src/share/vm/opto/library_call.cpp

Thu, 03 Jan 2013 15:09:55 -0800

author
kvn
date
Thu, 03 Jan 2013 15:09:55 -0800
changeset 4410
00af3a3a8df4
parent 4367
c52660592f37
child 4440
a3f92e6c0274
permissions
-rw-r--r--

8005522: use fast-string instructions on x86 for zeroing
Summary: use 'rep stosb' instead of 'rep stosq' when fast-string operations are available.
Reviewed-by: twisti, roland

duke@435 1 /*
rbackman@3709 2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
twisti@2687 28 #include "compiler/compileBroker.hpp"
stefank@2314 29 #include "compiler/compileLog.hpp"
stefank@2314 30 #include "oops/objArrayKlass.hpp"
stefank@2314 31 #include "opto/addnode.hpp"
stefank@2314 32 #include "opto/callGenerator.hpp"
stefank@2314 33 #include "opto/cfgnode.hpp"
stefank@2314 34 #include "opto/idealKit.hpp"
stefank@2314 35 #include "opto/mulnode.hpp"
stefank@2314 36 #include "opto/parse.hpp"
stefank@2314 37 #include "opto/runtime.hpp"
stefank@2314 38 #include "opto/subnode.hpp"
stefank@2314 39 #include "prims/nativeLookup.hpp"
stefank@2314 40 #include "runtime/sharedRuntime.hpp"
duke@435 41
duke@435 42 class LibraryIntrinsic : public InlineCallGenerator {
duke@435 43 // Extend the set of intrinsics known to the runtime:
duke@435 44 public:
duke@435 45 private:
duke@435 46 bool _is_virtual;
kvn@4205 47 bool _is_predicted;
duke@435 48 vmIntrinsics::ID _intrinsic_id;
duke@435 49
duke@435 50 public:
kvn@4205 51 LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
duke@435 52 : InlineCallGenerator(m),
duke@435 53 _is_virtual(is_virtual),
kvn@4205 54 _is_predicted(is_predicted),
duke@435 55 _intrinsic_id(id)
duke@435 56 {
duke@435 57 }
duke@435 58 virtual bool is_intrinsic() const { return true; }
duke@435 59 virtual bool is_virtual() const { return _is_virtual; }
kvn@4205 60 virtual bool is_predicted() const { return _is_predicted; }
duke@435 61 virtual JVMState* generate(JVMState* jvms);
kvn@4205 62 virtual Node* generate_predicate(JVMState* jvms);
duke@435 63 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
duke@435 64 };
duke@435 65
duke@435 66
duke@435 67 // Local helper class for LibraryIntrinsic:
duke@435 68 class LibraryCallKit : public GraphKit {
duke@435 69 private:
twisti@4313 70 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
twisti@4313 71 Node* _result; // the result node, if any
twisti@4313 72 int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted
duke@435 73
roland@4106 74 const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
roland@4106 75
duke@435 76 public:
twisti@4313 77 LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
twisti@4313 78 : GraphKit(jvms),
twisti@4313 79 _intrinsic(intrinsic),
twisti@4313 80 _result(NULL)
duke@435 81 {
twisti@4319 82 // Check if this is a root compile. In that case we don't have a caller.
twisti@4319 83 if (!jvms->has_method()) {
twisti@4319 84 _reexecute_sp = sp();
twisti@4319 85 } else {
twisti@4319 86 // Find out how many arguments the interpreter needs when deoptimizing
twisti@4319 87 // and save the stack pointer value so it can used by uncommon_trap.
twisti@4319 88 // We find the argument count by looking at the declared signature.
twisti@4319 89 bool ignored_will_link;
twisti@4319 90 ciSignature* declared_signature = NULL;
twisti@4319 91 ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
twisti@4319 92 const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
twisti@4319 93 _reexecute_sp = sp() + nargs; // "push" arguments back on stack
twisti@4319 94 }
duke@435 95 }
duke@435 96
twisti@4313 97 virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
twisti@4313 98
duke@435 99 ciMethod* caller() const { return jvms()->method(); }
duke@435 100 int bci() const { return jvms()->bci(); }
duke@435 101 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
duke@435 102 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
duke@435 103 ciMethod* callee() const { return _intrinsic->method(); }
duke@435 104
duke@435 105 bool try_to_inline();
kvn@4205 106 Node* try_to_predicate();
duke@435 107
twisti@4313 108 void push_result() {
twisti@4313 109 // Push the result onto the stack.
twisti@4313 110 if (!stopped() && result() != NULL) {
twisti@4313 111 BasicType bt = result()->bottom_type()->basic_type();
twisti@4313 112 push_node(bt, result());
twisti@4313 113 }
twisti@4313 114 }
twisti@4313 115
twisti@4313 116 private:
twisti@4313 117 void fatal_unexpected_iid(vmIntrinsics::ID iid) {
twisti@4313 118 fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
twisti@4313 119 }
twisti@4313 120
twisti@4313 121 void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
twisti@4313 122 void set_result(RegionNode* region, PhiNode* value);
twisti@4313 123 Node* result() { return _result; }
twisti@4313 124
twisti@4313 125 virtual int reexecute_sp() { return _reexecute_sp; }
twisti@4313 126
duke@435 127 // Helper functions to inline natives
duke@435 128 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
duke@435 129 Node* generate_slow_guard(Node* test, RegionNode* region);
duke@435 130 Node* generate_fair_guard(Node* test, RegionNode* region);
duke@435 131 Node* generate_negative_guard(Node* index, RegionNode* region,
duke@435 132 // resulting CastII of index:
duke@435 133 Node* *pos_index = NULL);
duke@435 134 Node* generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 135 // resulting CastII of index:
duke@435 136 Node* *pos_index = NULL);
duke@435 137 Node* generate_limit_guard(Node* offset, Node* subseq_length,
duke@435 138 Node* array_length,
duke@435 139 RegionNode* region);
duke@435 140 Node* generate_current_thread(Node* &tls_output);
duke@435 141 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
iveresov@2606 142 bool disjoint_bases, const char* &name, bool dest_uninitialized);
duke@435 143 Node* load_mirror_from_klass(Node* klass);
duke@435 144 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
duke@435 145 RegionNode* region, int null_path,
duke@435 146 int offset);
twisti@4313 147 Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 148 RegionNode* region, int null_path) {
duke@435 149 int offset = java_lang_Class::klass_offset_in_bytes();
twisti@4313 150 return load_klass_from_mirror_common(mirror, never_see_null,
duke@435 151 region, null_path,
duke@435 152 offset);
duke@435 153 }
duke@435 154 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 155 RegionNode* region, int null_path) {
duke@435 156 int offset = java_lang_Class::array_klass_offset_in_bytes();
twisti@4313 157 return load_klass_from_mirror_common(mirror, never_see_null,
duke@435 158 region, null_path,
duke@435 159 offset);
duke@435 160 }
duke@435 161 Node* generate_access_flags_guard(Node* kls,
duke@435 162 int modifier_mask, int modifier_bits,
duke@435 163 RegionNode* region);
duke@435 164 Node* generate_interface_guard(Node* kls, RegionNode* region);
duke@435 165 Node* generate_array_guard(Node* kls, RegionNode* region) {
duke@435 166 return generate_array_guard_common(kls, region, false, false);
duke@435 167 }
duke@435 168 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
duke@435 169 return generate_array_guard_common(kls, region, false, true);
duke@435 170 }
duke@435 171 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
duke@435 172 return generate_array_guard_common(kls, region, true, false);
duke@435 173 }
duke@435 174 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
duke@435 175 return generate_array_guard_common(kls, region, true, true);
duke@435 176 }
duke@435 177 Node* generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 178 bool obj_array, bool not_array);
duke@435 179 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
duke@435 180 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
duke@435 181 bool is_virtual = false, bool is_static = false);
duke@435 182 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
duke@435 183 return generate_method_call(method_id, false, true);
duke@435 184 }
duke@435 185 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
duke@435 186 return generate_method_call(method_id, true, false);
duke@435 187 }
kvn@4205 188 Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
duke@435 189
kvn@3760 190 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
kvn@3760 191 Node* make_string_method_node(int opcode, Node* str1, Node* str2);
duke@435 192 bool inline_string_compareTo();
duke@435 193 bool inline_string_indexOf();
duke@435 194 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
cfang@1116 195 bool inline_string_equals();
twisti@4313 196 Node* round_double_node(Node* n);
duke@435 197 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 198 bool inline_math_native(vmIntrinsics::ID id);
duke@435 199 bool inline_trig(vmIntrinsics::ID id);
twisti@4313 200 bool inline_math(vmIntrinsics::ID id);
twisti@4313 201 bool inline_exp();
twisti@4313 202 bool inline_pow();
roland@3908 203 void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 204 bool inline_min_max(vmIntrinsics::ID id);
duke@435 205 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
duke@435 206 // This returns Type::AnyPtr, RawPtr, or OopPtr.
duke@435 207 int classify_unsafe_addr(Node* &base, Node* &offset);
duke@435 208 Node* make_unsafe_address(Node* base, Node* offset);
johnc@2781 209 // Helper for inline_unsafe_access.
johnc@2781 210 // Generates the guards that check whether the result of
johnc@2781 211 // Unsafe.getObject should be recorded in an SATB log buffer.
twisti@4313 212 void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
duke@435 213 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
duke@435 214 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
duke@435 215 bool inline_unsafe_allocate();
duke@435 216 bool inline_unsafe_copyMemory();
duke@435 217 bool inline_native_currentThread();
rbackman@3709 218 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 219 bool inline_native_classID();
rbackman@3709 220 bool inline_native_threadID();
rbackman@3709 221 #endif
rbackman@3709 222 bool inline_native_time_funcs(address method, const char* funcName);
duke@435 223 bool inline_native_isInterrupted();
duke@435 224 bool inline_native_Class_query(vmIntrinsics::ID id);
duke@435 225 bool inline_native_subtype_check();
duke@435 226
duke@435 227 bool inline_native_newArray();
duke@435 228 bool inline_native_getLength();
duke@435 229 bool inline_array_copyOf(bool is_copyOfRange);
rasbold@604 230 bool inline_array_equals();
kvn@1268 231 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
duke@435 232 bool inline_native_clone(bool is_virtual);
duke@435 233 bool inline_native_Reflection_getCallerClass();
duke@435 234 bool is_method_invoke_or_aux_frame(JVMState* jvms);
duke@435 235 // Helper function for inlining native object hash method
duke@435 236 bool inline_native_hashcode(bool is_virtual, bool is_static);
duke@435 237 bool inline_native_getClass();
duke@435 238
duke@435 239 // Helper functions for inlining arraycopy
duke@435 240 bool inline_arraycopy();
duke@435 241 void generate_arraycopy(const TypePtr* adr_type,
duke@435 242 BasicType basic_elem_type,
duke@435 243 Node* src, Node* src_offset,
duke@435 244 Node* dest, Node* dest_offset,
duke@435 245 Node* copy_length,
duke@435 246 bool disjoint_bases = false,
duke@435 247 bool length_never_negative = false,
duke@435 248 RegionNode* slow_region = NULL);
duke@435 249 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
duke@435 250 RegionNode* slow_region);
duke@435 251 void generate_clear_array(const TypePtr* adr_type,
duke@435 252 Node* dest,
duke@435 253 BasicType basic_elem_type,
duke@435 254 Node* slice_off,
duke@435 255 Node* slice_len,
duke@435 256 Node* slice_end);
duke@435 257 bool generate_block_arraycopy(const TypePtr* adr_type,
duke@435 258 BasicType basic_elem_type,
duke@435 259 AllocateNode* alloc,
duke@435 260 Node* src, Node* src_offset,
duke@435 261 Node* dest, Node* dest_offset,
iveresov@2606 262 Node* dest_size, bool dest_uninitialized);
duke@435 263 void generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 264 Node* src, Node* src_offset,
duke@435 265 Node* dest, Node* dest_offset,
iveresov@2606 266 Node* copy_length, bool dest_uninitialized);
duke@435 267 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 268 Node* dest_elem_klass,
duke@435 269 Node* src, Node* src_offset,
duke@435 270 Node* dest, Node* dest_offset,
iveresov@2606 271 Node* copy_length, bool dest_uninitialized);
duke@435 272 Node* generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 273 Node* src, Node* src_offset,
duke@435 274 Node* dest, Node* dest_offset,
iveresov@2606 275 Node* copy_length, bool dest_uninitialized);
duke@435 276 void generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 277 BasicType basic_elem_type,
duke@435 278 bool disjoint_bases,
duke@435 279 Node* src, Node* src_offset,
duke@435 280 Node* dest, Node* dest_offset,
iveresov@2606 281 Node* copy_length, bool dest_uninitialized);
roland@4106 282 typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
roland@4106 283 bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind);
duke@435 284 bool inline_unsafe_ordered_store(BasicType type);
kvn@4361 285 bool inline_unsafe_fence(vmIntrinsics::ID id);
duke@435 286 bool inline_fp_conversions(vmIntrinsics::ID id);
twisti@4313 287 bool inline_number_methods(vmIntrinsics::ID id);
johnc@2781 288 bool inline_reference_get();
kvn@4205 289 bool inline_aescrypt_Block(vmIntrinsics::ID id);
kvn@4205 290 bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
kvn@4205 291 Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
kvn@4205 292 Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
duke@435 293 };
duke@435 294
duke@435 295
duke@435 296 //---------------------------make_vm_intrinsic----------------------------
duke@435 297 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 298 vmIntrinsics::ID id = m->intrinsic_id();
duke@435 299 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
duke@435 300
duke@435 301 if (DisableIntrinsic[0] != '\0'
duke@435 302 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
duke@435 303 // disabled by a user request on the command line:
duke@435 304 // example: -XX:DisableIntrinsic=_hashCode,_getClass
duke@435 305 return NULL;
duke@435 306 }
duke@435 307
duke@435 308 if (!m->is_loaded()) {
duke@435 309 // do not attempt to inline unloaded methods
duke@435 310 return NULL;
duke@435 311 }
duke@435 312
duke@435 313 // Only a few intrinsics implement a virtual dispatch.
duke@435 314 // They are expensive calls which are also frequently overridden.
duke@435 315 if (is_virtual) {
duke@435 316 switch (id) {
duke@435 317 case vmIntrinsics::_hashCode:
duke@435 318 case vmIntrinsics::_clone:
duke@435 319 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
duke@435 320 break;
duke@435 321 default:
duke@435 322 return NULL;
duke@435 323 }
duke@435 324 }
duke@435 325
duke@435 326 // -XX:-InlineNatives disables nearly all intrinsics:
duke@435 327 if (!InlineNatives) {
duke@435 328 switch (id) {
duke@435 329 case vmIntrinsics::_indexOf:
duke@435 330 case vmIntrinsics::_compareTo:
cfang@1116 331 case vmIntrinsics::_equals:
rasbold@604 332 case vmIntrinsics::_equalsC:
roland@4106 333 case vmIntrinsics::_getAndAddInt:
roland@4106 334 case vmIntrinsics::_getAndAddLong:
roland@4106 335 case vmIntrinsics::_getAndSetInt:
roland@4106 336 case vmIntrinsics::_getAndSetLong:
roland@4106 337 case vmIntrinsics::_getAndSetObject:
kvn@4361 338 case vmIntrinsics::_loadFence:
kvn@4361 339 case vmIntrinsics::_storeFence:
kvn@4361 340 case vmIntrinsics::_fullFence:
duke@435 341 break; // InlineNatives does not control String.compareTo
kvn@4002 342 case vmIntrinsics::_Reference_get:
kvn@4002 343 break; // InlineNatives does not control Reference.get
duke@435 344 default:
duke@435 345 return NULL;
duke@435 346 }
duke@435 347 }
duke@435 348
kvn@4205 349 bool is_predicted = false;
kvn@4205 350
duke@435 351 switch (id) {
duke@435 352 case vmIntrinsics::_compareTo:
duke@435 353 if (!SpecialStringCompareTo) return NULL;
twisti@4313 354 if (!Matcher::match_rule_supported(Op_StrComp)) return NULL;
duke@435 355 break;
duke@435 356 case vmIntrinsics::_indexOf:
duke@435 357 if (!SpecialStringIndexOf) return NULL;
duke@435 358 break;
cfang@1116 359 case vmIntrinsics::_equals:
cfang@1116 360 if (!SpecialStringEquals) return NULL;
twisti@4313 361 if (!Matcher::match_rule_supported(Op_StrEquals)) return NULL;
cfang@1116 362 break;
rasbold@604 363 case vmIntrinsics::_equalsC:
rasbold@604 364 if (!SpecialArraysEquals) return NULL;
twisti@4313 365 if (!Matcher::match_rule_supported(Op_AryEq)) return NULL;
rasbold@604 366 break;
duke@435 367 case vmIntrinsics::_arraycopy:
duke@435 368 if (!InlineArrayCopy) return NULL;
duke@435 369 break;
duke@435 370 case vmIntrinsics::_copyMemory:
duke@435 371 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
duke@435 372 if (!InlineArrayCopy) return NULL;
duke@435 373 break;
duke@435 374 case vmIntrinsics::_hashCode:
duke@435 375 if (!InlineObjectHash) return NULL;
duke@435 376 break;
duke@435 377 case vmIntrinsics::_clone:
duke@435 378 case vmIntrinsics::_copyOf:
duke@435 379 case vmIntrinsics::_copyOfRange:
duke@435 380 if (!InlineObjectCopy) return NULL;
duke@435 381 // These also use the arraycopy intrinsic mechanism:
duke@435 382 if (!InlineArrayCopy) return NULL;
duke@435 383 break;
duke@435 384 case vmIntrinsics::_checkIndex:
duke@435 385 // We do not intrinsify this. The optimizer does fine with it.
duke@435 386 return NULL;
duke@435 387
duke@435 388 case vmIntrinsics::_getCallerClass:
duke@435 389 if (!UseNewReflection) return NULL;
duke@435 390 if (!InlineReflectionGetCallerClass) return NULL;
duke@435 391 if (!JDK_Version::is_gte_jdk14x_version()) return NULL;
duke@435 392 break;
duke@435 393
twisti@1078 394 case vmIntrinsics::_bitCount_i:
never@3637 395 if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
never@3631 396 break;
never@3631 397
twisti@1078 398 case vmIntrinsics::_bitCount_l:
never@3637 399 if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
never@3631 400 break;
never@3631 401
never@3631 402 case vmIntrinsics::_numberOfLeadingZeros_i:
never@3631 403 if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
never@3631 404 break;
never@3631 405
never@3631 406 case vmIntrinsics::_numberOfLeadingZeros_l:
never@3631 407 if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
never@3631 408 break;
never@3631 409
never@3631 410 case vmIntrinsics::_numberOfTrailingZeros_i:
never@3631 411 if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
never@3631 412 break;
never@3631 413
never@3631 414 case vmIntrinsics::_numberOfTrailingZeros_l:
never@3631 415 if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
twisti@1078 416 break;
twisti@1078 417
twisti@4313 418 case vmIntrinsics::_reverseBytes_c:
roland@4357 419 if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
twisti@4313 420 break;
twisti@4313 421 case vmIntrinsics::_reverseBytes_s:
roland@4357 422 if (!Matcher::match_rule_supported(Op_ReverseBytesS)) return NULL;
twisti@4313 423 break;
twisti@4313 424 case vmIntrinsics::_reverseBytes_i:
roland@4357 425 if (!Matcher::match_rule_supported(Op_ReverseBytesI)) return NULL;
twisti@4313 426 break;
twisti@4313 427 case vmIntrinsics::_reverseBytes_l:
roland@4357 428 if (!Matcher::match_rule_supported(Op_ReverseBytesL)) return NULL;
twisti@4313 429 break;
twisti@4313 430
johnc@2781 431 case vmIntrinsics::_Reference_get:
kvn@4002 432 // Use the intrinsic version of Reference.get() so that the value in
kvn@4002 433 // the referent field can be registered by the G1 pre-barrier code.
kvn@4002 434 // Also add memory barrier to prevent commoning reads from this field
kvn@4002 435 // across safepoint since GC can change it value.
johnc@2781 436 break;
johnc@2781 437
roland@4106 438 case vmIntrinsics::_compareAndSwapObject:
roland@4106 439 #ifdef _LP64
roland@4106 440 if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
roland@4106 441 #endif
roland@4106 442 break;
roland@4106 443
roland@4106 444 case vmIntrinsics::_compareAndSwapLong:
roland@4106 445 if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
roland@4106 446 break;
roland@4106 447
roland@4106 448 case vmIntrinsics::_getAndAddInt:
roland@4106 449 if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
roland@4106 450 break;
roland@4106 451
roland@4106 452 case vmIntrinsics::_getAndAddLong:
roland@4106 453 if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
roland@4106 454 break;
roland@4106 455
roland@4106 456 case vmIntrinsics::_getAndSetInt:
roland@4106 457 if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
roland@4106 458 break;
roland@4106 459
roland@4106 460 case vmIntrinsics::_getAndSetLong:
roland@4106 461 if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
roland@4106 462 break;
roland@4106 463
roland@4106 464 case vmIntrinsics::_getAndSetObject:
roland@4106 465 #ifdef _LP64
roland@4106 466 if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
roland@4106 467 if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
roland@4106 468 break;
roland@4106 469 #else
roland@4106 470 if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
roland@4106 471 break;
roland@4106 472 #endif
roland@4106 473
kvn@4205 474 case vmIntrinsics::_aescrypt_encryptBlock:
kvn@4205 475 case vmIntrinsics::_aescrypt_decryptBlock:
kvn@4205 476 if (!UseAESIntrinsics) return NULL;
kvn@4205 477 break;
kvn@4205 478
kvn@4205 479 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
kvn@4205 480 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
kvn@4205 481 if (!UseAESIntrinsics) return NULL;
kvn@4205 482 // these two require the predicated logic
kvn@4205 483 is_predicted = true;
kvn@4205 484 break;
kvn@4205 485
duke@435 486 default:
jrose@1291 487 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
jrose@1291 488 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
duke@435 489 break;
duke@435 490 }
duke@435 491
duke@435 492 // -XX:-InlineClassNatives disables natives from the Class class.
duke@435 493 // The flag applies to all reflective calls, notably Array.newArray
duke@435 494 // (visible to Java programmers as Array.newInstance).
duke@435 495 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
duke@435 496 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
duke@435 497 if (!InlineClassNatives) return NULL;
duke@435 498 }
duke@435 499
duke@435 500 // -XX:-InlineThreadNatives disables natives from the Thread class.
duke@435 501 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
duke@435 502 if (!InlineThreadNatives) return NULL;
duke@435 503 }
duke@435 504
duke@435 505 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
duke@435 506 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
duke@435 507 m->holder()->name() == ciSymbol::java_lang_Float() ||
duke@435 508 m->holder()->name() == ciSymbol::java_lang_Double()) {
duke@435 509 if (!InlineMathNatives) return NULL;
duke@435 510 }
duke@435 511
duke@435 512 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
duke@435 513 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
duke@435 514 if (!InlineUnsafeOps) return NULL;
duke@435 515 }
duke@435 516
kvn@4205 517 return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
duke@435 518 }
duke@435 519
duke@435 520 //----------------------register_library_intrinsics-----------------------
duke@435 521 // Initialize this file's data structures, for each Compile instance.
duke@435 522 void Compile::register_library_intrinsics() {
duke@435 523 // Nothing to do here.
duke@435 524 }
duke@435 525
duke@435 526 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
duke@435 527 LibraryCallKit kit(jvms, this);
duke@435 528 Compile* C = kit.C;
duke@435 529 int nodes = C->unique();
duke@435 530 #ifndef PRODUCT
duke@435 531 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
duke@435 532 char buf[1000];
duke@435 533 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
duke@435 534 tty->print_cr("Intrinsic %s", str);
duke@435 535 }
duke@435 536 #endif
twisti@4313 537 ciMethod* callee = kit.callee();
twisti@4313 538 const int bci = kit.bci();
twisti@4313 539
twisti@4313 540 // Try to inline the intrinsic.
duke@435 541 if (kit.try_to_inline()) {
duke@435 542 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
roland@4357 543 C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
duke@435 544 }
duke@435 545 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
duke@435 546 if (C->log()) {
duke@435 547 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
duke@435 548 vmIntrinsics::name_at(intrinsic_id()),
duke@435 549 (is_virtual() ? " virtual='1'" : ""),
duke@435 550 C->unique() - nodes);
duke@435 551 }
twisti@4313 552 // Push the result from the inlined method onto the stack.
twisti@4313 553 kit.push_result();
duke@435 554 return kit.transfer_exceptions_into_jvms();
duke@435 555 }
duke@435 556
never@3631 557 // The intrinsic bailed out
never@3631 558 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
johnc@2781 559 if (jvms->has_method()) {
johnc@2781 560 // Not a root compile.
never@3631 561 const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
roland@4357 562 C->print_inlining(callee, jvms->depth() - 1, bci, msg);
johnc@2781 563 } else {
johnc@2781 564 // Root compile
johnc@2781 565 tty->print("Did not generate intrinsic %s%s at bci:%d in",
jrose@1291 566 vmIntrinsics::name_at(intrinsic_id()),
twisti@4313 567 (is_virtual() ? " (virtual)" : ""), bci);
johnc@2781 568 }
duke@435 569 }
duke@435 570 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
duke@435 571 return NULL;
duke@435 572 }
duke@435 573
kvn@4205 574 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
kvn@4205 575 LibraryCallKit kit(jvms, this);
kvn@4205 576 Compile* C = kit.C;
kvn@4205 577 int nodes = C->unique();
kvn@4205 578 #ifndef PRODUCT
kvn@4205 579 assert(is_predicted(), "sanity");
kvn@4205 580 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
kvn@4205 581 char buf[1000];
kvn@4205 582 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
kvn@4205 583 tty->print_cr("Predicate for intrinsic %s", str);
kvn@4205 584 }
kvn@4205 585 #endif
twisti@4313 586 ciMethod* callee = kit.callee();
twisti@4313 587 const int bci = kit.bci();
kvn@4205 588
kvn@4205 589 Node* slow_ctl = kit.try_to_predicate();
kvn@4205 590 if (!kit.failing()) {
twisti@4313 591 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
roland@4357 592 C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
twisti@4313 593 }
twisti@4313 594 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
kvn@4205 595 if (C->log()) {
kvn@4205 596 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
kvn@4205 597 vmIntrinsics::name_at(intrinsic_id()),
kvn@4205 598 (is_virtual() ? " virtual='1'" : ""),
kvn@4205 599 C->unique() - nodes);
kvn@4205 600 }
kvn@4205 601 return slow_ctl; // Could be NULL if the check folds.
kvn@4205 602 }
kvn@4205 603
kvn@4205 604 // The intrinsic bailed out
kvn@4205 605 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
kvn@4205 606 if (jvms->has_method()) {
kvn@4205 607 // Not a root compile.
kvn@4205 608 const char* msg = "failed to generate predicate for intrinsic";
roland@4357 609 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
kvn@4205 610 } else {
kvn@4205 611 // Root compile
roland@4357 612 C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
roland@4357 613 vmIntrinsics::name_at(intrinsic_id()),
roland@4357 614 (is_virtual() ? " (virtual)" : ""), bci);
kvn@4205 615 }
kvn@4205 616 }
kvn@4205 617 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
kvn@4205 618 return NULL;
kvn@4205 619 }
kvn@4205 620
duke@435 621 bool LibraryCallKit::try_to_inline() {
duke@435 622 // Handle symbolic names for otherwise undistinguished boolean switches:
duke@435 623 const bool is_store = true;
duke@435 624 const bool is_native_ptr = true;
duke@435 625 const bool is_static = true;
twisti@4313 626 const bool is_volatile = true;
duke@435 627
johnc@2781 628 if (!jvms()->has_method()) {
johnc@2781 629 // Root JVMState has a null method.
johnc@2781 630 assert(map()->memory()->Opcode() == Op_Parm, "");
johnc@2781 631 // Insert the memory aliasing node
johnc@2781 632 set_all_memory(reset_memory());
johnc@2781 633 }
johnc@2781 634 assert(merged_memory(), "");
johnc@2781 635
twisti@4313 636
duke@435 637 switch (intrinsic_id()) {
twisti@4313 638 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
twisti@4313 639 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static);
twisti@4313 640 case vmIntrinsics::_getClass: return inline_native_getClass();
duke@435 641
duke@435 642 case vmIntrinsics::_dsin:
duke@435 643 case vmIntrinsics::_dcos:
duke@435 644 case vmIntrinsics::_dtan:
duke@435 645 case vmIntrinsics::_dabs:
duke@435 646 case vmIntrinsics::_datan2:
duke@435 647 case vmIntrinsics::_dsqrt:
duke@435 648 case vmIntrinsics::_dexp:
duke@435 649 case vmIntrinsics::_dlog:
duke@435 650 case vmIntrinsics::_dlog10:
twisti@4313 651 case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id());
duke@435 652
duke@435 653 case vmIntrinsics::_min:
twisti@4313 654 case vmIntrinsics::_max: return inline_min_max(intrinsic_id());
twisti@4313 655
twisti@4313 656 case vmIntrinsics::_arraycopy: return inline_arraycopy();
twisti@4313 657
twisti@4313 658 case vmIntrinsics::_compareTo: return inline_string_compareTo();
twisti@4313 659 case vmIntrinsics::_indexOf: return inline_string_indexOf();
twisti@4313 660 case vmIntrinsics::_equals: return inline_string_equals();
twisti@4313 661
twisti@4313 662 case vmIntrinsics::_getObject: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, !is_volatile);
twisti@4313 663 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
twisti@4313 664 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, !is_volatile);
twisti@4313 665 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, !is_volatile);
twisti@4313 666 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, !is_volatile);
twisti@4313 667 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, !is_volatile);
twisti@4313 668 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, !is_volatile);
twisti@4313 669 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, !is_volatile);
twisti@4313 670 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, !is_volatile);
twisti@4313 671
twisti@4313 672 case vmIntrinsics::_putObject: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, !is_volatile);
twisti@4313 673 case vmIntrinsics::_putBoolean: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, !is_volatile);
twisti@4313 674 case vmIntrinsics::_putByte: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, !is_volatile);
twisti@4313 675 case vmIntrinsics::_putShort: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, !is_volatile);
twisti@4313 676 case vmIntrinsics::_putChar: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, !is_volatile);
twisti@4313 677 case vmIntrinsics::_putInt: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, !is_volatile);
twisti@4313 678 case vmIntrinsics::_putLong: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, !is_volatile);
twisti@4313 679 case vmIntrinsics::_putFloat: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, !is_volatile);
twisti@4313 680 case vmIntrinsics::_putDouble: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, !is_volatile);
twisti@4313 681
twisti@4313 682 case vmIntrinsics::_getByte_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE, !is_volatile);
twisti@4313 683 case vmIntrinsics::_getShort_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT, !is_volatile);
twisti@4313 684 case vmIntrinsics::_getChar_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR, !is_volatile);
twisti@4313 685 case vmIntrinsics::_getInt_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_INT, !is_volatile);
twisti@4313 686 case vmIntrinsics::_getLong_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_LONG, !is_volatile);
twisti@4313 687 case vmIntrinsics::_getFloat_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT, !is_volatile);
twisti@4313 688 case vmIntrinsics::_getDouble_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE, !is_volatile);
twisti@4313 689 case vmIntrinsics::_getAddress_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
twisti@4313 690
twisti@4313 691 case vmIntrinsics::_putByte_raw: return inline_unsafe_access( is_native_ptr, is_store, T_BYTE, !is_volatile);
twisti@4313 692 case vmIntrinsics::_putShort_raw: return inline_unsafe_access( is_native_ptr, is_store, T_SHORT, !is_volatile);
twisti@4313 693 case vmIntrinsics::_putChar_raw: return inline_unsafe_access( is_native_ptr, is_store, T_CHAR, !is_volatile);
twisti@4313 694 case vmIntrinsics::_putInt_raw: return inline_unsafe_access( is_native_ptr, is_store, T_INT, !is_volatile);
twisti@4313 695 case vmIntrinsics::_putLong_raw: return inline_unsafe_access( is_native_ptr, is_store, T_LONG, !is_volatile);
twisti@4313 696 case vmIntrinsics::_putFloat_raw: return inline_unsafe_access( is_native_ptr, is_store, T_FLOAT, !is_volatile);
twisti@4313 697 case vmIntrinsics::_putDouble_raw: return inline_unsafe_access( is_native_ptr, is_store, T_DOUBLE, !is_volatile);
twisti@4313 698 case vmIntrinsics::_putAddress_raw: return inline_unsafe_access( is_native_ptr, is_store, T_ADDRESS, !is_volatile);
twisti@4313 699
twisti@4313 700 case vmIntrinsics::_getObjectVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, is_volatile);
twisti@4313 701 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, is_volatile);
twisti@4313 702 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, is_volatile);
twisti@4313 703 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, is_volatile);
twisti@4313 704 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, is_volatile);
twisti@4313 705 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, is_volatile);
twisti@4313 706 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, is_volatile);
twisti@4313 707 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, is_volatile);
twisti@4313 708 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, is_volatile);
twisti@4313 709
twisti@4313 710 case vmIntrinsics::_putObjectVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, is_volatile);
twisti@4313 711 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, is_volatile);
twisti@4313 712 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, is_volatile);
twisti@4313 713 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, is_volatile);
twisti@4313 714 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, is_volatile);
twisti@4313 715 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, is_volatile);
twisti@4313 716 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, is_volatile);
twisti@4313 717 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, is_volatile);
twisti@4313 718 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, is_volatile);
twisti@4313 719
twisti@4313 720 case vmIntrinsics::_prefetchRead: return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
twisti@4313 721 case vmIntrinsics::_prefetchWrite: return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
twisti@4313 722 case vmIntrinsics::_prefetchReadStatic: return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
twisti@4313 723 case vmIntrinsics::_prefetchWriteStatic: return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
twisti@4313 724
twisti@4313 725 case vmIntrinsics::_compareAndSwapObject: return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
twisti@4313 726 case vmIntrinsics::_compareAndSwapInt: return inline_unsafe_load_store(T_INT, LS_cmpxchg);
twisti@4313 727 case vmIntrinsics::_compareAndSwapLong: return inline_unsafe_load_store(T_LONG, LS_cmpxchg);
twisti@4313 728
twisti@4313 729 case vmIntrinsics::_putOrderedObject: return inline_unsafe_ordered_store(T_OBJECT);
twisti@4313 730 case vmIntrinsics::_putOrderedInt: return inline_unsafe_ordered_store(T_INT);
twisti@4313 731 case vmIntrinsics::_putOrderedLong: return inline_unsafe_ordered_store(T_LONG);
twisti@4313 732
twisti@4313 733 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_xadd);
twisti@4313 734 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_xadd);
twisti@4313 735 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_xchg);
twisti@4313 736 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_xchg);
twisti@4313 737 case vmIntrinsics::_getAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_xchg);
twisti@4313 738
kvn@4361 739 case vmIntrinsics::_loadFence:
kvn@4361 740 case vmIntrinsics::_storeFence:
kvn@4361 741 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id());
kvn@4361 742
twisti@4313 743 case vmIntrinsics::_currentThread: return inline_native_currentThread();
twisti@4313 744 case vmIntrinsics::_isInterrupted: return inline_native_isInterrupted();
duke@435 745
rbackman@3709 746 #ifdef TRACE_HAVE_INTRINSICS
twisti@4313 747 case vmIntrinsics::_classID: return inline_native_classID();
twisti@4313 748 case vmIntrinsics::_threadID: return inline_native_threadID();
twisti@4313 749 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
rbackman@3709 750 #endif
twisti@4313 751 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
twisti@4313 752 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
twisti@4313 753 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate();
twisti@4313 754 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory();
twisti@4313 755 case vmIntrinsics::_newArray: return inline_native_newArray();
twisti@4313 756 case vmIntrinsics::_getLength: return inline_native_getLength();
twisti@4313 757 case vmIntrinsics::_copyOf: return inline_array_copyOf(false);
twisti@4313 758 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true);
twisti@4313 759 case vmIntrinsics::_equalsC: return inline_array_equals();
twisti@4313 760 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual());
twisti@4313 761
twisti@4313 762 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check();
duke@435 763
duke@435 764 case vmIntrinsics::_isInstance:
duke@435 765 case vmIntrinsics::_getModifiers:
duke@435 766 case vmIntrinsics::_isInterface:
duke@435 767 case vmIntrinsics::_isArray:
duke@435 768 case vmIntrinsics::_isPrimitive:
duke@435 769 case vmIntrinsics::_getSuperclass:
duke@435 770 case vmIntrinsics::_getComponentType:
twisti@4313 771 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id());
duke@435 772
duke@435 773 case vmIntrinsics::_floatToRawIntBits:
duke@435 774 case vmIntrinsics::_floatToIntBits:
duke@435 775 case vmIntrinsics::_intBitsToFloat:
duke@435 776 case vmIntrinsics::_doubleToRawLongBits:
duke@435 777 case vmIntrinsics::_doubleToLongBits:
twisti@4313 778 case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id());
duke@435 779
twisti@1210 780 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 781 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 782 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 783 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1078 784 case vmIntrinsics::_bitCount_i:
twisti@1078 785 case vmIntrinsics::_bitCount_l:
duke@435 786 case vmIntrinsics::_reverseBytes_i:
duke@435 787 case vmIntrinsics::_reverseBytes_l:
never@1831 788 case vmIntrinsics::_reverseBytes_s:
twisti@4313 789 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id());
twisti@4313 790
twisti@4313 791 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass();
twisti@4313 792
twisti@4313 793 case vmIntrinsics::_Reference_get: return inline_reference_get();
johnc@2781 794
kvn@4205 795 case vmIntrinsics::_aescrypt_encryptBlock:
twisti@4313 796 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id());
kvn@4205 797
kvn@4205 798 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
kvn@4205 799 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
kvn@4205 800 return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
kvn@4205 801
duke@435 802 default:
duke@435 803 // If you get here, it may be that someone has added a new intrinsic
duke@435 804 // to the list in vmSymbols.hpp without implementing it here.
duke@435 805 #ifndef PRODUCT
duke@435 806 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
duke@435 807 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
duke@435 808 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
duke@435 809 }
duke@435 810 #endif
duke@435 811 return false;
duke@435 812 }
duke@435 813 }
duke@435 814
kvn@4205 815 Node* LibraryCallKit::try_to_predicate() {
kvn@4205 816 if (!jvms()->has_method()) {
kvn@4205 817 // Root JVMState has a null method.
kvn@4205 818 assert(map()->memory()->Opcode() == Op_Parm, "");
kvn@4205 819 // Insert the memory aliasing node
kvn@4205 820 set_all_memory(reset_memory());
kvn@4205 821 }
kvn@4205 822 assert(merged_memory(), "");
kvn@4205 823
kvn@4205 824 switch (intrinsic_id()) {
kvn@4205 825 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
kvn@4205 826 return inline_cipherBlockChaining_AESCrypt_predicate(false);
kvn@4205 827 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
kvn@4205 828 return inline_cipherBlockChaining_AESCrypt_predicate(true);
kvn@4205 829
kvn@4205 830 default:
kvn@4205 831 // If you get here, it may be that someone has added a new intrinsic
kvn@4205 832 // to the list in vmSymbols.hpp without implementing it here.
kvn@4205 833 #ifndef PRODUCT
kvn@4205 834 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
kvn@4205 835 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
kvn@4205 836 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
kvn@4205 837 }
kvn@4205 838 #endif
kvn@4205 839 Node* slow_ctl = control();
kvn@4205 840 set_control(top()); // No fast path instrinsic
kvn@4205 841 return slow_ctl;
kvn@4205 842 }
kvn@4205 843 }
kvn@4205 844
twisti@4313 845 //------------------------------set_result-------------------------------
duke@435 846 // Helper function for finishing intrinsics.
twisti@4313 847 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
duke@435 848 record_for_igvn(region);
duke@435 849 set_control(_gvn.transform(region));
twisti@4313 850 set_result( _gvn.transform(value));
twisti@4313 851 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
duke@435 852 }
duke@435 853
duke@435 854 //------------------------------generate_guard---------------------------
duke@435 855 // Helper function for generating guarded fast-slow graph structures.
duke@435 856 // The given 'test', if true, guards a slow path. If the test fails
duke@435 857 // then a fast path can be taken. (We generally hope it fails.)
duke@435 858 // In all cases, GraphKit::control() is updated to the fast path.
duke@435 859 // The returned value represents the control for the slow path.
duke@435 860 // The return value is never 'top'; it is either a valid control
duke@435 861 // or NULL if it is obvious that the slow path can never be taken.
duke@435 862 // Also, if region and the slow control are not NULL, the slow edge
duke@435 863 // is appended to the region.
duke@435 864 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
duke@435 865 if (stopped()) {
duke@435 866 // Already short circuited.
duke@435 867 return NULL;
duke@435 868 }
duke@435 869
duke@435 870 // Build an if node and its projections.
duke@435 871 // If test is true we take the slow path, which we assume is uncommon.
duke@435 872 if (_gvn.type(test) == TypeInt::ZERO) {
duke@435 873 // The slow branch is never taken. No need to build this guard.
duke@435 874 return NULL;
duke@435 875 }
duke@435 876
duke@435 877 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
duke@435 878
kvn@4115 879 Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
duke@435 880 if (if_slow == top()) {
duke@435 881 // The slow branch is never taken. No need to build this guard.
duke@435 882 return NULL;
duke@435 883 }
duke@435 884
duke@435 885 if (region != NULL)
duke@435 886 region->add_req(if_slow);
duke@435 887
kvn@4115 888 Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
duke@435 889 set_control(if_fast);
duke@435 890
duke@435 891 return if_slow;
duke@435 892 }
duke@435 893
duke@435 894 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
duke@435 895 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
duke@435 896 }
duke@435 897 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
duke@435 898 return generate_guard(test, region, PROB_FAIR);
duke@435 899 }
duke@435 900
duke@435 901 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
duke@435 902 Node* *pos_index) {
duke@435 903 if (stopped())
duke@435 904 return NULL; // already stopped
duke@435 905 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
duke@435 906 return NULL; // index is already adequately typed
kvn@4115 907 Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
kvn@4115 908 Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 909 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
duke@435 910 if (is_neg != NULL && pos_index != NULL) {
duke@435 911 // Emulate effect of Parse::adjust_map_after_if.
kvn@4115 912 Node* ccast = new (C) CastIINode(index, TypeInt::POS);
duke@435 913 ccast->set_req(0, control());
duke@435 914 (*pos_index) = _gvn.transform(ccast);
duke@435 915 }
duke@435 916 return is_neg;
duke@435 917 }
duke@435 918
duke@435 919 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 920 Node* *pos_index) {
duke@435 921 if (stopped())
duke@435 922 return NULL; // already stopped
duke@435 923 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
duke@435 924 return NULL; // index is already adequately typed
kvn@4115 925 Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
duke@435 926 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
kvn@4115 927 Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
duke@435 928 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
duke@435 929 if (is_notp != NULL && pos_index != NULL) {
duke@435 930 // Emulate effect of Parse::adjust_map_after_if.
kvn@4115 931 Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
duke@435 932 ccast->set_req(0, control());
duke@435 933 (*pos_index) = _gvn.transform(ccast);
duke@435 934 }
duke@435 935 return is_notp;
duke@435 936 }
duke@435 937
duke@435 938 // Make sure that 'position' is a valid limit index, in [0..length].
duke@435 939 // There are two equivalent plans for checking this:
duke@435 940 // A. (offset + copyLength) unsigned<= arrayLength
duke@435 941 // B. offset <= (arrayLength - copyLength)
duke@435 942 // We require that all of the values above, except for the sum and
duke@435 943 // difference, are already known to be non-negative.
duke@435 944 // Plan A is robust in the face of overflow, if offset and copyLength
duke@435 945 // are both hugely positive.
duke@435 946 //
duke@435 947 // Plan B is less direct and intuitive, but it does not overflow at
duke@435 948 // all, since the difference of two non-negatives is always
duke@435 949 // representable. Whenever Java methods must perform the equivalent
duke@435 950 // check they generally use Plan B instead of Plan A.
duke@435 951 // For the moment we use Plan A.
duke@435 952 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
duke@435 953 Node* subseq_length,
duke@435 954 Node* array_length,
duke@435 955 RegionNode* region) {
duke@435 956 if (stopped())
duke@435 957 return NULL; // already stopped
duke@435 958 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
kvn@3407 959 if (zero_offset && subseq_length->eqv_uncast(array_length))
duke@435 960 return NULL; // common case of whole-array copy
duke@435 961 Node* last = subseq_length;
duke@435 962 if (!zero_offset) // last += offset
kvn@4115 963 last = _gvn.transform( new (C) AddINode(last, offset));
kvn@4115 964 Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
kvn@4115 965 Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 966 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
duke@435 967 return is_over;
duke@435 968 }
duke@435 969
duke@435 970
duke@435 971 //--------------------------generate_current_thread--------------------
duke@435 972 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
duke@435 973 ciKlass* thread_klass = env()->Thread_klass();
duke@435 974 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
kvn@4115 975 Node* thread = _gvn.transform(new (C) ThreadLocalNode());
duke@435 976 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
duke@435 977 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
duke@435 978 tls_output = thread;
duke@435 979 return threadObj;
duke@435 980 }
duke@435 981
duke@435 982
kvn@1421 983 //------------------------------make_string_method_node------------------------
kvn@3760 984 // Helper method for String intrinsic functions. This version is called
kvn@3760 985 // with str1 and str2 pointing to String object nodes.
kvn@3760 986 //
kvn@3760 987 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
kvn@1421 988 Node* no_ctrl = NULL;
kvn@1421 989
kvn@3760 990 // Get start addr of string
kvn@3760 991 Node* str1_value = load_String_value(no_ctrl, str1);
kvn@3760 992 Node* str1_offset = load_String_offset(no_ctrl, str1);
kvn@1421 993 Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR);
kvn@1421 994
kvn@3760 995 // Get length of string 1
kvn@3760 996 Node* str1_len = load_String_length(no_ctrl, str1);
kvn@3760 997
kvn@3760 998 Node* str2_value = load_String_value(no_ctrl, str2);
kvn@3760 999 Node* str2_offset = load_String_offset(no_ctrl, str2);
kvn@1421 1000 Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR);
kvn@1421 1001
kvn@3760 1002 Node* str2_len = NULL;
kvn@1421 1003 Node* result = NULL;
kvn@3760 1004
kvn@1421 1005 switch (opcode) {
kvn@1421 1006 case Op_StrIndexOf:
kvn@3760 1007 // Get length of string 2
kvn@3760 1008 str2_len = load_String_length(no_ctrl, str2);
kvn@3760 1009
kvn@4115 1010 result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1011 str1_start, str1_len, str2_start, str2_len);
kvn@1421 1012 break;
kvn@1421 1013 case Op_StrComp:
kvn@3760 1014 // Get length of string 2
kvn@3760 1015 str2_len = load_String_length(no_ctrl, str2);
kvn@3760 1016
kvn@4115 1017 result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1018 str1_start, str1_len, str2_start, str2_len);
kvn@1421 1019 break;
kvn@1421 1020 case Op_StrEquals:
kvn@4115 1021 result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1022 str1_start, str2_start, str1_len);
kvn@1421 1023 break;
kvn@1421 1024 default:
kvn@1421 1025 ShouldNotReachHere();
kvn@1421 1026 return NULL;
kvn@1421 1027 }
kvn@1421 1028
kvn@1421 1029 // All these intrinsics have checks.
kvn@1421 1030 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@1421 1031
kvn@1421 1032 return _gvn.transform(result);
kvn@1421 1033 }
kvn@1421 1034
kvn@3760 1035 // Helper method for String intrinsic functions. This version is called
kvn@3760 1036 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
kvn@3760 1037 // to Int nodes containing the lenghts of str1 and str2.
kvn@3760 1038 //
kvn@3760 1039 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
kvn@3760 1040 Node* result = NULL;
kvn@3760 1041 switch (opcode) {
kvn@3760 1042 case Op_StrIndexOf:
kvn@4115 1043 result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1044 str1_start, cnt1, str2_start, cnt2);
kvn@3760 1045 break;
kvn@3760 1046 case Op_StrComp:
kvn@4115 1047 result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1048 str1_start, cnt1, str2_start, cnt2);
kvn@3760 1049 break;
kvn@3760 1050 case Op_StrEquals:
kvn@4115 1051 result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 1052 str1_start, str2_start, cnt1);
kvn@3760 1053 break;
kvn@3760 1054 default:
kvn@3760 1055 ShouldNotReachHere();
kvn@3760 1056 return NULL;
kvn@3760 1057 }
kvn@3760 1058
kvn@3760 1059 // All these intrinsics have checks.
kvn@3760 1060 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@3760 1061
kvn@3760 1062 return _gvn.transform(result);
kvn@3760 1063 }
kvn@3760 1064
duke@435 1065 //------------------------------inline_string_compareTo------------------------
twisti@4313 1066 // public int java.lang.String.compareTo(String anotherString);
duke@435 1067 bool LibraryCallKit::inline_string_compareTo() {
twisti@4313 1068 Node* receiver = null_check(argument(0));
twisti@4313 1069 Node* arg = null_check(argument(1));
duke@435 1070 if (stopped()) {
duke@435 1071 return true;
duke@435 1072 }
twisti@4313 1073 set_result(make_string_method_node(Op_StrComp, receiver, arg));
duke@435 1074 return true;
duke@435 1075 }
duke@435 1076
cfang@1116 1077 //------------------------------inline_string_equals------------------------
cfang@1116 1078 bool LibraryCallKit::inline_string_equals() {
twisti@4313 1079 Node* receiver = null_check_receiver();
twisti@4313 1080 // NOTE: Do not null check argument for String.equals() because spec
twisti@4313 1081 // allows to specify NULL as argument.
twisti@4313 1082 Node* argument = this->argument(1);
cfang@1116 1083 if (stopped()) {
cfang@1116 1084 return true;
cfang@1116 1085 }
cfang@1116 1086
kvn@1421 1087 // paths (plus control) merge
kvn@4115 1088 RegionNode* region = new (C) RegionNode(5);
kvn@4115 1089 Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
kvn@1421 1090
kvn@1421 1091 // does source == target string?
kvn@4115 1092 Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
kvn@4115 1093 Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
kvn@1421 1094
kvn@1421 1095 Node* if_eq = generate_slow_guard(bol, NULL);
kvn@1421 1096 if (if_eq != NULL) {
kvn@1421 1097 // receiver == argument
kvn@1421 1098 phi->init_req(2, intcon(1));
kvn@1421 1099 region->init_req(2, if_eq);
kvn@1421 1100 }
kvn@1421 1101
cfang@1116 1102 // get String klass for instanceOf
cfang@1116 1103 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1104
kvn@1421 1105 if (!stopped()) {
kvn@1421 1106 Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
kvn@4115 1107 Node* cmp = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
kvn@4115 1108 Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
kvn@1421 1109
kvn@1421 1110 Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
kvn@1421 1111 //instanceOf == true, fallthrough
kvn@1421 1112
kvn@1421 1113 if (inst_false != NULL) {
kvn@1421 1114 phi->init_req(3, intcon(0));
kvn@1421 1115 region->init_req(3, inst_false);
kvn@1421 1116 }
kvn@1421 1117 }
cfang@1116 1118
kvn@1421 1119 if (!stopped()) {
kvn@3760 1120 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
kvn@3760 1121
never@1851 1122 // Properly cast the argument to String
kvn@4115 1123 argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
kvn@2869 1124 // This path is taken only when argument's type is String:NotNull.
kvn@2869 1125 argument = cast_not_null(argument, false);
never@1851 1126
kvn@3760 1127 Node* no_ctrl = NULL;
kvn@3760 1128
kvn@3760 1129 // Get start addr of receiver
kvn@3760 1130 Node* receiver_val = load_String_value(no_ctrl, receiver);
kvn@3760 1131 Node* receiver_offset = load_String_offset(no_ctrl, receiver);
kvn@3760 1132 Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
kvn@3760 1133
kvn@3760 1134 // Get length of receiver
kvn@3760 1135 Node* receiver_cnt = load_String_length(no_ctrl, receiver);
kvn@3760 1136
kvn@3760 1137 // Get start addr of argument
twisti@4313 1138 Node* argument_val = load_String_value(no_ctrl, argument);
kvn@3760 1139 Node* argument_offset = load_String_offset(no_ctrl, argument);
kvn@3760 1140 Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
kvn@3760 1141
kvn@3760 1142 // Get length of argument
kvn@3760 1143 Node* argument_cnt = load_String_length(no_ctrl, argument);
kvn@1421 1144
kvn@1421 1145 // Check for receiver count != argument count
kvn@4115 1146 Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
kvn@4115 1147 Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
kvn@1421 1148 Node* if_ne = generate_slow_guard(bol, NULL);
kvn@1421 1149 if (if_ne != NULL) {
kvn@1421 1150 phi->init_req(4, intcon(0));
kvn@1421 1151 region->init_req(4, if_ne);
kvn@1421 1152 }
kvn@3760 1153
kvn@3760 1154 // Check for count == 0 is done by assembler code for StrEquals.
kvn@3760 1155
kvn@3760 1156 if (!stopped()) {
kvn@3760 1157 Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
kvn@3760 1158 phi->init_req(1, equals);
kvn@3760 1159 region->init_req(1, control());
kvn@3760 1160 }
kvn@1421 1161 }
cfang@1116 1162
cfang@1116 1163 // post merge
cfang@1116 1164 set_control(_gvn.transform(region));
cfang@1116 1165 record_for_igvn(region);
cfang@1116 1166
twisti@4313 1167 set_result(_gvn.transform(phi));
cfang@1116 1168 return true;
cfang@1116 1169 }
cfang@1116 1170
rasbold@604 1171 //------------------------------inline_array_equals----------------------------
rasbold@604 1172 bool LibraryCallKit::inline_array_equals() {
twisti@4313 1173 Node* arg1 = argument(0);
twisti@4313 1174 Node* arg2 = argument(1);
twisti@4313 1175 set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
rasbold@604 1176 return true;
rasbold@604 1177 }
rasbold@604 1178
duke@435 1179 // Java version of String.indexOf(constant string)
duke@435 1180 // class StringDecl {
duke@435 1181 // StringDecl(char[] ca) {
duke@435 1182 // offset = 0;
duke@435 1183 // count = ca.length;
duke@435 1184 // value = ca;
duke@435 1185 // }
duke@435 1186 // int offset;
duke@435 1187 // int count;
duke@435 1188 // char[] value;
duke@435 1189 // }
duke@435 1190 //
duke@435 1191 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
duke@435 1192 // int targetOffset, int cache_i, int md2) {
duke@435 1193 // int cache = cache_i;
duke@435 1194 // int sourceOffset = string_object.offset;
duke@435 1195 // int sourceCount = string_object.count;
duke@435 1196 // int targetCount = target_object.length;
duke@435 1197 //
duke@435 1198 // int targetCountLess1 = targetCount - 1;
duke@435 1199 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
duke@435 1200 //
duke@435 1201 // char[] source = string_object.value;
duke@435 1202 // char[] target = target_object;
duke@435 1203 // int lastChar = target[targetCountLess1];
duke@435 1204 //
duke@435 1205 // outer_loop:
duke@435 1206 // for (int i = sourceOffset; i < sourceEnd; ) {
duke@435 1207 // int src = source[i + targetCountLess1];
duke@435 1208 // if (src == lastChar) {
duke@435 1209 // // With random strings and a 4-character alphabet,
duke@435 1210 // // reverse matching at this point sets up 0.8% fewer
duke@435 1211 // // frames, but (paradoxically) makes 0.3% more probes.
duke@435 1212 // // Since those probes are nearer the lastChar probe,
duke@435 1213 // // there is may be a net D$ win with reverse matching.
duke@435 1214 // // But, reversing loop inhibits unroll of inner loop
duke@435 1215 // // for unknown reason. So, does running outer loop from
duke@435 1216 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
duke@435 1217 // for (int j = 0; j < targetCountLess1; j++) {
duke@435 1218 // if (target[targetOffset + j] != source[i+j]) {
duke@435 1219 // if ((cache & (1 << source[i+j])) == 0) {
duke@435 1220 // if (md2 < j+1) {
duke@435 1221 // i += j+1;
duke@435 1222 // continue outer_loop;
duke@435 1223 // }
duke@435 1224 // }
duke@435 1225 // i += md2;
duke@435 1226 // continue outer_loop;
duke@435 1227 // }
duke@435 1228 // }
duke@435 1229 // return i - sourceOffset;
duke@435 1230 // }
duke@435 1231 // if ((cache & (1 << src)) == 0) {
duke@435 1232 // i += targetCountLess1;
duke@435 1233 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
duke@435 1234 // i++;
duke@435 1235 // }
duke@435 1236 // return -1;
duke@435 1237 // }
duke@435 1238
duke@435 1239 //------------------------------string_indexOf------------------------
duke@435 1240 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
duke@435 1241 jint cache_i, jint md2_i) {
duke@435 1242
duke@435 1243 Node* no_ctrl = NULL;
duke@435 1244 float likely = PROB_LIKELY(0.9);
duke@435 1245 float unlikely = PROB_UNLIKELY(0.9);
duke@435 1246
twisti@4313 1247 const int nargs = 0; // no arguments to push back for uncommon trap in predicate
kvn@2665 1248
kvn@3760 1249 Node* source = load_String_value(no_ctrl, string_object);
kvn@3760 1250 Node* sourceOffset = load_String_offset(no_ctrl, string_object);
kvn@3760 1251 Node* sourceCount = load_String_length(no_ctrl, string_object);
duke@435 1252
jcoomes@2661 1253 Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
duke@435 1254 jint target_length = target_array->length();
duke@435 1255 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
duke@435 1256 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
duke@435 1257
kvn@2726 1258 IdealKit kit(this, false, true);
duke@435 1259 #define __ kit.
duke@435 1260 Node* zero = __ ConI(0);
duke@435 1261 Node* one = __ ConI(1);
duke@435 1262 Node* cache = __ ConI(cache_i);
duke@435 1263 Node* md2 = __ ConI(md2_i);
duke@435 1264 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
duke@435 1265 Node* targetCount = __ ConI(target_length);
duke@435 1266 Node* targetCountLess1 = __ ConI(target_length - 1);
duke@435 1267 Node* targetOffset = __ ConI(targetOffset_i);
duke@435 1268 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
duke@435 1269
kvn@1286 1270 IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
duke@435 1271 Node* outer_loop = __ make_label(2 /* goto */);
duke@435 1272 Node* return_ = __ make_label(1);
duke@435 1273
duke@435 1274 __ set(rtn,__ ConI(-1));
kvn@2665 1275 __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
duke@435 1276 Node* i2 = __ AddI(__ value(i), targetCountLess1);
duke@435 1277 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
duke@435 1278 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
duke@435 1279 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
kvn@2665 1280 __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
duke@435 1281 Node* tpj = __ AddI(targetOffset, __ value(j));
duke@435 1282 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
duke@435 1283 Node* ipj = __ AddI(__ value(i), __ value(j));
duke@435 1284 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
duke@435 1285 __ if_then(targ, BoolTest::ne, src2); {
duke@435 1286 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
duke@435 1287 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
duke@435 1288 __ increment(i, __ AddI(__ value(j), one));
duke@435 1289 __ goto_(outer_loop);
duke@435 1290 } __ end_if(); __ dead(j);
duke@435 1291 }__ end_if(); __ dead(j);
duke@435 1292 __ increment(i, md2);
duke@435 1293 __ goto_(outer_loop);
duke@435 1294 }__ end_if();
duke@435 1295 __ increment(j, one);
duke@435 1296 }__ end_loop(); __ dead(j);
duke@435 1297 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
duke@435 1298 __ goto_(return_);
duke@435 1299 }__ end_if();
duke@435 1300 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
duke@435 1301 __ increment(i, targetCountLess1);
duke@435 1302 }__ end_if();
duke@435 1303 __ increment(i, one);
duke@435 1304 __ bind(outer_loop);
duke@435 1305 }__ end_loop(); __ dead(i);
duke@435 1306 __ bind(return_);
kvn@1286 1307
kvn@1286 1308 // Final sync IdealKit and GraphKit.
kvn@2726 1309 final_sync(kit);
duke@435 1310 Node* result = __ value(rtn);
duke@435 1311 #undef __
duke@435 1312 C->set_has_loops(true);
duke@435 1313 return result;
duke@435 1314 }
duke@435 1315
duke@435 1316 //------------------------------inline_string_indexOf------------------------
duke@435 1317 bool LibraryCallKit::inline_string_indexOf() {
twisti@4313 1318 Node* receiver = argument(0);
twisti@4313 1319 Node* arg = argument(1);
duke@435 1320
cfang@1116 1321 Node* result;
iveresov@1859 1322 // Disable the use of pcmpestri until it can be guaranteed that
iveresov@1859 1323 // the load doesn't cross into the uncommited space.
kvn@2602 1324 if (Matcher::has_match_rule(Op_StrIndexOf) &&
cfang@1116 1325 UseSSE42Intrinsics) {
cfang@1116 1326 // Generate SSE4.2 version of indexOf
cfang@1116 1327 // We currently only have match rules that use SSE4.2
cfang@1116 1328
twisti@4313 1329 receiver = null_check(receiver);
twisti@4313 1330 arg = null_check(arg);
cfang@1116 1331 if (stopped()) {
cfang@1116 1332 return true;
cfang@1116 1333 }
cfang@1116 1334
kvn@2602 1335 ciInstanceKlass* str_klass = env()->String_klass();
kvn@2602 1336 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
kvn@2602 1337
kvn@1421 1338 // Make the merge point
kvn@4115 1339 RegionNode* result_rgn = new (C) RegionNode(4);
kvn@4115 1340 Node* result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
kvn@1421 1341 Node* no_ctrl = NULL;
kvn@1421 1342
kvn@3760 1343 // Get start addr of source string
kvn@3760 1344 Node* source = load_String_value(no_ctrl, receiver);
kvn@3760 1345 Node* source_offset = load_String_offset(no_ctrl, receiver);
kvn@3760 1346 Node* source_start = array_element_address(source, source_offset, T_CHAR);
kvn@3760 1347
kvn@3760 1348 // Get length of source string
kvn@3760 1349 Node* source_cnt = load_String_length(no_ctrl, receiver);
kvn@3760 1350
kvn@3760 1351 // Get start addr of substring
twisti@4313 1352 Node* substr = load_String_value(no_ctrl, arg);
twisti@4313 1353 Node* substr_offset = load_String_offset(no_ctrl, arg);
kvn@3760 1354 Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
kvn@3760 1355
kvn@3760 1356 // Get length of source string
twisti@4313 1357 Node* substr_cnt = load_String_length(no_ctrl, arg);
kvn@1421 1358
kvn@1421 1359 // Check for substr count > string count
kvn@4115 1360 Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
kvn@4115 1361 Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
kvn@1421 1362 Node* if_gt = generate_slow_guard(bol, NULL);
kvn@1421 1363 if (if_gt != NULL) {
kvn@1421 1364 result_phi->init_req(2, intcon(-1));
kvn@1421 1365 result_rgn->init_req(2, if_gt);
kvn@1421 1366 }
kvn@1421 1367
kvn@1421 1368 if (!stopped()) {
kvn@2602 1369 // Check for substr count == 0
kvn@4115 1370 cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
kvn@4115 1371 bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
kvn@2602 1372 Node* if_zero = generate_slow_guard(bol, NULL);
kvn@2602 1373 if (if_zero != NULL) {
kvn@2602 1374 result_phi->init_req(3, intcon(0));
kvn@2602 1375 result_rgn->init_req(3, if_zero);
kvn@2602 1376 }
kvn@2602 1377 }
kvn@2602 1378
kvn@2602 1379 if (!stopped()) {
kvn@3760 1380 result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
kvn@1421 1381 result_phi->init_req(1, result);
kvn@1421 1382 result_rgn->init_req(1, control());
kvn@1421 1383 }
kvn@1421 1384 set_control(_gvn.transform(result_rgn));
kvn@1421 1385 record_for_igvn(result_rgn);
kvn@1421 1386 result = _gvn.transform(result_phi);
kvn@1421 1387
kvn@2602 1388 } else { // Use LibraryCallKit::string_indexOf
kvn@2602 1389 // don't intrinsify if argument isn't a constant string.
twisti@4313 1390 if (!arg->is_Con()) {
cfang@1116 1391 return false;
cfang@1116 1392 }
twisti@4313 1393 const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
cfang@1116 1394 if (str_type == NULL) {
cfang@1116 1395 return false;
cfang@1116 1396 }
cfang@1116 1397 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1398 ciObject* str_const = str_type->const_oop();
cfang@1116 1399 if (str_const == NULL || str_const->klass() != klass) {
cfang@1116 1400 return false;
cfang@1116 1401 }
cfang@1116 1402 ciInstance* str = str_const->as_instance();
cfang@1116 1403 assert(str != NULL, "must be instance");
cfang@1116 1404
kvn@3760 1405 ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
cfang@1116 1406 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
cfang@1116 1407
kvn@3760 1408 int o;
kvn@3760 1409 int c;
kvn@3760 1410 if (java_lang_String::has_offset_field()) {
kvn@3760 1411 o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
kvn@3760 1412 c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
kvn@3760 1413 } else {
kvn@3760 1414 o = 0;
kvn@3760 1415 c = pat->length();
kvn@3760 1416 }
kvn@3760 1417
cfang@1116 1418 // constant strings have no offset and count == length which
cfang@1116 1419 // simplifies the resulting code somewhat so lets optimize for that.
cfang@1116 1420 if (o != 0 || c != pat->length()) {
cfang@1116 1421 return false;
cfang@1116 1422 }
cfang@1116 1423
twisti@4313 1424 receiver = null_check(receiver, T_OBJECT);
twisti@4313 1425 // NOTE: No null check on the argument is needed since it's a constant String oop.
cfang@1116 1426 if (stopped()) {
kvn@2602 1427 return true;
cfang@1116 1428 }
cfang@1116 1429
cfang@1116 1430 // The null string as a pattern always returns 0 (match at beginning of string)
cfang@1116 1431 if (c == 0) {
twisti@4313 1432 set_result(intcon(0));
cfang@1116 1433 return true;
cfang@1116 1434 }
cfang@1116 1435
cfang@1116 1436 // Generate default indexOf
cfang@1116 1437 jchar lastChar = pat->char_at(o + (c - 1));
cfang@1116 1438 int cache = 0;
cfang@1116 1439 int i;
cfang@1116 1440 for (i = 0; i < c - 1; i++) {
cfang@1116 1441 assert(i < pat->length(), "out of range");
cfang@1116 1442 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
cfang@1116 1443 }
cfang@1116 1444
cfang@1116 1445 int md2 = c;
cfang@1116 1446 for (i = 0; i < c - 1; i++) {
cfang@1116 1447 assert(i < pat->length(), "out of range");
cfang@1116 1448 if (pat->char_at(o + i) == lastChar) {
cfang@1116 1449 md2 = (c - 1) - i;
cfang@1116 1450 }
cfang@1116 1451 }
cfang@1116 1452
cfang@1116 1453 result = string_indexOf(receiver, pat, o, cache, md2);
duke@435 1454 }
twisti@4313 1455 set_result(result);
duke@435 1456 return true;
duke@435 1457 }
duke@435 1458
twisti@4313 1459 //--------------------------round_double_node--------------------------------
twisti@4313 1460 // Round a double node if necessary.
twisti@4313 1461 Node* LibraryCallKit::round_double_node(Node* n) {
twisti@4313 1462 if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
twisti@4313 1463 n = _gvn.transform(new (C) RoundDoubleNode(0, n));
twisti@4313 1464 return n;
twisti@4313 1465 }
twisti@4313 1466
twisti@4313 1467 //------------------------------inline_math-----------------------------------
twisti@4313 1468 // public static double Math.abs(double)
twisti@4313 1469 // public static double Math.sqrt(double)
twisti@4313 1470 // public static double Math.log(double)
twisti@4313 1471 // public static double Math.log10(double)
twisti@4313 1472 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
twisti@4313 1473 Node* arg = round_double_node(argument(0));
twisti@4313 1474 Node* n;
twisti@4313 1475 switch (id) {
twisti@4313 1476 case vmIntrinsics::_dabs: n = new (C) AbsDNode( arg); break;
twisti@4313 1477 case vmIntrinsics::_dsqrt: n = new (C) SqrtDNode(0, arg); break;
twisti@4313 1478 case vmIntrinsics::_dlog: n = new (C) LogDNode( arg); break;
twisti@4313 1479 case vmIntrinsics::_dlog10: n = new (C) Log10DNode( arg); break;
twisti@4313 1480 default: fatal_unexpected_iid(id); break;
twisti@4313 1481 }
twisti@4313 1482 set_result(_gvn.transform(n));
twisti@4313 1483 return true;
duke@435 1484 }
duke@435 1485
duke@435 1486 //------------------------------inline_trig----------------------------------
duke@435 1487 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
duke@435 1488 // argument reduction which will turn into a fast/slow diamond.
duke@435 1489 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
twisti@4313 1490 Node* arg = round_double_node(argument(0));
twisti@4313 1491 Node* n = NULL;
duke@435 1492
duke@435 1493 switch (id) {
twisti@4313 1494 case vmIntrinsics::_dsin: n = new (C) SinDNode(arg); break;
twisti@4313 1495 case vmIntrinsics::_dcos: n = new (C) CosDNode(arg); break;
twisti@4313 1496 case vmIntrinsics::_dtan: n = new (C) TanDNode(arg); break;
twisti@4313 1497 default: fatal_unexpected_iid(id); break;
duke@435 1498 }
twisti@4313 1499 n = _gvn.transform(n);
duke@435 1500
duke@435 1501 // Rounding required? Check for argument reduction!
twisti@4313 1502 if (Matcher::strict_fp_requires_explicit_rounding) {
duke@435 1503 static const double pi_4 = 0.7853981633974483;
duke@435 1504 static const double neg_pi_4 = -0.7853981633974483;
duke@435 1505 // pi/2 in 80-bit extended precision
duke@435 1506 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1507 // -pi/2 in 80-bit extended precision
duke@435 1508 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1509 // Cutoff value for using this argument reduction technique
duke@435 1510 //static const double pi_2_minus_epsilon = 1.564660403643354;
duke@435 1511 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
duke@435 1512
duke@435 1513 // Pseudocode for sin:
duke@435 1514 // if (x <= Math.PI / 4.0) {
duke@435 1515 // if (x >= -Math.PI / 4.0) return fsin(x);
duke@435 1516 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
duke@435 1517 // } else {
duke@435 1518 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
duke@435 1519 // }
duke@435 1520 // return StrictMath.sin(x);
duke@435 1521
duke@435 1522 // Pseudocode for cos:
duke@435 1523 // if (x <= Math.PI / 4.0) {
duke@435 1524 // if (x >= -Math.PI / 4.0) return fcos(x);
duke@435 1525 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
duke@435 1526 // } else {
duke@435 1527 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
duke@435 1528 // }
duke@435 1529 // return StrictMath.cos(x);
duke@435 1530
duke@435 1531 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
duke@435 1532 // requires a special machine instruction to load it. Instead we'll try
duke@435 1533 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
duke@435 1534 // probably do the math inside the SIN encoding.
duke@435 1535
duke@435 1536 // Make the merge point
twisti@4313 1537 RegionNode* r = new (C) RegionNode(3);
twisti@4313 1538 Node* phi = new (C) PhiNode(r, Type::DOUBLE);
duke@435 1539
duke@435 1540 // Flatten arg so we need only 1 test
kvn@4115 1541 Node *abs = _gvn.transform(new (C) AbsDNode(arg));
duke@435 1542 // Node for PI/4 constant
duke@435 1543 Node *pi4 = makecon(TypeD::make(pi_4));
duke@435 1544 // Check PI/4 : abs(arg)
kvn@4115 1545 Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
duke@435 1546 // Check: If PI/4 < abs(arg) then go slow
kvn@4115 1547 Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
duke@435 1548 // Branch either way
duke@435 1549 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 1550 set_control(opt_iff(r,iff));
duke@435 1551
duke@435 1552 // Set fast path result
twisti@4313 1553 phi->init_req(2, n);
duke@435 1554
duke@435 1555 // Slow path - non-blocking leaf call
duke@435 1556 Node* call = NULL;
duke@435 1557 switch (id) {
duke@435 1558 case vmIntrinsics::_dsin:
duke@435 1559 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1560 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
duke@435 1561 "Sin", NULL, arg, top());
duke@435 1562 break;
duke@435 1563 case vmIntrinsics::_dcos:
duke@435 1564 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1565 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
duke@435 1566 "Cos", NULL, arg, top());
duke@435 1567 break;
duke@435 1568 case vmIntrinsics::_dtan:
duke@435 1569 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1570 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
duke@435 1571 "Tan", NULL, arg, top());
duke@435 1572 break;
duke@435 1573 }
duke@435 1574 assert(control()->in(0) == call, "");
twisti@4313 1575 Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
twisti@4313 1576 r->init_req(1, control());
twisti@4313 1577 phi->init_req(1, slow_result);
duke@435 1578
duke@435 1579 // Post-merge
duke@435 1580 set_control(_gvn.transform(r));
duke@435 1581 record_for_igvn(r);
twisti@4313 1582 n = _gvn.transform(phi);
duke@435 1583
duke@435 1584 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1585 }
twisti@4313 1586 set_result(n);
duke@435 1587 return true;
duke@435 1588 }
duke@435 1589
roland@3908 1590 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
roland@3908 1591 //-------------------
roland@3908 1592 //result=(result.isNaN())? funcAddr():result;
roland@3908 1593 // Check: If isNaN() by checking result!=result? then either trap
roland@3908 1594 // or go to runtime
twisti@4313 1595 Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
roland@3908 1596 // Build the boolean node
twisti@4313 1597 Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
roland@3908 1598
roland@3908 1599 if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
twisti@4313 1600 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
roland@3908 1601 // The pow or exp intrinsic returned a NaN, which requires a call
roland@3908 1602 // to the runtime. Recompile with the runtime call.
roland@3908 1603 uncommon_trap(Deoptimization::Reason_intrinsic,
roland@3908 1604 Deoptimization::Action_make_not_entrant);
roland@3908 1605 }
twisti@4313 1606 set_result(result);
roland@3908 1607 } else {
roland@3908 1608 // If this inlining ever returned NaN in the past, we compile a call
roland@3908 1609 // to the runtime to properly handle corner cases
roland@3908 1610
roland@3908 1611 IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
kvn@4115 1612 Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
kvn@4115 1613 Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
roland@3908 1614
roland@3908 1615 if (!if_slow->is_top()) {
twisti@4313 1616 RegionNode* result_region = new (C) RegionNode(3);
kvn@4115 1617 PhiNode* result_val = new (C) PhiNode(result_region, Type::DOUBLE);
roland@3908 1618
roland@3908 1619 result_region->init_req(1, if_fast);
roland@3908 1620 result_val->init_req(1, result);
roland@3908 1621
roland@3908 1622 set_control(if_slow);
roland@3908 1623
roland@3908 1624 const TypePtr* no_memory_effects = NULL;
roland@3908 1625 Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
roland@3908 1626 no_memory_effects,
roland@3908 1627 x, top(), y, y ? top() : NULL);
kvn@4115 1628 Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
roland@3908 1629 #ifdef ASSERT
kvn@4115 1630 Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
roland@3908 1631 assert(value_top == top(), "second value must be top");
roland@3908 1632 #endif
roland@3908 1633
roland@3908 1634 result_region->init_req(2, control());
roland@3908 1635 result_val->init_req(2, value);
twisti@4313 1636 set_result(result_region, result_val);
roland@3908 1637 } else {
twisti@4313 1638 set_result(result);
roland@3908 1639 }
roland@3908 1640 }
roland@3908 1641 }
roland@3908 1642
duke@435 1643 //------------------------------inline_exp-------------------------------------
duke@435 1644 // Inline exp instructions, if possible. The Intel hardware only misses
duke@435 1645 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
twisti@4313 1646 bool LibraryCallKit::inline_exp() {
twisti@4313 1647 Node* arg = round_double_node(argument(0));
twisti@4313 1648 Node* n = _gvn.transform(new (C) ExpDNode(0, arg));
twisti@4313 1649
twisti@4313 1650 finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
duke@435 1651
duke@435 1652 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1653 return true;
duke@435 1654 }
duke@435 1655
duke@435 1656 //------------------------------inline_pow-------------------------------------
duke@435 1657 // Inline power instructions, if possible.
twisti@4313 1658 bool LibraryCallKit::inline_pow() {
duke@435 1659 // Pseudocode for pow
duke@435 1660 // if (x <= 0.0) {
roland@3908 1661 // long longy = (long)y;
roland@3908 1662 // if ((double)longy == y) { // if y is long
roland@3908 1663 // if (y + 1 == y) longy = 0; // huge number: even
roland@3908 1664 // result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
duke@435 1665 // } else {
duke@435 1666 // result = NaN;
duke@435 1667 // }
duke@435 1668 // } else {
duke@435 1669 // result = DPow(x,y);
duke@435 1670 // }
duke@435 1671 // if (result != result)? {
roland@3908 1672 // result = uncommon_trap() or runtime_call();
duke@435 1673 // }
duke@435 1674 // return result;
duke@435 1675
twisti@4313 1676 Node* x = round_double_node(argument(0));
twisti@4313 1677 Node* y = round_double_node(argument(2));
duke@435 1678
roland@3908 1679 Node* result = NULL;
roland@3908 1680
roland@3908 1681 if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
roland@3908 1682 // Short form: skip the fancy tests and just check for NaN result.
twisti@4313 1683 result = _gvn.transform(new (C) PowDNode(0, x, y));
duke@435 1684 } else {
roland@3908 1685 // If this inlining ever returned NaN in the past, include all
roland@3908 1686 // checks + call to the runtime.
duke@435 1687
duke@435 1688 // Set the merge point for If node with condition of (x <= 0.0)
duke@435 1689 // There are four possible paths to region node and phi node
kvn@4115 1690 RegionNode *r = new (C) RegionNode(4);
kvn@4115 1691 Node *phi = new (C) PhiNode(r, Type::DOUBLE);
duke@435 1692
duke@435 1693 // Build the first if node: if (x <= 0.0)
duke@435 1694 // Node for 0 constant
duke@435 1695 Node *zeronode = makecon(TypeD::ZERO);
duke@435 1696 // Check x:0
kvn@4115 1697 Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
duke@435 1698 // Check: If (x<=0) then go complex path
kvn@4115 1699 Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
duke@435 1700 // Branch either way
duke@435 1701 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1702 // Fast path taken; set region slot 3
kvn@4115 1703 Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
duke@435 1704 r->init_req(3,fast_taken); // Capture fast-control
duke@435 1705
duke@435 1706 // Fast path not-taken, i.e. slow path
kvn@4115 1707 Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
duke@435 1708
duke@435 1709 // Set fast path result
kvn@4115 1710 Node *fast_result = _gvn.transform( new (C) PowDNode(0, x, y) );
duke@435 1711 phi->init_req(3, fast_result);
duke@435 1712
duke@435 1713 // Complex path
roland@3908 1714 // Build the second if node (if y is long)
roland@3908 1715 // Node for (long)y
kvn@4115 1716 Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
roland@3908 1717 // Node for (double)((long) y)
kvn@4115 1718 Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
roland@3908 1719 // Check (double)((long) y) : y
kvn@4115 1720 Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
roland@3908 1721 // Check if (y isn't long) then go to slow path
roland@3908 1722
kvn@4115 1723 Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
twisti@1040 1724 // Branch either way
duke@435 1725 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
kvn@4115 1726 Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
kvn@4115 1727
kvn@4115 1728 Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
roland@3908 1729
roland@3908 1730 // Calculate DPow(abs(x), y)*(1 & (long)y)
duke@435 1731 // Node for constant 1
roland@3908 1732 Node *conone = longcon(1);
roland@3908 1733 // 1& (long)y
kvn@4115 1734 Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
roland@3908 1735
roland@3908 1736 // A huge number is always even. Detect a huge number by checking
roland@3908 1737 // if y + 1 == y and set integer to be tested for parity to 0.
roland@3908 1738 // Required for corner case:
roland@3908 1739 // (long)9.223372036854776E18 = max_jlong
roland@3908 1740 // (double)(long)9.223372036854776E18 = 9.223372036854776E18
roland@3908 1741 // max_jlong is odd but 9.223372036854776E18 is even
kvn@4115 1742 Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
kvn@4115 1743 Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
kvn@4115 1744 Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
roland@3908 1745 Node* correctedsign = NULL;
roland@3908 1746 if (ConditionalMoveLimit != 0) {
roland@3908 1747 correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
roland@3908 1748 } else {
roland@3908 1749 IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
kvn@4115 1750 RegionNode *r = new (C) RegionNode(3);
kvn@4115 1751 Node *phi = new (C) PhiNode(r, TypeLong::LONG);
kvn@4115 1752 r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
kvn@4115 1753 r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
roland@3908 1754 phi->init_req(1, signnode);
roland@3908 1755 phi->init_req(2, longcon(0));
roland@3908 1756 correctedsign = _gvn.transform(phi);
roland@3908 1757 ylong_path = _gvn.transform(r);
roland@3908 1758 record_for_igvn(r);
roland@3908 1759 }
roland@3908 1760
duke@435 1761 // zero node
roland@3908 1762 Node *conzero = longcon(0);
roland@3908 1763 // Check (1&(long)y)==0?
kvn@4115 1764 Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
roland@3908 1765 // Check if (1&(long)y)!=0?, if so the result is negative
kvn@4115 1766 Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
duke@435 1767 // abs(x)
kvn@4115 1768 Node *absx=_gvn.transform( new (C) AbsDNode(x));
duke@435 1769 // abs(x)^y
kvn@4115 1770 Node *absxpowy = _gvn.transform( new (C) PowDNode(0, absx, y) );
duke@435 1771 // -abs(x)^y
kvn@4115 1772 Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
roland@3908 1773 // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
roland@3908 1774 Node *signresult = NULL;
roland@3908 1775 if (ConditionalMoveLimit != 0) {
roland@3908 1776 signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
roland@3908 1777 } else {
roland@3908 1778 IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
kvn@4115 1779 RegionNode *r = new (C) RegionNode(3);
kvn@4115 1780 Node *phi = new (C) PhiNode(r, Type::DOUBLE);
kvn@4115 1781 r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
kvn@4115 1782 r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
roland@3908 1783 phi->init_req(1, absxpowy);
roland@3908 1784 phi->init_req(2, negabsxpowy);
roland@3908 1785 signresult = _gvn.transform(phi);
roland@3908 1786 ylong_path = _gvn.transform(r);
roland@3908 1787 record_for_igvn(r);
roland@3908 1788 }
duke@435 1789 // Set complex path fast result
roland@3908 1790 r->init_req(2, ylong_path);
duke@435 1791 phi->init_req(2, signresult);
duke@435 1792
duke@435 1793 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 1794 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
duke@435 1795 r->init_req(1,slow_path);
duke@435 1796 phi->init_req(1,slow_result);
duke@435 1797
duke@435 1798 // Post merge
duke@435 1799 set_control(_gvn.transform(r));
duke@435 1800 record_for_igvn(r);
twisti@4313 1801 result = _gvn.transform(phi);
duke@435 1802 }
duke@435 1803
roland@3908 1804 finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
duke@435 1805
duke@435 1806 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1807 return true;
duke@435 1808 }
duke@435 1809
duke@435 1810 //------------------------------runtime_math-----------------------------
duke@435 1811 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
duke@435 1812 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
duke@435 1813 "must be (DD)D or (D)D type");
duke@435 1814
duke@435 1815 // Inputs
twisti@4313 1816 Node* a = round_double_node(argument(0));
twisti@4313 1817 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
duke@435 1818
duke@435 1819 const TypePtr* no_memory_effects = NULL;
duke@435 1820 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
duke@435 1821 no_memory_effects,
duke@435 1822 a, top(), b, b ? top() : NULL);
kvn@4115 1823 Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
duke@435 1824 #ifdef ASSERT
kvn@4115 1825 Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
duke@435 1826 assert(value_top == top(), "second value must be top");
duke@435 1827 #endif
duke@435 1828
twisti@4313 1829 set_result(value);
duke@435 1830 return true;
duke@435 1831 }
duke@435 1832
duke@435 1833 //------------------------------inline_math_native-----------------------------
duke@435 1834 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
twisti@4313 1835 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
duke@435 1836 switch (id) {
duke@435 1837 // These intrinsics are not properly supported on all hardware
twisti@4313 1838 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
twisti@4313 1839 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS");
twisti@4313 1840 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
twisti@4313 1841 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN");
twisti@4313 1842 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
twisti@4313 1843 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
twisti@4313 1844
twisti@4313 1845 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_math(id) :
twisti@4313 1846 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG");
twisti@4313 1847 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
twisti@4313 1848 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
duke@435 1849
duke@435 1850 // These intrinsics are supported on all hardware
twisti@4313 1851 case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_math(id) : false;
twisti@4313 1852 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_math(id) : false;
twisti@4313 1853
twisti@4313 1854 case vmIntrinsics::_dexp: return Matcher::has_match_rule(Op_ExpD) ? inline_exp() :
twisti@4313 1855 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP");
twisti@4313 1856 case vmIntrinsics::_dpow: return Matcher::has_match_rule(Op_PowD) ? inline_pow() :
twisti@4313 1857 runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW");
twisti@4313 1858 #undef FN_PTR
duke@435 1859
duke@435 1860 // These intrinsics are not yet correctly implemented
duke@435 1861 case vmIntrinsics::_datan2:
duke@435 1862 return false;
duke@435 1863
duke@435 1864 default:
twisti@4313 1865 fatal_unexpected_iid(id);
duke@435 1866 return false;
duke@435 1867 }
duke@435 1868 }
duke@435 1869
duke@435 1870 static bool is_simple_name(Node* n) {
duke@435 1871 return (n->req() == 1 // constant
duke@435 1872 || (n->is_Type() && n->as_Type()->type()->singleton())
duke@435 1873 || n->is_Proj() // parameter or return value
duke@435 1874 || n->is_Phi() // local of some sort
duke@435 1875 );
duke@435 1876 }
duke@435 1877
duke@435 1878 //----------------------------inline_min_max-----------------------------------
duke@435 1879 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
twisti@4313 1880 set_result(generate_min_max(id, argument(0), argument(1)));
duke@435 1881 return true;
duke@435 1882 }
duke@435 1883
duke@435 1884 Node*
duke@435 1885 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
duke@435 1886 // These are the candidate return value:
duke@435 1887 Node* xvalue = x0;
duke@435 1888 Node* yvalue = y0;
duke@435 1889
duke@435 1890 if (xvalue == yvalue) {
duke@435 1891 return xvalue;
duke@435 1892 }
duke@435 1893
duke@435 1894 bool want_max = (id == vmIntrinsics::_max);
duke@435 1895
duke@435 1896 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
duke@435 1897 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
duke@435 1898 if (txvalue == NULL || tyvalue == NULL) return top();
duke@435 1899 // This is not really necessary, but it is consistent with a
duke@435 1900 // hypothetical MaxINode::Value method:
duke@435 1901 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
duke@435 1902
duke@435 1903 // %%% This folding logic should (ideally) be in a different place.
duke@435 1904 // Some should be inside IfNode, and there to be a more reliable
duke@435 1905 // transformation of ?: style patterns into cmoves. We also want
duke@435 1906 // more powerful optimizations around cmove and min/max.
duke@435 1907
duke@435 1908 // Try to find a dominating comparison of these guys.
duke@435 1909 // It can simplify the index computation for Arrays.copyOf
duke@435 1910 // and similar uses of System.arraycopy.
duke@435 1911 // First, compute the normalized version of CmpI(x, y).
duke@435 1912 int cmp_op = Op_CmpI;
duke@435 1913 Node* xkey = xvalue;
duke@435 1914 Node* ykey = yvalue;
kvn@4115 1915 Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
duke@435 1916 if (ideal_cmpxy->is_Cmp()) {
duke@435 1917 // E.g., if we have CmpI(length - offset, count),
duke@435 1918 // it might idealize to CmpI(length, count + offset)
duke@435 1919 cmp_op = ideal_cmpxy->Opcode();
duke@435 1920 xkey = ideal_cmpxy->in(1);
duke@435 1921 ykey = ideal_cmpxy->in(2);
duke@435 1922 }
duke@435 1923
duke@435 1924 // Start by locating any relevant comparisons.
duke@435 1925 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
duke@435 1926 Node* cmpxy = NULL;
duke@435 1927 Node* cmpyx = NULL;
duke@435 1928 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
duke@435 1929 Node* cmp = start_from->fast_out(k);
duke@435 1930 if (cmp->outcnt() > 0 && // must have prior uses
duke@435 1931 cmp->in(0) == NULL && // must be context-independent
duke@435 1932 cmp->Opcode() == cmp_op) { // right kind of compare
duke@435 1933 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
duke@435 1934 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
duke@435 1935 }
duke@435 1936 }
duke@435 1937
duke@435 1938 const int NCMPS = 2;
duke@435 1939 Node* cmps[NCMPS] = { cmpxy, cmpyx };
duke@435 1940 int cmpn;
duke@435 1941 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1942 if (cmps[cmpn] != NULL) break; // find a result
duke@435 1943 }
duke@435 1944 if (cmpn < NCMPS) {
duke@435 1945 // Look for a dominating test that tells us the min and max.
duke@435 1946 int depth = 0; // Limit search depth for speed
duke@435 1947 Node* dom = control();
duke@435 1948 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
duke@435 1949 if (++depth >= 100) break;
duke@435 1950 Node* ifproj = dom;
duke@435 1951 if (!ifproj->is_Proj()) continue;
duke@435 1952 Node* iff = ifproj->in(0);
duke@435 1953 if (!iff->is_If()) continue;
duke@435 1954 Node* bol = iff->in(1);
duke@435 1955 if (!bol->is_Bool()) continue;
duke@435 1956 Node* cmp = bol->in(1);
duke@435 1957 if (cmp == NULL) continue;
duke@435 1958 for (cmpn = 0; cmpn < NCMPS; cmpn++)
duke@435 1959 if (cmps[cmpn] == cmp) break;
duke@435 1960 if (cmpn == NCMPS) continue;
duke@435 1961 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1962 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
duke@435 1963 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1964 // At this point, we know that 'x btest y' is true.
duke@435 1965 switch (btest) {
duke@435 1966 case BoolTest::eq:
duke@435 1967 // They are proven equal, so we can collapse the min/max.
duke@435 1968 // Either value is the answer. Choose the simpler.
duke@435 1969 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
duke@435 1970 return yvalue;
duke@435 1971 return xvalue;
duke@435 1972 case BoolTest::lt: // x < y
duke@435 1973 case BoolTest::le: // x <= y
duke@435 1974 return (want_max ? yvalue : xvalue);
duke@435 1975 case BoolTest::gt: // x > y
duke@435 1976 case BoolTest::ge: // x >= y
duke@435 1977 return (want_max ? xvalue : yvalue);
duke@435 1978 }
duke@435 1979 }
duke@435 1980 }
duke@435 1981
duke@435 1982 // We failed to find a dominating test.
duke@435 1983 // Let's pick a test that might GVN with prior tests.
duke@435 1984 Node* best_bol = NULL;
duke@435 1985 BoolTest::mask best_btest = BoolTest::illegal;
duke@435 1986 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1987 Node* cmp = cmps[cmpn];
duke@435 1988 if (cmp == NULL) continue;
duke@435 1989 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
duke@435 1990 Node* bol = cmp->fast_out(j);
duke@435 1991 if (!bol->is_Bool()) continue;
duke@435 1992 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1993 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
duke@435 1994 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1995 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
duke@435 1996 best_bol = bol->as_Bool();
duke@435 1997 best_btest = btest;
duke@435 1998 }
duke@435 1999 }
duke@435 2000 }
duke@435 2001
duke@435 2002 Node* answer_if_true = NULL;
duke@435 2003 Node* answer_if_false = NULL;
duke@435 2004 switch (best_btest) {
duke@435 2005 default:
duke@435 2006 if (cmpxy == NULL)
duke@435 2007 cmpxy = ideal_cmpxy;
kvn@4115 2008 best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
duke@435 2009 // and fall through:
duke@435 2010 case BoolTest::lt: // x < y
duke@435 2011 case BoolTest::le: // x <= y
duke@435 2012 answer_if_true = (want_max ? yvalue : xvalue);
duke@435 2013 answer_if_false = (want_max ? xvalue : yvalue);
duke@435 2014 break;
duke@435 2015 case BoolTest::gt: // x > y
duke@435 2016 case BoolTest::ge: // x >= y
duke@435 2017 answer_if_true = (want_max ? xvalue : yvalue);
duke@435 2018 answer_if_false = (want_max ? yvalue : xvalue);
duke@435 2019 break;
duke@435 2020 }
duke@435 2021
duke@435 2022 jint hi, lo;
duke@435 2023 if (want_max) {
duke@435 2024 // We can sharpen the minimum.
duke@435 2025 hi = MAX2(txvalue->_hi, tyvalue->_hi);
duke@435 2026 lo = MAX2(txvalue->_lo, tyvalue->_lo);
duke@435 2027 } else {
duke@435 2028 // We can sharpen the maximum.
duke@435 2029 hi = MIN2(txvalue->_hi, tyvalue->_hi);
duke@435 2030 lo = MIN2(txvalue->_lo, tyvalue->_lo);
duke@435 2031 }
duke@435 2032
duke@435 2033 // Use a flow-free graph structure, to avoid creating excess control edges
duke@435 2034 // which could hinder other optimizations.
duke@435 2035 // Since Math.min/max is often used with arraycopy, we want
duke@435 2036 // tightly_coupled_allocation to be able to see beyond min/max expressions.
duke@435 2037 Node* cmov = CMoveNode::make(C, NULL, best_bol,
duke@435 2038 answer_if_false, answer_if_true,
duke@435 2039 TypeInt::make(lo, hi, widen));
duke@435 2040
duke@435 2041 return _gvn.transform(cmov);
duke@435 2042
duke@435 2043 /*
duke@435 2044 // This is not as desirable as it may seem, since Min and Max
duke@435 2045 // nodes do not have a full set of optimizations.
duke@435 2046 // And they would interfere, anyway, with 'if' optimizations
duke@435 2047 // and with CMoveI canonical forms.
duke@435 2048 switch (id) {
duke@435 2049 case vmIntrinsics::_min:
duke@435 2050 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
duke@435 2051 case vmIntrinsics::_max:
duke@435 2052 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
duke@435 2053 default:
duke@435 2054 ShouldNotReachHere();
duke@435 2055 }
duke@435 2056 */
duke@435 2057 }
duke@435 2058
duke@435 2059 inline int
duke@435 2060 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
duke@435 2061 const TypePtr* base_type = TypePtr::NULL_PTR;
duke@435 2062 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
duke@435 2063 if (base_type == NULL) {
duke@435 2064 // Unknown type.
duke@435 2065 return Type::AnyPtr;
duke@435 2066 } else if (base_type == TypePtr::NULL_PTR) {
duke@435 2067 // Since this is a NULL+long form, we have to switch to a rawptr.
kvn@4115 2068 base = _gvn.transform( new (C) CastX2PNode(offset) );
duke@435 2069 offset = MakeConX(0);
duke@435 2070 return Type::RawPtr;
duke@435 2071 } else if (base_type->base() == Type::RawPtr) {
duke@435 2072 return Type::RawPtr;
duke@435 2073 } else if (base_type->isa_oopptr()) {
duke@435 2074 // Base is never null => always a heap address.
duke@435 2075 if (base_type->ptr() == TypePtr::NotNull) {
duke@435 2076 return Type::OopPtr;
duke@435 2077 }
duke@435 2078 // Offset is small => always a heap address.
duke@435 2079 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
duke@435 2080 if (offset_type != NULL &&
duke@435 2081 base_type->offset() == 0 && // (should always be?)
duke@435 2082 offset_type->_lo >= 0 &&
duke@435 2083 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
duke@435 2084 return Type::OopPtr;
duke@435 2085 }
duke@435 2086 // Otherwise, it might either be oop+off or NULL+addr.
duke@435 2087 return Type::AnyPtr;
duke@435 2088 } else {
duke@435 2089 // No information:
duke@435 2090 return Type::AnyPtr;
duke@435 2091 }
duke@435 2092 }
duke@435 2093
duke@435 2094 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
duke@435 2095 int kind = classify_unsafe_addr(base, offset);
duke@435 2096 if (kind == Type::RawPtr) {
duke@435 2097 return basic_plus_adr(top(), base, offset);
duke@435 2098 } else {
duke@435 2099 return basic_plus_adr(base, offset);
duke@435 2100 }
duke@435 2101 }
duke@435 2102
twisti@4313 2103 //--------------------------inline_number_methods-----------------------------
twisti@4313 2104 // inline int Integer.numberOfLeadingZeros(int)
twisti@4313 2105 // inline int Long.numberOfLeadingZeros(long)
twisti@4313 2106 //
twisti@4313 2107 // inline int Integer.numberOfTrailingZeros(int)
twisti@4313 2108 // inline int Long.numberOfTrailingZeros(long)
twisti@4313 2109 //
twisti@4313 2110 // inline int Integer.bitCount(int)
twisti@4313 2111 // inline int Long.bitCount(long)
twisti@4313 2112 //
twisti@4313 2113 // inline char Character.reverseBytes(char)
twisti@4313 2114 // inline short Short.reverseBytes(short)
twisti@4313 2115 // inline int Integer.reverseBytes(int)
twisti@4313 2116 // inline long Long.reverseBytes(long)
twisti@4313 2117 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
twisti@4313 2118 Node* arg = argument(0);
twisti@4313 2119 Node* n;
twisti@1210 2120 switch (id) {
twisti@4313 2121 case vmIntrinsics::_numberOfLeadingZeros_i: n = new (C) CountLeadingZerosINode( arg); break;
twisti@4313 2122 case vmIntrinsics::_numberOfLeadingZeros_l: n = new (C) CountLeadingZerosLNode( arg); break;
twisti@4313 2123 case vmIntrinsics::_numberOfTrailingZeros_i: n = new (C) CountTrailingZerosINode(arg); break;
twisti@4313 2124 case vmIntrinsics::_numberOfTrailingZeros_l: n = new (C) CountTrailingZerosLNode(arg); break;
twisti@4313 2125 case vmIntrinsics::_bitCount_i: n = new (C) PopCountINode( arg); break;
twisti@4313 2126 case vmIntrinsics::_bitCount_l: n = new (C) PopCountLNode( arg); break;
twisti@4313 2127 case vmIntrinsics::_reverseBytes_c: n = new (C) ReverseBytesUSNode(0, arg); break;
twisti@4313 2128 case vmIntrinsics::_reverseBytes_s: n = new (C) ReverseBytesSNode( 0, arg); break;
twisti@4313 2129 case vmIntrinsics::_reverseBytes_i: n = new (C) ReverseBytesINode( 0, arg); break;
twisti@4313 2130 case vmIntrinsics::_reverseBytes_l: n = new (C) ReverseBytesLNode( 0, arg); break;
twisti@4313 2131 default: fatal_unexpected_iid(id); break;
twisti@1210 2132 }
twisti@4313 2133 set_result(_gvn.transform(n));
twisti@1210 2134 return true;
twisti@1210 2135 }
twisti@1210 2136
duke@435 2137 //----------------------------inline_unsafe_access----------------------------
duke@435 2138
duke@435 2139 const static BasicType T_ADDRESS_HOLDER = T_LONG;
duke@435 2140
kvn@4002 2141 // Helper that guards and inserts a pre-barrier.
kvn@4002 2142 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
twisti@4313 2143 Node* pre_val, bool need_mem_bar) {
johnc@2781 2144 // We could be accessing the referent field of a reference object. If so, when G1
johnc@2781 2145 // is enabled, we need to log the value in the referent field in an SATB buffer.
johnc@2781 2146 // This routine performs some compile time filters and generates suitable
johnc@2781 2147 // runtime filters that guard the pre-barrier code.
kvn@4002 2148 // Also add memory barrier for non volatile load from the referent field
kvn@4002 2149 // to prevent commoning of loads across safepoint.
kvn@4002 2150 if (!UseG1GC && !need_mem_bar)
kvn@4002 2151 return;
johnc@2781 2152
johnc@2781 2153 // Some compile time checks.
johnc@2781 2154
johnc@2781 2155 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
johnc@2781 2156 const TypeX* otype = offset->find_intptr_t_type();
johnc@2781 2157 if (otype != NULL && otype->is_con() &&
johnc@2781 2158 otype->get_con() != java_lang_ref_Reference::referent_offset) {
johnc@2781 2159 // Constant offset but not the reference_offset so just return
johnc@2781 2160 return;
johnc@2781 2161 }
johnc@2781 2162
johnc@2781 2163 // We only need to generate the runtime guards for instances.
johnc@2781 2164 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
johnc@2781 2165 if (btype != NULL) {
johnc@2781 2166 if (btype->isa_aryptr()) {
johnc@2781 2167 // Array type so nothing to do
johnc@2781 2168 return;
johnc@2781 2169 }
johnc@2781 2170
johnc@2781 2171 const TypeInstPtr* itype = btype->isa_instptr();
johnc@2781 2172 if (itype != NULL) {
kvn@4002 2173 // Can the klass of base_oop be statically determined to be
kvn@4002 2174 // _not_ a sub-class of Reference and _not_ Object?
johnc@2781 2175 ciKlass* klass = itype->klass();
kvn@4002 2176 if ( klass->is_loaded() &&
kvn@4002 2177 !klass->is_subtype_of(env()->Reference_klass()) &&
kvn@4002 2178 !env()->Object_klass()->is_subtype_of(klass)) {
johnc@2781 2179 return;
johnc@2781 2180 }
johnc@2781 2181 }
johnc@2781 2182 }
johnc@2781 2183
johnc@2781 2184 // The compile time filters did not reject base_oop/offset so
johnc@2781 2185 // we need to generate the following runtime filters
johnc@2781 2186 //
johnc@2781 2187 // if (offset == java_lang_ref_Reference::_reference_offset) {
kvn@4002 2188 // if (instance_of(base, java.lang.ref.Reference)) {
kvn@4002 2189 // pre_barrier(_, pre_val, ...);
johnc@2781 2190 // }
johnc@2781 2191 // }
johnc@2781 2192
twisti@4313 2193 float likely = PROB_LIKELY( 0.999);
twisti@4313 2194 float unlikely = PROB_UNLIKELY(0.999);
johnc@2781 2195
johnc@2787 2196 IdealKit ideal(this);
johnc@2781 2197 #define __ ideal.
johnc@2781 2198
johnc@2786 2199 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
johnc@2781 2200
johnc@2781 2201 __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
johnc@2781 2202 // Update graphKit memory and control from IdealKit.
johnc@2787 2203 sync_kit(ideal);
johnc@2781 2204
johnc@2781 2205 Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
johnc@2781 2206 Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
johnc@2781 2207
johnc@2781 2208 // Update IdealKit memory and control from graphKit.
johnc@2787 2209 __ sync_kit(this);
johnc@2781 2210
johnc@2781 2211 Node* one = __ ConI(1);
kvn@4002 2212 // is_instof == 0 if base_oop == NULL
johnc@2781 2213 __ if_then(is_instof, BoolTest::eq, one, unlikely); {
johnc@2781 2214
johnc@2781 2215 // Update graphKit from IdeakKit.
johnc@2787 2216 sync_kit(ideal);
johnc@2781 2217
johnc@2781 2218 // Use the pre-barrier to record the value in the referent field
johnc@2781 2219 pre_barrier(false /* do_load */,
johnc@2781 2220 __ ctrl(),
johnc@2790 2221 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 2222 pre_val /* pre_val */,
johnc@2781 2223 T_OBJECT);
kvn@4002 2224 if (need_mem_bar) {
kvn@4002 2225 // Add memory barrier to prevent commoning reads from this field
kvn@4002 2226 // across safepoint since GC can change its value.
kvn@4002 2227 insert_mem_bar(Op_MemBarCPUOrder);
kvn@4002 2228 }
johnc@2781 2229 // Update IdealKit from graphKit.
johnc@2787 2230 __ sync_kit(this);
johnc@2781 2231
johnc@2781 2232 } __ end_if(); // _ref_type != ref_none
johnc@2781 2233 } __ end_if(); // offset == referent_offset
johnc@2781 2234
johnc@2781 2235 // Final sync IdealKit and GraphKit.
johnc@2787 2236 final_sync(ideal);
johnc@2781 2237 #undef __
johnc@2781 2238 }
johnc@2781 2239
johnc@2781 2240
duke@435 2241 // Interpret Unsafe.fieldOffset cookies correctly:
duke@435 2242 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
duke@435 2243
roland@4106 2244 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
roland@4106 2245 // Attempt to infer a sharper value type from the offset and base type.
roland@4106 2246 ciKlass* sharpened_klass = NULL;
roland@4106 2247
roland@4106 2248 // See if it is an instance field, with an object type.
roland@4106 2249 if (alias_type->field() != NULL) {
roland@4106 2250 assert(!is_native_ptr, "native pointer op cannot use a java address");
roland@4106 2251 if (alias_type->field()->type()->is_klass()) {
roland@4106 2252 sharpened_klass = alias_type->field()->type()->as_klass();
roland@4106 2253 }
roland@4106 2254 }
roland@4106 2255
roland@4106 2256 // See if it is a narrow oop array.
roland@4106 2257 if (adr_type->isa_aryptr()) {
roland@4106 2258 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
roland@4106 2259 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
roland@4106 2260 if (elem_type != NULL) {
roland@4106 2261 sharpened_klass = elem_type->klass();
roland@4106 2262 }
roland@4106 2263 }
roland@4106 2264 }
roland@4106 2265
twisti@4158 2266 // The sharpened class might be unloaded if there is no class loader
twisti@4158 2267 // contraint in place.
twisti@4158 2268 if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
roland@4106 2269 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
roland@4106 2270
roland@4106 2271 #ifndef PRODUCT
roland@4106 2272 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
twisti@4158 2273 tty->print(" from base type: "); adr_type->dump();
twisti@4158 2274 tty->print(" sharpened value: "); tjp->dump();
roland@4106 2275 }
roland@4106 2276 #endif
roland@4106 2277 // Sharpen the value type.
roland@4106 2278 return tjp;
roland@4106 2279 }
roland@4106 2280 return NULL;
roland@4106 2281 }
roland@4106 2282
duke@435 2283 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
duke@435 2284 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2285
duke@435 2286 #ifndef PRODUCT
duke@435 2287 {
duke@435 2288 ResourceMark rm;
duke@435 2289 // Check the signatures.
twisti@4313 2290 ciSignature* sig = callee()->signature();
duke@435 2291 #ifdef ASSERT
duke@435 2292 if (!is_store) {
duke@435 2293 // Object getObject(Object base, int/long offset), etc.
duke@435 2294 BasicType rtype = sig->return_type()->basic_type();
duke@435 2295 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
duke@435 2296 rtype = T_ADDRESS; // it is really a C void*
duke@435 2297 assert(rtype == type, "getter must return the expected value");
duke@435 2298 if (!is_native_ptr) {
duke@435 2299 assert(sig->count() == 2, "oop getter has 2 arguments");
duke@435 2300 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
duke@435 2301 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
duke@435 2302 } else {
duke@435 2303 assert(sig->count() == 1, "native getter has 1 argument");
duke@435 2304 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
duke@435 2305 }
duke@435 2306 } else {
duke@435 2307 // void putObject(Object base, int/long offset, Object x), etc.
duke@435 2308 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
duke@435 2309 if (!is_native_ptr) {
duke@435 2310 assert(sig->count() == 3, "oop putter has 3 arguments");
duke@435 2311 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
duke@435 2312 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
duke@435 2313 } else {
duke@435 2314 assert(sig->count() == 2, "native putter has 2 arguments");
duke@435 2315 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
duke@435 2316 }
duke@435 2317 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
duke@435 2318 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
duke@435 2319 vtype = T_ADDRESS; // it is really a C void*
duke@435 2320 assert(vtype == type, "putter must accept the expected value");
duke@435 2321 }
duke@435 2322 #endif // ASSERT
duke@435 2323 }
duke@435 2324 #endif //PRODUCT
duke@435 2325
duke@435 2326 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2327
twisti@4313 2328 Node* receiver = argument(0); // type: oop
twisti@4313 2329
twisti@4313 2330 // Build address expression. See the code in inline_unsafe_prefetch.
twisti@4313 2331 Node* adr;
twisti@4313 2332 Node* heap_base_oop = top();
twisti@4313 2333 Node* offset = top();
duke@435 2334 Node* val;
johnc@2781 2335
duke@435 2336 if (!is_native_ptr) {
twisti@4313 2337 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
twisti@4313 2338 Node* base = argument(1); // type: oop
duke@435 2339 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
twisti@4313 2340 offset = argument(2); // type: long
duke@435 2341 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2342 // to be plain byte offsets, which are also the same as those accepted
duke@435 2343 // by oopDesc::field_base.
duke@435 2344 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2345 "fieldOffset must be byte-scaled");
duke@435 2346 // 32-bit machines ignore the high half!
duke@435 2347 offset = ConvL2X(offset);
duke@435 2348 adr = make_unsafe_address(base, offset);
duke@435 2349 heap_base_oop = base;
twisti@4313 2350 val = is_store ? argument(4) : NULL;
duke@435 2351 } else {
twisti@4313 2352 Node* ptr = argument(1); // type: long
twisti@4313 2353 ptr = ConvL2X(ptr); // adjust Java long to machine word
duke@435 2354 adr = make_unsafe_address(NULL, ptr);
twisti@4313 2355 val = is_store ? argument(3) : NULL;
duke@435 2356 }
duke@435 2357
duke@435 2358 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2359
duke@435 2360 // First guess at the value type.
duke@435 2361 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2362
duke@435 2363 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
duke@435 2364 // there was not enough information to nail it down.
duke@435 2365 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2366 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2367
duke@435 2368 // We will need memory barriers unless we can determine a unique
duke@435 2369 // alias category for this reference. (Note: If for some reason
duke@435 2370 // the barriers get omitted and the unsafe reference begins to "pollute"
duke@435 2371 // the alias analysis of the rest of the graph, either Compile::can_alias
duke@435 2372 // or Compile::must_alias will throw a diagnostic assert.)
duke@435 2373 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
duke@435 2374
johnc@2781 2375 // If we are reading the value of the referent field of a Reference
johnc@2781 2376 // object (either by using Unsafe directly or through reflection)
johnc@2781 2377 // then, if G1 is enabled, we need to record the referent in an
johnc@2781 2378 // SATB log buffer using the pre-barrier mechanism.
kvn@4002 2379 // Also we need to add memory barrier to prevent commoning reads
kvn@4002 2380 // from this field across safepoint since GC can change its value.
kvn@4002 2381 bool need_read_barrier = !is_native_ptr && !is_store &&
johnc@2781 2382 offset != top() && heap_base_oop != top();
johnc@2781 2383
duke@435 2384 if (!is_store && type == T_OBJECT) {
roland@4106 2385 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
roland@4106 2386 if (tjp != NULL) {
duke@435 2387 value_type = tjp;
duke@435 2388 }
duke@435 2389 }
duke@435 2390
twisti@4313 2391 receiver = null_check(receiver);
duke@435 2392 if (stopped()) {
duke@435 2393 return true;
duke@435 2394 }
duke@435 2395 // Heap pointers get a null-check from the interpreter,
duke@435 2396 // as a courtesy. However, this is not guaranteed by Unsafe,
duke@435 2397 // and it is not possible to fully distinguish unintended nulls
duke@435 2398 // from intended ones in this API.
duke@435 2399
duke@435 2400 if (is_volatile) {
duke@435 2401 // We need to emit leading and trailing CPU membars (see below) in
duke@435 2402 // addition to memory membars when is_volatile. This is a little
duke@435 2403 // too strong, but avoids the need to insert per-alias-type
duke@435 2404 // volatile membars (for stores; compare Parse::do_put_xxx), which
twisti@1040 2405 // we cannot do effectively here because we probably only have a
duke@435 2406 // rough approximation of type.
duke@435 2407 need_mem_bar = true;
duke@435 2408 // For Stores, place a memory ordering barrier now.
duke@435 2409 if (is_store)
duke@435 2410 insert_mem_bar(Op_MemBarRelease);
duke@435 2411 }
duke@435 2412
duke@435 2413 // Memory barrier to prevent normal and 'unsafe' accesses from
duke@435 2414 // bypassing each other. Happens after null checks, so the
duke@435 2415 // exception paths do not take memory state from the memory barrier,
duke@435 2416 // so there's no problems making a strong assert about mixing users
duke@435 2417 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
duke@435 2418 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
duke@435 2419 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2420
duke@435 2421 if (!is_store) {
duke@435 2422 Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
twisti@4313 2423 // load value
duke@435 2424 switch (type) {
duke@435 2425 case T_BOOLEAN:
duke@435 2426 case T_CHAR:
duke@435 2427 case T_BYTE:
duke@435 2428 case T_SHORT:
duke@435 2429 case T_INT:
twisti@4313 2430 case T_LONG:
duke@435 2431 case T_FLOAT:
twisti@4313 2432 case T_DOUBLE:
johnc@2781 2433 break;
duke@435 2434 case T_OBJECT:
johnc@2781 2435 if (need_read_barrier) {
twisti@4313 2436 insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
johnc@2781 2437 }
duke@435 2438 break;
duke@435 2439 case T_ADDRESS:
duke@435 2440 // Cast to an int type.
twisti@4313 2441 p = _gvn.transform(new (C) CastP2XNode(NULL, p));
duke@435 2442 p = ConvX2L(p);
duke@435 2443 break;
twisti@4313 2444 default:
twisti@4313 2445 fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
duke@435 2446 break;
duke@435 2447 }
twisti@4313 2448 // The load node has the control of the preceding MemBarCPUOrder. All
twisti@4313 2449 // following nodes will have the control of the MemBarCPUOrder inserted at
twisti@4313 2450 // the end of this method. So, pushing the load onto the stack at a later
twisti@4313 2451 // point is fine.
twisti@4313 2452 set_result(p);
duke@435 2453 } else {
duke@435 2454 // place effect of store into memory
duke@435 2455 switch (type) {
duke@435 2456 case T_DOUBLE:
duke@435 2457 val = dstore_rounding(val);
duke@435 2458 break;
duke@435 2459 case T_ADDRESS:
duke@435 2460 // Repackage the long as a pointer.
duke@435 2461 val = ConvL2X(val);
kvn@4115 2462 val = _gvn.transform( new (C) CastX2PNode(val) );
duke@435 2463 break;
duke@435 2464 }
duke@435 2465
duke@435 2466 if (type != T_OBJECT ) {
duke@435 2467 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
duke@435 2468 } else {
duke@435 2469 // Possibly an oop being stored to Java heap or native memory
duke@435 2470 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
duke@435 2471 // oop to Java heap.
never@1260 2472 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
duke@435 2473 } else {
duke@435 2474 // We can't tell at compile time if we are storing in the Java heap or outside
duke@435 2475 // of it. So we need to emit code to conditionally do the proper type of
duke@435 2476 // store.
duke@435 2477
kvn@2726 2478 IdealKit ideal(this);
kvn@1286 2479 #define __ ideal.
duke@435 2480 // QQQ who knows what probability is here??
kvn@1286 2481 __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
kvn@1286 2482 // Sync IdealKit and graphKit.
kvn@2726 2483 sync_kit(ideal);
kvn@1286 2484 Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
kvn@1286 2485 // Update IdealKit memory.
kvn@2726 2486 __ sync_kit(this);
kvn@1286 2487 } __ else_(); {
kvn@1286 2488 __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
kvn@1286 2489 } __ end_if();
kvn@1286 2490 // Final sync IdealKit and GraphKit.
kvn@2726 2491 final_sync(ideal);
kvn@1286 2492 #undef __
duke@435 2493 }
duke@435 2494 }
duke@435 2495 }
duke@435 2496
duke@435 2497 if (is_volatile) {
duke@435 2498 if (!is_store)
duke@435 2499 insert_mem_bar(Op_MemBarAcquire);
duke@435 2500 else
duke@435 2501 insert_mem_bar(Op_MemBarVolatile);
duke@435 2502 }
duke@435 2503
duke@435 2504 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2505
duke@435 2506 return true;
duke@435 2507 }
duke@435 2508
duke@435 2509 //----------------------------inline_unsafe_prefetch----------------------------
duke@435 2510
duke@435 2511 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
duke@435 2512 #ifndef PRODUCT
duke@435 2513 {
duke@435 2514 ResourceMark rm;
duke@435 2515 // Check the signatures.
twisti@4313 2516 ciSignature* sig = callee()->signature();
duke@435 2517 #ifdef ASSERT
duke@435 2518 // Object getObject(Object base, int/long offset), etc.
duke@435 2519 BasicType rtype = sig->return_type()->basic_type();
duke@435 2520 if (!is_native_ptr) {
duke@435 2521 assert(sig->count() == 2, "oop prefetch has 2 arguments");
duke@435 2522 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
duke@435 2523 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
duke@435 2524 } else {
duke@435 2525 assert(sig->count() == 1, "native prefetch has 1 argument");
duke@435 2526 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
duke@435 2527 }
duke@435 2528 #endif // ASSERT
duke@435 2529 }
duke@435 2530 #endif // !PRODUCT
duke@435 2531
duke@435 2532 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2533
twisti@4313 2534 const int idx = is_static ? 0 : 1;
twisti@4313 2535 if (!is_static) {
twisti@4313 2536 null_check_receiver();
twisti@4313 2537 if (stopped()) {
twisti@4313 2538 return true;
twisti@4313 2539 }
twisti@4313 2540 }
duke@435 2541
duke@435 2542 // Build address expression. See the code in inline_unsafe_access.
duke@435 2543 Node *adr;
duke@435 2544 if (!is_native_ptr) {
twisti@4313 2545 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
twisti@4313 2546 Node* base = argument(idx + 0); // type: oop
duke@435 2547 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
twisti@4313 2548 Node* offset = argument(idx + 1); // type: long
duke@435 2549 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2550 // to be plain byte offsets, which are also the same as those accepted
duke@435 2551 // by oopDesc::field_base.
duke@435 2552 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2553 "fieldOffset must be byte-scaled");
duke@435 2554 // 32-bit machines ignore the high half!
duke@435 2555 offset = ConvL2X(offset);
duke@435 2556 adr = make_unsafe_address(base, offset);
duke@435 2557 } else {
twisti@4313 2558 Node* ptr = argument(idx + 0); // type: long
twisti@4313 2559 ptr = ConvL2X(ptr); // adjust Java long to machine word
duke@435 2560 adr = make_unsafe_address(NULL, ptr);
duke@435 2561 }
duke@435 2562
duke@435 2563 // Generate the read or write prefetch
duke@435 2564 Node *prefetch;
duke@435 2565 if (is_store) {
kvn@4115 2566 prefetch = new (C) PrefetchWriteNode(i_o(), adr);
duke@435 2567 } else {
kvn@4115 2568 prefetch = new (C) PrefetchReadNode(i_o(), adr);
duke@435 2569 }
duke@435 2570 prefetch->init_req(0, control());
duke@435 2571 set_i_o(_gvn.transform(prefetch));
duke@435 2572
duke@435 2573 return true;
duke@435 2574 }
duke@435 2575
roland@4106 2576 //----------------------------inline_unsafe_load_store----------------------------
twisti@4313 2577 // This method serves a couple of different customers (depending on LoadStoreKind):
twisti@4313 2578 //
twisti@4313 2579 // LS_cmpxchg:
twisti@4313 2580 // public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
twisti@4313 2581 // public final native boolean compareAndSwapInt( Object o, long offset, int expected, int x);
twisti@4313 2582 // public final native boolean compareAndSwapLong( Object o, long offset, long expected, long x);
twisti@4313 2583 //
twisti@4313 2584 // LS_xadd:
twisti@4313 2585 // public int getAndAddInt( Object o, long offset, int delta)
twisti@4313 2586 // public long getAndAddLong(Object o, long offset, long delta)
twisti@4313 2587 //
twisti@4313 2588 // LS_xchg:
twisti@4313 2589 // int getAndSet(Object o, long offset, int newValue)
twisti@4313 2590 // long getAndSet(Object o, long offset, long newValue)
twisti@4313 2591 // Object getAndSet(Object o, long offset, Object newValue)
twisti@4313 2592 //
roland@4106 2593 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
duke@435 2594 // This basic scheme here is the same as inline_unsafe_access, but
duke@435 2595 // differs in enough details that combining them would make the code
duke@435 2596 // overly confusing. (This is a true fact! I originally combined
duke@435 2597 // them, but even I was confused by it!) As much code/comments as
duke@435 2598 // possible are retained from inline_unsafe_access though to make
twisti@1040 2599 // the correspondences clearer. - dl
duke@435 2600
duke@435 2601 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2602
duke@435 2603 #ifndef PRODUCT
roland@4106 2604 BasicType rtype;
duke@435 2605 {
duke@435 2606 ResourceMark rm;
twisti@4313 2607 // Check the signatures.
twisti@4313 2608 ciSignature* sig = callee()->signature();
roland@4106 2609 rtype = sig->return_type()->basic_type();
roland@4106 2610 if (kind == LS_xadd || kind == LS_xchg) {
roland@4106 2611 // Check the signatures.
duke@435 2612 #ifdef ASSERT
roland@4106 2613 assert(rtype == type, "get and set must return the expected type");
roland@4106 2614 assert(sig->count() == 3, "get and set has 3 arguments");
roland@4106 2615 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
roland@4106 2616 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
roland@4106 2617 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
duke@435 2618 #endif // ASSERT
roland@4106 2619 } else if (kind == LS_cmpxchg) {
roland@4106 2620 // Check the signatures.
roland@4106 2621 #ifdef ASSERT
roland@4106 2622 assert(rtype == T_BOOLEAN, "CAS must return boolean");
roland@4106 2623 assert(sig->count() == 4, "CAS has 4 arguments");
roland@4106 2624 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
roland@4106 2625 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
roland@4106 2626 #endif // ASSERT
roland@4106 2627 } else {
roland@4106 2628 ShouldNotReachHere();
roland@4106 2629 }
duke@435 2630 }
duke@435 2631 #endif //PRODUCT
duke@435 2632
duke@435 2633 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2634
twisti@4313 2635 // Get arguments:
twisti@4313 2636 Node* receiver = NULL;
twisti@4313 2637 Node* base = NULL;
twisti@4313 2638 Node* offset = NULL;
twisti@4313 2639 Node* oldval = NULL;
twisti@4313 2640 Node* newval = NULL;
twisti@4313 2641 if (kind == LS_cmpxchg) {
twisti@4313 2642 const bool two_slot_type = type2size[type] == 2;
twisti@4313 2643 receiver = argument(0); // type: oop
twisti@4313 2644 base = argument(1); // type: oop
twisti@4313 2645 offset = argument(2); // type: long
twisti@4313 2646 oldval = argument(4); // type: oop, int, or long
twisti@4313 2647 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long
twisti@4313 2648 } else if (kind == LS_xadd || kind == LS_xchg){
twisti@4313 2649 receiver = argument(0); // type: oop
twisti@4313 2650 base = argument(1); // type: oop
twisti@4313 2651 offset = argument(2); // type: long
twisti@4313 2652 oldval = NULL;
twisti@4313 2653 newval = argument(4); // type: oop, int, or long
twisti@4313 2654 }
twisti@4313 2655
twisti@4313 2656 // Null check receiver.
twisti@4313 2657 receiver = null_check(receiver);
duke@435 2658 if (stopped()) {
duke@435 2659 return true;
duke@435 2660 }
duke@435 2661
duke@435 2662 // Build field offset expression.
duke@435 2663 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2664 // to be plain byte offsets, which are also the same as those accepted
duke@435 2665 // by oopDesc::field_base.
duke@435 2666 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2667 // 32-bit machines ignore the high half of long offsets
duke@435 2668 offset = ConvL2X(offset);
duke@435 2669 Node* adr = make_unsafe_address(base, offset);
duke@435 2670 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2671
roland@4106 2672 // For CAS, unlike inline_unsafe_access, there seems no point in
roland@4106 2673 // trying to refine types. Just use the coarse types here.
duke@435 2674 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2675 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2676 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
roland@4106 2677
roland@4106 2678 if (kind == LS_xchg && type == T_OBJECT) {
roland@4106 2679 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
roland@4106 2680 if (tjp != NULL) {
roland@4106 2681 value_type = tjp;
roland@4106 2682 }
roland@4106 2683 }
roland@4106 2684
duke@435 2685 int alias_idx = C->get_alias_index(adr_type);
duke@435 2686
roland@4106 2687 // Memory-model-wise, a LoadStore acts like a little synchronized
roland@4106 2688 // block, so needs barriers on each side. These don't translate
roland@4106 2689 // into actual barriers on most machines, but we still need rest of
duke@435 2690 // compiler to respect ordering.
duke@435 2691
duke@435 2692 insert_mem_bar(Op_MemBarRelease);
duke@435 2693 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2694
duke@435 2695 // 4984716: MemBars must be inserted before this
duke@435 2696 // memory node in order to avoid a false
duke@435 2697 // dependency which will confuse the scheduler.
duke@435 2698 Node *mem = memory(alias_idx);
duke@435 2699
duke@435 2700 // For now, we handle only those cases that actually exist: ints,
duke@435 2701 // longs, and Object. Adding others should be straightforward.
roland@4106 2702 Node* load_store;
duke@435 2703 switch(type) {
duke@435 2704 case T_INT:
roland@4106 2705 if (kind == LS_xadd) {
kvn@4115 2706 load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
roland@4106 2707 } else if (kind == LS_xchg) {
kvn@4115 2708 load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
roland@4106 2709 } else if (kind == LS_cmpxchg) {
kvn@4115 2710 load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
roland@4106 2711 } else {
roland@4106 2712 ShouldNotReachHere();
roland@4106 2713 }
duke@435 2714 break;
duke@435 2715 case T_LONG:
roland@4106 2716 if (kind == LS_xadd) {
kvn@4115 2717 load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
roland@4106 2718 } else if (kind == LS_xchg) {
kvn@4115 2719 load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
roland@4106 2720 } else if (kind == LS_cmpxchg) {
kvn@4115 2721 load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
roland@4106 2722 } else {
roland@4106 2723 ShouldNotReachHere();
roland@4106 2724 }
duke@435 2725 break;
duke@435 2726 case T_OBJECT:
kvn@3521 2727 // Transformation of a value which could be NULL pointer (CastPP #NULL)
kvn@3521 2728 // could be delayed during Parse (for example, in adjust_map_after_if()).
kvn@3521 2729 // Execute transformation here to avoid barrier generation in such case.
kvn@3521 2730 if (_gvn.type(newval) == TypePtr::NULL_PTR)
kvn@3521 2731 newval = _gvn.makecon(TypePtr::NULL_PTR);
kvn@3521 2732
kvn@3521 2733 // Reference stores need a store barrier.
johnc@2781 2734 pre_barrier(true /* do_load*/,
johnc@2781 2735 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
johnc@2781 2736 NULL /* pre_val*/,
johnc@2781 2737 T_OBJECT);
coleenp@548 2738 #ifdef _LP64
kvn@598 2739 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@4115 2740 Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
roland@4106 2741 if (kind == LS_xchg) {
kvn@4115 2742 load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
roland@4106 2743 newval_enc, adr_type, value_type->make_narrowoop()));
roland@4106 2744 } else {
roland@4106 2745 assert(kind == LS_cmpxchg, "wrong LoadStore operation");
kvn@4115 2746 Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
kvn@4115 2747 load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
roland@4106 2748 newval_enc, oldval_enc));
roland@4106 2749 }
coleenp@548 2750 } else
coleenp@548 2751 #endif
kvn@656 2752 {
roland@4106 2753 if (kind == LS_xchg) {
kvn@4115 2754 load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
roland@4106 2755 } else {
roland@4106 2756 assert(kind == LS_cmpxchg, "wrong LoadStore operation");
kvn@4115 2757 load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
roland@4106 2758 }
kvn@656 2759 }
roland@4106 2760 post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
duke@435 2761 break;
duke@435 2762 default:
twisti@4313 2763 fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
duke@435 2764 break;
duke@435 2765 }
duke@435 2766
roland@4106 2767 // SCMemProjNodes represent the memory state of a LoadStore. Their
roland@4106 2768 // main role is to prevent LoadStore nodes from being optimized away
roland@4106 2769 // when their results aren't used.
kvn@4115 2770 Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
duke@435 2771 set_memory(proj, alias_idx);
duke@435 2772
duke@435 2773 // Add the trailing membar surrounding the access
duke@435 2774 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2775 insert_mem_bar(Op_MemBarAcquire);
duke@435 2776
roland@4106 2777 #ifdef _LP64
roland@4106 2778 if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
kvn@4115 2779 load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->bottom_type()->make_ptr()));
roland@4106 2780 }
roland@4106 2781 #endif
roland@4106 2782
roland@4106 2783 assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
twisti@4313 2784 set_result(load_store);
duke@435 2785 return true;
duke@435 2786 }
duke@435 2787
twisti@4313 2788 //----------------------------inline_unsafe_ordered_store----------------------
twisti@4313 2789 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
twisti@4313 2790 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
twisti@4313 2791 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
duke@435 2792 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
duke@435 2793 // This is another variant of inline_unsafe_access, differing in
duke@435 2794 // that it always issues store-store ("release") barrier and ensures
duke@435 2795 // store-atomicity (which only matters for "long").
duke@435 2796
duke@435 2797 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2798
duke@435 2799 #ifndef PRODUCT
duke@435 2800 {
duke@435 2801 ResourceMark rm;
duke@435 2802 // Check the signatures.
twisti@4313 2803 ciSignature* sig = callee()->signature();
duke@435 2804 #ifdef ASSERT
duke@435 2805 BasicType rtype = sig->return_type()->basic_type();
duke@435 2806 assert(rtype == T_VOID, "must return void");
duke@435 2807 assert(sig->count() == 3, "has 3 arguments");
duke@435 2808 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
duke@435 2809 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
duke@435 2810 #endif // ASSERT
duke@435 2811 }
duke@435 2812 #endif //PRODUCT
duke@435 2813
duke@435 2814 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2815
twisti@4313 2816 // Get arguments:
twisti@4313 2817 Node* receiver = argument(0); // type: oop
twisti@4313 2818 Node* base = argument(1); // type: oop
twisti@4313 2819 Node* offset = argument(2); // type: long
twisti@4313 2820 Node* val = argument(4); // type: oop, int, or long
twisti@4313 2821
twisti@4313 2822 // Null check receiver.
twisti@4313 2823 receiver = null_check(receiver);
duke@435 2824 if (stopped()) {
duke@435 2825 return true;
duke@435 2826 }
duke@435 2827
duke@435 2828 // Build field offset expression.
duke@435 2829 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2830 // 32-bit machines ignore the high half of long offsets
duke@435 2831 offset = ConvL2X(offset);
duke@435 2832 Node* adr = make_unsafe_address(base, offset);
duke@435 2833 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2834 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2835 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2836
duke@435 2837 insert_mem_bar(Op_MemBarRelease);
duke@435 2838 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2839 // Ensure that the store is atomic for longs:
twisti@4313 2840 const bool require_atomic_access = true;
duke@435 2841 Node* store;
duke@435 2842 if (type == T_OBJECT) // reference stores need a store barrier.
never@1260 2843 store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
duke@435 2844 else {
duke@435 2845 store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
duke@435 2846 }
duke@435 2847 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2848 return true;
duke@435 2849 }
duke@435 2850
kvn@4361 2851 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
kvn@4361 2852 // Regardless of form, don't allow previous ld/st to move down,
kvn@4361 2853 // then issue acquire, release, or volatile mem_bar.
kvn@4361 2854 insert_mem_bar(Op_MemBarCPUOrder);
kvn@4361 2855 switch(id) {
kvn@4361 2856 case vmIntrinsics::_loadFence:
kvn@4361 2857 insert_mem_bar(Op_MemBarAcquire);
kvn@4361 2858 return true;
kvn@4361 2859 case vmIntrinsics::_storeFence:
kvn@4361 2860 insert_mem_bar(Op_MemBarRelease);
kvn@4361 2861 return true;
kvn@4361 2862 case vmIntrinsics::_fullFence:
kvn@4361 2863 insert_mem_bar(Op_MemBarVolatile);
kvn@4361 2864 return true;
kvn@4361 2865 default:
kvn@4361 2866 fatal_unexpected_iid(id);
kvn@4361 2867 return false;
kvn@4361 2868 }
kvn@4361 2869 }
kvn@4361 2870
twisti@4313 2871 //----------------------------inline_unsafe_allocate---------------------------
twisti@4313 2872 // public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
duke@435 2873 bool LibraryCallKit::inline_unsafe_allocate() {
duke@435 2874 if (callee()->is_static()) return false; // caller must have the capability!
twisti@4313 2875
twisti@4313 2876 null_check_receiver(); // null-check, then ignore
twisti@4313 2877 Node* cls = null_check(argument(1));
duke@435 2878 if (stopped()) return true;
duke@435 2879
twisti@4313 2880 Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
twisti@4313 2881 kls = null_check(kls);
duke@435 2882 if (stopped()) return true; // argument was like int.class
duke@435 2883
duke@435 2884 // Note: The argument might still be an illegal value like
duke@435 2885 // Serializable.class or Object[].class. The runtime will handle it.
duke@435 2886 // But we must make an explicit check for initialization.
coleenp@4037 2887 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
coleenp@4037 2888 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
coleenp@3368 2889 // can generate code to load it as unsigned byte.
coleenp@3368 2890 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
coleenp@4037 2891 Node* bits = intcon(InstanceKlass::fully_initialized);
twisti@4313 2892 Node* test = _gvn.transform(new (C) SubINode(inst, bits));
duke@435 2893 // The 'test' is non-zero if we need to take a slow path.
duke@435 2894
duke@435 2895 Node* obj = new_instance(kls, test);
twisti@4313 2896 set_result(obj);
duke@435 2897 return true;
duke@435 2898 }
duke@435 2899
rbackman@3709 2900 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 2901 /*
rbackman@3709 2902 * oop -> myklass
rbackman@3709 2903 * myklass->trace_id |= USED
rbackman@3709 2904 * return myklass->trace_id & ~0x3
rbackman@3709 2905 */
rbackman@3709 2906 bool LibraryCallKit::inline_native_classID() {
twisti@4313 2907 null_check_receiver(); // null-check, then ignore
twisti@4313 2908 Node* cls = null_check(argument(1), T_OBJECT);
twisti@4313 2909 Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
twisti@4313 2910 kls = null_check(kls, T_OBJECT);
rbackman@3709 2911 ByteSize offset = TRACE_ID_OFFSET;
rbackman@3709 2912 Node* insp = basic_plus_adr(kls, in_bytes(offset));
rbackman@3709 2913 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
rbackman@3709 2914 Node* bits = longcon(~0x03l); // ignore bit 0 & 1
kvn@4115 2915 Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
rbackman@3709 2916 Node* clsused = longcon(0x01l); // set the class bit
kvn@4115 2917 Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
rbackman@3709 2918
rbackman@3709 2919 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
rbackman@3709 2920 store_to_memory(control(), insp, orl, T_LONG, adr_type);
twisti@4313 2921 set_result(andl);
rbackman@3709 2922 return true;
rbackman@3709 2923 }
rbackman@3709 2924
rbackman@3709 2925 bool LibraryCallKit::inline_native_threadID() {
rbackman@3709 2926 Node* tls_ptr = NULL;
rbackman@3709 2927 Node* cur_thr = generate_current_thread(tls_ptr);
rbackman@3709 2928 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
rbackman@3709 2929 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
rbackman@3709 2930 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
rbackman@3709 2931
rbackman@3709 2932 Node* threadid = NULL;
rbackman@3709 2933 size_t thread_id_size = OSThread::thread_id_size();
rbackman@3709 2934 if (thread_id_size == (size_t) BytesPerLong) {
rbackman@3709 2935 threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
rbackman@3709 2936 } else if (thread_id_size == (size_t) BytesPerInt) {
rbackman@3709 2937 threadid = make_load(control(), p, TypeInt::INT, T_INT);
rbackman@3709 2938 } else {
rbackman@3709 2939 ShouldNotReachHere();
rbackman@3709 2940 }
twisti@4313 2941 set_result(threadid);
rbackman@3709 2942 return true;
rbackman@3709 2943 }
rbackman@3709 2944 #endif
rbackman@3709 2945
duke@435 2946 //------------------------inline_native_time_funcs--------------
duke@435 2947 // inline code for System.currentTimeMillis() and System.nanoTime()
duke@435 2948 // these have the same type and signature
rbackman@3709 2949 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
twisti@4313 2950 const TypeFunc* tf = OptoRuntime::void_long_Type();
duke@435 2951 const TypePtr* no_memory_effects = NULL;
duke@435 2952 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
kvn@4115 2953 Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
duke@435 2954 #ifdef ASSERT
twisti@4313 2955 Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
duke@435 2956 assert(value_top == top(), "second value must be top");
duke@435 2957 #endif
twisti@4313 2958 set_result(value);
duke@435 2959 return true;
duke@435 2960 }
duke@435 2961
duke@435 2962 //------------------------inline_native_currentThread------------------
duke@435 2963 bool LibraryCallKit::inline_native_currentThread() {
duke@435 2964 Node* junk = NULL;
twisti@4313 2965 set_result(generate_current_thread(junk));
duke@435 2966 return true;
duke@435 2967 }
duke@435 2968
duke@435 2969 //------------------------inline_native_isInterrupted------------------
twisti@4313 2970 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
duke@435 2971 bool LibraryCallKit::inline_native_isInterrupted() {
duke@435 2972 // Add a fast path to t.isInterrupted(clear_int):
duke@435 2973 // (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
duke@435 2974 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
duke@435 2975 // So, in the common case that the interrupt bit is false,
duke@435 2976 // we avoid making a call into the VM. Even if the interrupt bit
duke@435 2977 // is true, if the clear_int argument is false, we avoid the VM call.
duke@435 2978 // However, if the receiver is not currentThread, we must call the VM,
duke@435 2979 // because there must be some locking done around the operation.
duke@435 2980
duke@435 2981 // We only go to the fast case code if we pass two guards.
duke@435 2982 // Paths which do not pass are accumulated in the slow_region.
vlivanov@4358 2983
vlivanov@4358 2984 enum {
vlivanov@4358 2985 no_int_result_path = 1, // t == Thread.current() && !TLS._osthread._interrupted
vlivanov@4358 2986 no_clear_result_path = 2, // t == Thread.current() && TLS._osthread._interrupted && !clear_int
vlivanov@4358 2987 slow_result_path = 3, // slow path: t.isInterrupted(clear_int)
vlivanov@4358 2988 PATH_LIMIT
vlivanov@4358 2989 };
vlivanov@4358 2990
vlivanov@4358 2991 // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
vlivanov@4358 2992 // out of the function.
vlivanov@4358 2993 insert_mem_bar(Op_MemBarCPUOrder);
vlivanov@4358 2994
vlivanov@4358 2995 RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
vlivanov@4358 2996 PhiNode* result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
vlivanov@4358 2997
kvn@4115 2998 RegionNode* slow_region = new (C) RegionNode(1);
duke@435 2999 record_for_igvn(slow_region);
duke@435 3000
duke@435 3001 // (a) Receiving thread must be the current thread.
duke@435 3002 Node* rec_thr = argument(0);
duke@435 3003 Node* tls_ptr = NULL;
duke@435 3004 Node* cur_thr = generate_current_thread(tls_ptr);
kvn@4115 3005 Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
kvn@4115 3006 Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
duke@435 3007
vlivanov@4358 3008 generate_slow_guard(bol_thr, slow_region);
duke@435 3009
duke@435 3010 // (b) Interrupt bit on TLS must be false.
duke@435 3011 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
duke@435 3012 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
duke@435 3013 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
vlivanov@4358 3014
kvn@1222 3015 // Set the control input on the field _interrupted read to prevent it floating up.
kvn@1222 3016 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
kvn@4115 3017 Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
kvn@4115 3018 Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
duke@435 3019
duke@435 3020 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
duke@435 3021
duke@435 3022 // First fast path: if (!TLS._interrupted) return false;
kvn@4115 3023 Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
duke@435 3024 result_rgn->init_req(no_int_result_path, false_bit);
duke@435 3025 result_val->init_req(no_int_result_path, intcon(0));
duke@435 3026
duke@435 3027 // drop through to next case
kvn@4115 3028 set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
duke@435 3029
duke@435 3030 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
duke@435 3031 Node* clr_arg = argument(1);
kvn@4115 3032 Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
kvn@4115 3033 Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
duke@435 3034 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
duke@435 3035
duke@435 3036 // Second fast path: ... else if (!clear_int) return true;
kvn@4115 3037 Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
duke@435 3038 result_rgn->init_req(no_clear_result_path, false_arg);
duke@435 3039 result_val->init_req(no_clear_result_path, intcon(1));
duke@435 3040
duke@435 3041 // drop through to next case
kvn@4115 3042 set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
duke@435 3043
duke@435 3044 // (d) Otherwise, go to the slow path.
duke@435 3045 slow_region->add_req(control());
duke@435 3046 set_control( _gvn.transform(slow_region) );
duke@435 3047
duke@435 3048 if (stopped()) {
duke@435 3049 // There is no slow path.
duke@435 3050 result_rgn->init_req(slow_result_path, top());
duke@435 3051 result_val->init_req(slow_result_path, top());
duke@435 3052 } else {
duke@435 3053 // non-virtual because it is a private non-static
duke@435 3054 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
duke@435 3055
duke@435 3056 Node* slow_val = set_results_for_java_call(slow_call);
duke@435 3057 // this->control() comes from set_results_for_java_call
duke@435 3058
duke@435 3059 Node* fast_io = slow_call->in(TypeFunc::I_O);
duke@435 3060 Node* fast_mem = slow_call->in(TypeFunc::Memory);
vlivanov@4358 3061
duke@435 3062 // These two phis are pre-filled with copies of of the fast IO and Memory
vlivanov@4358 3063 PhiNode* result_mem = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
vlivanov@4358 3064 PhiNode* result_io = PhiNode::make(result_rgn, fast_io, Type::ABIO);
duke@435 3065
duke@435 3066 result_rgn->init_req(slow_result_path, control());
vlivanov@4358 3067 result_io ->init_req(slow_result_path, i_o());
vlivanov@4358 3068 result_mem->init_req(slow_result_path, reset_memory());
duke@435 3069 result_val->init_req(slow_result_path, slow_val);
duke@435 3070
vlivanov@4358 3071 set_all_memory(_gvn.transform(result_mem));
vlivanov@4358 3072 set_i_o( _gvn.transform(result_io));
duke@435 3073 }
duke@435 3074
duke@435 3075 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3076 set_result(result_rgn, result_val);
duke@435 3077 return true;
duke@435 3078 }
duke@435 3079
duke@435 3080 //---------------------------load_mirror_from_klass----------------------------
duke@435 3081 // Given a klass oop, load its java mirror (a java.lang.Class oop).
duke@435 3082 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
stefank@3391 3083 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
duke@435 3084 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3085 }
duke@435 3086
duke@435 3087 //-----------------------load_klass_from_mirror_common-------------------------
duke@435 3088 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
duke@435 3089 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
duke@435 3090 // and branch to the given path on the region.
duke@435 3091 // If never_see_null, take an uncommon trap on null, so we can optimistically
duke@435 3092 // compile for the non-null case.
duke@435 3093 // If the region is NULL, force never_see_null = true.
duke@435 3094 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
duke@435 3095 bool never_see_null,
duke@435 3096 RegionNode* region,
duke@435 3097 int null_path,
duke@435 3098 int offset) {
duke@435 3099 if (region == NULL) never_see_null = true;
duke@435 3100 Node* p = basic_plus_adr(mirror, offset);
duke@435 3101 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
kvn@599 3102 Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
duke@435 3103 Node* null_ctl = top();
duke@435 3104 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3105 if (region != NULL) {
duke@435 3106 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
duke@435 3107 region->init_req(null_path, null_ctl);
duke@435 3108 } else {
duke@435 3109 assert(null_ctl == top(), "no loose ends");
duke@435 3110 }
duke@435 3111 return kls;
duke@435 3112 }
duke@435 3113
duke@435 3114 //--------------------(inline_native_Class_query helpers)---------------------
duke@435 3115 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
duke@435 3116 // Fall through if (mods & mask) == bits, take the guard otherwise.
duke@435 3117 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
duke@435 3118 // Branch around if the given klass has the given modifier bit set.
duke@435 3119 // Like generate_guard, adds a new path onto the region.
stefank@3391 3120 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3121 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
duke@435 3122 Node* mask = intcon(modifier_mask);
duke@435 3123 Node* bits = intcon(modifier_bits);
kvn@4115 3124 Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
kvn@4115 3125 Node* cmp = _gvn.transform( new (C) CmpINode(mbit, bits) );
kvn@4115 3126 Node* bol = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
duke@435 3127 return generate_fair_guard(bol, region);
duke@435 3128 }
duke@435 3129 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
duke@435 3130 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
duke@435 3131 }
duke@435 3132
duke@435 3133 //-------------------------inline_native_Class_query-------------------
duke@435 3134 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
duke@435 3135 const Type* return_type = TypeInt::BOOL;
duke@435 3136 Node* prim_return_value = top(); // what happens if it's a primitive class?
duke@435 3137 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3138 bool expect_prim = false; // most of these guys expect to work on refs
duke@435 3139
duke@435 3140 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
duke@435 3141
twisti@4313 3142 Node* mirror = argument(0);
twisti@4313 3143 Node* obj = top();
twisti@4313 3144
duke@435 3145 switch (id) {
duke@435 3146 case vmIntrinsics::_isInstance:
duke@435 3147 // nothing is an instance of a primitive type
duke@435 3148 prim_return_value = intcon(0);
twisti@4313 3149 obj = argument(1);
duke@435 3150 break;
duke@435 3151 case vmIntrinsics::_getModifiers:
duke@435 3152 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3153 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
duke@435 3154 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
duke@435 3155 break;
duke@435 3156 case vmIntrinsics::_isInterface:
duke@435 3157 prim_return_value = intcon(0);
duke@435 3158 break;
duke@435 3159 case vmIntrinsics::_isArray:
duke@435 3160 prim_return_value = intcon(0);
duke@435 3161 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
duke@435 3162 break;
duke@435 3163 case vmIntrinsics::_isPrimitive:
duke@435 3164 prim_return_value = intcon(1);
duke@435 3165 expect_prim = true; // obviously
duke@435 3166 break;
duke@435 3167 case vmIntrinsics::_getSuperclass:
duke@435 3168 prim_return_value = null();
duke@435 3169 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3170 break;
duke@435 3171 case vmIntrinsics::_getComponentType:
duke@435 3172 prim_return_value = null();
duke@435 3173 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3174 break;
duke@435 3175 case vmIntrinsics::_getClassAccessFlags:
duke@435 3176 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3177 return_type = TypeInt::INT; // not bool! 6297094
duke@435 3178 break;
duke@435 3179 default:
twisti@4313 3180 fatal_unexpected_iid(id);
twisti@4313 3181 break;
duke@435 3182 }
duke@435 3183
duke@435 3184 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
duke@435 3185 if (mirror_con == NULL) return false; // cannot happen?
duke@435 3186
duke@435 3187 #ifndef PRODUCT
duke@435 3188 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 3189 ciType* k = mirror_con->java_mirror_type();
duke@435 3190 if (k) {
duke@435 3191 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
duke@435 3192 k->print_name();
duke@435 3193 tty->cr();
duke@435 3194 }
duke@435 3195 }
duke@435 3196 #endif
duke@435 3197
duke@435 3198 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
kvn@4115 3199 RegionNode* region = new (C) RegionNode(PATH_LIMIT);
duke@435 3200 record_for_igvn(region);
kvn@4115 3201 PhiNode* phi = new (C) PhiNode(region, return_type);
duke@435 3202
duke@435 3203 // The mirror will never be null of Reflection.getClassAccessFlags, however
duke@435 3204 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
duke@435 3205 // if it is. See bug 4774291.
duke@435 3206
duke@435 3207 // For Reflection.getClassAccessFlags(), the null check occurs in
duke@435 3208 // the wrong place; see inline_unsafe_access(), above, for a similar
duke@435 3209 // situation.
twisti@4313 3210 mirror = null_check(mirror);
duke@435 3211 // If mirror or obj is dead, only null-path is taken.
duke@435 3212 if (stopped()) return true;
duke@435 3213
duke@435 3214 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
duke@435 3215
duke@435 3216 // Now load the mirror's klass metaobject, and null-check it.
duke@435 3217 // Side-effects region with the control path if the klass is null.
twisti@4313 3218 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
duke@435 3219 // If kls is null, we have a primitive mirror.
duke@435 3220 phi->init_req(_prim_path, prim_return_value);
twisti@4313 3221 if (stopped()) { set_result(region, phi); return true; }
duke@435 3222
duke@435 3223 Node* p; // handy temp
duke@435 3224 Node* null_ctl;
duke@435 3225
duke@435 3226 // Now that we have the non-null klass, we can perform the real query.
duke@435 3227 // For constant classes, the query will constant-fold in LoadNode::Value.
duke@435 3228 Node* query_value = top();
duke@435 3229 switch (id) {
duke@435 3230 case vmIntrinsics::_isInstance:
duke@435 3231 // nothing is an instance of a primitive type
duke@435 3232 query_value = gen_instanceof(obj, kls);
duke@435 3233 break;
duke@435 3234
duke@435 3235 case vmIntrinsics::_getModifiers:
stefank@3391 3236 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
duke@435 3237 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3238 break;
duke@435 3239
duke@435 3240 case vmIntrinsics::_isInterface:
duke@435 3241 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3242 if (generate_interface_guard(kls, region) != NULL)
duke@435 3243 // A guard was added. If the guard is taken, it was an interface.
duke@435 3244 phi->add_req(intcon(1));
duke@435 3245 // If we fall through, it's a plain class.
duke@435 3246 query_value = intcon(0);
duke@435 3247 break;
duke@435 3248
duke@435 3249 case vmIntrinsics::_isArray:
duke@435 3250 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
duke@435 3251 if (generate_array_guard(kls, region) != NULL)
duke@435 3252 // A guard was added. If the guard is taken, it was an array.
duke@435 3253 phi->add_req(intcon(1));
duke@435 3254 // If we fall through, it's a plain class.
duke@435 3255 query_value = intcon(0);
duke@435 3256 break;
duke@435 3257
duke@435 3258 case vmIntrinsics::_isPrimitive:
duke@435 3259 query_value = intcon(0); // "normal" path produces false
duke@435 3260 break;
duke@435 3261
duke@435 3262 case vmIntrinsics::_getSuperclass:
duke@435 3263 // The rules here are somewhat unfortunate, but we can still do better
duke@435 3264 // with random logic than with a JNI call.
duke@435 3265 // Interfaces store null or Object as _super, but must report null.
duke@435 3266 // Arrays store an intermediate super as _super, but must report Object.
duke@435 3267 // Other types can report the actual _super.
duke@435 3268 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3269 if (generate_interface_guard(kls, region) != NULL)
duke@435 3270 // A guard was added. If the guard is taken, it was an interface.
duke@435 3271 phi->add_req(null());
duke@435 3272 if (generate_array_guard(kls, region) != NULL)
duke@435 3273 // A guard was added. If the guard is taken, it was an array.
duke@435 3274 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
duke@435 3275 // If we fall through, it's a plain class. Get its _super.
stefank@3391 3276 p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
kvn@599 3277 kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
duke@435 3278 null_ctl = top();
duke@435 3279 kls = null_check_oop(kls, &null_ctl);
duke@435 3280 if (null_ctl != top()) {
duke@435 3281 // If the guard is taken, Object.superClass is null (both klass and mirror).
duke@435 3282 region->add_req(null_ctl);
duke@435 3283 phi ->add_req(null());
duke@435 3284 }
duke@435 3285 if (!stopped()) {
duke@435 3286 query_value = load_mirror_from_klass(kls);
duke@435 3287 }
duke@435 3288 break;
duke@435 3289
duke@435 3290 case vmIntrinsics::_getComponentType:
duke@435 3291 if (generate_array_guard(kls, region) != NULL) {
duke@435 3292 // Be sure to pin the oop load to the guard edge just created:
duke@435 3293 Node* is_array_ctrl = region->in(region->req()-1);
coleenp@4142 3294 Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
duke@435 3295 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3296 phi->add_req(cmo);
duke@435 3297 }
duke@435 3298 query_value = null(); // non-array case is null
duke@435 3299 break;
duke@435 3300
duke@435 3301 case vmIntrinsics::_getClassAccessFlags:
stefank@3391 3302 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3303 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3304 break;
duke@435 3305
duke@435 3306 default:
twisti@4313 3307 fatal_unexpected_iid(id);
twisti@4313 3308 break;
duke@435 3309 }
duke@435 3310
duke@435 3311 // Fall-through is the normal case of a query to a real class.
duke@435 3312 phi->init_req(1, query_value);
duke@435 3313 region->init_req(1, control());
duke@435 3314
duke@435 3315 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3316 set_result(region, phi);
duke@435 3317 return true;
duke@435 3318 }
duke@435 3319
duke@435 3320 //--------------------------inline_native_subtype_check------------------------
duke@435 3321 // This intrinsic takes the JNI calls out of the heart of
duke@435 3322 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
duke@435 3323 bool LibraryCallKit::inline_native_subtype_check() {
duke@435 3324 // Pull both arguments off the stack.
duke@435 3325 Node* args[2]; // two java.lang.Class mirrors: superc, subc
duke@435 3326 args[0] = argument(0);
duke@435 3327 args[1] = argument(1);
duke@435 3328 Node* klasses[2]; // corresponding Klasses: superk, subk
duke@435 3329 klasses[0] = klasses[1] = top();
duke@435 3330
duke@435 3331 enum {
duke@435 3332 // A full decision tree on {superc is prim, subc is prim}:
duke@435 3333 _prim_0_path = 1, // {P,N} => false
duke@435 3334 // {P,P} & superc!=subc => false
duke@435 3335 _prim_same_path, // {P,P} & superc==subc => true
duke@435 3336 _prim_1_path, // {N,P} => false
duke@435 3337 _ref_subtype_path, // {N,N} & subtype check wins => true
duke@435 3338 _both_ref_path, // {N,N} & subtype check loses => false
duke@435 3339 PATH_LIMIT
duke@435 3340 };
duke@435 3341
kvn@4115 3342 RegionNode* region = new (C) RegionNode(PATH_LIMIT);
kvn@4115 3343 Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
duke@435 3344 record_for_igvn(region);
duke@435 3345
duke@435 3346 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
duke@435 3347 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3348 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
duke@435 3349
duke@435 3350 // First null-check both mirrors and load each mirror's klass metaobject.
duke@435 3351 int which_arg;
duke@435 3352 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3353 Node* arg = args[which_arg];
twisti@4313 3354 arg = null_check(arg);
duke@435 3355 if (stopped()) break;
roland@4357 3356 args[which_arg] = arg;
duke@435 3357
duke@435 3358 Node* p = basic_plus_adr(arg, class_klass_offset);
kvn@599 3359 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
duke@435 3360 klasses[which_arg] = _gvn.transform(kls);
duke@435 3361 }
duke@435 3362
duke@435 3363 // Having loaded both klasses, test each for null.
duke@435 3364 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3365 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3366 Node* kls = klasses[which_arg];
duke@435 3367 Node* null_ctl = top();
duke@435 3368 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3369 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
duke@435 3370 region->init_req(prim_path, null_ctl);
duke@435 3371 if (stopped()) break;
duke@435 3372 klasses[which_arg] = kls;
duke@435 3373 }
duke@435 3374
duke@435 3375 if (!stopped()) {
duke@435 3376 // now we have two reference types, in klasses[0..1]
duke@435 3377 Node* subk = klasses[1]; // the argument to isAssignableFrom
duke@435 3378 Node* superk = klasses[0]; // the receiver
duke@435 3379 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
duke@435 3380 // now we have a successful reference subtype check
duke@435 3381 region->set_req(_ref_subtype_path, control());
duke@435 3382 }
duke@435 3383
duke@435 3384 // If both operands are primitive (both klasses null), then
duke@435 3385 // we must return true when they are identical primitives.
duke@435 3386 // It is convenient to test this after the first null klass check.
duke@435 3387 set_control(region->in(_prim_0_path)); // go back to first null check
duke@435 3388 if (!stopped()) {
duke@435 3389 // Since superc is primitive, make a guard for the superc==subc case.
kvn@4115 3390 Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
kvn@4115 3391 Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
duke@435 3392 generate_guard(bol_eq, region, PROB_FAIR);
duke@435 3393 if (region->req() == PATH_LIMIT+1) {
duke@435 3394 // A guard was added. If the added guard is taken, superc==subc.
duke@435 3395 region->swap_edges(PATH_LIMIT, _prim_same_path);
duke@435 3396 region->del_req(PATH_LIMIT);
duke@435 3397 }
duke@435 3398 region->set_req(_prim_0_path, control()); // Not equal after all.
duke@435 3399 }
duke@435 3400
duke@435 3401 // these are the only paths that produce 'true':
duke@435 3402 phi->set_req(_prim_same_path, intcon(1));
duke@435 3403 phi->set_req(_ref_subtype_path, intcon(1));
duke@435 3404
duke@435 3405 // pull together the cases:
duke@435 3406 assert(region->req() == PATH_LIMIT, "sane region");
duke@435 3407 for (uint i = 1; i < region->req(); i++) {
duke@435 3408 Node* ctl = region->in(i);
duke@435 3409 if (ctl == NULL || ctl == top()) {
duke@435 3410 region->set_req(i, top());
duke@435 3411 phi ->set_req(i, top());
duke@435 3412 } else if (phi->in(i) == NULL) {
duke@435 3413 phi->set_req(i, intcon(0)); // all other paths produce 'false'
duke@435 3414 }
duke@435 3415 }
duke@435 3416
duke@435 3417 set_control(_gvn.transform(region));
twisti@4313 3418 set_result(_gvn.transform(phi));
duke@435 3419 return true;
duke@435 3420 }
duke@435 3421
duke@435 3422 //---------------------generate_array_guard_common------------------------
duke@435 3423 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 3424 bool obj_array, bool not_array) {
duke@435 3425 // If obj_array/non_array==false/false:
duke@435 3426 // Branch around if the given klass is in fact an array (either obj or prim).
duke@435 3427 // If obj_array/non_array==false/true:
duke@435 3428 // Branch around if the given klass is not an array klass of any kind.
duke@435 3429 // If obj_array/non_array==true/true:
duke@435 3430 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
duke@435 3431 // If obj_array/non_array==true/false:
duke@435 3432 // Branch around if the kls is an oop array (Object[] or subtype)
duke@435 3433 //
duke@435 3434 // Like generate_guard, adds a new path onto the region.
duke@435 3435 jint layout_con = 0;
duke@435 3436 Node* layout_val = get_layout_helper(kls, layout_con);
duke@435 3437 if (layout_val == NULL) {
duke@435 3438 bool query = (obj_array
duke@435 3439 ? Klass::layout_helper_is_objArray(layout_con)
coleenp@4037 3440 : Klass::layout_helper_is_array(layout_con));
duke@435 3441 if (query == not_array) {
duke@435 3442 return NULL; // never a branch
duke@435 3443 } else { // always a branch
duke@435 3444 Node* always_branch = control();
duke@435 3445 if (region != NULL)
duke@435 3446 region->add_req(always_branch);
duke@435 3447 set_control(top());
duke@435 3448 return always_branch;
duke@435 3449 }
duke@435 3450 }
duke@435 3451 // Now test the correct condition.
duke@435 3452 jint nval = (obj_array
duke@435 3453 ? ((jint)Klass::_lh_array_tag_type_value
duke@435 3454 << Klass::_lh_array_tag_shift)
duke@435 3455 : Klass::_lh_neutral_value);
kvn@4115 3456 Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
duke@435 3457 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
duke@435 3458 // invert the test if we are looking for a non-array
duke@435 3459 if (not_array) btest = BoolTest(btest).negate();
kvn@4115 3460 Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
duke@435 3461 return generate_fair_guard(bol, region);
duke@435 3462 }
duke@435 3463
duke@435 3464
duke@435 3465 //-----------------------inline_native_newArray--------------------------
twisti@4313 3466 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
duke@435 3467 bool LibraryCallKit::inline_native_newArray() {
duke@435 3468 Node* mirror = argument(0);
duke@435 3469 Node* count_val = argument(1);
duke@435 3470
twisti@4313 3471 mirror = null_check(mirror);
kvn@598 3472 // If mirror or obj is dead, only null-path is taken.
kvn@598 3473 if (stopped()) return true;
duke@435 3474
duke@435 3475 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
kvn@4115 3476 RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
kvn@4115 3477 PhiNode* result_val = new(C) PhiNode(result_reg,
kvn@4115 3478 TypeInstPtr::NOTNULL);
kvn@4115 3479 PhiNode* result_io = new(C) PhiNode(result_reg, Type::ABIO);
kvn@4115 3480 PhiNode* result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
kvn@4115 3481 TypePtr::BOTTOM);
duke@435 3482
duke@435 3483 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3484 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
duke@435 3485 result_reg, _slow_path);
duke@435 3486 Node* normal_ctl = control();
duke@435 3487 Node* no_array_ctl = result_reg->in(_slow_path);
duke@435 3488
duke@435 3489 // Generate code for the slow case. We make a call to newArray().
duke@435 3490 set_control(no_array_ctl);
duke@435 3491 if (!stopped()) {
duke@435 3492 // Either the input type is void.class, or else the
duke@435 3493 // array klass has not yet been cached. Either the
duke@435 3494 // ensuing call will throw an exception, or else it
duke@435 3495 // will cache the array klass for next time.
duke@435 3496 PreserveJVMState pjvms(this);
duke@435 3497 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
duke@435 3498 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3499 // this->control() comes from set_results_for_java_call
duke@435 3500 result_reg->set_req(_slow_path, control());
duke@435 3501 result_val->set_req(_slow_path, slow_result);
duke@435 3502 result_io ->set_req(_slow_path, i_o());
duke@435 3503 result_mem->set_req(_slow_path, reset_memory());
duke@435 3504 }
duke@435 3505
duke@435 3506 set_control(normal_ctl);
duke@435 3507 if (!stopped()) {
duke@435 3508 // Normal case: The array type has been cached in the java.lang.Class.
duke@435 3509 // The following call works fine even if the array type is polymorphic.
duke@435 3510 // It could be a dynamic mix of int[], boolean[], Object[], etc.
twisti@4313 3511 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push
duke@435 3512 result_reg->init_req(_normal_path, control());
duke@435 3513 result_val->init_req(_normal_path, obj);
duke@435 3514 result_io ->init_req(_normal_path, i_o());
duke@435 3515 result_mem->init_req(_normal_path, reset_memory());
duke@435 3516 }
duke@435 3517
duke@435 3518 // Return the combined state.
duke@435 3519 set_i_o( _gvn.transform(result_io) );
duke@435 3520 set_all_memory( _gvn.transform(result_mem) );
twisti@4313 3521
duke@435 3522 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3523 set_result(result_reg, result_val);
duke@435 3524 return true;
duke@435 3525 }
duke@435 3526
duke@435 3527 //----------------------inline_native_getLength--------------------------
twisti@4313 3528 // public static native int java.lang.reflect.Array.getLength(Object array);
duke@435 3529 bool LibraryCallKit::inline_native_getLength() {
duke@435 3530 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3531
twisti@4313 3532 Node* array = null_check(argument(0));
duke@435 3533 // If array is dead, only null-path is taken.
duke@435 3534 if (stopped()) return true;
duke@435 3535
duke@435 3536 // Deoptimize if it is a non-array.
duke@435 3537 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
duke@435 3538
duke@435 3539 if (non_array != NULL) {
duke@435 3540 PreserveJVMState pjvms(this);
duke@435 3541 set_control(non_array);
duke@435 3542 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 3543 Deoptimization::Action_maybe_recompile);
duke@435 3544 }
duke@435 3545
duke@435 3546 // If control is dead, only non-array-path is taken.
duke@435 3547 if (stopped()) return true;
duke@435 3548
duke@435 3549 // The works fine even if the array type is polymorphic.
duke@435 3550 // It could be a dynamic mix of int[], boolean[], Object[], etc.
twisti@4313 3551 Node* result = load_array_length(array);
twisti@4313 3552
twisti@4313 3553 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3554 set_result(result);
duke@435 3555 return true;
duke@435 3556 }
duke@435 3557
duke@435 3558 //------------------------inline_array_copyOf----------------------------
twisti@4313 3559 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType);
twisti@4313 3560 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType);
duke@435 3561 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
twisti@4313 3562 return false;
duke@435 3563 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3564
twisti@4313 3565 // Get the arguments.
duke@435 3566 Node* original = argument(0);
duke@435 3567 Node* start = is_copyOfRange? argument(1): intcon(0);
duke@435 3568 Node* end = is_copyOfRange? argument(2): argument(1);
duke@435 3569 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
duke@435 3570
cfang@1337 3571 Node* newcopy;
cfang@1337 3572
twisti@4313 3573 // Set the original stack and the reexecute bit for the interpreter to reexecute
twisti@4313 3574 // the bytecode that invokes Arrays.copyOf if deoptimization happens.
cfang@1337 3575 { PreserveReexecuteState preexecs(this);
cfang@1337 3576 jvms()->set_should_reexecute(true);
cfang@1337 3577
twisti@4313 3578 array_type_mirror = null_check(array_type_mirror);
twisti@4313 3579 original = null_check(original);
cfang@1337 3580
cfang@1337 3581 // Check if a null path was taken unconditionally.
cfang@1337 3582 if (stopped()) return true;
cfang@1337 3583
cfang@1337 3584 Node* orig_length = load_array_length(original);
cfang@1337 3585
twisti@4313 3586 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
twisti@4313 3587 klass_node = null_check(klass_node);
cfang@1337 3588
kvn@4115 3589 RegionNode* bailout = new (C) RegionNode(1);
cfang@1337 3590 record_for_igvn(bailout);
cfang@1337 3591
cfang@1337 3592 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
cfang@1337 3593 // Bail out if that is so.
cfang@1337 3594 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
cfang@1337 3595 if (not_objArray != NULL) {
cfang@1337 3596 // Improve the klass node's type from the new optimistic assumption:
cfang@1337 3597 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
cfang@1337 3598 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
kvn@4115 3599 Node* cast = new (C) CastPPNode(klass_node, akls);
cfang@1337 3600 cast->init_req(0, control());
cfang@1337 3601 klass_node = _gvn.transform(cast);
cfang@1337 3602 }
cfang@1337 3603
cfang@1337 3604 // Bail out if either start or end is negative.
cfang@1337 3605 generate_negative_guard(start, bailout, &start);
cfang@1337 3606 generate_negative_guard(end, bailout, &end);
cfang@1337 3607
cfang@1337 3608 Node* length = end;
cfang@1337 3609 if (_gvn.type(start) != TypeInt::ZERO) {
twisti@4313 3610 length = _gvn.transform(new (C) SubINode(end, start));
cfang@1337 3611 }
cfang@1337 3612
cfang@1337 3613 // Bail out if length is negative.
roland@3883 3614 // Without this the new_array would throw
roland@3883 3615 // NegativeArraySizeException but IllegalArgumentException is what
roland@3883 3616 // should be thrown
roland@3883 3617 generate_negative_guard(length, bailout, &length);
cfang@1337 3618
cfang@1337 3619 if (bailout->req() > 1) {
cfang@1337 3620 PreserveJVMState pjvms(this);
twisti@4313 3621 set_control(_gvn.transform(bailout));
cfang@1337 3622 uncommon_trap(Deoptimization::Reason_intrinsic,
cfang@1337 3623 Deoptimization::Action_maybe_recompile);
cfang@1337 3624 }
cfang@1337 3625
cfang@1337 3626 if (!stopped()) {
cfang@1335 3627 // How many elements will we copy from the original?
cfang@1335 3628 // The answer is MinI(orig_length - start, length).
twisti@4313 3629 Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
cfang@1335 3630 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
cfang@1335 3631
twisti@4313 3632 newcopy = new_array(klass_node, length, 0); // no argments to push
cfang@1335 3633
cfang@1335 3634 // Generate a direct call to the right arraycopy function(s).
cfang@1335 3635 // We know the copy is disjoint but we might not know if the
cfang@1335 3636 // oop stores need checking.
cfang@1335 3637 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
cfang@1335 3638 // This will fail a store-check if x contains any non-nulls.
cfang@1335 3639 bool disjoint_bases = true;
roland@3883 3640 // if start > orig_length then the length of the copy may be
roland@3883 3641 // negative.
roland@3883 3642 bool length_never_negative = !is_copyOfRange;
cfang@1335 3643 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 3644 original, start, newcopy, intcon(0), moved,
cfang@1335 3645 disjoint_bases, length_never_negative);
cfang@1337 3646 }
twisti@4313 3647 } // original reexecute is set back here
twisti@4313 3648
twisti@4313 3649 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 3650 if (!stopped()) {
twisti@4313 3651 set_result(newcopy);
duke@435 3652 }
duke@435 3653 return true;
duke@435 3654 }
duke@435 3655
duke@435 3656
duke@435 3657 //----------------------generate_virtual_guard---------------------------
duke@435 3658 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
duke@435 3659 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
duke@435 3660 RegionNode* slow_region) {
duke@435 3661 ciMethod* method = callee();
duke@435 3662 int vtable_index = method->vtable_index();
coleenp@4037 3663 // Get the Method* out of the appropriate vtable entry.
coleenp@4037 3664 int entry_offset = (InstanceKlass::vtable_start_offset() +
duke@435 3665 vtable_index*vtableEntry::size()) * wordSize +
duke@435 3666 vtableEntry::method_offset_in_bytes();
duke@435 3667 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
kvn@4199 3668 Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
duke@435 3669
duke@435 3670 // Compare the target method with the expected method (e.g., Object.hashCode).
coleenp@4037 3671 const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
duke@435 3672
duke@435 3673 Node* native_call = makecon(native_call_addr);
kvn@4115 3674 Node* chk_native = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
kvn@4115 3675 Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
duke@435 3676
duke@435 3677 return generate_slow_guard(test_native, slow_region);
duke@435 3678 }
duke@435 3679
duke@435 3680 //-----------------------generate_method_call----------------------------
duke@435 3681 // Use generate_method_call to make a slow-call to the real
duke@435 3682 // method if the fast path fails. An alternative would be to
duke@435 3683 // use a stub like OptoRuntime::slow_arraycopy_Java.
duke@435 3684 // This only works for expanding the current library call,
duke@435 3685 // not another intrinsic. (E.g., don't use this for making an
duke@435 3686 // arraycopy call inside of the copyOf intrinsic.)
duke@435 3687 CallJavaNode*
duke@435 3688 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
duke@435 3689 // When compiling the intrinsic method itself, do not use this technique.
duke@435 3690 guarantee(callee() != C->method(), "cannot make slow-call to self");
duke@435 3691
duke@435 3692 ciMethod* method = callee();
duke@435 3693 // ensure the JVMS we have will be correct for this call
duke@435 3694 guarantee(method_id == method->intrinsic_id(), "must match");
duke@435 3695
duke@435 3696 const TypeFunc* tf = TypeFunc::make(method);
duke@435 3697 CallJavaNode* slow_call;
duke@435 3698 if (is_static) {
duke@435 3699 assert(!is_virtual, "");
kvn@4115 3700 slow_call = new(C) CallStaticJavaNode(tf,
kvn@4115 3701 SharedRuntime::get_resolve_static_call_stub(),
kvn@4115 3702 method, bci());
duke@435 3703 } else if (is_virtual) {
twisti@4313 3704 null_check_receiver();
coleenp@4037 3705 int vtable_index = Method::invalid_vtable_index;
duke@435 3706 if (UseInlineCaches) {
duke@435 3707 // Suppress the vtable call
duke@435 3708 } else {
duke@435 3709 // hashCode and clone are not a miranda methods,
duke@435 3710 // so the vtable index is fixed.
duke@435 3711 // No need to use the linkResolver to get it.
duke@435 3712 vtable_index = method->vtable_index();
duke@435 3713 }
kvn@4115 3714 slow_call = new(C) CallDynamicJavaNode(tf,
kvn@4115 3715 SharedRuntime::get_resolve_virtual_call_stub(),
kvn@4115 3716 method, vtable_index, bci());
duke@435 3717 } else { // neither virtual nor static: opt_virtual
twisti@4313 3718 null_check_receiver();
kvn@4115 3719 slow_call = new(C) CallStaticJavaNode(tf,
duke@435 3720 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 3721 method, bci());
duke@435 3722 slow_call->set_optimized_virtual(true);
duke@435 3723 }
duke@435 3724 set_arguments_for_java_call(slow_call);
duke@435 3725 set_edges_for_java_call(slow_call);
duke@435 3726 return slow_call;
duke@435 3727 }
duke@435 3728
duke@435 3729
duke@435 3730 //------------------------------inline_native_hashcode--------------------
duke@435 3731 // Build special case code for calls to hashCode on an object.
duke@435 3732 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
duke@435 3733 assert(is_static == callee()->is_static(), "correct intrinsic selection");
duke@435 3734 assert(!(is_virtual && is_static), "either virtual, special, or static");
duke@435 3735
duke@435 3736 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
duke@435 3737
kvn@4115 3738 RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
kvn@4115 3739 PhiNode* result_val = new(C) PhiNode(result_reg,
kvn@4115 3740 TypeInt::INT);
kvn@4115 3741 PhiNode* result_io = new(C) PhiNode(result_reg, Type::ABIO);
kvn@4115 3742 PhiNode* result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
kvn@4115 3743 TypePtr::BOTTOM);
duke@435 3744 Node* obj = NULL;
duke@435 3745 if (!is_static) {
duke@435 3746 // Check for hashing null object
twisti@4313 3747 obj = null_check_receiver();
duke@435 3748 if (stopped()) return true; // unconditionally null
duke@435 3749 result_reg->init_req(_null_path, top());
duke@435 3750 result_val->init_req(_null_path, top());
duke@435 3751 } else {
duke@435 3752 // Do a null check, and return zero if null.
duke@435 3753 // System.identityHashCode(null) == 0
duke@435 3754 obj = argument(0);
duke@435 3755 Node* null_ctl = top();
duke@435 3756 obj = null_check_oop(obj, &null_ctl);
duke@435 3757 result_reg->init_req(_null_path, null_ctl);
duke@435 3758 result_val->init_req(_null_path, _gvn.intcon(0));
duke@435 3759 }
duke@435 3760
duke@435 3761 // Unconditionally null? Then return right away.
duke@435 3762 if (stopped()) {
twisti@4313 3763 set_control( result_reg->in(_null_path));
duke@435 3764 if (!stopped())
twisti@4313 3765 set_result(result_val->in(_null_path));
duke@435 3766 return true;
duke@435 3767 }
duke@435 3768
duke@435 3769 // After null check, get the object's klass.
duke@435 3770 Node* obj_klass = load_object_klass(obj);
duke@435 3771
duke@435 3772 // This call may be virtual (invokevirtual) or bound (invokespecial).
duke@435 3773 // For each case we generate slightly different code.
duke@435 3774
duke@435 3775 // We only go to the fast case code if we pass a number of guards. The
duke@435 3776 // paths which do not pass are accumulated in the slow_region.
kvn@4115 3777 RegionNode* slow_region = new (C) RegionNode(1);
duke@435 3778 record_for_igvn(slow_region);
duke@435 3779
duke@435 3780 // If this is a virtual call, we generate a funny guard. We pull out
duke@435 3781 // the vtable entry corresponding to hashCode() from the target object.
duke@435 3782 // If the target method which we are calling happens to be the native
duke@435 3783 // Object hashCode() method, we pass the guard. We do not need this
duke@435 3784 // guard for non-virtual calls -- the caller is known to be the native
duke@435 3785 // Object hashCode().
duke@435 3786 if (is_virtual) {
duke@435 3787 generate_virtual_guard(obj_klass, slow_region);
duke@435 3788 }
duke@435 3789
duke@435 3790 // Get the header out of the object, use LoadMarkNode when available
duke@435 3791 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@1964 3792 Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
duke@435 3793
duke@435 3794 // Test the header to see if it is unlocked.
duke@435 3795 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
kvn@4115 3796 Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
duke@435 3797 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
kvn@4115 3798 Node *chk_unlocked = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
kvn@4115 3799 Node *test_unlocked = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
duke@435 3800
duke@435 3801 generate_slow_guard(test_unlocked, slow_region);
duke@435 3802
duke@435 3803 // Get the hash value and check to see that it has been properly assigned.
duke@435 3804 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 3805 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 3806 // vm: see markOop.hpp.
duke@435 3807 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
duke@435 3808 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
kvn@4115 3809 Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
duke@435 3810 // This hack lets the hash bits live anywhere in the mark object now, as long
twisti@1040 3811 // as the shift drops the relevant bits into the low 32 bits. Note that
duke@435 3812 // Java spec says that HashCode is an int so there's no point in capturing
duke@435 3813 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
duke@435 3814 hshifted_header = ConvX2I(hshifted_header);
kvn@4115 3815 Node *hash_val = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
duke@435 3816
duke@435 3817 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
kvn@4115 3818 Node *chk_assigned = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
kvn@4115 3819 Node *test_assigned = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
duke@435 3820
duke@435 3821 generate_slow_guard(test_assigned, slow_region);
duke@435 3822
duke@435 3823 Node* init_mem = reset_memory();
duke@435 3824 // fill in the rest of the null path:
duke@435 3825 result_io ->init_req(_null_path, i_o());
duke@435 3826 result_mem->init_req(_null_path, init_mem);
duke@435 3827
duke@435 3828 result_val->init_req(_fast_path, hash_val);
duke@435 3829 result_reg->init_req(_fast_path, control());
duke@435 3830 result_io ->init_req(_fast_path, i_o());
duke@435 3831 result_mem->init_req(_fast_path, init_mem);
duke@435 3832
duke@435 3833 // Generate code for the slow case. We make a call to hashCode().
duke@435 3834 set_control(_gvn.transform(slow_region));
duke@435 3835 if (!stopped()) {
duke@435 3836 // No need for PreserveJVMState, because we're using up the present state.
duke@435 3837 set_all_memory(init_mem);
twisti@4313 3838 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
duke@435 3839 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
duke@435 3840 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3841 // this->control() comes from set_results_for_java_call
duke@435 3842 result_reg->init_req(_slow_path, control());
duke@435 3843 result_val->init_req(_slow_path, slow_result);
duke@435 3844 result_io ->set_req(_slow_path, i_o());
duke@435 3845 result_mem ->set_req(_slow_path, reset_memory());
duke@435 3846 }
duke@435 3847
duke@435 3848 // Return the combined state.
duke@435 3849 set_i_o( _gvn.transform(result_io) );
duke@435 3850 set_all_memory( _gvn.transform(result_mem) );
twisti@4313 3851
twisti@4313 3852 set_result(result_reg, result_val);
duke@435 3853 return true;
duke@435 3854 }
duke@435 3855
duke@435 3856 //---------------------------inline_native_getClass----------------------------
twisti@4313 3857 // public final native Class<?> java.lang.Object.getClass();
twisti@4313 3858 //
twisti@1040 3859 // Build special case code for calls to getClass on an object.
duke@435 3860 bool LibraryCallKit::inline_native_getClass() {
twisti@4313 3861 Node* obj = null_check_receiver();
duke@435 3862 if (stopped()) return true;
twisti@4313 3863 set_result(load_mirror_from_klass(load_object_klass(obj)));
duke@435 3864 return true;
duke@435 3865 }
duke@435 3866
duke@435 3867 //-----------------inline_native_Reflection_getCallerClass---------------------
twisti@4313 3868 // public static native Class<?> sun.reflect.Reflection.getCallerClass(int realFramesToSkip);
twisti@4313 3869 //
duke@435 3870 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
duke@435 3871 //
duke@435 3872 // NOTE that this code must perform the same logic as
duke@435 3873 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3874 // Method.invoke() and auxiliary frames.
duke@435 3875 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
duke@435 3876 #ifndef PRODUCT
duke@435 3877 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3878 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
duke@435 3879 }
duke@435 3880 #endif
duke@435 3881
twisti@4313 3882 Node* caller_depth_node = argument(0);
duke@435 3883
duke@435 3884 // The depth value must be a constant in order for the runtime call
duke@435 3885 // to be eliminated.
duke@435 3886 const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
duke@435 3887 if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
duke@435 3888 #ifndef PRODUCT
duke@435 3889 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3890 tty->print_cr(" Bailing out because caller depth was not a constant");
duke@435 3891 }
duke@435 3892 #endif
duke@435 3893 return false;
duke@435 3894 }
duke@435 3895 // Note that the JVM state at this point does not include the
duke@435 3896 // getCallerClass() frame which we are trying to inline. The
duke@435 3897 // semantics of getCallerClass(), however, are that the "first"
duke@435 3898 // frame is the getCallerClass() frame, so we subtract one from the
duke@435 3899 // requested depth before continuing. We don't inline requests of
duke@435 3900 // getCallerClass(0).
duke@435 3901 int caller_depth = caller_depth_type->get_con() - 1;
duke@435 3902 if (caller_depth < 0) {
duke@435 3903 #ifndef PRODUCT
duke@435 3904 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3905 tty->print_cr(" Bailing out because caller depth was %d", caller_depth);
duke@435 3906 }
duke@435 3907 #endif
duke@435 3908 return false;
duke@435 3909 }
duke@435 3910
duke@435 3911 if (!jvms()->has_method()) {
duke@435 3912 #ifndef PRODUCT
duke@435 3913 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3914 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
duke@435 3915 }
duke@435 3916 #endif
duke@435 3917 return false;
duke@435 3918 }
duke@435 3919 int _depth = jvms()->depth(); // cache call chain depth
duke@435 3920
duke@435 3921 // Walk back up the JVM state to find the caller at the required
duke@435 3922 // depth. NOTE that this code must perform the same logic as
duke@435 3923 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3924 // Method.invoke() and auxiliary frames. Note also that depth is
duke@435 3925 // 1-based (1 is the bottom of the inlining).
duke@435 3926 int inlining_depth = _depth;
duke@435 3927 JVMState* caller_jvms = NULL;
duke@435 3928
duke@435 3929 if (inlining_depth > 0) {
duke@435 3930 caller_jvms = jvms();
duke@435 3931 assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
duke@435 3932 do {
duke@435 3933 // The following if-tests should be performed in this order
duke@435 3934 if (is_method_invoke_or_aux_frame(caller_jvms)) {
duke@435 3935 // Skip a Method.invoke() or auxiliary frame
duke@435 3936 } else if (caller_depth > 0) {
duke@435 3937 // Skip real frame
duke@435 3938 --caller_depth;
duke@435 3939 } else {
duke@435 3940 // We're done: reached desired caller after skipping.
duke@435 3941 break;
duke@435 3942 }
duke@435 3943 caller_jvms = caller_jvms->caller();
duke@435 3944 --inlining_depth;
duke@435 3945 } while (inlining_depth > 0);
duke@435 3946 }
duke@435 3947
duke@435 3948 if (inlining_depth == 0) {
duke@435 3949 #ifndef PRODUCT
duke@435 3950 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3951 tty->print_cr(" Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
duke@435 3952 tty->print_cr(" JVM state at this point:");
duke@435 3953 for (int i = _depth; i >= 1; i--) {
twisti@4313 3954 ciMethod* m = jvms()->of_depth(i)->method();
twisti@4313 3955 tty->print_cr(" %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
duke@435 3956 }
duke@435 3957 }
duke@435 3958 #endif
duke@435 3959 return false; // Reached end of inlining
duke@435 3960 }
duke@435 3961
duke@435 3962 // Acquire method holder as java.lang.Class
duke@435 3963 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
duke@435 3964 ciInstance* caller_mirror = caller_klass->java_mirror();
twisti@4313 3965
duke@435 3966 // Push this as a constant
twisti@4313 3967 set_result(makecon(TypeInstPtr::make(caller_mirror)));
twisti@4313 3968
duke@435 3969 #ifndef PRODUCT
duke@435 3970 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3971 tty->print_cr(" Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
duke@435 3972 tty->print_cr(" JVM state at this point:");
duke@435 3973 for (int i = _depth; i >= 1; i--) {
twisti@4313 3974 ciMethod* m = jvms()->of_depth(i)->method();
twisti@4313 3975 tty->print_cr(" %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
duke@435 3976 }
duke@435 3977 }
duke@435 3978 #endif
duke@435 3979 return true;
duke@435 3980 }
duke@435 3981
duke@435 3982 // Helper routine for above
duke@435 3983 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
twisti@1587 3984 ciMethod* method = jvms->method();
twisti@1587 3985
duke@435 3986 // Is this the Method.invoke method itself?
twisti@1587 3987 if (method->intrinsic_id() == vmIntrinsics::_invoke)
duke@435 3988 return true;
duke@435 3989
duke@435 3990 // Is this a helper, defined somewhere underneath MethodAccessorImpl.
twisti@1587 3991 ciKlass* k = method->holder();
duke@435 3992 if (k->is_instance_klass()) {
duke@435 3993 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3994 for (; ik != NULL; ik = ik->super()) {
duke@435 3995 if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
duke@435 3996 ik == env()->find_system_klass(ik->name())) {
duke@435 3997 return true;
duke@435 3998 }
duke@435 3999 }
duke@435 4000 }
twisti@3969 4001 else if (method->is_method_handle_intrinsic() ||
twisti@3969 4002 method->is_compiled_lambda_form()) {
twisti@1587 4003 // This is an internal adapter frame from the MethodHandleCompiler -- skip it
twisti@1587 4004 return true;
twisti@1587 4005 }
duke@435 4006
duke@435 4007 return false;
duke@435 4008 }
duke@435 4009
duke@435 4010 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
twisti@4313 4011 Node* arg = argument(0);
twisti@4313 4012 Node* result;
duke@435 4013
duke@435 4014 switch (id) {
twisti@4313 4015 case vmIntrinsics::_floatToRawIntBits: result = new (C) MoveF2INode(arg); break;
twisti@4313 4016 case vmIntrinsics::_intBitsToFloat: result = new (C) MoveI2FNode(arg); break;
twisti@4313 4017 case vmIntrinsics::_doubleToRawLongBits: result = new (C) MoveD2LNode(arg); break;
twisti@4313 4018 case vmIntrinsics::_longBitsToDouble: result = new (C) MoveL2DNode(arg); break;
duke@435 4019
duke@435 4020 case vmIntrinsics::_doubleToLongBits: {
duke@435 4021 // two paths (plus control) merge in a wood
kvn@4115 4022 RegionNode *r = new (C) RegionNode(3);
kvn@4115 4023 Node *phi = new (C) PhiNode(r, TypeLong::LONG);
kvn@4115 4024
twisti@4313 4025 Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
duke@435 4026 // Build the boolean node
twisti@4313 4027 Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
duke@435 4028
duke@435 4029 // Branch either way.
duke@435 4030 // NaN case is less traveled, which makes all the difference.
duke@435 4031 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4032 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4033 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4034 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
kvn@4115 4035 Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
duke@435 4036
duke@435 4037 set_control(iftrue);
duke@435 4038
duke@435 4039 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 4040 Node *slow_result = longcon(nan_bits); // return NaN
duke@435 4041 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4042 r->init_req(1, iftrue);
duke@435 4043
duke@435 4044 // Else fall through
twisti@4313 4045 Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
duke@435 4046 set_control(iffalse);
duke@435 4047
twisti@4313 4048 phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
duke@435 4049 r->init_req(2, iffalse);
duke@435 4050
duke@435 4051 // Post merge
duke@435 4052 set_control(_gvn.transform(r));
duke@435 4053 record_for_igvn(r);
duke@435 4054
twisti@4313 4055 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 4056 result = phi;
duke@435 4057 assert(result->bottom_type()->isa_long(), "must be");
duke@435 4058 break;
duke@435 4059 }
duke@435 4060
duke@435 4061 case vmIntrinsics::_floatToIntBits: {
duke@435 4062 // two paths (plus control) merge in a wood
kvn@4115 4063 RegionNode *r = new (C) RegionNode(3);
kvn@4115 4064 Node *phi = new (C) PhiNode(r, TypeInt::INT);
kvn@4115 4065
twisti@4313 4066 Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
duke@435 4067 // Build the boolean node
twisti@4313 4068 Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
duke@435 4069
duke@435 4070 // Branch either way.
duke@435 4071 // NaN case is less traveled, which makes all the difference.
duke@435 4072 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4073 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4074 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4075 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
kvn@4115 4076 Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
duke@435 4077
duke@435 4078 set_control(iftrue);
duke@435 4079
duke@435 4080 static const jint nan_bits = 0x7fc00000;
duke@435 4081 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
duke@435 4082 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4083 r->init_req(1, iftrue);
duke@435 4084
duke@435 4085 // Else fall through
twisti@4313 4086 Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
duke@435 4087 set_control(iffalse);
duke@435 4088
twisti@4313 4089 phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
duke@435 4090 r->init_req(2, iffalse);
duke@435 4091
duke@435 4092 // Post merge
duke@435 4093 set_control(_gvn.transform(r));
duke@435 4094 record_for_igvn(r);
duke@435 4095
twisti@4313 4096 C->set_has_split_ifs(true); // Has chance for split-if optimization
twisti@4313 4097 result = phi;
duke@435 4098 assert(result->bottom_type()->isa_int(), "must be");
duke@435 4099 break;
duke@435 4100 }
duke@435 4101
duke@435 4102 default:
twisti@4313 4103 fatal_unexpected_iid(id);
twisti@4313 4104 break;
duke@435 4105 }
twisti@4313 4106 set_result(_gvn.transform(result));
duke@435 4107 return true;
duke@435 4108 }
duke@435 4109
duke@435 4110 #ifdef _LP64
duke@435 4111 #define XTOP ,top() /*additional argument*/
duke@435 4112 #else //_LP64
duke@435 4113 #define XTOP /*no additional argument*/
duke@435 4114 #endif //_LP64
duke@435 4115
duke@435 4116 //----------------------inline_unsafe_copyMemory-------------------------
twisti@4313 4117 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
duke@435 4118 bool LibraryCallKit::inline_unsafe_copyMemory() {
duke@435 4119 if (callee()->is_static()) return false; // caller must have the capability!
twisti@4313 4120 null_check_receiver(); // null-check receiver
duke@435 4121 if (stopped()) return true;
duke@435 4122
duke@435 4123 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 4124
twisti@4313 4125 Node* src_ptr = argument(1); // type: oop
twisti@4313 4126 Node* src_off = ConvL2X(argument(2)); // type: long
twisti@4313 4127 Node* dst_ptr = argument(4); // type: oop
twisti@4313 4128 Node* dst_off = ConvL2X(argument(5)); // type: long
twisti@4313 4129 Node* size = ConvL2X(argument(7)); // type: long
duke@435 4130
duke@435 4131 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 4132 "fieldOffset must be byte-scaled");
duke@435 4133
duke@435 4134 Node* src = make_unsafe_address(src_ptr, src_off);
duke@435 4135 Node* dst = make_unsafe_address(dst_ptr, dst_off);
duke@435 4136
duke@435 4137 // Conservatively insert a memory barrier on all memory slices.
duke@435 4138 // Do not let writes of the copy source or destination float below the copy.
duke@435 4139 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4140
duke@435 4141 // Call it. Note that the length argument is not scaled.
duke@435 4142 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 4143 OptoRuntime::fast_arraycopy_Type(),
duke@435 4144 StubRoutines::unsafe_arraycopy(),
duke@435 4145 "unsafe_arraycopy",
duke@435 4146 TypeRawPtr::BOTTOM,
duke@435 4147 src, dst, size XTOP);
duke@435 4148
duke@435 4149 // Do not let reads of the copy destination float above the copy.
duke@435 4150 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4151
duke@435 4152 return true;
duke@435 4153 }
duke@435 4154
kvn@1268 4155 //------------------------clone_coping-----------------------------------
kvn@1268 4156 // Helper function for inline_native_clone.
kvn@1268 4157 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
kvn@1268 4158 assert(obj_size != NULL, "");
kvn@1268 4159 Node* raw_obj = alloc_obj->in(1);
kvn@1268 4160 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
kvn@1268 4161
roland@3392 4162 AllocateNode* alloc = NULL;
kvn@1268 4163 if (ReduceBulkZeroing) {
kvn@1268 4164 // We will be completely responsible for initializing this object -
kvn@1268 4165 // mark Initialize node as complete.
roland@3392 4166 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
kvn@1268 4167 // The object was just allocated - there should be no any stores!
kvn@1268 4168 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
roland@3392 4169 // Mark as complete_with_arraycopy so that on AllocateNode
roland@3392 4170 // expansion, we know this AllocateNode is initialized by an array
roland@3392 4171 // copy and a StoreStore barrier exists after the array copy.
roland@3392 4172 alloc->initialization()->set_complete_with_arraycopy();
kvn@1268 4173 }
kvn@1268 4174
kvn@1268 4175 // Copy the fastest available way.
kvn@1268 4176 // TODO: generate fields copies for small objects instead.
kvn@1268 4177 Node* src = obj;
kvn@1393 4178 Node* dest = alloc_obj;
kvn@1268 4179 Node* size = _gvn.transform(obj_size);
kvn@1268 4180
kvn@1268 4181 // Exclude the header but include array length to copy by 8 bytes words.
kvn@1268 4182 // Can't use base_offset_in_bytes(bt) since basic type is unknown.
kvn@1268 4183 int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
kvn@1268 4184 instanceOopDesc::base_offset_in_bytes();
kvn@1268 4185 // base_off:
kvn@1268 4186 // 8 - 32-bit VM
coleenp@4037 4187 // 12 - 64-bit VM, compressed klass
coleenp@4037 4188 // 16 - 64-bit VM, normal klass
kvn@1268 4189 if (base_off % BytesPerLong != 0) {
roland@4159 4190 assert(UseCompressedKlassPointers, "");
kvn@1268 4191 if (is_array) {
kvn@1268 4192 // Exclude length to copy by 8 bytes words.
kvn@1268 4193 base_off += sizeof(int);
kvn@1268 4194 } else {
kvn@1268 4195 // Include klass to copy by 8 bytes words.
kvn@1268 4196 base_off = instanceOopDesc::klass_offset_in_bytes();
kvn@1268 4197 }
kvn@1268 4198 assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
kvn@1268 4199 }
kvn@1268 4200 src = basic_plus_adr(src, base_off);
kvn@1268 4201 dest = basic_plus_adr(dest, base_off);
kvn@1268 4202
kvn@1268 4203 // Compute the length also, if needed:
kvn@1268 4204 Node* countx = size;
kvn@4115 4205 countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
kvn@4115 4206 countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
kvn@1268 4207
kvn@1268 4208 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
kvn@1268 4209 bool disjoint_bases = true;
kvn@1268 4210 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
iveresov@2606 4211 src, NULL, dest, NULL, countx,
iveresov@2606 4212 /*dest_uninitialized*/true);
kvn@1268 4213
kvn@1268 4214 // If necessary, emit some card marks afterwards. (Non-arrays only.)
kvn@1268 4215 if (card_mark) {
kvn@1268 4216 assert(!is_array, "");
kvn@1268 4217 // Put in store barrier for any and all oops we are sticking
kvn@1268 4218 // into this object. (We could avoid this if we could prove
kvn@1268 4219 // that the object type contains no oop fields at all.)
kvn@1268 4220 Node* no_particular_value = NULL;
kvn@1268 4221 Node* no_particular_field = NULL;
kvn@1268 4222 int raw_adr_idx = Compile::AliasIdxRaw;
kvn@1268 4223 post_barrier(control(),
kvn@1268 4224 memory(raw_adr_type),
kvn@1393 4225 alloc_obj,
kvn@1268 4226 no_particular_field,
kvn@1268 4227 raw_adr_idx,
kvn@1268 4228 no_particular_value,
kvn@1268 4229 T_OBJECT,
kvn@1268 4230 false);
kvn@1268 4231 }
kvn@1268 4232
kvn@1393 4233 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 4234 if (alloc != NULL) {
roland@3392 4235 // Do not let stores that initialize this object be reordered with
roland@3392 4236 // a subsequent store that would make this object accessible by
roland@3392 4237 // other threads.
roland@3392 4238 // Record what AllocateNode this StoreStore protects so that
roland@3392 4239 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 4240 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 4241 // based on the escape status of the AllocateNode.
roland@3392 4242 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 4243 } else {
roland@3392 4244 insert_mem_bar(Op_MemBarCPUOrder);
roland@3392 4245 }
kvn@1268 4246 }
duke@435 4247
duke@435 4248 //------------------------inline_native_clone----------------------------
twisti@4313 4249 // protected native Object java.lang.Object.clone();
twisti@4313 4250 //
duke@435 4251 // Here are the simple edge cases:
duke@435 4252 // null receiver => normal trap
duke@435 4253 // virtual and clone was overridden => slow path to out-of-line clone
duke@435 4254 // not cloneable or finalizer => slow path to out-of-line Object.clone
duke@435 4255 //
duke@435 4256 // The general case has two steps, allocation and copying.
duke@435 4257 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
duke@435 4258 //
duke@435 4259 // Copying also has two cases, oop arrays and everything else.
duke@435 4260 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
duke@435 4261 // Everything else uses the tight inline loop supplied by CopyArrayNode.
duke@435 4262 //
duke@435 4263 // These steps fold up nicely if and when the cloned object's klass
duke@435 4264 // can be sharply typed as an object array, a type array, or an instance.
duke@435 4265 //
duke@435 4266 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
cfang@1337 4267 PhiNode* result_val;
duke@435 4268
twisti@4313 4269 // Set the reexecute bit for the interpreter to reexecute
twisti@4313 4270 // the bytecode that invokes Object.clone if deoptimization happens.
cfang@1335 4271 { PreserveReexecuteState preexecs(this);
cfang@1337 4272 jvms()->set_should_reexecute(true);
cfang@1337 4273
twisti@4313 4274 Node* obj = null_check_receiver();
cfang@1337 4275 if (stopped()) return true;
cfang@1337 4276
cfang@1337 4277 Node* obj_klass = load_object_klass(obj);
cfang@1337 4278 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
cfang@1337 4279 const TypeOopPtr* toop = ((tklass != NULL)
cfang@1337 4280 ? tklass->as_instance_type()
cfang@1337 4281 : TypeInstPtr::NOTNULL);
cfang@1337 4282
cfang@1337 4283 // Conservatively insert a memory barrier on all memory slices.
cfang@1337 4284 // Do not let writes into the original float below the clone.
cfang@1337 4285 insert_mem_bar(Op_MemBarCPUOrder);
cfang@1337 4286
cfang@1337 4287 // paths into result_reg:
cfang@1337 4288 enum {
cfang@1337 4289 _slow_path = 1, // out-of-line call to clone method (virtual or not)
cfang@1337 4290 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
cfang@1337 4291 _array_path, // plain array allocation, plus arrayof_long_arraycopy
cfang@1337 4292 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
cfang@1337 4293 PATH_LIMIT
cfang@1337 4294 };
kvn@4115 4295 RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
kvn@4115 4296 result_val = new(C) PhiNode(result_reg,
kvn@4115 4297 TypeInstPtr::NOTNULL);
kvn@4115 4298 PhiNode* result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
kvn@4115 4299 PhiNode* result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
kvn@4115 4300 TypePtr::BOTTOM);
cfang@1337 4301 record_for_igvn(result_reg);
cfang@1337 4302
cfang@1337 4303 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
cfang@1337 4304 int raw_adr_idx = Compile::AliasIdxRaw;
cfang@1335 4305
cfang@1335 4306 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4307 if (array_ctl != NULL) {
cfang@1335 4308 // It's an array.
cfang@1335 4309 PreserveJVMState pjvms(this);
cfang@1335 4310 set_control(array_ctl);
cfang@1335 4311 Node* obj_length = load_array_length(obj);
cfang@1335 4312 Node* obj_size = NULL;
twisti@4313 4313 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size); // no arguments to push
cfang@1335 4314
cfang@1335 4315 if (!use_ReduceInitialCardMarks()) {
cfang@1335 4316 // If it is an oop array, it requires very special treatment,
cfang@1335 4317 // because card marking is required on each card of the array.
cfang@1335 4318 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4319 if (is_obja != NULL) {
cfang@1335 4320 PreserveJVMState pjvms2(this);
cfang@1335 4321 set_control(is_obja);
cfang@1335 4322 // Generate a direct call to the right arraycopy function(s).
cfang@1335 4323 bool disjoint_bases = true;
cfang@1335 4324 bool length_never_negative = true;
cfang@1335 4325 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 4326 obj, intcon(0), alloc_obj, intcon(0),
cfang@1335 4327 obj_length,
cfang@1335 4328 disjoint_bases, length_never_negative);
cfang@1335 4329 result_reg->init_req(_objArray_path, control());
cfang@1335 4330 result_val->init_req(_objArray_path, alloc_obj);
cfang@1335 4331 result_i_o ->set_req(_objArray_path, i_o());
cfang@1335 4332 result_mem ->set_req(_objArray_path, reset_memory());
cfang@1335 4333 }
cfang@1335 4334 }
cfang@1335 4335 // Otherwise, there are no card marks to worry about.
ysr@1462 4336 // (We can dispense with card marks if we know the allocation
ysr@1462 4337 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
ysr@1462 4338 // causes the non-eden paths to take compensating steps to
ysr@1462 4339 // simulate a fresh allocation, so that no further
ysr@1462 4340 // card marks are required in compiled code to initialize
ysr@1462 4341 // the object.)
cfang@1335 4342
cfang@1335 4343 if (!stopped()) {
cfang@1335 4344 copy_to_clone(obj, alloc_obj, obj_size, true, false);
cfang@1335 4345
cfang@1335 4346 // Present the results of the copy.
cfang@1335 4347 result_reg->init_req(_array_path, control());
cfang@1335 4348 result_val->init_req(_array_path, alloc_obj);
cfang@1335 4349 result_i_o ->set_req(_array_path, i_o());
cfang@1335 4350 result_mem ->set_req(_array_path, reset_memory());
duke@435 4351 }
duke@435 4352 }
cfang@1335 4353
cfang@1335 4354 // We only go to the instance fast case code if we pass a number of guards.
cfang@1335 4355 // The paths which do not pass are accumulated in the slow_region.
kvn@4115 4356 RegionNode* slow_region = new (C) RegionNode(1);
cfang@1335 4357 record_for_igvn(slow_region);
kvn@1268 4358 if (!stopped()) {
cfang@1335 4359 // It's an instance (we did array above). Make the slow-path tests.
cfang@1335 4360 // If this is a virtual call, we generate a funny guard. We grab
cfang@1335 4361 // the vtable entry corresponding to clone() from the target object.
cfang@1335 4362 // If the target method which we are calling happens to be the
cfang@1335 4363 // Object clone() method, we pass the guard. We do not need this
cfang@1335 4364 // guard for non-virtual calls; the caller is known to be the native
cfang@1335 4365 // Object clone().
cfang@1335 4366 if (is_virtual) {
cfang@1335 4367 generate_virtual_guard(obj_klass, slow_region);
cfang@1335 4368 }
cfang@1335 4369
cfang@1335 4370 // The object must be cloneable and must not have a finalizer.
cfang@1335 4371 // Both of these conditions may be checked in a single test.
cfang@1335 4372 // We could optimize the cloneable test further, but we don't care.
cfang@1335 4373 generate_access_flags_guard(obj_klass,
cfang@1335 4374 // Test both conditions:
cfang@1335 4375 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
cfang@1335 4376 // Must be cloneable but not finalizer:
cfang@1335 4377 JVM_ACC_IS_CLONEABLE,
cfang@1335 4378 slow_region);
kvn@1268 4379 }
cfang@1335 4380
cfang@1335 4381 if (!stopped()) {
cfang@1335 4382 // It's an instance, and it passed the slow-path tests.
cfang@1335 4383 PreserveJVMState pjvms(this);
cfang@1335 4384 Node* obj_size = NULL;
kvn@2810 4385 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
cfang@1335 4386
cfang@1335 4387 copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
cfang@1335 4388
cfang@1335 4389 // Present the results of the slow call.
cfang@1335 4390 result_reg->init_req(_instance_path, control());
cfang@1335 4391 result_val->init_req(_instance_path, alloc_obj);
cfang@1335 4392 result_i_o ->set_req(_instance_path, i_o());
cfang@1335 4393 result_mem ->set_req(_instance_path, reset_memory());
duke@435 4394 }
duke@435 4395
cfang@1335 4396 // Generate code for the slow case. We make a call to clone().
cfang@1335 4397 set_control(_gvn.transform(slow_region));
cfang@1335 4398 if (!stopped()) {
cfang@1335 4399 PreserveJVMState pjvms(this);
cfang@1335 4400 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
cfang@1335 4401 Node* slow_result = set_results_for_java_call(slow_call);
cfang@1335 4402 // this->control() comes from set_results_for_java_call
cfang@1335 4403 result_reg->init_req(_slow_path, control());
cfang@1335 4404 result_val->init_req(_slow_path, slow_result);
cfang@1335 4405 result_i_o ->set_req(_slow_path, i_o());
cfang@1335 4406 result_mem ->set_req(_slow_path, reset_memory());
cfang@1335 4407 }
cfang@1337 4408
cfang@1337 4409 // Return the combined state.
cfang@1337 4410 set_control( _gvn.transform(result_reg) );
cfang@1337 4411 set_i_o( _gvn.transform(result_i_o) );
cfang@1337 4412 set_all_memory( _gvn.transform(result_mem) );
twisti@4313 4413 } // original reexecute is set back here
twisti@4313 4414
twisti@4313 4415 set_result(_gvn.transform(result_val));
duke@435 4416 return true;
duke@435 4417 }
duke@435 4418
duke@435 4419 //------------------------------basictype2arraycopy----------------------------
duke@435 4420 address LibraryCallKit::basictype2arraycopy(BasicType t,
duke@435 4421 Node* src_offset,
duke@435 4422 Node* dest_offset,
duke@435 4423 bool disjoint_bases,
iveresov@2606 4424 const char* &name,
iveresov@2606 4425 bool dest_uninitialized) {
duke@435 4426 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
duke@435 4427 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
duke@435 4428
duke@435 4429 bool aligned = false;
duke@435 4430 bool disjoint = disjoint_bases;
duke@435 4431
duke@435 4432 // if the offsets are the same, we can treat the memory regions as
duke@435 4433 // disjoint, because either the memory regions are in different arrays,
duke@435 4434 // or they are identical (which we can treat as disjoint.) We can also
duke@435 4435 // treat a copy with a destination index less that the source index
duke@435 4436 // as disjoint since a low->high copy will work correctly in this case.
duke@435 4437 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
duke@435 4438 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
duke@435 4439 // both indices are constants
duke@435 4440 int s_offs = src_offset_inttype->get_con();
duke@435 4441 int d_offs = dest_offset_inttype->get_con();
kvn@464 4442 int element_size = type2aelembytes(t);
duke@435 4443 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
duke@435 4444 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
duke@435 4445 if (s_offs >= d_offs) disjoint = true;
duke@435 4446 } else if (src_offset == dest_offset && src_offset != NULL) {
duke@435 4447 // This can occur if the offsets are identical non-constants.
duke@435 4448 disjoint = true;
duke@435 4449 }
duke@435 4450
roland@2728 4451 return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
duke@435 4452 }
duke@435 4453
duke@435 4454
duke@435 4455 //------------------------------inline_arraycopy-----------------------
twisti@4313 4456 // public static native void java.lang.System.arraycopy(Object src, int srcPos,
twisti@4313 4457 // Object dest, int destPos,
twisti@4313 4458 // int length);
duke@435 4459 bool LibraryCallKit::inline_arraycopy() {
twisti@4313 4460 // Get the arguments.
twisti@4313 4461 Node* src = argument(0); // type: oop
twisti@4313 4462 Node* src_offset = argument(1); // type: int
twisti@4313 4463 Node* dest = argument(2); // type: oop
twisti@4313 4464 Node* dest_offset = argument(3); // type: int
twisti@4313 4465 Node* length = argument(4); // type: int
duke@435 4466
duke@435 4467 // Compile time checks. If any of these checks cannot be verified at compile time,
duke@435 4468 // we do not make a fast path for this call. Instead, we let the call remain as it
duke@435 4469 // is. The checks we choose to mandate at compile time are:
duke@435 4470 //
duke@435 4471 // (1) src and dest are arrays.
twisti@4313 4472 const Type* src_type = src->Value(&_gvn);
duke@435 4473 const Type* dest_type = dest->Value(&_gvn);
twisti@4313 4474 const TypeAryPtr* top_src = src_type->isa_aryptr();
duke@435 4475 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
duke@435 4476 if (top_src == NULL || top_src->klass() == NULL ||
duke@435 4477 top_dest == NULL || top_dest->klass() == NULL) {
duke@435 4478 // Conservatively insert a memory barrier on all memory slices.
duke@435 4479 // Do not let writes into the source float below the arraycopy.
duke@435 4480 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4481
duke@435 4482 // Call StubRoutines::generic_arraycopy stub.
duke@435 4483 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
kvn@1268 4484 src, src_offset, dest, dest_offset, length);
duke@435 4485
duke@435 4486 // Do not let reads from the destination float above the arraycopy.
duke@435 4487 // Since we cannot type the arrays, we don't know which slices
duke@435 4488 // might be affected. We could restrict this barrier only to those
duke@435 4489 // memory slices which pertain to array elements--but don't bother.
duke@435 4490 if (!InsertMemBarAfterArraycopy)
duke@435 4491 // (If InsertMemBarAfterArraycopy, there is already one in place.)
duke@435 4492 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4493 return true;
duke@435 4494 }
duke@435 4495
duke@435 4496 // (2) src and dest arrays must have elements of the same BasicType
duke@435 4497 // Figure out the size and type of the elements we will be copying.
duke@435 4498 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4499 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4500 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
duke@435 4501 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
duke@435 4502
duke@435 4503 if (src_elem != dest_elem || dest_elem == T_VOID) {
duke@435 4504 // The component types are not the same or are not recognized. Punt.
duke@435 4505 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
duke@435 4506 generate_slow_arraycopy(TypePtr::BOTTOM,
iveresov@2606 4507 src, src_offset, dest, dest_offset, length,
iveresov@2606 4508 /*dest_uninitialized*/false);
duke@435 4509 return true;
duke@435 4510 }
duke@435 4511
duke@435 4512 //---------------------------------------------------------------------------
duke@435 4513 // We will make a fast path for this call to arraycopy.
duke@435 4514
duke@435 4515 // We have the following tests left to perform:
duke@435 4516 //
duke@435 4517 // (3) src and dest must not be null.
duke@435 4518 // (4) src_offset must not be negative.
duke@435 4519 // (5) dest_offset must not be negative.
duke@435 4520 // (6) length must not be negative.
duke@435 4521 // (7) src_offset + length must not exceed length of src.
duke@435 4522 // (8) dest_offset + length must not exceed length of dest.
duke@435 4523 // (9) each element of an oop array must be assignable
duke@435 4524
kvn@4115 4525 RegionNode* slow_region = new (C) RegionNode(1);
duke@435 4526 record_for_igvn(slow_region);
duke@435 4527
duke@435 4528 // (3) operands must not be null
twisti@4313 4529 // We currently perform our null checks with the null_check routine.
duke@435 4530 // This means that the null exceptions will be reported in the caller
duke@435 4531 // rather than (correctly) reported inside of the native arraycopy call.
duke@435 4532 // This should be corrected, given time. We do our null check with the
duke@435 4533 // stack pointer restored.
twisti@4313 4534 src = null_check(src, T_ARRAY);
twisti@4313 4535 dest = null_check(dest, T_ARRAY);
duke@435 4536
duke@435 4537 // (4) src_offset must not be negative.
duke@435 4538 generate_negative_guard(src_offset, slow_region);
duke@435 4539
duke@435 4540 // (5) dest_offset must not be negative.
duke@435 4541 generate_negative_guard(dest_offset, slow_region);
duke@435 4542
duke@435 4543 // (6) length must not be negative (moved to generate_arraycopy()).
duke@435 4544 // generate_negative_guard(length, slow_region);
duke@435 4545
duke@435 4546 // (7) src_offset + length must not exceed length of src.
duke@435 4547 generate_limit_guard(src_offset, length,
duke@435 4548 load_array_length(src),
duke@435 4549 slow_region);
duke@435 4550
duke@435 4551 // (8) dest_offset + length must not exceed length of dest.
duke@435 4552 generate_limit_guard(dest_offset, length,
duke@435 4553 load_array_length(dest),
duke@435 4554 slow_region);
duke@435 4555
duke@435 4556 // (9) each element of an oop array must be assignable
duke@435 4557 // The generate_arraycopy subroutine checks this.
duke@435 4558
duke@435 4559 // This is where the memory effects are placed:
duke@435 4560 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
duke@435 4561 generate_arraycopy(adr_type, dest_elem,
duke@435 4562 src, src_offset, dest, dest_offset, length,
kvn@1268 4563 false, false, slow_region);
duke@435 4564
duke@435 4565 return true;
duke@435 4566 }
duke@435 4567
duke@435 4568 //-----------------------------generate_arraycopy----------------------
duke@435 4569 // Generate an optimized call to arraycopy.
duke@435 4570 // Caller must guard against non-arrays.
duke@435 4571 // Caller must determine a common array basic-type for both arrays.
duke@435 4572 // Caller must validate offsets against array bounds.
duke@435 4573 // The slow_region has already collected guard failure paths
duke@435 4574 // (such as out of bounds length or non-conformable array types).
duke@435 4575 // The generated code has this shape, in general:
duke@435 4576 //
duke@435 4577 // if (length == 0) return // via zero_path
duke@435 4578 // slowval = -1
duke@435 4579 // if (types unknown) {
duke@435 4580 // slowval = call generic copy loop
duke@435 4581 // if (slowval == 0) return // via checked_path
duke@435 4582 // } else if (indexes in bounds) {
duke@435 4583 // if ((is object array) && !(array type check)) {
duke@435 4584 // slowval = call checked copy loop
duke@435 4585 // if (slowval == 0) return // via checked_path
duke@435 4586 // } else {
duke@435 4587 // call bulk copy loop
duke@435 4588 // return // via fast_path
duke@435 4589 // }
duke@435 4590 // }
duke@435 4591 // // adjust params for remaining work:
duke@435 4592 // if (slowval != -1) {
duke@435 4593 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
duke@435 4594 // }
duke@435 4595 // slow_region:
duke@435 4596 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
duke@435 4597 // return // via slow_call_path
duke@435 4598 //
duke@435 4599 // This routine is used from several intrinsics: System.arraycopy,
duke@435 4600 // Object.clone (the array subcase), and Arrays.copyOf[Range].
duke@435 4601 //
duke@435 4602 void
duke@435 4603 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
duke@435 4604 BasicType basic_elem_type,
duke@435 4605 Node* src, Node* src_offset,
duke@435 4606 Node* dest, Node* dest_offset,
duke@435 4607 Node* copy_length,
duke@435 4608 bool disjoint_bases,
duke@435 4609 bool length_never_negative,
duke@435 4610 RegionNode* slow_region) {
duke@435 4611
duke@435 4612 if (slow_region == NULL) {
kvn@4115 4613 slow_region = new(C) RegionNode(1);
duke@435 4614 record_for_igvn(slow_region);
duke@435 4615 }
duke@435 4616
duke@435 4617 Node* original_dest = dest;
duke@435 4618 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
iveresov@2606 4619 bool dest_uninitialized = false;
duke@435 4620
duke@435 4621 // See if this is the initialization of a newly-allocated array.
duke@435 4622 // If so, we will take responsibility here for initializing it to zero.
duke@435 4623 // (Note: Because tightly_coupled_allocation performs checks on the
duke@435 4624 // out-edges of the dest, we need to avoid making derived pointers
duke@435 4625 // from it until we have checked its uses.)
duke@435 4626 if (ReduceBulkZeroing
duke@435 4627 && !ZeroTLAB // pointless if already zeroed
duke@435 4628 && basic_elem_type != T_CONFLICT // avoid corner case
kvn@3407 4629 && !src->eqv_uncast(dest)
duke@435 4630 && ((alloc = tightly_coupled_allocation(dest, slow_region))
duke@435 4631 != NULL)
kvn@469 4632 && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
duke@435 4633 && alloc->maybe_set_complete(&_gvn)) {
duke@435 4634 // "You break it, you buy it."
duke@435 4635 InitializeNode* init = alloc->initialization();
duke@435 4636 assert(init->is_complete(), "we just did this");
kvn@3157 4637 init->set_complete_with_arraycopy();
kvn@1268 4638 assert(dest->is_CheckCastPP(), "sanity");
duke@435 4639 assert(dest->in(0)->in(0) == init, "dest pinned");
duke@435 4640 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
duke@435 4641 // From this point on, every exit path is responsible for
duke@435 4642 // initializing any non-copied parts of the object to zero.
iveresov@2606 4643 // Also, if this flag is set we make sure that arraycopy interacts properly
iveresov@2606 4644 // with G1, eliding pre-barriers. See CR 6627983.
iveresov@2606 4645 dest_uninitialized = true;
duke@435 4646 } else {
duke@435 4647 // No zeroing elimination here.
duke@435 4648 alloc = NULL;
duke@435 4649 //original_dest = dest;
iveresov@2606 4650 //dest_uninitialized = false;
duke@435 4651 }
duke@435 4652
duke@435 4653 // Results are placed here:
duke@435 4654 enum { fast_path = 1, // normal void-returning assembly stub
duke@435 4655 checked_path = 2, // special assembly stub with cleanup
duke@435 4656 slow_call_path = 3, // something went wrong; call the VM
duke@435 4657 zero_path = 4, // bypass when length of copy is zero
duke@435 4658 bcopy_path = 5, // copy primitive array by 64-bit blocks
duke@435 4659 PATH_LIMIT = 6
duke@435 4660 };
kvn@4115 4661 RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
kvn@4115 4662 PhiNode* result_i_o = new(C) PhiNode(result_region, Type::ABIO);
kvn@4115 4663 PhiNode* result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
duke@435 4664 record_for_igvn(result_region);
duke@435 4665 _gvn.set_type_bottom(result_i_o);
duke@435 4666 _gvn.set_type_bottom(result_memory);
duke@435 4667 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
duke@435 4668
duke@435 4669 // The slow_control path:
duke@435 4670 Node* slow_control;
duke@435 4671 Node* slow_i_o = i_o();
duke@435 4672 Node* slow_mem = memory(adr_type);
duke@435 4673 debug_only(slow_control = (Node*) badAddress);
duke@435 4674
duke@435 4675 // Checked control path:
duke@435 4676 Node* checked_control = top();
duke@435 4677 Node* checked_mem = NULL;
duke@435 4678 Node* checked_i_o = NULL;
duke@435 4679 Node* checked_value = NULL;
duke@435 4680
duke@435 4681 if (basic_elem_type == T_CONFLICT) {
iveresov@2606 4682 assert(!dest_uninitialized, "");
duke@435 4683 Node* cv = generate_generic_arraycopy(adr_type,
duke@435 4684 src, src_offset, dest, dest_offset,
iveresov@2606 4685 copy_length, dest_uninitialized);
duke@435 4686 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4687 checked_control = control();
duke@435 4688 checked_i_o = i_o();
duke@435 4689 checked_mem = memory(adr_type);
duke@435 4690 checked_value = cv;
duke@435 4691 set_control(top()); // no fast path
duke@435 4692 }
duke@435 4693
duke@435 4694 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
duke@435 4695 if (not_pos != NULL) {
duke@435 4696 PreserveJVMState pjvms(this);
duke@435 4697 set_control(not_pos);
duke@435 4698
duke@435 4699 // (6) length must not be negative.
duke@435 4700 if (!length_never_negative) {
duke@435 4701 generate_negative_guard(copy_length, slow_region);
duke@435 4702 }
duke@435 4703
kvn@1271 4704 // copy_length is 0.
iveresov@2606 4705 if (!stopped() && dest_uninitialized) {
duke@435 4706 Node* dest_length = alloc->in(AllocateNode::ALength);
kvn@3407 4707 if (copy_length->eqv_uncast(dest_length)
duke@435 4708 || _gvn.find_int_con(dest_length, 1) <= 0) {
kvn@1271 4709 // There is no zeroing to do. No need for a secondary raw memory barrier.
duke@435 4710 } else {
duke@435 4711 // Clear the whole thing since there are no source elements to copy.
duke@435 4712 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4713 intcon(0), NULL,
duke@435 4714 alloc->in(AllocateNode::AllocSize));
kvn@1271 4715 // Use a secondary InitializeNode as raw memory barrier.
kvn@1271 4716 // Currently it is needed only on this path since other
kvn@1271 4717 // paths have stub or runtime calls as raw memory barriers.
kvn@1271 4718 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
kvn@1271 4719 Compile::AliasIdxRaw,
kvn@1271 4720 top())->as_Initialize();
kvn@1271 4721 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
duke@435 4722 }
duke@435 4723 }
duke@435 4724
duke@435 4725 // Present the results of the fast call.
duke@435 4726 result_region->init_req(zero_path, control());
duke@435 4727 result_i_o ->init_req(zero_path, i_o());
duke@435 4728 result_memory->init_req(zero_path, memory(adr_type));
duke@435 4729 }
duke@435 4730
iveresov@2606 4731 if (!stopped() && dest_uninitialized) {
duke@435 4732 // We have to initialize the *uncopied* part of the array to zero.
duke@435 4733 // The copy destination is the slice dest[off..off+len]. The other slices
duke@435 4734 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
duke@435 4735 Node* dest_size = alloc->in(AllocateNode::AllocSize);
duke@435 4736 Node* dest_length = alloc->in(AllocateNode::ALength);
kvn@4115 4737 Node* dest_tail = _gvn.transform( new(C) AddINode(dest_offset,
duke@435 4738 copy_length) );
duke@435 4739
duke@435 4740 // If there is a head section that needs zeroing, do it now.
duke@435 4741 if (find_int_con(dest_offset, -1) != 0) {
duke@435 4742 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4743 intcon(0), dest_offset,
duke@435 4744 NULL);
duke@435 4745 }
duke@435 4746
duke@435 4747 // Next, perform a dynamic check on the tail length.
duke@435 4748 // It is often zero, and we can win big if we prove this.
duke@435 4749 // There are two wins: Avoid generating the ClearArray
duke@435 4750 // with its attendant messy index arithmetic, and upgrade
duke@435 4751 // the copy to a more hardware-friendly word size of 64 bits.
duke@435 4752 Node* tail_ctl = NULL;
kvn@3407 4753 if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
kvn@4115 4754 Node* cmp_lt = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
kvn@4115 4755 Node* bol_lt = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 4756 tail_ctl = generate_slow_guard(bol_lt, NULL);
duke@435 4757 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
duke@435 4758 }
duke@435 4759
duke@435 4760 // At this point, let's assume there is no tail.
duke@435 4761 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
duke@435 4762 // There is no tail. Try an upgrade to a 64-bit copy.
duke@435 4763 bool didit = false;
duke@435 4764 { PreserveJVMState pjvms(this);
duke@435 4765 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
duke@435 4766 src, src_offset, dest, dest_offset,
iveresov@2606 4767 dest_size, dest_uninitialized);
duke@435 4768 if (didit) {
duke@435 4769 // Present the results of the block-copying fast call.
duke@435 4770 result_region->init_req(bcopy_path, control());
duke@435 4771 result_i_o ->init_req(bcopy_path, i_o());
duke@435 4772 result_memory->init_req(bcopy_path, memory(adr_type));
duke@435 4773 }
duke@435 4774 }
duke@435 4775 if (didit)
duke@435 4776 set_control(top()); // no regular fast path
duke@435 4777 }
duke@435 4778
duke@435 4779 // Clear the tail, if any.
duke@435 4780 if (tail_ctl != NULL) {
duke@435 4781 Node* notail_ctl = stopped() ? NULL : control();
duke@435 4782 set_control(tail_ctl);
duke@435 4783 if (notail_ctl == NULL) {
duke@435 4784 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4785 dest_tail, NULL,
duke@435 4786 dest_size);
duke@435 4787 } else {
duke@435 4788 // Make a local merge.
kvn@4115 4789 Node* done_ctl = new(C) RegionNode(3);
kvn@4115 4790 Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
duke@435 4791 done_ctl->init_req(1, notail_ctl);
duke@435 4792 done_mem->init_req(1, memory(adr_type));
duke@435 4793 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4794 dest_tail, NULL,
duke@435 4795 dest_size);
duke@435 4796 done_ctl->init_req(2, control());
duke@435 4797 done_mem->init_req(2, memory(adr_type));
duke@435 4798 set_control( _gvn.transform(done_ctl) );
duke@435 4799 set_memory( _gvn.transform(done_mem), adr_type );
duke@435 4800 }
duke@435 4801 }
duke@435 4802 }
duke@435 4803
duke@435 4804 BasicType copy_type = basic_elem_type;
duke@435 4805 assert(basic_elem_type != T_ARRAY, "caller must fix this");
duke@435 4806 if (!stopped() && copy_type == T_OBJECT) {
duke@435 4807 // If src and dest have compatible element types, we can copy bits.
duke@435 4808 // Types S[] and D[] are compatible if D is a supertype of S.
duke@435 4809 //
duke@435 4810 // If they are not, we will use checked_oop_disjoint_arraycopy,
duke@435 4811 // which performs a fast optimistic per-oop check, and backs off
duke@435 4812 // further to JVM_ArrayCopy on the first per-oop check that fails.
duke@435 4813 // (Actually, we don't move raw bits only; the GC requires card marks.)
duke@435 4814
coleenp@4037 4815 // Get the Klass* for both src and dest
duke@435 4816 Node* src_klass = load_object_klass(src);
duke@435 4817 Node* dest_klass = load_object_klass(dest);
duke@435 4818
duke@435 4819 // Generate the subtype check.
duke@435 4820 // This might fold up statically, or then again it might not.
duke@435 4821 //
duke@435 4822 // Non-static example: Copying List<String>.elements to a new String[].
duke@435 4823 // The backing store for a List<String> is always an Object[],
duke@435 4824 // but its elements are always type String, if the generic types
duke@435 4825 // are correct at the source level.
duke@435 4826 //
duke@435 4827 // Test S[] against D[], not S against D, because (probably)
duke@435 4828 // the secondary supertype cache is less busy for S[] than S.
duke@435 4829 // This usually only matters when D is an interface.
duke@435 4830 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
duke@435 4831 // Plug failing path into checked_oop_disjoint_arraycopy
duke@435 4832 if (not_subtype_ctrl != top()) {
duke@435 4833 PreserveJVMState pjvms(this);
duke@435 4834 set_control(not_subtype_ctrl);
duke@435 4835 // (At this point we can assume disjoint_bases, since types differ.)
coleenp@4142 4836 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
duke@435 4837 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
kvn@599 4838 Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
duke@435 4839 Node* dest_elem_klass = _gvn.transform(n1);
duke@435 4840 Node* cv = generate_checkcast_arraycopy(adr_type,
duke@435 4841 dest_elem_klass,
duke@435 4842 src, src_offset, dest, dest_offset,
iveresov@2606 4843 ConvI2X(copy_length), dest_uninitialized);
duke@435 4844 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4845 checked_control = control();
duke@435 4846 checked_i_o = i_o();
duke@435 4847 checked_mem = memory(adr_type);
duke@435 4848 checked_value = cv;
duke@435 4849 }
duke@435 4850 // At this point we know we do not need type checks on oop stores.
duke@435 4851
duke@435 4852 // Let's see if we need card marks:
duke@435 4853 if (alloc != NULL && use_ReduceInitialCardMarks()) {
duke@435 4854 // If we do not need card marks, copy using the jint or jlong stub.
coleenp@548 4855 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
kvn@464 4856 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
duke@435 4857 "sizes agree");
duke@435 4858 }
duke@435 4859 }
duke@435 4860
duke@435 4861 if (!stopped()) {
duke@435 4862 // Generate the fast path, if possible.
duke@435 4863 PreserveJVMState pjvms(this);
duke@435 4864 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
duke@435 4865 src, src_offset, dest, dest_offset,
iveresov@2606 4866 ConvI2X(copy_length), dest_uninitialized);
duke@435 4867
duke@435 4868 // Present the results of the fast call.
duke@435 4869 result_region->init_req(fast_path, control());
duke@435 4870 result_i_o ->init_req(fast_path, i_o());
duke@435 4871 result_memory->init_req(fast_path, memory(adr_type));
duke@435 4872 }
duke@435 4873
duke@435 4874 // Here are all the slow paths up to this point, in one bundle:
duke@435 4875 slow_control = top();
duke@435 4876 if (slow_region != NULL)
duke@435 4877 slow_control = _gvn.transform(slow_region);
twisti@4313 4878 DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
duke@435 4879
duke@435 4880 set_control(checked_control);
duke@435 4881 if (!stopped()) {
duke@435 4882 // Clean up after the checked call.
duke@435 4883 // The returned value is either 0 or -1^K,
duke@435 4884 // where K = number of partially transferred array elements.
kvn@4115 4885 Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
kvn@4115 4886 Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
duke@435 4887 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
duke@435 4888
duke@435 4889 // If it is 0, we are done, so transfer to the end.
kvn@4115 4890 Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
duke@435 4891 result_region->init_req(checked_path, checks_done);
duke@435 4892 result_i_o ->init_req(checked_path, checked_i_o);
duke@435 4893 result_memory->init_req(checked_path, checked_mem);
duke@435 4894
duke@435 4895 // If it is not zero, merge into the slow call.
kvn@4115 4896 set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
kvn@4115 4897 RegionNode* slow_reg2 = new(C) RegionNode(3);
kvn@4115 4898 PhiNode* slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
kvn@4115 4899 PhiNode* slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
duke@435 4900 record_for_igvn(slow_reg2);
duke@435 4901 slow_reg2 ->init_req(1, slow_control);
duke@435 4902 slow_i_o2 ->init_req(1, slow_i_o);
duke@435 4903 slow_mem2 ->init_req(1, slow_mem);
duke@435 4904 slow_reg2 ->init_req(2, control());
kvn@1268 4905 slow_i_o2 ->init_req(2, checked_i_o);
kvn@1268 4906 slow_mem2 ->init_req(2, checked_mem);
duke@435 4907
duke@435 4908 slow_control = _gvn.transform(slow_reg2);
duke@435 4909 slow_i_o = _gvn.transform(slow_i_o2);
duke@435 4910 slow_mem = _gvn.transform(slow_mem2);
duke@435 4911
duke@435 4912 if (alloc != NULL) {
duke@435 4913 // We'll restart from the very beginning, after zeroing the whole thing.
duke@435 4914 // This can cause double writes, but that's OK since dest is brand new.
duke@435 4915 // So we ignore the low 31 bits of the value returned from the stub.
duke@435 4916 } else {
duke@435 4917 // We must continue the copy exactly where it failed, or else
duke@435 4918 // another thread might see the wrong number of writes to dest.
kvn@4115 4919 Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
kvn@4115 4920 Node* slow_offset = new(C) PhiNode(slow_reg2, TypeInt::INT);
duke@435 4921 slow_offset->init_req(1, intcon(0));
duke@435 4922 slow_offset->init_req(2, checked_offset);
duke@435 4923 slow_offset = _gvn.transform(slow_offset);
duke@435 4924
duke@435 4925 // Adjust the arguments by the conditionally incoming offset.
kvn@4115 4926 Node* src_off_plus = _gvn.transform( new(C) AddINode(src_offset, slow_offset) );
kvn@4115 4927 Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
kvn@4115 4928 Node* length_minus = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
duke@435 4929
duke@435 4930 // Tweak the node variables to adjust the code produced below:
duke@435 4931 src_offset = src_off_plus;
duke@435 4932 dest_offset = dest_off_plus;
duke@435 4933 copy_length = length_minus;
duke@435 4934 }
duke@435 4935 }
duke@435 4936
duke@435 4937 set_control(slow_control);
duke@435 4938 if (!stopped()) {
duke@435 4939 // Generate the slow path, if needed.
duke@435 4940 PreserveJVMState pjvms(this); // replace_in_map may trash the map
duke@435 4941
duke@435 4942 set_memory(slow_mem, adr_type);
duke@435 4943 set_i_o(slow_i_o);
duke@435 4944
iveresov@2606 4945 if (dest_uninitialized) {
duke@435 4946 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4947 intcon(0), NULL,
duke@435 4948 alloc->in(AllocateNode::AllocSize));
duke@435 4949 }
duke@435 4950
duke@435 4951 generate_slow_arraycopy(adr_type,
duke@435 4952 src, src_offset, dest, dest_offset,
iveresov@2606 4953 copy_length, /*dest_uninitialized*/false);
duke@435 4954
duke@435 4955 result_region->init_req(slow_call_path, control());
duke@435 4956 result_i_o ->init_req(slow_call_path, i_o());
duke@435 4957 result_memory->init_req(slow_call_path, memory(adr_type));
duke@435 4958 }
duke@435 4959
duke@435 4960 // Remove unused edges.
duke@435 4961 for (uint i = 1; i < result_region->req(); i++) {
duke@435 4962 if (result_region->in(i) == NULL)
duke@435 4963 result_region->init_req(i, top());
duke@435 4964 }
duke@435 4965
duke@435 4966 // Finished; return the combined state.
duke@435 4967 set_control( _gvn.transform(result_region) );
duke@435 4968 set_i_o( _gvn.transform(result_i_o) );
duke@435 4969 set_memory( _gvn.transform(result_memory), adr_type );
duke@435 4970
duke@435 4971 // The memory edges above are precise in order to model effects around
twisti@1040 4972 // array copies accurately to allow value numbering of field loads around
duke@435 4973 // arraycopy. Such field loads, both before and after, are common in Java
duke@435 4974 // collections and similar classes involving header/array data structures.
duke@435 4975 //
duke@435 4976 // But with low number of register or when some registers are used or killed
duke@435 4977 // by arraycopy calls it causes registers spilling on stack. See 6544710.
duke@435 4978 // The next memory barrier is added to avoid it. If the arraycopy can be
duke@435 4979 // optimized away (which it can, sometimes) then we can manually remove
duke@435 4980 // the membar also.
kvn@1393 4981 //
kvn@1393 4982 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 4983 if (alloc != NULL) {
roland@3392 4984 // Do not let stores that initialize this object be reordered with
roland@3392 4985 // a subsequent store that would make this object accessible by
roland@3392 4986 // other threads.
roland@3392 4987 // Record what AllocateNode this StoreStore protects so that
roland@3392 4988 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 4989 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 4990 // based on the escape status of the AllocateNode.
roland@3392 4991 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 4992 } else if (InsertMemBarAfterArraycopy)
duke@435 4993 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4994 }
duke@435 4995
duke@435 4996
duke@435 4997 // Helper function which determines if an arraycopy immediately follows
duke@435 4998 // an allocation, with no intervening tests or other escapes for the object.
duke@435 4999 AllocateArrayNode*
duke@435 5000 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
duke@435 5001 RegionNode* slow_region) {
duke@435 5002 if (stopped()) return NULL; // no fast path
duke@435 5003 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
duke@435 5004
duke@435 5005 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
duke@435 5006 if (alloc == NULL) return NULL;
duke@435 5007
duke@435 5008 Node* rawmem = memory(Compile::AliasIdxRaw);
duke@435 5009 // Is the allocation's memory state untouched?
duke@435 5010 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
duke@435 5011 // Bail out if there have been raw-memory effects since the allocation.
duke@435 5012 // (Example: There might have been a call or safepoint.)
duke@435 5013 return NULL;
duke@435 5014 }
duke@435 5015 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
duke@435 5016 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
duke@435 5017 return NULL;
duke@435 5018 }
duke@435 5019
duke@435 5020 // There must be no unexpected observers of this allocation.
duke@435 5021 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
duke@435 5022 Node* obs = ptr->fast_out(i);
duke@435 5023 if (obs != this->map()) {
duke@435 5024 return NULL;
duke@435 5025 }
duke@435 5026 }
duke@435 5027
duke@435 5028 // This arraycopy must unconditionally follow the allocation of the ptr.
duke@435 5029 Node* alloc_ctl = ptr->in(0);
duke@435 5030 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
duke@435 5031
duke@435 5032 Node* ctl = control();
duke@435 5033 while (ctl != alloc_ctl) {
duke@435 5034 // There may be guards which feed into the slow_region.
duke@435 5035 // Any other control flow means that we might not get a chance
duke@435 5036 // to finish initializing the allocated object.
duke@435 5037 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
duke@435 5038 IfNode* iff = ctl->in(0)->as_If();
duke@435 5039 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
duke@435 5040 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
duke@435 5041 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
duke@435 5042 ctl = iff->in(0); // This test feeds the known slow_region.
duke@435 5043 continue;
duke@435 5044 }
duke@435 5045 // One more try: Various low-level checks bottom out in
duke@435 5046 // uncommon traps. If the debug-info of the trap omits
duke@435 5047 // any reference to the allocation, as we've already
duke@435 5048 // observed, then there can be no objection to the trap.
duke@435 5049 bool found_trap = false;
duke@435 5050 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
duke@435 5051 Node* obs = not_ctl->fast_out(j);
duke@435 5052 if (obs->in(0) == not_ctl && obs->is_Call() &&
twisti@2103 5053 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
duke@435 5054 found_trap = true; break;
duke@435 5055 }
duke@435 5056 }
duke@435 5057 if (found_trap) {
duke@435 5058 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
duke@435 5059 continue;
duke@435 5060 }
duke@435 5061 }
duke@435 5062 return NULL;
duke@435 5063 }
duke@435 5064
duke@435 5065 // If we get this far, we have an allocation which immediately
duke@435 5066 // precedes the arraycopy, and we can take over zeroing the new object.
duke@435 5067 // The arraycopy will finish the initialization, and provide
duke@435 5068 // a new control state to which we will anchor the destination pointer.
duke@435 5069
duke@435 5070 return alloc;
duke@435 5071 }
duke@435 5072
duke@435 5073 // Helper for initialization of arrays, creating a ClearArray.
duke@435 5074 // It writes zero bits in [start..end), within the body of an array object.
duke@435 5075 // The memory effects are all chained onto the 'adr_type' alias category.
duke@435 5076 //
duke@435 5077 // Since the object is otherwise uninitialized, we are free
duke@435 5078 // to put a little "slop" around the edges of the cleared area,
duke@435 5079 // as long as it does not go back into the array's header,
duke@435 5080 // or beyond the array end within the heap.
duke@435 5081 //
duke@435 5082 // The lower edge can be rounded down to the nearest jint and the
duke@435 5083 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
duke@435 5084 //
duke@435 5085 // Arguments:
duke@435 5086 // adr_type memory slice where writes are generated
duke@435 5087 // dest oop of the destination array
duke@435 5088 // basic_elem_type element type of the destination
duke@435 5089 // slice_idx array index of first element to store
duke@435 5090 // slice_len number of elements to store (or NULL)
duke@435 5091 // dest_size total size in bytes of the array object
duke@435 5092 //
duke@435 5093 // Exactly one of slice_len or dest_size must be non-NULL.
duke@435 5094 // If dest_size is non-NULL, zeroing extends to the end of the object.
duke@435 5095 // If slice_len is non-NULL, the slice_idx value must be a constant.
duke@435 5096 void
duke@435 5097 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
duke@435 5098 Node* dest,
duke@435 5099 BasicType basic_elem_type,
duke@435 5100 Node* slice_idx,
duke@435 5101 Node* slice_len,
duke@435 5102 Node* dest_size) {
duke@435 5103 // one or the other but not both of slice_len and dest_size:
duke@435 5104 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
duke@435 5105 if (slice_len == NULL) slice_len = top();
duke@435 5106 if (dest_size == NULL) dest_size = top();
duke@435 5107
duke@435 5108 // operate on this memory slice:
duke@435 5109 Node* mem = memory(adr_type); // memory slice to operate on
duke@435 5110
duke@435 5111 // scaling and rounding of indexes:
kvn@464 5112 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5113 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 5114 int clear_low = (-1 << scale) & (BytesPerInt - 1);
duke@435 5115 int bump_bit = (-1 << scale) & BytesPerInt;
duke@435 5116
duke@435 5117 // determine constant starts and ends
duke@435 5118 const intptr_t BIG_NEG = -128;
duke@435 5119 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 5120 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
duke@435 5121 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
duke@435 5122 if (slice_len_con == 0) {
duke@435 5123 return; // nothing to do here
duke@435 5124 }
duke@435 5125 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
duke@435 5126 intptr_t end_con = find_intptr_t_con(dest_size, -1);
duke@435 5127 if (slice_idx_con >= 0 && slice_len_con >= 0) {
duke@435 5128 assert(end_con < 0, "not two cons");
duke@435 5129 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
duke@435 5130 BytesPerLong);
duke@435 5131 }
duke@435 5132
duke@435 5133 if (start_con >= 0 && end_con >= 0) {
duke@435 5134 // Constant start and end. Simple.
duke@435 5135 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5136 start_con, end_con, &_gvn);
duke@435 5137 } else if (start_con >= 0 && dest_size != top()) {
duke@435 5138 // Constant start, pre-rounded end after the tail of the array.
duke@435 5139 Node* end = dest_size;
duke@435 5140 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5141 start_con, end, &_gvn);
duke@435 5142 } else if (start_con >= 0 && slice_len != top()) {
duke@435 5143 // Constant start, non-constant end. End needs rounding up.
duke@435 5144 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
duke@435 5145 intptr_t end_base = abase + (slice_idx_con << scale);
duke@435 5146 int end_round = (-1 << scale) & (BytesPerLong - 1);
duke@435 5147 Node* end = ConvI2X(slice_len);
duke@435 5148 if (scale != 0)
kvn@4115 5149 end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
duke@435 5150 end_base += end_round;
kvn@4115 5151 end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
kvn@4115 5152 end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
duke@435 5153 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5154 start_con, end, &_gvn);
duke@435 5155 } else if (start_con < 0 && dest_size != top()) {
duke@435 5156 // Non-constant start, pre-rounded end after the tail of the array.
duke@435 5157 // This is almost certainly a "round-to-end" operation.
duke@435 5158 Node* start = slice_idx;
duke@435 5159 start = ConvI2X(start);
duke@435 5160 if (scale != 0)
kvn@4115 5161 start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
kvn@4115 5162 start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
duke@435 5163 if ((bump_bit | clear_low) != 0) {
duke@435 5164 int to_clear = (bump_bit | clear_low);
duke@435 5165 // Align up mod 8, then store a jint zero unconditionally
duke@435 5166 // just before the mod-8 boundary.
coleenp@548 5167 if (((abase + bump_bit) & ~to_clear) - bump_bit
coleenp@548 5168 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
coleenp@548 5169 bump_bit = 0;
coleenp@548 5170 assert((abase & to_clear) == 0, "array base must be long-aligned");
coleenp@548 5171 } else {
coleenp@548 5172 // Bump 'start' up to (or past) the next jint boundary:
kvn@4115 5173 start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
coleenp@548 5174 assert((abase & clear_low) == 0, "array base must be int-aligned");
coleenp@548 5175 }
duke@435 5176 // Round bumped 'start' down to jlong boundary in body of array.
kvn@4115 5177 start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
coleenp@548 5178 if (bump_bit != 0) {
coleenp@548 5179 // Store a zero to the immediately preceding jint:
kvn@4115 5180 Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
coleenp@548 5181 Node* p1 = basic_plus_adr(dest, x1);
coleenp@548 5182 mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
coleenp@548 5183 mem = _gvn.transform(mem);
coleenp@548 5184 }
duke@435 5185 }
duke@435 5186 Node* end = dest_size; // pre-rounded
duke@435 5187 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5188 start, end, &_gvn);
duke@435 5189 } else {
duke@435 5190 // Non-constant start, unrounded non-constant end.
duke@435 5191 // (Nobody zeroes a random midsection of an array using this routine.)
duke@435 5192 ShouldNotReachHere(); // fix caller
duke@435 5193 }
duke@435 5194
duke@435 5195 // Done.
duke@435 5196 set_memory(mem, adr_type);
duke@435 5197 }
duke@435 5198
duke@435 5199
duke@435 5200 bool
duke@435 5201 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
duke@435 5202 BasicType basic_elem_type,
duke@435 5203 AllocateNode* alloc,
duke@435 5204 Node* src, Node* src_offset,
duke@435 5205 Node* dest, Node* dest_offset,
iveresov@2606 5206 Node* dest_size, bool dest_uninitialized) {
duke@435 5207 // See if there is an advantage from block transfer.
kvn@464 5208 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5209 if (scale >= LogBytesPerLong)
duke@435 5210 return false; // it is already a block transfer
duke@435 5211
duke@435 5212 // Look at the alignment of the starting offsets.
duke@435 5213 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@2939 5214
kvn@2939 5215 intptr_t src_off_con = (intptr_t) find_int_con(src_offset, -1);
kvn@2939 5216 intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
kvn@2939 5217 if (src_off_con < 0 || dest_off_con < 0)
duke@435 5218 // At present, we can only understand constants.
duke@435 5219 return false;
duke@435 5220
kvn@2939 5221 intptr_t src_off = abase + (src_off_con << scale);
kvn@2939 5222 intptr_t dest_off = abase + (dest_off_con << scale);
kvn@2939 5223
duke@435 5224 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
duke@435 5225 // Non-aligned; too bad.
duke@435 5226 // One more chance: Pick off an initial 32-bit word.
duke@435 5227 // This is a common case, since abase can be odd mod 8.
duke@435 5228 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
duke@435 5229 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
duke@435 5230 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5231 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5232 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
duke@435 5233 store_to_memory(control(), dptr, sval, T_INT, adr_type);
duke@435 5234 src_off += BytesPerInt;
duke@435 5235 dest_off += BytesPerInt;
duke@435 5236 } else {
duke@435 5237 return false;
duke@435 5238 }
duke@435 5239 }
duke@435 5240 assert(src_off % BytesPerLong == 0, "");
duke@435 5241 assert(dest_off % BytesPerLong == 0, "");
duke@435 5242
duke@435 5243 // Do this copy by giant steps.
duke@435 5244 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5245 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5246 Node* countx = dest_size;
kvn@4115 5247 countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
kvn@4115 5248 countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
duke@435 5249
duke@435 5250 bool disjoint_bases = true; // since alloc != NULL
duke@435 5251 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
iveresov@2606 5252 sptr, NULL, dptr, NULL, countx, dest_uninitialized);
duke@435 5253
duke@435 5254 return true;
duke@435 5255 }
duke@435 5256
duke@435 5257
duke@435 5258 // Helper function; generates code for the slow case.
duke@435 5259 // We make a call to a runtime method which emulates the native method,
duke@435 5260 // but without the native wrapper overhead.
duke@435 5261 void
duke@435 5262 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 5263 Node* src, Node* src_offset,
duke@435 5264 Node* dest, Node* dest_offset,
iveresov@2606 5265 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5266 assert(!dest_uninitialized, "Invariant");
duke@435 5267 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
duke@435 5268 OptoRuntime::slow_arraycopy_Type(),
duke@435 5269 OptoRuntime::slow_arraycopy_Java(),
duke@435 5270 "slow_arraycopy", adr_type,
duke@435 5271 src, src_offset, dest, dest_offset,
duke@435 5272 copy_length);
duke@435 5273
duke@435 5274 // Handle exceptions thrown by this fellow:
duke@435 5275 make_slow_call_ex(call, env()->Throwable_klass(), false);
duke@435 5276 }
duke@435 5277
duke@435 5278 // Helper function; generates code for cases requiring runtime checks.
duke@435 5279 Node*
duke@435 5280 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 5281 Node* dest_elem_klass,
duke@435 5282 Node* src, Node* src_offset,
duke@435 5283 Node* dest, Node* dest_offset,
iveresov@2606 5284 Node* copy_length, bool dest_uninitialized) {
duke@435 5285 if (stopped()) return NULL;
duke@435 5286
iveresov@2606 5287 address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
duke@435 5288 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5289 return NULL;
duke@435 5290 }
duke@435 5291
duke@435 5292 // Pick out the parameters required to perform a store-check
duke@435 5293 // for the target array. This is an optimistic check. It will
duke@435 5294 // look in each non-null element's class, at the desired klass's
duke@435 5295 // super_check_offset, for the desired klass.
stefank@3391 5296 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 5297 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
kvn@4115 5298 Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
never@2199 5299 Node* check_offset = ConvI2X(_gvn.transform(n3));
duke@435 5300 Node* check_value = dest_elem_klass;
duke@435 5301
duke@435 5302 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
duke@435 5303 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
duke@435 5304
duke@435 5305 // (We know the arrays are never conjoint, because their types differ.)
duke@435 5306 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5307 OptoRuntime::checkcast_arraycopy_Type(),
duke@435 5308 copyfunc_addr, "checkcast_arraycopy", adr_type,
duke@435 5309 // five arguments, of which two are
duke@435 5310 // intptr_t (jlong in LP64)
duke@435 5311 src_start, dest_start,
duke@435 5312 copy_length XTOP,
duke@435 5313 check_offset XTOP,
duke@435 5314 check_value);
duke@435 5315
kvn@4115 5316 return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
duke@435 5317 }
duke@435 5318
duke@435 5319
duke@435 5320 // Helper function; generates code for cases requiring runtime checks.
duke@435 5321 Node*
duke@435 5322 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 5323 Node* src, Node* src_offset,
duke@435 5324 Node* dest, Node* dest_offset,
iveresov@2606 5325 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5326 assert(!dest_uninitialized, "Invariant");
duke@435 5327 if (stopped()) return NULL;
duke@435 5328 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 5329 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5330 return NULL;
duke@435 5331 }
duke@435 5332
duke@435 5333 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5334 OptoRuntime::generic_arraycopy_Type(),
duke@435 5335 copyfunc_addr, "generic_arraycopy", adr_type,
duke@435 5336 src, src_offset, dest, dest_offset, copy_length);
duke@435 5337
kvn@4115 5338 return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
duke@435 5339 }
duke@435 5340
duke@435 5341 // Helper function; generates the fast out-of-line call to an arraycopy stub.
duke@435 5342 void
duke@435 5343 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 5344 BasicType basic_elem_type,
duke@435 5345 bool disjoint_bases,
duke@435 5346 Node* src, Node* src_offset,
duke@435 5347 Node* dest, Node* dest_offset,
iveresov@2606 5348 Node* copy_length, bool dest_uninitialized) {
duke@435 5349 if (stopped()) return; // nothing to do
duke@435 5350
duke@435 5351 Node* src_start = src;
duke@435 5352 Node* dest_start = dest;
duke@435 5353 if (src_offset != NULL || dest_offset != NULL) {
duke@435 5354 assert(src_offset != NULL && dest_offset != NULL, "");
duke@435 5355 src_start = array_element_address(src, src_offset, basic_elem_type);
duke@435 5356 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
duke@435 5357 }
duke@435 5358
duke@435 5359 // Figure out which arraycopy runtime method to call.
duke@435 5360 const char* copyfunc_name = "arraycopy";
duke@435 5361 address copyfunc_addr =
duke@435 5362 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
iveresov@2606 5363 disjoint_bases, copyfunc_name, dest_uninitialized);
duke@435 5364
duke@435 5365 // Call it. Note that the count_ix value is not scaled to a byte-size.
duke@435 5366 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5367 OptoRuntime::fast_arraycopy_Type(),
duke@435 5368 copyfunc_addr, copyfunc_name, adr_type,
duke@435 5369 src_start, dest_start, copy_length XTOP);
duke@435 5370 }
johnc@2781 5371
johnc@2781 5372 //----------------------------inline_reference_get----------------------------
twisti@4313 5373 // public T java.lang.ref.Reference.get();
johnc@2781 5374 bool LibraryCallKit::inline_reference_get() {
twisti@4313 5375 const int referent_offset = java_lang_ref_Reference::referent_offset;
twisti@4313 5376 guarantee(referent_offset > 0, "should have already been set");
twisti@4313 5377
twisti@4313 5378 // Get the argument:
twisti@4313 5379 Node* reference_obj = null_check_receiver();
johnc@2781 5380 if (stopped()) return true;
johnc@2781 5381
twisti@4313 5382 Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
johnc@2781 5383
johnc@2781 5384 ciInstanceKlass* klass = env()->Object_klass();
johnc@2781 5385 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
johnc@2781 5386
johnc@2781 5387 Node* no_ctrl = NULL;
twisti@4313 5388 Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
johnc@2781 5389
johnc@2781 5390 // Use the pre-barrier to record the value in the referent field
johnc@2781 5391 pre_barrier(false /* do_load */,
johnc@2781 5392 control(),
johnc@2790 5393 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 5394 result /* pre_val */,
johnc@2781 5395 T_OBJECT);
johnc@2781 5396
kvn@4002 5397 // Add memory barrier to prevent commoning reads from this field
kvn@4002 5398 // across safepoint since GC can change its value.
kvn@4002 5399 insert_mem_bar(Op_MemBarCPUOrder);
kvn@4002 5400
twisti@4313 5401 set_result(result);
johnc@2781 5402 return true;
johnc@2781 5403 }
kvn@4205 5404
kvn@4205 5405
kvn@4205 5406 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
kvn@4205 5407 bool is_exact=true, bool is_static=false) {
kvn@4205 5408
kvn@4205 5409 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
kvn@4205 5410 assert(tinst != NULL, "obj is null");
kvn@4205 5411 assert(tinst->klass()->is_loaded(), "obj is not loaded");
kvn@4205 5412 assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
kvn@4205 5413
kvn@4205 5414 ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
kvn@4205 5415 ciSymbol::make(fieldTypeString),
kvn@4205 5416 is_static);
kvn@4205 5417 if (field == NULL) return (Node *) NULL;
kvn@4205 5418 assert (field != NULL, "undefined field");
kvn@4205 5419
kvn@4205 5420 // Next code copied from Parse::do_get_xxx():
kvn@4205 5421
kvn@4205 5422 // Compute address and memory type.
kvn@4205 5423 int offset = field->offset_in_bytes();
kvn@4205 5424 bool is_vol = field->is_volatile();
kvn@4205 5425 ciType* field_klass = field->type();
kvn@4205 5426 assert(field_klass->is_loaded(), "should be loaded");
kvn@4205 5427 const TypePtr* adr_type = C->alias_type(field)->adr_type();
kvn@4205 5428 Node *adr = basic_plus_adr(fromObj, fromObj, offset);
kvn@4205 5429 BasicType bt = field->layout_type();
kvn@4205 5430
kvn@4205 5431 // Build the resultant type of the load
kvn@4205 5432 const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
kvn@4205 5433
kvn@4205 5434 // Build the load.
kvn@4205 5435 Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
kvn@4205 5436 return loadedField;
kvn@4205 5437 }
kvn@4205 5438
kvn@4205 5439
kvn@4205 5440 //------------------------------inline_aescrypt_Block-----------------------
kvn@4205 5441 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
kvn@4205 5442 address stubAddr;
kvn@4205 5443 const char *stubName;
kvn@4205 5444 assert(UseAES, "need AES instruction support");
kvn@4205 5445
kvn@4205 5446 switch(id) {
kvn@4205 5447 case vmIntrinsics::_aescrypt_encryptBlock:
kvn@4205 5448 stubAddr = StubRoutines::aescrypt_encryptBlock();
kvn@4205 5449 stubName = "aescrypt_encryptBlock";
kvn@4205 5450 break;
kvn@4205 5451 case vmIntrinsics::_aescrypt_decryptBlock:
kvn@4205 5452 stubAddr = StubRoutines::aescrypt_decryptBlock();
kvn@4205 5453 stubName = "aescrypt_decryptBlock";
kvn@4205 5454 break;
kvn@4205 5455 }
kvn@4205 5456 if (stubAddr == NULL) return false;
kvn@4205 5457
twisti@4313 5458 Node* aescrypt_object = argument(0);
twisti@4313 5459 Node* src = argument(1);
twisti@4313 5460 Node* src_offset = argument(2);
twisti@4313 5461 Node* dest = argument(3);
twisti@4313 5462 Node* dest_offset = argument(4);
kvn@4205 5463
kvn@4205 5464 // (1) src and dest are arrays.
kvn@4205 5465 const Type* src_type = src->Value(&_gvn);
kvn@4205 5466 const Type* dest_type = dest->Value(&_gvn);
kvn@4205 5467 const TypeAryPtr* top_src = src_type->isa_aryptr();
kvn@4205 5468 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
kvn@4205 5469 assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange");
kvn@4205 5470
kvn@4205 5471 // for the quick and dirty code we will skip all the checks.
kvn@4205 5472 // we are just trying to get the call to be generated.
kvn@4205 5473 Node* src_start = src;
kvn@4205 5474 Node* dest_start = dest;
kvn@4205 5475 if (src_offset != NULL || dest_offset != NULL) {
kvn@4205 5476 assert(src_offset != NULL && dest_offset != NULL, "");
kvn@4205 5477 src_start = array_element_address(src, src_offset, T_BYTE);
kvn@4205 5478 dest_start = array_element_address(dest, dest_offset, T_BYTE);
kvn@4205 5479 }
kvn@4205 5480
kvn@4205 5481 // now need to get the start of its expanded key array
kvn@4205 5482 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
kvn@4205 5483 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
kvn@4205 5484 if (k_start == NULL) return false;
kvn@4205 5485
kvn@4205 5486 // Call the stub.
kvn@4205 5487 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
kvn@4205 5488 stubAddr, stubName, TypePtr::BOTTOM,
kvn@4205 5489 src_start, dest_start, k_start);
kvn@4205 5490
kvn@4205 5491 return true;
kvn@4205 5492 }
kvn@4205 5493
kvn@4205 5494 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
kvn@4205 5495 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
kvn@4205 5496 address stubAddr;
kvn@4205 5497 const char *stubName;
kvn@4205 5498
kvn@4205 5499 assert(UseAES, "need AES instruction support");
kvn@4205 5500
kvn@4205 5501 switch(id) {
kvn@4205 5502 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
kvn@4205 5503 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
kvn@4205 5504 stubName = "cipherBlockChaining_encryptAESCrypt";
kvn@4205 5505 break;
kvn@4205 5506 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
kvn@4205 5507 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
kvn@4205 5508 stubName = "cipherBlockChaining_decryptAESCrypt";
kvn@4205 5509 break;
kvn@4205 5510 }
kvn@4205 5511 if (stubAddr == NULL) return false;
kvn@4205 5512
twisti@4313 5513 Node* cipherBlockChaining_object = argument(0);
twisti@4313 5514 Node* src = argument(1);
twisti@4313 5515 Node* src_offset = argument(2);
twisti@4313 5516 Node* len = argument(3);
twisti@4313 5517 Node* dest = argument(4);
twisti@4313 5518 Node* dest_offset = argument(5);
kvn@4205 5519
kvn@4205 5520 // (1) src and dest are arrays.
kvn@4205 5521 const Type* src_type = src->Value(&_gvn);
kvn@4205 5522 const Type* dest_type = dest->Value(&_gvn);
kvn@4205 5523 const TypeAryPtr* top_src = src_type->isa_aryptr();
kvn@4205 5524 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
kvn@4205 5525 assert (top_src != NULL && top_src->klass() != NULL
kvn@4205 5526 && top_dest != NULL && top_dest->klass() != NULL, "args are strange");
kvn@4205 5527
kvn@4205 5528 // checks are the responsibility of the caller
kvn@4205 5529 Node* src_start = src;
kvn@4205 5530 Node* dest_start = dest;
kvn@4205 5531 if (src_offset != NULL || dest_offset != NULL) {
kvn@4205 5532 assert(src_offset != NULL && dest_offset != NULL, "");
kvn@4205 5533 src_start = array_element_address(src, src_offset, T_BYTE);
kvn@4205 5534 dest_start = array_element_address(dest, dest_offset, T_BYTE);
kvn@4205 5535 }
kvn@4205 5536
kvn@4205 5537 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
kvn@4205 5538 // (because of the predicated logic executed earlier).
kvn@4205 5539 // so we cast it here safely.
kvn@4205 5540 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
kvn@4205 5541
kvn@4205 5542 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
kvn@4205 5543 if (embeddedCipherObj == NULL) return false;
kvn@4205 5544
kvn@4205 5545 // cast it to what we know it will be at runtime
kvn@4205 5546 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
kvn@4205 5547 assert(tinst != NULL, "CBC obj is null");
kvn@4205 5548 assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
kvn@4205 5549 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
kvn@4205 5550 if (!klass_AESCrypt->is_loaded()) return false;
kvn@4205 5551
kvn@4205 5552 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
kvn@4205 5553 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
kvn@4205 5554 const TypeOopPtr* xtype = aklass->as_instance_type();
kvn@4205 5555 Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
kvn@4205 5556 aescrypt_object = _gvn.transform(aescrypt_object);
kvn@4205 5557
kvn@4205 5558 // we need to get the start of the aescrypt_object's expanded key array
kvn@4205 5559 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
kvn@4205 5560 if (k_start == NULL) return false;
kvn@4205 5561
kvn@4205 5562 // similarly, get the start address of the r vector
kvn@4205 5563 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
kvn@4205 5564 if (objRvec == NULL) return false;
kvn@4205 5565 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
kvn@4205 5566
kvn@4205 5567 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
kvn@4205 5568 make_runtime_call(RC_LEAF|RC_NO_FP,
kvn@4205 5569 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
kvn@4205 5570 stubAddr, stubName, TypePtr::BOTTOM,
kvn@4205 5571 src_start, dest_start, k_start, r_start, len);
kvn@4205 5572
kvn@4205 5573 // return is void so no result needs to be pushed
kvn@4205 5574
kvn@4205 5575 return true;
kvn@4205 5576 }
kvn@4205 5577
kvn@4205 5578 //------------------------------get_key_start_from_aescrypt_object-----------------------
kvn@4205 5579 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
kvn@4205 5580 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
kvn@4205 5581 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
kvn@4205 5582 if (objAESCryptKey == NULL) return (Node *) NULL;
kvn@4205 5583
kvn@4205 5584 // now have the array, need to get the start address of the K array
kvn@4205 5585 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
kvn@4205 5586 return k_start;
kvn@4205 5587 }
kvn@4205 5588
kvn@4205 5589 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
kvn@4205 5590 // Return node representing slow path of predicate check.
kvn@4205 5591 // the pseudo code we want to emulate with this predicate is:
kvn@4205 5592 // for encryption:
kvn@4205 5593 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
kvn@4205 5594 // for decryption:
kvn@4205 5595 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
kvn@4205 5596 // note cipher==plain is more conservative than the original java code but that's OK
kvn@4205 5597 //
kvn@4205 5598 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
kvn@4205 5599 // First, check receiver for NULL since it is virtual method.
kvn@4205 5600 Node* objCBC = argument(0);
twisti@4313 5601 objCBC = null_check(objCBC);
kvn@4205 5602
kvn@4205 5603 if (stopped()) return NULL; // Always NULL
kvn@4205 5604
kvn@4205 5605 // Load embeddedCipher field of CipherBlockChaining object.
kvn@4205 5606 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
kvn@4205 5607
kvn@4205 5608 // get AESCrypt klass for instanceOf check
kvn@4205 5609 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
kvn@4205 5610 // will have same classloader as CipherBlockChaining object
kvn@4205 5611 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
kvn@4205 5612 assert(tinst != NULL, "CBCobj is null");
kvn@4205 5613 assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
kvn@4205 5614
kvn@4205 5615 // we want to do an instanceof comparison against the AESCrypt class
kvn@4205 5616 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
kvn@4205 5617 if (!klass_AESCrypt->is_loaded()) {
kvn@4205 5618 // if AESCrypt is not even loaded, we never take the intrinsic fast path
kvn@4205 5619 Node* ctrl = control();
kvn@4205 5620 set_control(top()); // no regular fast path
kvn@4205 5621 return ctrl;
kvn@4205 5622 }
kvn@4205 5623 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
kvn@4205 5624
kvn@4205 5625 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
kvn@4205 5626 Node* cmp_instof = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
kvn@4205 5627 Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
kvn@4205 5628
kvn@4205 5629 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
kvn@4205 5630
kvn@4205 5631 // for encryption, we are done
kvn@4205 5632 if (!decrypting)
kvn@4205 5633 return instof_false; // even if it is NULL
kvn@4205 5634
kvn@4205 5635 // for decryption, we need to add a further check to avoid
kvn@4205 5636 // taking the intrinsic path when cipher and plain are the same
kvn@4205 5637 // see the original java code for why.
kvn@4205 5638 RegionNode* region = new(C) RegionNode(3);
kvn@4205 5639 region->init_req(1, instof_false);
kvn@4205 5640 Node* src = argument(1);
twisti@4313 5641 Node* dest = argument(4);
kvn@4205 5642 Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
kvn@4205 5643 Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
kvn@4205 5644 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
kvn@4205 5645 region->init_req(2, src_dest_conjoint);
kvn@4205 5646
kvn@4205 5647 record_for_igvn(region);
kvn@4205 5648 return _gvn.transform(region);
kvn@4205 5649 }

mercurial