
  1930   static void
  1931     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1932   void
  1933     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1935   size_t* surviving_young_words() {
  1936     // We add on to hide entry 0 which accumulates surviving words for
  1937     // age -1 regions (i.e. non-young ones)
  1938     return _surviving_young_words;
  1941   void retire_alloc_buffers() {
  1942     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1943       size_t waste = _alloc_buffers[ap]->words_remaining();
  1944       add_to_alloc_buffer_waste(waste);
  1945       _alloc_buffers[ap]->retire(true, false);
  1949   template <class T> void deal_with_reference(T* ref_to_scan) {
  1950     if (has_partial_array_mask(ref_to_scan)) {
  1951       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1952     } else {
  1953       // Note: we can use "raw" versions of "region_containing" because
  1954       // "obj_to_scan" is definitely in the heap, and is not in a
  1955       // humongous region.
  1956       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1957       _evac_cl->set_region(r);
  1958       _evac_cl->do_oop_nv(ref_to_scan);
  1962   void deal_with_reference(StarTask ref) {
  1963     assert(verify_task(ref), "sanity");
  1964     if (ref.is_narrow()) {
  1965       deal_with_reference((narrowOop*)ref);
  1966     } else {
  1967       deal_with_reference((oop*)ref);
  1971 public:
  1972   void trim_queue();
  1973 };
  1975 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial