src/share/classes/com/sun/tools/javac/comp/Check.java

Sun, 04 Nov 2012 10:59:42 +0000

author
mcimadamore
date
Sun, 04 Nov 2012 10:59:42 +0000
changeset 1393
d7d932236fee
parent 1384
bf54daa9dcd8
child 1415
01c9d4161882
permissions
-rw-r--r--

7192246: Add type-checking support for default methods
Summary: Add type-checking support for default methods as per Featherweight-Defender document
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    30 import javax.tools.JavaFileManager;
    32 import com.sun.tools.javac.code.*;
    33 import com.sun.tools.javac.jvm.*;
    34 import com.sun.tools.javac.tree.*;
    35 import com.sun.tools.javac.util.*;
    36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    37 import com.sun.tools.javac.util.List;
    39 import com.sun.tools.javac.tree.JCTree.*;
    40 import com.sun.tools.javac.code.Lint;
    41 import com.sun.tools.javac.code.Lint.LintCategory;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.code.Symbol.*;
    44 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    48 import static com.sun.tools.javac.code.Flags.*;
    49 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    50 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    51 import static com.sun.tools.javac.code.Kinds.*;
    52 import static com.sun.tools.javac.code.TypeTag.*;
    53 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    55 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    57 /** Type checking helper class for the attribution phase.
    58  *
    59  *  <p><b>This is NOT part of any supported API.
    60  *  If you write code that depends on this, you do so at your own risk.
    61  *  This code and its internal interfaces are subject to change or
    62  *  deletion without notice.</b>
    63  */
    64 public class Check {
    65     protected static final Context.Key<Check> checkKey =
    66         new Context.Key<Check>();
    68     private final Names names;
    69     private final Log log;
    70     private final Resolve rs;
    71     private final Symtab syms;
    72     private final Enter enter;
    73     private final DeferredAttr deferredAttr;
    74     private final Infer infer;
    75     private final Types types;
    76     private final JCDiagnostic.Factory diags;
    77     private boolean warnOnSyntheticConflicts;
    78     private boolean suppressAbortOnBadClassFile;
    79     private boolean enableSunApiLintControl;
    80     private final TreeInfo treeinfo;
    81     private final JavaFileManager fileManager;
    83     // The set of lint options currently in effect. It is initialized
    84     // from the context, and then is set/reset as needed by Attr as it
    85     // visits all the various parts of the trees during attribution.
    86     private Lint lint;
    88     // The method being analyzed in Attr - it is set/reset as needed by
    89     // Attr as it visits new method declarations.
    90     private MethodSymbol method;
    92     public static Check instance(Context context) {
    93         Check instance = context.get(checkKey);
    94         if (instance == null)
    95             instance = new Check(context);
    96         return instance;
    97     }
    99     protected Check(Context context) {
   100         context.put(checkKey, this);
   102         names = Names.instance(context);
   103         log = Log.instance(context);
   104         rs = Resolve.instance(context);
   105         syms = Symtab.instance(context);
   106         enter = Enter.instance(context);
   107         deferredAttr = DeferredAttr.instance(context);
   108         infer = Infer.instance(context);
   109         this.types = Types.instance(context);
   110         diags = JCDiagnostic.Factory.instance(context);
   111         Options options = Options.instance(context);
   112         lint = Lint.instance(context);
   113         treeinfo = TreeInfo.instance(context);
   114         fileManager = context.get(JavaFileManager.class);
   116         Source source = Source.instance(context);
   117         allowGenerics = source.allowGenerics();
   118         allowVarargs = source.allowVarargs();
   119         allowAnnotations = source.allowAnnotations();
   120         allowCovariantReturns = source.allowCovariantReturns();
   121         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   122         allowDefaultMethods = source.allowDefaultMethods();
   123         allowStrictMethodClashCheck = source.allowStrictMethodClashCheck() &&
   124                 options.isSet("strictMethodClashCheck"); //pre-lambda guard
   125         complexInference = options.isSet("complexinference");
   126         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   127         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   128         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   130         Target target = Target.instance(context);
   131         syntheticNameChar = target.syntheticNameChar();
   133         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   134         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   135         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   136         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   138         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   139                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   140         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   141                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   142         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   143                 enforceMandatoryWarnings, "sunapi", null);
   145         deferredLintHandler = DeferredLintHandler.immediateHandler;
   146     }
   148     /** Switch: generics enabled?
   149      */
   150     boolean allowGenerics;
   152     /** Switch: varargs enabled?
   153      */
   154     boolean allowVarargs;
   156     /** Switch: annotations enabled?
   157      */
   158     boolean allowAnnotations;
   160     /** Switch: covariant returns enabled?
   161      */
   162     boolean allowCovariantReturns;
   164     /** Switch: simplified varargs enabled?
   165      */
   166     boolean allowSimplifiedVarargs;
   168     /** Switch: default methods enabled?
   169      */
   170     boolean allowDefaultMethods;
   172     /** Switch: should unrelated return types trigger a method clash?
   173      */
   174     boolean allowStrictMethodClashCheck;
   176     /** Switch: -complexinference option set?
   177      */
   178     boolean complexInference;
   180     /** Character for synthetic names
   181      */
   182     char syntheticNameChar;
   184     /** A table mapping flat names of all compiled classes in this run to their
   185      *  symbols; maintained from outside.
   186      */
   187     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   189     /** A handler for messages about deprecated usage.
   190      */
   191     private MandatoryWarningHandler deprecationHandler;
   193     /** A handler for messages about unchecked or unsafe usage.
   194      */
   195     private MandatoryWarningHandler uncheckedHandler;
   197     /** A handler for messages about using proprietary API.
   198      */
   199     private MandatoryWarningHandler sunApiHandler;
   201     /** A handler for deferred lint warnings.
   202      */
   203     private DeferredLintHandler deferredLintHandler;
   205 /* *************************************************************************
   206  * Errors and Warnings
   207  **************************************************************************/
   209     Lint setLint(Lint newLint) {
   210         Lint prev = lint;
   211         lint = newLint;
   212         return prev;
   213     }
   215     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   216         DeferredLintHandler prev = deferredLintHandler;
   217         deferredLintHandler = newDeferredLintHandler;
   218         return prev;
   219     }
   221     MethodSymbol setMethod(MethodSymbol newMethod) {
   222         MethodSymbol prev = method;
   223         method = newMethod;
   224         return prev;
   225     }
   227     /** Warn about deprecated symbol.
   228      *  @param pos        Position to be used for error reporting.
   229      *  @param sym        The deprecated symbol.
   230      */
   231     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   232         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   233             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   234     }
   236     /** Warn about unchecked operation.
   237      *  @param pos        Position to be used for error reporting.
   238      *  @param msg        A string describing the problem.
   239      */
   240     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   241         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   242             uncheckedHandler.report(pos, msg, args);
   243     }
   245     /** Warn about unsafe vararg method decl.
   246      *  @param pos        Position to be used for error reporting.
   247      */
   248     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   249         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   250             log.warning(LintCategory.VARARGS, pos, key, args);
   251     }
   253     /** Warn about using proprietary API.
   254      *  @param pos        Position to be used for error reporting.
   255      *  @param msg        A string describing the problem.
   256      */
   257     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   258         if (!lint.isSuppressed(LintCategory.SUNAPI))
   259             sunApiHandler.report(pos, msg, args);
   260     }
   262     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   263         if (lint.isEnabled(LintCategory.STATIC))
   264             log.warning(LintCategory.STATIC, pos, msg, args);
   265     }
   267     /**
   268      * Report any deferred diagnostics.
   269      */
   270     public void reportDeferredDiagnostics() {
   271         deprecationHandler.reportDeferredDiagnostic();
   272         uncheckedHandler.reportDeferredDiagnostic();
   273         sunApiHandler.reportDeferredDiagnostic();
   274     }
   277     /** Report a failure to complete a class.
   278      *  @param pos        Position to be used for error reporting.
   279      *  @param ex         The failure to report.
   280      */
   281     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   282         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   283         if (ex instanceof ClassReader.BadClassFile
   284                 && !suppressAbortOnBadClassFile) throw new Abort();
   285         else return syms.errType;
   286     }
   288     /** Report an error that wrong type tag was found.
   289      *  @param pos        Position to be used for error reporting.
   290      *  @param required   An internationalized string describing the type tag
   291      *                    required.
   292      *  @param found      The type that was found.
   293      */
   294     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   295         // this error used to be raised by the parser,
   296         // but has been delayed to this point:
   297         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
   298             log.error(pos, "illegal.start.of.type");
   299             return syms.errType;
   300         }
   301         log.error(pos, "type.found.req", found, required);
   302         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   303     }
   305     /** Report an error that symbol cannot be referenced before super
   306      *  has been called.
   307      *  @param pos        Position to be used for error reporting.
   308      *  @param sym        The referenced symbol.
   309      */
   310     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   311         log.error(pos, "cant.ref.before.ctor.called", sym);
   312     }
   314     /** Report duplicate declaration error.
   315      */
   316     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   317         if (!sym.type.isErroneous()) {
   318             Symbol location = sym.location();
   319             if (location.kind == MTH &&
   320                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   321                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   322                         kindName(sym.location()), kindName(sym.location().enclClass()),
   323                         sym.location().enclClass());
   324             } else {
   325                 log.error(pos, "already.defined", kindName(sym), sym,
   326                         kindName(sym.location()), sym.location());
   327             }
   328         }
   329     }
   331     /** Report array/varargs duplicate declaration
   332      */
   333     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   334         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   335             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   336         }
   337     }
   339 /* ************************************************************************
   340  * duplicate declaration checking
   341  *************************************************************************/
   343     /** Check that variable does not hide variable with same name in
   344      *  immediately enclosing local scope.
   345      *  @param pos           Position for error reporting.
   346      *  @param v             The symbol.
   347      *  @param s             The scope.
   348      */
   349     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   350         if (s.next != null) {
   351             for (Scope.Entry e = s.next.lookup(v.name);
   352                  e.scope != null && e.sym.owner == v.owner;
   353                  e = e.next()) {
   354                 if (e.sym.kind == VAR &&
   355                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   356                     v.name != names.error) {
   357                     duplicateError(pos, e.sym);
   358                     return;
   359                 }
   360             }
   361         }
   362     }
   364     /** Check that a class or interface does not hide a class or
   365      *  interface with same name in immediately enclosing local scope.
   366      *  @param pos           Position for error reporting.
   367      *  @param c             The symbol.
   368      *  @param s             The scope.
   369      */
   370     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   371         if (s.next != null) {
   372             for (Scope.Entry e = s.next.lookup(c.name);
   373                  e.scope != null && e.sym.owner == c.owner;
   374                  e = e.next()) {
   375                 if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
   376                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   377                     c.name != names.error) {
   378                     duplicateError(pos, e.sym);
   379                     return;
   380                 }
   381             }
   382         }
   383     }
   385     /** Check that class does not have the same name as one of
   386      *  its enclosing classes, or as a class defined in its enclosing scope.
   387      *  return true if class is unique in its enclosing scope.
   388      *  @param pos           Position for error reporting.
   389      *  @param name          The class name.
   390      *  @param s             The enclosing scope.
   391      */
   392     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   393         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   394             if (e.sym.kind == TYP && e.sym.name != names.error) {
   395                 duplicateError(pos, e.sym);
   396                 return false;
   397             }
   398         }
   399         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   400             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   401                 duplicateError(pos, sym);
   402                 return true;
   403             }
   404         }
   405         return true;
   406     }
   408 /* *************************************************************************
   409  * Class name generation
   410  **************************************************************************/
   412     /** Return name of local class.
   413      *  This is of the form   {@code <enclClass> $ n <classname> }
   414      *  where
   415      *    enclClass is the flat name of the enclosing class,
   416      *    classname is the simple name of the local class
   417      */
   418     Name localClassName(ClassSymbol c) {
   419         for (int i=1; ; i++) {
   420             Name flatname = names.
   421                 fromString("" + c.owner.enclClass().flatname +
   422                            syntheticNameChar + i +
   423                            c.name);
   424             if (compiled.get(flatname) == null) return flatname;
   425         }
   426     }
   428 /* *************************************************************************
   429  * Type Checking
   430  **************************************************************************/
   432     /**
   433      * A check context is an object that can be used to perform compatibility
   434      * checks - depending on the check context, meaning of 'compatibility' might
   435      * vary significantly.
   436      */
   437     public interface CheckContext {
   438         /**
   439          * Is type 'found' compatible with type 'req' in given context
   440          */
   441         boolean compatible(Type found, Type req, Warner warn);
   442         /**
   443          * Report a check error
   444          */
   445         void report(DiagnosticPosition pos, JCDiagnostic details);
   446         /**
   447          * Obtain a warner for this check context
   448          */
   449         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   451         public Infer.InferenceContext inferenceContext();
   453         public DeferredAttr.DeferredAttrContext deferredAttrContext();
   455         public boolean allowBoxing();
   456     }
   458     /**
   459      * This class represent a check context that is nested within another check
   460      * context - useful to check sub-expressions. The default behavior simply
   461      * redirects all method calls to the enclosing check context leveraging
   462      * the forwarding pattern.
   463      */
   464     static class NestedCheckContext implements CheckContext {
   465         CheckContext enclosingContext;
   467         NestedCheckContext(CheckContext enclosingContext) {
   468             this.enclosingContext = enclosingContext;
   469         }
   471         public boolean compatible(Type found, Type req, Warner warn) {
   472             return enclosingContext.compatible(found, req, warn);
   473         }
   475         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   476             enclosingContext.report(pos, details);
   477         }
   479         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   480             return enclosingContext.checkWarner(pos, found, req);
   481         }
   483         public Infer.InferenceContext inferenceContext() {
   484             return enclosingContext.inferenceContext();
   485         }
   487         public DeferredAttrContext deferredAttrContext() {
   488             return enclosingContext.deferredAttrContext();
   489         }
   491         public boolean allowBoxing() {
   492             return enclosingContext.allowBoxing();
   493         }
   494     }
   496     /**
   497      * Check context to be used when evaluating assignment/return statements
   498      */
   499     CheckContext basicHandler = new CheckContext() {
   500         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   501             log.error(pos, "prob.found.req", details);
   502         }
   503         public boolean compatible(Type found, Type req, Warner warn) {
   504             return types.isAssignable(found, req, warn);
   505         }
   507         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   508             return convertWarner(pos, found, req);
   509         }
   511         public InferenceContext inferenceContext() {
   512             return infer.emptyContext;
   513         }
   515         public DeferredAttrContext deferredAttrContext() {
   516             return deferredAttr.emptyDeferredAttrContext;
   517         }
   519         public boolean allowBoxing() {
   520             return true;
   521         }
   522     };
   524     /** Check that a given type is assignable to a given proto-type.
   525      *  If it is, return the type, otherwise return errType.
   526      *  @param pos        Position to be used for error reporting.
   527      *  @param found      The type that was found.
   528      *  @param req        The type that was required.
   529      */
   530     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   531         return checkType(pos, found, req, basicHandler);
   532     }
   534     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
   535         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
   536         if (inferenceContext.free(req)) {
   537             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
   538                 @Override
   539                 public void typesInferred(InferenceContext inferenceContext) {
   540                     checkType(pos, found, inferenceContext.asInstType(req, types), checkContext);
   541                 }
   542             });
   543         }
   544         if (req.hasTag(ERROR))
   545             return req;
   546         if (req.hasTag(NONE))
   547             return found;
   548         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   549             return found;
   550         } else {
   551             if (found.getTag().isSubRangeOf(DOUBLE) && req.getTag().isSubRangeOf(DOUBLE)) {
   552                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   553                 return types.createErrorType(found);
   554             }
   555             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   556             return types.createErrorType(found);
   557         }
   558     }
   560     /** Check that a given type can be cast to a given target type.
   561      *  Return the result of the cast.
   562      *  @param pos        Position to be used for error reporting.
   563      *  @param found      The type that is being cast.
   564      *  @param req        The target type of the cast.
   565      */
   566     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   567         return checkCastable(pos, found, req, basicHandler);
   568     }
   569     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   570         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   571             return req;
   572         } else {
   573             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   574             return types.createErrorType(found);
   575         }
   576     }
   578     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   579      * The problem should only be reported for non-292 cast
   580      */
   581     public void checkRedundantCast(Env<AttrContext> env, JCTypeCast tree) {
   582         if (!tree.type.isErroneous() &&
   583                 (env.info.lint == null || env.info.lint.isEnabled(Lint.LintCategory.CAST))
   584                 && types.isSameType(tree.expr.type, tree.clazz.type)
   585                 && !is292targetTypeCast(tree)) {
   586             log.warning(Lint.LintCategory.CAST,
   587                     tree.pos(), "redundant.cast", tree.expr.type);
   588         }
   589     }
   590     //where
   591             private boolean is292targetTypeCast(JCTypeCast tree) {
   592                 boolean is292targetTypeCast = false;
   593                 JCExpression expr = TreeInfo.skipParens(tree.expr);
   594                 if (expr.hasTag(APPLY)) {
   595                     JCMethodInvocation apply = (JCMethodInvocation)expr;
   596                     Symbol sym = TreeInfo.symbol(apply.meth);
   597                     is292targetTypeCast = sym != null &&
   598                         sym.kind == MTH &&
   599                         (sym.flags() & HYPOTHETICAL) != 0;
   600                 }
   601                 return is292targetTypeCast;
   602             }
   606 //where
   607         /** Is type a type variable, or a (possibly multi-dimensional) array of
   608          *  type variables?
   609          */
   610         boolean isTypeVar(Type t) {
   611             return t.hasTag(TYPEVAR) || t.hasTag(ARRAY) && isTypeVar(types.elemtype(t));
   612         }
   614     /** Check that a type is within some bounds.
   615      *
   616      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
   617      *  type argument.
   618      *  @param a             The type that should be bounded by bs.
   619      *  @param bound         The bound.
   620      */
   621     private boolean checkExtends(Type a, Type bound) {
   622          if (a.isUnbound()) {
   623              return true;
   624          } else if (!a.hasTag(WILDCARD)) {
   625              a = types.upperBound(a);
   626              return types.isSubtype(a, bound);
   627          } else if (a.isExtendsBound()) {
   628              return types.isCastable(bound, types.upperBound(a), Warner.noWarnings);
   629          } else if (a.isSuperBound()) {
   630              return !types.notSoftSubtype(types.lowerBound(a), bound);
   631          }
   632          return true;
   633      }
   635     /** Check that type is different from 'void'.
   636      *  @param pos           Position to be used for error reporting.
   637      *  @param t             The type to be checked.
   638      */
   639     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   640         if (t.hasTag(VOID)) {
   641             log.error(pos, "void.not.allowed.here");
   642             return types.createErrorType(t);
   643         } else {
   644             return t;
   645         }
   646     }
   648     /** Check that type is a class or interface type.
   649      *  @param pos           Position to be used for error reporting.
   650      *  @param t             The type to be checked.
   651      */
   652     Type checkClassType(DiagnosticPosition pos, Type t) {
   653         if (!t.hasTag(CLASS) && !t.hasTag(ERROR))
   654             return typeTagError(pos,
   655                                 diags.fragment("type.req.class"),
   656                                 (t.hasTag(TYPEVAR))
   657                                 ? diags.fragment("type.parameter", t)
   658                                 : t);
   659         else
   660             return t;
   661     }
   663     /** Check that type is a valid qualifier for a constructor reference expression
   664      */
   665     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
   666         t = checkClassType(pos, t);
   667         if (t.hasTag(CLASS)) {
   668             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
   669                 log.error(pos, "abstract.cant.be.instantiated");
   670                 t = types.createErrorType(t);
   671             } else if ((t.tsym.flags() & ENUM) != 0) {
   672                 log.error(pos, "enum.cant.be.instantiated");
   673                 t = types.createErrorType(t);
   674             }
   675         }
   676         return t;
   677     }
   679     /** Check that type is a class or interface type.
   680      *  @param pos           Position to be used for error reporting.
   681      *  @param t             The type to be checked.
   682      *  @param noBounds    True if type bounds are illegal here.
   683      */
   684     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   685         t = checkClassType(pos, t);
   686         if (noBounds && t.isParameterized()) {
   687             List<Type> args = t.getTypeArguments();
   688             while (args.nonEmpty()) {
   689                 if (args.head.hasTag(WILDCARD))
   690                     return typeTagError(pos,
   691                                         diags.fragment("type.req.exact"),
   692                                         args.head);
   693                 args = args.tail;
   694             }
   695         }
   696         return t;
   697     }
   699     /** Check that type is a reifiable class, interface or array type.
   700      *  @param pos           Position to be used for error reporting.
   701      *  @param t             The type to be checked.
   702      */
   703     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   704         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
   705             return typeTagError(pos,
   706                                 diags.fragment("type.req.class.array"),
   707                                 t);
   708         } else if (!types.isReifiable(t)) {
   709             log.error(pos, "illegal.generic.type.for.instof");
   710             return types.createErrorType(t);
   711         } else {
   712             return t;
   713         }
   714     }
   716     /** Check that type is a reference type, i.e. a class, interface or array type
   717      *  or a type variable.
   718      *  @param pos           Position to be used for error reporting.
   719      *  @param t             The type to be checked.
   720      */
   721     Type checkRefType(DiagnosticPosition pos, Type t) {
   722         if (t.isReference())
   723             return t;
   724         else
   725             return typeTagError(pos,
   726                                 diags.fragment("type.req.ref"),
   727                                 t);
   728     }
   730     /** Check that each type is a reference type, i.e. a class, interface or array type
   731      *  or a type variable.
   732      *  @param trees         Original trees, used for error reporting.
   733      *  @param types         The types to be checked.
   734      */
   735     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   736         List<JCExpression> tl = trees;
   737         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   738             l.head = checkRefType(tl.head.pos(), l.head);
   739             tl = tl.tail;
   740         }
   741         return types;
   742     }
   744     /** Check that type is a null or reference type.
   745      *  @param pos           Position to be used for error reporting.
   746      *  @param t             The type to be checked.
   747      */
   748     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   749         if (t.isNullOrReference())
   750             return t;
   751         else
   752             return typeTagError(pos,
   753                                 diags.fragment("type.req.ref"),
   754                                 t);
   755     }
   757     /** Check that flag set does not contain elements of two conflicting sets. s
   758      *  Return true if it doesn't.
   759      *  @param pos           Position to be used for error reporting.
   760      *  @param flags         The set of flags to be checked.
   761      *  @param set1          Conflicting flags set #1.
   762      *  @param set2          Conflicting flags set #2.
   763      */
   764     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   765         if ((flags & set1) != 0 && (flags & set2) != 0) {
   766             log.error(pos,
   767                       "illegal.combination.of.modifiers",
   768                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   769                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   770             return false;
   771         } else
   772             return true;
   773     }
   775     /** Check that usage of diamond operator is correct (i.e. diamond should not
   776      * be used with non-generic classes or in anonymous class creation expressions)
   777      */
   778     Type checkDiamond(JCNewClass tree, Type t) {
   779         if (!TreeInfo.isDiamond(tree) ||
   780                 t.isErroneous()) {
   781             return checkClassType(tree.clazz.pos(), t, true);
   782         } else if (tree.def != null) {
   783             log.error(tree.clazz.pos(),
   784                     "cant.apply.diamond.1",
   785                     t, diags.fragment("diamond.and.anon.class", t));
   786             return types.createErrorType(t);
   787         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   788             log.error(tree.clazz.pos(),
   789                 "cant.apply.diamond.1",
   790                 t, diags.fragment("diamond.non.generic", t));
   791             return types.createErrorType(t);
   792         } else if (tree.typeargs != null &&
   793                 tree.typeargs.nonEmpty()) {
   794             log.error(tree.clazz.pos(),
   795                 "cant.apply.diamond.1",
   796                 t, diags.fragment("diamond.and.explicit.params", t));
   797             return types.createErrorType(t);
   798         } else {
   799             return t;
   800         }
   801     }
   803     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   804         MethodSymbol m = tree.sym;
   805         if (!allowSimplifiedVarargs) return;
   806         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   807         Type varargElemType = null;
   808         if (m.isVarArgs()) {
   809             varargElemType = types.elemtype(tree.params.last().type);
   810         }
   811         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   812             if (varargElemType != null) {
   813                 log.error(tree,
   814                         "varargs.invalid.trustme.anno",
   815                         syms.trustMeType.tsym,
   816                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   817             } else {
   818                 log.error(tree,
   819                             "varargs.invalid.trustme.anno",
   820                             syms.trustMeType.tsym,
   821                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   822             }
   823         } else if (hasTrustMeAnno && varargElemType != null &&
   824                             types.isReifiable(varargElemType)) {
   825             warnUnsafeVararg(tree,
   826                             "varargs.redundant.trustme.anno",
   827                             syms.trustMeType.tsym,
   828                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   829         }
   830         else if (!hasTrustMeAnno && varargElemType != null &&
   831                 !types.isReifiable(varargElemType)) {
   832             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   833         }
   834     }
   835     //where
   836         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   837             return (s.flags() & VARARGS) != 0 &&
   838                 (s.isConstructor() ||
   839                     (s.flags() & (STATIC | FINAL)) != 0);
   840         }
   842     Type checkMethod(Type owntype,
   843                             Symbol sym,
   844                             Env<AttrContext> env,
   845                             final List<JCExpression> argtrees,
   846                             List<Type> argtypes,
   847                             boolean useVarargs,
   848                             boolean unchecked) {
   849         // System.out.println("call   : " + env.tree);
   850         // System.out.println("method : " + owntype);
   851         // System.out.println("actuals: " + argtypes);
   852         List<Type> formals = owntype.getParameterTypes();
   853         Type last = useVarargs ? formals.last() : null;
   854         if (sym.name==names.init &&
   855                 sym.owner == syms.enumSym)
   856                 formals = formals.tail.tail;
   857         List<JCExpression> args = argtrees;
   858         DeferredAttr.DeferredTypeMap checkDeferredMap =
   859                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
   860         if (args != null) {
   861             //this is null when type-checking a method reference
   862             while (formals.head != last) {
   863                 JCTree arg = args.head;
   864                 Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   865                 assertConvertible(arg, arg.type, formals.head, warn);
   866                 args = args.tail;
   867                 formals = formals.tail;
   868             }
   869             if (useVarargs) {
   870                 Type varArg = types.elemtype(last);
   871                 while (args.tail != null) {
   872                     JCTree arg = args.head;
   873                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   874                     assertConvertible(arg, arg.type, varArg, warn);
   875                     args = args.tail;
   876                 }
   877             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   878                 // non-varargs call to varargs method
   879                 Type varParam = owntype.getParameterTypes().last();
   880                 Type lastArg = checkDeferredMap.apply(argtypes.last());
   881                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   882                         !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   883                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   884                             types.elemtype(varParam), varParam);
   885             }
   886         }
   887         if (unchecked) {
   888             warnUnchecked(env.tree.pos(),
   889                     "unchecked.meth.invocation.applied",
   890                     kindName(sym),
   891                     sym.name,
   892                     rs.methodArguments(sym.type.getParameterTypes()),
   893                     rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
   894                     kindName(sym.location()),
   895                     sym.location());
   896            owntype = new MethodType(owntype.getParameterTypes(),
   897                    types.erasure(owntype.getReturnType()),
   898                    types.erasure(owntype.getThrownTypes()),
   899                    syms.methodClass);
   900         }
   901         if (useVarargs) {
   902             JCTree tree = env.tree;
   903             Type argtype = owntype.getParameterTypes().last();
   904             if (!types.isReifiable(argtype) &&
   905                     (!allowSimplifiedVarargs ||
   906                     sym.attribute(syms.trustMeType.tsym) == null ||
   907                     !isTrustMeAllowedOnMethod(sym))) {
   908                 warnUnchecked(env.tree.pos(),
   909                                   "unchecked.generic.array.creation",
   910                                   argtype);
   911             }
   912             Type elemtype = types.elemtype(argtype);
   913             switch (tree.getTag()) {
   914                 case APPLY:
   915                     ((JCMethodInvocation) tree).varargsElement = elemtype;
   916                     break;
   917                 case NEWCLASS:
   918                     ((JCNewClass) tree).varargsElement = elemtype;
   919                     break;
   920                 case REFERENCE:
   921                     ((JCMemberReference) tree).varargsElement = elemtype;
   922                     break;
   923                 default:
   924                     throw new AssertionError(""+tree);
   925             }
   926          }
   927          return owntype;
   928     }
   929     //where
   930         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   931             if (types.isConvertible(actual, formal, warn))
   932                 return;
   934             if (formal.isCompound()
   935                 && types.isSubtype(actual, types.supertype(formal))
   936                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   937                 return;
   938         }
   940         void checkAccessibleFunctionalDescriptor(DiagnosticPosition pos, Env<AttrContext> env, Type desc) {
   941             AccessChecker accessChecker = new AccessChecker(env);
   942             //check args accessibility (only if implicit parameter types)
   943             for (Type arg : desc.getParameterTypes()) {
   944                 if (!accessChecker.visit(arg)) {
   945                     log.error(pos, "cant.access.arg.type.in.functional.desc", arg);
   946                     return;
   947                 }
   948             }
   949             //check return type accessibility
   950             if (!accessChecker.visit(desc.getReturnType())) {
   951                 log.error(pos, "cant.access.return.in.functional.desc", desc.getReturnType());
   952                 return;
   953             }
   954             //check thrown types accessibility
   955             for (Type thrown : desc.getThrownTypes()) {
   956                 if (!accessChecker.visit(thrown)) {
   957                     log.error(pos, "cant.access.thrown.in.functional.desc", thrown);
   958                     return;
   959                 }
   960             }
   961         }
   963         class AccessChecker extends Types.UnaryVisitor<Boolean> {
   965             Env<AttrContext> env;
   967             AccessChecker(Env<AttrContext> env) {
   968                 this.env = env;
   969             }
   971             Boolean visit(List<Type> ts) {
   972                 for (Type t : ts) {
   973                     if (!visit(t))
   974                         return false;
   975                 }
   976                 return true;
   977             }
   979             public Boolean visitType(Type t, Void s) {
   980                 return true;
   981             }
   983             @Override
   984             public Boolean visitArrayType(ArrayType t, Void s) {
   985                 return visit(t.elemtype);
   986             }
   988             @Override
   989             public Boolean visitClassType(ClassType t, Void s) {
   990                 return rs.isAccessible(env, t, true) &&
   991                         visit(t.getTypeArguments());
   992             }
   994             @Override
   995             public Boolean visitWildcardType(WildcardType t, Void s) {
   996                 return visit(t.type);
   997             }
   998         };
   999     /**
  1000      * Check that type 't' is a valid instantiation of a generic class
  1001      * (see JLS 4.5)
  1003      * @param t class type to be checked
  1004      * @return true if 't' is well-formed
  1005      */
  1006     public boolean checkValidGenericType(Type t) {
  1007         return firstIncompatibleTypeArg(t) == null;
  1009     //WHERE
  1010         private Type firstIncompatibleTypeArg(Type type) {
  1011             List<Type> formals = type.tsym.type.allparams();
  1012             List<Type> actuals = type.allparams();
  1013             List<Type> args = type.getTypeArguments();
  1014             List<Type> forms = type.tsym.type.getTypeArguments();
  1015             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
  1017             // For matching pairs of actual argument types `a' and
  1018             // formal type parameters with declared bound `b' ...
  1019             while (args.nonEmpty() && forms.nonEmpty()) {
  1020                 // exact type arguments needs to know their
  1021                 // bounds (for upper and lower bound
  1022                 // calculations).  So we create new bounds where
  1023                 // type-parameters are replaced with actuals argument types.
  1024                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
  1025                 args = args.tail;
  1026                 forms = forms.tail;
  1029             args = type.getTypeArguments();
  1030             List<Type> tvars_cap = types.substBounds(formals,
  1031                                       formals,
  1032                                       types.capture(type).allparams());
  1033             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
  1034                 // Let the actual arguments know their bound
  1035                 args.head.withTypeVar((TypeVar)tvars_cap.head);
  1036                 args = args.tail;
  1037                 tvars_cap = tvars_cap.tail;
  1040             args = type.getTypeArguments();
  1041             List<Type> bounds = bounds_buf.toList();
  1043             while (args.nonEmpty() && bounds.nonEmpty()) {
  1044                 Type actual = args.head;
  1045                 if (!isTypeArgErroneous(actual) &&
  1046                         !bounds.head.isErroneous() &&
  1047                         !checkExtends(actual, bounds.head)) {
  1048                     return args.head;
  1050                 args = args.tail;
  1051                 bounds = bounds.tail;
  1054             args = type.getTypeArguments();
  1055             bounds = bounds_buf.toList();
  1057             for (Type arg : types.capture(type).getTypeArguments()) {
  1058                 if (arg.hasTag(TYPEVAR) &&
  1059                         arg.getUpperBound().isErroneous() &&
  1060                         !bounds.head.isErroneous() &&
  1061                         !isTypeArgErroneous(args.head)) {
  1062                     return args.head;
  1064                 bounds = bounds.tail;
  1065                 args = args.tail;
  1068             return null;
  1070         //where
  1071         boolean isTypeArgErroneous(Type t) {
  1072             return isTypeArgErroneous.visit(t);
  1075         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
  1076             public Boolean visitType(Type t, Void s) {
  1077                 return t.isErroneous();
  1079             @Override
  1080             public Boolean visitTypeVar(TypeVar t, Void s) {
  1081                 return visit(t.getUpperBound());
  1083             @Override
  1084             public Boolean visitCapturedType(CapturedType t, Void s) {
  1085                 return visit(t.getUpperBound()) ||
  1086                         visit(t.getLowerBound());
  1088             @Override
  1089             public Boolean visitWildcardType(WildcardType t, Void s) {
  1090                 return visit(t.type);
  1092         };
  1094     /** Check that given modifiers are legal for given symbol and
  1095      *  return modifiers together with any implicit modififiers for that symbol.
  1096      *  Warning: we can't use flags() here since this method
  1097      *  is called during class enter, when flags() would cause a premature
  1098      *  completion.
  1099      *  @param pos           Position to be used for error reporting.
  1100      *  @param flags         The set of modifiers given in a definition.
  1101      *  @param sym           The defined symbol.
  1102      */
  1103     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
  1104         long mask;
  1105         long implicit = 0;
  1106         switch (sym.kind) {
  1107         case VAR:
  1108             if (sym.owner.kind != TYP)
  1109                 mask = LocalVarFlags;
  1110             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1111                 mask = implicit = InterfaceVarFlags;
  1112             else
  1113                 mask = VarFlags;
  1114             break;
  1115         case MTH:
  1116             if (sym.name == names.init) {
  1117                 if ((sym.owner.flags_field & ENUM) != 0) {
  1118                     // enum constructors cannot be declared public or
  1119                     // protected and must be implicitly or explicitly
  1120                     // private
  1121                     implicit = PRIVATE;
  1122                     mask = PRIVATE;
  1123                 } else
  1124                     mask = ConstructorFlags;
  1125             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
  1126                 if ((flags & DEFAULT) != 0) {
  1127                     mask = InterfaceDefaultMethodMask;
  1128                     implicit = PUBLIC | ABSTRACT;
  1129                 } else {
  1130                     mask = implicit = InterfaceMethodFlags;
  1133             else {
  1134                 mask = MethodFlags;
  1136             // Imply STRICTFP if owner has STRICTFP set.
  1137             if (((flags|implicit) & Flags.ABSTRACT) == 0)
  1138               implicit |= sym.owner.flags_field & STRICTFP;
  1139             break;
  1140         case TYP:
  1141             if (sym.isLocal()) {
  1142                 mask = LocalClassFlags;
  1143                 if (sym.name.isEmpty()) { // Anonymous class
  1144                     // Anonymous classes in static methods are themselves static;
  1145                     // that's why we admit STATIC here.
  1146                     mask |= STATIC;
  1147                     // JLS: Anonymous classes are final.
  1148                     implicit |= FINAL;
  1150                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1151                     (flags & ENUM) != 0)
  1152                     log.error(pos, "enums.must.be.static");
  1153             } else if (sym.owner.kind == TYP) {
  1154                 mask = MemberClassFlags;
  1155                 if (sym.owner.owner.kind == PCK ||
  1156                     (sym.owner.flags_field & STATIC) != 0)
  1157                     mask |= STATIC;
  1158                 else if ((flags & ENUM) != 0)
  1159                     log.error(pos, "enums.must.be.static");
  1160                 // Nested interfaces and enums are always STATIC (Spec ???)
  1161                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1162             } else {
  1163                 mask = ClassFlags;
  1165             // Interfaces are always ABSTRACT
  1166             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1168             if ((flags & ENUM) != 0) {
  1169                 // enums can't be declared abstract or final
  1170                 mask &= ~(ABSTRACT | FINAL);
  1171                 implicit |= implicitEnumFinalFlag(tree);
  1173             // Imply STRICTFP if owner has STRICTFP set.
  1174             implicit |= sym.owner.flags_field & STRICTFP;
  1175             break;
  1176         default:
  1177             throw new AssertionError();
  1179         long illegal = flags & ExtendedStandardFlags & ~mask;
  1180         if (illegal != 0) {
  1181             if ((illegal & INTERFACE) != 0) {
  1182                 log.error(pos, "intf.not.allowed.here");
  1183                 mask |= INTERFACE;
  1185             else {
  1186                 log.error(pos,
  1187                           "mod.not.allowed.here", asFlagSet(illegal));
  1190         else if ((sym.kind == TYP ||
  1191                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1192                   // in the presence of inner classes. Should it be deleted here?
  1193                   checkDisjoint(pos, flags,
  1194                                 ABSTRACT,
  1195                                 PRIVATE | STATIC | DEFAULT))
  1196                  &&
  1197                  checkDisjoint(pos, flags,
  1198                                ABSTRACT | INTERFACE,
  1199                                FINAL | NATIVE | SYNCHRONIZED)
  1200                  &&
  1201                  checkDisjoint(pos, flags,
  1202                                PUBLIC,
  1203                                PRIVATE | PROTECTED)
  1204                  &&
  1205                  checkDisjoint(pos, flags,
  1206                                PRIVATE,
  1207                                PUBLIC | PROTECTED)
  1208                  &&
  1209                  checkDisjoint(pos, flags,
  1210                                FINAL,
  1211                                VOLATILE)
  1212                  &&
  1213                  (sym.kind == TYP ||
  1214                   checkDisjoint(pos, flags,
  1215                                 ABSTRACT | NATIVE,
  1216                                 STRICTFP))) {
  1217             // skip
  1219         return flags & (mask | ~ExtendedStandardFlags) | implicit;
  1223     /** Determine if this enum should be implicitly final.
  1225      *  If the enum has no specialized enum contants, it is final.
  1227      *  If the enum does have specialized enum contants, it is
  1228      *  <i>not</i> final.
  1229      */
  1230     private long implicitEnumFinalFlag(JCTree tree) {
  1231         if (!tree.hasTag(CLASSDEF)) return 0;
  1232         class SpecialTreeVisitor extends JCTree.Visitor {
  1233             boolean specialized;
  1234             SpecialTreeVisitor() {
  1235                 this.specialized = false;
  1236             };
  1238             @Override
  1239             public void visitTree(JCTree tree) { /* no-op */ }
  1241             @Override
  1242             public void visitVarDef(JCVariableDecl tree) {
  1243                 if ((tree.mods.flags & ENUM) != 0) {
  1244                     if (tree.init instanceof JCNewClass &&
  1245                         ((JCNewClass) tree.init).def != null) {
  1246                         specialized = true;
  1252         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1253         JCClassDecl cdef = (JCClassDecl) tree;
  1254         for (JCTree defs: cdef.defs) {
  1255             defs.accept(sts);
  1256             if (sts.specialized) return 0;
  1258         return FINAL;
  1261 /* *************************************************************************
  1262  * Type Validation
  1263  **************************************************************************/
  1265     /** Validate a type expression. That is,
  1266      *  check that all type arguments of a parametric type are within
  1267      *  their bounds. This must be done in a second phase after type attributon
  1268      *  since a class might have a subclass as type parameter bound. E.g:
  1270      *  <pre>{@code
  1271      *  class B<A extends C> { ... }
  1272      *  class C extends B<C> { ... }
  1273      *  }</pre>
  1275      *  and we can't make sure that the bound is already attributed because
  1276      *  of possible cycles.
  1278      * Visitor method: Validate a type expression, if it is not null, catching
  1279      *  and reporting any completion failures.
  1280      */
  1281     void validate(JCTree tree, Env<AttrContext> env) {
  1282         validate(tree, env, true);
  1284     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1285         new Validator(env).validateTree(tree, checkRaw, true);
  1288     /** Visitor method: Validate a list of type expressions.
  1289      */
  1290     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1291         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1292             validate(l.head, env);
  1295     /** A visitor class for type validation.
  1296      */
  1297     class Validator extends JCTree.Visitor {
  1299         boolean isOuter;
  1300         Env<AttrContext> env;
  1302         Validator(Env<AttrContext> env) {
  1303             this.env = env;
  1306         @Override
  1307         public void visitTypeArray(JCArrayTypeTree tree) {
  1308             tree.elemtype.accept(this);
  1311         @Override
  1312         public void visitTypeApply(JCTypeApply tree) {
  1313             if (tree.type.hasTag(CLASS)) {
  1314                 List<JCExpression> args = tree.arguments;
  1315                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1317                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1318                 if (incompatibleArg != null) {
  1319                     for (JCTree arg : tree.arguments) {
  1320                         if (arg.type == incompatibleArg) {
  1321                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1323                         forms = forms.tail;
  1327                 forms = tree.type.tsym.type.getTypeArguments();
  1329                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1331                 // For matching pairs of actual argument types `a' and
  1332                 // formal type parameters with declared bound `b' ...
  1333                 while (args.nonEmpty() && forms.nonEmpty()) {
  1334                     validateTree(args.head,
  1335                             !(isOuter && is_java_lang_Class),
  1336                             false);
  1337                     args = args.tail;
  1338                     forms = forms.tail;
  1341                 // Check that this type is either fully parameterized, or
  1342                 // not parameterized at all.
  1343                 if (tree.type.getEnclosingType().isRaw())
  1344                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1345                 if (tree.clazz.hasTag(SELECT))
  1346                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1350         @Override
  1351         public void visitTypeParameter(JCTypeParameter tree) {
  1352             validateTrees(tree.bounds, true, isOuter);
  1353             checkClassBounds(tree.pos(), tree.type);
  1356         @Override
  1357         public void visitWildcard(JCWildcard tree) {
  1358             if (tree.inner != null)
  1359                 validateTree(tree.inner, true, isOuter);
  1362         @Override
  1363         public void visitSelect(JCFieldAccess tree) {
  1364             if (tree.type.hasTag(CLASS)) {
  1365                 visitSelectInternal(tree);
  1367                 // Check that this type is either fully parameterized, or
  1368                 // not parameterized at all.
  1369                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1370                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1374         public void visitSelectInternal(JCFieldAccess tree) {
  1375             if (tree.type.tsym.isStatic() &&
  1376                 tree.selected.type.isParameterized()) {
  1377                 // The enclosing type is not a class, so we are
  1378                 // looking at a static member type.  However, the
  1379                 // qualifying expression is parameterized.
  1380                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1381             } else {
  1382                 // otherwise validate the rest of the expression
  1383                 tree.selected.accept(this);
  1387         /** Default visitor method: do nothing.
  1388          */
  1389         @Override
  1390         public void visitTree(JCTree tree) {
  1393         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1394             try {
  1395                 if (tree != null) {
  1396                     this.isOuter = isOuter;
  1397                     tree.accept(this);
  1398                     if (checkRaw)
  1399                         checkRaw(tree, env);
  1401             } catch (CompletionFailure ex) {
  1402                 completionError(tree.pos(), ex);
  1406         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1407             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1408                 validateTree(l.head, checkRaw, isOuter);
  1411         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1412             if (lint.isEnabled(LintCategory.RAW) &&
  1413                 tree.type.hasTag(CLASS) &&
  1414                 !TreeInfo.isDiamond(tree) &&
  1415                 !withinAnonConstr(env) &&
  1416                 tree.type.isRaw()) {
  1417                 log.warning(LintCategory.RAW,
  1418                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1422         boolean withinAnonConstr(Env<AttrContext> env) {
  1423             return env.enclClass.name.isEmpty() &&
  1424                     env.enclMethod != null && env.enclMethod.name == names.init;
  1428 /* *************************************************************************
  1429  * Exception checking
  1430  **************************************************************************/
  1432     /* The following methods treat classes as sets that contain
  1433      * the class itself and all their subclasses
  1434      */
  1436     /** Is given type a subtype of some of the types in given list?
  1437      */
  1438     boolean subset(Type t, List<Type> ts) {
  1439         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1440             if (types.isSubtype(t, l.head)) return true;
  1441         return false;
  1444     /** Is given type a subtype or supertype of
  1445      *  some of the types in given list?
  1446      */
  1447     boolean intersects(Type t, List<Type> ts) {
  1448         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1449             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1450         return false;
  1453     /** Add type set to given type list, unless it is a subclass of some class
  1454      *  in the list.
  1455      */
  1456     List<Type> incl(Type t, List<Type> ts) {
  1457         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1460     /** Remove type set from type set list.
  1461      */
  1462     List<Type> excl(Type t, List<Type> ts) {
  1463         if (ts.isEmpty()) {
  1464             return ts;
  1465         } else {
  1466             List<Type> ts1 = excl(t, ts.tail);
  1467             if (types.isSubtype(ts.head, t)) return ts1;
  1468             else if (ts1 == ts.tail) return ts;
  1469             else return ts1.prepend(ts.head);
  1473     /** Form the union of two type set lists.
  1474      */
  1475     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1476         List<Type> ts = ts1;
  1477         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1478             ts = incl(l.head, ts);
  1479         return ts;
  1482     /** Form the difference of two type lists.
  1483      */
  1484     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1485         List<Type> ts = ts1;
  1486         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1487             ts = excl(l.head, ts);
  1488         return ts;
  1491     /** Form the intersection of two type lists.
  1492      */
  1493     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1494         List<Type> ts = List.nil();
  1495         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1496             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1497         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1498             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1499         return ts;
  1502     /** Is exc an exception symbol that need not be declared?
  1503      */
  1504     boolean isUnchecked(ClassSymbol exc) {
  1505         return
  1506             exc.kind == ERR ||
  1507             exc.isSubClass(syms.errorType.tsym, types) ||
  1508             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1511     /** Is exc an exception type that need not be declared?
  1512      */
  1513     boolean isUnchecked(Type exc) {
  1514         return
  1515             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
  1516             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
  1517             exc.hasTag(BOT);
  1520     /** Same, but handling completion failures.
  1521      */
  1522     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1523         try {
  1524             return isUnchecked(exc);
  1525         } catch (CompletionFailure ex) {
  1526             completionError(pos, ex);
  1527             return true;
  1531     /** Is exc handled by given exception list?
  1532      */
  1533     boolean isHandled(Type exc, List<Type> handled) {
  1534         return isUnchecked(exc) || subset(exc, handled);
  1537     /** Return all exceptions in thrown list that are not in handled list.
  1538      *  @param thrown     The list of thrown exceptions.
  1539      *  @param handled    The list of handled exceptions.
  1540      */
  1541     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1542         List<Type> unhandled = List.nil();
  1543         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1544             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1545         return unhandled;
  1548 /* *************************************************************************
  1549  * Overriding/Implementation checking
  1550  **************************************************************************/
  1552     /** The level of access protection given by a flag set,
  1553      *  where PRIVATE is highest and PUBLIC is lowest.
  1554      */
  1555     static int protection(long flags) {
  1556         switch ((short)(flags & AccessFlags)) {
  1557         case PRIVATE: return 3;
  1558         case PROTECTED: return 1;
  1559         default:
  1560         case PUBLIC: return 0;
  1561         case 0: return 2;
  1565     /** A customized "cannot override" error message.
  1566      *  @param m      The overriding method.
  1567      *  @param other  The overridden method.
  1568      *  @return       An internationalized string.
  1569      */
  1570     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1571         String key;
  1572         if ((other.owner.flags() & INTERFACE) == 0)
  1573             key = "cant.override";
  1574         else if ((m.owner.flags() & INTERFACE) == 0)
  1575             key = "cant.implement";
  1576         else
  1577             key = "clashes.with";
  1578         return diags.fragment(key, m, m.location(), other, other.location());
  1581     /** A customized "override" warning message.
  1582      *  @param m      The overriding method.
  1583      *  @param other  The overridden method.
  1584      *  @return       An internationalized string.
  1585      */
  1586     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1587         String key;
  1588         if ((other.owner.flags() & INTERFACE) == 0)
  1589             key = "unchecked.override";
  1590         else if ((m.owner.flags() & INTERFACE) == 0)
  1591             key = "unchecked.implement";
  1592         else
  1593             key = "unchecked.clash.with";
  1594         return diags.fragment(key, m, m.location(), other, other.location());
  1597     /** A customized "override" warning message.
  1598      *  @param m      The overriding method.
  1599      *  @param other  The overridden method.
  1600      *  @return       An internationalized string.
  1601      */
  1602     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1603         String key;
  1604         if ((other.owner.flags() & INTERFACE) == 0)
  1605             key = "varargs.override";
  1606         else  if ((m.owner.flags() & INTERFACE) == 0)
  1607             key = "varargs.implement";
  1608         else
  1609             key = "varargs.clash.with";
  1610         return diags.fragment(key, m, m.location(), other, other.location());
  1613     /** Check that this method conforms with overridden method 'other'.
  1614      *  where `origin' is the class where checking started.
  1615      *  Complications:
  1616      *  (1) Do not check overriding of synthetic methods
  1617      *      (reason: they might be final).
  1618      *      todo: check whether this is still necessary.
  1619      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1620      *      than the method it implements. Augment the proxy methods with the
  1621      *      undeclared exceptions in this case.
  1622      *  (3) When generics are enabled, admit the case where an interface proxy
  1623      *      has a result type
  1624      *      extended by the result type of the method it implements.
  1625      *      Change the proxies result type to the smaller type in this case.
  1627      *  @param tree         The tree from which positions
  1628      *                      are extracted for errors.
  1629      *  @param m            The overriding method.
  1630      *  @param other        The overridden method.
  1631      *  @param origin       The class of which the overriding method
  1632      *                      is a member.
  1633      */
  1634     void checkOverride(JCTree tree,
  1635                        MethodSymbol m,
  1636                        MethodSymbol other,
  1637                        ClassSymbol origin) {
  1638         // Don't check overriding of synthetic methods or by bridge methods.
  1639         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1640             return;
  1643         // Error if static method overrides instance method (JLS 8.4.6.2).
  1644         if ((m.flags() & STATIC) != 0 &&
  1645                    (other.flags() & STATIC) == 0) {
  1646             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1647                       cannotOverride(m, other));
  1648             return;
  1651         // Error if instance method overrides static or final
  1652         // method (JLS 8.4.6.1).
  1653         if ((other.flags() & FINAL) != 0 ||
  1654                  (m.flags() & STATIC) == 0 &&
  1655                  (other.flags() & STATIC) != 0) {
  1656             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1657                       cannotOverride(m, other),
  1658                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1659             return;
  1662         if ((m.owner.flags() & ANNOTATION) != 0) {
  1663             // handled in validateAnnotationMethod
  1664             return;
  1667         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1668         if ((origin.flags() & INTERFACE) == 0 &&
  1669                  protection(m.flags()) > protection(other.flags())) {
  1670             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1671                       cannotOverride(m, other),
  1672                       other.flags() == 0 ?
  1673                           Flag.PACKAGE :
  1674                           asFlagSet(other.flags() & AccessFlags));
  1675             return;
  1678         Type mt = types.memberType(origin.type, m);
  1679         Type ot = types.memberType(origin.type, other);
  1680         // Error if overriding result type is different
  1681         // (or, in the case of generics mode, not a subtype) of
  1682         // overridden result type. We have to rename any type parameters
  1683         // before comparing types.
  1684         List<Type> mtvars = mt.getTypeArguments();
  1685         List<Type> otvars = ot.getTypeArguments();
  1686         Type mtres = mt.getReturnType();
  1687         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1689         overrideWarner.clear();
  1690         boolean resultTypesOK =
  1691             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1692         if (!resultTypesOK) {
  1693             if (!allowCovariantReturns &&
  1694                 m.owner != origin &&
  1695                 m.owner.isSubClass(other.owner, types)) {
  1696                 // allow limited interoperability with covariant returns
  1697             } else {
  1698                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1699                           "override.incompatible.ret",
  1700                           cannotOverride(m, other),
  1701                           mtres, otres);
  1702                 return;
  1704         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1705             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1706                     "override.unchecked.ret",
  1707                     uncheckedOverrides(m, other),
  1708                     mtres, otres);
  1711         // Error if overriding method throws an exception not reported
  1712         // by overridden method.
  1713         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1714         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1715         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1716         if (unhandledErased.nonEmpty()) {
  1717             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1718                       "override.meth.doesnt.throw",
  1719                       cannotOverride(m, other),
  1720                       unhandledUnerased.head);
  1721             return;
  1723         else if (unhandledUnerased.nonEmpty()) {
  1724             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1725                           "override.unchecked.thrown",
  1726                          cannotOverride(m, other),
  1727                          unhandledUnerased.head);
  1728             return;
  1731         // Optional warning if varargs don't agree
  1732         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1733             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1734             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1735                         ((m.flags() & Flags.VARARGS) != 0)
  1736                         ? "override.varargs.missing"
  1737                         : "override.varargs.extra",
  1738                         varargsOverrides(m, other));
  1741         // Warn if instance method overrides bridge method (compiler spec ??)
  1742         if ((other.flags() & BRIDGE) != 0) {
  1743             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1744                         uncheckedOverrides(m, other));
  1747         // Warn if a deprecated method overridden by a non-deprecated one.
  1748         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1749             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1752     // where
  1753         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1754             // If the method, m, is defined in an interface, then ignore the issue if the method
  1755             // is only inherited via a supertype and also implemented in the supertype,
  1756             // because in that case, we will rediscover the issue when examining the method
  1757             // in the supertype.
  1758             // If the method, m, is not defined in an interface, then the only time we need to
  1759             // address the issue is when the method is the supertype implemementation: any other
  1760             // case, we will have dealt with when examining the supertype classes
  1761             ClassSymbol mc = m.enclClass();
  1762             Type st = types.supertype(origin.type);
  1763             if (!st.hasTag(CLASS))
  1764                 return true;
  1765             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1767             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1768                 List<Type> intfs = types.interfaces(origin.type);
  1769                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1771             else
  1772                 return (stimpl != m);
  1776     // used to check if there were any unchecked conversions
  1777     Warner overrideWarner = new Warner();
  1779     /** Check that a class does not inherit two concrete methods
  1780      *  with the same signature.
  1781      *  @param pos          Position to be used for error reporting.
  1782      *  @param site         The class type to be checked.
  1783      */
  1784     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1785         Type sup = types.supertype(site);
  1786         if (!sup.hasTag(CLASS)) return;
  1788         for (Type t1 = sup;
  1789              t1.tsym.type.isParameterized();
  1790              t1 = types.supertype(t1)) {
  1791             for (Scope.Entry e1 = t1.tsym.members().elems;
  1792                  e1 != null;
  1793                  e1 = e1.sibling) {
  1794                 Symbol s1 = e1.sym;
  1795                 if (s1.kind != MTH ||
  1796                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1797                     !s1.isInheritedIn(site.tsym, types) ||
  1798                     ((MethodSymbol)s1).implementation(site.tsym,
  1799                                                       types,
  1800                                                       true) != s1)
  1801                     continue;
  1802                 Type st1 = types.memberType(t1, s1);
  1803                 int s1ArgsLength = st1.getParameterTypes().length();
  1804                 if (st1 == s1.type) continue;
  1806                 for (Type t2 = sup;
  1807                      t2.hasTag(CLASS);
  1808                      t2 = types.supertype(t2)) {
  1809                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1810                          e2.scope != null;
  1811                          e2 = e2.next()) {
  1812                         Symbol s2 = e2.sym;
  1813                         if (s2 == s1 ||
  1814                             s2.kind != MTH ||
  1815                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1816                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1817                             !s2.isInheritedIn(site.tsym, types) ||
  1818                             ((MethodSymbol)s2).implementation(site.tsym,
  1819                                                               types,
  1820                                                               true) != s2)
  1821                             continue;
  1822                         Type st2 = types.memberType(t2, s2);
  1823                         if (types.overrideEquivalent(st1, st2))
  1824                             log.error(pos, "concrete.inheritance.conflict",
  1825                                       s1, t1, s2, t2, sup);
  1832     /** Check that classes (or interfaces) do not each define an abstract
  1833      *  method with same name and arguments but incompatible return types.
  1834      *  @param pos          Position to be used for error reporting.
  1835      *  @param t1           The first argument type.
  1836      *  @param t2           The second argument type.
  1837      */
  1838     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1839                                             Type t1,
  1840                                             Type t2) {
  1841         return checkCompatibleAbstracts(pos, t1, t2,
  1842                                         types.makeCompoundType(t1, t2));
  1845     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1846                                             Type t1,
  1847                                             Type t2,
  1848                                             Type site) {
  1849         return firstIncompatibility(pos, t1, t2, site) == null;
  1852     /** Return the first method which is defined with same args
  1853      *  but different return types in two given interfaces, or null if none
  1854      *  exists.
  1855      *  @param t1     The first type.
  1856      *  @param t2     The second type.
  1857      *  @param site   The most derived type.
  1858      *  @returns symbol from t2 that conflicts with one in t1.
  1859      */
  1860     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1861         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1862         closure(t1, interfaces1);
  1863         Map<TypeSymbol,Type> interfaces2;
  1864         if (t1 == t2)
  1865             interfaces2 = interfaces1;
  1866         else
  1867             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1869         for (Type t3 : interfaces1.values()) {
  1870             for (Type t4 : interfaces2.values()) {
  1871                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1872                 if (s != null) return s;
  1875         return null;
  1878     /** Compute all the supertypes of t, indexed by type symbol. */
  1879     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1880         if (!t.hasTag(CLASS)) return;
  1881         if (typeMap.put(t.tsym, t) == null) {
  1882             closure(types.supertype(t), typeMap);
  1883             for (Type i : types.interfaces(t))
  1884                 closure(i, typeMap);
  1888     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1889     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1890         if (!t.hasTag(CLASS)) return;
  1891         if (typesSkip.get(t.tsym) != null) return;
  1892         if (typeMap.put(t.tsym, t) == null) {
  1893             closure(types.supertype(t), typesSkip, typeMap);
  1894             for (Type i : types.interfaces(t))
  1895                 closure(i, typesSkip, typeMap);
  1899     /** Return the first method in t2 that conflicts with a method from t1. */
  1900     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1901         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1902             Symbol s1 = e1.sym;
  1903             Type st1 = null;
  1904             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1905             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1906             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1907             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1908                 Symbol s2 = e2.sym;
  1909                 if (s1 == s2) continue;
  1910                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1911                 if (st1 == null) st1 = types.memberType(t1, s1);
  1912                 Type st2 = types.memberType(t2, s2);
  1913                 if (types.overrideEquivalent(st1, st2)) {
  1914                     List<Type> tvars1 = st1.getTypeArguments();
  1915                     List<Type> tvars2 = st2.getTypeArguments();
  1916                     Type rt1 = st1.getReturnType();
  1917                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1918                     boolean compat =
  1919                         types.isSameType(rt1, rt2) ||
  1920                         !rt1.isPrimitiveOrVoid() &&
  1921                         !rt2.isPrimitiveOrVoid() &&
  1922                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1923                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1924                          checkCommonOverriderIn(s1,s2,site);
  1925                     if (!compat) {
  1926                         log.error(pos, "types.incompatible.diff.ret",
  1927                             t1, t2, s2.name +
  1928                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1929                         return s2;
  1931                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1932                         !checkCommonOverriderIn(s1, s2, site)) {
  1933                     log.error(pos,
  1934                             "name.clash.same.erasure.no.override",
  1935                             s1, s1.location(),
  1936                             s2, s2.location());
  1937                     return s2;
  1941         return null;
  1943     //WHERE
  1944     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1945         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1946         Type st1 = types.memberType(site, s1);
  1947         Type st2 = types.memberType(site, s2);
  1948         closure(site, supertypes);
  1949         for (Type t : supertypes.values()) {
  1950             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1951                 Symbol s3 = e.sym;
  1952                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1953                 Type st3 = types.memberType(site,s3);
  1954                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1955                     if (s3.owner == site.tsym) {
  1956                         return true;
  1958                     List<Type> tvars1 = st1.getTypeArguments();
  1959                     List<Type> tvars2 = st2.getTypeArguments();
  1960                     List<Type> tvars3 = st3.getTypeArguments();
  1961                     Type rt1 = st1.getReturnType();
  1962                     Type rt2 = st2.getReturnType();
  1963                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1964                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1965                     boolean compat =
  1966                         !rt13.isPrimitiveOrVoid() &&
  1967                         !rt23.isPrimitiveOrVoid() &&
  1968                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1969                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1970                     if (compat)
  1971                         return true;
  1975         return false;
  1978     /** Check that a given method conforms with any method it overrides.
  1979      *  @param tree         The tree from which positions are extracted
  1980      *                      for errors.
  1981      *  @param m            The overriding method.
  1982      */
  1983     void checkOverride(JCTree tree, MethodSymbol m) {
  1984         ClassSymbol origin = (ClassSymbol)m.owner;
  1985         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1986             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1987                 log.error(tree.pos(), "enum.no.finalize");
  1988                 return;
  1990         for (Type t = origin.type; t.hasTag(CLASS);
  1991              t = types.supertype(t)) {
  1992             if (t != origin.type) {
  1993                 checkOverride(tree, t, origin, m);
  1995             for (Type t2 : types.interfaces(t)) {
  1996                 checkOverride(tree, t2, origin, m);
  2001     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  2002         TypeSymbol c = site.tsym;
  2003         Scope.Entry e = c.members().lookup(m.name);
  2004         while (e.scope != null) {
  2005             if (m.overrides(e.sym, origin, types, false)) {
  2006                 if ((e.sym.flags() & ABSTRACT) == 0) {
  2007                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  2010             e = e.next();
  2014     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  2015         ClashFilter cf = new ClashFilter(origin.type);
  2016         return (cf.accepts(s1) &&
  2017                 cf.accepts(s2) &&
  2018                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  2022     /** Check that all abstract members of given class have definitions.
  2023      *  @param pos          Position to be used for error reporting.
  2024      *  @param c            The class.
  2025      */
  2026     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  2027         try {
  2028             MethodSymbol undef = firstUndef(c, c);
  2029             if (undef != null) {
  2030                 if ((c.flags() & ENUM) != 0 &&
  2031                     types.supertype(c.type).tsym == syms.enumSym &&
  2032                     (c.flags() & FINAL) == 0) {
  2033                     // add the ABSTRACT flag to an enum
  2034                     c.flags_field |= ABSTRACT;
  2035                 } else {
  2036                     MethodSymbol undef1 =
  2037                         new MethodSymbol(undef.flags(), undef.name,
  2038                                          types.memberType(c.type, undef), undef.owner);
  2039                     log.error(pos, "does.not.override.abstract",
  2040                               c, undef1, undef1.location());
  2043         } catch (CompletionFailure ex) {
  2044             completionError(pos, ex);
  2047 //where
  2048         /** Return first abstract member of class `c' that is not defined
  2049          *  in `impl', null if there is none.
  2050          */
  2051         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  2052             MethodSymbol undef = null;
  2053             // Do not bother to search in classes that are not abstract,
  2054             // since they cannot have abstract members.
  2055             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2056                 Scope s = c.members();
  2057                 for (Scope.Entry e = s.elems;
  2058                      undef == null && e != null;
  2059                      e = e.sibling) {
  2060                     if (e.sym.kind == MTH &&
  2061                         (e.sym.flags() & (ABSTRACT|IPROXY|DEFAULT)) == ABSTRACT) {
  2062                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  2063                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  2064                         if (implmeth == null || implmeth == absmeth) {
  2065                             //look for default implementations
  2066                             if (allowDefaultMethods) {
  2067                                 MethodSymbol prov = types.interfaceCandidates(impl.type, absmeth).head;
  2068                                 if (prov != null && prov.overrides(absmeth, impl, types, true)) {
  2069                                     implmeth = prov;
  2073                         if (implmeth == null || implmeth == absmeth) {
  2074                             undef = absmeth;
  2078                 if (undef == null) {
  2079                     Type st = types.supertype(c.type);
  2080                     if (st.hasTag(CLASS))
  2081                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  2083                 for (List<Type> l = types.interfaces(c.type);
  2084                      undef == null && l.nonEmpty();
  2085                      l = l.tail) {
  2086                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  2089             return undef;
  2092     void checkNonCyclicDecl(JCClassDecl tree) {
  2093         CycleChecker cc = new CycleChecker();
  2094         cc.scan(tree);
  2095         if (!cc.errorFound && !cc.partialCheck) {
  2096             tree.sym.flags_field |= ACYCLIC;
  2100     class CycleChecker extends TreeScanner {
  2102         List<Symbol> seenClasses = List.nil();
  2103         boolean errorFound = false;
  2104         boolean partialCheck = false;
  2106         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  2107             if (sym != null && sym.kind == TYP) {
  2108                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  2109                 if (classEnv != null) {
  2110                     DiagnosticSource prevSource = log.currentSource();
  2111                     try {
  2112                         log.useSource(classEnv.toplevel.sourcefile);
  2113                         scan(classEnv.tree);
  2115                     finally {
  2116                         log.useSource(prevSource.getFile());
  2118                 } else if (sym.kind == TYP) {
  2119                     checkClass(pos, sym, List.<JCTree>nil());
  2121             } else {
  2122                 //not completed yet
  2123                 partialCheck = true;
  2127         @Override
  2128         public void visitSelect(JCFieldAccess tree) {
  2129             super.visitSelect(tree);
  2130             checkSymbol(tree.pos(), tree.sym);
  2133         @Override
  2134         public void visitIdent(JCIdent tree) {
  2135             checkSymbol(tree.pos(), tree.sym);
  2138         @Override
  2139         public void visitTypeApply(JCTypeApply tree) {
  2140             scan(tree.clazz);
  2143         @Override
  2144         public void visitTypeArray(JCArrayTypeTree tree) {
  2145             scan(tree.elemtype);
  2148         @Override
  2149         public void visitClassDef(JCClassDecl tree) {
  2150             List<JCTree> supertypes = List.nil();
  2151             if (tree.getExtendsClause() != null) {
  2152                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2154             if (tree.getImplementsClause() != null) {
  2155                 for (JCTree intf : tree.getImplementsClause()) {
  2156                     supertypes = supertypes.prepend(intf);
  2159             checkClass(tree.pos(), tree.sym, supertypes);
  2162         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2163             if ((c.flags_field & ACYCLIC) != 0)
  2164                 return;
  2165             if (seenClasses.contains(c)) {
  2166                 errorFound = true;
  2167                 noteCyclic(pos, (ClassSymbol)c);
  2168             } else if (!c.type.isErroneous()) {
  2169                 try {
  2170                     seenClasses = seenClasses.prepend(c);
  2171                     if (c.type.hasTag(CLASS)) {
  2172                         if (supertypes.nonEmpty()) {
  2173                             scan(supertypes);
  2175                         else {
  2176                             ClassType ct = (ClassType)c.type;
  2177                             if (ct.supertype_field == null ||
  2178                                     ct.interfaces_field == null) {
  2179                                 //not completed yet
  2180                                 partialCheck = true;
  2181                                 return;
  2183                             checkSymbol(pos, ct.supertype_field.tsym);
  2184                             for (Type intf : ct.interfaces_field) {
  2185                                 checkSymbol(pos, intf.tsym);
  2188                         if (c.owner.kind == TYP) {
  2189                             checkSymbol(pos, c.owner);
  2192                 } finally {
  2193                     seenClasses = seenClasses.tail;
  2199     /** Check for cyclic references. Issue an error if the
  2200      *  symbol of the type referred to has a LOCKED flag set.
  2202      *  @param pos      Position to be used for error reporting.
  2203      *  @param t        The type referred to.
  2204      */
  2205     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2206         checkNonCyclicInternal(pos, t);
  2210     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2211         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2214     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2215         final TypeVar tv;
  2216         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2217             return;
  2218         if (seen.contains(t)) {
  2219             tv = (TypeVar)t;
  2220             tv.bound = types.createErrorType(t);
  2221             log.error(pos, "cyclic.inheritance", t);
  2222         } else if (t.hasTag(TYPEVAR)) {
  2223             tv = (TypeVar)t;
  2224             seen = seen.prepend(tv);
  2225             for (Type b : types.getBounds(tv))
  2226                 checkNonCyclic1(pos, b, seen);
  2230     /** Check for cyclic references. Issue an error if the
  2231      *  symbol of the type referred to has a LOCKED flag set.
  2233      *  @param pos      Position to be used for error reporting.
  2234      *  @param t        The type referred to.
  2235      *  @returns        True if the check completed on all attributed classes
  2236      */
  2237     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2238         boolean complete = true; // was the check complete?
  2239         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2240         Symbol c = t.tsym;
  2241         if ((c.flags_field & ACYCLIC) != 0) return true;
  2243         if ((c.flags_field & LOCKED) != 0) {
  2244             noteCyclic(pos, (ClassSymbol)c);
  2245         } else if (!c.type.isErroneous()) {
  2246             try {
  2247                 c.flags_field |= LOCKED;
  2248                 if (c.type.hasTag(CLASS)) {
  2249                     ClassType clazz = (ClassType)c.type;
  2250                     if (clazz.interfaces_field != null)
  2251                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2252                             complete &= checkNonCyclicInternal(pos, l.head);
  2253                     if (clazz.supertype_field != null) {
  2254                         Type st = clazz.supertype_field;
  2255                         if (st != null && st.hasTag(CLASS))
  2256                             complete &= checkNonCyclicInternal(pos, st);
  2258                     if (c.owner.kind == TYP)
  2259                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2261             } finally {
  2262                 c.flags_field &= ~LOCKED;
  2265         if (complete)
  2266             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2267         if (complete) c.flags_field |= ACYCLIC;
  2268         return complete;
  2271     /** Note that we found an inheritance cycle. */
  2272     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2273         log.error(pos, "cyclic.inheritance", c);
  2274         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2275             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2276         Type st = types.supertype(c.type);
  2277         if (st.hasTag(CLASS))
  2278             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2279         c.type = types.createErrorType(c, c.type);
  2280         c.flags_field |= ACYCLIC;
  2283     /** Check that all methods which implement some
  2284      *  method conform to the method they implement.
  2285      *  @param tree         The class definition whose members are checked.
  2286      */
  2287     void checkImplementations(JCClassDecl tree) {
  2288         checkImplementations(tree, tree.sym);
  2290 //where
  2291         /** Check that all methods which implement some
  2292          *  method in `ic' conform to the method they implement.
  2293          */
  2294         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2295             ClassSymbol origin = tree.sym;
  2296             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2297                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2298                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2299                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2300                         if (e.sym.kind == MTH &&
  2301                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2302                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2303                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2304                             if (implmeth != null && implmeth != absmeth &&
  2305                                 (implmeth.owner.flags() & INTERFACE) ==
  2306                                 (origin.flags() & INTERFACE)) {
  2307                                 // don't check if implmeth is in a class, yet
  2308                                 // origin is an interface. This case arises only
  2309                                 // if implmeth is declared in Object. The reason is
  2310                                 // that interfaces really don't inherit from
  2311                                 // Object it's just that the compiler represents
  2312                                 // things that way.
  2313                                 checkOverride(tree, implmeth, absmeth, origin);
  2321     /** Check that all abstract methods implemented by a class are
  2322      *  mutually compatible.
  2323      *  @param pos          Position to be used for error reporting.
  2324      *  @param c            The class whose interfaces are checked.
  2325      */
  2326     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2327         List<Type> supertypes = types.interfaces(c);
  2328         Type supertype = types.supertype(c);
  2329         if (supertype.hasTag(CLASS) &&
  2330             (supertype.tsym.flags() & ABSTRACT) != 0)
  2331             supertypes = supertypes.prepend(supertype);
  2332         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2333             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2334                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2335                 return;
  2336             for (List<Type> m = supertypes; m != l; m = m.tail)
  2337                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2338                     return;
  2340         checkCompatibleConcretes(pos, c);
  2343     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2344         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2345             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2346                 // VM allows methods and variables with differing types
  2347                 if (sym.kind == e.sym.kind &&
  2348                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2349                     sym != e.sym &&
  2350                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2351                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2352                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2353                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2354                     return;
  2360     /** Check that all non-override equivalent methods accessible from 'site'
  2361      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2363      *  @param pos  Position to be used for error reporting.
  2364      *  @param site The class whose methods are checked.
  2365      *  @param sym  The method symbol to be checked.
  2366      */
  2367     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2368          ClashFilter cf = new ClashFilter(site);
  2369         //for each method m1 that is overridden (directly or indirectly)
  2370         //by method 'sym' in 'site'...
  2371         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2372             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2373              //...check each method m2 that is a member of 'site'
  2374              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2375                 if (m2 == m1) continue;
  2376                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2377                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2378                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
  2379                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2380                     sym.flags_field |= CLASH;
  2381                     String key = m1 == sym ?
  2382                             "name.clash.same.erasure.no.override" :
  2383                             "name.clash.same.erasure.no.override.1";
  2384                     log.error(pos,
  2385                             key,
  2386                             sym, sym.location(),
  2387                             m2, m2.location(),
  2388                             m1, m1.location());
  2389                     return;
  2397     /** Check that all static methods accessible from 'site' are
  2398      *  mutually compatible (JLS 8.4.8).
  2400      *  @param pos  Position to be used for error reporting.
  2401      *  @param site The class whose methods are checked.
  2402      *  @param sym  The method symbol to be checked.
  2403      */
  2404     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2405         ClashFilter cf = new ClashFilter(site);
  2406         //for each method m1 that is a member of 'site'...
  2407         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2408             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2409             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2410             if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck) &&
  2411                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2412                 log.error(pos,
  2413                         "name.clash.same.erasure.no.hide",
  2414                         sym, sym.location(),
  2415                         s, s.location());
  2416                 return;
  2421      //where
  2422      private class ClashFilter implements Filter<Symbol> {
  2424          Type site;
  2426          ClashFilter(Type site) {
  2427              this.site = site;
  2430          boolean shouldSkip(Symbol s) {
  2431              return (s.flags() & CLASH) != 0 &&
  2432                 s.owner == site.tsym;
  2435          public boolean accepts(Symbol s) {
  2436              return s.kind == MTH &&
  2437                      (s.flags() & SYNTHETIC) == 0 &&
  2438                      !shouldSkip(s) &&
  2439                      s.isInheritedIn(site.tsym, types) &&
  2440                      !s.isConstructor();
  2444     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
  2445         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
  2446         for (Symbol m : types.membersClosure(site, false).getElements(dcf)) {
  2447             Assert.check(m.kind == MTH);
  2448             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
  2449             if (prov.size() > 1) {
  2450                 ListBuffer<Symbol> abstracts = ListBuffer.lb();
  2451                 ListBuffer<Symbol> defaults = ListBuffer.lb();
  2452                 for (MethodSymbol provSym : prov) {
  2453                     if ((provSym.flags() & DEFAULT) != 0) {
  2454                         defaults = defaults.append(provSym);
  2455                     } else if ((provSym.flags() & ABSTRACT) != 0) {
  2456                         abstracts = abstracts.append(provSym);
  2458                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
  2459                         //strong semantics - issue an error if two sibling interfaces
  2460                         //have two override-equivalent defaults - or if one is abstract
  2461                         //and the other is default
  2462                         String errKey;
  2463                         Symbol s1 = defaults.first();
  2464                         Symbol s2;
  2465                         if (defaults.size() > 1) {
  2466                             errKey = "types.incompatible.unrelated.defaults";
  2467                             s2 = defaults.toList().tail.head;
  2468                         } else {
  2469                             errKey = "types.incompatible.abstract.default";
  2470                             s2 = abstracts.first();
  2472                         log.error(pos, errKey,
  2473                                 Kinds.kindName(site.tsym), site,
  2474                                 m.name, types.memberType(site, m).getParameterTypes(),
  2475                                 s1.location(), s2.location());
  2476                         break;
  2483     //where
  2484      private class DefaultMethodClashFilter implements Filter<Symbol> {
  2486          Type site;
  2488          DefaultMethodClashFilter(Type site) {
  2489              this.site = site;
  2492          public boolean accepts(Symbol s) {
  2493              return s.kind == MTH &&
  2494                      (s.flags() & DEFAULT) != 0 &&
  2495                      s.isInheritedIn(site.tsym, types) &&
  2496                      !s.isConstructor();
  2500     /** Report a conflict between a user symbol and a synthetic symbol.
  2501      */
  2502     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2503         if (!sym.type.isErroneous()) {
  2504             if (warnOnSyntheticConflicts) {
  2505                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2507             else {
  2508                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2513     /** Check that class c does not implement directly or indirectly
  2514      *  the same parameterized interface with two different argument lists.
  2515      *  @param pos          Position to be used for error reporting.
  2516      *  @param type         The type whose interfaces are checked.
  2517      */
  2518     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2519         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2521 //where
  2522         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2523          *  with their class symbol as key and their type as value. Make
  2524          *  sure no class is entered with two different types.
  2525          */
  2526         void checkClassBounds(DiagnosticPosition pos,
  2527                               Map<TypeSymbol,Type> seensofar,
  2528                               Type type) {
  2529             if (type.isErroneous()) return;
  2530             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2531                 Type it = l.head;
  2532                 Type oldit = seensofar.put(it.tsym, it);
  2533                 if (oldit != null) {
  2534                     List<Type> oldparams = oldit.allparams();
  2535                     List<Type> newparams = it.allparams();
  2536                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2537                         log.error(pos, "cant.inherit.diff.arg",
  2538                                   it.tsym, Type.toString(oldparams),
  2539                                   Type.toString(newparams));
  2541                 checkClassBounds(pos, seensofar, it);
  2543             Type st = types.supertype(type);
  2544             if (st != null) checkClassBounds(pos, seensofar, st);
  2547     /** Enter interface into into set.
  2548      *  If it existed already, issue a "repeated interface" error.
  2549      */
  2550     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2551         if (its.contains(it))
  2552             log.error(pos, "repeated.interface");
  2553         else {
  2554             its.add(it);
  2558 /* *************************************************************************
  2559  * Check annotations
  2560  **************************************************************************/
  2562     /**
  2563      * Recursively validate annotations values
  2564      */
  2565     void validateAnnotationTree(JCTree tree) {
  2566         class AnnotationValidator extends TreeScanner {
  2567             @Override
  2568             public void visitAnnotation(JCAnnotation tree) {
  2569                 if (!tree.type.isErroneous()) {
  2570                     super.visitAnnotation(tree);
  2571                     validateAnnotation(tree);
  2575         tree.accept(new AnnotationValidator());
  2578     /**
  2579      *  {@literal
  2580      *  Annotation types are restricted to primitives, String, an
  2581      *  enum, an annotation, Class, Class<?>, Class<? extends
  2582      *  Anything>, arrays of the preceding.
  2583      *  }
  2584      */
  2585     void validateAnnotationType(JCTree restype) {
  2586         // restype may be null if an error occurred, so don't bother validating it
  2587         if (restype != null) {
  2588             validateAnnotationType(restype.pos(), restype.type);
  2592     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2593         if (type.isPrimitive()) return;
  2594         if (types.isSameType(type, syms.stringType)) return;
  2595         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2596         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2597         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2598         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2599             validateAnnotationType(pos, types.elemtype(type));
  2600             return;
  2602         log.error(pos, "invalid.annotation.member.type");
  2605     /**
  2606      * "It is also a compile-time error if any method declared in an
  2607      * annotation type has a signature that is override-equivalent to
  2608      * that of any public or protected method declared in class Object
  2609      * or in the interface annotation.Annotation."
  2611      * @jls 9.6 Annotation Types
  2612      */
  2613     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2614         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
  2615             Scope s = sup.tsym.members();
  2616             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2617                 if (e.sym.kind == MTH &&
  2618                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2619                     types.overrideEquivalent(m.type, e.sym.type))
  2620                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2625     /** Check the annotations of a symbol.
  2626      */
  2627     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2628         for (JCAnnotation a : annotations)
  2629             validateAnnotation(a, s);
  2632     /** Check an annotation of a symbol.
  2633      */
  2634     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2635         validateAnnotationTree(a);
  2637         if (!annotationApplicable(a, s))
  2638             log.error(a.pos(), "annotation.type.not.applicable");
  2640         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2641             if (!isOverrider(s))
  2642                 log.error(a.pos(), "method.does.not.override.superclass");
  2646     /**
  2647      * Validate the proposed container 'containedBy' on the
  2648      * annotation type symbol 's'. Report errors at position
  2649      * 'pos'.
  2651      * @param s The (annotation)type declaration annotated with a @ContainedBy
  2652      * @param containedBy the @ContainedBy on 's'
  2653      * @param pos where to report errors
  2654      */
  2655     public void validateContainedBy(TypeSymbol s, Attribute.Compound containedBy, DiagnosticPosition pos) {
  2656         Assert.check(types.isSameType(containedBy.type, syms.containedByType));
  2658         Type t = null;
  2659         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2660         if (!l.isEmpty()) {
  2661             Assert.check(l.head.fst.name == names.value);
  2662             t = ((Attribute.Class)l.head.snd).getValue();
  2665         if (t == null) {
  2666             log.error(pos, "invalid.container.wrong.containedby", s, containedBy);
  2667             return;
  2670         validateHasContainerFor(t.tsym, s, pos);
  2671         validateRetention(t.tsym, s, pos);
  2672         validateDocumented(t.tsym, s, pos);
  2673         validateInherited(t.tsym, s, pos);
  2674         validateTarget(t.tsym, s, pos);
  2675         validateDefault(t.tsym, s, pos);
  2678     /**
  2679      * Validate the proposed container 'containerFor' on the
  2680      * annotation type symbol 's'. Report errors at position
  2681      * 'pos'.
  2683      * @param s The (annotation)type declaration annotated with a @ContainerFor
  2684      * @param containerFor the @ContainedFor on 's'
  2685      * @param pos where to report errors
  2686      */
  2687     public void validateContainerFor(TypeSymbol s, Attribute.Compound containerFor, DiagnosticPosition pos) {
  2688         Assert.check(types.isSameType(containerFor.type, syms.containerForType));
  2690         Type t = null;
  2691         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2692         if (!l.isEmpty()) {
  2693             Assert.check(l.head.fst.name == names.value);
  2694             t = ((Attribute.Class)l.head.snd).getValue();
  2697         if (t == null) {
  2698             log.error(pos, "invalid.container.wrong.containerfor", s, containerFor);
  2699             return;
  2702         validateHasContainedBy(t.tsym, s, pos);
  2705     private void validateHasContainedBy(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2706         Attribute.Compound containedBy = container.attribute(syms.containedByType.tsym);
  2708         if (containedBy == null) {
  2709             log.error(pos, "invalid.container.no.containedby", container, syms.containedByType.tsym);
  2710             return;
  2713         Type t = null;
  2714         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2715         if (!l.isEmpty()) {
  2716             Assert.check(l.head.fst.name == names.value);
  2717             t = ((Attribute.Class)l.head.snd).getValue();
  2720         if (t == null) {
  2721             log.error(pos, "invalid.container.wrong.containedby", container, contained);
  2722             return;
  2725         if (!types.isSameType(t, contained.type))
  2726             log.error(pos, "invalid.container.wrong.containedby", t.tsym, contained);
  2729     private void validateHasContainerFor(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2730         Attribute.Compound containerFor = container.attribute(syms.containerForType.tsym);
  2732         if (containerFor == null) {
  2733             log.error(pos, "invalid.container.no.containerfor", container, syms.containerForType.tsym);
  2734             return;
  2737         Type t = null;
  2738         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2739         if (!l.isEmpty()) {
  2740             Assert.check(l.head.fst.name == names.value);
  2741             t = ((Attribute.Class)l.head.snd).getValue();
  2744         if (t == null) {
  2745             log.error(pos, "invalid.container.wrong.containerfor", container, contained);
  2746             return;
  2749         if (!types.isSameType(t, contained.type))
  2750             log.error(pos, "invalid.container.wrong.containerfor", t.tsym, contained);
  2753     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2754         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2755         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2757         boolean error = false;
  2758         switch (containedRetention) {
  2759         case RUNTIME:
  2760             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2761                 error = true;
  2763             break;
  2764         case CLASS:
  2765             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2766                 error = true;
  2769         if (error ) {
  2770             log.error(pos, "invalid.containedby.annotation.retention",
  2771                       container, containerRetention,
  2772                       contained, containedRetention);
  2776     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2777         if (contained.attribute(syms.documentedType.tsym) != null) {
  2778             if (container.attribute(syms.documentedType.tsym) == null) {
  2779                 log.error(pos, "invalid.containedby.annotation.not.documented", container, contained);
  2784     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2785         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2786             if (container.attribute(syms.inheritedType.tsym) == null) {
  2787                 log.error(pos, "invalid.containedby.annotation.not.inherited", container, contained);
  2792     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2793         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2795         // If contained has no Target, we are done
  2796         if (containedTarget == null) {
  2797             return;
  2800         // If contained has Target m1, container must have a Target
  2801         // annotation, m2, and m2 must be a subset of m1. (This is
  2802         // trivially true if contained has no target as per above).
  2804         // contained has target, but container has not, error
  2805         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2806         if (containerTarget == null) {
  2807             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2808             return;
  2811         Set<Name> containerTargets = new HashSet<Name>();
  2812         for (Attribute app : containerTarget.values) {
  2813             if (!(app instanceof Attribute.Enum)) {
  2814                 continue; // recovery
  2816             Attribute.Enum e = (Attribute.Enum)app;
  2817             containerTargets.add(e.value.name);
  2820         Set<Name> containedTargets = new HashSet<Name>();
  2821         for (Attribute app : containedTarget.values) {
  2822             if (!(app instanceof Attribute.Enum)) {
  2823                 continue; // recovery
  2825             Attribute.Enum e = (Attribute.Enum)app;
  2826             containedTargets.add(e.value.name);
  2829         if (!isTargetSubset(containedTargets, containerTargets)) {
  2830             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2834     /** Checks that t is a subset of s, with respect to ElementType
  2835      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE}
  2836      */
  2837     private boolean isTargetSubset(Set<Name> s, Set<Name> t) {
  2838         // Check that all elements in t are present in s
  2839         for (Name n2 : t) {
  2840             boolean currentElementOk = false;
  2841             for (Name n1 : s) {
  2842                 if (n1 == n2) {
  2843                     currentElementOk = true;
  2844                     break;
  2845                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2846                     currentElementOk = true;
  2847                     break;
  2850             if (!currentElementOk)
  2851                 return false;
  2853         return true;
  2856     private void validateDefault(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2857         // validate that all other elements of containing type has defaults
  2858         Scope scope = container.members();
  2859         for(Symbol elm : scope.getElements()) {
  2860             if (elm.name != names.value &&
  2861                 elm.kind == Kinds.MTH &&
  2862                 ((MethodSymbol)elm).defaultValue == null) {
  2863                 log.error(pos,
  2864                           "invalid.containedby.annotation.elem.nondefault",
  2865                           container,
  2866                           elm);
  2871     /** Is s a method symbol that overrides a method in a superclass? */
  2872     boolean isOverrider(Symbol s) {
  2873         if (s.kind != MTH || s.isStatic())
  2874             return false;
  2875         MethodSymbol m = (MethodSymbol)s;
  2876         TypeSymbol owner = (TypeSymbol)m.owner;
  2877         for (Type sup : types.closure(owner.type)) {
  2878             if (sup == owner.type)
  2879                 continue; // skip "this"
  2880             Scope scope = sup.tsym.members();
  2881             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2882                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2883                     return true;
  2886         return false;
  2889     /** Is the annotation applicable to the symbol? */
  2890     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2891         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2892         if (arr == null) {
  2893             return true;
  2895         for (Attribute app : arr.values) {
  2896             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2897             Attribute.Enum e = (Attribute.Enum) app;
  2898             if (e.value.name == names.TYPE)
  2899                 { if (s.kind == TYP) return true; }
  2900             else if (e.value.name == names.FIELD)
  2901                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2902             else if (e.value.name == names.METHOD)
  2903                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2904             else if (e.value.name == names.PARAMETER)
  2905                 { if (s.kind == VAR &&
  2906                       s.owner.kind == MTH &&
  2907                       (s.flags() & PARAMETER) != 0)
  2908                     return true;
  2910             else if (e.value.name == names.CONSTRUCTOR)
  2911                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2912             else if (e.value.name == names.LOCAL_VARIABLE)
  2913                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2914                       (s.flags() & PARAMETER) == 0)
  2915                     return true;
  2917             else if (e.value.name == names.ANNOTATION_TYPE)
  2918                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2919                     return true;
  2921             else if (e.value.name == names.PACKAGE)
  2922                 { if (s.kind == PCK) return true; }
  2923             else if (e.value.name == names.TYPE_USE)
  2924                 { if (s.kind == TYP ||
  2925                       s.kind == VAR ||
  2926                       (s.kind == MTH && !s.isConstructor() &&
  2927                        !s.type.getReturnType().hasTag(VOID)))
  2928                     return true;
  2930             else
  2931                 return true; // recovery
  2933         return false;
  2937     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  2938         Attribute.Compound atTarget =
  2939             s.attribute(syms.annotationTargetType.tsym);
  2940         if (atTarget == null) return null; // ok, is applicable
  2941         Attribute atValue = atTarget.member(names.value);
  2942         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  2943         return (Attribute.Array) atValue;
  2946     /** Check an annotation value.
  2947      */
  2948     public void validateAnnotation(JCAnnotation a) {
  2949         // collect an inventory of the members (sorted alphabetically)
  2950         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2951             public int compare(Symbol t, Symbol t1) {
  2952                 return t.name.compareTo(t1.name);
  2954         });
  2955         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2956              e != null;
  2957              e = e.sibling)
  2958             if (e.sym.kind == MTH)
  2959                 members.add((MethodSymbol) e.sym);
  2961         // count them off as they're annotated
  2962         for (JCTree arg : a.args) {
  2963             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2964             JCAssign assign = (JCAssign) arg;
  2965             Symbol m = TreeInfo.symbol(assign.lhs);
  2966             if (m == null || m.type.isErroneous()) continue;
  2967             if (!members.remove(m))
  2968                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2969                           m.name, a.type);
  2972         // all the remaining ones better have default values
  2973         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2974         for (MethodSymbol m : members) {
  2975             if (m.defaultValue == null && !m.type.isErroneous()) {
  2976                 missingDefaults.append(m.name);
  2979         if (missingDefaults.nonEmpty()) {
  2980             String key = (missingDefaults.size() > 1)
  2981                     ? "annotation.missing.default.value.1"
  2982                     : "annotation.missing.default.value";
  2983             log.error(a.pos(), key, a.type, missingDefaults);
  2986         // special case: java.lang.annotation.Target must not have
  2987         // repeated values in its value member
  2988         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2989             a.args.tail == null)
  2990             return;
  2992         if (!a.args.head.hasTag(ASSIGN)) return; // error recovery
  2993         JCAssign assign = (JCAssign) a.args.head;
  2994         Symbol m = TreeInfo.symbol(assign.lhs);
  2995         if (m.name != names.value) return;
  2996         JCTree rhs = assign.rhs;
  2997         if (!rhs.hasTag(NEWARRAY)) return;
  2998         JCNewArray na = (JCNewArray) rhs;
  2999         Set<Symbol> targets = new HashSet<Symbol>();
  3000         for (JCTree elem : na.elems) {
  3001             if (!targets.add(TreeInfo.symbol(elem))) {
  3002                 log.error(elem.pos(), "repeated.annotation.target");
  3007     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  3008         if (allowAnnotations &&
  3009             lint.isEnabled(LintCategory.DEP_ANN) &&
  3010             (s.flags() & DEPRECATED) != 0 &&
  3011             !syms.deprecatedType.isErroneous() &&
  3012             s.attribute(syms.deprecatedType.tsym) == null) {
  3013             log.warning(LintCategory.DEP_ANN,
  3014                     pos, "missing.deprecated.annotation");
  3018     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  3019         if ((s.flags() & DEPRECATED) != 0 &&
  3020                 (other.flags() & DEPRECATED) == 0 &&
  3021                 s.outermostClass() != other.outermostClass()) {
  3022             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  3023                 @Override
  3024                 public void report() {
  3025                     warnDeprecated(pos, s);
  3027             });
  3031     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  3032         if ((s.flags() & PROPRIETARY) != 0) {
  3033             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  3034                 public void report() {
  3035                     if (enableSunApiLintControl)
  3036                       warnSunApi(pos, "sun.proprietary", s);
  3037                     else
  3038                       log.mandatoryWarning(pos, "sun.proprietary", s);
  3040             });
  3044 /* *************************************************************************
  3045  * Check for recursive annotation elements.
  3046  **************************************************************************/
  3048     /** Check for cycles in the graph of annotation elements.
  3049      */
  3050     void checkNonCyclicElements(JCClassDecl tree) {
  3051         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  3052         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  3053         try {
  3054             tree.sym.flags_field |= LOCKED;
  3055             for (JCTree def : tree.defs) {
  3056                 if (!def.hasTag(METHODDEF)) continue;
  3057                 JCMethodDecl meth = (JCMethodDecl)def;
  3058                 checkAnnotationResType(meth.pos(), meth.restype.type);
  3060         } finally {
  3061             tree.sym.flags_field &= ~LOCKED;
  3062             tree.sym.flags_field |= ACYCLIC_ANN;
  3066     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  3067         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  3068             return;
  3069         if ((tsym.flags_field & LOCKED) != 0) {
  3070             log.error(pos, "cyclic.annotation.element");
  3071             return;
  3073         try {
  3074             tsym.flags_field |= LOCKED;
  3075             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  3076                 Symbol s = e.sym;
  3077                 if (s.kind != Kinds.MTH)
  3078                     continue;
  3079                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  3081         } finally {
  3082             tsym.flags_field &= ~LOCKED;
  3083             tsym.flags_field |= ACYCLIC_ANN;
  3087     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  3088         switch (type.getTag()) {
  3089         case CLASS:
  3090             if ((type.tsym.flags() & ANNOTATION) != 0)
  3091                 checkNonCyclicElementsInternal(pos, type.tsym);
  3092             break;
  3093         case ARRAY:
  3094             checkAnnotationResType(pos, types.elemtype(type));
  3095             break;
  3096         default:
  3097             break; // int etc
  3101 /* *************************************************************************
  3102  * Check for cycles in the constructor call graph.
  3103  **************************************************************************/
  3105     /** Check for cycles in the graph of constructors calling other
  3106      *  constructors.
  3107      */
  3108     void checkCyclicConstructors(JCClassDecl tree) {
  3109         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  3111         // enter each constructor this-call into the map
  3112         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3113             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  3114             if (app == null) continue;
  3115             JCMethodDecl meth = (JCMethodDecl) l.head;
  3116             if (TreeInfo.name(app.meth) == names._this) {
  3117                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  3118             } else {
  3119                 meth.sym.flags_field |= ACYCLIC;
  3123         // Check for cycles in the map
  3124         Symbol[] ctors = new Symbol[0];
  3125         ctors = callMap.keySet().toArray(ctors);
  3126         for (Symbol caller : ctors) {
  3127             checkCyclicConstructor(tree, caller, callMap);
  3131     /** Look in the map to see if the given constructor is part of a
  3132      *  call cycle.
  3133      */
  3134     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  3135                                         Map<Symbol,Symbol> callMap) {
  3136         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  3137             if ((ctor.flags_field & LOCKED) != 0) {
  3138                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  3139                           "recursive.ctor.invocation");
  3140             } else {
  3141                 ctor.flags_field |= LOCKED;
  3142                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  3143                 ctor.flags_field &= ~LOCKED;
  3145             ctor.flags_field |= ACYCLIC;
  3149 /* *************************************************************************
  3150  * Miscellaneous
  3151  **************************************************************************/
  3153     /**
  3154      * Return the opcode of the operator but emit an error if it is an
  3155      * error.
  3156      * @param pos        position for error reporting.
  3157      * @param operator   an operator
  3158      * @param tag        a tree tag
  3159      * @param left       type of left hand side
  3160      * @param right      type of right hand side
  3161      */
  3162     int checkOperator(DiagnosticPosition pos,
  3163                        OperatorSymbol operator,
  3164                        JCTree.Tag tag,
  3165                        Type left,
  3166                        Type right) {
  3167         if (operator.opcode == ByteCodes.error) {
  3168             log.error(pos,
  3169                       "operator.cant.be.applied.1",
  3170                       treeinfo.operatorName(tag),
  3171                       left, right);
  3173         return operator.opcode;
  3177     /**
  3178      *  Check for division by integer constant zero
  3179      *  @param pos           Position for error reporting.
  3180      *  @param operator      The operator for the expression
  3181      *  @param operand       The right hand operand for the expression
  3182      */
  3183     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  3184         if (operand.constValue() != null
  3185             && lint.isEnabled(LintCategory.DIVZERO)
  3186             && (operand.getTag().isSubRangeOf(LONG))
  3187             && ((Number) (operand.constValue())).longValue() == 0) {
  3188             int opc = ((OperatorSymbol)operator).opcode;
  3189             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  3190                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  3191                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  3196     /**
  3197      * Check for empty statements after if
  3198      */
  3199     void checkEmptyIf(JCIf tree) {
  3200         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  3201                 lint.isEnabled(LintCategory.EMPTY))
  3202             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  3205     /** Check that symbol is unique in given scope.
  3206      *  @param pos           Position for error reporting.
  3207      *  @param sym           The symbol.
  3208      *  @param s             The scope.
  3209      */
  3210     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  3211         if (sym.type.isErroneous())
  3212             return true;
  3213         if (sym.owner.name == names.any) return false;
  3214         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  3215             if (sym != e.sym &&
  3216                     (e.sym.flags() & CLASH) == 0 &&
  3217                     sym.kind == e.sym.kind &&
  3218                     sym.name != names.error &&
  3219                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  3220                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3221                     varargsDuplicateError(pos, sym, e.sym);
  3222                     return true;
  3223                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3224                     duplicateErasureError(pos, sym, e.sym);
  3225                     sym.flags_field |= CLASH;
  3226                     return true;
  3227                 } else {
  3228                     duplicateError(pos, e.sym);
  3229                     return false;
  3233         return true;
  3236     /** Report duplicate declaration error.
  3237      */
  3238     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3239         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3240             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3244     /** Check that single-type import is not already imported or top-level defined,
  3245      *  but make an exception for two single-type imports which denote the same type.
  3246      *  @param pos           Position for error reporting.
  3247      *  @param sym           The symbol.
  3248      *  @param s             The scope
  3249      */
  3250     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3251         return checkUniqueImport(pos, sym, s, false);
  3254     /** Check that static single-type import is not already imported or top-level defined,
  3255      *  but make an exception for two single-type imports which denote the same type.
  3256      *  @param pos           Position for error reporting.
  3257      *  @param sym           The symbol.
  3258      *  @param s             The scope
  3259      */
  3260     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3261         return checkUniqueImport(pos, sym, s, true);
  3264     /** Check that single-type import is not already imported or top-level defined,
  3265      *  but make an exception for two single-type imports which denote the same type.
  3266      *  @param pos           Position for error reporting.
  3267      *  @param sym           The symbol.
  3268      *  @param s             The scope.
  3269      *  @param staticImport  Whether or not this was a static import
  3270      */
  3271     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3272         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3273             // is encountered class entered via a class declaration?
  3274             boolean isClassDecl = e.scope == s;
  3275             if ((isClassDecl || sym != e.sym) &&
  3276                 sym.kind == e.sym.kind &&
  3277                 sym.name != names.error) {
  3278                 if (!e.sym.type.isErroneous()) {
  3279                     String what = e.sym.toString();
  3280                     if (!isClassDecl) {
  3281                         if (staticImport)
  3282                             log.error(pos, "already.defined.static.single.import", what);
  3283                         else
  3284                             log.error(pos, "already.defined.single.import", what);
  3286                     else if (sym != e.sym)
  3287                         log.error(pos, "already.defined.this.unit", what);
  3289                 return false;
  3292         return true;
  3295     /** Check that a qualified name is in canonical form (for import decls).
  3296      */
  3297     public void checkCanonical(JCTree tree) {
  3298         if (!isCanonical(tree))
  3299             log.error(tree.pos(), "import.requires.canonical",
  3300                       TreeInfo.symbol(tree));
  3302         // where
  3303         private boolean isCanonical(JCTree tree) {
  3304             while (tree.hasTag(SELECT)) {
  3305                 JCFieldAccess s = (JCFieldAccess) tree;
  3306                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3307                     return false;
  3308                 tree = s.selected;
  3310             return true;
  3313     /** Check that an auxiliary class is not accessed from any other file than its own.
  3314      */
  3315     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
  3316         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
  3317             (c.flags() & AUXILIARY) != 0 &&
  3318             rs.isAccessible(env, c) &&
  3319             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
  3321             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
  3322                         c, c.sourcefile);
  3326     private class ConversionWarner extends Warner {
  3327         final String uncheckedKey;
  3328         final Type found;
  3329         final Type expected;
  3330         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3331             super(pos);
  3332             this.uncheckedKey = uncheckedKey;
  3333             this.found = found;
  3334             this.expected = expected;
  3337         @Override
  3338         public void warn(LintCategory lint) {
  3339             boolean warned = this.warned;
  3340             super.warn(lint);
  3341             if (warned) return; // suppress redundant diagnostics
  3342             switch (lint) {
  3343                 case UNCHECKED:
  3344                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3345                     break;
  3346                 case VARARGS:
  3347                     if (method != null &&
  3348                             method.attribute(syms.trustMeType.tsym) != null &&
  3349                             isTrustMeAllowedOnMethod(method) &&
  3350                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3351                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3353                     break;
  3354                 default:
  3355                     throw new AssertionError("Unexpected lint: " + lint);
  3360     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3361         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3364     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3365         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial