src/share/classes/com/sun/tools/javac/comp/Check.java

Thu, 25 Oct 2012 11:09:36 -0700

author
jjg
date
Thu, 25 Oct 2012 11:09:36 -0700
changeset 1374
c002fdee76fd
parent 1366
12cf6bfd8c05
child 1384
bf54daa9dcd8
permissions
-rw-r--r--

7200915: convert TypeTags from a series of small ints to an enum
Reviewed-by: jjg, mcimadamore
Contributed-by: vicente.romero@oracle.com

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    43 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    44 import com.sun.tools.javac.comp.Infer.InferenceContext;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    47 import static com.sun.tools.javac.code.Flags.*;
    48 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    49 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    50 import static com.sun.tools.javac.code.Kinds.*;
    51 import static com.sun.tools.javac.code.TypeTag.*;
    52 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    54 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    56 /** Type checking helper class for the attribution phase.
    57  *
    58  *  <p><b>This is NOT part of any supported API.
    59  *  If you write code that depends on this, you do so at your own risk.
    60  *  This code and its internal interfaces are subject to change or
    61  *  deletion without notice.</b>
    62  */
    63 public class Check {
    64     protected static final Context.Key<Check> checkKey =
    65         new Context.Key<Check>();
    67     private final Names names;
    68     private final Log log;
    69     private final Resolve rs;
    70     private final Symtab syms;
    71     private final Enter enter;
    72     private final DeferredAttr deferredAttr;
    73     private final Infer infer;
    74     private final Types types;
    75     private final JCDiagnostic.Factory diags;
    76     private boolean warnOnSyntheticConflicts;
    77     private boolean suppressAbortOnBadClassFile;
    78     private boolean enableSunApiLintControl;
    79     private final TreeInfo treeinfo;
    81     // The set of lint options currently in effect. It is initialized
    82     // from the context, and then is set/reset as needed by Attr as it
    83     // visits all the various parts of the trees during attribution.
    84     private Lint lint;
    86     // The method being analyzed in Attr - it is set/reset as needed by
    87     // Attr as it visits new method declarations.
    88     private MethodSymbol method;
    90     public static Check instance(Context context) {
    91         Check instance = context.get(checkKey);
    92         if (instance == null)
    93             instance = new Check(context);
    94         return instance;
    95     }
    97     protected Check(Context context) {
    98         context.put(checkKey, this);
   100         names = Names.instance(context);
   101         log = Log.instance(context);
   102         rs = Resolve.instance(context);
   103         syms = Symtab.instance(context);
   104         enter = Enter.instance(context);
   105         deferredAttr = DeferredAttr.instance(context);
   106         infer = Infer.instance(context);
   107         this.types = Types.instance(context);
   108         diags = JCDiagnostic.Factory.instance(context);
   109         Options options = Options.instance(context);
   110         lint = Lint.instance(context);
   111         treeinfo = TreeInfo.instance(context);
   113         Source source = Source.instance(context);
   114         allowGenerics = source.allowGenerics();
   115         allowVarargs = source.allowVarargs();
   116         allowAnnotations = source.allowAnnotations();
   117         allowCovariantReturns = source.allowCovariantReturns();
   118         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   119         complexInference = options.isSet("complexinference");
   120         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   121         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   122         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   124         Target target = Target.instance(context);
   125         syntheticNameChar = target.syntheticNameChar();
   127         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   128         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   129         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   130         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   132         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   133                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   134         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   135                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   136         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   137                 enforceMandatoryWarnings, "sunapi", null);
   139         deferredLintHandler = DeferredLintHandler.immediateHandler;
   140     }
   142     /** Switch: generics enabled?
   143      */
   144     boolean allowGenerics;
   146     /** Switch: varargs enabled?
   147      */
   148     boolean allowVarargs;
   150     /** Switch: annotations enabled?
   151      */
   152     boolean allowAnnotations;
   154     /** Switch: covariant returns enabled?
   155      */
   156     boolean allowCovariantReturns;
   158     /** Switch: simplified varargs enabled?
   159      */
   160     boolean allowSimplifiedVarargs;
   162     /** Switch: -complexinference option set?
   163      */
   164     boolean complexInference;
   166     /** Character for synthetic names
   167      */
   168     char syntheticNameChar;
   170     /** A table mapping flat names of all compiled classes in this run to their
   171      *  symbols; maintained from outside.
   172      */
   173     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   175     /** A handler for messages about deprecated usage.
   176      */
   177     private MandatoryWarningHandler deprecationHandler;
   179     /** A handler for messages about unchecked or unsafe usage.
   180      */
   181     private MandatoryWarningHandler uncheckedHandler;
   183     /** A handler for messages about using proprietary API.
   184      */
   185     private MandatoryWarningHandler sunApiHandler;
   187     /** A handler for deferred lint warnings.
   188      */
   189     private DeferredLintHandler deferredLintHandler;
   191 /* *************************************************************************
   192  * Errors and Warnings
   193  **************************************************************************/
   195     Lint setLint(Lint newLint) {
   196         Lint prev = lint;
   197         lint = newLint;
   198         return prev;
   199     }
   201     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   202         DeferredLintHandler prev = deferredLintHandler;
   203         deferredLintHandler = newDeferredLintHandler;
   204         return prev;
   205     }
   207     MethodSymbol setMethod(MethodSymbol newMethod) {
   208         MethodSymbol prev = method;
   209         method = newMethod;
   210         return prev;
   211     }
   213     /** Warn about deprecated symbol.
   214      *  @param pos        Position to be used for error reporting.
   215      *  @param sym        The deprecated symbol.
   216      */
   217     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   218         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   219             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   220     }
   222     /** Warn about unchecked operation.
   223      *  @param pos        Position to be used for error reporting.
   224      *  @param msg        A string describing the problem.
   225      */
   226     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   227         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   228             uncheckedHandler.report(pos, msg, args);
   229     }
   231     /** Warn about unsafe vararg method decl.
   232      *  @param pos        Position to be used for error reporting.
   233      */
   234     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   235         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   236             log.warning(LintCategory.VARARGS, pos, key, args);
   237     }
   239     /** Warn about using proprietary API.
   240      *  @param pos        Position to be used for error reporting.
   241      *  @param msg        A string describing the problem.
   242      */
   243     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   244         if (!lint.isSuppressed(LintCategory.SUNAPI))
   245             sunApiHandler.report(pos, msg, args);
   246     }
   248     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   249         if (lint.isEnabled(LintCategory.STATIC))
   250             log.warning(LintCategory.STATIC, pos, msg, args);
   251     }
   253     /**
   254      * Report any deferred diagnostics.
   255      */
   256     public void reportDeferredDiagnostics() {
   257         deprecationHandler.reportDeferredDiagnostic();
   258         uncheckedHandler.reportDeferredDiagnostic();
   259         sunApiHandler.reportDeferredDiagnostic();
   260     }
   263     /** Report a failure to complete a class.
   264      *  @param pos        Position to be used for error reporting.
   265      *  @param ex         The failure to report.
   266      */
   267     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   268         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   269         if (ex instanceof ClassReader.BadClassFile
   270                 && !suppressAbortOnBadClassFile) throw new Abort();
   271         else return syms.errType;
   272     }
   274     /** Report an error that wrong type tag was found.
   275      *  @param pos        Position to be used for error reporting.
   276      *  @param required   An internationalized string describing the type tag
   277      *                    required.
   278      *  @param found      The type that was found.
   279      */
   280     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   281         // this error used to be raised by the parser,
   282         // but has been delayed to this point:
   283         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
   284             log.error(pos, "illegal.start.of.type");
   285             return syms.errType;
   286         }
   287         log.error(pos, "type.found.req", found, required);
   288         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   289     }
   291     /** Report an error that symbol cannot be referenced before super
   292      *  has been called.
   293      *  @param pos        Position to be used for error reporting.
   294      *  @param sym        The referenced symbol.
   295      */
   296     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   297         log.error(pos, "cant.ref.before.ctor.called", sym);
   298     }
   300     /** Report duplicate declaration error.
   301      */
   302     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   303         if (!sym.type.isErroneous()) {
   304             Symbol location = sym.location();
   305             if (location.kind == MTH &&
   306                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   307                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   308                         kindName(sym.location()), kindName(sym.location().enclClass()),
   309                         sym.location().enclClass());
   310             } else {
   311                 log.error(pos, "already.defined", kindName(sym), sym,
   312                         kindName(sym.location()), sym.location());
   313             }
   314         }
   315     }
   317     /** Report array/varargs duplicate declaration
   318      */
   319     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   320         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   321             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   322         }
   323     }
   325 /* ************************************************************************
   326  * duplicate declaration checking
   327  *************************************************************************/
   329     /** Check that variable does not hide variable with same name in
   330      *  immediately enclosing local scope.
   331      *  @param pos           Position for error reporting.
   332      *  @param v             The symbol.
   333      *  @param s             The scope.
   334      */
   335     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   336         if (s.next != null) {
   337             for (Scope.Entry e = s.next.lookup(v.name);
   338                  e.scope != null && e.sym.owner == v.owner;
   339                  e = e.next()) {
   340                 if (e.sym.kind == VAR &&
   341                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   342                     v.name != names.error) {
   343                     duplicateError(pos, e.sym);
   344                     return;
   345                 }
   346             }
   347         }
   348     }
   350     /** Check that a class or interface does not hide a class or
   351      *  interface with same name in immediately enclosing local scope.
   352      *  @param pos           Position for error reporting.
   353      *  @param c             The symbol.
   354      *  @param s             The scope.
   355      */
   356     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   357         if (s.next != null) {
   358             for (Scope.Entry e = s.next.lookup(c.name);
   359                  e.scope != null && e.sym.owner == c.owner;
   360                  e = e.next()) {
   361                 if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
   362                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   363                     c.name != names.error) {
   364                     duplicateError(pos, e.sym);
   365                     return;
   366                 }
   367             }
   368         }
   369     }
   371     /** Check that class does not have the same name as one of
   372      *  its enclosing classes, or as a class defined in its enclosing scope.
   373      *  return true if class is unique in its enclosing scope.
   374      *  @param pos           Position for error reporting.
   375      *  @param name          The class name.
   376      *  @param s             The enclosing scope.
   377      */
   378     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   379         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   380             if (e.sym.kind == TYP && e.sym.name != names.error) {
   381                 duplicateError(pos, e.sym);
   382                 return false;
   383             }
   384         }
   385         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   386             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   387                 duplicateError(pos, sym);
   388                 return true;
   389             }
   390         }
   391         return true;
   392     }
   394 /* *************************************************************************
   395  * Class name generation
   396  **************************************************************************/
   398     /** Return name of local class.
   399      *  This is of the form   {@code <enclClass> $ n <classname> }
   400      *  where
   401      *    enclClass is the flat name of the enclosing class,
   402      *    classname is the simple name of the local class
   403      */
   404     Name localClassName(ClassSymbol c) {
   405         for (int i=1; ; i++) {
   406             Name flatname = names.
   407                 fromString("" + c.owner.enclClass().flatname +
   408                            syntheticNameChar + i +
   409                            c.name);
   410             if (compiled.get(flatname) == null) return flatname;
   411         }
   412     }
   414 /* *************************************************************************
   415  * Type Checking
   416  **************************************************************************/
   418     /**
   419      * A check context is an object that can be used to perform compatibility
   420      * checks - depending on the check context, meaning of 'compatibility' might
   421      * vary significantly.
   422      */
   423     public interface CheckContext {
   424         /**
   425          * Is type 'found' compatible with type 'req' in given context
   426          */
   427         boolean compatible(Type found, Type req, Warner warn);
   428         /**
   429          * Report a check error
   430          */
   431         void report(DiagnosticPosition pos, JCDiagnostic details);
   432         /**
   433          * Obtain a warner for this check context
   434          */
   435         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   437         public Infer.InferenceContext inferenceContext();
   439         public DeferredAttr.DeferredAttrContext deferredAttrContext();
   441         public boolean allowBoxing();
   442     }
   444     /**
   445      * This class represent a check context that is nested within another check
   446      * context - useful to check sub-expressions. The default behavior simply
   447      * redirects all method calls to the enclosing check context leveraging
   448      * the forwarding pattern.
   449      */
   450     static class NestedCheckContext implements CheckContext {
   451         CheckContext enclosingContext;
   453         NestedCheckContext(CheckContext enclosingContext) {
   454             this.enclosingContext = enclosingContext;
   455         }
   457         public boolean compatible(Type found, Type req, Warner warn) {
   458             return enclosingContext.compatible(found, req, warn);
   459         }
   461         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   462             enclosingContext.report(pos, details);
   463         }
   465         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   466             return enclosingContext.checkWarner(pos, found, req);
   467         }
   469         public Infer.InferenceContext inferenceContext() {
   470             return enclosingContext.inferenceContext();
   471         }
   473         public DeferredAttrContext deferredAttrContext() {
   474             return enclosingContext.deferredAttrContext();
   475         }
   477         public boolean allowBoxing() {
   478             return enclosingContext.allowBoxing();
   479         }
   480     }
   482     /**
   483      * Check context to be used when evaluating assignment/return statements
   484      */
   485     CheckContext basicHandler = new CheckContext() {
   486         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   487             log.error(pos, "prob.found.req", details);
   488         }
   489         public boolean compatible(Type found, Type req, Warner warn) {
   490             return types.isAssignable(found, req, warn);
   491         }
   493         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   494             return convertWarner(pos, found, req);
   495         }
   497         public InferenceContext inferenceContext() {
   498             return infer.emptyContext;
   499         }
   501         public DeferredAttrContext deferredAttrContext() {
   502             return deferredAttr.emptyDeferredAttrContext;
   503         }
   505         public boolean allowBoxing() {
   506             return true;
   507         }
   508     };
   510     /** Check that a given type is assignable to a given proto-type.
   511      *  If it is, return the type, otherwise return errType.
   512      *  @param pos        Position to be used for error reporting.
   513      *  @param found      The type that was found.
   514      *  @param req        The type that was required.
   515      */
   516     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   517         return checkType(pos, found, req, basicHandler);
   518     }
   520     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
   521         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
   522         if (inferenceContext.free(req)) {
   523             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
   524                 @Override
   525                 public void typesInferred(InferenceContext inferenceContext) {
   526                     checkType(pos, found, inferenceContext.asInstType(req, types), checkContext);
   527                 }
   528             });
   529         }
   530         if (req.hasTag(ERROR))
   531             return req;
   532         if (req.hasTag(NONE))
   533             return found;
   534         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   535             return found;
   536         } else {
   537             if (found.getTag().isSubRangeOf(DOUBLE) && req.getTag().isSubRangeOf(DOUBLE)) {
   538                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   539                 return types.createErrorType(found);
   540             }
   541             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   542             return types.createErrorType(found);
   543         }
   544     }
   546     /** Check that a given type can be cast to a given target type.
   547      *  Return the result of the cast.
   548      *  @param pos        Position to be used for error reporting.
   549      *  @param found      The type that is being cast.
   550      *  @param req        The target type of the cast.
   551      */
   552     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   553         return checkCastable(pos, found, req, basicHandler);
   554     }
   555     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   556         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   557             return req;
   558         } else {
   559             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   560             return types.createErrorType(found);
   561         }
   562     }
   564     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   565      * The problem should only be reported for non-292 cast
   566      */
   567     public void checkRedundantCast(Env<AttrContext> env, JCTypeCast tree) {
   568         if (!tree.type.isErroneous() &&
   569                 (env.info.lint == null || env.info.lint.isEnabled(Lint.LintCategory.CAST))
   570                 && types.isSameType(tree.expr.type, tree.clazz.type)
   571                 && !is292targetTypeCast(tree)) {
   572             log.warning(Lint.LintCategory.CAST,
   573                     tree.pos(), "redundant.cast", tree.expr.type);
   574         }
   575     }
   576     //where
   577             private boolean is292targetTypeCast(JCTypeCast tree) {
   578                 boolean is292targetTypeCast = false;
   579                 JCExpression expr = TreeInfo.skipParens(tree.expr);
   580                 if (expr.hasTag(APPLY)) {
   581                     JCMethodInvocation apply = (JCMethodInvocation)expr;
   582                     Symbol sym = TreeInfo.symbol(apply.meth);
   583                     is292targetTypeCast = sym != null &&
   584                         sym.kind == MTH &&
   585                         (sym.flags() & HYPOTHETICAL) != 0;
   586                 }
   587                 return is292targetTypeCast;
   588             }
   592 //where
   593         /** Is type a type variable, or a (possibly multi-dimensional) array of
   594          *  type variables?
   595          */
   596         boolean isTypeVar(Type t) {
   597             return t.hasTag(TYPEVAR) || t.hasTag(ARRAY) && isTypeVar(types.elemtype(t));
   598         }
   600     /** Check that a type is within some bounds.
   601      *
   602      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
   603      *  type argument.
   604      *  @param a             The type that should be bounded by bs.
   605      *  @param bound         The bound.
   606      */
   607     private boolean checkExtends(Type a, Type bound) {
   608          if (a.isUnbound()) {
   609              return true;
   610          } else if (!a.hasTag(WILDCARD)) {
   611              a = types.upperBound(a);
   612              return types.isSubtype(a, bound);
   613          } else if (a.isExtendsBound()) {
   614              return types.isCastable(bound, types.upperBound(a), Warner.noWarnings);
   615          } else if (a.isSuperBound()) {
   616              return !types.notSoftSubtype(types.lowerBound(a), bound);
   617          }
   618          return true;
   619      }
   621     /** Check that type is different from 'void'.
   622      *  @param pos           Position to be used for error reporting.
   623      *  @param t             The type to be checked.
   624      */
   625     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   626         if (t.hasTag(VOID)) {
   627             log.error(pos, "void.not.allowed.here");
   628             return types.createErrorType(t);
   629         } else {
   630             return t;
   631         }
   632     }
   634     /** Check that type is a class or interface type.
   635      *  @param pos           Position to be used for error reporting.
   636      *  @param t             The type to be checked.
   637      */
   638     Type checkClassType(DiagnosticPosition pos, Type t) {
   639         if (!t.hasTag(CLASS) && !t.hasTag(ERROR))
   640             return typeTagError(pos,
   641                                 diags.fragment("type.req.class"),
   642                                 (t.hasTag(TYPEVAR))
   643                                 ? diags.fragment("type.parameter", t)
   644                                 : t);
   645         else
   646             return t;
   647     }
   649     /** Check that type is a valid qualifier for a constructor reference expression
   650      */
   651     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
   652         t = checkClassType(pos, t);
   653         if (t.hasTag(CLASS)) {
   654             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
   655                 log.error(pos, "abstract.cant.be.instantiated");
   656                 t = types.createErrorType(t);
   657             } else if ((t.tsym.flags() & ENUM) != 0) {
   658                 log.error(pos, "enum.cant.be.instantiated");
   659                 t = types.createErrorType(t);
   660             }
   661         }
   662         return t;
   663     }
   665     /** Check that type is a class or interface type.
   666      *  @param pos           Position to be used for error reporting.
   667      *  @param t             The type to be checked.
   668      *  @param noBounds    True if type bounds are illegal here.
   669      */
   670     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   671         t = checkClassType(pos, t);
   672         if (noBounds && t.isParameterized()) {
   673             List<Type> args = t.getTypeArguments();
   674             while (args.nonEmpty()) {
   675                 if (args.head.hasTag(WILDCARD))
   676                     return typeTagError(pos,
   677                                         diags.fragment("type.req.exact"),
   678                                         args.head);
   679                 args = args.tail;
   680             }
   681         }
   682         return t;
   683     }
   685     /** Check that type is a reifiable class, interface or array type.
   686      *  @param pos           Position to be used for error reporting.
   687      *  @param t             The type to be checked.
   688      */
   689     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   690         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
   691             return typeTagError(pos,
   692                                 diags.fragment("type.req.class.array"),
   693                                 t);
   694         } else if (!types.isReifiable(t)) {
   695             log.error(pos, "illegal.generic.type.for.instof");
   696             return types.createErrorType(t);
   697         } else {
   698             return t;
   699         }
   700     }
   702     /** Check that type is a reference type, i.e. a class, interface or array type
   703      *  or a type variable.
   704      *  @param pos           Position to be used for error reporting.
   705      *  @param t             The type to be checked.
   706      */
   707     Type checkRefType(DiagnosticPosition pos, Type t) {
   708         if (t.isReference())
   709             return t;
   710         else
   711             return typeTagError(pos,
   712                                 diags.fragment("type.req.ref"),
   713                                 t);
   714     }
   716     /** Check that each type is a reference type, i.e. a class, interface or array type
   717      *  or a type variable.
   718      *  @param trees         Original trees, used for error reporting.
   719      *  @param types         The types to be checked.
   720      */
   721     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   722         List<JCExpression> tl = trees;
   723         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   724             l.head = checkRefType(tl.head.pos(), l.head);
   725             tl = tl.tail;
   726         }
   727         return types;
   728     }
   730     /** Check that type is a null or reference type.
   731      *  @param pos           Position to be used for error reporting.
   732      *  @param t             The type to be checked.
   733      */
   734     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   735         if (t.isNullOrReference())
   736             return t;
   737         else
   738             return typeTagError(pos,
   739                                 diags.fragment("type.req.ref"),
   740                                 t);
   741     }
   743     /** Check that flag set does not contain elements of two conflicting sets. s
   744      *  Return true if it doesn't.
   745      *  @param pos           Position to be used for error reporting.
   746      *  @param flags         The set of flags to be checked.
   747      *  @param set1          Conflicting flags set #1.
   748      *  @param set2          Conflicting flags set #2.
   749      */
   750     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   751         if ((flags & set1) != 0 && (flags & set2) != 0) {
   752             log.error(pos,
   753                       "illegal.combination.of.modifiers",
   754                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   755                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   756             return false;
   757         } else
   758             return true;
   759     }
   761     /** Check that usage of diamond operator is correct (i.e. diamond should not
   762      * be used with non-generic classes or in anonymous class creation expressions)
   763      */
   764     Type checkDiamond(JCNewClass tree, Type t) {
   765         if (!TreeInfo.isDiamond(tree) ||
   766                 t.isErroneous()) {
   767             return checkClassType(tree.clazz.pos(), t, true);
   768         } else if (tree.def != null) {
   769             log.error(tree.clazz.pos(),
   770                     "cant.apply.diamond.1",
   771                     t, diags.fragment("diamond.and.anon.class", t));
   772             return types.createErrorType(t);
   773         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   774             log.error(tree.clazz.pos(),
   775                 "cant.apply.diamond.1",
   776                 t, diags.fragment("diamond.non.generic", t));
   777             return types.createErrorType(t);
   778         } else if (tree.typeargs != null &&
   779                 tree.typeargs.nonEmpty()) {
   780             log.error(tree.clazz.pos(),
   781                 "cant.apply.diamond.1",
   782                 t, diags.fragment("diamond.and.explicit.params", t));
   783             return types.createErrorType(t);
   784         } else {
   785             return t;
   786         }
   787     }
   789     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   790         MethodSymbol m = tree.sym;
   791         if (!allowSimplifiedVarargs) return;
   792         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   793         Type varargElemType = null;
   794         if (m.isVarArgs()) {
   795             varargElemType = types.elemtype(tree.params.last().type);
   796         }
   797         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   798             if (varargElemType != null) {
   799                 log.error(tree,
   800                         "varargs.invalid.trustme.anno",
   801                         syms.trustMeType.tsym,
   802                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   803             } else {
   804                 log.error(tree,
   805                             "varargs.invalid.trustme.anno",
   806                             syms.trustMeType.tsym,
   807                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   808             }
   809         } else if (hasTrustMeAnno && varargElemType != null &&
   810                             types.isReifiable(varargElemType)) {
   811             warnUnsafeVararg(tree,
   812                             "varargs.redundant.trustme.anno",
   813                             syms.trustMeType.tsym,
   814                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   815         }
   816         else if (!hasTrustMeAnno && varargElemType != null &&
   817                 !types.isReifiable(varargElemType)) {
   818             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   819         }
   820     }
   821     //where
   822         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   823             return (s.flags() & VARARGS) != 0 &&
   824                 (s.isConstructor() ||
   825                     (s.flags() & (STATIC | FINAL)) != 0);
   826         }
   828     Type checkMethod(Type owntype,
   829                             Symbol sym,
   830                             Env<AttrContext> env,
   831                             final List<JCExpression> argtrees,
   832                             List<Type> argtypes,
   833                             boolean useVarargs,
   834                             boolean unchecked) {
   835         // System.out.println("call   : " + env.tree);
   836         // System.out.println("method : " + owntype);
   837         // System.out.println("actuals: " + argtypes);
   838         List<Type> formals = owntype.getParameterTypes();
   839         Type last = useVarargs ? formals.last() : null;
   840         if (sym.name==names.init &&
   841                 sym.owner == syms.enumSym)
   842                 formals = formals.tail.tail;
   843         List<JCExpression> args = argtrees;
   844         DeferredAttr.DeferredTypeMap checkDeferredMap =
   845                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
   846         if (args != null) {
   847             //this is null when type-checking a method reference
   848             while (formals.head != last) {
   849                 JCTree arg = args.head;
   850                 Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   851                 assertConvertible(arg, arg.type, formals.head, warn);
   852                 args = args.tail;
   853                 formals = formals.tail;
   854             }
   855             if (useVarargs) {
   856                 Type varArg = types.elemtype(last);
   857                 while (args.tail != null) {
   858                     JCTree arg = args.head;
   859                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   860                     assertConvertible(arg, arg.type, varArg, warn);
   861                     args = args.tail;
   862                 }
   863             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   864                 // non-varargs call to varargs method
   865                 Type varParam = owntype.getParameterTypes().last();
   866                 Type lastArg = checkDeferredMap.apply(argtypes.last());
   867                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   868                         !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   869                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   870                             types.elemtype(varParam), varParam);
   871             }
   872         }
   873         if (unchecked) {
   874             warnUnchecked(env.tree.pos(),
   875                     "unchecked.meth.invocation.applied",
   876                     kindName(sym),
   877                     sym.name,
   878                     rs.methodArguments(sym.type.getParameterTypes()),
   879                     rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
   880                     kindName(sym.location()),
   881                     sym.location());
   882            owntype = new MethodType(owntype.getParameterTypes(),
   883                    types.erasure(owntype.getReturnType()),
   884                    types.erasure(owntype.getThrownTypes()),
   885                    syms.methodClass);
   886         }
   887         if (useVarargs) {
   888             JCTree tree = env.tree;
   889             Type argtype = owntype.getParameterTypes().last();
   890             if (!types.isReifiable(argtype) &&
   891                     (!allowSimplifiedVarargs ||
   892                     sym.attribute(syms.trustMeType.tsym) == null ||
   893                     !isTrustMeAllowedOnMethod(sym))) {
   894                 warnUnchecked(env.tree.pos(),
   895                                   "unchecked.generic.array.creation",
   896                                   argtype);
   897             }
   898             Type elemtype = types.elemtype(argtype);
   899             switch (tree.getTag()) {
   900                 case APPLY:
   901                     ((JCMethodInvocation) tree).varargsElement = elemtype;
   902                     break;
   903                 case NEWCLASS:
   904                     ((JCNewClass) tree).varargsElement = elemtype;
   905                     break;
   906                 case REFERENCE:
   907                     ((JCMemberReference) tree).varargsElement = elemtype;
   908                     break;
   909                 default:
   910                     throw new AssertionError(""+tree);
   911             }
   912          }
   913          return owntype;
   914     }
   915     //where
   916         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   917             if (types.isConvertible(actual, formal, warn))
   918                 return;
   920             if (formal.isCompound()
   921                 && types.isSubtype(actual, types.supertype(formal))
   922                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   923                 return;
   924         }
   926         void checkAccessibleFunctionalDescriptor(DiagnosticPosition pos, Env<AttrContext> env, Type desc) {
   927             AccessChecker accessChecker = new AccessChecker(env);
   928             //check args accessibility (only if implicit parameter types)
   929             for (Type arg : desc.getParameterTypes()) {
   930                 if (!accessChecker.visit(arg)) {
   931                     log.error(pos, "cant.access.arg.type.in.functional.desc", arg);
   932                     return;
   933                 }
   934             }
   935             //check return type accessibility
   936             if (!accessChecker.visit(desc.getReturnType())) {
   937                 log.error(pos, "cant.access.return.in.functional.desc", desc.getReturnType());
   938                 return;
   939             }
   940             //check thrown types accessibility
   941             for (Type thrown : desc.getThrownTypes()) {
   942                 if (!accessChecker.visit(thrown)) {
   943                     log.error(pos, "cant.access.thrown.in.functional.desc", thrown);
   944                     return;
   945                 }
   946             }
   947         }
   949         class AccessChecker extends Types.UnaryVisitor<Boolean> {
   951             Env<AttrContext> env;
   953             AccessChecker(Env<AttrContext> env) {
   954                 this.env = env;
   955             }
   957             Boolean visit(List<Type> ts) {
   958                 for (Type t : ts) {
   959                     if (!visit(t))
   960                         return false;
   961                 }
   962                 return true;
   963             }
   965             public Boolean visitType(Type t, Void s) {
   966                 return true;
   967             }
   969             @Override
   970             public Boolean visitArrayType(ArrayType t, Void s) {
   971                 return visit(t.elemtype);
   972             }
   974             @Override
   975             public Boolean visitClassType(ClassType t, Void s) {
   976                 return rs.isAccessible(env, t, true) &&
   977                         visit(t.getTypeArguments());
   978             }
   980             @Override
   981             public Boolean visitWildcardType(WildcardType t, Void s) {
   982                 return visit(t.type);
   983             }
   984         };
   985     /**
   986      * Check that type 't' is a valid instantiation of a generic class
   987      * (see JLS 4.5)
   988      *
   989      * @param t class type to be checked
   990      * @return true if 't' is well-formed
   991      */
   992     public boolean checkValidGenericType(Type t) {
   993         return firstIncompatibleTypeArg(t) == null;
   994     }
   995     //WHERE
   996         private Type firstIncompatibleTypeArg(Type type) {
   997             List<Type> formals = type.tsym.type.allparams();
   998             List<Type> actuals = type.allparams();
   999             List<Type> args = type.getTypeArguments();
  1000             List<Type> forms = type.tsym.type.getTypeArguments();
  1001             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
  1003             // For matching pairs of actual argument types `a' and
  1004             // formal type parameters with declared bound `b' ...
  1005             while (args.nonEmpty() && forms.nonEmpty()) {
  1006                 // exact type arguments needs to know their
  1007                 // bounds (for upper and lower bound
  1008                 // calculations).  So we create new bounds where
  1009                 // type-parameters are replaced with actuals argument types.
  1010                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
  1011                 args = args.tail;
  1012                 forms = forms.tail;
  1015             args = type.getTypeArguments();
  1016             List<Type> tvars_cap = types.substBounds(formals,
  1017                                       formals,
  1018                                       types.capture(type).allparams());
  1019             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
  1020                 // Let the actual arguments know their bound
  1021                 args.head.withTypeVar((TypeVar)tvars_cap.head);
  1022                 args = args.tail;
  1023                 tvars_cap = tvars_cap.tail;
  1026             args = type.getTypeArguments();
  1027             List<Type> bounds = bounds_buf.toList();
  1029             while (args.nonEmpty() && bounds.nonEmpty()) {
  1030                 Type actual = args.head;
  1031                 if (!isTypeArgErroneous(actual) &&
  1032                         !bounds.head.isErroneous() &&
  1033                         !checkExtends(actual, bounds.head)) {
  1034                     return args.head;
  1036                 args = args.tail;
  1037                 bounds = bounds.tail;
  1040             args = type.getTypeArguments();
  1041             bounds = bounds_buf.toList();
  1043             for (Type arg : types.capture(type).getTypeArguments()) {
  1044                 if (arg.hasTag(TYPEVAR) &&
  1045                         arg.getUpperBound().isErroneous() &&
  1046                         !bounds.head.isErroneous() &&
  1047                         !isTypeArgErroneous(args.head)) {
  1048                     return args.head;
  1050                 bounds = bounds.tail;
  1051                 args = args.tail;
  1054             return null;
  1056         //where
  1057         boolean isTypeArgErroneous(Type t) {
  1058             return isTypeArgErroneous.visit(t);
  1061         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
  1062             public Boolean visitType(Type t, Void s) {
  1063                 return t.isErroneous();
  1065             @Override
  1066             public Boolean visitTypeVar(TypeVar t, Void s) {
  1067                 return visit(t.getUpperBound());
  1069             @Override
  1070             public Boolean visitCapturedType(CapturedType t, Void s) {
  1071                 return visit(t.getUpperBound()) ||
  1072                         visit(t.getLowerBound());
  1074             @Override
  1075             public Boolean visitWildcardType(WildcardType t, Void s) {
  1076                 return visit(t.type);
  1078         };
  1080     /** Check that given modifiers are legal for given symbol and
  1081      *  return modifiers together with any implicit modififiers for that symbol.
  1082      *  Warning: we can't use flags() here since this method
  1083      *  is called during class enter, when flags() would cause a premature
  1084      *  completion.
  1085      *  @param pos           Position to be used for error reporting.
  1086      *  @param flags         The set of modifiers given in a definition.
  1087      *  @param sym           The defined symbol.
  1088      */
  1089     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
  1090         long mask;
  1091         long implicit = 0;
  1092         switch (sym.kind) {
  1093         case VAR:
  1094             if (sym.owner.kind != TYP)
  1095                 mask = LocalVarFlags;
  1096             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1097                 mask = implicit = InterfaceVarFlags;
  1098             else
  1099                 mask = VarFlags;
  1100             break;
  1101         case MTH:
  1102             if (sym.name == names.init) {
  1103                 if ((sym.owner.flags_field & ENUM) != 0) {
  1104                     // enum constructors cannot be declared public or
  1105                     // protected and must be implicitly or explicitly
  1106                     // private
  1107                     implicit = PRIVATE;
  1108                     mask = PRIVATE;
  1109                 } else
  1110                     mask = ConstructorFlags;
  1111             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
  1112                 if ((flags & DEFAULT) != 0) {
  1113                     mask = InterfaceDefaultMethodMask;
  1114                     implicit = PUBLIC;
  1115                 } else {
  1116                     mask = implicit = InterfaceMethodFlags;
  1119             else {
  1120                 mask = MethodFlags;
  1122             // Imply STRICTFP if owner has STRICTFP set.
  1123             if (((flags|implicit) & Flags.ABSTRACT) == 0)
  1124               implicit |= sym.owner.flags_field & STRICTFP;
  1125             break;
  1126         case TYP:
  1127             if (sym.isLocal()) {
  1128                 mask = LocalClassFlags;
  1129                 if (sym.name.isEmpty()) { // Anonymous class
  1130                     // Anonymous classes in static methods are themselves static;
  1131                     // that's why we admit STATIC here.
  1132                     mask |= STATIC;
  1133                     // JLS: Anonymous classes are final.
  1134                     implicit |= FINAL;
  1136                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1137                     (flags & ENUM) != 0)
  1138                     log.error(pos, "enums.must.be.static");
  1139             } else if (sym.owner.kind == TYP) {
  1140                 mask = MemberClassFlags;
  1141                 if (sym.owner.owner.kind == PCK ||
  1142                     (sym.owner.flags_field & STATIC) != 0)
  1143                     mask |= STATIC;
  1144                 else if ((flags & ENUM) != 0)
  1145                     log.error(pos, "enums.must.be.static");
  1146                 // Nested interfaces and enums are always STATIC (Spec ???)
  1147                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1148             } else {
  1149                 mask = ClassFlags;
  1151             // Interfaces are always ABSTRACT
  1152             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1154             if ((flags & ENUM) != 0) {
  1155                 // enums can't be declared abstract or final
  1156                 mask &= ~(ABSTRACT | FINAL);
  1157                 implicit |= implicitEnumFinalFlag(tree);
  1159             // Imply STRICTFP if owner has STRICTFP set.
  1160             implicit |= sym.owner.flags_field & STRICTFP;
  1161             break;
  1162         default:
  1163             throw new AssertionError();
  1165         long illegal = flags & ExtendedStandardFlags & ~mask;
  1166         if (illegal != 0) {
  1167             if ((illegal & INTERFACE) != 0) {
  1168                 log.error(pos, "intf.not.allowed.here");
  1169                 mask |= INTERFACE;
  1171             else {
  1172                 log.error(pos,
  1173                           "mod.not.allowed.here", asFlagSet(illegal));
  1176         else if ((sym.kind == TYP ||
  1177                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1178                   // in the presence of inner classes. Should it be deleted here?
  1179                   checkDisjoint(pos, flags,
  1180                                 ABSTRACT,
  1181                                 PRIVATE | STATIC | DEFAULT))
  1182                  &&
  1183                  checkDisjoint(pos, flags,
  1184                                ABSTRACT | INTERFACE,
  1185                                FINAL | NATIVE | SYNCHRONIZED)
  1186                  &&
  1187                  checkDisjoint(pos, flags,
  1188                                PUBLIC,
  1189                                PRIVATE | PROTECTED)
  1190                  &&
  1191                  checkDisjoint(pos, flags,
  1192                                PRIVATE,
  1193                                PUBLIC | PROTECTED)
  1194                  &&
  1195                  checkDisjoint(pos, flags,
  1196                                FINAL,
  1197                                VOLATILE)
  1198                  &&
  1199                  (sym.kind == TYP ||
  1200                   checkDisjoint(pos, flags,
  1201                                 ABSTRACT | NATIVE,
  1202                                 STRICTFP))) {
  1203             // skip
  1205         return flags & (mask | ~ExtendedStandardFlags) | implicit;
  1209     /** Determine if this enum should be implicitly final.
  1211      *  If the enum has no specialized enum contants, it is final.
  1213      *  If the enum does have specialized enum contants, it is
  1214      *  <i>not</i> final.
  1215      */
  1216     private long implicitEnumFinalFlag(JCTree tree) {
  1217         if (!tree.hasTag(CLASSDEF)) return 0;
  1218         class SpecialTreeVisitor extends JCTree.Visitor {
  1219             boolean specialized;
  1220             SpecialTreeVisitor() {
  1221                 this.specialized = false;
  1222             };
  1224             @Override
  1225             public void visitTree(JCTree tree) { /* no-op */ }
  1227             @Override
  1228             public void visitVarDef(JCVariableDecl tree) {
  1229                 if ((tree.mods.flags & ENUM) != 0) {
  1230                     if (tree.init instanceof JCNewClass &&
  1231                         ((JCNewClass) tree.init).def != null) {
  1232                         specialized = true;
  1238         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1239         JCClassDecl cdef = (JCClassDecl) tree;
  1240         for (JCTree defs: cdef.defs) {
  1241             defs.accept(sts);
  1242             if (sts.specialized) return 0;
  1244         return FINAL;
  1247 /* *************************************************************************
  1248  * Type Validation
  1249  **************************************************************************/
  1251     /** Validate a type expression. That is,
  1252      *  check that all type arguments of a parametric type are within
  1253      *  their bounds. This must be done in a second phase after type attributon
  1254      *  since a class might have a subclass as type parameter bound. E.g:
  1256      *  <pre>{@code
  1257      *  class B<A extends C> { ... }
  1258      *  class C extends B<C> { ... }
  1259      *  }</pre>
  1261      *  and we can't make sure that the bound is already attributed because
  1262      *  of possible cycles.
  1264      * Visitor method: Validate a type expression, if it is not null, catching
  1265      *  and reporting any completion failures.
  1266      */
  1267     void validate(JCTree tree, Env<AttrContext> env) {
  1268         validate(tree, env, true);
  1270     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1271         new Validator(env).validateTree(tree, checkRaw, true);
  1274     /** Visitor method: Validate a list of type expressions.
  1275      */
  1276     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1277         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1278             validate(l.head, env);
  1281     /** A visitor class for type validation.
  1282      */
  1283     class Validator extends JCTree.Visitor {
  1285         boolean isOuter;
  1286         Env<AttrContext> env;
  1288         Validator(Env<AttrContext> env) {
  1289             this.env = env;
  1292         @Override
  1293         public void visitTypeArray(JCArrayTypeTree tree) {
  1294             tree.elemtype.accept(this);
  1297         @Override
  1298         public void visitTypeApply(JCTypeApply tree) {
  1299             if (tree.type.hasTag(CLASS)) {
  1300                 List<JCExpression> args = tree.arguments;
  1301                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1303                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1304                 if (incompatibleArg != null) {
  1305                     for (JCTree arg : tree.arguments) {
  1306                         if (arg.type == incompatibleArg) {
  1307                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1309                         forms = forms.tail;
  1313                 forms = tree.type.tsym.type.getTypeArguments();
  1315                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1317                 // For matching pairs of actual argument types `a' and
  1318                 // formal type parameters with declared bound `b' ...
  1319                 while (args.nonEmpty() && forms.nonEmpty()) {
  1320                     validateTree(args.head,
  1321                             !(isOuter && is_java_lang_Class),
  1322                             false);
  1323                     args = args.tail;
  1324                     forms = forms.tail;
  1327                 // Check that this type is either fully parameterized, or
  1328                 // not parameterized at all.
  1329                 if (tree.type.getEnclosingType().isRaw())
  1330                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1331                 if (tree.clazz.hasTag(SELECT))
  1332                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1336         @Override
  1337         public void visitTypeParameter(JCTypeParameter tree) {
  1338             validateTrees(tree.bounds, true, isOuter);
  1339             checkClassBounds(tree.pos(), tree.type);
  1342         @Override
  1343         public void visitWildcard(JCWildcard tree) {
  1344             if (tree.inner != null)
  1345                 validateTree(tree.inner, true, isOuter);
  1348         @Override
  1349         public void visitSelect(JCFieldAccess tree) {
  1350             if (tree.type.hasTag(CLASS)) {
  1351                 visitSelectInternal(tree);
  1353                 // Check that this type is either fully parameterized, or
  1354                 // not parameterized at all.
  1355                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1356                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1360         public void visitSelectInternal(JCFieldAccess tree) {
  1361             if (tree.type.tsym.isStatic() &&
  1362                 tree.selected.type.isParameterized()) {
  1363                 // The enclosing type is not a class, so we are
  1364                 // looking at a static member type.  However, the
  1365                 // qualifying expression is parameterized.
  1366                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1367             } else {
  1368                 // otherwise validate the rest of the expression
  1369                 tree.selected.accept(this);
  1373         /** Default visitor method: do nothing.
  1374          */
  1375         @Override
  1376         public void visitTree(JCTree tree) {
  1379         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1380             try {
  1381                 if (tree != null) {
  1382                     this.isOuter = isOuter;
  1383                     tree.accept(this);
  1384                     if (checkRaw)
  1385                         checkRaw(tree, env);
  1387             } catch (CompletionFailure ex) {
  1388                 completionError(tree.pos(), ex);
  1392         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1393             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1394                 validateTree(l.head, checkRaw, isOuter);
  1397         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1398             if (lint.isEnabled(LintCategory.RAW) &&
  1399                 tree.type.hasTag(CLASS) &&
  1400                 !TreeInfo.isDiamond(tree) &&
  1401                 !withinAnonConstr(env) &&
  1402                 tree.type.isRaw()) {
  1403                 log.warning(LintCategory.RAW,
  1404                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1408         boolean withinAnonConstr(Env<AttrContext> env) {
  1409             return env.enclClass.name.isEmpty() &&
  1410                     env.enclMethod != null && env.enclMethod.name == names.init;
  1414 /* *************************************************************************
  1415  * Exception checking
  1416  **************************************************************************/
  1418     /* The following methods treat classes as sets that contain
  1419      * the class itself and all their subclasses
  1420      */
  1422     /** Is given type a subtype of some of the types in given list?
  1423      */
  1424     boolean subset(Type t, List<Type> ts) {
  1425         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1426             if (types.isSubtype(t, l.head)) return true;
  1427         return false;
  1430     /** Is given type a subtype or supertype of
  1431      *  some of the types in given list?
  1432      */
  1433     boolean intersects(Type t, List<Type> ts) {
  1434         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1435             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1436         return false;
  1439     /** Add type set to given type list, unless it is a subclass of some class
  1440      *  in the list.
  1441      */
  1442     List<Type> incl(Type t, List<Type> ts) {
  1443         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1446     /** Remove type set from type set list.
  1447      */
  1448     List<Type> excl(Type t, List<Type> ts) {
  1449         if (ts.isEmpty()) {
  1450             return ts;
  1451         } else {
  1452             List<Type> ts1 = excl(t, ts.tail);
  1453             if (types.isSubtype(ts.head, t)) return ts1;
  1454             else if (ts1 == ts.tail) return ts;
  1455             else return ts1.prepend(ts.head);
  1459     /** Form the union of two type set lists.
  1460      */
  1461     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1462         List<Type> ts = ts1;
  1463         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1464             ts = incl(l.head, ts);
  1465         return ts;
  1468     /** Form the difference of two type lists.
  1469      */
  1470     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1471         List<Type> ts = ts1;
  1472         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1473             ts = excl(l.head, ts);
  1474         return ts;
  1477     /** Form the intersection of two type lists.
  1478      */
  1479     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1480         List<Type> ts = List.nil();
  1481         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1482             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1483         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1484             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1485         return ts;
  1488     /** Is exc an exception symbol that need not be declared?
  1489      */
  1490     boolean isUnchecked(ClassSymbol exc) {
  1491         return
  1492             exc.kind == ERR ||
  1493             exc.isSubClass(syms.errorType.tsym, types) ||
  1494             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1497     /** Is exc an exception type that need not be declared?
  1498      */
  1499     boolean isUnchecked(Type exc) {
  1500         return
  1501             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
  1502             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
  1503             exc.hasTag(BOT);
  1506     /** Same, but handling completion failures.
  1507      */
  1508     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1509         try {
  1510             return isUnchecked(exc);
  1511         } catch (CompletionFailure ex) {
  1512             completionError(pos, ex);
  1513             return true;
  1517     /** Is exc handled by given exception list?
  1518      */
  1519     boolean isHandled(Type exc, List<Type> handled) {
  1520         return isUnchecked(exc) || subset(exc, handled);
  1523     /** Return all exceptions in thrown list that are not in handled list.
  1524      *  @param thrown     The list of thrown exceptions.
  1525      *  @param handled    The list of handled exceptions.
  1526      */
  1527     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1528         List<Type> unhandled = List.nil();
  1529         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1530             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1531         return unhandled;
  1534 /* *************************************************************************
  1535  * Overriding/Implementation checking
  1536  **************************************************************************/
  1538     /** The level of access protection given by a flag set,
  1539      *  where PRIVATE is highest and PUBLIC is lowest.
  1540      */
  1541     static int protection(long flags) {
  1542         switch ((short)(flags & AccessFlags)) {
  1543         case PRIVATE: return 3;
  1544         case PROTECTED: return 1;
  1545         default:
  1546         case PUBLIC: return 0;
  1547         case 0: return 2;
  1551     /** A customized "cannot override" error message.
  1552      *  @param m      The overriding method.
  1553      *  @param other  The overridden method.
  1554      *  @return       An internationalized string.
  1555      */
  1556     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1557         String key;
  1558         if ((other.owner.flags() & INTERFACE) == 0)
  1559             key = "cant.override";
  1560         else if ((m.owner.flags() & INTERFACE) == 0)
  1561             key = "cant.implement";
  1562         else
  1563             key = "clashes.with";
  1564         return diags.fragment(key, m, m.location(), other, other.location());
  1567     /** A customized "override" warning message.
  1568      *  @param m      The overriding method.
  1569      *  @param other  The overridden method.
  1570      *  @return       An internationalized string.
  1571      */
  1572     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1573         String key;
  1574         if ((other.owner.flags() & INTERFACE) == 0)
  1575             key = "unchecked.override";
  1576         else if ((m.owner.flags() & INTERFACE) == 0)
  1577             key = "unchecked.implement";
  1578         else
  1579             key = "unchecked.clash.with";
  1580         return diags.fragment(key, m, m.location(), other, other.location());
  1583     /** A customized "override" warning message.
  1584      *  @param m      The overriding method.
  1585      *  @param other  The overridden method.
  1586      *  @return       An internationalized string.
  1587      */
  1588     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1589         String key;
  1590         if ((other.owner.flags() & INTERFACE) == 0)
  1591             key = "varargs.override";
  1592         else  if ((m.owner.flags() & INTERFACE) == 0)
  1593             key = "varargs.implement";
  1594         else
  1595             key = "varargs.clash.with";
  1596         return diags.fragment(key, m, m.location(), other, other.location());
  1599     /** Check that this method conforms with overridden method 'other'.
  1600      *  where `origin' is the class where checking started.
  1601      *  Complications:
  1602      *  (1) Do not check overriding of synthetic methods
  1603      *      (reason: they might be final).
  1604      *      todo: check whether this is still necessary.
  1605      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1606      *      than the method it implements. Augment the proxy methods with the
  1607      *      undeclared exceptions in this case.
  1608      *  (3) When generics are enabled, admit the case where an interface proxy
  1609      *      has a result type
  1610      *      extended by the result type of the method it implements.
  1611      *      Change the proxies result type to the smaller type in this case.
  1613      *  @param tree         The tree from which positions
  1614      *                      are extracted for errors.
  1615      *  @param m            The overriding method.
  1616      *  @param other        The overridden method.
  1617      *  @param origin       The class of which the overriding method
  1618      *                      is a member.
  1619      */
  1620     void checkOverride(JCTree tree,
  1621                        MethodSymbol m,
  1622                        MethodSymbol other,
  1623                        ClassSymbol origin) {
  1624         // Don't check overriding of synthetic methods or by bridge methods.
  1625         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1626             return;
  1629         // Error if static method overrides instance method (JLS 8.4.6.2).
  1630         if ((m.flags() & STATIC) != 0 &&
  1631                    (other.flags() & STATIC) == 0) {
  1632             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1633                       cannotOverride(m, other));
  1634             return;
  1637         // Error if instance method overrides static or final
  1638         // method (JLS 8.4.6.1).
  1639         if ((other.flags() & FINAL) != 0 ||
  1640                  (m.flags() & STATIC) == 0 &&
  1641                  (other.flags() & STATIC) != 0) {
  1642             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1643                       cannotOverride(m, other),
  1644                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1645             return;
  1648         if ((m.owner.flags() & ANNOTATION) != 0) {
  1649             // handled in validateAnnotationMethod
  1650             return;
  1653         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1654         if ((origin.flags() & INTERFACE) == 0 &&
  1655                  protection(m.flags()) > protection(other.flags())) {
  1656             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1657                       cannotOverride(m, other),
  1658                       other.flags() == 0 ?
  1659                           Flag.PACKAGE :
  1660                           asFlagSet(other.flags() & AccessFlags));
  1661             return;
  1664         Type mt = types.memberType(origin.type, m);
  1665         Type ot = types.memberType(origin.type, other);
  1666         // Error if overriding result type is different
  1667         // (or, in the case of generics mode, not a subtype) of
  1668         // overridden result type. We have to rename any type parameters
  1669         // before comparing types.
  1670         List<Type> mtvars = mt.getTypeArguments();
  1671         List<Type> otvars = ot.getTypeArguments();
  1672         Type mtres = mt.getReturnType();
  1673         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1675         overrideWarner.clear();
  1676         boolean resultTypesOK =
  1677             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1678         if (!resultTypesOK) {
  1679             if (!allowCovariantReturns &&
  1680                 m.owner != origin &&
  1681                 m.owner.isSubClass(other.owner, types)) {
  1682                 // allow limited interoperability with covariant returns
  1683             } else {
  1684                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1685                           "override.incompatible.ret",
  1686                           cannotOverride(m, other),
  1687                           mtres, otres);
  1688                 return;
  1690         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1691             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1692                     "override.unchecked.ret",
  1693                     uncheckedOverrides(m, other),
  1694                     mtres, otres);
  1697         // Error if overriding method throws an exception not reported
  1698         // by overridden method.
  1699         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1700         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1701         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1702         if (unhandledErased.nonEmpty()) {
  1703             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1704                       "override.meth.doesnt.throw",
  1705                       cannotOverride(m, other),
  1706                       unhandledUnerased.head);
  1707             return;
  1709         else if (unhandledUnerased.nonEmpty()) {
  1710             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1711                           "override.unchecked.thrown",
  1712                          cannotOverride(m, other),
  1713                          unhandledUnerased.head);
  1714             return;
  1717         // Optional warning if varargs don't agree
  1718         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1719             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1720             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1721                         ((m.flags() & Flags.VARARGS) != 0)
  1722                         ? "override.varargs.missing"
  1723                         : "override.varargs.extra",
  1724                         varargsOverrides(m, other));
  1727         // Warn if instance method overrides bridge method (compiler spec ??)
  1728         if ((other.flags() & BRIDGE) != 0) {
  1729             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1730                         uncheckedOverrides(m, other));
  1733         // Warn if a deprecated method overridden by a non-deprecated one.
  1734         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1735             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1738     // where
  1739         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1740             // If the method, m, is defined in an interface, then ignore the issue if the method
  1741             // is only inherited via a supertype and also implemented in the supertype,
  1742             // because in that case, we will rediscover the issue when examining the method
  1743             // in the supertype.
  1744             // If the method, m, is not defined in an interface, then the only time we need to
  1745             // address the issue is when the method is the supertype implemementation: any other
  1746             // case, we will have dealt with when examining the supertype classes
  1747             ClassSymbol mc = m.enclClass();
  1748             Type st = types.supertype(origin.type);
  1749             if (!st.hasTag(CLASS))
  1750                 return true;
  1751             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1753             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1754                 List<Type> intfs = types.interfaces(origin.type);
  1755                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1757             else
  1758                 return (stimpl != m);
  1762     // used to check if there were any unchecked conversions
  1763     Warner overrideWarner = new Warner();
  1765     /** Check that a class does not inherit two concrete methods
  1766      *  with the same signature.
  1767      *  @param pos          Position to be used for error reporting.
  1768      *  @param site         The class type to be checked.
  1769      */
  1770     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1771         Type sup = types.supertype(site);
  1772         if (!sup.hasTag(CLASS)) return;
  1774         for (Type t1 = sup;
  1775              t1.tsym.type.isParameterized();
  1776              t1 = types.supertype(t1)) {
  1777             for (Scope.Entry e1 = t1.tsym.members().elems;
  1778                  e1 != null;
  1779                  e1 = e1.sibling) {
  1780                 Symbol s1 = e1.sym;
  1781                 if (s1.kind != MTH ||
  1782                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1783                     !s1.isInheritedIn(site.tsym, types) ||
  1784                     ((MethodSymbol)s1).implementation(site.tsym,
  1785                                                       types,
  1786                                                       true) != s1)
  1787                     continue;
  1788                 Type st1 = types.memberType(t1, s1);
  1789                 int s1ArgsLength = st1.getParameterTypes().length();
  1790                 if (st1 == s1.type) continue;
  1792                 for (Type t2 = sup;
  1793                      t2.hasTag(CLASS);
  1794                      t2 = types.supertype(t2)) {
  1795                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1796                          e2.scope != null;
  1797                          e2 = e2.next()) {
  1798                         Symbol s2 = e2.sym;
  1799                         if (s2 == s1 ||
  1800                             s2.kind != MTH ||
  1801                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1802                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1803                             !s2.isInheritedIn(site.tsym, types) ||
  1804                             ((MethodSymbol)s2).implementation(site.tsym,
  1805                                                               types,
  1806                                                               true) != s2)
  1807                             continue;
  1808                         Type st2 = types.memberType(t2, s2);
  1809                         if (types.overrideEquivalent(st1, st2))
  1810                             log.error(pos, "concrete.inheritance.conflict",
  1811                                       s1, t1, s2, t2, sup);
  1818     /** Check that classes (or interfaces) do not each define an abstract
  1819      *  method with same name and arguments but incompatible return types.
  1820      *  @param pos          Position to be used for error reporting.
  1821      *  @param t1           The first argument type.
  1822      *  @param t2           The second argument type.
  1823      */
  1824     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1825                                             Type t1,
  1826                                             Type t2) {
  1827         return checkCompatibleAbstracts(pos, t1, t2,
  1828                                         types.makeCompoundType(t1, t2));
  1831     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1832                                             Type t1,
  1833                                             Type t2,
  1834                                             Type site) {
  1835         return firstIncompatibility(pos, t1, t2, site) == null;
  1838     /** Return the first method which is defined with same args
  1839      *  but different return types in two given interfaces, or null if none
  1840      *  exists.
  1841      *  @param t1     The first type.
  1842      *  @param t2     The second type.
  1843      *  @param site   The most derived type.
  1844      *  @returns symbol from t2 that conflicts with one in t1.
  1845      */
  1846     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1847         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1848         closure(t1, interfaces1);
  1849         Map<TypeSymbol,Type> interfaces2;
  1850         if (t1 == t2)
  1851             interfaces2 = interfaces1;
  1852         else
  1853             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1855         for (Type t3 : interfaces1.values()) {
  1856             for (Type t4 : interfaces2.values()) {
  1857                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1858                 if (s != null) return s;
  1861         return null;
  1864     /** Compute all the supertypes of t, indexed by type symbol. */
  1865     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1866         if (!t.hasTag(CLASS)) return;
  1867         if (typeMap.put(t.tsym, t) == null) {
  1868             closure(types.supertype(t), typeMap);
  1869             for (Type i : types.interfaces(t))
  1870                 closure(i, typeMap);
  1874     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1875     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1876         if (!t.hasTag(CLASS)) return;
  1877         if (typesSkip.get(t.tsym) != null) return;
  1878         if (typeMap.put(t.tsym, t) == null) {
  1879             closure(types.supertype(t), typesSkip, typeMap);
  1880             for (Type i : types.interfaces(t))
  1881                 closure(i, typesSkip, typeMap);
  1885     /** Return the first method in t2 that conflicts with a method from t1. */
  1886     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1887         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1888             Symbol s1 = e1.sym;
  1889             Type st1 = null;
  1890             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1891             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1892             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1893             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1894                 Symbol s2 = e2.sym;
  1895                 if (s1 == s2) continue;
  1896                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1897                 if (st1 == null) st1 = types.memberType(t1, s1);
  1898                 Type st2 = types.memberType(t2, s2);
  1899                 if (types.overrideEquivalent(st1, st2)) {
  1900                     List<Type> tvars1 = st1.getTypeArguments();
  1901                     List<Type> tvars2 = st2.getTypeArguments();
  1902                     Type rt1 = st1.getReturnType();
  1903                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1904                     boolean compat =
  1905                         types.isSameType(rt1, rt2) ||
  1906                         !rt1.isPrimitiveOrVoid() &&
  1907                         !rt2.isPrimitiveOrVoid() &&
  1908                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1909                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1910                          checkCommonOverriderIn(s1,s2,site);
  1911                     if (!compat) {
  1912                         log.error(pos, "types.incompatible.diff.ret",
  1913                             t1, t2, s2.name +
  1914                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1915                         return s2;
  1917                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1918                         !checkCommonOverriderIn(s1, s2, site)) {
  1919                     log.error(pos,
  1920                             "name.clash.same.erasure.no.override",
  1921                             s1, s1.location(),
  1922                             s2, s2.location());
  1923                     return s2;
  1927         return null;
  1929     //WHERE
  1930     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1931         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1932         Type st1 = types.memberType(site, s1);
  1933         Type st2 = types.memberType(site, s2);
  1934         closure(site, supertypes);
  1935         for (Type t : supertypes.values()) {
  1936             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1937                 Symbol s3 = e.sym;
  1938                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1939                 Type st3 = types.memberType(site,s3);
  1940                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1941                     if (s3.owner == site.tsym) {
  1942                         return true;
  1944                     List<Type> tvars1 = st1.getTypeArguments();
  1945                     List<Type> tvars2 = st2.getTypeArguments();
  1946                     List<Type> tvars3 = st3.getTypeArguments();
  1947                     Type rt1 = st1.getReturnType();
  1948                     Type rt2 = st2.getReturnType();
  1949                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1950                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1951                     boolean compat =
  1952                         !rt13.isPrimitiveOrVoid() &&
  1953                         !rt23.isPrimitiveOrVoid() &&
  1954                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1955                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1956                     if (compat)
  1957                         return true;
  1961         return false;
  1964     /** Check that a given method conforms with any method it overrides.
  1965      *  @param tree         The tree from which positions are extracted
  1966      *                      for errors.
  1967      *  @param m            The overriding method.
  1968      */
  1969     void checkOverride(JCTree tree, MethodSymbol m) {
  1970         ClassSymbol origin = (ClassSymbol)m.owner;
  1971         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1972             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1973                 log.error(tree.pos(), "enum.no.finalize");
  1974                 return;
  1976         for (Type t = origin.type; t.hasTag(CLASS);
  1977              t = types.supertype(t)) {
  1978             if (t != origin.type) {
  1979                 checkOverride(tree, t, origin, m);
  1981             for (Type t2 : types.interfaces(t)) {
  1982                 checkOverride(tree, t2, origin, m);
  1987     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1988         TypeSymbol c = site.tsym;
  1989         Scope.Entry e = c.members().lookup(m.name);
  1990         while (e.scope != null) {
  1991             if (m.overrides(e.sym, origin, types, false)) {
  1992                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1993                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1996             e = e.next();
  2000     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  2001         ClashFilter cf = new ClashFilter(origin.type);
  2002         return (cf.accepts(s1) &&
  2003                 cf.accepts(s2) &&
  2004                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  2008     /** Check that all abstract members of given class have definitions.
  2009      *  @param pos          Position to be used for error reporting.
  2010      *  @param c            The class.
  2011      */
  2012     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  2013         try {
  2014             MethodSymbol undef = firstUndef(c, c);
  2015             if (undef != null) {
  2016                 if ((c.flags() & ENUM) != 0 &&
  2017                     types.supertype(c.type).tsym == syms.enumSym &&
  2018                     (c.flags() & FINAL) == 0) {
  2019                     // add the ABSTRACT flag to an enum
  2020                     c.flags_field |= ABSTRACT;
  2021                 } else {
  2022                     MethodSymbol undef1 =
  2023                         new MethodSymbol(undef.flags(), undef.name,
  2024                                          types.memberType(c.type, undef), undef.owner);
  2025                     log.error(pos, "does.not.override.abstract",
  2026                               c, undef1, undef1.location());
  2029         } catch (CompletionFailure ex) {
  2030             completionError(pos, ex);
  2033 //where
  2034         /** Return first abstract member of class `c' that is not defined
  2035          *  in `impl', null if there is none.
  2036          */
  2037         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  2038             MethodSymbol undef = null;
  2039             // Do not bother to search in classes that are not abstract,
  2040             // since they cannot have abstract members.
  2041             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2042                 Scope s = c.members();
  2043                 for (Scope.Entry e = s.elems;
  2044                      undef == null && e != null;
  2045                      e = e.sibling) {
  2046                     if (e.sym.kind == MTH &&
  2047                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  2048                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  2049                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  2050                         if (implmeth == null || implmeth == absmeth)
  2051                             undef = absmeth;
  2054                 if (undef == null) {
  2055                     Type st = types.supertype(c.type);
  2056                     if (st.hasTag(CLASS))
  2057                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  2059                 for (List<Type> l = types.interfaces(c.type);
  2060                      undef == null && l.nonEmpty();
  2061                      l = l.tail) {
  2062                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  2065             return undef;
  2068     void checkNonCyclicDecl(JCClassDecl tree) {
  2069         CycleChecker cc = new CycleChecker();
  2070         cc.scan(tree);
  2071         if (!cc.errorFound && !cc.partialCheck) {
  2072             tree.sym.flags_field |= ACYCLIC;
  2076     class CycleChecker extends TreeScanner {
  2078         List<Symbol> seenClasses = List.nil();
  2079         boolean errorFound = false;
  2080         boolean partialCheck = false;
  2082         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  2083             if (sym != null && sym.kind == TYP) {
  2084                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  2085                 if (classEnv != null) {
  2086                     DiagnosticSource prevSource = log.currentSource();
  2087                     try {
  2088                         log.useSource(classEnv.toplevel.sourcefile);
  2089                         scan(classEnv.tree);
  2091                     finally {
  2092                         log.useSource(prevSource.getFile());
  2094                 } else if (sym.kind == TYP) {
  2095                     checkClass(pos, sym, List.<JCTree>nil());
  2097             } else {
  2098                 //not completed yet
  2099                 partialCheck = true;
  2103         @Override
  2104         public void visitSelect(JCFieldAccess tree) {
  2105             super.visitSelect(tree);
  2106             checkSymbol(tree.pos(), tree.sym);
  2109         @Override
  2110         public void visitIdent(JCIdent tree) {
  2111             checkSymbol(tree.pos(), tree.sym);
  2114         @Override
  2115         public void visitTypeApply(JCTypeApply tree) {
  2116             scan(tree.clazz);
  2119         @Override
  2120         public void visitTypeArray(JCArrayTypeTree tree) {
  2121             scan(tree.elemtype);
  2124         @Override
  2125         public void visitClassDef(JCClassDecl tree) {
  2126             List<JCTree> supertypes = List.nil();
  2127             if (tree.getExtendsClause() != null) {
  2128                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2130             if (tree.getImplementsClause() != null) {
  2131                 for (JCTree intf : tree.getImplementsClause()) {
  2132                     supertypes = supertypes.prepend(intf);
  2135             checkClass(tree.pos(), tree.sym, supertypes);
  2138         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2139             if ((c.flags_field & ACYCLIC) != 0)
  2140                 return;
  2141             if (seenClasses.contains(c)) {
  2142                 errorFound = true;
  2143                 noteCyclic(pos, (ClassSymbol)c);
  2144             } else if (!c.type.isErroneous()) {
  2145                 try {
  2146                     seenClasses = seenClasses.prepend(c);
  2147                     if (c.type.hasTag(CLASS)) {
  2148                         if (supertypes.nonEmpty()) {
  2149                             scan(supertypes);
  2151                         else {
  2152                             ClassType ct = (ClassType)c.type;
  2153                             if (ct.supertype_field == null ||
  2154                                     ct.interfaces_field == null) {
  2155                                 //not completed yet
  2156                                 partialCheck = true;
  2157                                 return;
  2159                             checkSymbol(pos, ct.supertype_field.tsym);
  2160                             for (Type intf : ct.interfaces_field) {
  2161                                 checkSymbol(pos, intf.tsym);
  2164                         if (c.owner.kind == TYP) {
  2165                             checkSymbol(pos, c.owner);
  2168                 } finally {
  2169                     seenClasses = seenClasses.tail;
  2175     /** Check for cyclic references. Issue an error if the
  2176      *  symbol of the type referred to has a LOCKED flag set.
  2178      *  @param pos      Position to be used for error reporting.
  2179      *  @param t        The type referred to.
  2180      */
  2181     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2182         checkNonCyclicInternal(pos, t);
  2186     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2187         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2190     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2191         final TypeVar tv;
  2192         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2193             return;
  2194         if (seen.contains(t)) {
  2195             tv = (TypeVar)t;
  2196             tv.bound = types.createErrorType(t);
  2197             log.error(pos, "cyclic.inheritance", t);
  2198         } else if (t.hasTag(TYPEVAR)) {
  2199             tv = (TypeVar)t;
  2200             seen = seen.prepend(tv);
  2201             for (Type b : types.getBounds(tv))
  2202                 checkNonCyclic1(pos, b, seen);
  2206     /** Check for cyclic references. Issue an error if the
  2207      *  symbol of the type referred to has a LOCKED flag set.
  2209      *  @param pos      Position to be used for error reporting.
  2210      *  @param t        The type referred to.
  2211      *  @returns        True if the check completed on all attributed classes
  2212      */
  2213     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2214         boolean complete = true; // was the check complete?
  2215         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2216         Symbol c = t.tsym;
  2217         if ((c.flags_field & ACYCLIC) != 0) return true;
  2219         if ((c.flags_field & LOCKED) != 0) {
  2220             noteCyclic(pos, (ClassSymbol)c);
  2221         } else if (!c.type.isErroneous()) {
  2222             try {
  2223                 c.flags_field |= LOCKED;
  2224                 if (c.type.hasTag(CLASS)) {
  2225                     ClassType clazz = (ClassType)c.type;
  2226                     if (clazz.interfaces_field != null)
  2227                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2228                             complete &= checkNonCyclicInternal(pos, l.head);
  2229                     if (clazz.supertype_field != null) {
  2230                         Type st = clazz.supertype_field;
  2231                         if (st != null && st.hasTag(CLASS))
  2232                             complete &= checkNonCyclicInternal(pos, st);
  2234                     if (c.owner.kind == TYP)
  2235                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2237             } finally {
  2238                 c.flags_field &= ~LOCKED;
  2241         if (complete)
  2242             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2243         if (complete) c.flags_field |= ACYCLIC;
  2244         return complete;
  2247     /** Note that we found an inheritance cycle. */
  2248     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2249         log.error(pos, "cyclic.inheritance", c);
  2250         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2251             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2252         Type st = types.supertype(c.type);
  2253         if (st.hasTag(CLASS))
  2254             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2255         c.type = types.createErrorType(c, c.type);
  2256         c.flags_field |= ACYCLIC;
  2259     /** Check that all methods which implement some
  2260      *  method conform to the method they implement.
  2261      *  @param tree         The class definition whose members are checked.
  2262      */
  2263     void checkImplementations(JCClassDecl tree) {
  2264         checkImplementations(tree, tree.sym);
  2266 //where
  2267         /** Check that all methods which implement some
  2268          *  method in `ic' conform to the method they implement.
  2269          */
  2270         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2271             ClassSymbol origin = tree.sym;
  2272             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2273                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2274                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2275                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2276                         if (e.sym.kind == MTH &&
  2277                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2278                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2279                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2280                             if (implmeth != null && implmeth != absmeth &&
  2281                                 (implmeth.owner.flags() & INTERFACE) ==
  2282                                 (origin.flags() & INTERFACE)) {
  2283                                 // don't check if implmeth is in a class, yet
  2284                                 // origin is an interface. This case arises only
  2285                                 // if implmeth is declared in Object. The reason is
  2286                                 // that interfaces really don't inherit from
  2287                                 // Object it's just that the compiler represents
  2288                                 // things that way.
  2289                                 checkOverride(tree, implmeth, absmeth, origin);
  2297     /** Check that all abstract methods implemented by a class are
  2298      *  mutually compatible.
  2299      *  @param pos          Position to be used for error reporting.
  2300      *  @param c            The class whose interfaces are checked.
  2301      */
  2302     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2303         List<Type> supertypes = types.interfaces(c);
  2304         Type supertype = types.supertype(c);
  2305         if (supertype.hasTag(CLASS) &&
  2306             (supertype.tsym.flags() & ABSTRACT) != 0)
  2307             supertypes = supertypes.prepend(supertype);
  2308         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2309             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2310                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2311                 return;
  2312             for (List<Type> m = supertypes; m != l; m = m.tail)
  2313                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2314                     return;
  2316         checkCompatibleConcretes(pos, c);
  2319     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2320         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2321             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2322                 // VM allows methods and variables with differing types
  2323                 if (sym.kind == e.sym.kind &&
  2324                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2325                     sym != e.sym &&
  2326                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2327                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2328                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2329                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2330                     return;
  2336     /** Check that all non-override equivalent methods accessible from 'site'
  2337      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2339      *  @param pos  Position to be used for error reporting.
  2340      *  @param site The class whose methods are checked.
  2341      *  @param sym  The method symbol to be checked.
  2342      */
  2343     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2344          ClashFilter cf = new ClashFilter(site);
  2345         //for each method m1 that is overridden (directly or indirectly)
  2346         //by method 'sym' in 'site'...
  2347         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2348             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2349              //...check each method m2 that is a member of 'site'
  2350              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2351                 if (m2 == m1) continue;
  2352                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2353                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2354                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), false) &&
  2355                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2356                     sym.flags_field |= CLASH;
  2357                     String key = m1 == sym ?
  2358                             "name.clash.same.erasure.no.override" :
  2359                             "name.clash.same.erasure.no.override.1";
  2360                     log.error(pos,
  2361                             key,
  2362                             sym, sym.location(),
  2363                             m2, m2.location(),
  2364                             m1, m1.location());
  2365                     return;
  2373     /** Check that all static methods accessible from 'site' are
  2374      *  mutually compatible (JLS 8.4.8).
  2376      *  @param pos  Position to be used for error reporting.
  2377      *  @param site The class whose methods are checked.
  2378      *  @param sym  The method symbol to be checked.
  2379      */
  2380     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2381         ClashFilter cf = new ClashFilter(site);
  2382         //for each method m1 that is a member of 'site'...
  2383         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2384             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2385             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2386             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2387                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2388                 log.error(pos,
  2389                         "name.clash.same.erasure.no.hide",
  2390                         sym, sym.location(),
  2391                         s, s.location());
  2392                 return;
  2397      //where
  2398      private class ClashFilter implements Filter<Symbol> {
  2400          Type site;
  2402          ClashFilter(Type site) {
  2403              this.site = site;
  2406          boolean shouldSkip(Symbol s) {
  2407              return (s.flags() & CLASH) != 0 &&
  2408                 s.owner == site.tsym;
  2411          public boolean accepts(Symbol s) {
  2412              return s.kind == MTH &&
  2413                      (s.flags() & SYNTHETIC) == 0 &&
  2414                      !shouldSkip(s) &&
  2415                      s.isInheritedIn(site.tsym, types) &&
  2416                      !s.isConstructor();
  2420     /** Report a conflict between a user symbol and a synthetic symbol.
  2421      */
  2422     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2423         if (!sym.type.isErroneous()) {
  2424             if (warnOnSyntheticConflicts) {
  2425                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2427             else {
  2428                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2433     /** Check that class c does not implement directly or indirectly
  2434      *  the same parameterized interface with two different argument lists.
  2435      *  @param pos          Position to be used for error reporting.
  2436      *  @param type         The type whose interfaces are checked.
  2437      */
  2438     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2439         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2441 //where
  2442         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2443          *  with their class symbol as key and their type as value. Make
  2444          *  sure no class is entered with two different types.
  2445          */
  2446         void checkClassBounds(DiagnosticPosition pos,
  2447                               Map<TypeSymbol,Type> seensofar,
  2448                               Type type) {
  2449             if (type.isErroneous()) return;
  2450             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2451                 Type it = l.head;
  2452                 Type oldit = seensofar.put(it.tsym, it);
  2453                 if (oldit != null) {
  2454                     List<Type> oldparams = oldit.allparams();
  2455                     List<Type> newparams = it.allparams();
  2456                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2457                         log.error(pos, "cant.inherit.diff.arg",
  2458                                   it.tsym, Type.toString(oldparams),
  2459                                   Type.toString(newparams));
  2461                 checkClassBounds(pos, seensofar, it);
  2463             Type st = types.supertype(type);
  2464             if (st != null) checkClassBounds(pos, seensofar, st);
  2467     /** Enter interface into into set.
  2468      *  If it existed already, issue a "repeated interface" error.
  2469      */
  2470     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2471         if (its.contains(it))
  2472             log.error(pos, "repeated.interface");
  2473         else {
  2474             its.add(it);
  2478 /* *************************************************************************
  2479  * Check annotations
  2480  **************************************************************************/
  2482     /**
  2483      * Recursively validate annotations values
  2484      */
  2485     void validateAnnotationTree(JCTree tree) {
  2486         class AnnotationValidator extends TreeScanner {
  2487             @Override
  2488             public void visitAnnotation(JCAnnotation tree) {
  2489                 if (!tree.type.isErroneous()) {
  2490                     super.visitAnnotation(tree);
  2491                     validateAnnotation(tree);
  2495         tree.accept(new AnnotationValidator());
  2498     /**
  2499      *  {@literal
  2500      *  Annotation types are restricted to primitives, String, an
  2501      *  enum, an annotation, Class, Class<?>, Class<? extends
  2502      *  Anything>, arrays of the preceding.
  2503      *  }
  2504      */
  2505     void validateAnnotationType(JCTree restype) {
  2506         // restype may be null if an error occurred, so don't bother validating it
  2507         if (restype != null) {
  2508             validateAnnotationType(restype.pos(), restype.type);
  2512     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2513         if (type.isPrimitive()) return;
  2514         if (types.isSameType(type, syms.stringType)) return;
  2515         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2516         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2517         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2518         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2519             validateAnnotationType(pos, types.elemtype(type));
  2520             return;
  2522         log.error(pos, "invalid.annotation.member.type");
  2525     /**
  2526      * "It is also a compile-time error if any method declared in an
  2527      * annotation type has a signature that is override-equivalent to
  2528      * that of any public or protected method declared in class Object
  2529      * or in the interface annotation.Annotation."
  2531      * @jls 9.6 Annotation Types
  2532      */
  2533     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2534         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
  2535             Scope s = sup.tsym.members();
  2536             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2537                 if (e.sym.kind == MTH &&
  2538                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2539                     types.overrideEquivalent(m.type, e.sym.type))
  2540                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2545     /** Check the annotations of a symbol.
  2546      */
  2547     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2548         for (JCAnnotation a : annotations)
  2549             validateAnnotation(a, s);
  2552     /** Check an annotation of a symbol.
  2553      */
  2554     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2555         validateAnnotationTree(a);
  2557         if (!annotationApplicable(a, s))
  2558             log.error(a.pos(), "annotation.type.not.applicable");
  2560         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2561             if (!isOverrider(s))
  2562                 log.error(a.pos(), "method.does.not.override.superclass");
  2566     /**
  2567      * Validate the proposed container 'containedBy' on the
  2568      * annotation type symbol 's'. Report errors at position
  2569      * 'pos'.
  2571      * @param s The (annotation)type declaration annotated with a @ContainedBy
  2572      * @param containedBy the @ContainedBy on 's'
  2573      * @param pos where to report errors
  2574      */
  2575     public void validateContainedBy(TypeSymbol s, Attribute.Compound containedBy, DiagnosticPosition pos) {
  2576         Assert.check(types.isSameType(containedBy.type, syms.containedByType));
  2578         Type t = null;
  2579         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2580         if (!l.isEmpty()) {
  2581             Assert.check(l.head.fst.name == names.value);
  2582             t = ((Attribute.Class)l.head.snd).getValue();
  2585         if (t == null) {
  2586             log.error(pos, "invalid.container.wrong.containedby", s, containedBy);
  2587             return;
  2590         validateHasContainerFor(t.tsym, s, pos);
  2591         validateRetention(t.tsym, s, pos);
  2592         validateDocumented(t.tsym, s, pos);
  2593         validateInherited(t.tsym, s, pos);
  2594         validateTarget(t.tsym, s, pos);
  2595         validateDefault(t.tsym, s, pos);
  2598     /**
  2599      * Validate the proposed container 'containerFor' on the
  2600      * annotation type symbol 's'. Report errors at position
  2601      * 'pos'.
  2603      * @param s The (annotation)type declaration annotated with a @ContainerFor
  2604      * @param containerFor the @ContainedFor on 's'
  2605      * @param pos where to report errors
  2606      */
  2607     public void validateContainerFor(TypeSymbol s, Attribute.Compound containerFor, DiagnosticPosition pos) {
  2608         Assert.check(types.isSameType(containerFor.type, syms.containerForType));
  2610         Type t = null;
  2611         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2612         if (!l.isEmpty()) {
  2613             Assert.check(l.head.fst.name == names.value);
  2614             t = ((Attribute.Class)l.head.snd).getValue();
  2617         if (t == null) {
  2618             log.error(pos, "invalid.container.wrong.containerfor", s, containerFor);
  2619             return;
  2622         validateHasContainedBy(t.tsym, s, pos);
  2625     private void validateHasContainedBy(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2626         Attribute.Compound containedBy = container.attribute(syms.containedByType.tsym);
  2628         if (containedBy == null) {
  2629             log.error(pos, "invalid.container.no.containedby", container, syms.containedByType.tsym);
  2630             return;
  2633         Type t = null;
  2634         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2635         if (!l.isEmpty()) {
  2636             Assert.check(l.head.fst.name == names.value);
  2637             t = ((Attribute.Class)l.head.snd).getValue();
  2640         if (t == null) {
  2641             log.error(pos, "invalid.container.wrong.containedby", container, contained);
  2642             return;
  2645         if (!types.isSameType(t, contained.type))
  2646             log.error(pos, "invalid.container.wrong.containedby", t.tsym, contained);
  2649     private void validateHasContainerFor(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2650         Attribute.Compound containerFor = container.attribute(syms.containerForType.tsym);
  2652         if (containerFor == null) {
  2653             log.error(pos, "invalid.container.no.containerfor", container, syms.containerForType.tsym);
  2654             return;
  2657         Type t = null;
  2658         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2659         if (!l.isEmpty()) {
  2660             Assert.check(l.head.fst.name == names.value);
  2661             t = ((Attribute.Class)l.head.snd).getValue();
  2664         if (t == null) {
  2665             log.error(pos, "invalid.container.wrong.containerfor", container, contained);
  2666             return;
  2669         if (!types.isSameType(t, contained.type))
  2670             log.error(pos, "invalid.container.wrong.containerfor", t.tsym, contained);
  2673     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2674         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2675         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2677         boolean error = false;
  2678         switch (containedRetention) {
  2679         case RUNTIME:
  2680             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2681                 error = true;
  2683             break;
  2684         case CLASS:
  2685             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2686                 error = true;
  2689         if (error ) {
  2690             log.error(pos, "invalid.containedby.annotation.retention",
  2691                       container, containerRetention,
  2692                       contained, containedRetention);
  2696     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2697         if (contained.attribute(syms.documentedType.tsym) != null) {
  2698             if (container.attribute(syms.documentedType.tsym) == null) {
  2699                 log.error(pos, "invalid.containedby.annotation.not.documented", container, contained);
  2704     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2705         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2706             if (container.attribute(syms.inheritedType.tsym) == null) {
  2707                 log.error(pos, "invalid.containedby.annotation.not.inherited", container, contained);
  2712     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2713         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2715         // If contained has no Target, we are done
  2716         if (containedTarget == null) {
  2717             return;
  2720         // If contained has Target m1, container must have a Target
  2721         // annotation, m2, and m2 must be a subset of m1. (This is
  2722         // trivially true if contained has no target as per above).
  2724         // contained has target, but container has not, error
  2725         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2726         if (containerTarget == null) {
  2727             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2728             return;
  2731         Set<Name> containerTargets = new HashSet<Name>();
  2732         for (Attribute app : containerTarget.values) {
  2733             if (!(app instanceof Attribute.Enum)) {
  2734                 continue; // recovery
  2736             Attribute.Enum e = (Attribute.Enum)app;
  2737             containerTargets.add(e.value.name);
  2740         Set<Name> containedTargets = new HashSet<Name>();
  2741         for (Attribute app : containedTarget.values) {
  2742             if (!(app instanceof Attribute.Enum)) {
  2743                 continue; // recovery
  2745             Attribute.Enum e = (Attribute.Enum)app;
  2746             containedTargets.add(e.value.name);
  2749         if (!isTargetSubset(containedTargets, containerTargets)) {
  2750             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2754     /** Checks that t is a subset of s, with respect to ElementType
  2755      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE}
  2756      */
  2757     private boolean isTargetSubset(Set<Name> s, Set<Name> t) {
  2758         // Check that all elements in t are present in s
  2759         for (Name n2 : t) {
  2760             boolean currentElementOk = false;
  2761             for (Name n1 : s) {
  2762                 if (n1 == n2) {
  2763                     currentElementOk = true;
  2764                     break;
  2765                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2766                     currentElementOk = true;
  2767                     break;
  2770             if (!currentElementOk)
  2771                 return false;
  2773         return true;
  2776     private void validateDefault(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2777         // validate that all other elements of containing type has defaults
  2778         Scope scope = container.members();
  2779         for(Symbol elm : scope.getElements()) {
  2780             if (elm.name != names.value &&
  2781                 elm.kind == Kinds.MTH &&
  2782                 ((MethodSymbol)elm).defaultValue == null) {
  2783                 log.error(pos,
  2784                           "invalid.containedby.annotation.elem.nondefault",
  2785                           container,
  2786                           elm);
  2791     /** Is s a method symbol that overrides a method in a superclass? */
  2792     boolean isOverrider(Symbol s) {
  2793         if (s.kind != MTH || s.isStatic())
  2794             return false;
  2795         MethodSymbol m = (MethodSymbol)s;
  2796         TypeSymbol owner = (TypeSymbol)m.owner;
  2797         for (Type sup : types.closure(owner.type)) {
  2798             if (sup == owner.type)
  2799                 continue; // skip "this"
  2800             Scope scope = sup.tsym.members();
  2801             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2802                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2803                     return true;
  2806         return false;
  2809     /** Is the annotation applicable to the symbol? */
  2810     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2811         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2812         if (arr == null) {
  2813             return true;
  2815         for (Attribute app : arr.values) {
  2816             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2817             Attribute.Enum e = (Attribute.Enum) app;
  2818             if (e.value.name == names.TYPE)
  2819                 { if (s.kind == TYP) return true; }
  2820             else if (e.value.name == names.FIELD)
  2821                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2822             else if (e.value.name == names.METHOD)
  2823                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2824             else if (e.value.name == names.PARAMETER)
  2825                 { if (s.kind == VAR &&
  2826                       s.owner.kind == MTH &&
  2827                       (s.flags() & PARAMETER) != 0)
  2828                     return true;
  2830             else if (e.value.name == names.CONSTRUCTOR)
  2831                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2832             else if (e.value.name == names.LOCAL_VARIABLE)
  2833                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2834                       (s.flags() & PARAMETER) == 0)
  2835                     return true;
  2837             else if (e.value.name == names.ANNOTATION_TYPE)
  2838                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2839                     return true;
  2841             else if (e.value.name == names.PACKAGE)
  2842                 { if (s.kind == PCK) return true; }
  2843             else if (e.value.name == names.TYPE_USE)
  2844                 { if (s.kind == TYP ||
  2845                       s.kind == VAR ||
  2846                       (s.kind == MTH && !s.isConstructor() &&
  2847                        !s.type.getReturnType().hasTag(VOID)))
  2848                     return true;
  2850             else
  2851                 return true; // recovery
  2853         return false;
  2857     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  2858         Attribute.Compound atTarget =
  2859             s.attribute(syms.annotationTargetType.tsym);
  2860         if (atTarget == null) return null; // ok, is applicable
  2861         Attribute atValue = atTarget.member(names.value);
  2862         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  2863         return (Attribute.Array) atValue;
  2866     /** Check an annotation value.
  2867      */
  2868     public void validateAnnotation(JCAnnotation a) {
  2869         // collect an inventory of the members (sorted alphabetically)
  2870         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2871             public int compare(Symbol t, Symbol t1) {
  2872                 return t.name.compareTo(t1.name);
  2874         });
  2875         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2876              e != null;
  2877              e = e.sibling)
  2878             if (e.sym.kind == MTH)
  2879                 members.add((MethodSymbol) e.sym);
  2881         // count them off as they're annotated
  2882         for (JCTree arg : a.args) {
  2883             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2884             JCAssign assign = (JCAssign) arg;
  2885             Symbol m = TreeInfo.symbol(assign.lhs);
  2886             if (m == null || m.type.isErroneous()) continue;
  2887             if (!members.remove(m))
  2888                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2889                           m.name, a.type);
  2892         // all the remaining ones better have default values
  2893         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2894         for (MethodSymbol m : members) {
  2895             if (m.defaultValue == null && !m.type.isErroneous()) {
  2896                 missingDefaults.append(m.name);
  2899         if (missingDefaults.nonEmpty()) {
  2900             String key = (missingDefaults.size() > 1)
  2901                     ? "annotation.missing.default.value.1"
  2902                     : "annotation.missing.default.value";
  2903             log.error(a.pos(), key, a.type, missingDefaults);
  2906         // special case: java.lang.annotation.Target must not have
  2907         // repeated values in its value member
  2908         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2909             a.args.tail == null)
  2910             return;
  2912         if (!a.args.head.hasTag(ASSIGN)) return; // error recovery
  2913         JCAssign assign = (JCAssign) a.args.head;
  2914         Symbol m = TreeInfo.symbol(assign.lhs);
  2915         if (m.name != names.value) return;
  2916         JCTree rhs = assign.rhs;
  2917         if (!rhs.hasTag(NEWARRAY)) return;
  2918         JCNewArray na = (JCNewArray) rhs;
  2919         Set<Symbol> targets = new HashSet<Symbol>();
  2920         for (JCTree elem : na.elems) {
  2921             if (!targets.add(TreeInfo.symbol(elem))) {
  2922                 log.error(elem.pos(), "repeated.annotation.target");
  2927     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2928         if (allowAnnotations &&
  2929             lint.isEnabled(LintCategory.DEP_ANN) &&
  2930             (s.flags() & DEPRECATED) != 0 &&
  2931             !syms.deprecatedType.isErroneous() &&
  2932             s.attribute(syms.deprecatedType.tsym) == null) {
  2933             log.warning(LintCategory.DEP_ANN,
  2934                     pos, "missing.deprecated.annotation");
  2938     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2939         if ((s.flags() & DEPRECATED) != 0 &&
  2940                 (other.flags() & DEPRECATED) == 0 &&
  2941                 s.outermostClass() != other.outermostClass()) {
  2942             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2943                 @Override
  2944                 public void report() {
  2945                     warnDeprecated(pos, s);
  2947             });
  2951     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2952         if ((s.flags() & PROPRIETARY) != 0) {
  2953             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2954                 public void report() {
  2955                     if (enableSunApiLintControl)
  2956                       warnSunApi(pos, "sun.proprietary", s);
  2957                     else
  2958                       log.mandatoryWarning(pos, "sun.proprietary", s);
  2960             });
  2964 /* *************************************************************************
  2965  * Check for recursive annotation elements.
  2966  **************************************************************************/
  2968     /** Check for cycles in the graph of annotation elements.
  2969      */
  2970     void checkNonCyclicElements(JCClassDecl tree) {
  2971         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2972         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2973         try {
  2974             tree.sym.flags_field |= LOCKED;
  2975             for (JCTree def : tree.defs) {
  2976                 if (!def.hasTag(METHODDEF)) continue;
  2977                 JCMethodDecl meth = (JCMethodDecl)def;
  2978                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2980         } finally {
  2981             tree.sym.flags_field &= ~LOCKED;
  2982             tree.sym.flags_field |= ACYCLIC_ANN;
  2986     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2987         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2988             return;
  2989         if ((tsym.flags_field & LOCKED) != 0) {
  2990             log.error(pos, "cyclic.annotation.element");
  2991             return;
  2993         try {
  2994             tsym.flags_field |= LOCKED;
  2995             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2996                 Symbol s = e.sym;
  2997                 if (s.kind != Kinds.MTH)
  2998                     continue;
  2999                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  3001         } finally {
  3002             tsym.flags_field &= ~LOCKED;
  3003             tsym.flags_field |= ACYCLIC_ANN;
  3007     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  3008         switch (type.getTag()) {
  3009         case CLASS:
  3010             if ((type.tsym.flags() & ANNOTATION) != 0)
  3011                 checkNonCyclicElementsInternal(pos, type.tsym);
  3012             break;
  3013         case ARRAY:
  3014             checkAnnotationResType(pos, types.elemtype(type));
  3015             break;
  3016         default:
  3017             break; // int etc
  3021 /* *************************************************************************
  3022  * Check for cycles in the constructor call graph.
  3023  **************************************************************************/
  3025     /** Check for cycles in the graph of constructors calling other
  3026      *  constructors.
  3027      */
  3028     void checkCyclicConstructors(JCClassDecl tree) {
  3029         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  3031         // enter each constructor this-call into the map
  3032         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3033             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  3034             if (app == null) continue;
  3035             JCMethodDecl meth = (JCMethodDecl) l.head;
  3036             if (TreeInfo.name(app.meth) == names._this) {
  3037                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  3038             } else {
  3039                 meth.sym.flags_field |= ACYCLIC;
  3043         // Check for cycles in the map
  3044         Symbol[] ctors = new Symbol[0];
  3045         ctors = callMap.keySet().toArray(ctors);
  3046         for (Symbol caller : ctors) {
  3047             checkCyclicConstructor(tree, caller, callMap);
  3051     /** Look in the map to see if the given constructor is part of a
  3052      *  call cycle.
  3053      */
  3054     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  3055                                         Map<Symbol,Symbol> callMap) {
  3056         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  3057             if ((ctor.flags_field & LOCKED) != 0) {
  3058                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  3059                           "recursive.ctor.invocation");
  3060             } else {
  3061                 ctor.flags_field |= LOCKED;
  3062                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  3063                 ctor.flags_field &= ~LOCKED;
  3065             ctor.flags_field |= ACYCLIC;
  3069 /* *************************************************************************
  3070  * Miscellaneous
  3071  **************************************************************************/
  3073     /**
  3074      * Return the opcode of the operator but emit an error if it is an
  3075      * error.
  3076      * @param pos        position for error reporting.
  3077      * @param operator   an operator
  3078      * @param tag        a tree tag
  3079      * @param left       type of left hand side
  3080      * @param right      type of right hand side
  3081      */
  3082     int checkOperator(DiagnosticPosition pos,
  3083                        OperatorSymbol operator,
  3084                        JCTree.Tag tag,
  3085                        Type left,
  3086                        Type right) {
  3087         if (operator.opcode == ByteCodes.error) {
  3088             log.error(pos,
  3089                       "operator.cant.be.applied.1",
  3090                       treeinfo.operatorName(tag),
  3091                       left, right);
  3093         return operator.opcode;
  3097     /**
  3098      *  Check for division by integer constant zero
  3099      *  @param pos           Position for error reporting.
  3100      *  @param operator      The operator for the expression
  3101      *  @param operand       The right hand operand for the expression
  3102      */
  3103     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  3104         if (operand.constValue() != null
  3105             && lint.isEnabled(LintCategory.DIVZERO)
  3106             && (operand.getTag().isSubRangeOf(LONG))
  3107             && ((Number) (operand.constValue())).longValue() == 0) {
  3108             int opc = ((OperatorSymbol)operator).opcode;
  3109             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  3110                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  3111                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  3116     /**
  3117      * Check for empty statements after if
  3118      */
  3119     void checkEmptyIf(JCIf tree) {
  3120         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  3121                 lint.isEnabled(LintCategory.EMPTY))
  3122             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  3125     /** Check that symbol is unique in given scope.
  3126      *  @param pos           Position for error reporting.
  3127      *  @param sym           The symbol.
  3128      *  @param s             The scope.
  3129      */
  3130     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  3131         if (sym.type.isErroneous())
  3132             return true;
  3133         if (sym.owner.name == names.any) return false;
  3134         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  3135             if (sym != e.sym &&
  3136                     (e.sym.flags() & CLASH) == 0 &&
  3137                     sym.kind == e.sym.kind &&
  3138                     sym.name != names.error &&
  3139                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  3140                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3141                     varargsDuplicateError(pos, sym, e.sym);
  3142                     return true;
  3143                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3144                     duplicateErasureError(pos, sym, e.sym);
  3145                     sym.flags_field |= CLASH;
  3146                     return true;
  3147                 } else {
  3148                     duplicateError(pos, e.sym);
  3149                     return false;
  3153         return true;
  3156     /** Report duplicate declaration error.
  3157      */
  3158     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3159         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3160             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3164     /** Check that single-type import is not already imported or top-level defined,
  3165      *  but make an exception for two single-type imports which denote the same type.
  3166      *  @param pos           Position for error reporting.
  3167      *  @param sym           The symbol.
  3168      *  @param s             The scope
  3169      */
  3170     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3171         return checkUniqueImport(pos, sym, s, false);
  3174     /** Check that static single-type import is not already imported or top-level defined,
  3175      *  but make an exception for two single-type imports which denote the same type.
  3176      *  @param pos           Position for error reporting.
  3177      *  @param sym           The symbol.
  3178      *  @param s             The scope
  3179      */
  3180     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3181         return checkUniqueImport(pos, sym, s, true);
  3184     /** Check that single-type import is not already imported or top-level defined,
  3185      *  but make an exception for two single-type imports which denote the same type.
  3186      *  @param pos           Position for error reporting.
  3187      *  @param sym           The symbol.
  3188      *  @param s             The scope.
  3189      *  @param staticImport  Whether or not this was a static import
  3190      */
  3191     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3192         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3193             // is encountered class entered via a class declaration?
  3194             boolean isClassDecl = e.scope == s;
  3195             if ((isClassDecl || sym != e.sym) &&
  3196                 sym.kind == e.sym.kind &&
  3197                 sym.name != names.error) {
  3198                 if (!e.sym.type.isErroneous()) {
  3199                     String what = e.sym.toString();
  3200                     if (!isClassDecl) {
  3201                         if (staticImport)
  3202                             log.error(pos, "already.defined.static.single.import", what);
  3203                         else
  3204                             log.error(pos, "already.defined.single.import", what);
  3206                     else if (sym != e.sym)
  3207                         log.error(pos, "already.defined.this.unit", what);
  3209                 return false;
  3212         return true;
  3215     /** Check that a qualified name is in canonical form (for import decls).
  3216      */
  3217     public void checkCanonical(JCTree tree) {
  3218         if (!isCanonical(tree))
  3219             log.error(tree.pos(), "import.requires.canonical",
  3220                       TreeInfo.symbol(tree));
  3222         // where
  3223         private boolean isCanonical(JCTree tree) {
  3224             while (tree.hasTag(SELECT)) {
  3225                 JCFieldAccess s = (JCFieldAccess) tree;
  3226                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3227                     return false;
  3228                 tree = s.selected;
  3230             return true;
  3233     private class ConversionWarner extends Warner {
  3234         final String uncheckedKey;
  3235         final Type found;
  3236         final Type expected;
  3237         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3238             super(pos);
  3239             this.uncheckedKey = uncheckedKey;
  3240             this.found = found;
  3241             this.expected = expected;
  3244         @Override
  3245         public void warn(LintCategory lint) {
  3246             boolean warned = this.warned;
  3247             super.warn(lint);
  3248             if (warned) return; // suppress redundant diagnostics
  3249             switch (lint) {
  3250                 case UNCHECKED:
  3251                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3252                     break;
  3253                 case VARARGS:
  3254                     if (method != null &&
  3255                             method.attribute(syms.trustMeType.tsym) != null &&
  3256                             isTrustMeAllowedOnMethod(method) &&
  3257                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3258                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3260                     break;
  3261                 default:
  3262                     throw new AssertionError("Unexpected lint: " + lint);
  3267     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3268         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3271     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3272         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial