src/share/classes/com/sun/tools/javac/comp/Check.java

Tue, 06 Mar 2012 13:28:05 +0000

author
mcimadamore
date
Tue, 06 Mar 2012 13:28:05 +0000
changeset 1219
48ee63caaa93
parent 1218
dda6a5b15580
child 1226
97bec6ab1227
permissions
-rw-r--r--

7144506: Attr.checkMethod should be called after inference variables have been fixed
Summary: Unify post-inference sanity check with Attr.checkMethod
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    46 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    47 import static com.sun.tools.javac.code.Kinds.*;
    48 import static com.sun.tools.javac.code.TypeTags.*;
    49 import static com.sun.tools.javac.code.TypeTags.WILDCARD;
    51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    53 /** Type checking helper class for the attribution phase.
    54  *
    55  *  <p><b>This is NOT part of any supported API.
    56  *  If you write code that depends on this, you do so at your own risk.
    57  *  This code and its internal interfaces are subject to change or
    58  *  deletion without notice.</b>
    59  */
    60 public class Check {
    61     protected static final Context.Key<Check> checkKey =
    62         new Context.Key<Check>();
    64     private final Names names;
    65     private final Log log;
    66     private final Resolve rs;
    67     private final Symtab syms;
    68     private final Enter enter;
    69     private final Infer infer;
    70     private final Types types;
    71     private final JCDiagnostic.Factory diags;
    72     private final boolean skipAnnotations;
    73     private boolean warnOnSyntheticConflicts;
    74     private boolean suppressAbortOnBadClassFile;
    75     private boolean enableSunApiLintControl;
    76     private final TreeInfo treeinfo;
    78     // The set of lint options currently in effect. It is initialized
    79     // from the context, and then is set/reset as needed by Attr as it
    80     // visits all the various parts of the trees during attribution.
    81     private Lint lint;
    83     // The method being analyzed in Attr - it is set/reset as needed by
    84     // Attr as it visits new method declarations.
    85     private MethodSymbol method;
    87     public static Check instance(Context context) {
    88         Check instance = context.get(checkKey);
    89         if (instance == null)
    90             instance = new Check(context);
    91         return instance;
    92     }
    94     protected Check(Context context) {
    95         context.put(checkKey, this);
    97         names = Names.instance(context);
    98         log = Log.instance(context);
    99         rs = Resolve.instance(context);
   100         syms = Symtab.instance(context);
   101         enter = Enter.instance(context);
   102         infer = Infer.instance(context);
   103         this.types = Types.instance(context);
   104         diags = JCDiagnostic.Factory.instance(context);
   105         Options options = Options.instance(context);
   106         lint = Lint.instance(context);
   107         treeinfo = TreeInfo.instance(context);
   109         Source source = Source.instance(context);
   110         allowGenerics = source.allowGenerics();
   111         allowVarargs = source.allowVarargs();
   112         allowAnnotations = source.allowAnnotations();
   113         allowCovariantReturns = source.allowCovariantReturns();
   114         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   115         complexInference = options.isSet("complexinference");
   116         skipAnnotations = options.isSet("skipAnnotations");
   117         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   118         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   119         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   121         Target target = Target.instance(context);
   122         syntheticNameChar = target.syntheticNameChar();
   124         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   125         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   126         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   127         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   129         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   130                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   131         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   132                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   133         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   134                 enforceMandatoryWarnings, "sunapi", null);
   136         deferredLintHandler = DeferredLintHandler.immediateHandler;
   137     }
   139     /** Switch: generics enabled?
   140      */
   141     boolean allowGenerics;
   143     /** Switch: varargs enabled?
   144      */
   145     boolean allowVarargs;
   147     /** Switch: annotations enabled?
   148      */
   149     boolean allowAnnotations;
   151     /** Switch: covariant returns enabled?
   152      */
   153     boolean allowCovariantReturns;
   155     /** Switch: simplified varargs enabled?
   156      */
   157     boolean allowSimplifiedVarargs;
   159     /** Switch: -complexinference option set?
   160      */
   161     boolean complexInference;
   163     /** Character for synthetic names
   164      */
   165     char syntheticNameChar;
   167     /** A table mapping flat names of all compiled classes in this run to their
   168      *  symbols; maintained from outside.
   169      */
   170     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   172     /** A handler for messages about deprecated usage.
   173      */
   174     private MandatoryWarningHandler deprecationHandler;
   176     /** A handler for messages about unchecked or unsafe usage.
   177      */
   178     private MandatoryWarningHandler uncheckedHandler;
   180     /** A handler for messages about using proprietary API.
   181      */
   182     private MandatoryWarningHandler sunApiHandler;
   184     /** A handler for deferred lint warnings.
   185      */
   186     private DeferredLintHandler deferredLintHandler;
   188 /* *************************************************************************
   189  * Errors and Warnings
   190  **************************************************************************/
   192     Lint setLint(Lint newLint) {
   193         Lint prev = lint;
   194         lint = newLint;
   195         return prev;
   196     }
   198     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   199         DeferredLintHandler prev = deferredLintHandler;
   200         deferredLintHandler = newDeferredLintHandler;
   201         return prev;
   202     }
   204     MethodSymbol setMethod(MethodSymbol newMethod) {
   205         MethodSymbol prev = method;
   206         method = newMethod;
   207         return prev;
   208     }
   210     /** Warn about deprecated symbol.
   211      *  @param pos        Position to be used for error reporting.
   212      *  @param sym        The deprecated symbol.
   213      */
   214     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   215         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   216             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   217     }
   219     /** Warn about unchecked operation.
   220      *  @param pos        Position to be used for error reporting.
   221      *  @param msg        A string describing the problem.
   222      */
   223     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   224         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   225             uncheckedHandler.report(pos, msg, args);
   226     }
   228     /** Warn about unsafe vararg method decl.
   229      *  @param pos        Position to be used for error reporting.
   230      *  @param sym        The deprecated symbol.
   231      */
   232     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   233         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   234             log.warning(LintCategory.VARARGS, pos, key, args);
   235     }
   237     /** Warn about using proprietary API.
   238      *  @param pos        Position to be used for error reporting.
   239      *  @param msg        A string describing the problem.
   240      */
   241     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   242         if (!lint.isSuppressed(LintCategory.SUNAPI))
   243             sunApiHandler.report(pos, msg, args);
   244     }
   246     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   247         if (lint.isEnabled(LintCategory.STATIC))
   248             log.warning(LintCategory.STATIC, pos, msg, args);
   249     }
   251     /**
   252      * Report any deferred diagnostics.
   253      */
   254     public void reportDeferredDiagnostics() {
   255         deprecationHandler.reportDeferredDiagnostic();
   256         uncheckedHandler.reportDeferredDiagnostic();
   257         sunApiHandler.reportDeferredDiagnostic();
   258     }
   261     /** Report a failure to complete a class.
   262      *  @param pos        Position to be used for error reporting.
   263      *  @param ex         The failure to report.
   264      */
   265     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   266         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   267         if (ex instanceof ClassReader.BadClassFile
   268                 && !suppressAbortOnBadClassFile) throw new Abort();
   269         else return syms.errType;
   270     }
   272     /** Report a type error.
   273      *  @param pos        Position to be used for error reporting.
   274      *  @param problem    A string describing the error.
   275      *  @param found      The type that was found.
   276      *  @param req        The type that was required.
   277      */
   278     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   279         log.error(pos, "prob.found.req",
   280                   problem, found, req);
   281         return types.createErrorType(found);
   282     }
   284     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   285         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   286         return types.createErrorType(found);
   287     }
   289     /** Report an error that wrong type tag was found.
   290      *  @param pos        Position to be used for error reporting.
   291      *  @param required   An internationalized string describing the type tag
   292      *                    required.
   293      *  @param found      The type that was found.
   294      */
   295     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   296         // this error used to be raised by the parser,
   297         // but has been delayed to this point:
   298         if (found instanceof Type && ((Type)found).tag == VOID) {
   299             log.error(pos, "illegal.start.of.type");
   300             return syms.errType;
   301         }
   302         log.error(pos, "type.found.req", found, required);
   303         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   304     }
   306     /** Report an error that symbol cannot be referenced before super
   307      *  has been called.
   308      *  @param pos        Position to be used for error reporting.
   309      *  @param sym        The referenced symbol.
   310      */
   311     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   312         log.error(pos, "cant.ref.before.ctor.called", sym);
   313     }
   315     /** Report duplicate declaration error.
   316      */
   317     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   318         if (!sym.type.isErroneous()) {
   319             Symbol location = sym.location();
   320             if (location.kind == MTH &&
   321                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   322                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   323                         kindName(sym.location()), kindName(sym.location().enclClass()),
   324                         sym.location().enclClass());
   325             } else {
   326                 log.error(pos, "already.defined", kindName(sym), sym,
   327                         kindName(sym.location()), sym.location());
   328             }
   329         }
   330     }
   332     /** Report array/varargs duplicate declaration
   333      */
   334     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   335         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   336             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   337         }
   338     }
   340 /* ************************************************************************
   341  * duplicate declaration checking
   342  *************************************************************************/
   344     /** Check that variable does not hide variable with same name in
   345      *  immediately enclosing local scope.
   346      *  @param pos           Position for error reporting.
   347      *  @param v             The symbol.
   348      *  @param s             The scope.
   349      */
   350     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   351         if (s.next != null) {
   352             for (Scope.Entry e = s.next.lookup(v.name);
   353                  e.scope != null && e.sym.owner == v.owner;
   354                  e = e.next()) {
   355                 if (e.sym.kind == VAR &&
   356                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   357                     v.name != names.error) {
   358                     duplicateError(pos, e.sym);
   359                     return;
   360                 }
   361             }
   362         }
   363     }
   365     /** Check that a class or interface does not hide a class or
   366      *  interface with same name in immediately enclosing local scope.
   367      *  @param pos           Position for error reporting.
   368      *  @param c             The symbol.
   369      *  @param s             The scope.
   370      */
   371     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   372         if (s.next != null) {
   373             for (Scope.Entry e = s.next.lookup(c.name);
   374                  e.scope != null && e.sym.owner == c.owner;
   375                  e = e.next()) {
   376                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   377                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   378                     c.name != names.error) {
   379                     duplicateError(pos, e.sym);
   380                     return;
   381                 }
   382             }
   383         }
   384     }
   386     /** Check that class does not have the same name as one of
   387      *  its enclosing classes, or as a class defined in its enclosing scope.
   388      *  return true if class is unique in its enclosing scope.
   389      *  @param pos           Position for error reporting.
   390      *  @param name          The class name.
   391      *  @param s             The enclosing scope.
   392      */
   393     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   394         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   395             if (e.sym.kind == TYP && e.sym.name != names.error) {
   396                 duplicateError(pos, e.sym);
   397                 return false;
   398             }
   399         }
   400         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   401             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   402                 duplicateError(pos, sym);
   403                 return true;
   404             }
   405         }
   406         return true;
   407     }
   409 /* *************************************************************************
   410  * Class name generation
   411  **************************************************************************/
   413     /** Return name of local class.
   414      *  This is of the form    <enclClass> $ n <classname>
   415      *  where
   416      *    enclClass is the flat name of the enclosing class,
   417      *    classname is the simple name of the local class
   418      */
   419     Name localClassName(ClassSymbol c) {
   420         for (int i=1; ; i++) {
   421             Name flatname = names.
   422                 fromString("" + c.owner.enclClass().flatname +
   423                            syntheticNameChar + i +
   424                            c.name);
   425             if (compiled.get(flatname) == null) return flatname;
   426         }
   427     }
   429 /* *************************************************************************
   430  * Type Checking
   431  **************************************************************************/
   433     /** Check that a given type is assignable to a given proto-type.
   434      *  If it is, return the type, otherwise return errType.
   435      *  @param pos        Position to be used for error reporting.
   436      *  @param found      The type that was found.
   437      *  @param req        The type that was required.
   438      */
   439     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   440         return checkType(pos, found, req, "incompatible.types");
   441     }
   443     Type checkType(DiagnosticPosition pos, Type found, Type req, String errKey) {
   444         if (req.tag == ERROR)
   445             return req;
   446         if (found.tag == FORALL)
   447             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   448         if (req.tag == NONE)
   449             return found;
   450         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   451             return found;
   452         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   453             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   454         if (found.isSuperBound()) {
   455             log.error(pos, "assignment.from.super-bound", found);
   456             return types.createErrorType(found);
   457         }
   458         if (req.isExtendsBound()) {
   459             log.error(pos, "assignment.to.extends-bound", req);
   460             return types.createErrorType(found);
   461         }
   462         return typeError(pos, diags.fragment(errKey), found, req);
   463     }
   465     /** Instantiate polymorphic type to some prototype, unless
   466      *  prototype is `anyPoly' in which case polymorphic type
   467      *  is returned unchanged.
   468      */
   469     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   470         if (pt == Infer.anyPoly && complexInference) {
   471             return t;
   472         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   473             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   474             return instantiatePoly(pos, t, newpt, warn);
   475         } else if (pt.tag == ERROR) {
   476             return pt;
   477         } else {
   478             try {
   479                 return infer.instantiateExpr(t, pt, warn);
   480             } catch (Infer.NoInstanceException ex) {
   481                 if (ex.isAmbiguous) {
   482                     JCDiagnostic d = ex.getDiagnostic();
   483                     log.error(pos,
   484                               "undetermined.type" + (d!=null ? ".1" : ""),
   485                               t, d);
   486                     return types.createErrorType(pt);
   487                 } else {
   488                     JCDiagnostic d = ex.getDiagnostic();
   489                     return typeError(pos,
   490                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   491                                      t, pt);
   492                 }
   493             } catch (Infer.InvalidInstanceException ex) {
   494                 JCDiagnostic d = ex.getDiagnostic();
   495                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   496                 return types.createErrorType(pt);
   497             }
   498         }
   499     }
   501     /** Check that a given type can be cast to a given target type.
   502      *  Return the result of the cast.
   503      *  @param pos        Position to be used for error reporting.
   504      *  @param found      The type that is being cast.
   505      *  @param req        The target type of the cast.
   506      */
   507     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   508         if (found.tag == FORALL) {
   509             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   510             return req;
   511         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   512             return req;
   513         } else {
   514             return typeError(pos,
   515                              diags.fragment("inconvertible.types"),
   516                              found, req);
   517         }
   518     }
   519 //where
   520         /** Is type a type variable, or a (possibly multi-dimensional) array of
   521          *  type variables?
   522          */
   523         boolean isTypeVar(Type t) {
   524             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   525         }
   527     /** Check that a type is within some bounds.
   528      *
   529      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   530      *  type argument.
   531      *  @param pos           Position to be used for error reporting.
   532      *  @param a             The type that should be bounded by bs.
   533      *  @param bs            The bound.
   534      */
   535     private boolean checkExtends(Type a, Type bound) {
   536          if (a.isUnbound()) {
   537              return true;
   538          } else if (a.tag != WILDCARD) {
   539              a = types.upperBound(a);
   540              return types.isSubtype(a, bound);
   541          } else if (a.isExtendsBound()) {
   542              return types.isCastable(bound, types.upperBound(a), Warner.noWarnings);
   543          } else if (a.isSuperBound()) {
   544              return !types.notSoftSubtype(types.lowerBound(a), bound);
   545          }
   546          return true;
   547      }
   549     /** Check that type is different from 'void'.
   550      *  @param pos           Position to be used for error reporting.
   551      *  @param t             The type to be checked.
   552      */
   553     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   554         if (t.tag == VOID) {
   555             log.error(pos, "void.not.allowed.here");
   556             return types.createErrorType(t);
   557         } else {
   558             return t;
   559         }
   560     }
   562     /** Check that type is a class or interface type.
   563      *  @param pos           Position to be used for error reporting.
   564      *  @param t             The type to be checked.
   565      */
   566     Type checkClassType(DiagnosticPosition pos, Type t) {
   567         if (t.tag != CLASS && t.tag != ERROR)
   568             return typeTagError(pos,
   569                                 diags.fragment("type.req.class"),
   570                                 (t.tag == TYPEVAR)
   571                                 ? diags.fragment("type.parameter", t)
   572                                 : t);
   573         else
   574             return t;
   575     }
   577     /** Check that type is a class or interface type.
   578      *  @param pos           Position to be used for error reporting.
   579      *  @param t             The type to be checked.
   580      *  @param noBounds    True if type bounds are illegal here.
   581      */
   582     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   583         t = checkClassType(pos, t);
   584         if (noBounds && t.isParameterized()) {
   585             List<Type> args = t.getTypeArguments();
   586             while (args.nonEmpty()) {
   587                 if (args.head.tag == WILDCARD)
   588                     return typeTagError(pos,
   589                                         diags.fragment("type.req.exact"),
   590                                         args.head);
   591                 args = args.tail;
   592             }
   593         }
   594         return t;
   595     }
   597     /** Check that type is a reifiable class, interface or array type.
   598      *  @param pos           Position to be used for error reporting.
   599      *  @param t             The type to be checked.
   600      */
   601     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   602         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   603             return typeTagError(pos,
   604                                 diags.fragment("type.req.class.array"),
   605                                 t);
   606         } else if (!types.isReifiable(t)) {
   607             log.error(pos, "illegal.generic.type.for.instof");
   608             return types.createErrorType(t);
   609         } else {
   610             return t;
   611         }
   612     }
   614     /** Check that type is a reference type, i.e. a class, interface or array type
   615      *  or a type variable.
   616      *  @param pos           Position to be used for error reporting.
   617      *  @param t             The type to be checked.
   618      */
   619     Type checkRefType(DiagnosticPosition pos, Type t) {
   620         switch (t.tag) {
   621         case CLASS:
   622         case ARRAY:
   623         case TYPEVAR:
   624         case WILDCARD:
   625         case ERROR:
   626             return t;
   627         default:
   628             return typeTagError(pos,
   629                                 diags.fragment("type.req.ref"),
   630                                 t);
   631         }
   632     }
   634     /** Check that each type is a reference type, i.e. a class, interface or array type
   635      *  or a type variable.
   636      *  @param trees         Original trees, used for error reporting.
   637      *  @param types         The types to be checked.
   638      */
   639     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   640         List<JCExpression> tl = trees;
   641         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   642             l.head = checkRefType(tl.head.pos(), l.head);
   643             tl = tl.tail;
   644         }
   645         return types;
   646     }
   648     /** Check that type is a null or reference type.
   649      *  @param pos           Position to be used for error reporting.
   650      *  @param t             The type to be checked.
   651      */
   652     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   653         switch (t.tag) {
   654         case CLASS:
   655         case ARRAY:
   656         case TYPEVAR:
   657         case WILDCARD:
   658         case BOT:
   659         case ERROR:
   660             return t;
   661         default:
   662             return typeTagError(pos,
   663                                 diags.fragment("type.req.ref"),
   664                                 t);
   665         }
   666     }
   668     /** Check that flag set does not contain elements of two conflicting sets. s
   669      *  Return true if it doesn't.
   670      *  @param pos           Position to be used for error reporting.
   671      *  @param flags         The set of flags to be checked.
   672      *  @param set1          Conflicting flags set #1.
   673      *  @param set2          Conflicting flags set #2.
   674      */
   675     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   676         if ((flags & set1) != 0 && (flags & set2) != 0) {
   677             log.error(pos,
   678                       "illegal.combination.of.modifiers",
   679                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   680                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   681             return false;
   682         } else
   683             return true;
   684     }
   686     /** Check that usage of diamond operator is correct (i.e. diamond should not
   687      * be used with non-generic classes or in anonymous class creation expressions)
   688      */
   689     Type checkDiamond(JCNewClass tree, Type t) {
   690         if (!TreeInfo.isDiamond(tree) ||
   691                 t.isErroneous()) {
   692             return checkClassType(tree.clazz.pos(), t, true);
   693         } else if (tree.def != null) {
   694             log.error(tree.clazz.pos(),
   695                     "cant.apply.diamond.1",
   696                     t, diags.fragment("diamond.and.anon.class", t));
   697             return types.createErrorType(t);
   698         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   699             log.error(tree.clazz.pos(),
   700                 "cant.apply.diamond.1",
   701                 t, diags.fragment("diamond.non.generic", t));
   702             return types.createErrorType(t);
   703         } else if (tree.typeargs != null &&
   704                 tree.typeargs.nonEmpty()) {
   705             log.error(tree.clazz.pos(),
   706                 "cant.apply.diamond.1",
   707                 t, diags.fragment("diamond.and.explicit.params", t));
   708             return types.createErrorType(t);
   709         } else {
   710             return t;
   711         }
   712     }
   714     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   715         MethodSymbol m = tree.sym;
   716         if (!allowSimplifiedVarargs) return;
   717         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   718         Type varargElemType = null;
   719         if (m.isVarArgs()) {
   720             varargElemType = types.elemtype(tree.params.last().type);
   721         }
   722         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   723             if (varargElemType != null) {
   724                 log.error(tree,
   725                         "varargs.invalid.trustme.anno",
   726                         syms.trustMeType.tsym,
   727                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   728             } else {
   729                 log.error(tree,
   730                             "varargs.invalid.trustme.anno",
   731                             syms.trustMeType.tsym,
   732                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   733             }
   734         } else if (hasTrustMeAnno && varargElemType != null &&
   735                             types.isReifiable(varargElemType)) {
   736             warnUnsafeVararg(tree,
   737                             "varargs.redundant.trustme.anno",
   738                             syms.trustMeType.tsym,
   739                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   740         }
   741         else if (!hasTrustMeAnno && varargElemType != null &&
   742                 !types.isReifiable(varargElemType)) {
   743             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   744         }
   745     }
   746     //where
   747         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   748             return (s.flags() & VARARGS) != 0 &&
   749                 (s.isConstructor() ||
   750                     (s.flags() & (STATIC | FINAL)) != 0);
   751         }
   753     Type checkMethod(Type owntype,
   754                             Symbol sym,
   755                             Env<AttrContext> env,
   756                             final List<JCExpression> argtrees,
   757                             List<Type> argtypes,
   758                             boolean useVarargs) {
   759         boolean warned = false;
   760         // System.out.println("call   : " + env.tree);
   761         // System.out.println("method : " + owntype);
   762         // System.out.println("actuals: " + argtypes);
   763         List<Type> formals = owntype.getParameterTypes();
   764         Type last = useVarargs ? formals.last() : null;
   765         if (sym.name==names.init &&
   766                 sym.owner == syms.enumSym)
   767                 formals = formals.tail.tail;
   768         List<JCExpression> args = argtrees;
   769         while (formals.head != last) {
   770             JCTree arg = args.head;
   771             Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   772             assertConvertible(arg, arg.type, formals.head, warn);
   773             warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
   774             args = args.tail;
   775             formals = formals.tail;
   776         }
   777         if (useVarargs) {
   778             Type varArg = types.elemtype(last);
   779             while (args.tail != null) {
   780                 JCTree arg = args.head;
   781                 Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   782                 assertConvertible(arg, arg.type, varArg, warn);
   783                 warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
   784                 args = args.tail;
   785             }
   786         } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   787             // non-varargs call to varargs method
   788             Type varParam = owntype.getParameterTypes().last();
   789             Type lastArg = argtypes.last();
   790             if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   791                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   792                 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   793                         types.elemtype(varParam), varParam);
   794         }
   795         if (warned) {
   796             warnUnchecked(env.tree.pos(),
   797                     "unchecked.meth.invocation.applied",
   798                     kindName(sym),
   799                     sym.name,
   800                     rs.methodArguments(sym.type.getParameterTypes()),
   801                     rs.methodArguments(argtypes),
   802                     kindName(sym.location()),
   803                     sym.location());
   804            owntype = new MethodType(owntype.getParameterTypes(),
   805                    types.erasure(owntype.getReturnType()),
   806                    types.erasure(owntype.getThrownTypes()),
   807                    syms.methodClass);
   808         }
   809         if (useVarargs) {
   810             JCTree tree = env.tree;
   811             Type argtype = owntype.getParameterTypes().last();
   812             if (!types.isReifiable(argtype) &&
   813                     (!allowSimplifiedVarargs ||
   814                     sym.attribute(syms.trustMeType.tsym) == null ||
   815                     !isTrustMeAllowedOnMethod(sym))) {
   816                 warnUnchecked(env.tree.pos(),
   817                                   "unchecked.generic.array.creation",
   818                                   argtype);
   819             }
   820             Type elemtype = types.elemtype(argtype);
   821             switch (tree.getTag()) {
   822                 case APPLY:
   823                     ((JCMethodInvocation) tree).varargsElement = elemtype;
   824                     break;
   825                 case NEWCLASS:
   826                     ((JCNewClass) tree).varargsElement = elemtype;
   827                     break;
   828                 default:
   829                     throw new AssertionError(""+tree);
   830             }
   831          }
   832          return owntype;
   833     }
   834     //where
   835         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   836             if (types.isConvertible(actual, formal, warn))
   837                 return;
   839             if (formal.isCompound()
   840                 && types.isSubtype(actual, types.supertype(formal))
   841                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   842                 return;
   844             if (false) {
   845                 // TODO: make assertConvertible work
   846                 typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
   847                 throw new AssertionError("Tree: " + tree
   848                                          + " actual:" + actual
   849                                          + " formal: " + formal);
   850             }
   851         }
   853     /**
   854      * Check that type 't' is a valid instantiation of a generic class
   855      * (see JLS 4.5)
   856      *
   857      * @param t class type to be checked
   858      * @return true if 't' is well-formed
   859      */
   860     public boolean checkValidGenericType(Type t) {
   861         return firstIncompatibleTypeArg(t) == null;
   862     }
   863     //WHERE
   864         private Type firstIncompatibleTypeArg(Type type) {
   865             List<Type> formals = type.tsym.type.allparams();
   866             List<Type> actuals = type.allparams();
   867             List<Type> args = type.getTypeArguments();
   868             List<Type> forms = type.tsym.type.getTypeArguments();
   869             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   871             // For matching pairs of actual argument types `a' and
   872             // formal type parameters with declared bound `b' ...
   873             while (args.nonEmpty() && forms.nonEmpty()) {
   874                 // exact type arguments needs to know their
   875                 // bounds (for upper and lower bound
   876                 // calculations).  So we create new bounds where
   877                 // type-parameters are replaced with actuals argument types.
   878                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   879                 args = args.tail;
   880                 forms = forms.tail;
   881             }
   883             args = type.getTypeArguments();
   884             List<Type> tvars_cap = types.substBounds(formals,
   885                                       formals,
   886                                       types.capture(type).allparams());
   887             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   888                 // Let the actual arguments know their bound
   889                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   890                 args = args.tail;
   891                 tvars_cap = tvars_cap.tail;
   892             }
   894             args = type.getTypeArguments();
   895             List<Type> bounds = bounds_buf.toList();
   897             while (args.nonEmpty() && bounds.nonEmpty()) {
   898                 Type actual = args.head;
   899                 if (!isTypeArgErroneous(actual) &&
   900                         !bounds.head.isErroneous() &&
   901                         !checkExtends(actual, bounds.head)) {
   902                     return args.head;
   903                 }
   904                 args = args.tail;
   905                 bounds = bounds.tail;
   906             }
   908             args = type.getTypeArguments();
   909             bounds = bounds_buf.toList();
   911             for (Type arg : types.capture(type).getTypeArguments()) {
   912                 if (arg.tag == TYPEVAR &&
   913                         arg.getUpperBound().isErroneous() &&
   914                         !bounds.head.isErroneous() &&
   915                         !isTypeArgErroneous(args.head)) {
   916                     return args.head;
   917                 }
   918                 bounds = bounds.tail;
   919                 args = args.tail;
   920             }
   922             return null;
   923         }
   924         //where
   925         boolean isTypeArgErroneous(Type t) {
   926             return isTypeArgErroneous.visit(t);
   927         }
   929         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
   930             public Boolean visitType(Type t, Void s) {
   931                 return t.isErroneous();
   932             }
   933             @Override
   934             public Boolean visitTypeVar(TypeVar t, Void s) {
   935                 return visit(t.getUpperBound());
   936             }
   937             @Override
   938             public Boolean visitCapturedType(CapturedType t, Void s) {
   939                 return visit(t.getUpperBound()) ||
   940                         visit(t.getLowerBound());
   941             }
   942             @Override
   943             public Boolean visitWildcardType(WildcardType t, Void s) {
   944                 return visit(t.type);
   945             }
   946         };
   948     /** Check that given modifiers are legal for given symbol and
   949      *  return modifiers together with any implicit modififiers for that symbol.
   950      *  Warning: we can't use flags() here since this method
   951      *  is called during class enter, when flags() would cause a premature
   952      *  completion.
   953      *  @param pos           Position to be used for error reporting.
   954      *  @param flags         The set of modifiers given in a definition.
   955      *  @param sym           The defined symbol.
   956      */
   957     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   958         long mask;
   959         long implicit = 0;
   960         switch (sym.kind) {
   961         case VAR:
   962             if (sym.owner.kind != TYP)
   963                 mask = LocalVarFlags;
   964             else if ((sym.owner.flags_field & INTERFACE) != 0)
   965                 mask = implicit = InterfaceVarFlags;
   966             else
   967                 mask = VarFlags;
   968             break;
   969         case MTH:
   970             if (sym.name == names.init) {
   971                 if ((sym.owner.flags_field & ENUM) != 0) {
   972                     // enum constructors cannot be declared public or
   973                     // protected and must be implicitly or explicitly
   974                     // private
   975                     implicit = PRIVATE;
   976                     mask = PRIVATE;
   977                 } else
   978                     mask = ConstructorFlags;
   979             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   980                 mask = implicit = InterfaceMethodFlags;
   981             else {
   982                 mask = MethodFlags;
   983             }
   984             // Imply STRICTFP if owner has STRICTFP set.
   985             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   986               implicit |= sym.owner.flags_field & STRICTFP;
   987             break;
   988         case TYP:
   989             if (sym.isLocal()) {
   990                 mask = LocalClassFlags;
   991                 if (sym.name.isEmpty()) { // Anonymous class
   992                     // Anonymous classes in static methods are themselves static;
   993                     // that's why we admit STATIC here.
   994                     mask |= STATIC;
   995                     // JLS: Anonymous classes are final.
   996                     implicit |= FINAL;
   997                 }
   998                 if ((sym.owner.flags_field & STATIC) == 0 &&
   999                     (flags & ENUM) != 0)
  1000                     log.error(pos, "enums.must.be.static");
  1001             } else if (sym.owner.kind == TYP) {
  1002                 mask = MemberClassFlags;
  1003                 if (sym.owner.owner.kind == PCK ||
  1004                     (sym.owner.flags_field & STATIC) != 0)
  1005                     mask |= STATIC;
  1006                 else if ((flags & ENUM) != 0)
  1007                     log.error(pos, "enums.must.be.static");
  1008                 // Nested interfaces and enums are always STATIC (Spec ???)
  1009                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1010             } else {
  1011                 mask = ClassFlags;
  1013             // Interfaces are always ABSTRACT
  1014             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1016             if ((flags & ENUM) != 0) {
  1017                 // enums can't be declared abstract or final
  1018                 mask &= ~(ABSTRACT | FINAL);
  1019                 implicit |= implicitEnumFinalFlag(tree);
  1021             // Imply STRICTFP if owner has STRICTFP set.
  1022             implicit |= sym.owner.flags_field & STRICTFP;
  1023             break;
  1024         default:
  1025             throw new AssertionError();
  1027         long illegal = flags & StandardFlags & ~mask;
  1028         if (illegal != 0) {
  1029             if ((illegal & INTERFACE) != 0) {
  1030                 log.error(pos, "intf.not.allowed.here");
  1031                 mask |= INTERFACE;
  1033             else {
  1034                 log.error(pos,
  1035                           "mod.not.allowed.here", asFlagSet(illegal));
  1038         else if ((sym.kind == TYP ||
  1039                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1040                   // in the presence of inner classes. Should it be deleted here?
  1041                   checkDisjoint(pos, flags,
  1042                                 ABSTRACT,
  1043                                 PRIVATE | STATIC))
  1044                  &&
  1045                  checkDisjoint(pos, flags,
  1046                                ABSTRACT | INTERFACE,
  1047                                FINAL | NATIVE | SYNCHRONIZED)
  1048                  &&
  1049                  checkDisjoint(pos, flags,
  1050                                PUBLIC,
  1051                                PRIVATE | PROTECTED)
  1052                  &&
  1053                  checkDisjoint(pos, flags,
  1054                                PRIVATE,
  1055                                PUBLIC | PROTECTED)
  1056                  &&
  1057                  checkDisjoint(pos, flags,
  1058                                FINAL,
  1059                                VOLATILE)
  1060                  &&
  1061                  (sym.kind == TYP ||
  1062                   checkDisjoint(pos, flags,
  1063                                 ABSTRACT | NATIVE,
  1064                                 STRICTFP))) {
  1065             // skip
  1067         return flags & (mask | ~StandardFlags) | implicit;
  1071     /** Determine if this enum should be implicitly final.
  1073      *  If the enum has no specialized enum contants, it is final.
  1075      *  If the enum does have specialized enum contants, it is
  1076      *  <i>not</i> final.
  1077      */
  1078     private long implicitEnumFinalFlag(JCTree tree) {
  1079         if (!tree.hasTag(CLASSDEF)) return 0;
  1080         class SpecialTreeVisitor extends JCTree.Visitor {
  1081             boolean specialized;
  1082             SpecialTreeVisitor() {
  1083                 this.specialized = false;
  1084             };
  1086             @Override
  1087             public void visitTree(JCTree tree) { /* no-op */ }
  1089             @Override
  1090             public void visitVarDef(JCVariableDecl tree) {
  1091                 if ((tree.mods.flags & ENUM) != 0) {
  1092                     if (tree.init instanceof JCNewClass &&
  1093                         ((JCNewClass) tree.init).def != null) {
  1094                         specialized = true;
  1100         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1101         JCClassDecl cdef = (JCClassDecl) tree;
  1102         for (JCTree defs: cdef.defs) {
  1103             defs.accept(sts);
  1104             if (sts.specialized) return 0;
  1106         return FINAL;
  1109 /* *************************************************************************
  1110  * Type Validation
  1111  **************************************************************************/
  1113     /** Validate a type expression. That is,
  1114      *  check that all type arguments of a parametric type are within
  1115      *  their bounds. This must be done in a second phase after type attributon
  1116      *  since a class might have a subclass as type parameter bound. E.g:
  1118      *  class B<A extends C> { ... }
  1119      *  class C extends B<C> { ... }
  1121      *  and we can't make sure that the bound is already attributed because
  1122      *  of possible cycles.
  1124      * Visitor method: Validate a type expression, if it is not null, catching
  1125      *  and reporting any completion failures.
  1126      */
  1127     void validate(JCTree tree, Env<AttrContext> env) {
  1128         validate(tree, env, true);
  1130     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1131         new Validator(env).validateTree(tree, checkRaw, true);
  1134     /** Visitor method: Validate a list of type expressions.
  1135      */
  1136     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1137         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1138             validate(l.head, env);
  1141     /** A visitor class for type validation.
  1142      */
  1143     class Validator extends JCTree.Visitor {
  1145         boolean isOuter;
  1146         Env<AttrContext> env;
  1148         Validator(Env<AttrContext> env) {
  1149             this.env = env;
  1152         @Override
  1153         public void visitTypeArray(JCArrayTypeTree tree) {
  1154             tree.elemtype.accept(this);
  1157         @Override
  1158         public void visitTypeApply(JCTypeApply tree) {
  1159             if (tree.type.tag == CLASS) {
  1160                 List<JCExpression> args = tree.arguments;
  1161                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1163                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1164                 if (incompatibleArg != null) {
  1165                     for (JCTree arg : tree.arguments) {
  1166                         if (arg.type == incompatibleArg) {
  1167                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1169                         forms = forms.tail;
  1173                 forms = tree.type.tsym.type.getTypeArguments();
  1175                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1177                 // For matching pairs of actual argument types `a' and
  1178                 // formal type parameters with declared bound `b' ...
  1179                 while (args.nonEmpty() && forms.nonEmpty()) {
  1180                     validateTree(args.head,
  1181                             !(isOuter && is_java_lang_Class),
  1182                             false);
  1183                     args = args.tail;
  1184                     forms = forms.tail;
  1187                 // Check that this type is either fully parameterized, or
  1188                 // not parameterized at all.
  1189                 if (tree.type.getEnclosingType().isRaw())
  1190                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1191                 if (tree.clazz.hasTag(SELECT))
  1192                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1196         @Override
  1197         public void visitTypeParameter(JCTypeParameter tree) {
  1198             validateTrees(tree.bounds, true, isOuter);
  1199             checkClassBounds(tree.pos(), tree.type);
  1202         @Override
  1203         public void visitWildcard(JCWildcard tree) {
  1204             if (tree.inner != null)
  1205                 validateTree(tree.inner, true, isOuter);
  1208         @Override
  1209         public void visitSelect(JCFieldAccess tree) {
  1210             if (tree.type.tag == CLASS) {
  1211                 visitSelectInternal(tree);
  1213                 // Check that this type is either fully parameterized, or
  1214                 // not parameterized at all.
  1215                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1216                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1220         public void visitSelectInternal(JCFieldAccess tree) {
  1221             if (tree.type.tsym.isStatic() &&
  1222                 tree.selected.type.isParameterized()) {
  1223                 // The enclosing type is not a class, so we are
  1224                 // looking at a static member type.  However, the
  1225                 // qualifying expression is parameterized.
  1226                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1227             } else {
  1228                 // otherwise validate the rest of the expression
  1229                 tree.selected.accept(this);
  1233         /** Default visitor method: do nothing.
  1234          */
  1235         @Override
  1236         public void visitTree(JCTree tree) {
  1239         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1240             try {
  1241                 if (tree != null) {
  1242                     this.isOuter = isOuter;
  1243                     tree.accept(this);
  1244                     if (checkRaw)
  1245                         checkRaw(tree, env);
  1247             } catch (CompletionFailure ex) {
  1248                 completionError(tree.pos(), ex);
  1252         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1253             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1254                 validateTree(l.head, checkRaw, isOuter);
  1257         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1258             if (lint.isEnabled(LintCategory.RAW) &&
  1259                 tree.type.tag == CLASS &&
  1260                 !TreeInfo.isDiamond(tree) &&
  1261                 !withinAnonConstr(env) &&
  1262                 tree.type.isRaw()) {
  1263                 log.warning(LintCategory.RAW,
  1264                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1268         boolean withinAnonConstr(Env<AttrContext> env) {
  1269             return env.enclClass.name.isEmpty() &&
  1270                     env.enclMethod != null && env.enclMethod.name == names.init;
  1274 /* *************************************************************************
  1275  * Exception checking
  1276  **************************************************************************/
  1278     /* The following methods treat classes as sets that contain
  1279      * the class itself and all their subclasses
  1280      */
  1282     /** Is given type a subtype of some of the types in given list?
  1283      */
  1284     boolean subset(Type t, List<Type> ts) {
  1285         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1286             if (types.isSubtype(t, l.head)) return true;
  1287         return false;
  1290     /** Is given type a subtype or supertype of
  1291      *  some of the types in given list?
  1292      */
  1293     boolean intersects(Type t, List<Type> ts) {
  1294         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1295             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1296         return false;
  1299     /** Add type set to given type list, unless it is a subclass of some class
  1300      *  in the list.
  1301      */
  1302     List<Type> incl(Type t, List<Type> ts) {
  1303         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1306     /** Remove type set from type set list.
  1307      */
  1308     List<Type> excl(Type t, List<Type> ts) {
  1309         if (ts.isEmpty()) {
  1310             return ts;
  1311         } else {
  1312             List<Type> ts1 = excl(t, ts.tail);
  1313             if (types.isSubtype(ts.head, t)) return ts1;
  1314             else if (ts1 == ts.tail) return ts;
  1315             else return ts1.prepend(ts.head);
  1319     /** Form the union of two type set lists.
  1320      */
  1321     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1322         List<Type> ts = ts1;
  1323         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1324             ts = incl(l.head, ts);
  1325         return ts;
  1328     /** Form the difference of two type lists.
  1329      */
  1330     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1331         List<Type> ts = ts1;
  1332         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1333             ts = excl(l.head, ts);
  1334         return ts;
  1337     /** Form the intersection of two type lists.
  1338      */
  1339     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1340         List<Type> ts = List.nil();
  1341         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1342             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1343         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1344             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1345         return ts;
  1348     /** Is exc an exception symbol that need not be declared?
  1349      */
  1350     boolean isUnchecked(ClassSymbol exc) {
  1351         return
  1352             exc.kind == ERR ||
  1353             exc.isSubClass(syms.errorType.tsym, types) ||
  1354             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1357     /** Is exc an exception type that need not be declared?
  1358      */
  1359     boolean isUnchecked(Type exc) {
  1360         return
  1361             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1362             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1363             exc.tag == BOT;
  1366     /** Same, but handling completion failures.
  1367      */
  1368     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1369         try {
  1370             return isUnchecked(exc);
  1371         } catch (CompletionFailure ex) {
  1372             completionError(pos, ex);
  1373             return true;
  1377     /** Is exc handled by given exception list?
  1378      */
  1379     boolean isHandled(Type exc, List<Type> handled) {
  1380         return isUnchecked(exc) || subset(exc, handled);
  1383     /** Return all exceptions in thrown list that are not in handled list.
  1384      *  @param thrown     The list of thrown exceptions.
  1385      *  @param handled    The list of handled exceptions.
  1386      */
  1387     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1388         List<Type> unhandled = List.nil();
  1389         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1390             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1391         return unhandled;
  1394 /* *************************************************************************
  1395  * Overriding/Implementation checking
  1396  **************************************************************************/
  1398     /** The level of access protection given by a flag set,
  1399      *  where PRIVATE is highest and PUBLIC is lowest.
  1400      */
  1401     static int protection(long flags) {
  1402         switch ((short)(flags & AccessFlags)) {
  1403         case PRIVATE: return 3;
  1404         case PROTECTED: return 1;
  1405         default:
  1406         case PUBLIC: return 0;
  1407         case 0: return 2;
  1411     /** A customized "cannot override" error message.
  1412      *  @param m      The overriding method.
  1413      *  @param other  The overridden method.
  1414      *  @return       An internationalized string.
  1415      */
  1416     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1417         String key;
  1418         if ((other.owner.flags() & INTERFACE) == 0)
  1419             key = "cant.override";
  1420         else if ((m.owner.flags() & INTERFACE) == 0)
  1421             key = "cant.implement";
  1422         else
  1423             key = "clashes.with";
  1424         return diags.fragment(key, m, m.location(), other, other.location());
  1427     /** A customized "override" warning message.
  1428      *  @param m      The overriding method.
  1429      *  @param other  The overridden method.
  1430      *  @return       An internationalized string.
  1431      */
  1432     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1433         String key;
  1434         if ((other.owner.flags() & INTERFACE) == 0)
  1435             key = "unchecked.override";
  1436         else if ((m.owner.flags() & INTERFACE) == 0)
  1437             key = "unchecked.implement";
  1438         else
  1439             key = "unchecked.clash.with";
  1440         return diags.fragment(key, m, m.location(), other, other.location());
  1443     /** A customized "override" warning message.
  1444      *  @param m      The overriding method.
  1445      *  @param other  The overridden method.
  1446      *  @return       An internationalized string.
  1447      */
  1448     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1449         String key;
  1450         if ((other.owner.flags() & INTERFACE) == 0)
  1451             key = "varargs.override";
  1452         else  if ((m.owner.flags() & INTERFACE) == 0)
  1453             key = "varargs.implement";
  1454         else
  1455             key = "varargs.clash.with";
  1456         return diags.fragment(key, m, m.location(), other, other.location());
  1459     /** Check that this method conforms with overridden method 'other'.
  1460      *  where `origin' is the class where checking started.
  1461      *  Complications:
  1462      *  (1) Do not check overriding of synthetic methods
  1463      *      (reason: they might be final).
  1464      *      todo: check whether this is still necessary.
  1465      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1466      *      than the method it implements. Augment the proxy methods with the
  1467      *      undeclared exceptions in this case.
  1468      *  (3) When generics are enabled, admit the case where an interface proxy
  1469      *      has a result type
  1470      *      extended by the result type of the method it implements.
  1471      *      Change the proxies result type to the smaller type in this case.
  1473      *  @param tree         The tree from which positions
  1474      *                      are extracted for errors.
  1475      *  @param m            The overriding method.
  1476      *  @param other        The overridden method.
  1477      *  @param origin       The class of which the overriding method
  1478      *                      is a member.
  1479      */
  1480     void checkOverride(JCTree tree,
  1481                        MethodSymbol m,
  1482                        MethodSymbol other,
  1483                        ClassSymbol origin) {
  1484         // Don't check overriding of synthetic methods or by bridge methods.
  1485         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1486             return;
  1489         // Error if static method overrides instance method (JLS 8.4.6.2).
  1490         if ((m.flags() & STATIC) != 0 &&
  1491                    (other.flags() & STATIC) == 0) {
  1492             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1493                       cannotOverride(m, other));
  1494             return;
  1497         // Error if instance method overrides static or final
  1498         // method (JLS 8.4.6.1).
  1499         if ((other.flags() & FINAL) != 0 ||
  1500                  (m.flags() & STATIC) == 0 &&
  1501                  (other.flags() & STATIC) != 0) {
  1502             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1503                       cannotOverride(m, other),
  1504                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1505             return;
  1508         if ((m.owner.flags() & ANNOTATION) != 0) {
  1509             // handled in validateAnnotationMethod
  1510             return;
  1513         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1514         if ((origin.flags() & INTERFACE) == 0 &&
  1515                  protection(m.flags()) > protection(other.flags())) {
  1516             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1517                       cannotOverride(m, other),
  1518                       other.flags() == 0 ?
  1519                           Flag.PACKAGE :
  1520                           asFlagSet(other.flags() & AccessFlags));
  1521             return;
  1524         Type mt = types.memberType(origin.type, m);
  1525         Type ot = types.memberType(origin.type, other);
  1526         // Error if overriding result type is different
  1527         // (or, in the case of generics mode, not a subtype) of
  1528         // overridden result type. We have to rename any type parameters
  1529         // before comparing types.
  1530         List<Type> mtvars = mt.getTypeArguments();
  1531         List<Type> otvars = ot.getTypeArguments();
  1532         Type mtres = mt.getReturnType();
  1533         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1535         overrideWarner.clear();
  1536         boolean resultTypesOK =
  1537             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1538         if (!resultTypesOK) {
  1539             if (!allowCovariantReturns &&
  1540                 m.owner != origin &&
  1541                 m.owner.isSubClass(other.owner, types)) {
  1542                 // allow limited interoperability with covariant returns
  1543             } else {
  1544                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1545                           "override.incompatible.ret",
  1546                           cannotOverride(m, other),
  1547                           mtres, otres);
  1548                 return;
  1550         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1551             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1552                     "override.unchecked.ret",
  1553                     uncheckedOverrides(m, other),
  1554                     mtres, otres);
  1557         // Error if overriding method throws an exception not reported
  1558         // by overridden method.
  1559         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1560         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1561         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1562         if (unhandledErased.nonEmpty()) {
  1563             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1564                       "override.meth.doesnt.throw",
  1565                       cannotOverride(m, other),
  1566                       unhandledUnerased.head);
  1567             return;
  1569         else if (unhandledUnerased.nonEmpty()) {
  1570             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1571                           "override.unchecked.thrown",
  1572                          cannotOverride(m, other),
  1573                          unhandledUnerased.head);
  1574             return;
  1577         // Optional warning if varargs don't agree
  1578         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1579             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1580             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1581                         ((m.flags() & Flags.VARARGS) != 0)
  1582                         ? "override.varargs.missing"
  1583                         : "override.varargs.extra",
  1584                         varargsOverrides(m, other));
  1587         // Warn if instance method overrides bridge method (compiler spec ??)
  1588         if ((other.flags() & BRIDGE) != 0) {
  1589             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1590                         uncheckedOverrides(m, other));
  1593         // Warn if a deprecated method overridden by a non-deprecated one.
  1594         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1595             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1598     // where
  1599         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1600             // If the method, m, is defined in an interface, then ignore the issue if the method
  1601             // is only inherited via a supertype and also implemented in the supertype,
  1602             // because in that case, we will rediscover the issue when examining the method
  1603             // in the supertype.
  1604             // If the method, m, is not defined in an interface, then the only time we need to
  1605             // address the issue is when the method is the supertype implemementation: any other
  1606             // case, we will have dealt with when examining the supertype classes
  1607             ClassSymbol mc = m.enclClass();
  1608             Type st = types.supertype(origin.type);
  1609             if (st.tag != CLASS)
  1610                 return true;
  1611             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1613             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1614                 List<Type> intfs = types.interfaces(origin.type);
  1615                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1617             else
  1618                 return (stimpl != m);
  1622     // used to check if there were any unchecked conversions
  1623     Warner overrideWarner = new Warner();
  1625     /** Check that a class does not inherit two concrete methods
  1626      *  with the same signature.
  1627      *  @param pos          Position to be used for error reporting.
  1628      *  @param site         The class type to be checked.
  1629      */
  1630     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1631         Type sup = types.supertype(site);
  1632         if (sup.tag != CLASS) return;
  1634         for (Type t1 = sup;
  1635              t1.tsym.type.isParameterized();
  1636              t1 = types.supertype(t1)) {
  1637             for (Scope.Entry e1 = t1.tsym.members().elems;
  1638                  e1 != null;
  1639                  e1 = e1.sibling) {
  1640                 Symbol s1 = e1.sym;
  1641                 if (s1.kind != MTH ||
  1642                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1643                     !s1.isInheritedIn(site.tsym, types) ||
  1644                     ((MethodSymbol)s1).implementation(site.tsym,
  1645                                                       types,
  1646                                                       true) != s1)
  1647                     continue;
  1648                 Type st1 = types.memberType(t1, s1);
  1649                 int s1ArgsLength = st1.getParameterTypes().length();
  1650                 if (st1 == s1.type) continue;
  1652                 for (Type t2 = sup;
  1653                      t2.tag == CLASS;
  1654                      t2 = types.supertype(t2)) {
  1655                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1656                          e2.scope != null;
  1657                          e2 = e2.next()) {
  1658                         Symbol s2 = e2.sym;
  1659                         if (s2 == s1 ||
  1660                             s2.kind != MTH ||
  1661                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1662                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1663                             !s2.isInheritedIn(site.tsym, types) ||
  1664                             ((MethodSymbol)s2).implementation(site.tsym,
  1665                                                               types,
  1666                                                               true) != s2)
  1667                             continue;
  1668                         Type st2 = types.memberType(t2, s2);
  1669                         if (types.overrideEquivalent(st1, st2))
  1670                             log.error(pos, "concrete.inheritance.conflict",
  1671                                       s1, t1, s2, t2, sup);
  1678     /** Check that classes (or interfaces) do not each define an abstract
  1679      *  method with same name and arguments but incompatible return types.
  1680      *  @param pos          Position to be used for error reporting.
  1681      *  @param t1           The first argument type.
  1682      *  @param t2           The second argument type.
  1683      */
  1684     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1685                                             Type t1,
  1686                                             Type t2) {
  1687         return checkCompatibleAbstracts(pos, t1, t2,
  1688                                         types.makeCompoundType(t1, t2));
  1691     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1692                                             Type t1,
  1693                                             Type t2,
  1694                                             Type site) {
  1695         return firstIncompatibility(pos, t1, t2, site) == null;
  1698     /** Return the first method which is defined with same args
  1699      *  but different return types in two given interfaces, or null if none
  1700      *  exists.
  1701      *  @param t1     The first type.
  1702      *  @param t2     The second type.
  1703      *  @param site   The most derived type.
  1704      *  @returns symbol from t2 that conflicts with one in t1.
  1705      */
  1706     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1707         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1708         closure(t1, interfaces1);
  1709         Map<TypeSymbol,Type> interfaces2;
  1710         if (t1 == t2)
  1711             interfaces2 = interfaces1;
  1712         else
  1713             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1715         for (Type t3 : interfaces1.values()) {
  1716             for (Type t4 : interfaces2.values()) {
  1717                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1718                 if (s != null) return s;
  1721         return null;
  1724     /** Compute all the supertypes of t, indexed by type symbol. */
  1725     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1726         if (t.tag != CLASS) return;
  1727         if (typeMap.put(t.tsym, t) == null) {
  1728             closure(types.supertype(t), typeMap);
  1729             for (Type i : types.interfaces(t))
  1730                 closure(i, typeMap);
  1734     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1735     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1736         if (t.tag != CLASS) return;
  1737         if (typesSkip.get(t.tsym) != null) return;
  1738         if (typeMap.put(t.tsym, t) == null) {
  1739             closure(types.supertype(t), typesSkip, typeMap);
  1740             for (Type i : types.interfaces(t))
  1741                 closure(i, typesSkip, typeMap);
  1745     /** Return the first method in t2 that conflicts with a method from t1. */
  1746     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1747         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1748             Symbol s1 = e1.sym;
  1749             Type st1 = null;
  1750             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1751             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1752             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1753             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1754                 Symbol s2 = e2.sym;
  1755                 if (s1 == s2) continue;
  1756                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1757                 if (st1 == null) st1 = types.memberType(t1, s1);
  1758                 Type st2 = types.memberType(t2, s2);
  1759                 if (types.overrideEquivalent(st1, st2)) {
  1760                     List<Type> tvars1 = st1.getTypeArguments();
  1761                     List<Type> tvars2 = st2.getTypeArguments();
  1762                     Type rt1 = st1.getReturnType();
  1763                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1764                     boolean compat =
  1765                         types.isSameType(rt1, rt2) ||
  1766                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1767                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1768                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1769                          checkCommonOverriderIn(s1,s2,site);
  1770                     if (!compat) {
  1771                         log.error(pos, "types.incompatible.diff.ret",
  1772                             t1, t2, s2.name +
  1773                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1774                         return s2;
  1776                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1777                         !checkCommonOverriderIn(s1, s2, site)) {
  1778                     log.error(pos,
  1779                             "name.clash.same.erasure.no.override",
  1780                             s1, s1.location(),
  1781                             s2, s2.location());
  1782                     return s2;
  1786         return null;
  1788     //WHERE
  1789     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1790         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1791         Type st1 = types.memberType(site, s1);
  1792         Type st2 = types.memberType(site, s2);
  1793         closure(site, supertypes);
  1794         for (Type t : supertypes.values()) {
  1795             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1796                 Symbol s3 = e.sym;
  1797                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1798                 Type st3 = types.memberType(site,s3);
  1799                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1800                     if (s3.owner == site.tsym) {
  1801                         return true;
  1803                     List<Type> tvars1 = st1.getTypeArguments();
  1804                     List<Type> tvars2 = st2.getTypeArguments();
  1805                     List<Type> tvars3 = st3.getTypeArguments();
  1806                     Type rt1 = st1.getReturnType();
  1807                     Type rt2 = st2.getReturnType();
  1808                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1809                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1810                     boolean compat =
  1811                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1812                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1813                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1814                     if (compat)
  1815                         return true;
  1819         return false;
  1822     /** Check that a given method conforms with any method it overrides.
  1823      *  @param tree         The tree from which positions are extracted
  1824      *                      for errors.
  1825      *  @param m            The overriding method.
  1826      */
  1827     void checkOverride(JCTree tree, MethodSymbol m) {
  1828         ClassSymbol origin = (ClassSymbol)m.owner;
  1829         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1830             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1831                 log.error(tree.pos(), "enum.no.finalize");
  1832                 return;
  1834         for (Type t = origin.type; t.tag == CLASS;
  1835              t = types.supertype(t)) {
  1836             if (t != origin.type) {
  1837                 checkOverride(tree, t, origin, m);
  1839             for (Type t2 : types.interfaces(t)) {
  1840                 checkOverride(tree, t2, origin, m);
  1845     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1846         TypeSymbol c = site.tsym;
  1847         Scope.Entry e = c.members().lookup(m.name);
  1848         while (e.scope != null) {
  1849             if (m.overrides(e.sym, origin, types, false)) {
  1850                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1851                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1854             e = e.next();
  1858     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1859         ClashFilter cf = new ClashFilter(origin.type);
  1860         return (cf.accepts(s1) &&
  1861                 cf.accepts(s2) &&
  1862                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  1866     /** Check that all abstract members of given class have definitions.
  1867      *  @param pos          Position to be used for error reporting.
  1868      *  @param c            The class.
  1869      */
  1870     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1871         try {
  1872             MethodSymbol undef = firstUndef(c, c);
  1873             if (undef != null) {
  1874                 if ((c.flags() & ENUM) != 0 &&
  1875                     types.supertype(c.type).tsym == syms.enumSym &&
  1876                     (c.flags() & FINAL) == 0) {
  1877                     // add the ABSTRACT flag to an enum
  1878                     c.flags_field |= ABSTRACT;
  1879                 } else {
  1880                     MethodSymbol undef1 =
  1881                         new MethodSymbol(undef.flags(), undef.name,
  1882                                          types.memberType(c.type, undef), undef.owner);
  1883                     log.error(pos, "does.not.override.abstract",
  1884                               c, undef1, undef1.location());
  1887         } catch (CompletionFailure ex) {
  1888             completionError(pos, ex);
  1891 //where
  1892         /** Return first abstract member of class `c' that is not defined
  1893          *  in `impl', null if there is none.
  1894          */
  1895         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1896             MethodSymbol undef = null;
  1897             // Do not bother to search in classes that are not abstract,
  1898             // since they cannot have abstract members.
  1899             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1900                 Scope s = c.members();
  1901                 for (Scope.Entry e = s.elems;
  1902                      undef == null && e != null;
  1903                      e = e.sibling) {
  1904                     if (e.sym.kind == MTH &&
  1905                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1906                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1907                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1908                         if (implmeth == null || implmeth == absmeth)
  1909                             undef = absmeth;
  1912                 if (undef == null) {
  1913                     Type st = types.supertype(c.type);
  1914                     if (st.tag == CLASS)
  1915                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1917                 for (List<Type> l = types.interfaces(c.type);
  1918                      undef == null && l.nonEmpty();
  1919                      l = l.tail) {
  1920                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1923             return undef;
  1926     void checkNonCyclicDecl(JCClassDecl tree) {
  1927         CycleChecker cc = new CycleChecker();
  1928         cc.scan(tree);
  1929         if (!cc.errorFound && !cc.partialCheck) {
  1930             tree.sym.flags_field |= ACYCLIC;
  1934     class CycleChecker extends TreeScanner {
  1936         List<Symbol> seenClasses = List.nil();
  1937         boolean errorFound = false;
  1938         boolean partialCheck = false;
  1940         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  1941             if (sym != null && sym.kind == TYP) {
  1942                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  1943                 if (classEnv != null) {
  1944                     DiagnosticSource prevSource = log.currentSource();
  1945                     try {
  1946                         log.useSource(classEnv.toplevel.sourcefile);
  1947                         scan(classEnv.tree);
  1949                     finally {
  1950                         log.useSource(prevSource.getFile());
  1952                 } else if (sym.kind == TYP) {
  1953                     checkClass(pos, sym, List.<JCTree>nil());
  1955             } else {
  1956                 //not completed yet
  1957                 partialCheck = true;
  1961         @Override
  1962         public void visitSelect(JCFieldAccess tree) {
  1963             super.visitSelect(tree);
  1964             checkSymbol(tree.pos(), tree.sym);
  1967         @Override
  1968         public void visitIdent(JCIdent tree) {
  1969             checkSymbol(tree.pos(), tree.sym);
  1972         @Override
  1973         public void visitTypeApply(JCTypeApply tree) {
  1974             scan(tree.clazz);
  1977         @Override
  1978         public void visitTypeArray(JCArrayTypeTree tree) {
  1979             scan(tree.elemtype);
  1982         @Override
  1983         public void visitClassDef(JCClassDecl tree) {
  1984             List<JCTree> supertypes = List.nil();
  1985             if (tree.getExtendsClause() != null) {
  1986                 supertypes = supertypes.prepend(tree.getExtendsClause());
  1988             if (tree.getImplementsClause() != null) {
  1989                 for (JCTree intf : tree.getImplementsClause()) {
  1990                     supertypes = supertypes.prepend(intf);
  1993             checkClass(tree.pos(), tree.sym, supertypes);
  1996         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  1997             if ((c.flags_field & ACYCLIC) != 0)
  1998                 return;
  1999             if (seenClasses.contains(c)) {
  2000                 errorFound = true;
  2001                 noteCyclic(pos, (ClassSymbol)c);
  2002             } else if (!c.type.isErroneous()) {
  2003                 try {
  2004                     seenClasses = seenClasses.prepend(c);
  2005                     if (c.type.tag == CLASS) {
  2006                         if (supertypes.nonEmpty()) {
  2007                             scan(supertypes);
  2009                         else {
  2010                             ClassType ct = (ClassType)c.type;
  2011                             if (ct.supertype_field == null ||
  2012                                     ct.interfaces_field == null) {
  2013                                 //not completed yet
  2014                                 partialCheck = true;
  2015                                 return;
  2017                             checkSymbol(pos, ct.supertype_field.tsym);
  2018                             for (Type intf : ct.interfaces_field) {
  2019                                 checkSymbol(pos, intf.tsym);
  2022                         if (c.owner.kind == TYP) {
  2023                             checkSymbol(pos, c.owner);
  2026                 } finally {
  2027                     seenClasses = seenClasses.tail;
  2033     /** Check for cyclic references. Issue an error if the
  2034      *  symbol of the type referred to has a LOCKED flag set.
  2036      *  @param pos      Position to be used for error reporting.
  2037      *  @param t        The type referred to.
  2038      */
  2039     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2040         checkNonCyclicInternal(pos, t);
  2044     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2045         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2048     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2049         final TypeVar tv;
  2050         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2051             return;
  2052         if (seen.contains(t)) {
  2053             tv = (TypeVar)t;
  2054             tv.bound = types.createErrorType(t);
  2055             log.error(pos, "cyclic.inheritance", t);
  2056         } else if (t.tag == TYPEVAR) {
  2057             tv = (TypeVar)t;
  2058             seen = seen.prepend(tv);
  2059             for (Type b : types.getBounds(tv))
  2060                 checkNonCyclic1(pos, b, seen);
  2064     /** Check for cyclic references. Issue an error if the
  2065      *  symbol of the type referred to has a LOCKED flag set.
  2067      *  @param pos      Position to be used for error reporting.
  2068      *  @param t        The type referred to.
  2069      *  @returns        True if the check completed on all attributed classes
  2070      */
  2071     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2072         boolean complete = true; // was the check complete?
  2073         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2074         Symbol c = t.tsym;
  2075         if ((c.flags_field & ACYCLIC) != 0) return true;
  2077         if ((c.flags_field & LOCKED) != 0) {
  2078             noteCyclic(pos, (ClassSymbol)c);
  2079         } else if (!c.type.isErroneous()) {
  2080             try {
  2081                 c.flags_field |= LOCKED;
  2082                 if (c.type.tag == CLASS) {
  2083                     ClassType clazz = (ClassType)c.type;
  2084                     if (clazz.interfaces_field != null)
  2085                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2086                             complete &= checkNonCyclicInternal(pos, l.head);
  2087                     if (clazz.supertype_field != null) {
  2088                         Type st = clazz.supertype_field;
  2089                         if (st != null && st.tag == CLASS)
  2090                             complete &= checkNonCyclicInternal(pos, st);
  2092                     if (c.owner.kind == TYP)
  2093                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2095             } finally {
  2096                 c.flags_field &= ~LOCKED;
  2099         if (complete)
  2100             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2101         if (complete) c.flags_field |= ACYCLIC;
  2102         return complete;
  2105     /** Note that we found an inheritance cycle. */
  2106     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2107         log.error(pos, "cyclic.inheritance", c);
  2108         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2109             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2110         Type st = types.supertype(c.type);
  2111         if (st.tag == CLASS)
  2112             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2113         c.type = types.createErrorType(c, c.type);
  2114         c.flags_field |= ACYCLIC;
  2117     /** Check that all methods which implement some
  2118      *  method conform to the method they implement.
  2119      *  @param tree         The class definition whose members are checked.
  2120      */
  2121     void checkImplementations(JCClassDecl tree) {
  2122         checkImplementations(tree, tree.sym);
  2124 //where
  2125         /** Check that all methods which implement some
  2126          *  method in `ic' conform to the method they implement.
  2127          */
  2128         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2129             ClassSymbol origin = tree.sym;
  2130             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2131                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2132                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2133                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2134                         if (e.sym.kind == MTH &&
  2135                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2136                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2137                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2138                             if (implmeth != null && implmeth != absmeth &&
  2139                                 (implmeth.owner.flags() & INTERFACE) ==
  2140                                 (origin.flags() & INTERFACE)) {
  2141                                 // don't check if implmeth is in a class, yet
  2142                                 // origin is an interface. This case arises only
  2143                                 // if implmeth is declared in Object. The reason is
  2144                                 // that interfaces really don't inherit from
  2145                                 // Object it's just that the compiler represents
  2146                                 // things that way.
  2147                                 checkOverride(tree, implmeth, absmeth, origin);
  2155     /** Check that all abstract methods implemented by a class are
  2156      *  mutually compatible.
  2157      *  @param pos          Position to be used for error reporting.
  2158      *  @param c            The class whose interfaces are checked.
  2159      */
  2160     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2161         List<Type> supertypes = types.interfaces(c);
  2162         Type supertype = types.supertype(c);
  2163         if (supertype.tag == CLASS &&
  2164             (supertype.tsym.flags() & ABSTRACT) != 0)
  2165             supertypes = supertypes.prepend(supertype);
  2166         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2167             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2168                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2169                 return;
  2170             for (List<Type> m = supertypes; m != l; m = m.tail)
  2171                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2172                     return;
  2174         checkCompatibleConcretes(pos, c);
  2177     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2178         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2179             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2180                 // VM allows methods and variables with differing types
  2181                 if (sym.kind == e.sym.kind &&
  2182                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2183                     sym != e.sym &&
  2184                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2185                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2186                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2187                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2188                     return;
  2194     /** Check that all non-override equivalent methods accessible from 'site'
  2195      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2197      *  @param pos  Position to be used for error reporting.
  2198      *  @param site The class whose methods are checked.
  2199      *  @param sym  The method symbol to be checked.
  2200      */
  2201     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2202          ClashFilter cf = new ClashFilter(site);
  2203         //for each method m1 that is overridden (directly or indirectly)
  2204         //by method 'sym' in 'site'...
  2205         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2206             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2207              //...check each method m2 that is a member of 'site'
  2208              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2209                 if (m2 == m1) continue;
  2210                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2211                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2212                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), false) &&
  2213                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2214                     sym.flags_field |= CLASH;
  2215                     String key = m1 == sym ?
  2216                             "name.clash.same.erasure.no.override" :
  2217                             "name.clash.same.erasure.no.override.1";
  2218                     log.error(pos,
  2219                             key,
  2220                             sym, sym.location(),
  2221                             m2, m2.location(),
  2222                             m1, m1.location());
  2223                     return;
  2231     /** Check that all static methods accessible from 'site' are
  2232      *  mutually compatible (JLS 8.4.8).
  2234      *  @param pos  Position to be used for error reporting.
  2235      *  @param site The class whose methods are checked.
  2236      *  @param sym  The method symbol to be checked.
  2237      */
  2238     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2239         ClashFilter cf = new ClashFilter(site);
  2240         //for each method m1 that is a member of 'site'...
  2241         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2242             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2243             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2244             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2245                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2246                 log.error(pos,
  2247                         "name.clash.same.erasure.no.hide",
  2248                         sym, sym.location(),
  2249                         s, s.location());
  2250                 return;
  2255      //where
  2256      private class ClashFilter implements Filter<Symbol> {
  2258          Type site;
  2260          ClashFilter(Type site) {
  2261              this.site = site;
  2264          boolean shouldSkip(Symbol s) {
  2265              return (s.flags() & CLASH) != 0 &&
  2266                 s.owner == site.tsym;
  2269          public boolean accepts(Symbol s) {
  2270              return s.kind == MTH &&
  2271                      (s.flags() & SYNTHETIC) == 0 &&
  2272                      !shouldSkip(s) &&
  2273                      s.isInheritedIn(site.tsym, types) &&
  2274                      !s.isConstructor();
  2278     /** Report a conflict between a user symbol and a synthetic symbol.
  2279      */
  2280     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2281         if (!sym.type.isErroneous()) {
  2282             if (warnOnSyntheticConflicts) {
  2283                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2285             else {
  2286                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2291     /** Check that class c does not implement directly or indirectly
  2292      *  the same parameterized interface with two different argument lists.
  2293      *  @param pos          Position to be used for error reporting.
  2294      *  @param type         The type whose interfaces are checked.
  2295      */
  2296     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2297         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2299 //where
  2300         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2301          *  with their class symbol as key and their type as value. Make
  2302          *  sure no class is entered with two different types.
  2303          */
  2304         void checkClassBounds(DiagnosticPosition pos,
  2305                               Map<TypeSymbol,Type> seensofar,
  2306                               Type type) {
  2307             if (type.isErroneous()) return;
  2308             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2309                 Type it = l.head;
  2310                 Type oldit = seensofar.put(it.tsym, it);
  2311                 if (oldit != null) {
  2312                     List<Type> oldparams = oldit.allparams();
  2313                     List<Type> newparams = it.allparams();
  2314                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2315                         log.error(pos, "cant.inherit.diff.arg",
  2316                                   it.tsym, Type.toString(oldparams),
  2317                                   Type.toString(newparams));
  2319                 checkClassBounds(pos, seensofar, it);
  2321             Type st = types.supertype(type);
  2322             if (st != null) checkClassBounds(pos, seensofar, st);
  2325     /** Enter interface into into set.
  2326      *  If it existed already, issue a "repeated interface" error.
  2327      */
  2328     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2329         if (its.contains(it))
  2330             log.error(pos, "repeated.interface");
  2331         else {
  2332             its.add(it);
  2336 /* *************************************************************************
  2337  * Check annotations
  2338  **************************************************************************/
  2340     /**
  2341      * Recursively validate annotations values
  2342      */
  2343     void validateAnnotationTree(JCTree tree) {
  2344         class AnnotationValidator extends TreeScanner {
  2345             @Override
  2346             public void visitAnnotation(JCAnnotation tree) {
  2347                 if (!tree.type.isErroneous()) {
  2348                     super.visitAnnotation(tree);
  2349                     validateAnnotation(tree);
  2353         tree.accept(new AnnotationValidator());
  2356     /** Annotation types are restricted to primitives, String, an
  2357      *  enum, an annotation, Class, Class<?>, Class<? extends
  2358      *  Anything>, arrays of the preceding.
  2359      */
  2360     void validateAnnotationType(JCTree restype) {
  2361         // restype may be null if an error occurred, so don't bother validating it
  2362         if (restype != null) {
  2363             validateAnnotationType(restype.pos(), restype.type);
  2367     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2368         if (type.isPrimitive()) return;
  2369         if (types.isSameType(type, syms.stringType)) return;
  2370         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2371         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2372         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2373         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2374             validateAnnotationType(pos, types.elemtype(type));
  2375             return;
  2377         log.error(pos, "invalid.annotation.member.type");
  2380     /**
  2381      * "It is also a compile-time error if any method declared in an
  2382      * annotation type has a signature that is override-equivalent to
  2383      * that of any public or protected method declared in class Object
  2384      * or in the interface annotation.Annotation."
  2386      * @jls 9.6 Annotation Types
  2387      */
  2388     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2389         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2390             Scope s = sup.tsym.members();
  2391             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2392                 if (e.sym.kind == MTH &&
  2393                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2394                     types.overrideEquivalent(m.type, e.sym.type))
  2395                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2400     /** Check the annotations of a symbol.
  2401      */
  2402     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2403         if (skipAnnotations) return;
  2404         for (JCAnnotation a : annotations)
  2405             validateAnnotation(a, s);
  2408     /** Check an annotation of a symbol.
  2409      */
  2410     public void validateAnnotation(JCAnnotation a, Symbol s) {
  2411         validateAnnotationTree(a);
  2413         if (!annotationApplicable(a, s))
  2414             log.error(a.pos(), "annotation.type.not.applicable");
  2416         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2417             if (!isOverrider(s))
  2418                 log.error(a.pos(), "method.does.not.override.superclass");
  2422     /** Is s a method symbol that overrides a method in a superclass? */
  2423     boolean isOverrider(Symbol s) {
  2424         if (s.kind != MTH || s.isStatic())
  2425             return false;
  2426         MethodSymbol m = (MethodSymbol)s;
  2427         TypeSymbol owner = (TypeSymbol)m.owner;
  2428         for (Type sup : types.closure(owner.type)) {
  2429             if (sup == owner.type)
  2430                 continue; // skip "this"
  2431             Scope scope = sup.tsym.members();
  2432             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2433                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2434                     return true;
  2437         return false;
  2440     /** Is the annotation applicable to the symbol? */
  2441     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2442         Attribute.Compound atTarget =
  2443             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2444         if (atTarget == null) return true;
  2445         Attribute atValue = atTarget.member(names.value);
  2446         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2447         Attribute.Array arr = (Attribute.Array) atValue;
  2448         for (Attribute app : arr.values) {
  2449             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2450             Attribute.Enum e = (Attribute.Enum) app;
  2451             if (e.value.name == names.TYPE)
  2452                 { if (s.kind == TYP) return true; }
  2453             else if (e.value.name == names.FIELD)
  2454                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2455             else if (e.value.name == names.METHOD)
  2456                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2457             else if (e.value.name == names.PARAMETER)
  2458                 { if (s.kind == VAR &&
  2459                       s.owner.kind == MTH &&
  2460                       (s.flags() & PARAMETER) != 0)
  2461                     return true;
  2463             else if (e.value.name == names.CONSTRUCTOR)
  2464                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2465             else if (e.value.name == names.LOCAL_VARIABLE)
  2466                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2467                       (s.flags() & PARAMETER) == 0)
  2468                     return true;
  2470             else if (e.value.name == names.ANNOTATION_TYPE)
  2471                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2472                     return true;
  2474             else if (e.value.name == names.PACKAGE)
  2475                 { if (s.kind == PCK) return true; }
  2476             else if (e.value.name == names.TYPE_USE)
  2477                 { if (s.kind == TYP ||
  2478                       s.kind == VAR ||
  2479                       (s.kind == MTH && !s.isConstructor() &&
  2480                        s.type.getReturnType().tag != VOID))
  2481                     return true;
  2483             else
  2484                 return true; // recovery
  2486         return false;
  2489     /** Check an annotation value.
  2490      */
  2491     public void validateAnnotation(JCAnnotation a) {
  2492         // collect an inventory of the members (sorted alphabetically)
  2493         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2494             public int compare(Symbol t, Symbol t1) {
  2495                 return t.name.compareTo(t1.name);
  2497         });
  2498         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2499              e != null;
  2500              e = e.sibling)
  2501             if (e.sym.kind == MTH)
  2502                 members.add((MethodSymbol) e.sym);
  2504         // count them off as they're annotated
  2505         for (JCTree arg : a.args) {
  2506             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2507             JCAssign assign = (JCAssign) arg;
  2508             Symbol m = TreeInfo.symbol(assign.lhs);
  2509             if (m == null || m.type.isErroneous()) continue;
  2510             if (!members.remove(m))
  2511                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2512                           m.name, a.type);
  2515         // all the remaining ones better have default values
  2516         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2517         for (MethodSymbol m : members) {
  2518             if (m.defaultValue == null && !m.type.isErroneous()) {
  2519                 missingDefaults.append(m.name);
  2522         if (missingDefaults.nonEmpty()) {
  2523             String key = (missingDefaults.size() > 1)
  2524                     ? "annotation.missing.default.value.1"
  2525                     : "annotation.missing.default.value";
  2526             log.error(a.pos(), key, a.type, missingDefaults);
  2529         // special case: java.lang.annotation.Target must not have
  2530         // repeated values in its value member
  2531         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2532             a.args.tail == null)
  2533             return;
  2535         if (!a.args.head.hasTag(ASSIGN)) return; // error recovery
  2536         JCAssign assign = (JCAssign) a.args.head;
  2537         Symbol m = TreeInfo.symbol(assign.lhs);
  2538         if (m.name != names.value) return;
  2539         JCTree rhs = assign.rhs;
  2540         if (!rhs.hasTag(NEWARRAY)) return;
  2541         JCNewArray na = (JCNewArray) rhs;
  2542         Set<Symbol> targets = new HashSet<Symbol>();
  2543         for (JCTree elem : na.elems) {
  2544             if (!targets.add(TreeInfo.symbol(elem))) {
  2545                 log.error(elem.pos(), "repeated.annotation.target");
  2550     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2551         if (allowAnnotations &&
  2552             lint.isEnabled(LintCategory.DEP_ANN) &&
  2553             (s.flags() & DEPRECATED) != 0 &&
  2554             !syms.deprecatedType.isErroneous() &&
  2555             s.attribute(syms.deprecatedType.tsym) == null) {
  2556             log.warning(LintCategory.DEP_ANN,
  2557                     pos, "missing.deprecated.annotation");
  2561     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2562         if ((s.flags() & DEPRECATED) != 0 &&
  2563                 (other.flags() & DEPRECATED) == 0 &&
  2564                 s.outermostClass() != other.outermostClass()) {
  2565             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2566                 @Override
  2567                 public void report() {
  2568                     warnDeprecated(pos, s);
  2570             });
  2574     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2575         if ((s.flags() & PROPRIETARY) != 0) {
  2576             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2577                 public void report() {
  2578                     if (enableSunApiLintControl)
  2579                       warnSunApi(pos, "sun.proprietary", s);
  2580                     else
  2581                       log.mandatoryWarning(pos, "sun.proprietary", s);
  2583             });
  2587 /* *************************************************************************
  2588  * Check for recursive annotation elements.
  2589  **************************************************************************/
  2591     /** Check for cycles in the graph of annotation elements.
  2592      */
  2593     void checkNonCyclicElements(JCClassDecl tree) {
  2594         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2595         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2596         try {
  2597             tree.sym.flags_field |= LOCKED;
  2598             for (JCTree def : tree.defs) {
  2599                 if (!def.hasTag(METHODDEF)) continue;
  2600                 JCMethodDecl meth = (JCMethodDecl)def;
  2601                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2603         } finally {
  2604             tree.sym.flags_field &= ~LOCKED;
  2605             tree.sym.flags_field |= ACYCLIC_ANN;
  2609     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2610         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2611             return;
  2612         if ((tsym.flags_field & LOCKED) != 0) {
  2613             log.error(pos, "cyclic.annotation.element");
  2614             return;
  2616         try {
  2617             tsym.flags_field |= LOCKED;
  2618             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2619                 Symbol s = e.sym;
  2620                 if (s.kind != Kinds.MTH)
  2621                     continue;
  2622                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2624         } finally {
  2625             tsym.flags_field &= ~LOCKED;
  2626             tsym.flags_field |= ACYCLIC_ANN;
  2630     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2631         switch (type.tag) {
  2632         case TypeTags.CLASS:
  2633             if ((type.tsym.flags() & ANNOTATION) != 0)
  2634                 checkNonCyclicElementsInternal(pos, type.tsym);
  2635             break;
  2636         case TypeTags.ARRAY:
  2637             checkAnnotationResType(pos, types.elemtype(type));
  2638             break;
  2639         default:
  2640             break; // int etc
  2644 /* *************************************************************************
  2645  * Check for cycles in the constructor call graph.
  2646  **************************************************************************/
  2648     /** Check for cycles in the graph of constructors calling other
  2649      *  constructors.
  2650      */
  2651     void checkCyclicConstructors(JCClassDecl tree) {
  2652         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2654         // enter each constructor this-call into the map
  2655         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2656             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2657             if (app == null) continue;
  2658             JCMethodDecl meth = (JCMethodDecl) l.head;
  2659             if (TreeInfo.name(app.meth) == names._this) {
  2660                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2661             } else {
  2662                 meth.sym.flags_field |= ACYCLIC;
  2666         // Check for cycles in the map
  2667         Symbol[] ctors = new Symbol[0];
  2668         ctors = callMap.keySet().toArray(ctors);
  2669         for (Symbol caller : ctors) {
  2670             checkCyclicConstructor(tree, caller, callMap);
  2674     /** Look in the map to see if the given constructor is part of a
  2675      *  call cycle.
  2676      */
  2677     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2678                                         Map<Symbol,Symbol> callMap) {
  2679         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2680             if ((ctor.flags_field & LOCKED) != 0) {
  2681                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2682                           "recursive.ctor.invocation");
  2683             } else {
  2684                 ctor.flags_field |= LOCKED;
  2685                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2686                 ctor.flags_field &= ~LOCKED;
  2688             ctor.flags_field |= ACYCLIC;
  2692 /* *************************************************************************
  2693  * Miscellaneous
  2694  **************************************************************************/
  2696     /**
  2697      * Return the opcode of the operator but emit an error if it is an
  2698      * error.
  2699      * @param pos        position for error reporting.
  2700      * @param operator   an operator
  2701      * @param tag        a tree tag
  2702      * @param left       type of left hand side
  2703      * @param right      type of right hand side
  2704      */
  2705     int checkOperator(DiagnosticPosition pos,
  2706                        OperatorSymbol operator,
  2707                        JCTree.Tag tag,
  2708                        Type left,
  2709                        Type right) {
  2710         if (operator.opcode == ByteCodes.error) {
  2711             log.error(pos,
  2712                       "operator.cant.be.applied.1",
  2713                       treeinfo.operatorName(tag),
  2714                       left, right);
  2716         return operator.opcode;
  2720     /**
  2721      *  Check for division by integer constant zero
  2722      *  @param pos           Position for error reporting.
  2723      *  @param operator      The operator for the expression
  2724      *  @param operand       The right hand operand for the expression
  2725      */
  2726     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2727         if (operand.constValue() != null
  2728             && lint.isEnabled(LintCategory.DIVZERO)
  2729             && operand.tag <= LONG
  2730             && ((Number) (operand.constValue())).longValue() == 0) {
  2731             int opc = ((OperatorSymbol)operator).opcode;
  2732             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2733                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2734                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  2739     /**
  2740      * Check for empty statements after if
  2741      */
  2742     void checkEmptyIf(JCIf tree) {
  2743         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  2744                 lint.isEnabled(LintCategory.EMPTY))
  2745             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  2748     /** Check that symbol is unique in given scope.
  2749      *  @param pos           Position for error reporting.
  2750      *  @param sym           The symbol.
  2751      *  @param s             The scope.
  2752      */
  2753     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2754         if (sym.type.isErroneous())
  2755             return true;
  2756         if (sym.owner.name == names.any) return false;
  2757         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2758             if (sym != e.sym &&
  2759                     (e.sym.flags() & CLASH) == 0 &&
  2760                     sym.kind == e.sym.kind &&
  2761                     sym.name != names.error &&
  2762                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2763                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  2764                     varargsDuplicateError(pos, sym, e.sym);
  2765                     return true;
  2766                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  2767                     duplicateErasureError(pos, sym, e.sym);
  2768                     sym.flags_field |= CLASH;
  2769                     return true;
  2770                 } else {
  2771                     duplicateError(pos, e.sym);
  2772                     return false;
  2776         return true;
  2779     /** Report duplicate declaration error.
  2780      */
  2781     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2782         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2783             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2787     /** Check that single-type import is not already imported or top-level defined,
  2788      *  but make an exception for two single-type imports which denote the same type.
  2789      *  @param pos           Position for error reporting.
  2790      *  @param sym           The symbol.
  2791      *  @param s             The scope
  2792      */
  2793     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2794         return checkUniqueImport(pos, sym, s, false);
  2797     /** Check that static single-type import is not already imported or top-level defined,
  2798      *  but make an exception for two single-type imports which denote the same type.
  2799      *  @param pos           Position for error reporting.
  2800      *  @param sym           The symbol.
  2801      *  @param s             The scope
  2802      *  @param staticImport  Whether or not this was a static import
  2803      */
  2804     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2805         return checkUniqueImport(pos, sym, s, true);
  2808     /** Check that single-type import is not already imported or top-level defined,
  2809      *  but make an exception for two single-type imports which denote the same type.
  2810      *  @param pos           Position for error reporting.
  2811      *  @param sym           The symbol.
  2812      *  @param s             The scope.
  2813      *  @param staticImport  Whether or not this was a static import
  2814      */
  2815     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2816         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2817             // is encountered class entered via a class declaration?
  2818             boolean isClassDecl = e.scope == s;
  2819             if ((isClassDecl || sym != e.sym) &&
  2820                 sym.kind == e.sym.kind &&
  2821                 sym.name != names.error) {
  2822                 if (!e.sym.type.isErroneous()) {
  2823                     String what = e.sym.toString();
  2824                     if (!isClassDecl) {
  2825                         if (staticImport)
  2826                             log.error(pos, "already.defined.static.single.import", what);
  2827                         else
  2828                             log.error(pos, "already.defined.single.import", what);
  2830                     else if (sym != e.sym)
  2831                         log.error(pos, "already.defined.this.unit", what);
  2833                 return false;
  2836         return true;
  2839     /** Check that a qualified name is in canonical form (for import decls).
  2840      */
  2841     public void checkCanonical(JCTree tree) {
  2842         if (!isCanonical(tree))
  2843             log.error(tree.pos(), "import.requires.canonical",
  2844                       TreeInfo.symbol(tree));
  2846         // where
  2847         private boolean isCanonical(JCTree tree) {
  2848             while (tree.hasTag(SELECT)) {
  2849                 JCFieldAccess s = (JCFieldAccess) tree;
  2850                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2851                     return false;
  2852                 tree = s.selected;
  2854             return true;
  2857     private class ConversionWarner extends Warner {
  2858         final String uncheckedKey;
  2859         final Type found;
  2860         final Type expected;
  2861         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  2862             super(pos);
  2863             this.uncheckedKey = uncheckedKey;
  2864             this.found = found;
  2865             this.expected = expected;
  2868         @Override
  2869         public void warn(LintCategory lint) {
  2870             boolean warned = this.warned;
  2871             super.warn(lint);
  2872             if (warned) return; // suppress redundant diagnostics
  2873             switch (lint) {
  2874                 case UNCHECKED:
  2875                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  2876                     break;
  2877                 case VARARGS:
  2878                     if (method != null &&
  2879                             method.attribute(syms.trustMeType.tsym) != null &&
  2880                             isTrustMeAllowedOnMethod(method) &&
  2881                             !types.isReifiable(method.type.getParameterTypes().last())) {
  2882                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  2884                     break;
  2885                 default:
  2886                     throw new AssertionError("Unexpected lint: " + lint);
  2891     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2892         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2895     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2896         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial