src/share/classes/com/sun/tools/javac/comp/Check.java

Thu, 01 Nov 2012 10:48:36 +0100

author
ohrstrom
date
Thu, 01 Nov 2012 10:48:36 +0100
changeset 1384
bf54daa9dcd8
parent 1374
c002fdee76fd
child 1393
d7d932236fee
permissions
-rw-r--r--

7153951: Add new lint option -Xlint:auxiliaryclass
Reviewed-by: jjg, mcimadamore, forax

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    30 import javax.tools.JavaFileManager;
    32 import com.sun.tools.javac.code.*;
    33 import com.sun.tools.javac.jvm.*;
    34 import com.sun.tools.javac.tree.*;
    35 import com.sun.tools.javac.util.*;
    36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    37 import com.sun.tools.javac.util.List;
    39 import com.sun.tools.javac.tree.JCTree.*;
    40 import com.sun.tools.javac.code.Lint;
    41 import com.sun.tools.javac.code.Lint.LintCategory;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.code.Symbol.*;
    44 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    48 import static com.sun.tools.javac.code.Flags.*;
    49 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    50 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    51 import static com.sun.tools.javac.code.Kinds.*;
    52 import static com.sun.tools.javac.code.TypeTag.*;
    53 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    55 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    57 /** Type checking helper class for the attribution phase.
    58  *
    59  *  <p><b>This is NOT part of any supported API.
    60  *  If you write code that depends on this, you do so at your own risk.
    61  *  This code and its internal interfaces are subject to change or
    62  *  deletion without notice.</b>
    63  */
    64 public class Check {
    65     protected static final Context.Key<Check> checkKey =
    66         new Context.Key<Check>();
    68     private final Names names;
    69     private final Log log;
    70     private final Resolve rs;
    71     private final Symtab syms;
    72     private final Enter enter;
    73     private final DeferredAttr deferredAttr;
    74     private final Infer infer;
    75     private final Types types;
    76     private final JCDiagnostic.Factory diags;
    77     private boolean warnOnSyntheticConflicts;
    78     private boolean suppressAbortOnBadClassFile;
    79     private boolean enableSunApiLintControl;
    80     private final TreeInfo treeinfo;
    81     private final JavaFileManager fileManager;
    83     // The set of lint options currently in effect. It is initialized
    84     // from the context, and then is set/reset as needed by Attr as it
    85     // visits all the various parts of the trees during attribution.
    86     private Lint lint;
    88     // The method being analyzed in Attr - it is set/reset as needed by
    89     // Attr as it visits new method declarations.
    90     private MethodSymbol method;
    92     public static Check instance(Context context) {
    93         Check instance = context.get(checkKey);
    94         if (instance == null)
    95             instance = new Check(context);
    96         return instance;
    97     }
    99     protected Check(Context context) {
   100         context.put(checkKey, this);
   102         names = Names.instance(context);
   103         log = Log.instance(context);
   104         rs = Resolve.instance(context);
   105         syms = Symtab.instance(context);
   106         enter = Enter.instance(context);
   107         deferredAttr = DeferredAttr.instance(context);
   108         infer = Infer.instance(context);
   109         this.types = Types.instance(context);
   110         diags = JCDiagnostic.Factory.instance(context);
   111         Options options = Options.instance(context);
   112         lint = Lint.instance(context);
   113         treeinfo = TreeInfo.instance(context);
   114         fileManager = context.get(JavaFileManager.class);
   116         Source source = Source.instance(context);
   117         allowGenerics = source.allowGenerics();
   118         allowVarargs = source.allowVarargs();
   119         allowAnnotations = source.allowAnnotations();
   120         allowCovariantReturns = source.allowCovariantReturns();
   121         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   122         complexInference = options.isSet("complexinference");
   123         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   124         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   125         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   127         Target target = Target.instance(context);
   128         syntheticNameChar = target.syntheticNameChar();
   130         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   131         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   132         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   133         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   135         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   136                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   137         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   138                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   139         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   140                 enforceMandatoryWarnings, "sunapi", null);
   142         deferredLintHandler = DeferredLintHandler.immediateHandler;
   143     }
   145     /** Switch: generics enabled?
   146      */
   147     boolean allowGenerics;
   149     /** Switch: varargs enabled?
   150      */
   151     boolean allowVarargs;
   153     /** Switch: annotations enabled?
   154      */
   155     boolean allowAnnotations;
   157     /** Switch: covariant returns enabled?
   158      */
   159     boolean allowCovariantReturns;
   161     /** Switch: simplified varargs enabled?
   162      */
   163     boolean allowSimplifiedVarargs;
   165     /** Switch: -complexinference option set?
   166      */
   167     boolean complexInference;
   169     /** Character for synthetic names
   170      */
   171     char syntheticNameChar;
   173     /** A table mapping flat names of all compiled classes in this run to their
   174      *  symbols; maintained from outside.
   175      */
   176     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   178     /** A handler for messages about deprecated usage.
   179      */
   180     private MandatoryWarningHandler deprecationHandler;
   182     /** A handler for messages about unchecked or unsafe usage.
   183      */
   184     private MandatoryWarningHandler uncheckedHandler;
   186     /** A handler for messages about using proprietary API.
   187      */
   188     private MandatoryWarningHandler sunApiHandler;
   190     /** A handler for deferred lint warnings.
   191      */
   192     private DeferredLintHandler deferredLintHandler;
   194 /* *************************************************************************
   195  * Errors and Warnings
   196  **************************************************************************/
   198     Lint setLint(Lint newLint) {
   199         Lint prev = lint;
   200         lint = newLint;
   201         return prev;
   202     }
   204     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   205         DeferredLintHandler prev = deferredLintHandler;
   206         deferredLintHandler = newDeferredLintHandler;
   207         return prev;
   208     }
   210     MethodSymbol setMethod(MethodSymbol newMethod) {
   211         MethodSymbol prev = method;
   212         method = newMethod;
   213         return prev;
   214     }
   216     /** Warn about deprecated symbol.
   217      *  @param pos        Position to be used for error reporting.
   218      *  @param sym        The deprecated symbol.
   219      */
   220     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   221         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   222             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   223     }
   225     /** Warn about unchecked operation.
   226      *  @param pos        Position to be used for error reporting.
   227      *  @param msg        A string describing the problem.
   228      */
   229     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   230         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   231             uncheckedHandler.report(pos, msg, args);
   232     }
   234     /** Warn about unsafe vararg method decl.
   235      *  @param pos        Position to be used for error reporting.
   236      */
   237     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   238         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   239             log.warning(LintCategory.VARARGS, pos, key, args);
   240     }
   242     /** Warn about using proprietary API.
   243      *  @param pos        Position to be used for error reporting.
   244      *  @param msg        A string describing the problem.
   245      */
   246     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   247         if (!lint.isSuppressed(LintCategory.SUNAPI))
   248             sunApiHandler.report(pos, msg, args);
   249     }
   251     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   252         if (lint.isEnabled(LintCategory.STATIC))
   253             log.warning(LintCategory.STATIC, pos, msg, args);
   254     }
   256     /**
   257      * Report any deferred diagnostics.
   258      */
   259     public void reportDeferredDiagnostics() {
   260         deprecationHandler.reportDeferredDiagnostic();
   261         uncheckedHandler.reportDeferredDiagnostic();
   262         sunApiHandler.reportDeferredDiagnostic();
   263     }
   266     /** Report a failure to complete a class.
   267      *  @param pos        Position to be used for error reporting.
   268      *  @param ex         The failure to report.
   269      */
   270     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   271         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   272         if (ex instanceof ClassReader.BadClassFile
   273                 && !suppressAbortOnBadClassFile) throw new Abort();
   274         else return syms.errType;
   275     }
   277     /** Report an error that wrong type tag was found.
   278      *  @param pos        Position to be used for error reporting.
   279      *  @param required   An internationalized string describing the type tag
   280      *                    required.
   281      *  @param found      The type that was found.
   282      */
   283     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   284         // this error used to be raised by the parser,
   285         // but has been delayed to this point:
   286         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
   287             log.error(pos, "illegal.start.of.type");
   288             return syms.errType;
   289         }
   290         log.error(pos, "type.found.req", found, required);
   291         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   292     }
   294     /** Report an error that symbol cannot be referenced before super
   295      *  has been called.
   296      *  @param pos        Position to be used for error reporting.
   297      *  @param sym        The referenced symbol.
   298      */
   299     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   300         log.error(pos, "cant.ref.before.ctor.called", sym);
   301     }
   303     /** Report duplicate declaration error.
   304      */
   305     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   306         if (!sym.type.isErroneous()) {
   307             Symbol location = sym.location();
   308             if (location.kind == MTH &&
   309                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   310                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   311                         kindName(sym.location()), kindName(sym.location().enclClass()),
   312                         sym.location().enclClass());
   313             } else {
   314                 log.error(pos, "already.defined", kindName(sym), sym,
   315                         kindName(sym.location()), sym.location());
   316             }
   317         }
   318     }
   320     /** Report array/varargs duplicate declaration
   321      */
   322     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   323         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   324             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   325         }
   326     }
   328 /* ************************************************************************
   329  * duplicate declaration checking
   330  *************************************************************************/
   332     /** Check that variable does not hide variable with same name in
   333      *  immediately enclosing local scope.
   334      *  @param pos           Position for error reporting.
   335      *  @param v             The symbol.
   336      *  @param s             The scope.
   337      */
   338     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   339         if (s.next != null) {
   340             for (Scope.Entry e = s.next.lookup(v.name);
   341                  e.scope != null && e.sym.owner == v.owner;
   342                  e = e.next()) {
   343                 if (e.sym.kind == VAR &&
   344                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   345                     v.name != names.error) {
   346                     duplicateError(pos, e.sym);
   347                     return;
   348                 }
   349             }
   350         }
   351     }
   353     /** Check that a class or interface does not hide a class or
   354      *  interface with same name in immediately enclosing local scope.
   355      *  @param pos           Position for error reporting.
   356      *  @param c             The symbol.
   357      *  @param s             The scope.
   358      */
   359     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   360         if (s.next != null) {
   361             for (Scope.Entry e = s.next.lookup(c.name);
   362                  e.scope != null && e.sym.owner == c.owner;
   363                  e = e.next()) {
   364                 if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
   365                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   366                     c.name != names.error) {
   367                     duplicateError(pos, e.sym);
   368                     return;
   369                 }
   370             }
   371         }
   372     }
   374     /** Check that class does not have the same name as one of
   375      *  its enclosing classes, or as a class defined in its enclosing scope.
   376      *  return true if class is unique in its enclosing scope.
   377      *  @param pos           Position for error reporting.
   378      *  @param name          The class name.
   379      *  @param s             The enclosing scope.
   380      */
   381     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   382         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   383             if (e.sym.kind == TYP && e.sym.name != names.error) {
   384                 duplicateError(pos, e.sym);
   385                 return false;
   386             }
   387         }
   388         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   389             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   390                 duplicateError(pos, sym);
   391                 return true;
   392             }
   393         }
   394         return true;
   395     }
   397 /* *************************************************************************
   398  * Class name generation
   399  **************************************************************************/
   401     /** Return name of local class.
   402      *  This is of the form   {@code <enclClass> $ n <classname> }
   403      *  where
   404      *    enclClass is the flat name of the enclosing class,
   405      *    classname is the simple name of the local class
   406      */
   407     Name localClassName(ClassSymbol c) {
   408         for (int i=1; ; i++) {
   409             Name flatname = names.
   410                 fromString("" + c.owner.enclClass().flatname +
   411                            syntheticNameChar + i +
   412                            c.name);
   413             if (compiled.get(flatname) == null) return flatname;
   414         }
   415     }
   417 /* *************************************************************************
   418  * Type Checking
   419  **************************************************************************/
   421     /**
   422      * A check context is an object that can be used to perform compatibility
   423      * checks - depending on the check context, meaning of 'compatibility' might
   424      * vary significantly.
   425      */
   426     public interface CheckContext {
   427         /**
   428          * Is type 'found' compatible with type 'req' in given context
   429          */
   430         boolean compatible(Type found, Type req, Warner warn);
   431         /**
   432          * Report a check error
   433          */
   434         void report(DiagnosticPosition pos, JCDiagnostic details);
   435         /**
   436          * Obtain a warner for this check context
   437          */
   438         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   440         public Infer.InferenceContext inferenceContext();
   442         public DeferredAttr.DeferredAttrContext deferredAttrContext();
   444         public boolean allowBoxing();
   445     }
   447     /**
   448      * This class represent a check context that is nested within another check
   449      * context - useful to check sub-expressions. The default behavior simply
   450      * redirects all method calls to the enclosing check context leveraging
   451      * the forwarding pattern.
   452      */
   453     static class NestedCheckContext implements CheckContext {
   454         CheckContext enclosingContext;
   456         NestedCheckContext(CheckContext enclosingContext) {
   457             this.enclosingContext = enclosingContext;
   458         }
   460         public boolean compatible(Type found, Type req, Warner warn) {
   461             return enclosingContext.compatible(found, req, warn);
   462         }
   464         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   465             enclosingContext.report(pos, details);
   466         }
   468         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   469             return enclosingContext.checkWarner(pos, found, req);
   470         }
   472         public Infer.InferenceContext inferenceContext() {
   473             return enclosingContext.inferenceContext();
   474         }
   476         public DeferredAttrContext deferredAttrContext() {
   477             return enclosingContext.deferredAttrContext();
   478         }
   480         public boolean allowBoxing() {
   481             return enclosingContext.allowBoxing();
   482         }
   483     }
   485     /**
   486      * Check context to be used when evaluating assignment/return statements
   487      */
   488     CheckContext basicHandler = new CheckContext() {
   489         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   490             log.error(pos, "prob.found.req", details);
   491         }
   492         public boolean compatible(Type found, Type req, Warner warn) {
   493             return types.isAssignable(found, req, warn);
   494         }
   496         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   497             return convertWarner(pos, found, req);
   498         }
   500         public InferenceContext inferenceContext() {
   501             return infer.emptyContext;
   502         }
   504         public DeferredAttrContext deferredAttrContext() {
   505             return deferredAttr.emptyDeferredAttrContext;
   506         }
   508         public boolean allowBoxing() {
   509             return true;
   510         }
   511     };
   513     /** Check that a given type is assignable to a given proto-type.
   514      *  If it is, return the type, otherwise return errType.
   515      *  @param pos        Position to be used for error reporting.
   516      *  @param found      The type that was found.
   517      *  @param req        The type that was required.
   518      */
   519     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   520         return checkType(pos, found, req, basicHandler);
   521     }
   523     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
   524         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
   525         if (inferenceContext.free(req)) {
   526             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
   527                 @Override
   528                 public void typesInferred(InferenceContext inferenceContext) {
   529                     checkType(pos, found, inferenceContext.asInstType(req, types), checkContext);
   530                 }
   531             });
   532         }
   533         if (req.hasTag(ERROR))
   534             return req;
   535         if (req.hasTag(NONE))
   536             return found;
   537         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   538             return found;
   539         } else {
   540             if (found.getTag().isSubRangeOf(DOUBLE) && req.getTag().isSubRangeOf(DOUBLE)) {
   541                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   542                 return types.createErrorType(found);
   543             }
   544             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   545             return types.createErrorType(found);
   546         }
   547     }
   549     /** Check that a given type can be cast to a given target type.
   550      *  Return the result of the cast.
   551      *  @param pos        Position to be used for error reporting.
   552      *  @param found      The type that is being cast.
   553      *  @param req        The target type of the cast.
   554      */
   555     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   556         return checkCastable(pos, found, req, basicHandler);
   557     }
   558     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   559         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   560             return req;
   561         } else {
   562             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   563             return types.createErrorType(found);
   564         }
   565     }
   567     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   568      * The problem should only be reported for non-292 cast
   569      */
   570     public void checkRedundantCast(Env<AttrContext> env, JCTypeCast tree) {
   571         if (!tree.type.isErroneous() &&
   572                 (env.info.lint == null || env.info.lint.isEnabled(Lint.LintCategory.CAST))
   573                 && types.isSameType(tree.expr.type, tree.clazz.type)
   574                 && !is292targetTypeCast(tree)) {
   575             log.warning(Lint.LintCategory.CAST,
   576                     tree.pos(), "redundant.cast", tree.expr.type);
   577         }
   578     }
   579     //where
   580             private boolean is292targetTypeCast(JCTypeCast tree) {
   581                 boolean is292targetTypeCast = false;
   582                 JCExpression expr = TreeInfo.skipParens(tree.expr);
   583                 if (expr.hasTag(APPLY)) {
   584                     JCMethodInvocation apply = (JCMethodInvocation)expr;
   585                     Symbol sym = TreeInfo.symbol(apply.meth);
   586                     is292targetTypeCast = sym != null &&
   587                         sym.kind == MTH &&
   588                         (sym.flags() & HYPOTHETICAL) != 0;
   589                 }
   590                 return is292targetTypeCast;
   591             }
   595 //where
   596         /** Is type a type variable, or a (possibly multi-dimensional) array of
   597          *  type variables?
   598          */
   599         boolean isTypeVar(Type t) {
   600             return t.hasTag(TYPEVAR) || t.hasTag(ARRAY) && isTypeVar(types.elemtype(t));
   601         }
   603     /** Check that a type is within some bounds.
   604      *
   605      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
   606      *  type argument.
   607      *  @param a             The type that should be bounded by bs.
   608      *  @param bound         The bound.
   609      */
   610     private boolean checkExtends(Type a, Type bound) {
   611          if (a.isUnbound()) {
   612              return true;
   613          } else if (!a.hasTag(WILDCARD)) {
   614              a = types.upperBound(a);
   615              return types.isSubtype(a, bound);
   616          } else if (a.isExtendsBound()) {
   617              return types.isCastable(bound, types.upperBound(a), Warner.noWarnings);
   618          } else if (a.isSuperBound()) {
   619              return !types.notSoftSubtype(types.lowerBound(a), bound);
   620          }
   621          return true;
   622      }
   624     /** Check that type is different from 'void'.
   625      *  @param pos           Position to be used for error reporting.
   626      *  @param t             The type to be checked.
   627      */
   628     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   629         if (t.hasTag(VOID)) {
   630             log.error(pos, "void.not.allowed.here");
   631             return types.createErrorType(t);
   632         } else {
   633             return t;
   634         }
   635     }
   637     /** Check that type is a class or interface type.
   638      *  @param pos           Position to be used for error reporting.
   639      *  @param t             The type to be checked.
   640      */
   641     Type checkClassType(DiagnosticPosition pos, Type t) {
   642         if (!t.hasTag(CLASS) && !t.hasTag(ERROR))
   643             return typeTagError(pos,
   644                                 diags.fragment("type.req.class"),
   645                                 (t.hasTag(TYPEVAR))
   646                                 ? diags.fragment("type.parameter", t)
   647                                 : t);
   648         else
   649             return t;
   650     }
   652     /** Check that type is a valid qualifier for a constructor reference expression
   653      */
   654     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
   655         t = checkClassType(pos, t);
   656         if (t.hasTag(CLASS)) {
   657             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
   658                 log.error(pos, "abstract.cant.be.instantiated");
   659                 t = types.createErrorType(t);
   660             } else if ((t.tsym.flags() & ENUM) != 0) {
   661                 log.error(pos, "enum.cant.be.instantiated");
   662                 t = types.createErrorType(t);
   663             }
   664         }
   665         return t;
   666     }
   668     /** Check that type is a class or interface type.
   669      *  @param pos           Position to be used for error reporting.
   670      *  @param t             The type to be checked.
   671      *  @param noBounds    True if type bounds are illegal here.
   672      */
   673     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   674         t = checkClassType(pos, t);
   675         if (noBounds && t.isParameterized()) {
   676             List<Type> args = t.getTypeArguments();
   677             while (args.nonEmpty()) {
   678                 if (args.head.hasTag(WILDCARD))
   679                     return typeTagError(pos,
   680                                         diags.fragment("type.req.exact"),
   681                                         args.head);
   682                 args = args.tail;
   683             }
   684         }
   685         return t;
   686     }
   688     /** Check that type is a reifiable class, interface or array type.
   689      *  @param pos           Position to be used for error reporting.
   690      *  @param t             The type to be checked.
   691      */
   692     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   693         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
   694             return typeTagError(pos,
   695                                 diags.fragment("type.req.class.array"),
   696                                 t);
   697         } else if (!types.isReifiable(t)) {
   698             log.error(pos, "illegal.generic.type.for.instof");
   699             return types.createErrorType(t);
   700         } else {
   701             return t;
   702         }
   703     }
   705     /** Check that type is a reference type, i.e. a class, interface or array type
   706      *  or a type variable.
   707      *  @param pos           Position to be used for error reporting.
   708      *  @param t             The type to be checked.
   709      */
   710     Type checkRefType(DiagnosticPosition pos, Type t) {
   711         if (t.isReference())
   712             return t;
   713         else
   714             return typeTagError(pos,
   715                                 diags.fragment("type.req.ref"),
   716                                 t);
   717     }
   719     /** Check that each type is a reference type, i.e. a class, interface or array type
   720      *  or a type variable.
   721      *  @param trees         Original trees, used for error reporting.
   722      *  @param types         The types to be checked.
   723      */
   724     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   725         List<JCExpression> tl = trees;
   726         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   727             l.head = checkRefType(tl.head.pos(), l.head);
   728             tl = tl.tail;
   729         }
   730         return types;
   731     }
   733     /** Check that type is a null or reference type.
   734      *  @param pos           Position to be used for error reporting.
   735      *  @param t             The type to be checked.
   736      */
   737     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   738         if (t.isNullOrReference())
   739             return t;
   740         else
   741             return typeTagError(pos,
   742                                 diags.fragment("type.req.ref"),
   743                                 t);
   744     }
   746     /** Check that flag set does not contain elements of two conflicting sets. s
   747      *  Return true if it doesn't.
   748      *  @param pos           Position to be used for error reporting.
   749      *  @param flags         The set of flags to be checked.
   750      *  @param set1          Conflicting flags set #1.
   751      *  @param set2          Conflicting flags set #2.
   752      */
   753     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   754         if ((flags & set1) != 0 && (flags & set2) != 0) {
   755             log.error(pos,
   756                       "illegal.combination.of.modifiers",
   757                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   758                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   759             return false;
   760         } else
   761             return true;
   762     }
   764     /** Check that usage of diamond operator is correct (i.e. diamond should not
   765      * be used with non-generic classes or in anonymous class creation expressions)
   766      */
   767     Type checkDiamond(JCNewClass tree, Type t) {
   768         if (!TreeInfo.isDiamond(tree) ||
   769                 t.isErroneous()) {
   770             return checkClassType(tree.clazz.pos(), t, true);
   771         } else if (tree.def != null) {
   772             log.error(tree.clazz.pos(),
   773                     "cant.apply.diamond.1",
   774                     t, diags.fragment("diamond.and.anon.class", t));
   775             return types.createErrorType(t);
   776         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   777             log.error(tree.clazz.pos(),
   778                 "cant.apply.diamond.1",
   779                 t, diags.fragment("diamond.non.generic", t));
   780             return types.createErrorType(t);
   781         } else if (tree.typeargs != null &&
   782                 tree.typeargs.nonEmpty()) {
   783             log.error(tree.clazz.pos(),
   784                 "cant.apply.diamond.1",
   785                 t, diags.fragment("diamond.and.explicit.params", t));
   786             return types.createErrorType(t);
   787         } else {
   788             return t;
   789         }
   790     }
   792     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   793         MethodSymbol m = tree.sym;
   794         if (!allowSimplifiedVarargs) return;
   795         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   796         Type varargElemType = null;
   797         if (m.isVarArgs()) {
   798             varargElemType = types.elemtype(tree.params.last().type);
   799         }
   800         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   801             if (varargElemType != null) {
   802                 log.error(tree,
   803                         "varargs.invalid.trustme.anno",
   804                         syms.trustMeType.tsym,
   805                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   806             } else {
   807                 log.error(tree,
   808                             "varargs.invalid.trustme.anno",
   809                             syms.trustMeType.tsym,
   810                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   811             }
   812         } else if (hasTrustMeAnno && varargElemType != null &&
   813                             types.isReifiable(varargElemType)) {
   814             warnUnsafeVararg(tree,
   815                             "varargs.redundant.trustme.anno",
   816                             syms.trustMeType.tsym,
   817                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   818         }
   819         else if (!hasTrustMeAnno && varargElemType != null &&
   820                 !types.isReifiable(varargElemType)) {
   821             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   822         }
   823     }
   824     //where
   825         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   826             return (s.flags() & VARARGS) != 0 &&
   827                 (s.isConstructor() ||
   828                     (s.flags() & (STATIC | FINAL)) != 0);
   829         }
   831     Type checkMethod(Type owntype,
   832                             Symbol sym,
   833                             Env<AttrContext> env,
   834                             final List<JCExpression> argtrees,
   835                             List<Type> argtypes,
   836                             boolean useVarargs,
   837                             boolean unchecked) {
   838         // System.out.println("call   : " + env.tree);
   839         // System.out.println("method : " + owntype);
   840         // System.out.println("actuals: " + argtypes);
   841         List<Type> formals = owntype.getParameterTypes();
   842         Type last = useVarargs ? formals.last() : null;
   843         if (sym.name==names.init &&
   844                 sym.owner == syms.enumSym)
   845                 formals = formals.tail.tail;
   846         List<JCExpression> args = argtrees;
   847         DeferredAttr.DeferredTypeMap checkDeferredMap =
   848                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
   849         if (args != null) {
   850             //this is null when type-checking a method reference
   851             while (formals.head != last) {
   852                 JCTree arg = args.head;
   853                 Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   854                 assertConvertible(arg, arg.type, formals.head, warn);
   855                 args = args.tail;
   856                 formals = formals.tail;
   857             }
   858             if (useVarargs) {
   859                 Type varArg = types.elemtype(last);
   860                 while (args.tail != null) {
   861                     JCTree arg = args.head;
   862                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   863                     assertConvertible(arg, arg.type, varArg, warn);
   864                     args = args.tail;
   865                 }
   866             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   867                 // non-varargs call to varargs method
   868                 Type varParam = owntype.getParameterTypes().last();
   869                 Type lastArg = checkDeferredMap.apply(argtypes.last());
   870                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   871                         !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   872                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   873                             types.elemtype(varParam), varParam);
   874             }
   875         }
   876         if (unchecked) {
   877             warnUnchecked(env.tree.pos(),
   878                     "unchecked.meth.invocation.applied",
   879                     kindName(sym),
   880                     sym.name,
   881                     rs.methodArguments(sym.type.getParameterTypes()),
   882                     rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
   883                     kindName(sym.location()),
   884                     sym.location());
   885            owntype = new MethodType(owntype.getParameterTypes(),
   886                    types.erasure(owntype.getReturnType()),
   887                    types.erasure(owntype.getThrownTypes()),
   888                    syms.methodClass);
   889         }
   890         if (useVarargs) {
   891             JCTree tree = env.tree;
   892             Type argtype = owntype.getParameterTypes().last();
   893             if (!types.isReifiable(argtype) &&
   894                     (!allowSimplifiedVarargs ||
   895                     sym.attribute(syms.trustMeType.tsym) == null ||
   896                     !isTrustMeAllowedOnMethod(sym))) {
   897                 warnUnchecked(env.tree.pos(),
   898                                   "unchecked.generic.array.creation",
   899                                   argtype);
   900             }
   901             Type elemtype = types.elemtype(argtype);
   902             switch (tree.getTag()) {
   903                 case APPLY:
   904                     ((JCMethodInvocation) tree).varargsElement = elemtype;
   905                     break;
   906                 case NEWCLASS:
   907                     ((JCNewClass) tree).varargsElement = elemtype;
   908                     break;
   909                 case REFERENCE:
   910                     ((JCMemberReference) tree).varargsElement = elemtype;
   911                     break;
   912                 default:
   913                     throw new AssertionError(""+tree);
   914             }
   915          }
   916          return owntype;
   917     }
   918     //where
   919         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   920             if (types.isConvertible(actual, formal, warn))
   921                 return;
   923             if (formal.isCompound()
   924                 && types.isSubtype(actual, types.supertype(formal))
   925                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   926                 return;
   927         }
   929         void checkAccessibleFunctionalDescriptor(DiagnosticPosition pos, Env<AttrContext> env, Type desc) {
   930             AccessChecker accessChecker = new AccessChecker(env);
   931             //check args accessibility (only if implicit parameter types)
   932             for (Type arg : desc.getParameterTypes()) {
   933                 if (!accessChecker.visit(arg)) {
   934                     log.error(pos, "cant.access.arg.type.in.functional.desc", arg);
   935                     return;
   936                 }
   937             }
   938             //check return type accessibility
   939             if (!accessChecker.visit(desc.getReturnType())) {
   940                 log.error(pos, "cant.access.return.in.functional.desc", desc.getReturnType());
   941                 return;
   942             }
   943             //check thrown types accessibility
   944             for (Type thrown : desc.getThrownTypes()) {
   945                 if (!accessChecker.visit(thrown)) {
   946                     log.error(pos, "cant.access.thrown.in.functional.desc", thrown);
   947                     return;
   948                 }
   949             }
   950         }
   952         class AccessChecker extends Types.UnaryVisitor<Boolean> {
   954             Env<AttrContext> env;
   956             AccessChecker(Env<AttrContext> env) {
   957                 this.env = env;
   958             }
   960             Boolean visit(List<Type> ts) {
   961                 for (Type t : ts) {
   962                     if (!visit(t))
   963                         return false;
   964                 }
   965                 return true;
   966             }
   968             public Boolean visitType(Type t, Void s) {
   969                 return true;
   970             }
   972             @Override
   973             public Boolean visitArrayType(ArrayType t, Void s) {
   974                 return visit(t.elemtype);
   975             }
   977             @Override
   978             public Boolean visitClassType(ClassType t, Void s) {
   979                 return rs.isAccessible(env, t, true) &&
   980                         visit(t.getTypeArguments());
   981             }
   983             @Override
   984             public Boolean visitWildcardType(WildcardType t, Void s) {
   985                 return visit(t.type);
   986             }
   987         };
   988     /**
   989      * Check that type 't' is a valid instantiation of a generic class
   990      * (see JLS 4.5)
   991      *
   992      * @param t class type to be checked
   993      * @return true if 't' is well-formed
   994      */
   995     public boolean checkValidGenericType(Type t) {
   996         return firstIncompatibleTypeArg(t) == null;
   997     }
   998     //WHERE
   999         private Type firstIncompatibleTypeArg(Type type) {
  1000             List<Type> formals = type.tsym.type.allparams();
  1001             List<Type> actuals = type.allparams();
  1002             List<Type> args = type.getTypeArguments();
  1003             List<Type> forms = type.tsym.type.getTypeArguments();
  1004             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
  1006             // For matching pairs of actual argument types `a' and
  1007             // formal type parameters with declared bound `b' ...
  1008             while (args.nonEmpty() && forms.nonEmpty()) {
  1009                 // exact type arguments needs to know their
  1010                 // bounds (for upper and lower bound
  1011                 // calculations).  So we create new bounds where
  1012                 // type-parameters are replaced with actuals argument types.
  1013                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
  1014                 args = args.tail;
  1015                 forms = forms.tail;
  1018             args = type.getTypeArguments();
  1019             List<Type> tvars_cap = types.substBounds(formals,
  1020                                       formals,
  1021                                       types.capture(type).allparams());
  1022             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
  1023                 // Let the actual arguments know their bound
  1024                 args.head.withTypeVar((TypeVar)tvars_cap.head);
  1025                 args = args.tail;
  1026                 tvars_cap = tvars_cap.tail;
  1029             args = type.getTypeArguments();
  1030             List<Type> bounds = bounds_buf.toList();
  1032             while (args.nonEmpty() && bounds.nonEmpty()) {
  1033                 Type actual = args.head;
  1034                 if (!isTypeArgErroneous(actual) &&
  1035                         !bounds.head.isErroneous() &&
  1036                         !checkExtends(actual, bounds.head)) {
  1037                     return args.head;
  1039                 args = args.tail;
  1040                 bounds = bounds.tail;
  1043             args = type.getTypeArguments();
  1044             bounds = bounds_buf.toList();
  1046             for (Type arg : types.capture(type).getTypeArguments()) {
  1047                 if (arg.hasTag(TYPEVAR) &&
  1048                         arg.getUpperBound().isErroneous() &&
  1049                         !bounds.head.isErroneous() &&
  1050                         !isTypeArgErroneous(args.head)) {
  1051                     return args.head;
  1053                 bounds = bounds.tail;
  1054                 args = args.tail;
  1057             return null;
  1059         //where
  1060         boolean isTypeArgErroneous(Type t) {
  1061             return isTypeArgErroneous.visit(t);
  1064         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
  1065             public Boolean visitType(Type t, Void s) {
  1066                 return t.isErroneous();
  1068             @Override
  1069             public Boolean visitTypeVar(TypeVar t, Void s) {
  1070                 return visit(t.getUpperBound());
  1072             @Override
  1073             public Boolean visitCapturedType(CapturedType t, Void s) {
  1074                 return visit(t.getUpperBound()) ||
  1075                         visit(t.getLowerBound());
  1077             @Override
  1078             public Boolean visitWildcardType(WildcardType t, Void s) {
  1079                 return visit(t.type);
  1081         };
  1083     /** Check that given modifiers are legal for given symbol and
  1084      *  return modifiers together with any implicit modififiers for that symbol.
  1085      *  Warning: we can't use flags() here since this method
  1086      *  is called during class enter, when flags() would cause a premature
  1087      *  completion.
  1088      *  @param pos           Position to be used for error reporting.
  1089      *  @param flags         The set of modifiers given in a definition.
  1090      *  @param sym           The defined symbol.
  1091      */
  1092     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
  1093         long mask;
  1094         long implicit = 0;
  1095         switch (sym.kind) {
  1096         case VAR:
  1097             if (sym.owner.kind != TYP)
  1098                 mask = LocalVarFlags;
  1099             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1100                 mask = implicit = InterfaceVarFlags;
  1101             else
  1102                 mask = VarFlags;
  1103             break;
  1104         case MTH:
  1105             if (sym.name == names.init) {
  1106                 if ((sym.owner.flags_field & ENUM) != 0) {
  1107                     // enum constructors cannot be declared public or
  1108                     // protected and must be implicitly or explicitly
  1109                     // private
  1110                     implicit = PRIVATE;
  1111                     mask = PRIVATE;
  1112                 } else
  1113                     mask = ConstructorFlags;
  1114             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
  1115                 if ((flags & DEFAULT) != 0) {
  1116                     mask = InterfaceDefaultMethodMask;
  1117                     implicit = PUBLIC;
  1118                 } else {
  1119                     mask = implicit = InterfaceMethodFlags;
  1122             else {
  1123                 mask = MethodFlags;
  1125             // Imply STRICTFP if owner has STRICTFP set.
  1126             if (((flags|implicit) & Flags.ABSTRACT) == 0)
  1127               implicit |= sym.owner.flags_field & STRICTFP;
  1128             break;
  1129         case TYP:
  1130             if (sym.isLocal()) {
  1131                 mask = LocalClassFlags;
  1132                 if (sym.name.isEmpty()) { // Anonymous class
  1133                     // Anonymous classes in static methods are themselves static;
  1134                     // that's why we admit STATIC here.
  1135                     mask |= STATIC;
  1136                     // JLS: Anonymous classes are final.
  1137                     implicit |= FINAL;
  1139                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1140                     (flags & ENUM) != 0)
  1141                     log.error(pos, "enums.must.be.static");
  1142             } else if (sym.owner.kind == TYP) {
  1143                 mask = MemberClassFlags;
  1144                 if (sym.owner.owner.kind == PCK ||
  1145                     (sym.owner.flags_field & STATIC) != 0)
  1146                     mask |= STATIC;
  1147                 else if ((flags & ENUM) != 0)
  1148                     log.error(pos, "enums.must.be.static");
  1149                 // Nested interfaces and enums are always STATIC (Spec ???)
  1150                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1151             } else {
  1152                 mask = ClassFlags;
  1154             // Interfaces are always ABSTRACT
  1155             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1157             if ((flags & ENUM) != 0) {
  1158                 // enums can't be declared abstract or final
  1159                 mask &= ~(ABSTRACT | FINAL);
  1160                 implicit |= implicitEnumFinalFlag(tree);
  1162             // Imply STRICTFP if owner has STRICTFP set.
  1163             implicit |= sym.owner.flags_field & STRICTFP;
  1164             break;
  1165         default:
  1166             throw new AssertionError();
  1168         long illegal = flags & ExtendedStandardFlags & ~mask;
  1169         if (illegal != 0) {
  1170             if ((illegal & INTERFACE) != 0) {
  1171                 log.error(pos, "intf.not.allowed.here");
  1172                 mask |= INTERFACE;
  1174             else {
  1175                 log.error(pos,
  1176                           "mod.not.allowed.here", asFlagSet(illegal));
  1179         else if ((sym.kind == TYP ||
  1180                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1181                   // in the presence of inner classes. Should it be deleted here?
  1182                   checkDisjoint(pos, flags,
  1183                                 ABSTRACT,
  1184                                 PRIVATE | STATIC | DEFAULT))
  1185                  &&
  1186                  checkDisjoint(pos, flags,
  1187                                ABSTRACT | INTERFACE,
  1188                                FINAL | NATIVE | SYNCHRONIZED)
  1189                  &&
  1190                  checkDisjoint(pos, flags,
  1191                                PUBLIC,
  1192                                PRIVATE | PROTECTED)
  1193                  &&
  1194                  checkDisjoint(pos, flags,
  1195                                PRIVATE,
  1196                                PUBLIC | PROTECTED)
  1197                  &&
  1198                  checkDisjoint(pos, flags,
  1199                                FINAL,
  1200                                VOLATILE)
  1201                  &&
  1202                  (sym.kind == TYP ||
  1203                   checkDisjoint(pos, flags,
  1204                                 ABSTRACT | NATIVE,
  1205                                 STRICTFP))) {
  1206             // skip
  1208         return flags & (mask | ~ExtendedStandardFlags) | implicit;
  1212     /** Determine if this enum should be implicitly final.
  1214      *  If the enum has no specialized enum contants, it is final.
  1216      *  If the enum does have specialized enum contants, it is
  1217      *  <i>not</i> final.
  1218      */
  1219     private long implicitEnumFinalFlag(JCTree tree) {
  1220         if (!tree.hasTag(CLASSDEF)) return 0;
  1221         class SpecialTreeVisitor extends JCTree.Visitor {
  1222             boolean specialized;
  1223             SpecialTreeVisitor() {
  1224                 this.specialized = false;
  1225             };
  1227             @Override
  1228             public void visitTree(JCTree tree) { /* no-op */ }
  1230             @Override
  1231             public void visitVarDef(JCVariableDecl tree) {
  1232                 if ((tree.mods.flags & ENUM) != 0) {
  1233                     if (tree.init instanceof JCNewClass &&
  1234                         ((JCNewClass) tree.init).def != null) {
  1235                         specialized = true;
  1241         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1242         JCClassDecl cdef = (JCClassDecl) tree;
  1243         for (JCTree defs: cdef.defs) {
  1244             defs.accept(sts);
  1245             if (sts.specialized) return 0;
  1247         return FINAL;
  1250 /* *************************************************************************
  1251  * Type Validation
  1252  **************************************************************************/
  1254     /** Validate a type expression. That is,
  1255      *  check that all type arguments of a parametric type are within
  1256      *  their bounds. This must be done in a second phase after type attributon
  1257      *  since a class might have a subclass as type parameter bound. E.g:
  1259      *  <pre>{@code
  1260      *  class B<A extends C> { ... }
  1261      *  class C extends B<C> { ... }
  1262      *  }</pre>
  1264      *  and we can't make sure that the bound is already attributed because
  1265      *  of possible cycles.
  1267      * Visitor method: Validate a type expression, if it is not null, catching
  1268      *  and reporting any completion failures.
  1269      */
  1270     void validate(JCTree tree, Env<AttrContext> env) {
  1271         validate(tree, env, true);
  1273     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1274         new Validator(env).validateTree(tree, checkRaw, true);
  1277     /** Visitor method: Validate a list of type expressions.
  1278      */
  1279     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1280         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1281             validate(l.head, env);
  1284     /** A visitor class for type validation.
  1285      */
  1286     class Validator extends JCTree.Visitor {
  1288         boolean isOuter;
  1289         Env<AttrContext> env;
  1291         Validator(Env<AttrContext> env) {
  1292             this.env = env;
  1295         @Override
  1296         public void visitTypeArray(JCArrayTypeTree tree) {
  1297             tree.elemtype.accept(this);
  1300         @Override
  1301         public void visitTypeApply(JCTypeApply tree) {
  1302             if (tree.type.hasTag(CLASS)) {
  1303                 List<JCExpression> args = tree.arguments;
  1304                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1306                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1307                 if (incompatibleArg != null) {
  1308                     for (JCTree arg : tree.arguments) {
  1309                         if (arg.type == incompatibleArg) {
  1310                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1312                         forms = forms.tail;
  1316                 forms = tree.type.tsym.type.getTypeArguments();
  1318                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1320                 // For matching pairs of actual argument types `a' and
  1321                 // formal type parameters with declared bound `b' ...
  1322                 while (args.nonEmpty() && forms.nonEmpty()) {
  1323                     validateTree(args.head,
  1324                             !(isOuter && is_java_lang_Class),
  1325                             false);
  1326                     args = args.tail;
  1327                     forms = forms.tail;
  1330                 // Check that this type is either fully parameterized, or
  1331                 // not parameterized at all.
  1332                 if (tree.type.getEnclosingType().isRaw())
  1333                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1334                 if (tree.clazz.hasTag(SELECT))
  1335                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1339         @Override
  1340         public void visitTypeParameter(JCTypeParameter tree) {
  1341             validateTrees(tree.bounds, true, isOuter);
  1342             checkClassBounds(tree.pos(), tree.type);
  1345         @Override
  1346         public void visitWildcard(JCWildcard tree) {
  1347             if (tree.inner != null)
  1348                 validateTree(tree.inner, true, isOuter);
  1351         @Override
  1352         public void visitSelect(JCFieldAccess tree) {
  1353             if (tree.type.hasTag(CLASS)) {
  1354                 visitSelectInternal(tree);
  1356                 // Check that this type is either fully parameterized, or
  1357                 // not parameterized at all.
  1358                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1359                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1363         public void visitSelectInternal(JCFieldAccess tree) {
  1364             if (tree.type.tsym.isStatic() &&
  1365                 tree.selected.type.isParameterized()) {
  1366                 // The enclosing type is not a class, so we are
  1367                 // looking at a static member type.  However, the
  1368                 // qualifying expression is parameterized.
  1369                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1370             } else {
  1371                 // otherwise validate the rest of the expression
  1372                 tree.selected.accept(this);
  1376         /** Default visitor method: do nothing.
  1377          */
  1378         @Override
  1379         public void visitTree(JCTree tree) {
  1382         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1383             try {
  1384                 if (tree != null) {
  1385                     this.isOuter = isOuter;
  1386                     tree.accept(this);
  1387                     if (checkRaw)
  1388                         checkRaw(tree, env);
  1390             } catch (CompletionFailure ex) {
  1391                 completionError(tree.pos(), ex);
  1395         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1396             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1397                 validateTree(l.head, checkRaw, isOuter);
  1400         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1401             if (lint.isEnabled(LintCategory.RAW) &&
  1402                 tree.type.hasTag(CLASS) &&
  1403                 !TreeInfo.isDiamond(tree) &&
  1404                 !withinAnonConstr(env) &&
  1405                 tree.type.isRaw()) {
  1406                 log.warning(LintCategory.RAW,
  1407                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1411         boolean withinAnonConstr(Env<AttrContext> env) {
  1412             return env.enclClass.name.isEmpty() &&
  1413                     env.enclMethod != null && env.enclMethod.name == names.init;
  1417 /* *************************************************************************
  1418  * Exception checking
  1419  **************************************************************************/
  1421     /* The following methods treat classes as sets that contain
  1422      * the class itself and all their subclasses
  1423      */
  1425     /** Is given type a subtype of some of the types in given list?
  1426      */
  1427     boolean subset(Type t, List<Type> ts) {
  1428         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1429             if (types.isSubtype(t, l.head)) return true;
  1430         return false;
  1433     /** Is given type a subtype or supertype of
  1434      *  some of the types in given list?
  1435      */
  1436     boolean intersects(Type t, List<Type> ts) {
  1437         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1438             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1439         return false;
  1442     /** Add type set to given type list, unless it is a subclass of some class
  1443      *  in the list.
  1444      */
  1445     List<Type> incl(Type t, List<Type> ts) {
  1446         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1449     /** Remove type set from type set list.
  1450      */
  1451     List<Type> excl(Type t, List<Type> ts) {
  1452         if (ts.isEmpty()) {
  1453             return ts;
  1454         } else {
  1455             List<Type> ts1 = excl(t, ts.tail);
  1456             if (types.isSubtype(ts.head, t)) return ts1;
  1457             else if (ts1 == ts.tail) return ts;
  1458             else return ts1.prepend(ts.head);
  1462     /** Form the union of two type set lists.
  1463      */
  1464     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1465         List<Type> ts = ts1;
  1466         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1467             ts = incl(l.head, ts);
  1468         return ts;
  1471     /** Form the difference of two type lists.
  1472      */
  1473     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1474         List<Type> ts = ts1;
  1475         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1476             ts = excl(l.head, ts);
  1477         return ts;
  1480     /** Form the intersection of two type lists.
  1481      */
  1482     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1483         List<Type> ts = List.nil();
  1484         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1485             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1486         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1487             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1488         return ts;
  1491     /** Is exc an exception symbol that need not be declared?
  1492      */
  1493     boolean isUnchecked(ClassSymbol exc) {
  1494         return
  1495             exc.kind == ERR ||
  1496             exc.isSubClass(syms.errorType.tsym, types) ||
  1497             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1500     /** Is exc an exception type that need not be declared?
  1501      */
  1502     boolean isUnchecked(Type exc) {
  1503         return
  1504             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
  1505             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
  1506             exc.hasTag(BOT);
  1509     /** Same, but handling completion failures.
  1510      */
  1511     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1512         try {
  1513             return isUnchecked(exc);
  1514         } catch (CompletionFailure ex) {
  1515             completionError(pos, ex);
  1516             return true;
  1520     /** Is exc handled by given exception list?
  1521      */
  1522     boolean isHandled(Type exc, List<Type> handled) {
  1523         return isUnchecked(exc) || subset(exc, handled);
  1526     /** Return all exceptions in thrown list that are not in handled list.
  1527      *  @param thrown     The list of thrown exceptions.
  1528      *  @param handled    The list of handled exceptions.
  1529      */
  1530     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1531         List<Type> unhandled = List.nil();
  1532         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1533             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1534         return unhandled;
  1537 /* *************************************************************************
  1538  * Overriding/Implementation checking
  1539  **************************************************************************/
  1541     /** The level of access protection given by a flag set,
  1542      *  where PRIVATE is highest and PUBLIC is lowest.
  1543      */
  1544     static int protection(long flags) {
  1545         switch ((short)(flags & AccessFlags)) {
  1546         case PRIVATE: return 3;
  1547         case PROTECTED: return 1;
  1548         default:
  1549         case PUBLIC: return 0;
  1550         case 0: return 2;
  1554     /** A customized "cannot override" error message.
  1555      *  @param m      The overriding method.
  1556      *  @param other  The overridden method.
  1557      *  @return       An internationalized string.
  1558      */
  1559     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1560         String key;
  1561         if ((other.owner.flags() & INTERFACE) == 0)
  1562             key = "cant.override";
  1563         else if ((m.owner.flags() & INTERFACE) == 0)
  1564             key = "cant.implement";
  1565         else
  1566             key = "clashes.with";
  1567         return diags.fragment(key, m, m.location(), other, other.location());
  1570     /** A customized "override" warning message.
  1571      *  @param m      The overriding method.
  1572      *  @param other  The overridden method.
  1573      *  @return       An internationalized string.
  1574      */
  1575     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1576         String key;
  1577         if ((other.owner.flags() & INTERFACE) == 0)
  1578             key = "unchecked.override";
  1579         else if ((m.owner.flags() & INTERFACE) == 0)
  1580             key = "unchecked.implement";
  1581         else
  1582             key = "unchecked.clash.with";
  1583         return diags.fragment(key, m, m.location(), other, other.location());
  1586     /** A customized "override" warning message.
  1587      *  @param m      The overriding method.
  1588      *  @param other  The overridden method.
  1589      *  @return       An internationalized string.
  1590      */
  1591     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1592         String key;
  1593         if ((other.owner.flags() & INTERFACE) == 0)
  1594             key = "varargs.override";
  1595         else  if ((m.owner.flags() & INTERFACE) == 0)
  1596             key = "varargs.implement";
  1597         else
  1598             key = "varargs.clash.with";
  1599         return diags.fragment(key, m, m.location(), other, other.location());
  1602     /** Check that this method conforms with overridden method 'other'.
  1603      *  where `origin' is the class where checking started.
  1604      *  Complications:
  1605      *  (1) Do not check overriding of synthetic methods
  1606      *      (reason: they might be final).
  1607      *      todo: check whether this is still necessary.
  1608      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1609      *      than the method it implements. Augment the proxy methods with the
  1610      *      undeclared exceptions in this case.
  1611      *  (3) When generics are enabled, admit the case where an interface proxy
  1612      *      has a result type
  1613      *      extended by the result type of the method it implements.
  1614      *      Change the proxies result type to the smaller type in this case.
  1616      *  @param tree         The tree from which positions
  1617      *                      are extracted for errors.
  1618      *  @param m            The overriding method.
  1619      *  @param other        The overridden method.
  1620      *  @param origin       The class of which the overriding method
  1621      *                      is a member.
  1622      */
  1623     void checkOverride(JCTree tree,
  1624                        MethodSymbol m,
  1625                        MethodSymbol other,
  1626                        ClassSymbol origin) {
  1627         // Don't check overriding of synthetic methods or by bridge methods.
  1628         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1629             return;
  1632         // Error if static method overrides instance method (JLS 8.4.6.2).
  1633         if ((m.flags() & STATIC) != 0 &&
  1634                    (other.flags() & STATIC) == 0) {
  1635             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1636                       cannotOverride(m, other));
  1637             return;
  1640         // Error if instance method overrides static or final
  1641         // method (JLS 8.4.6.1).
  1642         if ((other.flags() & FINAL) != 0 ||
  1643                  (m.flags() & STATIC) == 0 &&
  1644                  (other.flags() & STATIC) != 0) {
  1645             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1646                       cannotOverride(m, other),
  1647                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1648             return;
  1651         if ((m.owner.flags() & ANNOTATION) != 0) {
  1652             // handled in validateAnnotationMethod
  1653             return;
  1656         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1657         if ((origin.flags() & INTERFACE) == 0 &&
  1658                  protection(m.flags()) > protection(other.flags())) {
  1659             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1660                       cannotOverride(m, other),
  1661                       other.flags() == 0 ?
  1662                           Flag.PACKAGE :
  1663                           asFlagSet(other.flags() & AccessFlags));
  1664             return;
  1667         Type mt = types.memberType(origin.type, m);
  1668         Type ot = types.memberType(origin.type, other);
  1669         // Error if overriding result type is different
  1670         // (or, in the case of generics mode, not a subtype) of
  1671         // overridden result type. We have to rename any type parameters
  1672         // before comparing types.
  1673         List<Type> mtvars = mt.getTypeArguments();
  1674         List<Type> otvars = ot.getTypeArguments();
  1675         Type mtres = mt.getReturnType();
  1676         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1678         overrideWarner.clear();
  1679         boolean resultTypesOK =
  1680             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1681         if (!resultTypesOK) {
  1682             if (!allowCovariantReturns &&
  1683                 m.owner != origin &&
  1684                 m.owner.isSubClass(other.owner, types)) {
  1685                 // allow limited interoperability with covariant returns
  1686             } else {
  1687                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1688                           "override.incompatible.ret",
  1689                           cannotOverride(m, other),
  1690                           mtres, otres);
  1691                 return;
  1693         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1694             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1695                     "override.unchecked.ret",
  1696                     uncheckedOverrides(m, other),
  1697                     mtres, otres);
  1700         // Error if overriding method throws an exception not reported
  1701         // by overridden method.
  1702         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1703         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1704         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1705         if (unhandledErased.nonEmpty()) {
  1706             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1707                       "override.meth.doesnt.throw",
  1708                       cannotOverride(m, other),
  1709                       unhandledUnerased.head);
  1710             return;
  1712         else if (unhandledUnerased.nonEmpty()) {
  1713             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1714                           "override.unchecked.thrown",
  1715                          cannotOverride(m, other),
  1716                          unhandledUnerased.head);
  1717             return;
  1720         // Optional warning if varargs don't agree
  1721         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1722             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1723             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1724                         ((m.flags() & Flags.VARARGS) != 0)
  1725                         ? "override.varargs.missing"
  1726                         : "override.varargs.extra",
  1727                         varargsOverrides(m, other));
  1730         // Warn if instance method overrides bridge method (compiler spec ??)
  1731         if ((other.flags() & BRIDGE) != 0) {
  1732             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1733                         uncheckedOverrides(m, other));
  1736         // Warn if a deprecated method overridden by a non-deprecated one.
  1737         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1738             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1741     // where
  1742         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1743             // If the method, m, is defined in an interface, then ignore the issue if the method
  1744             // is only inherited via a supertype and also implemented in the supertype,
  1745             // because in that case, we will rediscover the issue when examining the method
  1746             // in the supertype.
  1747             // If the method, m, is not defined in an interface, then the only time we need to
  1748             // address the issue is when the method is the supertype implemementation: any other
  1749             // case, we will have dealt with when examining the supertype classes
  1750             ClassSymbol mc = m.enclClass();
  1751             Type st = types.supertype(origin.type);
  1752             if (!st.hasTag(CLASS))
  1753                 return true;
  1754             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1756             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1757                 List<Type> intfs = types.interfaces(origin.type);
  1758                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1760             else
  1761                 return (stimpl != m);
  1765     // used to check if there were any unchecked conversions
  1766     Warner overrideWarner = new Warner();
  1768     /** Check that a class does not inherit two concrete methods
  1769      *  with the same signature.
  1770      *  @param pos          Position to be used for error reporting.
  1771      *  @param site         The class type to be checked.
  1772      */
  1773     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1774         Type sup = types.supertype(site);
  1775         if (!sup.hasTag(CLASS)) return;
  1777         for (Type t1 = sup;
  1778              t1.tsym.type.isParameterized();
  1779              t1 = types.supertype(t1)) {
  1780             for (Scope.Entry e1 = t1.tsym.members().elems;
  1781                  e1 != null;
  1782                  e1 = e1.sibling) {
  1783                 Symbol s1 = e1.sym;
  1784                 if (s1.kind != MTH ||
  1785                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1786                     !s1.isInheritedIn(site.tsym, types) ||
  1787                     ((MethodSymbol)s1).implementation(site.tsym,
  1788                                                       types,
  1789                                                       true) != s1)
  1790                     continue;
  1791                 Type st1 = types.memberType(t1, s1);
  1792                 int s1ArgsLength = st1.getParameterTypes().length();
  1793                 if (st1 == s1.type) continue;
  1795                 for (Type t2 = sup;
  1796                      t2.hasTag(CLASS);
  1797                      t2 = types.supertype(t2)) {
  1798                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1799                          e2.scope != null;
  1800                          e2 = e2.next()) {
  1801                         Symbol s2 = e2.sym;
  1802                         if (s2 == s1 ||
  1803                             s2.kind != MTH ||
  1804                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1805                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1806                             !s2.isInheritedIn(site.tsym, types) ||
  1807                             ((MethodSymbol)s2).implementation(site.tsym,
  1808                                                               types,
  1809                                                               true) != s2)
  1810                             continue;
  1811                         Type st2 = types.memberType(t2, s2);
  1812                         if (types.overrideEquivalent(st1, st2))
  1813                             log.error(pos, "concrete.inheritance.conflict",
  1814                                       s1, t1, s2, t2, sup);
  1821     /** Check that classes (or interfaces) do not each define an abstract
  1822      *  method with same name and arguments but incompatible return types.
  1823      *  @param pos          Position to be used for error reporting.
  1824      *  @param t1           The first argument type.
  1825      *  @param t2           The second argument type.
  1826      */
  1827     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1828                                             Type t1,
  1829                                             Type t2) {
  1830         return checkCompatibleAbstracts(pos, t1, t2,
  1831                                         types.makeCompoundType(t1, t2));
  1834     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1835                                             Type t1,
  1836                                             Type t2,
  1837                                             Type site) {
  1838         return firstIncompatibility(pos, t1, t2, site) == null;
  1841     /** Return the first method which is defined with same args
  1842      *  but different return types in two given interfaces, or null if none
  1843      *  exists.
  1844      *  @param t1     The first type.
  1845      *  @param t2     The second type.
  1846      *  @param site   The most derived type.
  1847      *  @returns symbol from t2 that conflicts with one in t1.
  1848      */
  1849     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1850         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1851         closure(t1, interfaces1);
  1852         Map<TypeSymbol,Type> interfaces2;
  1853         if (t1 == t2)
  1854             interfaces2 = interfaces1;
  1855         else
  1856             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1858         for (Type t3 : interfaces1.values()) {
  1859             for (Type t4 : interfaces2.values()) {
  1860                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1861                 if (s != null) return s;
  1864         return null;
  1867     /** Compute all the supertypes of t, indexed by type symbol. */
  1868     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1869         if (!t.hasTag(CLASS)) return;
  1870         if (typeMap.put(t.tsym, t) == null) {
  1871             closure(types.supertype(t), typeMap);
  1872             for (Type i : types.interfaces(t))
  1873                 closure(i, typeMap);
  1877     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1878     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1879         if (!t.hasTag(CLASS)) return;
  1880         if (typesSkip.get(t.tsym) != null) return;
  1881         if (typeMap.put(t.tsym, t) == null) {
  1882             closure(types.supertype(t), typesSkip, typeMap);
  1883             for (Type i : types.interfaces(t))
  1884                 closure(i, typesSkip, typeMap);
  1888     /** Return the first method in t2 that conflicts with a method from t1. */
  1889     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1890         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1891             Symbol s1 = e1.sym;
  1892             Type st1 = null;
  1893             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1894             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1895             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1896             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1897                 Symbol s2 = e2.sym;
  1898                 if (s1 == s2) continue;
  1899                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1900                 if (st1 == null) st1 = types.memberType(t1, s1);
  1901                 Type st2 = types.memberType(t2, s2);
  1902                 if (types.overrideEquivalent(st1, st2)) {
  1903                     List<Type> tvars1 = st1.getTypeArguments();
  1904                     List<Type> tvars2 = st2.getTypeArguments();
  1905                     Type rt1 = st1.getReturnType();
  1906                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1907                     boolean compat =
  1908                         types.isSameType(rt1, rt2) ||
  1909                         !rt1.isPrimitiveOrVoid() &&
  1910                         !rt2.isPrimitiveOrVoid() &&
  1911                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1912                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1913                          checkCommonOverriderIn(s1,s2,site);
  1914                     if (!compat) {
  1915                         log.error(pos, "types.incompatible.diff.ret",
  1916                             t1, t2, s2.name +
  1917                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1918                         return s2;
  1920                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1921                         !checkCommonOverriderIn(s1, s2, site)) {
  1922                     log.error(pos,
  1923                             "name.clash.same.erasure.no.override",
  1924                             s1, s1.location(),
  1925                             s2, s2.location());
  1926                     return s2;
  1930         return null;
  1932     //WHERE
  1933     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1934         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1935         Type st1 = types.memberType(site, s1);
  1936         Type st2 = types.memberType(site, s2);
  1937         closure(site, supertypes);
  1938         for (Type t : supertypes.values()) {
  1939             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1940                 Symbol s3 = e.sym;
  1941                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1942                 Type st3 = types.memberType(site,s3);
  1943                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1944                     if (s3.owner == site.tsym) {
  1945                         return true;
  1947                     List<Type> tvars1 = st1.getTypeArguments();
  1948                     List<Type> tvars2 = st2.getTypeArguments();
  1949                     List<Type> tvars3 = st3.getTypeArguments();
  1950                     Type rt1 = st1.getReturnType();
  1951                     Type rt2 = st2.getReturnType();
  1952                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1953                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1954                     boolean compat =
  1955                         !rt13.isPrimitiveOrVoid() &&
  1956                         !rt23.isPrimitiveOrVoid() &&
  1957                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1958                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1959                     if (compat)
  1960                         return true;
  1964         return false;
  1967     /** Check that a given method conforms with any method it overrides.
  1968      *  @param tree         The tree from which positions are extracted
  1969      *                      for errors.
  1970      *  @param m            The overriding method.
  1971      */
  1972     void checkOverride(JCTree tree, MethodSymbol m) {
  1973         ClassSymbol origin = (ClassSymbol)m.owner;
  1974         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1975             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1976                 log.error(tree.pos(), "enum.no.finalize");
  1977                 return;
  1979         for (Type t = origin.type; t.hasTag(CLASS);
  1980              t = types.supertype(t)) {
  1981             if (t != origin.type) {
  1982                 checkOverride(tree, t, origin, m);
  1984             for (Type t2 : types.interfaces(t)) {
  1985                 checkOverride(tree, t2, origin, m);
  1990     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1991         TypeSymbol c = site.tsym;
  1992         Scope.Entry e = c.members().lookup(m.name);
  1993         while (e.scope != null) {
  1994             if (m.overrides(e.sym, origin, types, false)) {
  1995                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1996                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1999             e = e.next();
  2003     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  2004         ClashFilter cf = new ClashFilter(origin.type);
  2005         return (cf.accepts(s1) &&
  2006                 cf.accepts(s2) &&
  2007                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  2011     /** Check that all abstract members of given class have definitions.
  2012      *  @param pos          Position to be used for error reporting.
  2013      *  @param c            The class.
  2014      */
  2015     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  2016         try {
  2017             MethodSymbol undef = firstUndef(c, c);
  2018             if (undef != null) {
  2019                 if ((c.flags() & ENUM) != 0 &&
  2020                     types.supertype(c.type).tsym == syms.enumSym &&
  2021                     (c.flags() & FINAL) == 0) {
  2022                     // add the ABSTRACT flag to an enum
  2023                     c.flags_field |= ABSTRACT;
  2024                 } else {
  2025                     MethodSymbol undef1 =
  2026                         new MethodSymbol(undef.flags(), undef.name,
  2027                                          types.memberType(c.type, undef), undef.owner);
  2028                     log.error(pos, "does.not.override.abstract",
  2029                               c, undef1, undef1.location());
  2032         } catch (CompletionFailure ex) {
  2033             completionError(pos, ex);
  2036 //where
  2037         /** Return first abstract member of class `c' that is not defined
  2038          *  in `impl', null if there is none.
  2039          */
  2040         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  2041             MethodSymbol undef = null;
  2042             // Do not bother to search in classes that are not abstract,
  2043             // since they cannot have abstract members.
  2044             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2045                 Scope s = c.members();
  2046                 for (Scope.Entry e = s.elems;
  2047                      undef == null && e != null;
  2048                      e = e.sibling) {
  2049                     if (e.sym.kind == MTH &&
  2050                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  2051                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  2052                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  2053                         if (implmeth == null || implmeth == absmeth)
  2054                             undef = absmeth;
  2057                 if (undef == null) {
  2058                     Type st = types.supertype(c.type);
  2059                     if (st.hasTag(CLASS))
  2060                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  2062                 for (List<Type> l = types.interfaces(c.type);
  2063                      undef == null && l.nonEmpty();
  2064                      l = l.tail) {
  2065                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  2068             return undef;
  2071     void checkNonCyclicDecl(JCClassDecl tree) {
  2072         CycleChecker cc = new CycleChecker();
  2073         cc.scan(tree);
  2074         if (!cc.errorFound && !cc.partialCheck) {
  2075             tree.sym.flags_field |= ACYCLIC;
  2079     class CycleChecker extends TreeScanner {
  2081         List<Symbol> seenClasses = List.nil();
  2082         boolean errorFound = false;
  2083         boolean partialCheck = false;
  2085         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  2086             if (sym != null && sym.kind == TYP) {
  2087                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  2088                 if (classEnv != null) {
  2089                     DiagnosticSource prevSource = log.currentSource();
  2090                     try {
  2091                         log.useSource(classEnv.toplevel.sourcefile);
  2092                         scan(classEnv.tree);
  2094                     finally {
  2095                         log.useSource(prevSource.getFile());
  2097                 } else if (sym.kind == TYP) {
  2098                     checkClass(pos, sym, List.<JCTree>nil());
  2100             } else {
  2101                 //not completed yet
  2102                 partialCheck = true;
  2106         @Override
  2107         public void visitSelect(JCFieldAccess tree) {
  2108             super.visitSelect(tree);
  2109             checkSymbol(tree.pos(), tree.sym);
  2112         @Override
  2113         public void visitIdent(JCIdent tree) {
  2114             checkSymbol(tree.pos(), tree.sym);
  2117         @Override
  2118         public void visitTypeApply(JCTypeApply tree) {
  2119             scan(tree.clazz);
  2122         @Override
  2123         public void visitTypeArray(JCArrayTypeTree tree) {
  2124             scan(tree.elemtype);
  2127         @Override
  2128         public void visitClassDef(JCClassDecl tree) {
  2129             List<JCTree> supertypes = List.nil();
  2130             if (tree.getExtendsClause() != null) {
  2131                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2133             if (tree.getImplementsClause() != null) {
  2134                 for (JCTree intf : tree.getImplementsClause()) {
  2135                     supertypes = supertypes.prepend(intf);
  2138             checkClass(tree.pos(), tree.sym, supertypes);
  2141         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2142             if ((c.flags_field & ACYCLIC) != 0)
  2143                 return;
  2144             if (seenClasses.contains(c)) {
  2145                 errorFound = true;
  2146                 noteCyclic(pos, (ClassSymbol)c);
  2147             } else if (!c.type.isErroneous()) {
  2148                 try {
  2149                     seenClasses = seenClasses.prepend(c);
  2150                     if (c.type.hasTag(CLASS)) {
  2151                         if (supertypes.nonEmpty()) {
  2152                             scan(supertypes);
  2154                         else {
  2155                             ClassType ct = (ClassType)c.type;
  2156                             if (ct.supertype_field == null ||
  2157                                     ct.interfaces_field == null) {
  2158                                 //not completed yet
  2159                                 partialCheck = true;
  2160                                 return;
  2162                             checkSymbol(pos, ct.supertype_field.tsym);
  2163                             for (Type intf : ct.interfaces_field) {
  2164                                 checkSymbol(pos, intf.tsym);
  2167                         if (c.owner.kind == TYP) {
  2168                             checkSymbol(pos, c.owner);
  2171                 } finally {
  2172                     seenClasses = seenClasses.tail;
  2178     /** Check for cyclic references. Issue an error if the
  2179      *  symbol of the type referred to has a LOCKED flag set.
  2181      *  @param pos      Position to be used for error reporting.
  2182      *  @param t        The type referred to.
  2183      */
  2184     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2185         checkNonCyclicInternal(pos, t);
  2189     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2190         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2193     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2194         final TypeVar tv;
  2195         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2196             return;
  2197         if (seen.contains(t)) {
  2198             tv = (TypeVar)t;
  2199             tv.bound = types.createErrorType(t);
  2200             log.error(pos, "cyclic.inheritance", t);
  2201         } else if (t.hasTag(TYPEVAR)) {
  2202             tv = (TypeVar)t;
  2203             seen = seen.prepend(tv);
  2204             for (Type b : types.getBounds(tv))
  2205                 checkNonCyclic1(pos, b, seen);
  2209     /** Check for cyclic references. Issue an error if the
  2210      *  symbol of the type referred to has a LOCKED flag set.
  2212      *  @param pos      Position to be used for error reporting.
  2213      *  @param t        The type referred to.
  2214      *  @returns        True if the check completed on all attributed classes
  2215      */
  2216     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2217         boolean complete = true; // was the check complete?
  2218         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2219         Symbol c = t.tsym;
  2220         if ((c.flags_field & ACYCLIC) != 0) return true;
  2222         if ((c.flags_field & LOCKED) != 0) {
  2223             noteCyclic(pos, (ClassSymbol)c);
  2224         } else if (!c.type.isErroneous()) {
  2225             try {
  2226                 c.flags_field |= LOCKED;
  2227                 if (c.type.hasTag(CLASS)) {
  2228                     ClassType clazz = (ClassType)c.type;
  2229                     if (clazz.interfaces_field != null)
  2230                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2231                             complete &= checkNonCyclicInternal(pos, l.head);
  2232                     if (clazz.supertype_field != null) {
  2233                         Type st = clazz.supertype_field;
  2234                         if (st != null && st.hasTag(CLASS))
  2235                             complete &= checkNonCyclicInternal(pos, st);
  2237                     if (c.owner.kind == TYP)
  2238                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2240             } finally {
  2241                 c.flags_field &= ~LOCKED;
  2244         if (complete)
  2245             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2246         if (complete) c.flags_field |= ACYCLIC;
  2247         return complete;
  2250     /** Note that we found an inheritance cycle. */
  2251     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2252         log.error(pos, "cyclic.inheritance", c);
  2253         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2254             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2255         Type st = types.supertype(c.type);
  2256         if (st.hasTag(CLASS))
  2257             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2258         c.type = types.createErrorType(c, c.type);
  2259         c.flags_field |= ACYCLIC;
  2262     /** Check that all methods which implement some
  2263      *  method conform to the method they implement.
  2264      *  @param tree         The class definition whose members are checked.
  2265      */
  2266     void checkImplementations(JCClassDecl tree) {
  2267         checkImplementations(tree, tree.sym);
  2269 //where
  2270         /** Check that all methods which implement some
  2271          *  method in `ic' conform to the method they implement.
  2272          */
  2273         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2274             ClassSymbol origin = tree.sym;
  2275             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2276                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2277                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2278                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2279                         if (e.sym.kind == MTH &&
  2280                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2281                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2282                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2283                             if (implmeth != null && implmeth != absmeth &&
  2284                                 (implmeth.owner.flags() & INTERFACE) ==
  2285                                 (origin.flags() & INTERFACE)) {
  2286                                 // don't check if implmeth is in a class, yet
  2287                                 // origin is an interface. This case arises only
  2288                                 // if implmeth is declared in Object. The reason is
  2289                                 // that interfaces really don't inherit from
  2290                                 // Object it's just that the compiler represents
  2291                                 // things that way.
  2292                                 checkOverride(tree, implmeth, absmeth, origin);
  2300     /** Check that all abstract methods implemented by a class are
  2301      *  mutually compatible.
  2302      *  @param pos          Position to be used for error reporting.
  2303      *  @param c            The class whose interfaces are checked.
  2304      */
  2305     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2306         List<Type> supertypes = types.interfaces(c);
  2307         Type supertype = types.supertype(c);
  2308         if (supertype.hasTag(CLASS) &&
  2309             (supertype.tsym.flags() & ABSTRACT) != 0)
  2310             supertypes = supertypes.prepend(supertype);
  2311         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2312             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2313                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2314                 return;
  2315             for (List<Type> m = supertypes; m != l; m = m.tail)
  2316                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2317                     return;
  2319         checkCompatibleConcretes(pos, c);
  2322     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2323         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2324             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2325                 // VM allows methods and variables with differing types
  2326                 if (sym.kind == e.sym.kind &&
  2327                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2328                     sym != e.sym &&
  2329                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2330                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2331                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2332                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2333                     return;
  2339     /** Check that all non-override equivalent methods accessible from 'site'
  2340      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2342      *  @param pos  Position to be used for error reporting.
  2343      *  @param site The class whose methods are checked.
  2344      *  @param sym  The method symbol to be checked.
  2345      */
  2346     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2347          ClashFilter cf = new ClashFilter(site);
  2348         //for each method m1 that is overridden (directly or indirectly)
  2349         //by method 'sym' in 'site'...
  2350         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2351             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2352              //...check each method m2 that is a member of 'site'
  2353              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2354                 if (m2 == m1) continue;
  2355                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2356                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2357                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), false) &&
  2358                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2359                     sym.flags_field |= CLASH;
  2360                     String key = m1 == sym ?
  2361                             "name.clash.same.erasure.no.override" :
  2362                             "name.clash.same.erasure.no.override.1";
  2363                     log.error(pos,
  2364                             key,
  2365                             sym, sym.location(),
  2366                             m2, m2.location(),
  2367                             m1, m1.location());
  2368                     return;
  2376     /** Check that all static methods accessible from 'site' are
  2377      *  mutually compatible (JLS 8.4.8).
  2379      *  @param pos  Position to be used for error reporting.
  2380      *  @param site The class whose methods are checked.
  2381      *  @param sym  The method symbol to be checked.
  2382      */
  2383     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2384         ClashFilter cf = new ClashFilter(site);
  2385         //for each method m1 that is a member of 'site'...
  2386         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2387             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2388             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2389             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2390                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2391                 log.error(pos,
  2392                         "name.clash.same.erasure.no.hide",
  2393                         sym, sym.location(),
  2394                         s, s.location());
  2395                 return;
  2400      //where
  2401      private class ClashFilter implements Filter<Symbol> {
  2403          Type site;
  2405          ClashFilter(Type site) {
  2406              this.site = site;
  2409          boolean shouldSkip(Symbol s) {
  2410              return (s.flags() & CLASH) != 0 &&
  2411                 s.owner == site.tsym;
  2414          public boolean accepts(Symbol s) {
  2415              return s.kind == MTH &&
  2416                      (s.flags() & SYNTHETIC) == 0 &&
  2417                      !shouldSkip(s) &&
  2418                      s.isInheritedIn(site.tsym, types) &&
  2419                      !s.isConstructor();
  2423     /** Report a conflict between a user symbol and a synthetic symbol.
  2424      */
  2425     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2426         if (!sym.type.isErroneous()) {
  2427             if (warnOnSyntheticConflicts) {
  2428                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2430             else {
  2431                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2436     /** Check that class c does not implement directly or indirectly
  2437      *  the same parameterized interface with two different argument lists.
  2438      *  @param pos          Position to be used for error reporting.
  2439      *  @param type         The type whose interfaces are checked.
  2440      */
  2441     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2442         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2444 //where
  2445         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2446          *  with their class symbol as key and their type as value. Make
  2447          *  sure no class is entered with two different types.
  2448          */
  2449         void checkClassBounds(DiagnosticPosition pos,
  2450                               Map<TypeSymbol,Type> seensofar,
  2451                               Type type) {
  2452             if (type.isErroneous()) return;
  2453             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2454                 Type it = l.head;
  2455                 Type oldit = seensofar.put(it.tsym, it);
  2456                 if (oldit != null) {
  2457                     List<Type> oldparams = oldit.allparams();
  2458                     List<Type> newparams = it.allparams();
  2459                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2460                         log.error(pos, "cant.inherit.diff.arg",
  2461                                   it.tsym, Type.toString(oldparams),
  2462                                   Type.toString(newparams));
  2464                 checkClassBounds(pos, seensofar, it);
  2466             Type st = types.supertype(type);
  2467             if (st != null) checkClassBounds(pos, seensofar, st);
  2470     /** Enter interface into into set.
  2471      *  If it existed already, issue a "repeated interface" error.
  2472      */
  2473     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2474         if (its.contains(it))
  2475             log.error(pos, "repeated.interface");
  2476         else {
  2477             its.add(it);
  2481 /* *************************************************************************
  2482  * Check annotations
  2483  **************************************************************************/
  2485     /**
  2486      * Recursively validate annotations values
  2487      */
  2488     void validateAnnotationTree(JCTree tree) {
  2489         class AnnotationValidator extends TreeScanner {
  2490             @Override
  2491             public void visitAnnotation(JCAnnotation tree) {
  2492                 if (!tree.type.isErroneous()) {
  2493                     super.visitAnnotation(tree);
  2494                     validateAnnotation(tree);
  2498         tree.accept(new AnnotationValidator());
  2501     /**
  2502      *  {@literal
  2503      *  Annotation types are restricted to primitives, String, an
  2504      *  enum, an annotation, Class, Class<?>, Class<? extends
  2505      *  Anything>, arrays of the preceding.
  2506      *  }
  2507      */
  2508     void validateAnnotationType(JCTree restype) {
  2509         // restype may be null if an error occurred, so don't bother validating it
  2510         if (restype != null) {
  2511             validateAnnotationType(restype.pos(), restype.type);
  2515     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2516         if (type.isPrimitive()) return;
  2517         if (types.isSameType(type, syms.stringType)) return;
  2518         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2519         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2520         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2521         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2522             validateAnnotationType(pos, types.elemtype(type));
  2523             return;
  2525         log.error(pos, "invalid.annotation.member.type");
  2528     /**
  2529      * "It is also a compile-time error if any method declared in an
  2530      * annotation type has a signature that is override-equivalent to
  2531      * that of any public or protected method declared in class Object
  2532      * or in the interface annotation.Annotation."
  2534      * @jls 9.6 Annotation Types
  2535      */
  2536     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2537         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
  2538             Scope s = sup.tsym.members();
  2539             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2540                 if (e.sym.kind == MTH &&
  2541                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2542                     types.overrideEquivalent(m.type, e.sym.type))
  2543                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2548     /** Check the annotations of a symbol.
  2549      */
  2550     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2551         for (JCAnnotation a : annotations)
  2552             validateAnnotation(a, s);
  2555     /** Check an annotation of a symbol.
  2556      */
  2557     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2558         validateAnnotationTree(a);
  2560         if (!annotationApplicable(a, s))
  2561             log.error(a.pos(), "annotation.type.not.applicable");
  2563         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2564             if (!isOverrider(s))
  2565                 log.error(a.pos(), "method.does.not.override.superclass");
  2569     /**
  2570      * Validate the proposed container 'containedBy' on the
  2571      * annotation type symbol 's'. Report errors at position
  2572      * 'pos'.
  2574      * @param s The (annotation)type declaration annotated with a @ContainedBy
  2575      * @param containedBy the @ContainedBy on 's'
  2576      * @param pos where to report errors
  2577      */
  2578     public void validateContainedBy(TypeSymbol s, Attribute.Compound containedBy, DiagnosticPosition pos) {
  2579         Assert.check(types.isSameType(containedBy.type, syms.containedByType));
  2581         Type t = null;
  2582         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2583         if (!l.isEmpty()) {
  2584             Assert.check(l.head.fst.name == names.value);
  2585             t = ((Attribute.Class)l.head.snd).getValue();
  2588         if (t == null) {
  2589             log.error(pos, "invalid.container.wrong.containedby", s, containedBy);
  2590             return;
  2593         validateHasContainerFor(t.tsym, s, pos);
  2594         validateRetention(t.tsym, s, pos);
  2595         validateDocumented(t.tsym, s, pos);
  2596         validateInherited(t.tsym, s, pos);
  2597         validateTarget(t.tsym, s, pos);
  2598         validateDefault(t.tsym, s, pos);
  2601     /**
  2602      * Validate the proposed container 'containerFor' on the
  2603      * annotation type symbol 's'. Report errors at position
  2604      * 'pos'.
  2606      * @param s The (annotation)type declaration annotated with a @ContainerFor
  2607      * @param containerFor the @ContainedFor on 's'
  2608      * @param pos where to report errors
  2609      */
  2610     public void validateContainerFor(TypeSymbol s, Attribute.Compound containerFor, DiagnosticPosition pos) {
  2611         Assert.check(types.isSameType(containerFor.type, syms.containerForType));
  2613         Type t = null;
  2614         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2615         if (!l.isEmpty()) {
  2616             Assert.check(l.head.fst.name == names.value);
  2617             t = ((Attribute.Class)l.head.snd).getValue();
  2620         if (t == null) {
  2621             log.error(pos, "invalid.container.wrong.containerfor", s, containerFor);
  2622             return;
  2625         validateHasContainedBy(t.tsym, s, pos);
  2628     private void validateHasContainedBy(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2629         Attribute.Compound containedBy = container.attribute(syms.containedByType.tsym);
  2631         if (containedBy == null) {
  2632             log.error(pos, "invalid.container.no.containedby", container, syms.containedByType.tsym);
  2633             return;
  2636         Type t = null;
  2637         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2638         if (!l.isEmpty()) {
  2639             Assert.check(l.head.fst.name == names.value);
  2640             t = ((Attribute.Class)l.head.snd).getValue();
  2643         if (t == null) {
  2644             log.error(pos, "invalid.container.wrong.containedby", container, contained);
  2645             return;
  2648         if (!types.isSameType(t, contained.type))
  2649             log.error(pos, "invalid.container.wrong.containedby", t.tsym, contained);
  2652     private void validateHasContainerFor(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2653         Attribute.Compound containerFor = container.attribute(syms.containerForType.tsym);
  2655         if (containerFor == null) {
  2656             log.error(pos, "invalid.container.no.containerfor", container, syms.containerForType.tsym);
  2657             return;
  2660         Type t = null;
  2661         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2662         if (!l.isEmpty()) {
  2663             Assert.check(l.head.fst.name == names.value);
  2664             t = ((Attribute.Class)l.head.snd).getValue();
  2667         if (t == null) {
  2668             log.error(pos, "invalid.container.wrong.containerfor", container, contained);
  2669             return;
  2672         if (!types.isSameType(t, contained.type))
  2673             log.error(pos, "invalid.container.wrong.containerfor", t.tsym, contained);
  2676     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2677         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2678         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2680         boolean error = false;
  2681         switch (containedRetention) {
  2682         case RUNTIME:
  2683             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2684                 error = true;
  2686             break;
  2687         case CLASS:
  2688             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2689                 error = true;
  2692         if (error ) {
  2693             log.error(pos, "invalid.containedby.annotation.retention",
  2694                       container, containerRetention,
  2695                       contained, containedRetention);
  2699     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2700         if (contained.attribute(syms.documentedType.tsym) != null) {
  2701             if (container.attribute(syms.documentedType.tsym) == null) {
  2702                 log.error(pos, "invalid.containedby.annotation.not.documented", container, contained);
  2707     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2708         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2709             if (container.attribute(syms.inheritedType.tsym) == null) {
  2710                 log.error(pos, "invalid.containedby.annotation.not.inherited", container, contained);
  2715     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2716         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2718         // If contained has no Target, we are done
  2719         if (containedTarget == null) {
  2720             return;
  2723         // If contained has Target m1, container must have a Target
  2724         // annotation, m2, and m2 must be a subset of m1. (This is
  2725         // trivially true if contained has no target as per above).
  2727         // contained has target, but container has not, error
  2728         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2729         if (containerTarget == null) {
  2730             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2731             return;
  2734         Set<Name> containerTargets = new HashSet<Name>();
  2735         for (Attribute app : containerTarget.values) {
  2736             if (!(app instanceof Attribute.Enum)) {
  2737                 continue; // recovery
  2739             Attribute.Enum e = (Attribute.Enum)app;
  2740             containerTargets.add(e.value.name);
  2743         Set<Name> containedTargets = new HashSet<Name>();
  2744         for (Attribute app : containedTarget.values) {
  2745             if (!(app instanceof Attribute.Enum)) {
  2746                 continue; // recovery
  2748             Attribute.Enum e = (Attribute.Enum)app;
  2749             containedTargets.add(e.value.name);
  2752         if (!isTargetSubset(containedTargets, containerTargets)) {
  2753             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2757     /** Checks that t is a subset of s, with respect to ElementType
  2758      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE}
  2759      */
  2760     private boolean isTargetSubset(Set<Name> s, Set<Name> t) {
  2761         // Check that all elements in t are present in s
  2762         for (Name n2 : t) {
  2763             boolean currentElementOk = false;
  2764             for (Name n1 : s) {
  2765                 if (n1 == n2) {
  2766                     currentElementOk = true;
  2767                     break;
  2768                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2769                     currentElementOk = true;
  2770                     break;
  2773             if (!currentElementOk)
  2774                 return false;
  2776         return true;
  2779     private void validateDefault(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2780         // validate that all other elements of containing type has defaults
  2781         Scope scope = container.members();
  2782         for(Symbol elm : scope.getElements()) {
  2783             if (elm.name != names.value &&
  2784                 elm.kind == Kinds.MTH &&
  2785                 ((MethodSymbol)elm).defaultValue == null) {
  2786                 log.error(pos,
  2787                           "invalid.containedby.annotation.elem.nondefault",
  2788                           container,
  2789                           elm);
  2794     /** Is s a method symbol that overrides a method in a superclass? */
  2795     boolean isOverrider(Symbol s) {
  2796         if (s.kind != MTH || s.isStatic())
  2797             return false;
  2798         MethodSymbol m = (MethodSymbol)s;
  2799         TypeSymbol owner = (TypeSymbol)m.owner;
  2800         for (Type sup : types.closure(owner.type)) {
  2801             if (sup == owner.type)
  2802                 continue; // skip "this"
  2803             Scope scope = sup.tsym.members();
  2804             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2805                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2806                     return true;
  2809         return false;
  2812     /** Is the annotation applicable to the symbol? */
  2813     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2814         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2815         if (arr == null) {
  2816             return true;
  2818         for (Attribute app : arr.values) {
  2819             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2820             Attribute.Enum e = (Attribute.Enum) app;
  2821             if (e.value.name == names.TYPE)
  2822                 { if (s.kind == TYP) return true; }
  2823             else if (e.value.name == names.FIELD)
  2824                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2825             else if (e.value.name == names.METHOD)
  2826                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2827             else if (e.value.name == names.PARAMETER)
  2828                 { if (s.kind == VAR &&
  2829                       s.owner.kind == MTH &&
  2830                       (s.flags() & PARAMETER) != 0)
  2831                     return true;
  2833             else if (e.value.name == names.CONSTRUCTOR)
  2834                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2835             else if (e.value.name == names.LOCAL_VARIABLE)
  2836                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2837                       (s.flags() & PARAMETER) == 0)
  2838                     return true;
  2840             else if (e.value.name == names.ANNOTATION_TYPE)
  2841                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2842                     return true;
  2844             else if (e.value.name == names.PACKAGE)
  2845                 { if (s.kind == PCK) return true; }
  2846             else if (e.value.name == names.TYPE_USE)
  2847                 { if (s.kind == TYP ||
  2848                       s.kind == VAR ||
  2849                       (s.kind == MTH && !s.isConstructor() &&
  2850                        !s.type.getReturnType().hasTag(VOID)))
  2851                     return true;
  2853             else
  2854                 return true; // recovery
  2856         return false;
  2860     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  2861         Attribute.Compound atTarget =
  2862             s.attribute(syms.annotationTargetType.tsym);
  2863         if (atTarget == null) return null; // ok, is applicable
  2864         Attribute atValue = atTarget.member(names.value);
  2865         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  2866         return (Attribute.Array) atValue;
  2869     /** Check an annotation value.
  2870      */
  2871     public void validateAnnotation(JCAnnotation a) {
  2872         // collect an inventory of the members (sorted alphabetically)
  2873         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2874             public int compare(Symbol t, Symbol t1) {
  2875                 return t.name.compareTo(t1.name);
  2877         });
  2878         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2879              e != null;
  2880              e = e.sibling)
  2881             if (e.sym.kind == MTH)
  2882                 members.add((MethodSymbol) e.sym);
  2884         // count them off as they're annotated
  2885         for (JCTree arg : a.args) {
  2886             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2887             JCAssign assign = (JCAssign) arg;
  2888             Symbol m = TreeInfo.symbol(assign.lhs);
  2889             if (m == null || m.type.isErroneous()) continue;
  2890             if (!members.remove(m))
  2891                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2892                           m.name, a.type);
  2895         // all the remaining ones better have default values
  2896         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2897         for (MethodSymbol m : members) {
  2898             if (m.defaultValue == null && !m.type.isErroneous()) {
  2899                 missingDefaults.append(m.name);
  2902         if (missingDefaults.nonEmpty()) {
  2903             String key = (missingDefaults.size() > 1)
  2904                     ? "annotation.missing.default.value.1"
  2905                     : "annotation.missing.default.value";
  2906             log.error(a.pos(), key, a.type, missingDefaults);
  2909         // special case: java.lang.annotation.Target must not have
  2910         // repeated values in its value member
  2911         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2912             a.args.tail == null)
  2913             return;
  2915         if (!a.args.head.hasTag(ASSIGN)) return; // error recovery
  2916         JCAssign assign = (JCAssign) a.args.head;
  2917         Symbol m = TreeInfo.symbol(assign.lhs);
  2918         if (m.name != names.value) return;
  2919         JCTree rhs = assign.rhs;
  2920         if (!rhs.hasTag(NEWARRAY)) return;
  2921         JCNewArray na = (JCNewArray) rhs;
  2922         Set<Symbol> targets = new HashSet<Symbol>();
  2923         for (JCTree elem : na.elems) {
  2924             if (!targets.add(TreeInfo.symbol(elem))) {
  2925                 log.error(elem.pos(), "repeated.annotation.target");
  2930     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2931         if (allowAnnotations &&
  2932             lint.isEnabled(LintCategory.DEP_ANN) &&
  2933             (s.flags() & DEPRECATED) != 0 &&
  2934             !syms.deprecatedType.isErroneous() &&
  2935             s.attribute(syms.deprecatedType.tsym) == null) {
  2936             log.warning(LintCategory.DEP_ANN,
  2937                     pos, "missing.deprecated.annotation");
  2941     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2942         if ((s.flags() & DEPRECATED) != 0 &&
  2943                 (other.flags() & DEPRECATED) == 0 &&
  2944                 s.outermostClass() != other.outermostClass()) {
  2945             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2946                 @Override
  2947                 public void report() {
  2948                     warnDeprecated(pos, s);
  2950             });
  2954     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2955         if ((s.flags() & PROPRIETARY) != 0) {
  2956             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2957                 public void report() {
  2958                     if (enableSunApiLintControl)
  2959                       warnSunApi(pos, "sun.proprietary", s);
  2960                     else
  2961                       log.mandatoryWarning(pos, "sun.proprietary", s);
  2963             });
  2967 /* *************************************************************************
  2968  * Check for recursive annotation elements.
  2969  **************************************************************************/
  2971     /** Check for cycles in the graph of annotation elements.
  2972      */
  2973     void checkNonCyclicElements(JCClassDecl tree) {
  2974         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2975         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2976         try {
  2977             tree.sym.flags_field |= LOCKED;
  2978             for (JCTree def : tree.defs) {
  2979                 if (!def.hasTag(METHODDEF)) continue;
  2980                 JCMethodDecl meth = (JCMethodDecl)def;
  2981                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2983         } finally {
  2984             tree.sym.flags_field &= ~LOCKED;
  2985             tree.sym.flags_field |= ACYCLIC_ANN;
  2989     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2990         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2991             return;
  2992         if ((tsym.flags_field & LOCKED) != 0) {
  2993             log.error(pos, "cyclic.annotation.element");
  2994             return;
  2996         try {
  2997             tsym.flags_field |= LOCKED;
  2998             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2999                 Symbol s = e.sym;
  3000                 if (s.kind != Kinds.MTH)
  3001                     continue;
  3002                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  3004         } finally {
  3005             tsym.flags_field &= ~LOCKED;
  3006             tsym.flags_field |= ACYCLIC_ANN;
  3010     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  3011         switch (type.getTag()) {
  3012         case CLASS:
  3013             if ((type.tsym.flags() & ANNOTATION) != 0)
  3014                 checkNonCyclicElementsInternal(pos, type.tsym);
  3015             break;
  3016         case ARRAY:
  3017             checkAnnotationResType(pos, types.elemtype(type));
  3018             break;
  3019         default:
  3020             break; // int etc
  3024 /* *************************************************************************
  3025  * Check for cycles in the constructor call graph.
  3026  **************************************************************************/
  3028     /** Check for cycles in the graph of constructors calling other
  3029      *  constructors.
  3030      */
  3031     void checkCyclicConstructors(JCClassDecl tree) {
  3032         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  3034         // enter each constructor this-call into the map
  3035         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3036             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  3037             if (app == null) continue;
  3038             JCMethodDecl meth = (JCMethodDecl) l.head;
  3039             if (TreeInfo.name(app.meth) == names._this) {
  3040                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  3041             } else {
  3042                 meth.sym.flags_field |= ACYCLIC;
  3046         // Check for cycles in the map
  3047         Symbol[] ctors = new Symbol[0];
  3048         ctors = callMap.keySet().toArray(ctors);
  3049         for (Symbol caller : ctors) {
  3050             checkCyclicConstructor(tree, caller, callMap);
  3054     /** Look in the map to see if the given constructor is part of a
  3055      *  call cycle.
  3056      */
  3057     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  3058                                         Map<Symbol,Symbol> callMap) {
  3059         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  3060             if ((ctor.flags_field & LOCKED) != 0) {
  3061                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  3062                           "recursive.ctor.invocation");
  3063             } else {
  3064                 ctor.flags_field |= LOCKED;
  3065                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  3066                 ctor.flags_field &= ~LOCKED;
  3068             ctor.flags_field |= ACYCLIC;
  3072 /* *************************************************************************
  3073  * Miscellaneous
  3074  **************************************************************************/
  3076     /**
  3077      * Return the opcode of the operator but emit an error if it is an
  3078      * error.
  3079      * @param pos        position for error reporting.
  3080      * @param operator   an operator
  3081      * @param tag        a tree tag
  3082      * @param left       type of left hand side
  3083      * @param right      type of right hand side
  3084      */
  3085     int checkOperator(DiagnosticPosition pos,
  3086                        OperatorSymbol operator,
  3087                        JCTree.Tag tag,
  3088                        Type left,
  3089                        Type right) {
  3090         if (operator.opcode == ByteCodes.error) {
  3091             log.error(pos,
  3092                       "operator.cant.be.applied.1",
  3093                       treeinfo.operatorName(tag),
  3094                       left, right);
  3096         return operator.opcode;
  3100     /**
  3101      *  Check for division by integer constant zero
  3102      *  @param pos           Position for error reporting.
  3103      *  @param operator      The operator for the expression
  3104      *  @param operand       The right hand operand for the expression
  3105      */
  3106     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  3107         if (operand.constValue() != null
  3108             && lint.isEnabled(LintCategory.DIVZERO)
  3109             && (operand.getTag().isSubRangeOf(LONG))
  3110             && ((Number) (operand.constValue())).longValue() == 0) {
  3111             int opc = ((OperatorSymbol)operator).opcode;
  3112             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  3113                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  3114                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  3119     /**
  3120      * Check for empty statements after if
  3121      */
  3122     void checkEmptyIf(JCIf tree) {
  3123         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  3124                 lint.isEnabled(LintCategory.EMPTY))
  3125             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  3128     /** Check that symbol is unique in given scope.
  3129      *  @param pos           Position for error reporting.
  3130      *  @param sym           The symbol.
  3131      *  @param s             The scope.
  3132      */
  3133     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  3134         if (sym.type.isErroneous())
  3135             return true;
  3136         if (sym.owner.name == names.any) return false;
  3137         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  3138             if (sym != e.sym &&
  3139                     (e.sym.flags() & CLASH) == 0 &&
  3140                     sym.kind == e.sym.kind &&
  3141                     sym.name != names.error &&
  3142                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  3143                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3144                     varargsDuplicateError(pos, sym, e.sym);
  3145                     return true;
  3146                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3147                     duplicateErasureError(pos, sym, e.sym);
  3148                     sym.flags_field |= CLASH;
  3149                     return true;
  3150                 } else {
  3151                     duplicateError(pos, e.sym);
  3152                     return false;
  3156         return true;
  3159     /** Report duplicate declaration error.
  3160      */
  3161     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3162         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3163             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3167     /** Check that single-type import is not already imported or top-level defined,
  3168      *  but make an exception for two single-type imports which denote the same type.
  3169      *  @param pos           Position for error reporting.
  3170      *  @param sym           The symbol.
  3171      *  @param s             The scope
  3172      */
  3173     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3174         return checkUniqueImport(pos, sym, s, false);
  3177     /** Check that static single-type import is not already imported or top-level defined,
  3178      *  but make an exception for two single-type imports which denote the same type.
  3179      *  @param pos           Position for error reporting.
  3180      *  @param sym           The symbol.
  3181      *  @param s             The scope
  3182      */
  3183     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3184         return checkUniqueImport(pos, sym, s, true);
  3187     /** Check that single-type import is not already imported or top-level defined,
  3188      *  but make an exception for two single-type imports which denote the same type.
  3189      *  @param pos           Position for error reporting.
  3190      *  @param sym           The symbol.
  3191      *  @param s             The scope.
  3192      *  @param staticImport  Whether or not this was a static import
  3193      */
  3194     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3195         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3196             // is encountered class entered via a class declaration?
  3197             boolean isClassDecl = e.scope == s;
  3198             if ((isClassDecl || sym != e.sym) &&
  3199                 sym.kind == e.sym.kind &&
  3200                 sym.name != names.error) {
  3201                 if (!e.sym.type.isErroneous()) {
  3202                     String what = e.sym.toString();
  3203                     if (!isClassDecl) {
  3204                         if (staticImport)
  3205                             log.error(pos, "already.defined.static.single.import", what);
  3206                         else
  3207                             log.error(pos, "already.defined.single.import", what);
  3209                     else if (sym != e.sym)
  3210                         log.error(pos, "already.defined.this.unit", what);
  3212                 return false;
  3215         return true;
  3218     /** Check that a qualified name is in canonical form (for import decls).
  3219      */
  3220     public void checkCanonical(JCTree tree) {
  3221         if (!isCanonical(tree))
  3222             log.error(tree.pos(), "import.requires.canonical",
  3223                       TreeInfo.symbol(tree));
  3225         // where
  3226         private boolean isCanonical(JCTree tree) {
  3227             while (tree.hasTag(SELECT)) {
  3228                 JCFieldAccess s = (JCFieldAccess) tree;
  3229                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3230                     return false;
  3231                 tree = s.selected;
  3233             return true;
  3236     /** Check that an auxiliary class is not accessed from any other file than its own.
  3237      */
  3238     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
  3239         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
  3240             (c.flags() & AUXILIARY) != 0 &&
  3241             rs.isAccessible(env, c) &&
  3242             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
  3244             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
  3245                         c, c.sourcefile);
  3249     private class ConversionWarner extends Warner {
  3250         final String uncheckedKey;
  3251         final Type found;
  3252         final Type expected;
  3253         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3254             super(pos);
  3255             this.uncheckedKey = uncheckedKey;
  3256             this.found = found;
  3257             this.expected = expected;
  3260         @Override
  3261         public void warn(LintCategory lint) {
  3262             boolean warned = this.warned;
  3263             super.warn(lint);
  3264             if (warned) return; // suppress redundant diagnostics
  3265             switch (lint) {
  3266                 case UNCHECKED:
  3267                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3268                     break;
  3269                 case VARARGS:
  3270                     if (method != null &&
  3271                             method.attribute(syms.trustMeType.tsym) != null &&
  3272                             isTrustMeAllowedOnMethod(method) &&
  3273                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3274                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3276                     break;
  3277                 default:
  3278                     throw new AssertionError("Unexpected lint: " + lint);
  3283     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3284         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3287     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3288         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial