src/share/classes/com/sun/tools/javac/code/Types.java

Tue, 25 Sep 2012 11:56:46 +0100

author
mcimadamore
date
Tue, 25 Sep 2012 11:56:46 +0100
changeset 1338
ad2ca2a4ab5e
parent 1313
873ddd9f4900
child 1347
1408af4cd8b0
permissions
-rw-r--r--

7177306: Regression: unchecked method call does not erase return type
Summary: Spurious extra call to Attr.checkMethod when method call is unchecked
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.*;
    31 import com.sun.tools.javac.util.*;
    32 import com.sun.tools.javac.util.List;
    34 import com.sun.tools.javac.jvm.ClassReader;
    35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    36 import com.sun.tools.javac.code.Lint.LintCategory;
    37 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    38 import com.sun.tools.javac.comp.Check;
    40 import static com.sun.tools.javac.code.Scope.*;
    41 import static com.sun.tools.javac.code.Type.*;
    42 import static com.sun.tools.javac.code.TypeTags.*;
    43 import static com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.BoundKind.*;
    46 import static com.sun.tools.javac.util.ListBuffer.lb;
    48 /**
    49  * Utility class containing various operations on types.
    50  *
    51  * <p>Unless other names are more illustrative, the following naming
    52  * conventions should be observed in this file:
    53  *
    54  * <dl>
    55  * <dt>t</dt>
    56  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    57  * <dt>s</dt>
    58  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    59  * <dt>ts</dt>
    60  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    61  * <dt>ss</dt>
    62  * <dd>A second list of types should be named ss.</dd>
    63  * </dl>
    64  *
    65  * <p><b>This is NOT part of any supported API.
    66  * If you write code that depends on this, you do so at your own risk.
    67  * This code and its internal interfaces are subject to change or
    68  * deletion without notice.</b>
    69  */
    70 public class Types {
    71     protected static final Context.Key<Types> typesKey =
    72         new Context.Key<Types>();
    74     final Symtab syms;
    75     final JavacMessages messages;
    76     final Names names;
    77     final boolean allowBoxing;
    78     final boolean allowCovariantReturns;
    79     final boolean allowObjectToPrimitiveCast;
    80     final ClassReader reader;
    81     final Check chk;
    82     List<Warner> warnStack = List.nil();
    83     final Name capturedName;
    85     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    86     public static Types instance(Context context) {
    87         Types instance = context.get(typesKey);
    88         if (instance == null)
    89             instance = new Types(context);
    90         return instance;
    91     }
    93     protected Types(Context context) {
    94         context.put(typesKey, this);
    95         syms = Symtab.instance(context);
    96         names = Names.instance(context);
    97         Source source = Source.instance(context);
    98         allowBoxing = source.allowBoxing();
    99         allowCovariantReturns = source.allowCovariantReturns();
   100         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   101         reader = ClassReader.instance(context);
   102         chk = Check.instance(context);
   103         capturedName = names.fromString("<captured wildcard>");
   104         messages = JavacMessages.instance(context);
   105     }
   106     // </editor-fold>
   108     // <editor-fold defaultstate="collapsed" desc="upperBound">
   109     /**
   110      * The "rvalue conversion".<br>
   111      * The upper bound of most types is the type
   112      * itself.  Wildcards, on the other hand have upper
   113      * and lower bounds.
   114      * @param t a type
   115      * @return the upper bound of the given type
   116      */
   117     public Type upperBound(Type t) {
   118         return upperBound.visit(t);
   119     }
   120     // where
   121         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   123             @Override
   124             public Type visitWildcardType(WildcardType t, Void ignored) {
   125                 if (t.isSuperBound())
   126                     return t.bound == null ? syms.objectType : t.bound.bound;
   127                 else
   128                     return visit(t.type);
   129             }
   131             @Override
   132             public Type visitCapturedType(CapturedType t, Void ignored) {
   133                 return visit(t.bound);
   134             }
   135         };
   136     // </editor-fold>
   138     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   139     /**
   140      * The "lvalue conversion".<br>
   141      * The lower bound of most types is the type
   142      * itself.  Wildcards, on the other hand have upper
   143      * and lower bounds.
   144      * @param t a type
   145      * @return the lower bound of the given type
   146      */
   147     public Type lowerBound(Type t) {
   148         return lowerBound.visit(t);
   149     }
   150     // where
   151         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   153             @Override
   154             public Type visitWildcardType(WildcardType t, Void ignored) {
   155                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   156             }
   158             @Override
   159             public Type visitCapturedType(CapturedType t, Void ignored) {
   160                 return visit(t.getLowerBound());
   161             }
   162         };
   163     // </editor-fold>
   165     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   166     /**
   167      * Checks that all the arguments to a class are unbounded
   168      * wildcards or something else that doesn't make any restrictions
   169      * on the arguments. If a class isUnbounded, a raw super- or
   170      * subclass can be cast to it without a warning.
   171      * @param t a type
   172      * @return true iff the given type is unbounded or raw
   173      */
   174     public boolean isUnbounded(Type t) {
   175         return isUnbounded.visit(t);
   176     }
   177     // where
   178         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   180             public Boolean visitType(Type t, Void ignored) {
   181                 return true;
   182             }
   184             @Override
   185             public Boolean visitClassType(ClassType t, Void ignored) {
   186                 List<Type> parms = t.tsym.type.allparams();
   187                 List<Type> args = t.allparams();
   188                 while (parms.nonEmpty()) {
   189                     WildcardType unb = new WildcardType(syms.objectType,
   190                                                         BoundKind.UNBOUND,
   191                                                         syms.boundClass,
   192                                                         (TypeVar)parms.head);
   193                     if (!containsType(args.head, unb))
   194                         return false;
   195                     parms = parms.tail;
   196                     args = args.tail;
   197                 }
   198                 return true;
   199             }
   200         };
   201     // </editor-fold>
   203     // <editor-fold defaultstate="collapsed" desc="asSub">
   204     /**
   205      * Return the least specific subtype of t that starts with symbol
   206      * sym.  If none exists, return null.  The least specific subtype
   207      * is determined as follows:
   208      *
   209      * <p>If there is exactly one parameterized instance of sym that is a
   210      * subtype of t, that parameterized instance is returned.<br>
   211      * Otherwise, if the plain type or raw type `sym' is a subtype of
   212      * type t, the type `sym' itself is returned.  Otherwise, null is
   213      * returned.
   214      */
   215     public Type asSub(Type t, Symbol sym) {
   216         return asSub.visit(t, sym);
   217     }
   218     // where
   219         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   221             public Type visitType(Type t, Symbol sym) {
   222                 return null;
   223             }
   225             @Override
   226             public Type visitClassType(ClassType t, Symbol sym) {
   227                 if (t.tsym == sym)
   228                     return t;
   229                 Type base = asSuper(sym.type, t.tsym);
   230                 if (base == null)
   231                     return null;
   232                 ListBuffer<Type> from = new ListBuffer<Type>();
   233                 ListBuffer<Type> to = new ListBuffer<Type>();
   234                 try {
   235                     adapt(base, t, from, to);
   236                 } catch (AdaptFailure ex) {
   237                     return null;
   238                 }
   239                 Type res = subst(sym.type, from.toList(), to.toList());
   240                 if (!isSubtype(res, t))
   241                     return null;
   242                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   243                 for (List<Type> l = sym.type.allparams();
   244                      l.nonEmpty(); l = l.tail)
   245                     if (res.contains(l.head) && !t.contains(l.head))
   246                         openVars.append(l.head);
   247                 if (openVars.nonEmpty()) {
   248                     if (t.isRaw()) {
   249                         // The subtype of a raw type is raw
   250                         res = erasure(res);
   251                     } else {
   252                         // Unbound type arguments default to ?
   253                         List<Type> opens = openVars.toList();
   254                         ListBuffer<Type> qs = new ListBuffer<Type>();
   255                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   256                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   257                         }
   258                         res = subst(res, opens, qs.toList());
   259                     }
   260                 }
   261                 return res;
   262             }
   264             @Override
   265             public Type visitErrorType(ErrorType t, Symbol sym) {
   266                 return t;
   267             }
   268         };
   269     // </editor-fold>
   271     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   272     /**
   273      * Is t a subtype of or convertible via boxing/unboxing
   274      * conversion to s?
   275      */
   276     public boolean isConvertible(Type t, Type s, Warner warn) {
   277         if (t.tag == ERROR)
   278             return true;
   279         boolean tPrimitive = t.isPrimitive();
   280         boolean sPrimitive = s.isPrimitive();
   281         if (tPrimitive == sPrimitive) {
   282             return isSubtypeUnchecked(t, s, warn);
   283         }
   284         if (!allowBoxing) return false;
   285         return tPrimitive
   286             ? isSubtype(boxedClass(t).type, s)
   287             : isSubtype(unboxedType(t), s);
   288     }
   290     /**
   291      * Is t a subtype of or convertiable via boxing/unboxing
   292      * convertions to s?
   293      */
   294     public boolean isConvertible(Type t, Type s) {
   295         return isConvertible(t, s, Warner.noWarnings);
   296     }
   297     // </editor-fold>
   299     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   300     /**
   301      * Is t an unchecked subtype of s?
   302      */
   303     public boolean isSubtypeUnchecked(Type t, Type s) {
   304         return isSubtypeUnchecked(t, s, Warner.noWarnings);
   305     }
   306     /**
   307      * Is t an unchecked subtype of s?
   308      */
   309     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   310         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   311         if (result) {
   312             checkUnsafeVarargsConversion(t, s, warn);
   313         }
   314         return result;
   315     }
   316     //where
   317         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   318             if (t.tag == ARRAY && s.tag == ARRAY) {
   319                 if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
   320                     return isSameType(elemtype(t), elemtype(s));
   321                 } else {
   322                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   323                 }
   324             } else if (isSubtype(t, s)) {
   325                 return true;
   326             }
   327             else if (t.tag == TYPEVAR) {
   328                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   329             }
   330             else if (!s.isRaw()) {
   331                 Type t2 = asSuper(t, s.tsym);
   332                 if (t2 != null && t2.isRaw()) {
   333                     if (isReifiable(s))
   334                         warn.silentWarn(LintCategory.UNCHECKED);
   335                     else
   336                         warn.warn(LintCategory.UNCHECKED);
   337                     return true;
   338                 }
   339             }
   340             return false;
   341         }
   343         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   344             if (t.tag != ARRAY || isReifiable(t)) return;
   345             ArrayType from = (ArrayType)t;
   346             boolean shouldWarn = false;
   347             switch (s.tag) {
   348                 case ARRAY:
   349                     ArrayType to = (ArrayType)s;
   350                     shouldWarn = from.isVarargs() &&
   351                             !to.isVarargs() &&
   352                             !isReifiable(from);
   353                     break;
   354                 case CLASS:
   355                     shouldWarn = from.isVarargs();
   356                     break;
   357             }
   358             if (shouldWarn) {
   359                 warn.warn(LintCategory.VARARGS);
   360             }
   361         }
   363     /**
   364      * Is t a subtype of s?<br>
   365      * (not defined for Method and ForAll types)
   366      */
   367     final public boolean isSubtype(Type t, Type s) {
   368         return isSubtype(t, s, true);
   369     }
   370     final public boolean isSubtypeNoCapture(Type t, Type s) {
   371         return isSubtype(t, s, false);
   372     }
   373     public boolean isSubtype(Type t, Type s, boolean capture) {
   374         if (t == s)
   375             return true;
   377         if (s.tag >= firstPartialTag)
   378             return isSuperType(s, t);
   380         if (s.isCompound()) {
   381             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   382                 if (!isSubtype(t, s2, capture))
   383                     return false;
   384             }
   385             return true;
   386         }
   388         Type lower = lowerBound(s);
   389         if (s != lower)
   390             return isSubtype(capture ? capture(t) : t, lower, false);
   392         return isSubtype.visit(capture ? capture(t) : t, s);
   393     }
   394     // where
   395         private TypeRelation isSubtype = new TypeRelation()
   396         {
   397             public Boolean visitType(Type t, Type s) {
   398                 switch (t.tag) {
   399                 case BYTE: case CHAR:
   400                     return (t.tag == s.tag ||
   401                               t.tag + 2 <= s.tag && s.tag <= DOUBLE);
   402                 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
   403                     return t.tag <= s.tag && s.tag <= DOUBLE;
   404                 case BOOLEAN: case VOID:
   405                     return t.tag == s.tag;
   406                 case TYPEVAR:
   407                     return isSubtypeNoCapture(t.getUpperBound(), s);
   408                 case BOT:
   409                     return
   410                         s.tag == BOT || s.tag == CLASS ||
   411                         s.tag == ARRAY || s.tag == TYPEVAR;
   412                 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   413                 case NONE:
   414                     return false;
   415                 default:
   416                     throw new AssertionError("isSubtype " + t.tag);
   417                 }
   418             }
   420             private Set<TypePair> cache = new HashSet<TypePair>();
   422             private boolean containsTypeRecursive(Type t, Type s) {
   423                 TypePair pair = new TypePair(t, s);
   424                 if (cache.add(pair)) {
   425                     try {
   426                         return containsType(t.getTypeArguments(),
   427                                             s.getTypeArguments());
   428                     } finally {
   429                         cache.remove(pair);
   430                     }
   431                 } else {
   432                     return containsType(t.getTypeArguments(),
   433                                         rewriteSupers(s).getTypeArguments());
   434                 }
   435             }
   437             private Type rewriteSupers(Type t) {
   438                 if (!t.isParameterized())
   439                     return t;
   440                 ListBuffer<Type> from = lb();
   441                 ListBuffer<Type> to = lb();
   442                 adaptSelf(t, from, to);
   443                 if (from.isEmpty())
   444                     return t;
   445                 ListBuffer<Type> rewrite = lb();
   446                 boolean changed = false;
   447                 for (Type orig : to.toList()) {
   448                     Type s = rewriteSupers(orig);
   449                     if (s.isSuperBound() && !s.isExtendsBound()) {
   450                         s = new WildcardType(syms.objectType,
   451                                              BoundKind.UNBOUND,
   452                                              syms.boundClass);
   453                         changed = true;
   454                     } else if (s != orig) {
   455                         s = new WildcardType(upperBound(s),
   456                                              BoundKind.EXTENDS,
   457                                              syms.boundClass);
   458                         changed = true;
   459                     }
   460                     rewrite.append(s);
   461                 }
   462                 if (changed)
   463                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   464                 else
   465                     return t;
   466             }
   468             @Override
   469             public Boolean visitClassType(ClassType t, Type s) {
   470                 Type sup = asSuper(t, s.tsym);
   471                 return sup != null
   472                     && sup.tsym == s.tsym
   473                     // You're not allowed to write
   474                     //     Vector<Object> vec = new Vector<String>();
   475                     // But with wildcards you can write
   476                     //     Vector<? extends Object> vec = new Vector<String>();
   477                     // which means that subtype checking must be done
   478                     // here instead of same-type checking (via containsType).
   479                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   480                     && isSubtypeNoCapture(sup.getEnclosingType(),
   481                                           s.getEnclosingType());
   482             }
   484             @Override
   485             public Boolean visitArrayType(ArrayType t, Type s) {
   486                 if (s.tag == ARRAY) {
   487                     if (t.elemtype.tag <= lastBaseTag)
   488                         return isSameType(t.elemtype, elemtype(s));
   489                     else
   490                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   491                 }
   493                 if (s.tag == CLASS) {
   494                     Name sname = s.tsym.getQualifiedName();
   495                     return sname == names.java_lang_Object
   496                         || sname == names.java_lang_Cloneable
   497                         || sname == names.java_io_Serializable;
   498                 }
   500                 return false;
   501             }
   503             @Override
   504             public Boolean visitUndetVar(UndetVar t, Type s) {
   505                 //todo: test against origin needed? or replace with substitution?
   506                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
   507                     return true;
   508                 } else if (s.tag == BOT) {
   509                     //if 's' is 'null' there's no instantiated type U for which
   510                     //U <: s (but 'null' itself, which is not a valid type)
   511                     return false;
   512                 }
   514                 t.addBound(InferenceBound.UPPER, s, Types.this);
   515                 return true;
   516             }
   518             @Override
   519             public Boolean visitErrorType(ErrorType t, Type s) {
   520                 return true;
   521             }
   522         };
   524     /**
   525      * Is t a subtype of every type in given list `ts'?<br>
   526      * (not defined for Method and ForAll types)<br>
   527      * Allows unchecked conversions.
   528      */
   529     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   530         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   531             if (!isSubtypeUnchecked(t, l.head, warn))
   532                 return false;
   533         return true;
   534     }
   536     /**
   537      * Are corresponding elements of ts subtypes of ss?  If lists are
   538      * of different length, return false.
   539      */
   540     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   541         while (ts.tail != null && ss.tail != null
   542                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   543                isSubtype(ts.head, ss.head)) {
   544             ts = ts.tail;
   545             ss = ss.tail;
   546         }
   547         return ts.tail == null && ss.tail == null;
   548         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   549     }
   551     /**
   552      * Are corresponding elements of ts subtypes of ss, allowing
   553      * unchecked conversions?  If lists are of different length,
   554      * return false.
   555      **/
   556     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   557         while (ts.tail != null && ss.tail != null
   558                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   559                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   560             ts = ts.tail;
   561             ss = ss.tail;
   562         }
   563         return ts.tail == null && ss.tail == null;
   564         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   565     }
   566     // </editor-fold>
   568     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   569     /**
   570      * Is t a supertype of s?
   571      */
   572     public boolean isSuperType(Type t, Type s) {
   573         switch (t.tag) {
   574         case ERROR:
   575             return true;
   576         case UNDETVAR: {
   577             UndetVar undet = (UndetVar)t;
   578             if (t == s ||
   579                 undet.qtype == s ||
   580                 s.tag == ERROR ||
   581                 s.tag == BOT) return true;
   582             undet.addBound(InferenceBound.LOWER, s, this);
   583             return true;
   584         }
   585         default:
   586             return isSubtype(s, t);
   587         }
   588     }
   589     // </editor-fold>
   591     // <editor-fold defaultstate="collapsed" desc="isSameType">
   592     /**
   593      * Are corresponding elements of the lists the same type?  If
   594      * lists are of different length, return false.
   595      */
   596     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   597         while (ts.tail != null && ss.tail != null
   598                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   599                isSameType(ts.head, ss.head)) {
   600             ts = ts.tail;
   601             ss = ss.tail;
   602         }
   603         return ts.tail == null && ss.tail == null;
   604         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   605     }
   607     /**
   608      * Is t the same type as s?
   609      */
   610     public boolean isSameType(Type t, Type s) {
   611         return isSameType.visit(t, s);
   612     }
   613     // where
   614         private TypeRelation isSameType = new TypeRelation() {
   616             public Boolean visitType(Type t, Type s) {
   617                 if (t == s)
   618                     return true;
   620                 if (s.tag >= firstPartialTag)
   621                     return visit(s, t);
   623                 switch (t.tag) {
   624                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   625                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   626                     return t.tag == s.tag;
   627                 case TYPEVAR: {
   628                     if (s.tag == TYPEVAR) {
   629                         //type-substitution does not preserve type-var types
   630                         //check that type var symbols and bounds are indeed the same
   631                         return t.tsym == s.tsym &&
   632                                 visit(t.getUpperBound(), s.getUpperBound());
   633                     }
   634                     else {
   635                         //special case for s == ? super X, where upper(s) = u
   636                         //check that u == t, where u has been set by Type.withTypeVar
   637                         return s.isSuperBound() &&
   638                                 !s.isExtendsBound() &&
   639                                 visit(t, upperBound(s));
   640                     }
   641                 }
   642                 default:
   643                     throw new AssertionError("isSameType " + t.tag);
   644                 }
   645             }
   647             @Override
   648             public Boolean visitWildcardType(WildcardType t, Type s) {
   649                 if (s.tag >= firstPartialTag)
   650                     return visit(s, t);
   651                 else
   652                     return false;
   653             }
   655             @Override
   656             public Boolean visitClassType(ClassType t, Type s) {
   657                 if (t == s)
   658                     return true;
   660                 if (s.tag >= firstPartialTag)
   661                     return visit(s, t);
   663                 if (s.isSuperBound() && !s.isExtendsBound())
   664                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
   666                 if (t.isCompound() && s.isCompound()) {
   667                     if (!visit(supertype(t), supertype(s)))
   668                         return false;
   670                     HashSet<SingletonType> set = new HashSet<SingletonType>();
   671                     for (Type x : interfaces(t))
   672                         set.add(new SingletonType(x));
   673                     for (Type x : interfaces(s)) {
   674                         if (!set.remove(new SingletonType(x)))
   675                             return false;
   676                     }
   677                     return (set.isEmpty());
   678                 }
   679                 return t.tsym == s.tsym
   680                     && visit(t.getEnclosingType(), s.getEnclosingType())
   681                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
   682             }
   684             @Override
   685             public Boolean visitArrayType(ArrayType t, Type s) {
   686                 if (t == s)
   687                     return true;
   689                 if (s.tag >= firstPartialTag)
   690                     return visit(s, t);
   692                 return s.tag == ARRAY
   693                     && containsTypeEquivalent(t.elemtype, elemtype(s));
   694             }
   696             @Override
   697             public Boolean visitMethodType(MethodType t, Type s) {
   698                 // isSameType for methods does not take thrown
   699                 // exceptions into account!
   700                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
   701             }
   703             @Override
   704             public Boolean visitPackageType(PackageType t, Type s) {
   705                 return t == s;
   706             }
   708             @Override
   709             public Boolean visitForAll(ForAll t, Type s) {
   710                 if (s.tag != FORALL)
   711                     return false;
   713                 ForAll forAll = (ForAll)s;
   714                 return hasSameBounds(t, forAll)
   715                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
   716             }
   718             @Override
   719             public Boolean visitUndetVar(UndetVar t, Type s) {
   720                 if (s.tag == WILDCARD)
   721                     // FIXME, this might be leftovers from before capture conversion
   722                     return false;
   724                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
   725                     return true;
   727                 t.addBound(InferenceBound.EQ, s, Types.this);
   729                 return true;
   730             }
   732             @Override
   733             public Boolean visitErrorType(ErrorType t, Type s) {
   734                 return true;
   735             }
   736         };
   737     // </editor-fold>
   739     // <editor-fold defaultstate="collapsed" desc="Contains Type">
   740     public boolean containedBy(Type t, Type s) {
   741         switch (t.tag) {
   742         case UNDETVAR:
   743             if (s.tag == WILDCARD) {
   744                 UndetVar undetvar = (UndetVar)t;
   745                 WildcardType wt = (WildcardType)s;
   746                 switch(wt.kind) {
   747                     case UNBOUND: //similar to ? extends Object
   748                     case EXTENDS: {
   749                         Type bound = upperBound(s);
   750                         undetvar.addBound(InferenceBound.UPPER, bound, this);
   751                         break;
   752                     }
   753                     case SUPER: {
   754                         Type bound = lowerBound(s);
   755                         undetvar.addBound(InferenceBound.LOWER, bound, this);
   756                         break;
   757                     }
   758                 }
   759                 return true;
   760             } else {
   761                 return isSameType(t, s);
   762             }
   763         case ERROR:
   764             return true;
   765         default:
   766             return containsType(s, t);
   767         }
   768     }
   770     boolean containsType(List<Type> ts, List<Type> ss) {
   771         while (ts.nonEmpty() && ss.nonEmpty()
   772                && containsType(ts.head, ss.head)) {
   773             ts = ts.tail;
   774             ss = ss.tail;
   775         }
   776         return ts.isEmpty() && ss.isEmpty();
   777     }
   779     /**
   780      * Check if t contains s.
   781      *
   782      * <p>T contains S if:
   783      *
   784      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
   785      *
   786      * <p>This relation is only used by ClassType.isSubtype(), that
   787      * is,
   788      *
   789      * <p>{@code C<S> <: C<T> if T contains S.}
   790      *
   791      * <p>Because of F-bounds, this relation can lead to infinite
   792      * recursion.  Thus we must somehow break that recursion.  Notice
   793      * that containsType() is only called from ClassType.isSubtype().
   794      * Since the arguments have already been checked against their
   795      * bounds, we know:
   796      *
   797      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
   798      *
   799      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
   800      *
   801      * @param t a type
   802      * @param s a type
   803      */
   804     public boolean containsType(Type t, Type s) {
   805         return containsType.visit(t, s);
   806     }
   807     // where
   808         private TypeRelation containsType = new TypeRelation() {
   810             private Type U(Type t) {
   811                 while (t.tag == WILDCARD) {
   812                     WildcardType w = (WildcardType)t;
   813                     if (w.isSuperBound())
   814                         return w.bound == null ? syms.objectType : w.bound.bound;
   815                     else
   816                         t = w.type;
   817                 }
   818                 return t;
   819             }
   821             private Type L(Type t) {
   822                 while (t.tag == WILDCARD) {
   823                     WildcardType w = (WildcardType)t;
   824                     if (w.isExtendsBound())
   825                         return syms.botType;
   826                     else
   827                         t = w.type;
   828                 }
   829                 return t;
   830             }
   832             public Boolean visitType(Type t, Type s) {
   833                 if (s.tag >= firstPartialTag)
   834                     return containedBy(s, t);
   835                 else
   836                     return isSameType(t, s);
   837             }
   839 //            void debugContainsType(WildcardType t, Type s) {
   840 //                System.err.println();
   841 //                System.err.format(" does %s contain %s?%n", t, s);
   842 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
   843 //                                  upperBound(s), s, t, U(t),
   844 //                                  t.isSuperBound()
   845 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
   846 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
   847 //                                  L(t), t, s, lowerBound(s),
   848 //                                  t.isExtendsBound()
   849 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
   850 //                System.err.println();
   851 //            }
   853             @Override
   854             public Boolean visitWildcardType(WildcardType t, Type s) {
   855                 if (s.tag >= firstPartialTag)
   856                     return containedBy(s, t);
   857                 else {
   858 //                    debugContainsType(t, s);
   859                     return isSameWildcard(t, s)
   860                         || isCaptureOf(s, t)
   861                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
   862                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
   863                 }
   864             }
   866             @Override
   867             public Boolean visitUndetVar(UndetVar t, Type s) {
   868                 if (s.tag != WILDCARD)
   869                     return isSameType(t, s);
   870                 else
   871                     return false;
   872             }
   874             @Override
   875             public Boolean visitErrorType(ErrorType t, Type s) {
   876                 return true;
   877             }
   878         };
   880     public boolean isCaptureOf(Type s, WildcardType t) {
   881         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
   882             return false;
   883         return isSameWildcard(t, ((CapturedType)s).wildcard);
   884     }
   886     public boolean isSameWildcard(WildcardType t, Type s) {
   887         if (s.tag != WILDCARD)
   888             return false;
   889         WildcardType w = (WildcardType)s;
   890         return w.kind == t.kind && w.type == t.type;
   891     }
   893     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
   894         while (ts.nonEmpty() && ss.nonEmpty()
   895                && containsTypeEquivalent(ts.head, ss.head)) {
   896             ts = ts.tail;
   897             ss = ss.tail;
   898         }
   899         return ts.isEmpty() && ss.isEmpty();
   900     }
   901     // </editor-fold>
   903     // <editor-fold defaultstate="collapsed" desc="isCastable">
   904     public boolean isCastable(Type t, Type s) {
   905         return isCastable(t, s, Warner.noWarnings);
   906     }
   908     /**
   909      * Is t is castable to s?<br>
   910      * s is assumed to be an erased type.<br>
   911      * (not defined for Method and ForAll types).
   912      */
   913     public boolean isCastable(Type t, Type s, Warner warn) {
   914         if (t == s)
   915             return true;
   917         if (t.isPrimitive() != s.isPrimitive())
   918             return allowBoxing && (
   919                     isConvertible(t, s, warn)
   920                     || (allowObjectToPrimitiveCast &&
   921                         s.isPrimitive() &&
   922                         isSubtype(boxedClass(s).type, t)));
   923         if (warn != warnStack.head) {
   924             try {
   925                 warnStack = warnStack.prepend(warn);
   926                 checkUnsafeVarargsConversion(t, s, warn);
   927                 return isCastable.visit(t,s);
   928             } finally {
   929                 warnStack = warnStack.tail;
   930             }
   931         } else {
   932             return isCastable.visit(t,s);
   933         }
   934     }
   935     // where
   936         private TypeRelation isCastable = new TypeRelation() {
   938             public Boolean visitType(Type t, Type s) {
   939                 if (s.tag == ERROR)
   940                     return true;
   942                 switch (t.tag) {
   943                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   944                 case DOUBLE:
   945                     return s.tag <= DOUBLE;
   946                 case BOOLEAN:
   947                     return s.tag == BOOLEAN;
   948                 case VOID:
   949                     return false;
   950                 case BOT:
   951                     return isSubtype(t, s);
   952                 default:
   953                     throw new AssertionError();
   954                 }
   955             }
   957             @Override
   958             public Boolean visitWildcardType(WildcardType t, Type s) {
   959                 return isCastable(upperBound(t), s, warnStack.head);
   960             }
   962             @Override
   963             public Boolean visitClassType(ClassType t, Type s) {
   964                 if (s.tag == ERROR || s.tag == BOT)
   965                     return true;
   967                 if (s.tag == TYPEVAR) {
   968                     if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
   969                         warnStack.head.warn(LintCategory.UNCHECKED);
   970                         return true;
   971                     } else {
   972                         return false;
   973                     }
   974                 }
   976                 if (t.isCompound()) {
   977                     Warner oldWarner = warnStack.head;
   978                     warnStack.head = Warner.noWarnings;
   979                     if (!visit(supertype(t), s))
   980                         return false;
   981                     for (Type intf : interfaces(t)) {
   982                         if (!visit(intf, s))
   983                             return false;
   984                     }
   985                     if (warnStack.head.hasLint(LintCategory.UNCHECKED))
   986                         oldWarner.warn(LintCategory.UNCHECKED);
   987                     return true;
   988                 }
   990                 if (s.isCompound()) {
   991                     // call recursively to reuse the above code
   992                     return visitClassType((ClassType)s, t);
   993                 }
   995                 if (s.tag == CLASS || s.tag == ARRAY) {
   996                     boolean upcast;
   997                     if ((upcast = isSubtype(erasure(t), erasure(s)))
   998                         || isSubtype(erasure(s), erasure(t))) {
   999                         if (!upcast && s.tag == ARRAY) {
  1000                             if (!isReifiable(s))
  1001                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1002                             return true;
  1003                         } else if (s.isRaw()) {
  1004                             return true;
  1005                         } else if (t.isRaw()) {
  1006                             if (!isUnbounded(s))
  1007                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1008                             return true;
  1010                         // Assume |a| <: |b|
  1011                         final Type a = upcast ? t : s;
  1012                         final Type b = upcast ? s : t;
  1013                         final boolean HIGH = true;
  1014                         final boolean LOW = false;
  1015                         final boolean DONT_REWRITE_TYPEVARS = false;
  1016                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1017                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1018                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1019                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1020                         Type lowSub = asSub(bLow, aLow.tsym);
  1021                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1022                         if (highSub == null) {
  1023                             final boolean REWRITE_TYPEVARS = true;
  1024                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1025                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1026                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1027                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1028                             lowSub = asSub(bLow, aLow.tsym);
  1029                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1031                         if (highSub != null) {
  1032                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1033                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1035                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1036                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1037                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1038                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1039                                 if (upcast ? giveWarning(a, b) :
  1040                                     giveWarning(b, a))
  1041                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1042                                 return true;
  1045                         if (isReifiable(s))
  1046                             return isSubtypeUnchecked(a, b);
  1047                         else
  1048                             return isSubtypeUnchecked(a, b, warnStack.head);
  1051                     // Sidecast
  1052                     if (s.tag == CLASS) {
  1053                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1054                             return ((t.tsym.flags() & FINAL) == 0)
  1055                                 ? sideCast(t, s, warnStack.head)
  1056                                 : sideCastFinal(t, s, warnStack.head);
  1057                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1058                             return ((s.tsym.flags() & FINAL) == 0)
  1059                                 ? sideCast(t, s, warnStack.head)
  1060                                 : sideCastFinal(t, s, warnStack.head);
  1061                         } else {
  1062                             // unrelated class types
  1063                             return false;
  1067                 return false;
  1070             @Override
  1071             public Boolean visitArrayType(ArrayType t, Type s) {
  1072                 switch (s.tag) {
  1073                 case ERROR:
  1074                 case BOT:
  1075                     return true;
  1076                 case TYPEVAR:
  1077                     if (isCastable(s, t, Warner.noWarnings)) {
  1078                         warnStack.head.warn(LintCategory.UNCHECKED);
  1079                         return true;
  1080                     } else {
  1081                         return false;
  1083                 case CLASS:
  1084                     return isSubtype(t, s);
  1085                 case ARRAY:
  1086                     if (elemtype(t).tag <= lastBaseTag ||
  1087                             elemtype(s).tag <= lastBaseTag) {
  1088                         return elemtype(t).tag == elemtype(s).tag;
  1089                     } else {
  1090                         return visit(elemtype(t), elemtype(s));
  1092                 default:
  1093                     return false;
  1097             @Override
  1098             public Boolean visitTypeVar(TypeVar t, Type s) {
  1099                 switch (s.tag) {
  1100                 case ERROR:
  1101                 case BOT:
  1102                     return true;
  1103                 case TYPEVAR:
  1104                     if (isSubtype(t, s)) {
  1105                         return true;
  1106                     } else if (isCastable(t.bound, s, Warner.noWarnings)) {
  1107                         warnStack.head.warn(LintCategory.UNCHECKED);
  1108                         return true;
  1109                     } else {
  1110                         return false;
  1112                 default:
  1113                     return isCastable(t.bound, s, warnStack.head);
  1117             @Override
  1118             public Boolean visitErrorType(ErrorType t, Type s) {
  1119                 return true;
  1121         };
  1122     // </editor-fold>
  1124     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1125     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1126         while (ts.tail != null && ss.tail != null) {
  1127             if (disjointType(ts.head, ss.head)) return true;
  1128             ts = ts.tail;
  1129             ss = ss.tail;
  1131         return false;
  1134     /**
  1135      * Two types or wildcards are considered disjoint if it can be
  1136      * proven that no type can be contained in both. It is
  1137      * conservative in that it is allowed to say that two types are
  1138      * not disjoint, even though they actually are.
  1140      * The type C<X> is castable to C<Y> exactly if X and Y are not
  1141      * disjoint.
  1142      */
  1143     public boolean disjointType(Type t, Type s) {
  1144         return disjointType.visit(t, s);
  1146     // where
  1147         private TypeRelation disjointType = new TypeRelation() {
  1149             private Set<TypePair> cache = new HashSet<TypePair>();
  1151             public Boolean visitType(Type t, Type s) {
  1152                 if (s.tag == WILDCARD)
  1153                     return visit(s, t);
  1154                 else
  1155                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1158             private boolean isCastableRecursive(Type t, Type s) {
  1159                 TypePair pair = new TypePair(t, s);
  1160                 if (cache.add(pair)) {
  1161                     try {
  1162                         return Types.this.isCastable(t, s);
  1163                     } finally {
  1164                         cache.remove(pair);
  1166                 } else {
  1167                     return true;
  1171             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1172                 TypePair pair = new TypePair(t, s);
  1173                 if (cache.add(pair)) {
  1174                     try {
  1175                         return Types.this.notSoftSubtype(t, s);
  1176                     } finally {
  1177                         cache.remove(pair);
  1179                 } else {
  1180                     return false;
  1184             @Override
  1185             public Boolean visitWildcardType(WildcardType t, Type s) {
  1186                 if (t.isUnbound())
  1187                     return false;
  1189                 if (s.tag != WILDCARD) {
  1190                     if (t.isExtendsBound())
  1191                         return notSoftSubtypeRecursive(s, t.type);
  1192                     else // isSuperBound()
  1193                         return notSoftSubtypeRecursive(t.type, s);
  1196                 if (s.isUnbound())
  1197                     return false;
  1199                 if (t.isExtendsBound()) {
  1200                     if (s.isExtendsBound())
  1201                         return !isCastableRecursive(t.type, upperBound(s));
  1202                     else if (s.isSuperBound())
  1203                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1204                 } else if (t.isSuperBound()) {
  1205                     if (s.isExtendsBound())
  1206                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1208                 return false;
  1210         };
  1211     // </editor-fold>
  1213     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1214     /**
  1215      * Returns the lower bounds of the formals of a method.
  1216      */
  1217     public List<Type> lowerBoundArgtypes(Type t) {
  1218         return map(t.getParameterTypes(), lowerBoundMapping);
  1220     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1221             public Type apply(Type t) {
  1222                 return lowerBound(t);
  1224         };
  1225     // </editor-fold>
  1227     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1228     /**
  1229      * This relation answers the question: is impossible that
  1230      * something of type `t' can be a subtype of `s'? This is
  1231      * different from the question "is `t' not a subtype of `s'?"
  1232      * when type variables are involved: Integer is not a subtype of T
  1233      * where <T extends Number> but it is not true that Integer cannot
  1234      * possibly be a subtype of T.
  1235      */
  1236     public boolean notSoftSubtype(Type t, Type s) {
  1237         if (t == s) return false;
  1238         if (t.tag == TYPEVAR) {
  1239             TypeVar tv = (TypeVar) t;
  1240             return !isCastable(tv.bound,
  1241                                relaxBound(s),
  1242                                Warner.noWarnings);
  1244         if (s.tag != WILDCARD)
  1245             s = upperBound(s);
  1247         return !isSubtype(t, relaxBound(s));
  1250     private Type relaxBound(Type t) {
  1251         if (t.tag == TYPEVAR) {
  1252             while (t.tag == TYPEVAR)
  1253                 t = t.getUpperBound();
  1254             t = rewriteQuantifiers(t, true, true);
  1256         return t;
  1258     // </editor-fold>
  1260     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1261     public boolean isReifiable(Type t) {
  1262         return isReifiable.visit(t);
  1264     // where
  1265         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1267             public Boolean visitType(Type t, Void ignored) {
  1268                 return true;
  1271             @Override
  1272             public Boolean visitClassType(ClassType t, Void ignored) {
  1273                 if (t.isCompound())
  1274                     return false;
  1275                 else {
  1276                     if (!t.isParameterized())
  1277                         return true;
  1279                     for (Type param : t.allparams()) {
  1280                         if (!param.isUnbound())
  1281                             return false;
  1283                     return true;
  1287             @Override
  1288             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1289                 return visit(t.elemtype);
  1292             @Override
  1293             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1294                 return false;
  1296         };
  1297     // </editor-fold>
  1299     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1300     public boolean isArray(Type t) {
  1301         while (t.tag == WILDCARD)
  1302             t = upperBound(t);
  1303         return t.tag == ARRAY;
  1306     /**
  1307      * The element type of an array.
  1308      */
  1309     public Type elemtype(Type t) {
  1310         switch (t.tag) {
  1311         case WILDCARD:
  1312             return elemtype(upperBound(t));
  1313         case ARRAY:
  1314             return ((ArrayType)t).elemtype;
  1315         case FORALL:
  1316             return elemtype(((ForAll)t).qtype);
  1317         case ERROR:
  1318             return t;
  1319         default:
  1320             return null;
  1324     public Type elemtypeOrType(Type t) {
  1325         Type elemtype = elemtype(t);
  1326         return elemtype != null ?
  1327             elemtype :
  1328             t;
  1331     /**
  1332      * Mapping to take element type of an arraytype
  1333      */
  1334     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1335         public Type apply(Type t) { return elemtype(t); }
  1336     };
  1338     /**
  1339      * The number of dimensions of an array type.
  1340      */
  1341     public int dimensions(Type t) {
  1342         int result = 0;
  1343         while (t.tag == ARRAY) {
  1344             result++;
  1345             t = elemtype(t);
  1347         return result;
  1350     /**
  1351      * Returns an ArrayType with the component type t
  1353      * @param t The component type of the ArrayType
  1354      * @return the ArrayType for the given component
  1355      */
  1356     public ArrayType makeArrayType(Type t) {
  1357         if (t.tag == VOID ||
  1358             t.tag >= PACKAGE) {
  1359             Assert.error("Type t must not be a a VOID or PACKAGE type, " + t.toString());
  1361         return new ArrayType(t, syms.arrayClass);
  1363     // </editor-fold>
  1365     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1366     /**
  1367      * Return the (most specific) base type of t that starts with the
  1368      * given symbol.  If none exists, return null.
  1370      * @param t a type
  1371      * @param sym a symbol
  1372      */
  1373     public Type asSuper(Type t, Symbol sym) {
  1374         return asSuper.visit(t, sym);
  1376     // where
  1377         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1379             public Type visitType(Type t, Symbol sym) {
  1380                 return null;
  1383             @Override
  1384             public Type visitClassType(ClassType t, Symbol sym) {
  1385                 if (t.tsym == sym)
  1386                     return t;
  1388                 Type st = supertype(t);
  1389                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1390                     Type x = asSuper(st, sym);
  1391                     if (x != null)
  1392                         return x;
  1394                 if ((sym.flags() & INTERFACE) != 0) {
  1395                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1396                         Type x = asSuper(l.head, sym);
  1397                         if (x != null)
  1398                             return x;
  1401                 return null;
  1404             @Override
  1405             public Type visitArrayType(ArrayType t, Symbol sym) {
  1406                 return isSubtype(t, sym.type) ? sym.type : null;
  1409             @Override
  1410             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1411                 if (t.tsym == sym)
  1412                     return t;
  1413                 else
  1414                     return asSuper(t.bound, sym);
  1417             @Override
  1418             public Type visitErrorType(ErrorType t, Symbol sym) {
  1419                 return t;
  1421         };
  1423     /**
  1424      * Return the base type of t or any of its outer types that starts
  1425      * with the given symbol.  If none exists, return null.
  1427      * @param t a type
  1428      * @param sym a symbol
  1429      */
  1430     public Type asOuterSuper(Type t, Symbol sym) {
  1431         switch (t.tag) {
  1432         case CLASS:
  1433             do {
  1434                 Type s = asSuper(t, sym);
  1435                 if (s != null) return s;
  1436                 t = t.getEnclosingType();
  1437             } while (t.tag == CLASS);
  1438             return null;
  1439         case ARRAY:
  1440             return isSubtype(t, sym.type) ? sym.type : null;
  1441         case TYPEVAR:
  1442             return asSuper(t, sym);
  1443         case ERROR:
  1444             return t;
  1445         default:
  1446             return null;
  1450     /**
  1451      * Return the base type of t or any of its enclosing types that
  1452      * starts with the given symbol.  If none exists, return null.
  1454      * @param t a type
  1455      * @param sym a symbol
  1456      */
  1457     public Type asEnclosingSuper(Type t, Symbol sym) {
  1458         switch (t.tag) {
  1459         case CLASS:
  1460             do {
  1461                 Type s = asSuper(t, sym);
  1462                 if (s != null) return s;
  1463                 Type outer = t.getEnclosingType();
  1464                 t = (outer.tag == CLASS) ? outer :
  1465                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1466                     Type.noType;
  1467             } while (t.tag == CLASS);
  1468             return null;
  1469         case ARRAY:
  1470             return isSubtype(t, sym.type) ? sym.type : null;
  1471         case TYPEVAR:
  1472             return asSuper(t, sym);
  1473         case ERROR:
  1474             return t;
  1475         default:
  1476             return null;
  1479     // </editor-fold>
  1481     // <editor-fold defaultstate="collapsed" desc="memberType">
  1482     /**
  1483      * The type of given symbol, seen as a member of t.
  1485      * @param t a type
  1486      * @param sym a symbol
  1487      */
  1488     public Type memberType(Type t, Symbol sym) {
  1489         return (sym.flags() & STATIC) != 0
  1490             ? sym.type
  1491             : memberType.visit(t, sym);
  1493     // where
  1494         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1496             public Type visitType(Type t, Symbol sym) {
  1497                 return sym.type;
  1500             @Override
  1501             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1502                 return memberType(upperBound(t), sym);
  1505             @Override
  1506             public Type visitClassType(ClassType t, Symbol sym) {
  1507                 Symbol owner = sym.owner;
  1508                 long flags = sym.flags();
  1509                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1510                     Type base = asOuterSuper(t, owner);
  1511                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1512                     //its supertypes CT, I1, ... In might contain wildcards
  1513                     //so we need to go through capture conversion
  1514                     base = t.isCompound() ? capture(base) : base;
  1515                     if (base != null) {
  1516                         List<Type> ownerParams = owner.type.allparams();
  1517                         List<Type> baseParams = base.allparams();
  1518                         if (ownerParams.nonEmpty()) {
  1519                             if (baseParams.isEmpty()) {
  1520                                 // then base is a raw type
  1521                                 return erasure(sym.type);
  1522                             } else {
  1523                                 return subst(sym.type, ownerParams, baseParams);
  1528                 return sym.type;
  1531             @Override
  1532             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1533                 return memberType(t.bound, sym);
  1536             @Override
  1537             public Type visitErrorType(ErrorType t, Symbol sym) {
  1538                 return t;
  1540         };
  1541     // </editor-fold>
  1543     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1544     public boolean isAssignable(Type t, Type s) {
  1545         return isAssignable(t, s, Warner.noWarnings);
  1548     /**
  1549      * Is t assignable to s?<br>
  1550      * Equivalent to subtype except for constant values and raw
  1551      * types.<br>
  1552      * (not defined for Method and ForAll types)
  1553      */
  1554     public boolean isAssignable(Type t, Type s, Warner warn) {
  1555         if (t.tag == ERROR)
  1556             return true;
  1557         if (t.tag <= INT && t.constValue() != null) {
  1558             int value = ((Number)t.constValue()).intValue();
  1559             switch (s.tag) {
  1560             case BYTE:
  1561                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1562                     return true;
  1563                 break;
  1564             case CHAR:
  1565                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1566                     return true;
  1567                 break;
  1568             case SHORT:
  1569                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  1570                     return true;
  1571                 break;
  1572             case INT:
  1573                 return true;
  1574             case CLASS:
  1575                 switch (unboxedType(s).tag) {
  1576                 case BYTE:
  1577                 case CHAR:
  1578                 case SHORT:
  1579                     return isAssignable(t, unboxedType(s), warn);
  1581                 break;
  1584         return isConvertible(t, s, warn);
  1586     // </editor-fold>
  1588     // <editor-fold defaultstate="collapsed" desc="erasure">
  1589     /**
  1590      * The erasure of t {@code |t|} -- the type that results when all
  1591      * type parameters in t are deleted.
  1592      */
  1593     public Type erasure(Type t) {
  1594         return eraseNotNeeded(t)? t : erasure(t, false);
  1596     //where
  1597     private boolean eraseNotNeeded(Type t) {
  1598         // We don't want to erase primitive types and String type as that
  1599         // operation is idempotent. Also, erasing these could result in loss
  1600         // of information such as constant values attached to such types.
  1601         return (t.tag <= lastBaseTag) || (syms.stringType.tsym == t.tsym);
  1604     private Type erasure(Type t, boolean recurse) {
  1605         if (t.tag <= lastBaseTag)
  1606             return t; /* fast special case */
  1607         else
  1608             return erasure.visit(t, recurse);
  1610     // where
  1611         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  1612             public Type visitType(Type t, Boolean recurse) {
  1613                 if (t.tag <= lastBaseTag)
  1614                     return t; /*fast special case*/
  1615                 else
  1616                     return t.map(recurse ? erasureRecFun : erasureFun);
  1619             @Override
  1620             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  1621                 return erasure(upperBound(t), recurse);
  1624             @Override
  1625             public Type visitClassType(ClassType t, Boolean recurse) {
  1626                 Type erased = t.tsym.erasure(Types.this);
  1627                 if (recurse) {
  1628                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  1630                 return erased;
  1633             @Override
  1634             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  1635                 return erasure(t.bound, recurse);
  1638             @Override
  1639             public Type visitErrorType(ErrorType t, Boolean recurse) {
  1640                 return t;
  1642         };
  1644     private Mapping erasureFun = new Mapping ("erasure") {
  1645             public Type apply(Type t) { return erasure(t); }
  1646         };
  1648     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  1649         public Type apply(Type t) { return erasureRecursive(t); }
  1650     };
  1652     public List<Type> erasure(List<Type> ts) {
  1653         return Type.map(ts, erasureFun);
  1656     public Type erasureRecursive(Type t) {
  1657         return erasure(t, true);
  1660     public List<Type> erasureRecursive(List<Type> ts) {
  1661         return Type.map(ts, erasureRecFun);
  1663     // </editor-fold>
  1665     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  1666     /**
  1667      * Make a compound type from non-empty list of types
  1669      * @param bounds            the types from which the compound type is formed
  1670      * @param supertype         is objectType if all bounds are interfaces,
  1671      *                          null otherwise.
  1672      */
  1673     public Type makeCompoundType(List<Type> bounds,
  1674                                  Type supertype) {
  1675         ClassSymbol bc =
  1676             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  1677                             Type.moreInfo
  1678                                 ? names.fromString(bounds.toString())
  1679                                 : names.empty,
  1680                             syms.noSymbol);
  1681         if (bounds.head.tag == TYPEVAR)
  1682             // error condition, recover
  1683                 bc.erasure_field = syms.objectType;
  1684             else
  1685                 bc.erasure_field = erasure(bounds.head);
  1686             bc.members_field = new Scope(bc);
  1687         ClassType bt = (ClassType)bc.type;
  1688         bt.allparams_field = List.nil();
  1689         if (supertype != null) {
  1690             bt.supertype_field = supertype;
  1691             bt.interfaces_field = bounds;
  1692         } else {
  1693             bt.supertype_field = bounds.head;
  1694             bt.interfaces_field = bounds.tail;
  1696         Assert.check(bt.supertype_field.tsym.completer != null
  1697                 || !bt.supertype_field.isInterface(),
  1698             bt.supertype_field);
  1699         return bt;
  1702     /**
  1703      * Same as {@link #makeCompoundType(List,Type)}, except that the
  1704      * second parameter is computed directly. Note that this might
  1705      * cause a symbol completion.  Hence, this version of
  1706      * makeCompoundType may not be called during a classfile read.
  1707      */
  1708     public Type makeCompoundType(List<Type> bounds) {
  1709         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1710             supertype(bounds.head) : null;
  1711         return makeCompoundType(bounds, supertype);
  1714     /**
  1715      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  1716      * arguments are converted to a list and passed to the other
  1717      * method.  Note that this might cause a symbol completion.
  1718      * Hence, this version of makeCompoundType may not be called
  1719      * during a classfile read.
  1720      */
  1721     public Type makeCompoundType(Type bound1, Type bound2) {
  1722         return makeCompoundType(List.of(bound1, bound2));
  1724     // </editor-fold>
  1726     // <editor-fold defaultstate="collapsed" desc="supertype">
  1727     public Type supertype(Type t) {
  1728         return supertype.visit(t);
  1730     // where
  1731         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  1733             public Type visitType(Type t, Void ignored) {
  1734                 // A note on wildcards: there is no good way to
  1735                 // determine a supertype for a super bounded wildcard.
  1736                 return null;
  1739             @Override
  1740             public Type visitClassType(ClassType t, Void ignored) {
  1741                 if (t.supertype_field == null) {
  1742                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  1743                     // An interface has no superclass; its supertype is Object.
  1744                     if (t.isInterface())
  1745                         supertype = ((ClassType)t.tsym.type).supertype_field;
  1746                     if (t.supertype_field == null) {
  1747                         List<Type> actuals = classBound(t).allparams();
  1748                         List<Type> formals = t.tsym.type.allparams();
  1749                         if (t.hasErasedSupertypes()) {
  1750                             t.supertype_field = erasureRecursive(supertype);
  1751                         } else if (formals.nonEmpty()) {
  1752                             t.supertype_field = subst(supertype, formals, actuals);
  1754                         else {
  1755                             t.supertype_field = supertype;
  1759                 return t.supertype_field;
  1762             /**
  1763              * The supertype is always a class type. If the type
  1764              * variable's bounds start with a class type, this is also
  1765              * the supertype.  Otherwise, the supertype is
  1766              * java.lang.Object.
  1767              */
  1768             @Override
  1769             public Type visitTypeVar(TypeVar t, Void ignored) {
  1770                 if (t.bound.tag == TYPEVAR ||
  1771                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  1772                     return t.bound;
  1773                 } else {
  1774                     return supertype(t.bound);
  1778             @Override
  1779             public Type visitArrayType(ArrayType t, Void ignored) {
  1780                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  1781                     return arraySuperType();
  1782                 else
  1783                     return new ArrayType(supertype(t.elemtype), t.tsym);
  1786             @Override
  1787             public Type visitErrorType(ErrorType t, Void ignored) {
  1788                 return t;
  1790         };
  1791     // </editor-fold>
  1793     // <editor-fold defaultstate="collapsed" desc="interfaces">
  1794     /**
  1795      * Return the interfaces implemented by this class.
  1796      */
  1797     public List<Type> interfaces(Type t) {
  1798         return interfaces.visit(t);
  1800     // where
  1801         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  1803             public List<Type> visitType(Type t, Void ignored) {
  1804                 return List.nil();
  1807             @Override
  1808             public List<Type> visitClassType(ClassType t, Void ignored) {
  1809                 if (t.interfaces_field == null) {
  1810                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  1811                     if (t.interfaces_field == null) {
  1812                         // If t.interfaces_field is null, then t must
  1813                         // be a parameterized type (not to be confused
  1814                         // with a generic type declaration).
  1815                         // Terminology:
  1816                         //    Parameterized type: List<String>
  1817                         //    Generic type declaration: class List<E> { ... }
  1818                         // So t corresponds to List<String> and
  1819                         // t.tsym.type corresponds to List<E>.
  1820                         // The reason t must be parameterized type is
  1821                         // that completion will happen as a side
  1822                         // effect of calling
  1823                         // ClassSymbol.getInterfaces.  Since
  1824                         // t.interfaces_field is null after
  1825                         // completion, we can assume that t is not the
  1826                         // type of a class/interface declaration.
  1827                         Assert.check(t != t.tsym.type, t);
  1828                         List<Type> actuals = t.allparams();
  1829                         List<Type> formals = t.tsym.type.allparams();
  1830                         if (t.hasErasedSupertypes()) {
  1831                             t.interfaces_field = erasureRecursive(interfaces);
  1832                         } else if (formals.nonEmpty()) {
  1833                             t.interfaces_field =
  1834                                 upperBounds(subst(interfaces, formals, actuals));
  1836                         else {
  1837                             t.interfaces_field = interfaces;
  1841                 return t.interfaces_field;
  1844             @Override
  1845             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  1846                 if (t.bound.isCompound())
  1847                     return interfaces(t.bound);
  1849                 if (t.bound.isInterface())
  1850                     return List.of(t.bound);
  1852                 return List.nil();
  1854         };
  1855     // </editor-fold>
  1857     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  1858     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  1860     public boolean isDerivedRaw(Type t) {
  1861         Boolean result = isDerivedRawCache.get(t);
  1862         if (result == null) {
  1863             result = isDerivedRawInternal(t);
  1864             isDerivedRawCache.put(t, result);
  1866         return result;
  1869     public boolean isDerivedRawInternal(Type t) {
  1870         if (t.isErroneous())
  1871             return false;
  1872         return
  1873             t.isRaw() ||
  1874             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  1875             isDerivedRaw(interfaces(t));
  1878     public boolean isDerivedRaw(List<Type> ts) {
  1879         List<Type> l = ts;
  1880         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  1881         return l.nonEmpty();
  1883     // </editor-fold>
  1885     // <editor-fold defaultstate="collapsed" desc="setBounds">
  1886     /**
  1887      * Set the bounds field of the given type variable to reflect a
  1888      * (possibly multiple) list of bounds.
  1889      * @param t                 a type variable
  1890      * @param bounds            the bounds, must be nonempty
  1891      * @param supertype         is objectType if all bounds are interfaces,
  1892      *                          null otherwise.
  1893      */
  1894     public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
  1895         if (bounds.tail.isEmpty())
  1896             t.bound = bounds.head;
  1897         else
  1898             t.bound = makeCompoundType(bounds, supertype);
  1899         t.rank_field = -1;
  1902     /**
  1903      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  1904      * third parameter is computed directly, as follows: if all
  1905      * all bounds are interface types, the computed supertype is Object,
  1906      * otherwise the supertype is simply left null (in this case, the supertype
  1907      * is assumed to be the head of the bound list passed as second argument).
  1908      * Note that this check might cause a symbol completion. Hence, this version of
  1909      * setBounds may not be called during a classfile read.
  1910      */
  1911     public void setBounds(TypeVar t, List<Type> bounds) {
  1912         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1913             syms.objectType : null;
  1914         setBounds(t, bounds, supertype);
  1915         t.rank_field = -1;
  1917     // </editor-fold>
  1919     // <editor-fold defaultstate="collapsed" desc="getBounds">
  1920     /**
  1921      * Return list of bounds of the given type variable.
  1922      */
  1923     public List<Type> getBounds(TypeVar t) {
  1924         if (t.bound.isErroneous() || !t.bound.isCompound())
  1925             return List.of(t.bound);
  1926         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  1927             return interfaces(t).prepend(supertype(t));
  1928         else
  1929             // No superclass was given in bounds.
  1930             // In this case, supertype is Object, erasure is first interface.
  1931             return interfaces(t);
  1933     // </editor-fold>
  1935     // <editor-fold defaultstate="collapsed" desc="classBound">
  1936     /**
  1937      * If the given type is a (possibly selected) type variable,
  1938      * return the bounding class of this type, otherwise return the
  1939      * type itself.
  1940      */
  1941     public Type classBound(Type t) {
  1942         return classBound.visit(t);
  1944     // where
  1945         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  1947             public Type visitType(Type t, Void ignored) {
  1948                 return t;
  1951             @Override
  1952             public Type visitClassType(ClassType t, Void ignored) {
  1953                 Type outer1 = classBound(t.getEnclosingType());
  1954                 if (outer1 != t.getEnclosingType())
  1955                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  1956                 else
  1957                     return t;
  1960             @Override
  1961             public Type visitTypeVar(TypeVar t, Void ignored) {
  1962                 return classBound(supertype(t));
  1965             @Override
  1966             public Type visitErrorType(ErrorType t, Void ignored) {
  1967                 return t;
  1969         };
  1970     // </editor-fold>
  1972     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  1973     /**
  1974      * Returns true iff the first signature is a <em>sub
  1975      * signature</em> of the other.  This is <b>not</b> an equivalence
  1976      * relation.
  1978      * @jls section 8.4.2.
  1979      * @see #overrideEquivalent(Type t, Type s)
  1980      * @param t first signature (possibly raw).
  1981      * @param s second signature (could be subjected to erasure).
  1982      * @return true if t is a sub signature of s.
  1983      */
  1984     public boolean isSubSignature(Type t, Type s) {
  1985         return isSubSignature(t, s, true);
  1988     public boolean isSubSignature(Type t, Type s, boolean strict) {
  1989         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  1992     /**
  1993      * Returns true iff these signatures are related by <em>override
  1994      * equivalence</em>.  This is the natural extension of
  1995      * isSubSignature to an equivalence relation.
  1997      * @jls section 8.4.2.
  1998      * @see #isSubSignature(Type t, Type s)
  1999      * @param t a signature (possible raw, could be subjected to
  2000      * erasure).
  2001      * @param s a signature (possible raw, could be subjected to
  2002      * erasure).
  2003      * @return true if either argument is a sub signature of the other.
  2004      */
  2005     public boolean overrideEquivalent(Type t, Type s) {
  2006         return hasSameArgs(t, s) ||
  2007             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2010     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2011     class ImplementationCache {
  2013         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2014                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2016         class Entry {
  2017             final MethodSymbol cachedImpl;
  2018             final Filter<Symbol> implFilter;
  2019             final boolean checkResult;
  2020             final int prevMark;
  2022             public Entry(MethodSymbol cachedImpl,
  2023                     Filter<Symbol> scopeFilter,
  2024                     boolean checkResult,
  2025                     int prevMark) {
  2026                 this.cachedImpl = cachedImpl;
  2027                 this.implFilter = scopeFilter;
  2028                 this.checkResult = checkResult;
  2029                 this.prevMark = prevMark;
  2032             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2033                 return this.implFilter == scopeFilter &&
  2034                         this.checkResult == checkResult &&
  2035                         this.prevMark == mark;
  2039         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2040             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2041             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2042             if (cache == null) {
  2043                 cache = new HashMap<TypeSymbol, Entry>();
  2044                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2046             Entry e = cache.get(origin);
  2047             CompoundScope members = membersClosure(origin.type, true);
  2048             if (e == null ||
  2049                     !e.matches(implFilter, checkResult, members.getMark())) {
  2050                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2051                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2052                 return impl;
  2054             else {
  2055                 return e.cachedImpl;
  2059         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2060             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2061                 while (t.tag == TYPEVAR)
  2062                     t = t.getUpperBound();
  2063                 TypeSymbol c = t.tsym;
  2064                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2065                      e.scope != null;
  2066                      e = e.next(implFilter)) {
  2067                     if (e.sym != null &&
  2068                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2069                         return (MethodSymbol)e.sym;
  2072             return null;
  2076     private ImplementationCache implCache = new ImplementationCache();
  2078     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2079         return implCache.get(ms, origin, checkResult, implFilter);
  2081     // </editor-fold>
  2083     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2084     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2086         private WeakHashMap<TypeSymbol, Entry> _map =
  2087                 new WeakHashMap<TypeSymbol, Entry>();
  2089         class Entry {
  2090             final boolean skipInterfaces;
  2091             final CompoundScope compoundScope;
  2093             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2094                 this.skipInterfaces = skipInterfaces;
  2095                 this.compoundScope = compoundScope;
  2098             boolean matches(boolean skipInterfaces) {
  2099                 return this.skipInterfaces == skipInterfaces;
  2103         List<TypeSymbol> seenTypes = List.nil();
  2105         /** members closure visitor methods **/
  2107         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2108             return null;
  2111         @Override
  2112         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2113             if (seenTypes.contains(t.tsym)) {
  2114                 //this is possible when an interface is implemented in multiple
  2115                 //superclasses, or when a classs hierarchy is circular - in such
  2116                 //cases we don't need to recurse (empty scope is returned)
  2117                 return new CompoundScope(t.tsym);
  2119             try {
  2120                 seenTypes = seenTypes.prepend(t.tsym);
  2121                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2122                 Entry e = _map.get(csym);
  2123                 if (e == null || !e.matches(skipInterface)) {
  2124                     CompoundScope membersClosure = new CompoundScope(csym);
  2125                     if (!skipInterface) {
  2126                         for (Type i : interfaces(t)) {
  2127                             membersClosure.addSubScope(visit(i, skipInterface));
  2130                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2131                     membersClosure.addSubScope(csym.members());
  2132                     e = new Entry(skipInterface, membersClosure);
  2133                     _map.put(csym, e);
  2135                 return e.compoundScope;
  2137             finally {
  2138                 seenTypes = seenTypes.tail;
  2142         @Override
  2143         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2144             return visit(t.getUpperBound(), skipInterface);
  2148     private MembersClosureCache membersCache = new MembersClosureCache();
  2150     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2151         return membersCache.visit(site, skipInterface);
  2153     // </editor-fold>
  2155     /**
  2156      * Does t have the same arguments as s?  It is assumed that both
  2157      * types are (possibly polymorphic) method types.  Monomorphic
  2158      * method types "have the same arguments", if their argument lists
  2159      * are equal.  Polymorphic method types "have the same arguments",
  2160      * if they have the same arguments after renaming all type
  2161      * variables of one to corresponding type variables in the other,
  2162      * where correspondence is by position in the type parameter list.
  2163      */
  2164     public boolean hasSameArgs(Type t, Type s) {
  2165         return hasSameArgs(t, s, true);
  2168     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2169         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2172     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2173         return hasSameArgs.visit(t, s);
  2175     // where
  2176         private class HasSameArgs extends TypeRelation {
  2178             boolean strict;
  2180             public HasSameArgs(boolean strict) {
  2181                 this.strict = strict;
  2184             public Boolean visitType(Type t, Type s) {
  2185                 throw new AssertionError();
  2188             @Override
  2189             public Boolean visitMethodType(MethodType t, Type s) {
  2190                 return s.tag == METHOD
  2191                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2194             @Override
  2195             public Boolean visitForAll(ForAll t, Type s) {
  2196                 if (s.tag != FORALL)
  2197                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2199                 ForAll forAll = (ForAll)s;
  2200                 return hasSameBounds(t, forAll)
  2201                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2204             @Override
  2205             public Boolean visitErrorType(ErrorType t, Type s) {
  2206                 return false;
  2208         };
  2210         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2211         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2213     // </editor-fold>
  2215     // <editor-fold defaultstate="collapsed" desc="subst">
  2216     public List<Type> subst(List<Type> ts,
  2217                             List<Type> from,
  2218                             List<Type> to) {
  2219         return new Subst(from, to).subst(ts);
  2222     /**
  2223      * Substitute all occurrences of a type in `from' with the
  2224      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2225      * from the right: If lists have different length, discard leading
  2226      * elements of the longer list.
  2227      */
  2228     public Type subst(Type t, List<Type> from, List<Type> to) {
  2229         return new Subst(from, to).subst(t);
  2232     private class Subst extends UnaryVisitor<Type> {
  2233         List<Type> from;
  2234         List<Type> to;
  2236         public Subst(List<Type> from, List<Type> to) {
  2237             int fromLength = from.length();
  2238             int toLength = to.length();
  2239             while (fromLength > toLength) {
  2240                 fromLength--;
  2241                 from = from.tail;
  2243             while (fromLength < toLength) {
  2244                 toLength--;
  2245                 to = to.tail;
  2247             this.from = from;
  2248             this.to = to;
  2251         Type subst(Type t) {
  2252             if (from.tail == null)
  2253                 return t;
  2254             else
  2255                 return visit(t);
  2258         List<Type> subst(List<Type> ts) {
  2259             if (from.tail == null)
  2260                 return ts;
  2261             boolean wild = false;
  2262             if (ts.nonEmpty() && from.nonEmpty()) {
  2263                 Type head1 = subst(ts.head);
  2264                 List<Type> tail1 = subst(ts.tail);
  2265                 if (head1 != ts.head || tail1 != ts.tail)
  2266                     return tail1.prepend(head1);
  2268             return ts;
  2271         public Type visitType(Type t, Void ignored) {
  2272             return t;
  2275         @Override
  2276         public Type visitMethodType(MethodType t, Void ignored) {
  2277             List<Type> argtypes = subst(t.argtypes);
  2278             Type restype = subst(t.restype);
  2279             List<Type> thrown = subst(t.thrown);
  2280             if (argtypes == t.argtypes &&
  2281                 restype == t.restype &&
  2282                 thrown == t.thrown)
  2283                 return t;
  2284             else
  2285                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2288         @Override
  2289         public Type visitTypeVar(TypeVar t, Void ignored) {
  2290             for (List<Type> from = this.from, to = this.to;
  2291                  from.nonEmpty();
  2292                  from = from.tail, to = to.tail) {
  2293                 if (t == from.head) {
  2294                     return to.head.withTypeVar(t);
  2297             return t;
  2300         @Override
  2301         public Type visitClassType(ClassType t, Void ignored) {
  2302             if (!t.isCompound()) {
  2303                 List<Type> typarams = t.getTypeArguments();
  2304                 List<Type> typarams1 = subst(typarams);
  2305                 Type outer = t.getEnclosingType();
  2306                 Type outer1 = subst(outer);
  2307                 if (typarams1 == typarams && outer1 == outer)
  2308                     return t;
  2309                 else
  2310                     return new ClassType(outer1, typarams1, t.tsym);
  2311             } else {
  2312                 Type st = subst(supertype(t));
  2313                 List<Type> is = upperBounds(subst(interfaces(t)));
  2314                 if (st == supertype(t) && is == interfaces(t))
  2315                     return t;
  2316                 else
  2317                     return makeCompoundType(is.prepend(st));
  2321         @Override
  2322         public Type visitWildcardType(WildcardType t, Void ignored) {
  2323             Type bound = t.type;
  2324             if (t.kind != BoundKind.UNBOUND)
  2325                 bound = subst(bound);
  2326             if (bound == t.type) {
  2327                 return t;
  2328             } else {
  2329                 if (t.isExtendsBound() && bound.isExtendsBound())
  2330                     bound = upperBound(bound);
  2331                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2335         @Override
  2336         public Type visitArrayType(ArrayType t, Void ignored) {
  2337             Type elemtype = subst(t.elemtype);
  2338             if (elemtype == t.elemtype)
  2339                 return t;
  2340             else
  2341                 return new ArrayType(upperBound(elemtype), t.tsym);
  2344         @Override
  2345         public Type visitForAll(ForAll t, Void ignored) {
  2346             if (Type.containsAny(to, t.tvars)) {
  2347                 //perform alpha-renaming of free-variables in 't'
  2348                 //if 'to' types contain variables that are free in 't'
  2349                 List<Type> freevars = newInstances(t.tvars);
  2350                 t = new ForAll(freevars,
  2351                         Types.this.subst(t.qtype, t.tvars, freevars));
  2353             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2354             Type qtype1 = subst(t.qtype);
  2355             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2356                 return t;
  2357             } else if (tvars1 == t.tvars) {
  2358                 return new ForAll(tvars1, qtype1);
  2359             } else {
  2360                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2364         @Override
  2365         public Type visitErrorType(ErrorType t, Void ignored) {
  2366             return t;
  2370     public List<Type> substBounds(List<Type> tvars,
  2371                                   List<Type> from,
  2372                                   List<Type> to) {
  2373         if (tvars.isEmpty())
  2374             return tvars;
  2375         ListBuffer<Type> newBoundsBuf = lb();
  2376         boolean changed = false;
  2377         // calculate new bounds
  2378         for (Type t : tvars) {
  2379             TypeVar tv = (TypeVar) t;
  2380             Type bound = subst(tv.bound, from, to);
  2381             if (bound != tv.bound)
  2382                 changed = true;
  2383             newBoundsBuf.append(bound);
  2385         if (!changed)
  2386             return tvars;
  2387         ListBuffer<Type> newTvars = lb();
  2388         // create new type variables without bounds
  2389         for (Type t : tvars) {
  2390             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2392         // the new bounds should use the new type variables in place
  2393         // of the old
  2394         List<Type> newBounds = newBoundsBuf.toList();
  2395         from = tvars;
  2396         to = newTvars.toList();
  2397         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2398             newBounds.head = subst(newBounds.head, from, to);
  2400         newBounds = newBoundsBuf.toList();
  2401         // set the bounds of new type variables to the new bounds
  2402         for (Type t : newTvars.toList()) {
  2403             TypeVar tv = (TypeVar) t;
  2404             tv.bound = newBounds.head;
  2405             newBounds = newBounds.tail;
  2407         return newTvars.toList();
  2410     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2411         Type bound1 = subst(t.bound, from, to);
  2412         if (bound1 == t.bound)
  2413             return t;
  2414         else {
  2415             // create new type variable without bounds
  2416             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2417             // the new bound should use the new type variable in place
  2418             // of the old
  2419             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2420             return tv;
  2423     // </editor-fold>
  2425     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2426     /**
  2427      * Does t have the same bounds for quantified variables as s?
  2428      */
  2429     boolean hasSameBounds(ForAll t, ForAll s) {
  2430         List<Type> l1 = t.tvars;
  2431         List<Type> l2 = s.tvars;
  2432         while (l1.nonEmpty() && l2.nonEmpty() &&
  2433                isSameType(l1.head.getUpperBound(),
  2434                           subst(l2.head.getUpperBound(),
  2435                                 s.tvars,
  2436                                 t.tvars))) {
  2437             l1 = l1.tail;
  2438             l2 = l2.tail;
  2440         return l1.isEmpty() && l2.isEmpty();
  2442     // </editor-fold>
  2444     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2445     /** Create new vector of type variables from list of variables
  2446      *  changing all recursive bounds from old to new list.
  2447      */
  2448     public List<Type> newInstances(List<Type> tvars) {
  2449         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2450         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2451             TypeVar tv = (TypeVar) l.head;
  2452             tv.bound = subst(tv.bound, tvars, tvars1);
  2454         return tvars1;
  2456     static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2457             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2458         };
  2459     // </editor-fold>
  2461     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2462         return original.accept(methodWithParameters, newParams);
  2464     // where
  2465         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2466             public Type visitType(Type t, List<Type> newParams) {
  2467                 throw new IllegalArgumentException("Not a method type: " + t);
  2469             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2470                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2472             public Type visitForAll(ForAll t, List<Type> newParams) {
  2473                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2475         };
  2477     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2478         return original.accept(methodWithThrown, newThrown);
  2480     // where
  2481         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2482             public Type visitType(Type t, List<Type> newThrown) {
  2483                 throw new IllegalArgumentException("Not a method type: " + t);
  2485             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2486                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2488             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2489                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2491         };
  2493     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2494         return original.accept(methodWithReturn, newReturn);
  2496     // where
  2497         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  2498             public Type visitType(Type t, Type newReturn) {
  2499                 throw new IllegalArgumentException("Not a method type: " + t);
  2501             public Type visitMethodType(MethodType t, Type newReturn) {
  2502                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  2504             public Type visitForAll(ForAll t, Type newReturn) {
  2505                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  2507         };
  2509     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  2510     public Type createErrorType(Type originalType) {
  2511         return new ErrorType(originalType, syms.errSymbol);
  2514     public Type createErrorType(ClassSymbol c, Type originalType) {
  2515         return new ErrorType(c, originalType);
  2518     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  2519         return new ErrorType(name, container, originalType);
  2521     // </editor-fold>
  2523     // <editor-fold defaultstate="collapsed" desc="rank">
  2524     /**
  2525      * The rank of a class is the length of the longest path between
  2526      * the class and java.lang.Object in the class inheritance
  2527      * graph. Undefined for all but reference types.
  2528      */
  2529     public int rank(Type t) {
  2530         switch(t.tag) {
  2531         case CLASS: {
  2532             ClassType cls = (ClassType)t;
  2533             if (cls.rank_field < 0) {
  2534                 Name fullname = cls.tsym.getQualifiedName();
  2535                 if (fullname == names.java_lang_Object)
  2536                     cls.rank_field = 0;
  2537                 else {
  2538                     int r = rank(supertype(cls));
  2539                     for (List<Type> l = interfaces(cls);
  2540                          l.nonEmpty();
  2541                          l = l.tail) {
  2542                         if (rank(l.head) > r)
  2543                             r = rank(l.head);
  2545                     cls.rank_field = r + 1;
  2548             return cls.rank_field;
  2550         case TYPEVAR: {
  2551             TypeVar tvar = (TypeVar)t;
  2552             if (tvar.rank_field < 0) {
  2553                 int r = rank(supertype(tvar));
  2554                 for (List<Type> l = interfaces(tvar);
  2555                      l.nonEmpty();
  2556                      l = l.tail) {
  2557                     if (rank(l.head) > r) r = rank(l.head);
  2559                 tvar.rank_field = r + 1;
  2561             return tvar.rank_field;
  2563         case ERROR:
  2564             return 0;
  2565         default:
  2566             throw new AssertionError();
  2569     // </editor-fold>
  2571     /**
  2572      * Helper method for generating a string representation of a given type
  2573      * accordingly to a given locale
  2574      */
  2575     public String toString(Type t, Locale locale) {
  2576         return Printer.createStandardPrinter(messages).visit(t, locale);
  2579     /**
  2580      * Helper method for generating a string representation of a given type
  2581      * accordingly to a given locale
  2582      */
  2583     public String toString(Symbol t, Locale locale) {
  2584         return Printer.createStandardPrinter(messages).visit(t, locale);
  2587     // <editor-fold defaultstate="collapsed" desc="toString">
  2588     /**
  2589      * This toString is slightly more descriptive than the one on Type.
  2591      * @deprecated Types.toString(Type t, Locale l) provides better support
  2592      * for localization
  2593      */
  2594     @Deprecated
  2595     public String toString(Type t) {
  2596         if (t.tag == FORALL) {
  2597             ForAll forAll = (ForAll)t;
  2598             return typaramsString(forAll.tvars) + forAll.qtype;
  2600         return "" + t;
  2602     // where
  2603         private String typaramsString(List<Type> tvars) {
  2604             StringBuilder s = new StringBuilder();
  2605             s.append('<');
  2606             boolean first = true;
  2607             for (Type t : tvars) {
  2608                 if (!first) s.append(", ");
  2609                 first = false;
  2610                 appendTyparamString(((TypeVar)t), s);
  2612             s.append('>');
  2613             return s.toString();
  2615         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  2616             buf.append(t);
  2617             if (t.bound == null ||
  2618                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  2619                 return;
  2620             buf.append(" extends "); // Java syntax; no need for i18n
  2621             Type bound = t.bound;
  2622             if (!bound.isCompound()) {
  2623                 buf.append(bound);
  2624             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  2625                 buf.append(supertype(t));
  2626                 for (Type intf : interfaces(t)) {
  2627                     buf.append('&');
  2628                     buf.append(intf);
  2630             } else {
  2631                 // No superclass was given in bounds.
  2632                 // In this case, supertype is Object, erasure is first interface.
  2633                 boolean first = true;
  2634                 for (Type intf : interfaces(t)) {
  2635                     if (!first) buf.append('&');
  2636                     first = false;
  2637                     buf.append(intf);
  2641     // </editor-fold>
  2643     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  2644     /**
  2645      * A cache for closures.
  2647      * <p>A closure is a list of all the supertypes and interfaces of
  2648      * a class or interface type, ordered by ClassSymbol.precedes
  2649      * (that is, subclasses come first, arbitrary but fixed
  2650      * otherwise).
  2651      */
  2652     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  2654     /**
  2655      * Returns the closure of a class or interface type.
  2656      */
  2657     public List<Type> closure(Type t) {
  2658         List<Type> cl = closureCache.get(t);
  2659         if (cl == null) {
  2660             Type st = supertype(t);
  2661             if (!t.isCompound()) {
  2662                 if (st.tag == CLASS) {
  2663                     cl = insert(closure(st), t);
  2664                 } else if (st.tag == TYPEVAR) {
  2665                     cl = closure(st).prepend(t);
  2666                 } else {
  2667                     cl = List.of(t);
  2669             } else {
  2670                 cl = closure(supertype(t));
  2672             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  2673                 cl = union(cl, closure(l.head));
  2674             closureCache.put(t, cl);
  2676         return cl;
  2679     /**
  2680      * Insert a type in a closure
  2681      */
  2682     public List<Type> insert(List<Type> cl, Type t) {
  2683         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  2684             return cl.prepend(t);
  2685         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  2686             return insert(cl.tail, t).prepend(cl.head);
  2687         } else {
  2688             return cl;
  2692     /**
  2693      * Form the union of two closures
  2694      */
  2695     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  2696         if (cl1.isEmpty()) {
  2697             return cl2;
  2698         } else if (cl2.isEmpty()) {
  2699             return cl1;
  2700         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  2701             return union(cl1.tail, cl2).prepend(cl1.head);
  2702         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  2703             return union(cl1, cl2.tail).prepend(cl2.head);
  2704         } else {
  2705             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  2709     /**
  2710      * Intersect two closures
  2711      */
  2712     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  2713         if (cl1 == cl2)
  2714             return cl1;
  2715         if (cl1.isEmpty() || cl2.isEmpty())
  2716             return List.nil();
  2717         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  2718             return intersect(cl1.tail, cl2);
  2719         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  2720             return intersect(cl1, cl2.tail);
  2721         if (isSameType(cl1.head, cl2.head))
  2722             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  2723         if (cl1.head.tsym == cl2.head.tsym &&
  2724             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  2725             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  2726                 Type merge = merge(cl1.head,cl2.head);
  2727                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  2729             if (cl1.head.isRaw() || cl2.head.isRaw())
  2730                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  2732         return intersect(cl1.tail, cl2.tail);
  2734     // where
  2735         class TypePair {
  2736             final Type t1;
  2737             final Type t2;
  2738             TypePair(Type t1, Type t2) {
  2739                 this.t1 = t1;
  2740                 this.t2 = t2;
  2742             @Override
  2743             public int hashCode() {
  2744                 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
  2746             @Override
  2747             public boolean equals(Object obj) {
  2748                 if (!(obj instanceof TypePair))
  2749                     return false;
  2750                 TypePair typePair = (TypePair)obj;
  2751                 return isSameType(t1, typePair.t1)
  2752                     && isSameType(t2, typePair.t2);
  2755         Set<TypePair> mergeCache = new HashSet<TypePair>();
  2756         private Type merge(Type c1, Type c2) {
  2757             ClassType class1 = (ClassType) c1;
  2758             List<Type> act1 = class1.getTypeArguments();
  2759             ClassType class2 = (ClassType) c2;
  2760             List<Type> act2 = class2.getTypeArguments();
  2761             ListBuffer<Type> merged = new ListBuffer<Type>();
  2762             List<Type> typarams = class1.tsym.type.getTypeArguments();
  2764             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  2765                 if (containsType(act1.head, act2.head)) {
  2766                     merged.append(act1.head);
  2767                 } else if (containsType(act2.head, act1.head)) {
  2768                     merged.append(act2.head);
  2769                 } else {
  2770                     TypePair pair = new TypePair(c1, c2);
  2771                     Type m;
  2772                     if (mergeCache.add(pair)) {
  2773                         m = new WildcardType(lub(upperBound(act1.head),
  2774                                                  upperBound(act2.head)),
  2775                                              BoundKind.EXTENDS,
  2776                                              syms.boundClass);
  2777                         mergeCache.remove(pair);
  2778                     } else {
  2779                         m = new WildcardType(syms.objectType,
  2780                                              BoundKind.UNBOUND,
  2781                                              syms.boundClass);
  2783                     merged.append(m.withTypeVar(typarams.head));
  2785                 act1 = act1.tail;
  2786                 act2 = act2.tail;
  2787                 typarams = typarams.tail;
  2789             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  2790             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  2793     /**
  2794      * Return the minimum type of a closure, a compound type if no
  2795      * unique minimum exists.
  2796      */
  2797     private Type compoundMin(List<Type> cl) {
  2798         if (cl.isEmpty()) return syms.objectType;
  2799         List<Type> compound = closureMin(cl);
  2800         if (compound.isEmpty())
  2801             return null;
  2802         else if (compound.tail.isEmpty())
  2803             return compound.head;
  2804         else
  2805             return makeCompoundType(compound);
  2808     /**
  2809      * Return the minimum types of a closure, suitable for computing
  2810      * compoundMin or glb.
  2811      */
  2812     private List<Type> closureMin(List<Type> cl) {
  2813         ListBuffer<Type> classes = lb();
  2814         ListBuffer<Type> interfaces = lb();
  2815         while (!cl.isEmpty()) {
  2816             Type current = cl.head;
  2817             if (current.isInterface())
  2818                 interfaces.append(current);
  2819             else
  2820                 classes.append(current);
  2821             ListBuffer<Type> candidates = lb();
  2822             for (Type t : cl.tail) {
  2823                 if (!isSubtypeNoCapture(current, t))
  2824                     candidates.append(t);
  2826             cl = candidates.toList();
  2828         return classes.appendList(interfaces).toList();
  2831     /**
  2832      * Return the least upper bound of pair of types.  if the lub does
  2833      * not exist return null.
  2834      */
  2835     public Type lub(Type t1, Type t2) {
  2836         return lub(List.of(t1, t2));
  2839     /**
  2840      * Return the least upper bound (lub) of set of types.  If the lub
  2841      * does not exist return the type of null (bottom).
  2842      */
  2843     public Type lub(List<Type> ts) {
  2844         final int ARRAY_BOUND = 1;
  2845         final int CLASS_BOUND = 2;
  2846         int boundkind = 0;
  2847         for (Type t : ts) {
  2848             switch (t.tag) {
  2849             case CLASS:
  2850                 boundkind |= CLASS_BOUND;
  2851                 break;
  2852             case ARRAY:
  2853                 boundkind |= ARRAY_BOUND;
  2854                 break;
  2855             case  TYPEVAR:
  2856                 do {
  2857                     t = t.getUpperBound();
  2858                 } while (t.tag == TYPEVAR);
  2859                 if (t.tag == ARRAY) {
  2860                     boundkind |= ARRAY_BOUND;
  2861                 } else {
  2862                     boundkind |= CLASS_BOUND;
  2864                 break;
  2865             default:
  2866                 if (t.isPrimitive())
  2867                     return syms.errType;
  2870         switch (boundkind) {
  2871         case 0:
  2872             return syms.botType;
  2874         case ARRAY_BOUND:
  2875             // calculate lub(A[], B[])
  2876             List<Type> elements = Type.map(ts, elemTypeFun);
  2877             for (Type t : elements) {
  2878                 if (t.isPrimitive()) {
  2879                     // if a primitive type is found, then return
  2880                     // arraySuperType unless all the types are the
  2881                     // same
  2882                     Type first = ts.head;
  2883                     for (Type s : ts.tail) {
  2884                         if (!isSameType(first, s)) {
  2885                              // lub(int[], B[]) is Cloneable & Serializable
  2886                             return arraySuperType();
  2889                     // all the array types are the same, return one
  2890                     // lub(int[], int[]) is int[]
  2891                     return first;
  2894             // lub(A[], B[]) is lub(A, B)[]
  2895             return new ArrayType(lub(elements), syms.arrayClass);
  2897         case CLASS_BOUND:
  2898             // calculate lub(A, B)
  2899             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  2900                 ts = ts.tail;
  2901             Assert.check(!ts.isEmpty());
  2902             //step 1 - compute erased candidate set (EC)
  2903             List<Type> cl = erasedSupertypes(ts.head);
  2904             for (Type t : ts.tail) {
  2905                 if (t.tag == CLASS || t.tag == TYPEVAR)
  2906                     cl = intersect(cl, erasedSupertypes(t));
  2908             //step 2 - compute minimal erased candidate set (MEC)
  2909             List<Type> mec = closureMin(cl);
  2910             //step 3 - for each element G in MEC, compute lci(Inv(G))
  2911             List<Type> candidates = List.nil();
  2912             for (Type erasedSupertype : mec) {
  2913                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  2914                 for (Type t : ts) {
  2915                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  2917                 candidates = candidates.appendList(lci);
  2919             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  2920             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  2921             return compoundMin(candidates);
  2923         default:
  2924             // calculate lub(A, B[])
  2925             List<Type> classes = List.of(arraySuperType());
  2926             for (Type t : ts) {
  2927                 if (t.tag != ARRAY) // Filter out any arrays
  2928                     classes = classes.prepend(t);
  2930             // lub(A, B[]) is lub(A, arraySuperType)
  2931             return lub(classes);
  2934     // where
  2935         List<Type> erasedSupertypes(Type t) {
  2936             ListBuffer<Type> buf = lb();
  2937             for (Type sup : closure(t)) {
  2938                 if (sup.tag == TYPEVAR) {
  2939                     buf.append(sup);
  2940                 } else {
  2941                     buf.append(erasure(sup));
  2944             return buf.toList();
  2947         private Type arraySuperType = null;
  2948         private Type arraySuperType() {
  2949             // initialized lazily to avoid problems during compiler startup
  2950             if (arraySuperType == null) {
  2951                 synchronized (this) {
  2952                     if (arraySuperType == null) {
  2953                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  2954                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  2955                                                                   syms.cloneableType),
  2956                                                           syms.objectType);
  2960             return arraySuperType;
  2962     // </editor-fold>
  2964     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  2965     public Type glb(List<Type> ts) {
  2966         Type t1 = ts.head;
  2967         for (Type t2 : ts.tail) {
  2968             if (t1.isErroneous())
  2969                 return t1;
  2970             t1 = glb(t1, t2);
  2972         return t1;
  2974     //where
  2975     public Type glb(Type t, Type s) {
  2976         if (s == null)
  2977             return t;
  2978         else if (t.isPrimitive() || s.isPrimitive())
  2979             return syms.errType;
  2980         else if (isSubtypeNoCapture(t, s))
  2981             return t;
  2982         else if (isSubtypeNoCapture(s, t))
  2983             return s;
  2985         List<Type> closure = union(closure(t), closure(s));
  2986         List<Type> bounds = closureMin(closure);
  2988         if (bounds.isEmpty()) {             // length == 0
  2989             return syms.objectType;
  2990         } else if (bounds.tail.isEmpty()) { // length == 1
  2991             return bounds.head;
  2992         } else {                            // length > 1
  2993             int classCount = 0;
  2994             for (Type bound : bounds)
  2995                 if (!bound.isInterface())
  2996                     classCount++;
  2997             if (classCount > 1)
  2998                 return createErrorType(t);
  3000         return makeCompoundType(bounds);
  3002     // </editor-fold>
  3004     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3005     /**
  3006      * Compute a hash code on a type.
  3007      */
  3008     public static int hashCode(Type t) {
  3009         return hashCode.visit(t);
  3011     // where
  3012         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3014             public Integer visitType(Type t, Void ignored) {
  3015                 return t.tag;
  3018             @Override
  3019             public Integer visitClassType(ClassType t, Void ignored) {
  3020                 int result = visit(t.getEnclosingType());
  3021                 result *= 127;
  3022                 result += t.tsym.flatName().hashCode();
  3023                 for (Type s : t.getTypeArguments()) {
  3024                     result *= 127;
  3025                     result += visit(s);
  3027                 return result;
  3030             @Override
  3031             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3032                 int result = t.kind.hashCode();
  3033                 if (t.type != null) {
  3034                     result *= 127;
  3035                     result += visit(t.type);
  3037                 return result;
  3040             @Override
  3041             public Integer visitArrayType(ArrayType t, Void ignored) {
  3042                 return visit(t.elemtype) + 12;
  3045             @Override
  3046             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3047                 return System.identityHashCode(t.tsym);
  3050             @Override
  3051             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3052                 return System.identityHashCode(t);
  3055             @Override
  3056             public Integer visitErrorType(ErrorType t, Void ignored) {
  3057                 return 0;
  3059         };
  3060     // </editor-fold>
  3062     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3063     /**
  3064      * Does t have a result that is a subtype of the result type of s,
  3065      * suitable for covariant returns?  It is assumed that both types
  3066      * are (possibly polymorphic) method types.  Monomorphic method
  3067      * types are handled in the obvious way.  Polymorphic method types
  3068      * require renaming all type variables of one to corresponding
  3069      * type variables in the other, where correspondence is by
  3070      * position in the type parameter list. */
  3071     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3072         List<Type> tvars = t.getTypeArguments();
  3073         List<Type> svars = s.getTypeArguments();
  3074         Type tres = t.getReturnType();
  3075         Type sres = subst(s.getReturnType(), svars, tvars);
  3076         return covariantReturnType(tres, sres, warner);
  3079     /**
  3080      * Return-Type-Substitutable.
  3081      * @jls section 8.4.5
  3082      */
  3083     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3084         if (hasSameArgs(r1, r2))
  3085             return resultSubtype(r1, r2, Warner.noWarnings);
  3086         else
  3087             return covariantReturnType(r1.getReturnType(),
  3088                                        erasure(r2.getReturnType()),
  3089                                        Warner.noWarnings);
  3092     public boolean returnTypeSubstitutable(Type r1,
  3093                                            Type r2, Type r2res,
  3094                                            Warner warner) {
  3095         if (isSameType(r1.getReturnType(), r2res))
  3096             return true;
  3097         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3098             return false;
  3100         if (hasSameArgs(r1, r2))
  3101             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3102         if (!allowCovariantReturns)
  3103             return false;
  3104         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3105             return true;
  3106         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3107             return false;
  3108         warner.warn(LintCategory.UNCHECKED);
  3109         return true;
  3112     /**
  3113      * Is t an appropriate return type in an overrider for a
  3114      * method that returns s?
  3115      */
  3116     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3117         return
  3118             isSameType(t, s) ||
  3119             allowCovariantReturns &&
  3120             !t.isPrimitive() &&
  3121             !s.isPrimitive() &&
  3122             isAssignable(t, s, warner);
  3124     // </editor-fold>
  3126     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3127     /**
  3128      * Return the class that boxes the given primitive.
  3129      */
  3130     public ClassSymbol boxedClass(Type t) {
  3131         return reader.enterClass(syms.boxedName[t.tag]);
  3134     /**
  3135      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3136      */
  3137     public Type boxedTypeOrType(Type t) {
  3138         return t.isPrimitive() ?
  3139             boxedClass(t).type :
  3140             t;
  3143     /**
  3144      * Return the primitive type corresponding to a boxed type.
  3145      */
  3146     public Type unboxedType(Type t) {
  3147         if (allowBoxing) {
  3148             for (int i=0; i<syms.boxedName.length; i++) {
  3149                 Name box = syms.boxedName[i];
  3150                 if (box != null &&
  3151                     asSuper(t, reader.enterClass(box)) != null)
  3152                     return syms.typeOfTag[i];
  3155         return Type.noType;
  3157     // </editor-fold>
  3159     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3160     /*
  3161      * JLS 5.1.10 Capture Conversion:
  3163      * Let G name a generic type declaration with n formal type
  3164      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3165      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3166      * where, for 1 <= i <= n:
  3168      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3169      *   Si is a fresh type variable whose upper bound is
  3170      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3171      *   type.
  3173      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3174      *   then Si is a fresh type variable whose upper bound is
  3175      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3176      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3177      *   a compile-time error if for any two classes (not interfaces)
  3178      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3180      * + If Ti is a wildcard type argument of the form ? super Bi,
  3181      *   then Si is a fresh type variable whose upper bound is
  3182      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3184      * + Otherwise, Si = Ti.
  3186      * Capture conversion on any type other than a parameterized type
  3187      * (4.5) acts as an identity conversion (5.1.1). Capture
  3188      * conversions never require a special action at run time and
  3189      * therefore never throw an exception at run time.
  3191      * Capture conversion is not applied recursively.
  3192      */
  3193     /**
  3194      * Capture conversion as specified by the JLS.
  3195      */
  3197     public List<Type> capture(List<Type> ts) {
  3198         List<Type> buf = List.nil();
  3199         for (Type t : ts) {
  3200             buf = buf.prepend(capture(t));
  3202         return buf.reverse();
  3204     public Type capture(Type t) {
  3205         if (t.tag != CLASS)
  3206             return t;
  3207         if (t.getEnclosingType() != Type.noType) {
  3208             Type capturedEncl = capture(t.getEnclosingType());
  3209             if (capturedEncl != t.getEnclosingType()) {
  3210                 Type type1 = memberType(capturedEncl, t.tsym);
  3211                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3214         ClassType cls = (ClassType)t;
  3215         if (cls.isRaw() || !cls.isParameterized())
  3216             return cls;
  3218         ClassType G = (ClassType)cls.asElement().asType();
  3219         List<Type> A = G.getTypeArguments();
  3220         List<Type> T = cls.getTypeArguments();
  3221         List<Type> S = freshTypeVariables(T);
  3223         List<Type> currentA = A;
  3224         List<Type> currentT = T;
  3225         List<Type> currentS = S;
  3226         boolean captured = false;
  3227         while (!currentA.isEmpty() &&
  3228                !currentT.isEmpty() &&
  3229                !currentS.isEmpty()) {
  3230             if (currentS.head != currentT.head) {
  3231                 captured = true;
  3232                 WildcardType Ti = (WildcardType)currentT.head;
  3233                 Type Ui = currentA.head.getUpperBound();
  3234                 CapturedType Si = (CapturedType)currentS.head;
  3235                 if (Ui == null)
  3236                     Ui = syms.objectType;
  3237                 switch (Ti.kind) {
  3238                 case UNBOUND:
  3239                     Si.bound = subst(Ui, A, S);
  3240                     Si.lower = syms.botType;
  3241                     break;
  3242                 case EXTENDS:
  3243                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3244                     Si.lower = syms.botType;
  3245                     break;
  3246                 case SUPER:
  3247                     Si.bound = subst(Ui, A, S);
  3248                     Si.lower = Ti.getSuperBound();
  3249                     break;
  3251                 if (Si.bound == Si.lower)
  3252                     currentS.head = Si.bound;
  3254             currentA = currentA.tail;
  3255             currentT = currentT.tail;
  3256             currentS = currentS.tail;
  3258         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3259             return erasure(t); // some "rare" type involved
  3261         if (captured)
  3262             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3263         else
  3264             return t;
  3266     // where
  3267         public List<Type> freshTypeVariables(List<Type> types) {
  3268             ListBuffer<Type> result = lb();
  3269             for (Type t : types) {
  3270                 if (t.tag == WILDCARD) {
  3271                     Type bound = ((WildcardType)t).getExtendsBound();
  3272                     if (bound == null)
  3273                         bound = syms.objectType;
  3274                     result.append(new CapturedType(capturedName,
  3275                                                    syms.noSymbol,
  3276                                                    bound,
  3277                                                    syms.botType,
  3278                                                    (WildcardType)t));
  3279                 } else {
  3280                     result.append(t);
  3283             return result.toList();
  3285     // </editor-fold>
  3287     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3288     private List<Type> upperBounds(List<Type> ss) {
  3289         if (ss.isEmpty()) return ss;
  3290         Type head = upperBound(ss.head);
  3291         List<Type> tail = upperBounds(ss.tail);
  3292         if (head != ss.head || tail != ss.tail)
  3293             return tail.prepend(head);
  3294         else
  3295             return ss;
  3298     private boolean sideCast(Type from, Type to, Warner warn) {
  3299         // We are casting from type $from$ to type $to$, which are
  3300         // non-final unrelated types.  This method
  3301         // tries to reject a cast by transferring type parameters
  3302         // from $to$ to $from$ by common superinterfaces.
  3303         boolean reverse = false;
  3304         Type target = to;
  3305         if ((to.tsym.flags() & INTERFACE) == 0) {
  3306             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3307             reverse = true;
  3308             to = from;
  3309             from = target;
  3311         List<Type> commonSupers = superClosure(to, erasure(from));
  3312         boolean giveWarning = commonSupers.isEmpty();
  3313         // The arguments to the supers could be unified here to
  3314         // get a more accurate analysis
  3315         while (commonSupers.nonEmpty()) {
  3316             Type t1 = asSuper(from, commonSupers.head.tsym);
  3317             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3318             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3319                 return false;
  3320             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3321             commonSupers = commonSupers.tail;
  3323         if (giveWarning && !isReifiable(reverse ? from : to))
  3324             warn.warn(LintCategory.UNCHECKED);
  3325         if (!allowCovariantReturns)
  3326             // reject if there is a common method signature with
  3327             // incompatible return types.
  3328             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3329         return true;
  3332     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3333         // We are casting from type $from$ to type $to$, which are
  3334         // unrelated types one of which is final and the other of
  3335         // which is an interface.  This method
  3336         // tries to reject a cast by transferring type parameters
  3337         // from the final class to the interface.
  3338         boolean reverse = false;
  3339         Type target = to;
  3340         if ((to.tsym.flags() & INTERFACE) == 0) {
  3341             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3342             reverse = true;
  3343             to = from;
  3344             from = target;
  3346         Assert.check((from.tsym.flags() & FINAL) != 0);
  3347         Type t1 = asSuper(from, to.tsym);
  3348         if (t1 == null) return false;
  3349         Type t2 = to;
  3350         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3351             return false;
  3352         if (!allowCovariantReturns)
  3353             // reject if there is a common method signature with
  3354             // incompatible return types.
  3355             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3356         if (!isReifiable(target) &&
  3357             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3358             warn.warn(LintCategory.UNCHECKED);
  3359         return true;
  3362     private boolean giveWarning(Type from, Type to) {
  3363         Type subFrom = asSub(from, to.tsym);
  3364         return to.isParameterized() &&
  3365                 (!(isUnbounded(to) ||
  3366                 isSubtype(from, to) ||
  3367                 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
  3370     private List<Type> superClosure(Type t, Type s) {
  3371         List<Type> cl = List.nil();
  3372         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3373             if (isSubtype(s, erasure(l.head))) {
  3374                 cl = insert(cl, l.head);
  3375             } else {
  3376                 cl = union(cl, superClosure(l.head, s));
  3379         return cl;
  3382     private boolean containsTypeEquivalent(Type t, Type s) {
  3383         return
  3384             isSameType(t, s) || // shortcut
  3385             containsType(t, s) && containsType(s, t);
  3388     // <editor-fold defaultstate="collapsed" desc="adapt">
  3389     /**
  3390      * Adapt a type by computing a substitution which maps a source
  3391      * type to a target type.
  3393      * @param source    the source type
  3394      * @param target    the target type
  3395      * @param from      the type variables of the computed substitution
  3396      * @param to        the types of the computed substitution.
  3397      */
  3398     public void adapt(Type source,
  3399                        Type target,
  3400                        ListBuffer<Type> from,
  3401                        ListBuffer<Type> to) throws AdaptFailure {
  3402         new Adapter(from, to).adapt(source, target);
  3405     class Adapter extends SimpleVisitor<Void, Type> {
  3407         ListBuffer<Type> from;
  3408         ListBuffer<Type> to;
  3409         Map<Symbol,Type> mapping;
  3411         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3412             this.from = from;
  3413             this.to = to;
  3414             mapping = new HashMap<Symbol,Type>();
  3417         public void adapt(Type source, Type target) throws AdaptFailure {
  3418             visit(source, target);
  3419             List<Type> fromList = from.toList();
  3420             List<Type> toList = to.toList();
  3421             while (!fromList.isEmpty()) {
  3422                 Type val = mapping.get(fromList.head.tsym);
  3423                 if (toList.head != val)
  3424                     toList.head = val;
  3425                 fromList = fromList.tail;
  3426                 toList = toList.tail;
  3430         @Override
  3431         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3432             if (target.tag == CLASS)
  3433                 adaptRecursive(source.allparams(), target.allparams());
  3434             return null;
  3437         @Override
  3438         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3439             if (target.tag == ARRAY)
  3440                 adaptRecursive(elemtype(source), elemtype(target));
  3441             return null;
  3444         @Override
  3445         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3446             if (source.isExtendsBound())
  3447                 adaptRecursive(upperBound(source), upperBound(target));
  3448             else if (source.isSuperBound())
  3449                 adaptRecursive(lowerBound(source), lowerBound(target));
  3450             return null;
  3453         @Override
  3454         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3455             // Check to see if there is
  3456             // already a mapping for $source$, in which case
  3457             // the old mapping will be merged with the new
  3458             Type val = mapping.get(source.tsym);
  3459             if (val != null) {
  3460                 if (val.isSuperBound() && target.isSuperBound()) {
  3461                     val = isSubtype(lowerBound(val), lowerBound(target))
  3462                         ? target : val;
  3463                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3464                     val = isSubtype(upperBound(val), upperBound(target))
  3465                         ? val : target;
  3466                 } else if (!isSameType(val, target)) {
  3467                     throw new AdaptFailure();
  3469             } else {
  3470                 val = target;
  3471                 from.append(source);
  3472                 to.append(target);
  3474             mapping.put(source.tsym, val);
  3475             return null;
  3478         @Override
  3479         public Void visitType(Type source, Type target) {
  3480             return null;
  3483         private Set<TypePair> cache = new HashSet<TypePair>();
  3485         private void adaptRecursive(Type source, Type target) {
  3486             TypePair pair = new TypePair(source, target);
  3487             if (cache.add(pair)) {
  3488                 try {
  3489                     visit(source, target);
  3490                 } finally {
  3491                     cache.remove(pair);
  3496         private void adaptRecursive(List<Type> source, List<Type> target) {
  3497             if (source.length() == target.length()) {
  3498                 while (source.nonEmpty()) {
  3499                     adaptRecursive(source.head, target.head);
  3500                     source = source.tail;
  3501                     target = target.tail;
  3507     public static class AdaptFailure extends RuntimeException {
  3508         static final long serialVersionUID = -7490231548272701566L;
  3511     private void adaptSelf(Type t,
  3512                            ListBuffer<Type> from,
  3513                            ListBuffer<Type> to) {
  3514         try {
  3515             //if (t.tsym.type != t)
  3516                 adapt(t.tsym.type, t, from, to);
  3517         } catch (AdaptFailure ex) {
  3518             // Adapt should never fail calculating a mapping from
  3519             // t.tsym.type to t as there can be no merge problem.
  3520             throw new AssertionError(ex);
  3523     // </editor-fold>
  3525     /**
  3526      * Rewrite all type variables (universal quantifiers) in the given
  3527      * type to wildcards (existential quantifiers).  This is used to
  3528      * determine if a cast is allowed.  For example, if high is true
  3529      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  3530      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  3531      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  3532      * List<Integer>} with a warning.
  3533      * @param t a type
  3534      * @param high if true return an upper bound; otherwise a lower
  3535      * bound
  3536      * @param rewriteTypeVars only rewrite captured wildcards if false;
  3537      * otherwise rewrite all type variables
  3538      * @return the type rewritten with wildcards (existential
  3539      * quantifiers) only
  3540      */
  3541     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  3542         return new Rewriter(high, rewriteTypeVars).visit(t);
  3545     class Rewriter extends UnaryVisitor<Type> {
  3547         boolean high;
  3548         boolean rewriteTypeVars;
  3550         Rewriter(boolean high, boolean rewriteTypeVars) {
  3551             this.high = high;
  3552             this.rewriteTypeVars = rewriteTypeVars;
  3555         @Override
  3556         public Type visitClassType(ClassType t, Void s) {
  3557             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  3558             boolean changed = false;
  3559             for (Type arg : t.allparams()) {
  3560                 Type bound = visit(arg);
  3561                 if (arg != bound) {
  3562                     changed = true;
  3564                 rewritten.append(bound);
  3566             if (changed)
  3567                 return subst(t.tsym.type,
  3568                         t.tsym.type.allparams(),
  3569                         rewritten.toList());
  3570             else
  3571                 return t;
  3574         public Type visitType(Type t, Void s) {
  3575             return high ? upperBound(t) : lowerBound(t);
  3578         @Override
  3579         public Type visitCapturedType(CapturedType t, Void s) {
  3580             Type w_bound = t.wildcard.type;
  3581             Type bound = w_bound.contains(t) ?
  3582                         erasure(w_bound) :
  3583                         visit(w_bound);
  3584             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  3587         @Override
  3588         public Type visitTypeVar(TypeVar t, Void s) {
  3589             if (rewriteTypeVars) {
  3590                 Type bound = t.bound.contains(t) ?
  3591                         erasure(t.bound) :
  3592                         visit(t.bound);
  3593                 return rewriteAsWildcardType(bound, t, EXTENDS);
  3594             } else {
  3595                 return t;
  3599         @Override
  3600         public Type visitWildcardType(WildcardType t, Void s) {
  3601             Type bound2 = visit(t.type);
  3602             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  3605         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  3606             switch (bk) {
  3607                case EXTENDS: return high ?
  3608                        makeExtendsWildcard(B(bound), formal) :
  3609                        makeExtendsWildcard(syms.objectType, formal);
  3610                case SUPER: return high ?
  3611                        makeSuperWildcard(syms.botType, formal) :
  3612                        makeSuperWildcard(B(bound), formal);
  3613                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  3614                default:
  3615                    Assert.error("Invalid bound kind " + bk);
  3616                    return null;
  3620         Type B(Type t) {
  3621             while (t.tag == WILDCARD) {
  3622                 WildcardType w = (WildcardType)t;
  3623                 t = high ?
  3624                     w.getExtendsBound() :
  3625                     w.getSuperBound();
  3626                 if (t == null) {
  3627                     t = high ? syms.objectType : syms.botType;
  3630             return t;
  3635     /**
  3636      * Create a wildcard with the given upper (extends) bound; create
  3637      * an unbounded wildcard if bound is Object.
  3639      * @param bound the upper bound
  3640      * @param formal the formal type parameter that will be
  3641      * substituted by the wildcard
  3642      */
  3643     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  3644         if (bound == syms.objectType) {
  3645             return new WildcardType(syms.objectType,
  3646                                     BoundKind.UNBOUND,
  3647                                     syms.boundClass,
  3648                                     formal);
  3649         } else {
  3650             return new WildcardType(bound,
  3651                                     BoundKind.EXTENDS,
  3652                                     syms.boundClass,
  3653                                     formal);
  3657     /**
  3658      * Create a wildcard with the given lower (super) bound; create an
  3659      * unbounded wildcard if bound is bottom (type of {@code null}).
  3661      * @param bound the lower bound
  3662      * @param formal the formal type parameter that will be
  3663      * substituted by the wildcard
  3664      */
  3665     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  3666         if (bound.tag == BOT) {
  3667             return new WildcardType(syms.objectType,
  3668                                     BoundKind.UNBOUND,
  3669                                     syms.boundClass,
  3670                                     formal);
  3671         } else {
  3672             return new WildcardType(bound,
  3673                                     BoundKind.SUPER,
  3674                                     syms.boundClass,
  3675                                     formal);
  3679     /**
  3680      * A wrapper for a type that allows use in sets.
  3681      */
  3682     class SingletonType {
  3683         final Type t;
  3684         SingletonType(Type t) {
  3685             this.t = t;
  3687         public int hashCode() {
  3688             return Types.hashCode(t);
  3690         public boolean equals(Object obj) {
  3691             return (obj instanceof SingletonType) &&
  3692                 isSameType(t, ((SingletonType)obj).t);
  3694         public String toString() {
  3695             return t.toString();
  3698     // </editor-fold>
  3700     // <editor-fold defaultstate="collapsed" desc="Visitors">
  3701     /**
  3702      * A default visitor for types.  All visitor methods except
  3703      * visitType are implemented by delegating to visitType.  Concrete
  3704      * subclasses must provide an implementation of visitType and can
  3705      * override other methods as needed.
  3707      * @param <R> the return type of the operation implemented by this
  3708      * visitor; use Void if no return type is needed.
  3709      * @param <S> the type of the second argument (the first being the
  3710      * type itself) of the operation implemented by this visitor; use
  3711      * Void if a second argument is not needed.
  3712      */
  3713     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  3714         final public R visit(Type t, S s)               { return t.accept(this, s); }
  3715         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  3716         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  3717         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  3718         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  3719         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  3720         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  3721         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  3722         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  3723         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  3724         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  3727     /**
  3728      * A default visitor for symbols.  All visitor methods except
  3729      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  3730      * subclasses must provide an implementation of visitSymbol and can
  3731      * override other methods as needed.
  3733      * @param <R> the return type of the operation implemented by this
  3734      * visitor; use Void if no return type is needed.
  3735      * @param <S> the type of the second argument (the first being the
  3736      * symbol itself) of the operation implemented by this visitor; use
  3737      * Void if a second argument is not needed.
  3738      */
  3739     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  3740         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  3741         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  3742         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  3743         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  3744         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  3745         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  3746         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  3749     /**
  3750      * A <em>simple</em> visitor for types.  This visitor is simple as
  3751      * captured wildcards, for-all types (generic methods), and
  3752      * undetermined type variables (part of inference) are hidden.
  3753      * Captured wildcards are hidden by treating them as type
  3754      * variables and the rest are hidden by visiting their qtypes.
  3756      * @param <R> the return type of the operation implemented by this
  3757      * visitor; use Void if no return type is needed.
  3758      * @param <S> the type of the second argument (the first being the
  3759      * type itself) of the operation implemented by this visitor; use
  3760      * Void if a second argument is not needed.
  3761      */
  3762     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  3763         @Override
  3764         public R visitCapturedType(CapturedType t, S s) {
  3765             return visitTypeVar(t, s);
  3767         @Override
  3768         public R visitForAll(ForAll t, S s) {
  3769             return visit(t.qtype, s);
  3771         @Override
  3772         public R visitUndetVar(UndetVar t, S s) {
  3773             return visit(t.qtype, s);
  3777     /**
  3778      * A plain relation on types.  That is a 2-ary function on the
  3779      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  3780      * <!-- In plain text: Type x Type -> Boolean -->
  3781      */
  3782     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  3784     /**
  3785      * A convenience visitor for implementing operations that only
  3786      * require one argument (the type itself), that is, unary
  3787      * operations.
  3789      * @param <R> the return type of the operation implemented by this
  3790      * visitor; use Void if no return type is needed.
  3791      */
  3792     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  3793         final public R visit(Type t) { return t.accept(this, null); }
  3796     /**
  3797      * A visitor for implementing a mapping from types to types.  The
  3798      * default behavior of this class is to implement the identity
  3799      * mapping (mapping a type to itself).  This can be overridden in
  3800      * subclasses.
  3802      * @param <S> the type of the second argument (the first being the
  3803      * type itself) of this mapping; use Void if a second argument is
  3804      * not needed.
  3805      */
  3806     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  3807         final public Type visit(Type t) { return t.accept(this, null); }
  3808         public Type visitType(Type t, S s) { return t; }
  3810     // </editor-fold>
  3813     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  3815     public RetentionPolicy getRetention(Attribute.Compound a) {
  3816         return getRetention(a.type.tsym);
  3819     public RetentionPolicy getRetention(Symbol sym) {
  3820         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  3821         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  3822         if (c != null) {
  3823             Attribute value = c.member(names.value);
  3824             if (value != null && value instanceof Attribute.Enum) {
  3825                 Name levelName = ((Attribute.Enum)value).value.name;
  3826                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  3827                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  3828                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  3829                 else ;// /* fail soft */ throw new AssertionError(levelName);
  3832         return vis;
  3834     // </editor-fold>

mercurial