src/share/classes/com/sun/tools/javac/comp/Check.java

Fri, 04 Jul 2008 15:06:27 -0700

author
tbell
date
Fri, 04 Jul 2008 15:06:27 -0700
changeset 62
07c916ecfc71
parent 60
29d2485c1085
parent 54
eaf608c64fec
child 78
77dba8b57346
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Sun designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Sun in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
    23  * have any questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 /** Type checking helper class for the attribution phase.
    49  *
    50  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
    51  *  you write code that depends on this, you do so at your own risk.
    52  *  This code and its internal interfaces are subject to change or
    53  *  deletion without notice.</b>
    54  */
    55 public class Check {
    56     protected static final Context.Key<Check> checkKey =
    57         new Context.Key<Check>();
    59     private final Name.Table names;
    60     private final Log log;
    61     private final Symtab syms;
    62     private final Infer infer;
    63     private final Target target;
    64     private final Source source;
    65     private final Types types;
    66     private final boolean skipAnnotations;
    67     private final TreeInfo treeinfo;
    69     // The set of lint options currently in effect. It is initialized
    70     // from the context, and then is set/reset as needed by Attr as it
    71     // visits all the various parts of the trees during attribution.
    72     private Lint lint;
    74     public static Check instance(Context context) {
    75         Check instance = context.get(checkKey);
    76         if (instance == null)
    77             instance = new Check(context);
    78         return instance;
    79     }
    81     protected Check(Context context) {
    82         context.put(checkKey, this);
    84         names = Name.Table.instance(context);
    85         log = Log.instance(context);
    86         syms = Symtab.instance(context);
    87         infer = Infer.instance(context);
    88         this.types = Types.instance(context);
    89         Options options = Options.instance(context);
    90         target = Target.instance(context);
    91         source = Source.instance(context);
    92         lint = Lint.instance(context);
    93         treeinfo = TreeInfo.instance(context);
    95         Source source = Source.instance(context);
    96         allowGenerics = source.allowGenerics();
    97         allowAnnotations = source.allowAnnotations();
    98         complexInference = options.get("-complexinference") != null;
    99         skipAnnotations = options.get("skipAnnotations") != null;
   101         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   102         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   103         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   105         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   106                 enforceMandatoryWarnings, "deprecated");
   107         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   108                 enforceMandatoryWarnings, "unchecked");
   109     }
   111     /** Switch: generics enabled?
   112      */
   113     boolean allowGenerics;
   115     /** Switch: annotations enabled?
   116      */
   117     boolean allowAnnotations;
   119     /** Switch: -complexinference option set?
   120      */
   121     boolean complexInference;
   123     /** A table mapping flat names of all compiled classes in this run to their
   124      *  symbols; maintained from outside.
   125      */
   126     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   128     /** A handler for messages about deprecated usage.
   129      */
   130     private MandatoryWarningHandler deprecationHandler;
   132     /** A handler for messages about unchecked or unsafe usage.
   133      */
   134     private MandatoryWarningHandler uncheckedHandler;
   137 /* *************************************************************************
   138  * Errors and Warnings
   139  **************************************************************************/
   141     Lint setLint(Lint newLint) {
   142         Lint prev = lint;
   143         lint = newLint;
   144         return prev;
   145     }
   147     /** Warn about deprecated symbol.
   148      *  @param pos        Position to be used for error reporting.
   149      *  @param sym        The deprecated symbol.
   150      */
   151     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   152         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   153             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   154     }
   156     /** Warn about unchecked operation.
   157      *  @param pos        Position to be used for error reporting.
   158      *  @param msg        A string describing the problem.
   159      */
   160     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   161         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   162             uncheckedHandler.report(pos, msg, args);
   163     }
   165     /**
   166      * Report any deferred diagnostics.
   167      */
   168     public void reportDeferredDiagnostics() {
   169         deprecationHandler.reportDeferredDiagnostic();
   170         uncheckedHandler.reportDeferredDiagnostic();
   171     }
   174     /** Report a failure to complete a class.
   175      *  @param pos        Position to be used for error reporting.
   176      *  @param ex         The failure to report.
   177      */
   178     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   179         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   180         if (ex instanceof ClassReader.BadClassFile) throw new Abort();
   181         else return syms.errType;
   182     }
   184     /** Report a type error.
   185      *  @param pos        Position to be used for error reporting.
   186      *  @param problem    A string describing the error.
   187      *  @param found      The type that was found.
   188      *  @param req        The type that was required.
   189      */
   190     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   191         log.error(pos, "prob.found.req",
   192                   problem, found, req);
   193         return syms.errType;
   194     }
   196     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   197         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   198         return syms.errType;
   199     }
   201     /** Report an error that wrong type tag was found.
   202      *  @param pos        Position to be used for error reporting.
   203      *  @param required   An internationalized string describing the type tag
   204      *                    required.
   205      *  @param found      The type that was found.
   206      */
   207     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   208         log.error(pos, "type.found.req", found, required);
   209         return syms.errType;
   210     }
   212     /** Report an error that symbol cannot be referenced before super
   213      *  has been called.
   214      *  @param pos        Position to be used for error reporting.
   215      *  @param sym        The referenced symbol.
   216      */
   217     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   218         log.error(pos, "cant.ref.before.ctor.called", sym);
   219     }
   221     /** Report duplicate declaration error.
   222      */
   223     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   224         if (!sym.type.isErroneous()) {
   225             log.error(pos, "already.defined", sym, sym.location());
   226         }
   227     }
   229     /** Report array/varargs duplicate declaration
   230      */
   231     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   232         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   233             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   234         }
   235     }
   237 /* ************************************************************************
   238  * duplicate declaration checking
   239  *************************************************************************/
   241     /** Check that variable does not hide variable with same name in
   242      *  immediately enclosing local scope.
   243      *  @param pos           Position for error reporting.
   244      *  @param v             The symbol.
   245      *  @param s             The scope.
   246      */
   247     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   248         if (s.next != null) {
   249             for (Scope.Entry e = s.next.lookup(v.name);
   250                  e.scope != null && e.sym.owner == v.owner;
   251                  e = e.next()) {
   252                 if (e.sym.kind == VAR &&
   253                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   254                     v.name != names.error) {
   255                     duplicateError(pos, e.sym);
   256                     return;
   257                 }
   258             }
   259         }
   260     }
   262     /** Check that a class or interface does not hide a class or
   263      *  interface with same name in immediately enclosing local scope.
   264      *  @param pos           Position for error reporting.
   265      *  @param c             The symbol.
   266      *  @param s             The scope.
   267      */
   268     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   269         if (s.next != null) {
   270             for (Scope.Entry e = s.next.lookup(c.name);
   271                  e.scope != null && e.sym.owner == c.owner;
   272                  e = e.next()) {
   273                 if (e.sym.kind == TYP &&
   274                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   275                     c.name != names.error) {
   276                     duplicateError(pos, e.sym);
   277                     return;
   278                 }
   279             }
   280         }
   281     }
   283     /** Check that class does not have the same name as one of
   284      *  its enclosing classes, or as a class defined in its enclosing scope.
   285      *  return true if class is unique in its enclosing scope.
   286      *  @param pos           Position for error reporting.
   287      *  @param name          The class name.
   288      *  @param s             The enclosing scope.
   289      */
   290     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   291         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   292             if (e.sym.kind == TYP && e.sym.name != names.error) {
   293                 duplicateError(pos, e.sym);
   294                 return false;
   295             }
   296         }
   297         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   298             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   299                 duplicateError(pos, sym);
   300                 return true;
   301             }
   302         }
   303         return true;
   304     }
   306 /* *************************************************************************
   307  * Class name generation
   308  **************************************************************************/
   310     /** Return name of local class.
   311      *  This is of the form    <enclClass> $ n <classname>
   312      *  where
   313      *    enclClass is the flat name of the enclosing class,
   314      *    classname is the simple name of the local class
   315      */
   316     Name localClassName(ClassSymbol c) {
   317         for (int i=1; ; i++) {
   318             Name flatname = names.
   319                 fromString("" + c.owner.enclClass().flatname +
   320                            target.syntheticNameChar() + i +
   321                            c.name);
   322             if (compiled.get(flatname) == null) return flatname;
   323         }
   324     }
   326 /* *************************************************************************
   327  * Type Checking
   328  **************************************************************************/
   330     /** Check that a given type is assignable to a given proto-type.
   331      *  If it is, return the type, otherwise return errType.
   332      *  @param pos        Position to be used for error reporting.
   333      *  @param found      The type that was found.
   334      *  @param req        The type that was required.
   335      */
   336     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   337         if (req.tag == ERROR)
   338             return req;
   339         if (found.tag == FORALL)
   340             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   341         if (req.tag == NONE)
   342             return found;
   343         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   344             return found;
   345         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   346             return typeError(pos, JCDiagnostic.fragment("possible.loss.of.precision"), found, req);
   347         if (found.isSuperBound()) {
   348             log.error(pos, "assignment.from.super-bound", found);
   349             return syms.errType;
   350         }
   351         if (req.isExtendsBound()) {
   352             log.error(pos, "assignment.to.extends-bound", req);
   353             return syms.errType;
   354         }
   355         return typeError(pos, JCDiagnostic.fragment("incompatible.types"), found, req);
   356     }
   358     /** Instantiate polymorphic type to some prototype, unless
   359      *  prototype is `anyPoly' in which case polymorphic type
   360      *  is returned unchanged.
   361      */
   362     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) {
   363         if (pt == Infer.anyPoly && complexInference) {
   364             return t;
   365         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   366             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   367             return instantiatePoly(pos, t, newpt, warn);
   368         } else if (pt.tag == ERROR) {
   369             return pt;
   370         } else {
   371             try {
   372                 return infer.instantiateExpr(t, pt, warn);
   373             } catch (Infer.NoInstanceException ex) {
   374                 if (ex.isAmbiguous) {
   375                     JCDiagnostic d = ex.getDiagnostic();
   376                     log.error(pos,
   377                               "undetermined.type" + (d!=null ? ".1" : ""),
   378                               t, d);
   379                     return syms.errType;
   380                 } else {
   381                     JCDiagnostic d = ex.getDiagnostic();
   382                     return typeError(pos,
   383                                      JCDiagnostic.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   384                                      t, pt);
   385                 }
   386             }
   387         }
   388     }
   390     /** Check that a given type can be cast to a given target type.
   391      *  Return the result of the cast.
   392      *  @param pos        Position to be used for error reporting.
   393      *  @param found      The type that is being cast.
   394      *  @param req        The target type of the cast.
   395      */
   396     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   397         if (found.tag == FORALL) {
   398             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   399             return req;
   400         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   401             return req;
   402         } else {
   403             return typeError(pos,
   404                              JCDiagnostic.fragment("inconvertible.types"),
   405                              found, req);
   406         }
   407     }
   408 //where
   409         /** Is type a type variable, or a (possibly multi-dimensional) array of
   410          *  type variables?
   411          */
   412         boolean isTypeVar(Type t) {
   413             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   414         }
   416     /** Check that a type is within some bounds.
   417      *
   418      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   419      *  type argument.
   420      *  @param pos           Position to be used for error reporting.
   421      *  @param a             The type that should be bounded by bs.
   422      *  @param bs            The bound.
   423      */
   424     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   425         if (a.isUnbound()) {
   426             return;
   427         } else if (a.tag != WILDCARD) {
   428             a = types.upperBound(a);
   429             for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   430                 if (!types.isSubtype(a, l.head)) {
   431                     log.error(pos, "not.within.bounds", a);
   432                     return;
   433                 }
   434             }
   435         } else if (a.isExtendsBound()) {
   436             if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   437                 log.error(pos, "not.within.bounds", a);
   438         } else if (a.isSuperBound()) {
   439             if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   440                 log.error(pos, "not.within.bounds", a);
   441         }
   442     }
   444     /** Check that type is different from 'void'.
   445      *  @param pos           Position to be used for error reporting.
   446      *  @param t             The type to be checked.
   447      */
   448     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   449         if (t.tag == VOID) {
   450             log.error(pos, "void.not.allowed.here");
   451             return syms.errType;
   452         } else {
   453             return t;
   454         }
   455     }
   457     /** Check that type is a class or interface type.
   458      *  @param pos           Position to be used for error reporting.
   459      *  @param t             The type to be checked.
   460      */
   461     Type checkClassType(DiagnosticPosition pos, Type t) {
   462         if (t.tag != CLASS && t.tag != ERROR)
   463             return typeTagError(pos,
   464                                 JCDiagnostic.fragment("type.req.class"),
   465                                 (t.tag == TYPEVAR)
   466                                 ? JCDiagnostic.fragment("type.parameter", t)
   467                                 : t);
   468         else
   469             return t;
   470     }
   472     /** Check that type is a class or interface type.
   473      *  @param pos           Position to be used for error reporting.
   474      *  @param t             The type to be checked.
   475      *  @param noBounds    True if type bounds are illegal here.
   476      */
   477     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   478         t = checkClassType(pos, t);
   479         if (noBounds && t.isParameterized()) {
   480             List<Type> args = t.getTypeArguments();
   481             while (args.nonEmpty()) {
   482                 if (args.head.tag == WILDCARD)
   483                     return typeTagError(pos,
   484                                         log.getLocalizedString("type.req.exact"),
   485                                         args.head);
   486                 args = args.tail;
   487             }
   488         }
   489         return t;
   490     }
   492     /** Check that type is a reifiable class, interface or array type.
   493      *  @param pos           Position to be used for error reporting.
   494      *  @param t             The type to be checked.
   495      */
   496     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   497         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   498             return typeTagError(pos,
   499                                 JCDiagnostic.fragment("type.req.class.array"),
   500                                 t);
   501         } else if (!types.isReifiable(t)) {
   502             log.error(pos, "illegal.generic.type.for.instof");
   503             return syms.errType;
   504         } else {
   505             return t;
   506         }
   507     }
   509     /** Check that type is a reference type, i.e. a class, interface or array type
   510      *  or a type variable.
   511      *  @param pos           Position to be used for error reporting.
   512      *  @param t             The type to be checked.
   513      */
   514     Type checkRefType(DiagnosticPosition pos, Type t) {
   515         switch (t.tag) {
   516         case CLASS:
   517         case ARRAY:
   518         case TYPEVAR:
   519         case WILDCARD:
   520         case ERROR:
   521             return t;
   522         default:
   523             return typeTagError(pos,
   524                                 JCDiagnostic.fragment("type.req.ref"),
   525                                 t);
   526         }
   527     }
   529     /** Check that type is a null or reference type.
   530      *  @param pos           Position to be used for error reporting.
   531      *  @param t             The type to be checked.
   532      */
   533     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   534         switch (t.tag) {
   535         case CLASS:
   536         case ARRAY:
   537         case TYPEVAR:
   538         case WILDCARD:
   539         case BOT:
   540         case ERROR:
   541             return t;
   542         default:
   543             return typeTagError(pos,
   544                                 JCDiagnostic.fragment("type.req.ref"),
   545                                 t);
   546         }
   547     }
   549     /** Check that flag set does not contain elements of two conflicting sets. s
   550      *  Return true if it doesn't.
   551      *  @param pos           Position to be used for error reporting.
   552      *  @param flags         The set of flags to be checked.
   553      *  @param set1          Conflicting flags set #1.
   554      *  @param set2          Conflicting flags set #2.
   555      */
   556     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   557         if ((flags & set1) != 0 && (flags & set2) != 0) {
   558             log.error(pos,
   559                       "illegal.combination.of.modifiers",
   560                       TreeInfo.flagNames(TreeInfo.firstFlag(flags & set1)),
   561                       TreeInfo.flagNames(TreeInfo.firstFlag(flags & set2)));
   562             return false;
   563         } else
   564             return true;
   565     }
   567     /** Check that given modifiers are legal for given symbol and
   568      *  return modifiers together with any implicit modififiers for that symbol.
   569      *  Warning: we can't use flags() here since this method
   570      *  is called during class enter, when flags() would cause a premature
   571      *  completion.
   572      *  @param pos           Position to be used for error reporting.
   573      *  @param flags         The set of modifiers given in a definition.
   574      *  @param sym           The defined symbol.
   575      */
   576     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   577         long mask;
   578         long implicit = 0;
   579         switch (sym.kind) {
   580         case VAR:
   581             if (sym.owner.kind != TYP)
   582                 mask = LocalVarFlags;
   583             else if ((sym.owner.flags_field & INTERFACE) != 0)
   584                 mask = implicit = InterfaceVarFlags;
   585             else
   586                 mask = VarFlags;
   587             break;
   588         case MTH:
   589             if (sym.name == names.init) {
   590                 if ((sym.owner.flags_field & ENUM) != 0) {
   591                     // enum constructors cannot be declared public or
   592                     // protected and must be implicitly or explicitly
   593                     // private
   594                     implicit = PRIVATE;
   595                     mask = PRIVATE;
   596                 } else
   597                     mask = ConstructorFlags;
   598             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   599                 mask = implicit = InterfaceMethodFlags;
   600             else {
   601                 mask = MethodFlags;
   602             }
   603             // Imply STRICTFP if owner has STRICTFP set.
   604             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   605               implicit |= sym.owner.flags_field & STRICTFP;
   606             break;
   607         case TYP:
   608             if (sym.isLocal()) {
   609                 mask = LocalClassFlags;
   610                 if (sym.name.len == 0) { // Anonymous class
   611                     // Anonymous classes in static methods are themselves static;
   612                     // that's why we admit STATIC here.
   613                     mask |= STATIC;
   614                     // JLS: Anonymous classes are final.
   615                     implicit |= FINAL;
   616                 }
   617                 if ((sym.owner.flags_field & STATIC) == 0 &&
   618                     (flags & ENUM) != 0)
   619                     log.error(pos, "enums.must.be.static");
   620             } else if (sym.owner.kind == TYP) {
   621                 mask = MemberClassFlags;
   622                 if (sym.owner.owner.kind == PCK ||
   623                     (sym.owner.flags_field & STATIC) != 0)
   624                     mask |= STATIC;
   625                 else if ((flags & ENUM) != 0)
   626                     log.error(pos, "enums.must.be.static");
   627                 // Nested interfaces and enums are always STATIC (Spec ???)
   628                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   629             } else {
   630                 mask = ClassFlags;
   631             }
   632             // Interfaces are always ABSTRACT
   633             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   635             if ((flags & ENUM) != 0) {
   636                 // enums can't be declared abstract or final
   637                 mask &= ~(ABSTRACT | FINAL);
   638                 implicit |= implicitEnumFinalFlag(tree);
   639             }
   640             // Imply STRICTFP if owner has STRICTFP set.
   641             implicit |= sym.owner.flags_field & STRICTFP;
   642             break;
   643         default:
   644             throw new AssertionError();
   645         }
   646         long illegal = flags & StandardFlags & ~mask;
   647         if (illegal != 0) {
   648             if ((illegal & INTERFACE) != 0) {
   649                 log.error(pos, "intf.not.allowed.here");
   650                 mask |= INTERFACE;
   651             }
   652             else {
   653                 log.error(pos,
   654                           "mod.not.allowed.here", TreeInfo.flagNames(illegal));
   655             }
   656         }
   657         else if ((sym.kind == TYP ||
   658                   // ISSUE: Disallowing abstract&private is no longer appropriate
   659                   // in the presence of inner classes. Should it be deleted here?
   660                   checkDisjoint(pos, flags,
   661                                 ABSTRACT,
   662                                 PRIVATE | STATIC))
   663                  &&
   664                  checkDisjoint(pos, flags,
   665                                ABSTRACT | INTERFACE,
   666                                FINAL | NATIVE | SYNCHRONIZED)
   667                  &&
   668                  checkDisjoint(pos, flags,
   669                                PUBLIC,
   670                                PRIVATE | PROTECTED)
   671                  &&
   672                  checkDisjoint(pos, flags,
   673                                PRIVATE,
   674                                PUBLIC | PROTECTED)
   675                  &&
   676                  checkDisjoint(pos, flags,
   677                                FINAL,
   678                                VOLATILE)
   679                  &&
   680                  (sym.kind == TYP ||
   681                   checkDisjoint(pos, flags,
   682                                 ABSTRACT | NATIVE,
   683                                 STRICTFP))) {
   684             // skip
   685         }
   686         return flags & (mask | ~StandardFlags) | implicit;
   687     }
   690     /** Determine if this enum should be implicitly final.
   691      *
   692      *  If the enum has no specialized enum contants, it is final.
   693      *
   694      *  If the enum does have specialized enum contants, it is
   695      *  <i>not</i> final.
   696      */
   697     private long implicitEnumFinalFlag(JCTree tree) {
   698         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   699         class SpecialTreeVisitor extends JCTree.Visitor {
   700             boolean specialized;
   701             SpecialTreeVisitor() {
   702                 this.specialized = false;
   703             };
   705             public void visitTree(JCTree tree) { /* no-op */ }
   707             public void visitVarDef(JCVariableDecl tree) {
   708                 if ((tree.mods.flags & ENUM) != 0) {
   709                     if (tree.init instanceof JCNewClass &&
   710                         ((JCNewClass) tree.init).def != null) {
   711                         specialized = true;
   712                     }
   713                 }
   714             }
   715         }
   717         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   718         JCClassDecl cdef = (JCClassDecl) tree;
   719         for (JCTree defs: cdef.defs) {
   720             defs.accept(sts);
   721             if (sts.specialized) return 0;
   722         }
   723         return FINAL;
   724     }
   726 /* *************************************************************************
   727  * Type Validation
   728  **************************************************************************/
   730     /** Validate a type expression. That is,
   731      *  check that all type arguments of a parametric type are within
   732      *  their bounds. This must be done in a second phase after type attributon
   733      *  since a class might have a subclass as type parameter bound. E.g:
   734      *
   735      *  class B<A extends C> { ... }
   736      *  class C extends B<C> { ... }
   737      *
   738      *  and we can't make sure that the bound is already attributed because
   739      *  of possible cycles.
   740      */
   741     private Validator validator = new Validator();
   743     /** Visitor method: Validate a type expression, if it is not null, catching
   744      *  and reporting any completion failures.
   745      */
   746     void validate(JCTree tree) {
   747         try {
   748             if (tree != null) tree.accept(validator);
   749         } catch (CompletionFailure ex) {
   750             completionError(tree.pos(), ex);
   751         }
   752     }
   754     /** Visitor method: Validate a list of type expressions.
   755      */
   756     void validate(List<? extends JCTree> trees) {
   757         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   758             validate(l.head);
   759     }
   761     /** Visitor method: Validate a list of type parameters.
   762      */
   763     void validateTypeParams(List<JCTypeParameter> trees) {
   764         for (List<JCTypeParameter> l = trees; l.nonEmpty(); l = l.tail)
   765             validate(l.head);
   766     }
   768     /** A visitor class for type validation.
   769      */
   770     class Validator extends JCTree.Visitor {
   772         public void visitTypeArray(JCArrayTypeTree tree) {
   773             validate(tree.elemtype);
   774         }
   776         public void visitTypeApply(JCTypeApply tree) {
   777             if (tree.type.tag == CLASS) {
   778                 List<Type> formals = tree.type.tsym.type.getTypeArguments();
   779                 List<Type> actuals = tree.type.getTypeArguments();
   780                 List<JCExpression> args = tree.arguments;
   781                 List<Type> forms = formals;
   782                 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
   784                 // For matching pairs of actual argument types `a' and
   785                 // formal type parameters with declared bound `b' ...
   786                 while (args.nonEmpty() && forms.nonEmpty()) {
   787                     validate(args.head);
   789                     // exact type arguments needs to know their
   790                     // bounds (for upper and lower bound
   791                     // calculations).  So we create new TypeVars with
   792                     // bounds substed with actuals.
   793                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   794                                                       formals,
   795                                                       Type.removeBounds(actuals)));
   797                     args = args.tail;
   798                     forms = forms.tail;
   799                 }
   801                 args = tree.arguments;
   802                 List<TypeVar> tvars = tvars_buf.toList();
   803                 while (args.nonEmpty() && tvars.nonEmpty()) {
   804                     // Let the actual arguments know their bound
   805                     args.head.type.withTypeVar(tvars.head);
   806                     args = args.tail;
   807                     tvars = tvars.tail;
   808                 }
   810                 args = tree.arguments;
   811                 tvars = tvars_buf.toList();
   812                 while (args.nonEmpty() && tvars.nonEmpty()) {
   813                     checkExtends(args.head.pos(),
   814                                  args.head.type,
   815                                  tvars.head);
   816                     args = args.tail;
   817                     tvars = tvars.tail;
   818                 }
   820                 // Check that this type is either fully parameterized, or
   821                 // not parameterized at all.
   822                 if (tree.type.getEnclosingType().isRaw())
   823                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
   824                 if (tree.clazz.getTag() == JCTree.SELECT)
   825                     visitSelectInternal((JCFieldAccess)tree.clazz);
   826             }
   827         }
   829         public void visitTypeParameter(JCTypeParameter tree) {
   830             validate(tree.bounds);
   831             checkClassBounds(tree.pos(), tree.type);
   832         }
   834         @Override
   835         public void visitWildcard(JCWildcard tree) {
   836             if (tree.inner != null)
   837                 validate(tree.inner);
   838         }
   840         public void visitSelect(JCFieldAccess tree) {
   841             if (tree.type.tag == CLASS) {
   842                 visitSelectInternal(tree);
   844                 // Check that this type is either fully parameterized, or
   845                 // not parameterized at all.
   846                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
   847                     log.error(tree.pos(), "improperly.formed.type.param.missing");
   848             }
   849         }
   850         public void visitSelectInternal(JCFieldAccess tree) {
   851             if (tree.type.getEnclosingType().tag != CLASS &&
   852                 tree.selected.type.isParameterized()) {
   853                 // The enclosing type is not a class, so we are
   854                 // looking at a static member type.  However, the
   855                 // qualifying expression is parameterized.
   856                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
   857             } else {
   858                 // otherwise validate the rest of the expression
   859                 validate(tree.selected);
   860             }
   861         }
   863         /** Default visitor method: do nothing.
   864          */
   865         public void visitTree(JCTree tree) {
   866         }
   867     }
   869 /* *************************************************************************
   870  * Exception checking
   871  **************************************************************************/
   873     /* The following methods treat classes as sets that contain
   874      * the class itself and all their subclasses
   875      */
   877     /** Is given type a subtype of some of the types in given list?
   878      */
   879     boolean subset(Type t, List<Type> ts) {
   880         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   881             if (types.isSubtype(t, l.head)) return true;
   882         return false;
   883     }
   885     /** Is given type a subtype or supertype of
   886      *  some of the types in given list?
   887      */
   888     boolean intersects(Type t, List<Type> ts) {
   889         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   890             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
   891         return false;
   892     }
   894     /** Add type set to given type list, unless it is a subclass of some class
   895      *  in the list.
   896      */
   897     List<Type> incl(Type t, List<Type> ts) {
   898         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
   899     }
   901     /** Remove type set from type set list.
   902      */
   903     List<Type> excl(Type t, List<Type> ts) {
   904         if (ts.isEmpty()) {
   905             return ts;
   906         } else {
   907             List<Type> ts1 = excl(t, ts.tail);
   908             if (types.isSubtype(ts.head, t)) return ts1;
   909             else if (ts1 == ts.tail) return ts;
   910             else return ts1.prepend(ts.head);
   911         }
   912     }
   914     /** Form the union of two type set lists.
   915      */
   916     List<Type> union(List<Type> ts1, List<Type> ts2) {
   917         List<Type> ts = ts1;
   918         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   919             ts = incl(l.head, ts);
   920         return ts;
   921     }
   923     /** Form the difference of two type lists.
   924      */
   925     List<Type> diff(List<Type> ts1, List<Type> ts2) {
   926         List<Type> ts = ts1;
   927         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   928             ts = excl(l.head, ts);
   929         return ts;
   930     }
   932     /** Form the intersection of two type lists.
   933      */
   934     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
   935         List<Type> ts = List.nil();
   936         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
   937             if (subset(l.head, ts2)) ts = incl(l.head, ts);
   938         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   939             if (subset(l.head, ts1)) ts = incl(l.head, ts);
   940         return ts;
   941     }
   943     /** Is exc an exception symbol that need not be declared?
   944      */
   945     boolean isUnchecked(ClassSymbol exc) {
   946         return
   947             exc.kind == ERR ||
   948             exc.isSubClass(syms.errorType.tsym, types) ||
   949             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
   950     }
   952     /** Is exc an exception type that need not be declared?
   953      */
   954     boolean isUnchecked(Type exc) {
   955         return
   956             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
   957             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
   958             exc.tag == BOT;
   959     }
   961     /** Same, but handling completion failures.
   962      */
   963     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
   964         try {
   965             return isUnchecked(exc);
   966         } catch (CompletionFailure ex) {
   967             completionError(pos, ex);
   968             return true;
   969         }
   970     }
   972     /** Is exc handled by given exception list?
   973      */
   974     boolean isHandled(Type exc, List<Type> handled) {
   975         return isUnchecked(exc) || subset(exc, handled);
   976     }
   978     /** Return all exceptions in thrown list that are not in handled list.
   979      *  @param thrown     The list of thrown exceptions.
   980      *  @param handled    The list of handled exceptions.
   981      */
   982     List<Type> unHandled(List<Type> thrown, List<Type> handled) {
   983         List<Type> unhandled = List.nil();
   984         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
   985             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
   986         return unhandled;
   987     }
   989 /* *************************************************************************
   990  * Overriding/Implementation checking
   991  **************************************************************************/
   993     /** The level of access protection given by a flag set,
   994      *  where PRIVATE is highest and PUBLIC is lowest.
   995      */
   996     static int protection(long flags) {
   997         switch ((short)(flags & AccessFlags)) {
   998         case PRIVATE: return 3;
   999         case PROTECTED: return 1;
  1000         default:
  1001         case PUBLIC: return 0;
  1002         case 0: return 2;
  1006     /** A string describing the access permission given by a flag set.
  1007      *  This always returns a space-separated list of Java Keywords.
  1008      */
  1009     private static String protectionString(long flags) {
  1010         long flags1 = flags & AccessFlags;
  1011         return (flags1 == 0) ? "package" : TreeInfo.flagNames(flags1);
  1014     /** A customized "cannot override" error message.
  1015      *  @param m      The overriding method.
  1016      *  @param other  The overridden method.
  1017      *  @return       An internationalized string.
  1018      */
  1019     static Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1020         String key;
  1021         if ((other.owner.flags() & INTERFACE) == 0)
  1022             key = "cant.override";
  1023         else if ((m.owner.flags() & INTERFACE) == 0)
  1024             key = "cant.implement";
  1025         else
  1026             key = "clashes.with";
  1027         return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
  1030     /** A customized "override" warning message.
  1031      *  @param m      The overriding method.
  1032      *  @param other  The overridden method.
  1033      *  @return       An internationalized string.
  1034      */
  1035     static Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1036         String key;
  1037         if ((other.owner.flags() & INTERFACE) == 0)
  1038             key = "unchecked.override";
  1039         else if ((m.owner.flags() & INTERFACE) == 0)
  1040             key = "unchecked.implement";
  1041         else
  1042             key = "unchecked.clash.with";
  1043         return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
  1046     /** A customized "override" warning message.
  1047      *  @param m      The overriding method.
  1048      *  @param other  The overridden method.
  1049      *  @return       An internationalized string.
  1050      */
  1051     static Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1052         String key;
  1053         if ((other.owner.flags() & INTERFACE) == 0)
  1054             key = "varargs.override";
  1055         else  if ((m.owner.flags() & INTERFACE) == 0)
  1056             key = "varargs.implement";
  1057         else
  1058             key = "varargs.clash.with";
  1059         return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
  1062     /** Check that this method conforms with overridden method 'other'.
  1063      *  where `origin' is the class where checking started.
  1064      *  Complications:
  1065      *  (1) Do not check overriding of synthetic methods
  1066      *      (reason: they might be final).
  1067      *      todo: check whether this is still necessary.
  1068      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1069      *      than the method it implements. Augment the proxy methods with the
  1070      *      undeclared exceptions in this case.
  1071      *  (3) When generics are enabled, admit the case where an interface proxy
  1072      *      has a result type
  1073      *      extended by the result type of the method it implements.
  1074      *      Change the proxies result type to the smaller type in this case.
  1076      *  @param tree         The tree from which positions
  1077      *                      are extracted for errors.
  1078      *  @param m            The overriding method.
  1079      *  @param other        The overridden method.
  1080      *  @param origin       The class of which the overriding method
  1081      *                      is a member.
  1082      */
  1083     void checkOverride(JCTree tree,
  1084                        MethodSymbol m,
  1085                        MethodSymbol other,
  1086                        ClassSymbol origin) {
  1087         // Don't check overriding of synthetic methods or by bridge methods.
  1088         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1089             return;
  1092         // Error if static method overrides instance method (JLS 8.4.6.2).
  1093         if ((m.flags() & STATIC) != 0 &&
  1094                    (other.flags() & STATIC) == 0) {
  1095             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1096                       cannotOverride(m, other));
  1097             return;
  1100         // Error if instance method overrides static or final
  1101         // method (JLS 8.4.6.1).
  1102         if ((other.flags() & FINAL) != 0 ||
  1103                  (m.flags() & STATIC) == 0 &&
  1104                  (other.flags() & STATIC) != 0) {
  1105             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1106                       cannotOverride(m, other),
  1107                       TreeInfo.flagNames(other.flags() & (FINAL | STATIC)));
  1108             return;
  1111         if ((m.owner.flags() & ANNOTATION) != 0) {
  1112             // handled in validateAnnotationMethod
  1113             return;
  1116         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1117         if ((origin.flags() & INTERFACE) == 0 &&
  1118                  protection(m.flags()) > protection(other.flags())) {
  1119             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1120                       cannotOverride(m, other),
  1121                       protectionString(other.flags()));
  1122             return;
  1126         Type mt = types.memberType(origin.type, m);
  1127         Type ot = types.memberType(origin.type, other);
  1128         // Error if overriding result type is different
  1129         // (or, in the case of generics mode, not a subtype) of
  1130         // overridden result type. We have to rename any type parameters
  1131         // before comparing types.
  1132         List<Type> mtvars = mt.getTypeArguments();
  1133         List<Type> otvars = ot.getTypeArguments();
  1134         Type mtres = mt.getReturnType();
  1135         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1137         overrideWarner.warned = false;
  1138         boolean resultTypesOK =
  1139             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1140         if (!resultTypesOK) {
  1141             if (!source.allowCovariantReturns() &&
  1142                 m.owner != origin &&
  1143                 m.owner.isSubClass(other.owner, types)) {
  1144                 // allow limited interoperability with covariant returns
  1145             } else {
  1146                 typeError(TreeInfo.diagnosticPositionFor(m, tree),
  1147                           JCDiagnostic.fragment("override.incompatible.ret",
  1148                                          cannotOverride(m, other)),
  1149                           mtres, otres);
  1150                 return;
  1152         } else if (overrideWarner.warned) {
  1153             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1154                           "prob.found.req",
  1155                           JCDiagnostic.fragment("override.unchecked.ret",
  1156                                               uncheckedOverrides(m, other)),
  1157                           mtres, otres);
  1160         // Error if overriding method throws an exception not reported
  1161         // by overridden method.
  1162         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1163         List<Type> unhandled = unHandled(mt.getThrownTypes(), otthrown);
  1164         if (unhandled.nonEmpty()) {
  1165             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1166                       "override.meth.doesnt.throw",
  1167                       cannotOverride(m, other),
  1168                       unhandled.head);
  1169             return;
  1172         // Optional warning if varargs don't agree
  1173         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1174             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1175             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1176                         ((m.flags() & Flags.VARARGS) != 0)
  1177                         ? "override.varargs.missing"
  1178                         : "override.varargs.extra",
  1179                         varargsOverrides(m, other));
  1182         // Warn if instance method overrides bridge method (compiler spec ??)
  1183         if ((other.flags() & BRIDGE) != 0) {
  1184             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1185                         uncheckedOverrides(m, other));
  1188         // Warn if a deprecated method overridden by a non-deprecated one.
  1189         if ((other.flags() & DEPRECATED) != 0
  1190             && (m.flags() & DEPRECATED) == 0
  1191             && m.outermostClass() != other.outermostClass()
  1192             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1193             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1196     // where
  1197         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1198             // If the method, m, is defined in an interface, then ignore the issue if the method
  1199             // is only inherited via a supertype and also implemented in the supertype,
  1200             // because in that case, we will rediscover the issue when examining the method
  1201             // in the supertype.
  1202             // If the method, m, is not defined in an interface, then the only time we need to
  1203             // address the issue is when the method is the supertype implemementation: any other
  1204             // case, we will have dealt with when examining the supertype classes
  1205             ClassSymbol mc = m.enclClass();
  1206             Type st = types.supertype(origin.type);
  1207             if (st.tag != CLASS)
  1208                 return true;
  1209             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1211             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1212                 List<Type> intfs = types.interfaces(origin.type);
  1213                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1215             else
  1216                 return (stimpl != m);
  1220     // used to check if there were any unchecked conversions
  1221     Warner overrideWarner = new Warner();
  1223     /** Check that a class does not inherit two concrete methods
  1224      *  with the same signature.
  1225      *  @param pos          Position to be used for error reporting.
  1226      *  @param site         The class type to be checked.
  1227      */
  1228     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1229         Type sup = types.supertype(site);
  1230         if (sup.tag != CLASS) return;
  1232         for (Type t1 = sup;
  1233              t1.tsym.type.isParameterized();
  1234              t1 = types.supertype(t1)) {
  1235             for (Scope.Entry e1 = t1.tsym.members().elems;
  1236                  e1 != null;
  1237                  e1 = e1.sibling) {
  1238                 Symbol s1 = e1.sym;
  1239                 if (s1.kind != MTH ||
  1240                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1241                     !s1.isInheritedIn(site.tsym, types) ||
  1242                     ((MethodSymbol)s1).implementation(site.tsym,
  1243                                                       types,
  1244                                                       true) != s1)
  1245                     continue;
  1246                 Type st1 = types.memberType(t1, s1);
  1247                 int s1ArgsLength = st1.getParameterTypes().length();
  1248                 if (st1 == s1.type) continue;
  1250                 for (Type t2 = sup;
  1251                      t2.tag == CLASS;
  1252                      t2 = types.supertype(t2)) {
  1253                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1254                          e2.scope != null;
  1255                          e2 = e2.next()) {
  1256                         Symbol s2 = e2.sym;
  1257                         if (s2 == s1 ||
  1258                             s2.kind != MTH ||
  1259                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1260                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1261                             !s2.isInheritedIn(site.tsym, types) ||
  1262                             ((MethodSymbol)s2).implementation(site.tsym,
  1263                                                               types,
  1264                                                               true) != s2)
  1265                             continue;
  1266                         Type st2 = types.memberType(t2, s2);
  1267                         if (types.overrideEquivalent(st1, st2))
  1268                             log.error(pos, "concrete.inheritance.conflict",
  1269                                       s1, t1, s2, t2, sup);
  1276     /** Check that classes (or interfaces) do not each define an abstract
  1277      *  method with same name and arguments but incompatible return types.
  1278      *  @param pos          Position to be used for error reporting.
  1279      *  @param t1           The first argument type.
  1280      *  @param t2           The second argument type.
  1281      */
  1282     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1283                                             Type t1,
  1284                                             Type t2) {
  1285         return checkCompatibleAbstracts(pos, t1, t2,
  1286                                         types.makeCompoundType(t1, t2));
  1289     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1290                                             Type t1,
  1291                                             Type t2,
  1292                                             Type site) {
  1293         Symbol sym = firstIncompatibility(t1, t2, site);
  1294         if (sym != null) {
  1295             log.error(pos, "types.incompatible.diff.ret",
  1296                       t1, t2, sym.name +
  1297                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1298             return false;
  1300         return true;
  1303     /** Return the first method which is defined with same args
  1304      *  but different return types in two given interfaces, or null if none
  1305      *  exists.
  1306      *  @param t1     The first type.
  1307      *  @param t2     The second type.
  1308      *  @param site   The most derived type.
  1309      *  @returns symbol from t2 that conflicts with one in t1.
  1310      */
  1311     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1312         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1313         closure(t1, interfaces1);
  1314         Map<TypeSymbol,Type> interfaces2;
  1315         if (t1 == t2)
  1316             interfaces2 = interfaces1;
  1317         else
  1318             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1320         for (Type t3 : interfaces1.values()) {
  1321             for (Type t4 : interfaces2.values()) {
  1322                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1323                 if (s != null) return s;
  1326         return null;
  1329     /** Compute all the supertypes of t, indexed by type symbol. */
  1330     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1331         if (t.tag != CLASS) return;
  1332         if (typeMap.put(t.tsym, t) == null) {
  1333             closure(types.supertype(t), typeMap);
  1334             for (Type i : types.interfaces(t))
  1335                 closure(i, typeMap);
  1339     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1340     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1341         if (t.tag != CLASS) return;
  1342         if (typesSkip.get(t.tsym) != null) return;
  1343         if (typeMap.put(t.tsym, t) == null) {
  1344             closure(types.supertype(t), typesSkip, typeMap);
  1345             for (Type i : types.interfaces(t))
  1346                 closure(i, typesSkip, typeMap);
  1350     /** Return the first method in t2 that conflicts with a method from t1. */
  1351     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1352         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1353             Symbol s1 = e1.sym;
  1354             Type st1 = null;
  1355             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1356             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1357             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1358             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1359                 Symbol s2 = e2.sym;
  1360                 if (s1 == s2) continue;
  1361                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1362                 if (st1 == null) st1 = types.memberType(t1, s1);
  1363                 Type st2 = types.memberType(t2, s2);
  1364                 if (types.overrideEquivalent(st1, st2)) {
  1365                     List<Type> tvars1 = st1.getTypeArguments();
  1366                     List<Type> tvars2 = st2.getTypeArguments();
  1367                     Type rt1 = st1.getReturnType();
  1368                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1369                     boolean compat =
  1370                         types.isSameType(rt1, rt2) ||
  1371                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1372                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1373                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1374                          checkCommonOverriderIn(s1,s2,site);
  1375                     if (!compat) return s2;
  1379         return null;
  1381     //WHERE
  1382     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1383         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1384         Type st1 = types.memberType(site, s1);
  1385         Type st2 = types.memberType(site, s2);
  1386         closure(site, supertypes);
  1387         for (Type t : supertypes.values()) {
  1388             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1389                 Symbol s3 = e.sym;
  1390                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1391                 Type st3 = types.memberType(site,s3);
  1392                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1393                     if (s3.owner == site.tsym) {
  1394                         return true;
  1396                     List<Type> tvars1 = st1.getTypeArguments();
  1397                     List<Type> tvars2 = st2.getTypeArguments();
  1398                     List<Type> tvars3 = st3.getTypeArguments();
  1399                     Type rt1 = st1.getReturnType();
  1400                     Type rt2 = st2.getReturnType();
  1401                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1402                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1403                     boolean compat =
  1404                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1405                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1406                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1407                     if (compat)
  1408                         return true;
  1412         return false;
  1415     /** Check that a given method conforms with any method it overrides.
  1416      *  @param tree         The tree from which positions are extracted
  1417      *                      for errors.
  1418      *  @param m            The overriding method.
  1419      */
  1420     void checkOverride(JCTree tree, MethodSymbol m) {
  1421         ClassSymbol origin = (ClassSymbol)m.owner;
  1422         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1423             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1424                 log.error(tree.pos(), "enum.no.finalize");
  1425                 return;
  1427         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1428              t = types.supertype(t)) {
  1429             TypeSymbol c = t.tsym;
  1430             Scope.Entry e = c.members().lookup(m.name);
  1431             while (e.scope != null) {
  1432                 if (m.overrides(e.sym, origin, types, false))
  1433                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1434                 else if (e.sym.isInheritedIn(origin, types) && !m.isConstructor()) {
  1435                     Type er1 = m.erasure(types);
  1436                     Type er2 = e.sym.erasure(types);
  1437                     if (types.isSameType(er1,er2)) {
  1438                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1439                                     "name.clash.same.erasure.no.override",
  1440                                     m, m.location(),
  1441                                     e.sym, e.sym.location());
  1444                 e = e.next();
  1449     /** Check that all abstract members of given class have definitions.
  1450      *  @param pos          Position to be used for error reporting.
  1451      *  @param c            The class.
  1452      */
  1453     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1454         try {
  1455             MethodSymbol undef = firstUndef(c, c);
  1456             if (undef != null) {
  1457                 if ((c.flags() & ENUM) != 0 &&
  1458                     types.supertype(c.type).tsym == syms.enumSym &&
  1459                     (c.flags() & FINAL) == 0) {
  1460                     // add the ABSTRACT flag to an enum
  1461                     c.flags_field |= ABSTRACT;
  1462                 } else {
  1463                     MethodSymbol undef1 =
  1464                         new MethodSymbol(undef.flags(), undef.name,
  1465                                          types.memberType(c.type, undef), undef.owner);
  1466                     log.error(pos, "does.not.override.abstract",
  1467                               c, undef1, undef1.location());
  1470         } catch (CompletionFailure ex) {
  1471             completionError(pos, ex);
  1474 //where
  1475         /** Return first abstract member of class `c' that is not defined
  1476          *  in `impl', null if there is none.
  1477          */
  1478         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1479             MethodSymbol undef = null;
  1480             // Do not bother to search in classes that are not abstract,
  1481             // since they cannot have abstract members.
  1482             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1483                 Scope s = c.members();
  1484                 for (Scope.Entry e = s.elems;
  1485                      undef == null && e != null;
  1486                      e = e.sibling) {
  1487                     if (e.sym.kind == MTH &&
  1488                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1489                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1490                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1491                         if (implmeth == null || implmeth == absmeth)
  1492                             undef = absmeth;
  1495                 if (undef == null) {
  1496                     Type st = types.supertype(c.type);
  1497                     if (st.tag == CLASS)
  1498                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1500                 for (List<Type> l = types.interfaces(c.type);
  1501                      undef == null && l.nonEmpty();
  1502                      l = l.tail) {
  1503                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1506             return undef;
  1509     /** Check for cyclic references. Issue an error if the
  1510      *  symbol of the type referred to has a LOCKED flag set.
  1512      *  @param pos      Position to be used for error reporting.
  1513      *  @param t        The type referred to.
  1514      */
  1515     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1516         checkNonCyclicInternal(pos, t);
  1520     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1521         checkNonCyclic1(pos, t, new HashSet<TypeVar>());
  1524     private void checkNonCyclic1(DiagnosticPosition pos, Type t, Set<TypeVar> seen) {
  1525         final TypeVar tv;
  1526         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1527             return;
  1528         if (seen.contains(t)) {
  1529             tv = (TypeVar)t;
  1530             tv.bound = new ErrorType();
  1531             log.error(pos, "cyclic.inheritance", t);
  1532         } else if (t.tag == TYPEVAR) {
  1533             tv = (TypeVar)t;
  1534             seen.add(tv);
  1535             for (Type b : types.getBounds(tv))
  1536                 checkNonCyclic1(pos, b, seen);
  1540     /** Check for cyclic references. Issue an error if the
  1541      *  symbol of the type referred to has a LOCKED flag set.
  1543      *  @param pos      Position to be used for error reporting.
  1544      *  @param t        The type referred to.
  1545      *  @returns        True if the check completed on all attributed classes
  1546      */
  1547     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1548         boolean complete = true; // was the check complete?
  1549         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1550         Symbol c = t.tsym;
  1551         if ((c.flags_field & ACYCLIC) != 0) return true;
  1553         if ((c.flags_field & LOCKED) != 0) {
  1554             noteCyclic(pos, (ClassSymbol)c);
  1555         } else if (!c.type.isErroneous()) {
  1556             try {
  1557                 c.flags_field |= LOCKED;
  1558                 if (c.type.tag == CLASS) {
  1559                     ClassType clazz = (ClassType)c.type;
  1560                     if (clazz.interfaces_field != null)
  1561                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1562                             complete &= checkNonCyclicInternal(pos, l.head);
  1563                     if (clazz.supertype_field != null) {
  1564                         Type st = clazz.supertype_field;
  1565                         if (st != null && st.tag == CLASS)
  1566                             complete &= checkNonCyclicInternal(pos, st);
  1568                     if (c.owner.kind == TYP)
  1569                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1571             } finally {
  1572                 c.flags_field &= ~LOCKED;
  1575         if (complete)
  1576             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1577         if (complete) c.flags_field |= ACYCLIC;
  1578         return complete;
  1581     /** Note that we found an inheritance cycle. */
  1582     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1583         log.error(pos, "cyclic.inheritance", c);
  1584         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1585             l.head = new ErrorType((ClassSymbol)l.head.tsym);
  1586         Type st = types.supertype(c.type);
  1587         if (st.tag == CLASS)
  1588             ((ClassType)c.type).supertype_field = new ErrorType((ClassSymbol)st.tsym);
  1589         c.type = new ErrorType(c);
  1590         c.flags_field |= ACYCLIC;
  1593     /** Check that all methods which implement some
  1594      *  method conform to the method they implement.
  1595      *  @param tree         The class definition whose members are checked.
  1596      */
  1597     void checkImplementations(JCClassDecl tree) {
  1598         checkImplementations(tree, tree.sym);
  1600 //where
  1601         /** Check that all methods which implement some
  1602          *  method in `ic' conform to the method they implement.
  1603          */
  1604         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1605             ClassSymbol origin = tree.sym;
  1606             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1607                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1608                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1609                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1610                         if (e.sym.kind == MTH &&
  1611                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1612                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1613                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1614                             if (implmeth != null && implmeth != absmeth &&
  1615                                 (implmeth.owner.flags() & INTERFACE) ==
  1616                                 (origin.flags() & INTERFACE)) {
  1617                                 // don't check if implmeth is in a class, yet
  1618                                 // origin is an interface. This case arises only
  1619                                 // if implmeth is declared in Object. The reason is
  1620                                 // that interfaces really don't inherit from
  1621                                 // Object it's just that the compiler represents
  1622                                 // things that way.
  1623                                 checkOverride(tree, implmeth, absmeth, origin);
  1631     /** Check that all abstract methods implemented by a class are
  1632      *  mutually compatible.
  1633      *  @param pos          Position to be used for error reporting.
  1634      *  @param c            The class whose interfaces are checked.
  1635      */
  1636     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1637         List<Type> supertypes = types.interfaces(c);
  1638         Type supertype = types.supertype(c);
  1639         if (supertype.tag == CLASS &&
  1640             (supertype.tsym.flags() & ABSTRACT) != 0)
  1641             supertypes = supertypes.prepend(supertype);
  1642         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1643             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1644                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1645                 return;
  1646             for (List<Type> m = supertypes; m != l; m = m.tail)
  1647                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1648                     return;
  1650         checkCompatibleConcretes(pos, c);
  1653     /** Check that class c does not implement directly or indirectly
  1654      *  the same parameterized interface with two different argument lists.
  1655      *  @param pos          Position to be used for error reporting.
  1656      *  @param type         The type whose interfaces are checked.
  1657      */
  1658     void checkClassBounds(DiagnosticPosition pos, Type type) {
  1659         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1661 //where
  1662         /** Enter all interfaces of type `type' into the hash table `seensofar'
  1663          *  with their class symbol as key and their type as value. Make
  1664          *  sure no class is entered with two different types.
  1665          */
  1666         void checkClassBounds(DiagnosticPosition pos,
  1667                               Map<TypeSymbol,Type> seensofar,
  1668                               Type type) {
  1669             if (type.isErroneous()) return;
  1670             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1671                 Type it = l.head;
  1672                 Type oldit = seensofar.put(it.tsym, it);
  1673                 if (oldit != null) {
  1674                     List<Type> oldparams = oldit.allparams();
  1675                     List<Type> newparams = it.allparams();
  1676                     if (!types.containsTypeEquivalent(oldparams, newparams))
  1677                         log.error(pos, "cant.inherit.diff.arg",
  1678                                   it.tsym, Type.toString(oldparams),
  1679                                   Type.toString(newparams));
  1681                 checkClassBounds(pos, seensofar, it);
  1683             Type st = types.supertype(type);
  1684             if (st != null) checkClassBounds(pos, seensofar, st);
  1687     /** Enter interface into into set.
  1688      *  If it existed already, issue a "repeated interface" error.
  1689      */
  1690     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1691         if (its.contains(it))
  1692             log.error(pos, "repeated.interface");
  1693         else {
  1694             its.add(it);
  1698 /* *************************************************************************
  1699  * Check annotations
  1700  **************************************************************************/
  1702     /** Annotation types are restricted to primitives, String, an
  1703      *  enum, an annotation, Class, Class<?>, Class<? extends
  1704      *  Anything>, arrays of the preceding.
  1705      */
  1706     void validateAnnotationType(JCTree restype) {
  1707         // restype may be null if an error occurred, so don't bother validating it
  1708         if (restype != null) {
  1709             validateAnnotationType(restype.pos(), restype.type);
  1713     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1714         if (type.isPrimitive()) return;
  1715         if (types.isSameType(type, syms.stringType)) return;
  1716         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1717         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1718         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1719         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1720             validateAnnotationType(pos, types.elemtype(type));
  1721             return;
  1723         log.error(pos, "invalid.annotation.member.type");
  1726     /**
  1727      * "It is also a compile-time error if any method declared in an
  1728      * annotation type has a signature that is override-equivalent to
  1729      * that of any public or protected method declared in class Object
  1730      * or in the interface annotation.Annotation."
  1732      * @jls3 9.6 Annotation Types
  1733      */
  1734     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1735         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1736             Scope s = sup.tsym.members();
  1737             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1738                 if (e.sym.kind == MTH &&
  1739                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1740                     types.overrideEquivalent(m.type, e.sym.type))
  1741                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1746     /** Check the annotations of a symbol.
  1747      */
  1748     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1749         if (skipAnnotations) return;
  1750         for (JCAnnotation a : annotations)
  1751             validateAnnotation(a, s);
  1754     /** Check an annotation of a symbol.
  1755      */
  1756     public void validateAnnotation(JCAnnotation a, Symbol s) {
  1757         validateAnnotation(a);
  1759         if (!annotationApplicable(a, s))
  1760             log.error(a.pos(), "annotation.type.not.applicable");
  1762         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1763             if (!isOverrider(s))
  1764                 log.error(a.pos(), "method.does.not.override.superclass");
  1768     /** Is s a method symbol that overrides a method in a superclass? */
  1769     boolean isOverrider(Symbol s) {
  1770         if (s.kind != MTH || s.isStatic())
  1771             return false;
  1772         MethodSymbol m = (MethodSymbol)s;
  1773         TypeSymbol owner = (TypeSymbol)m.owner;
  1774         for (Type sup : types.closure(owner.type)) {
  1775             if (sup == owner.type)
  1776                 continue; // skip "this"
  1777             Scope scope = sup.tsym.members();
  1778             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  1779                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  1780                     return true;
  1783         return false;
  1786     /** Is the annotation applicable to the symbol? */
  1787     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  1788         Attribute.Compound atTarget =
  1789             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1790         if (atTarget == null) return true;
  1791         Attribute atValue = atTarget.member(names.value);
  1792         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  1793         Attribute.Array arr = (Attribute.Array) atValue;
  1794         for (Attribute app : arr.values) {
  1795             if (!(app instanceof Attribute.Enum)) return true; // recovery
  1796             Attribute.Enum e = (Attribute.Enum) app;
  1797             if (e.value.name == names.TYPE)
  1798                 { if (s.kind == TYP) return true; }
  1799             else if (e.value.name == names.FIELD)
  1800                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  1801             else if (e.value.name == names.METHOD)
  1802                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  1803             else if (e.value.name == names.PARAMETER)
  1804                 { if (s.kind == VAR &&
  1805                       s.owner.kind == MTH &&
  1806                       (s.flags() & PARAMETER) != 0)
  1807                     return true;
  1809             else if (e.value.name == names.CONSTRUCTOR)
  1810                 { if (s.kind == MTH && s.isConstructor()) return true; }
  1811             else if (e.value.name == names.LOCAL_VARIABLE)
  1812                 { if (s.kind == VAR && s.owner.kind == MTH &&
  1813                       (s.flags() & PARAMETER) == 0)
  1814                     return true;
  1816             else if (e.value.name == names.ANNOTATION_TYPE)
  1817                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  1818                     return true;
  1820             else if (e.value.name == names.PACKAGE)
  1821                 { if (s.kind == PCK) return true; }
  1822             else
  1823                 return true; // recovery
  1825         return false;
  1828     /** Check an annotation value.
  1829      */
  1830     public void validateAnnotation(JCAnnotation a) {
  1831         if (a.type.isErroneous()) return;
  1833         // collect an inventory of the members
  1834         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
  1835         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  1836              e != null;
  1837              e = e.sibling)
  1838             if (e.sym.kind == MTH)
  1839                 members.add((MethodSymbol) e.sym);
  1841         // count them off as they're annotated
  1842         for (JCTree arg : a.args) {
  1843             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  1844             JCAssign assign = (JCAssign) arg;
  1845             Symbol m = TreeInfo.symbol(assign.lhs);
  1846             if (m == null || m.type.isErroneous()) continue;
  1847             if (!members.remove(m))
  1848                 log.error(arg.pos(), "duplicate.annotation.member.value",
  1849                           m.name, a.type);
  1850             if (assign.rhs.getTag() == ANNOTATION)
  1851                 validateAnnotation((JCAnnotation)assign.rhs);
  1854         // all the remaining ones better have default values
  1855         for (MethodSymbol m : members)
  1856             if (m.defaultValue == null && !m.type.isErroneous())
  1857                 log.error(a.pos(), "annotation.missing.default.value",
  1858                           a.type, m.name);
  1860         // special case: java.lang.annotation.Target must not have
  1861         // repeated values in its value member
  1862         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  1863             a.args.tail == null)
  1864             return;
  1866         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  1867         JCAssign assign = (JCAssign) a.args.head;
  1868         Symbol m = TreeInfo.symbol(assign.lhs);
  1869         if (m.name != names.value) return;
  1870         JCTree rhs = assign.rhs;
  1871         if (rhs.getTag() != JCTree.NEWARRAY) return;
  1872         JCNewArray na = (JCNewArray) rhs;
  1873         Set<Symbol> targets = new HashSet<Symbol>();
  1874         for (JCTree elem : na.elems) {
  1875             if (!targets.add(TreeInfo.symbol(elem))) {
  1876                 log.error(elem.pos(), "repeated.annotation.target");
  1881     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  1882         if (allowAnnotations &&
  1883             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  1884             (s.flags() & DEPRECATED) != 0 &&
  1885             !syms.deprecatedType.isErroneous() &&
  1886             s.attribute(syms.deprecatedType.tsym) == null) {
  1887             log.warning(pos, "missing.deprecated.annotation");
  1891 /* *************************************************************************
  1892  * Check for recursive annotation elements.
  1893  **************************************************************************/
  1895     /** Check for cycles in the graph of annotation elements.
  1896      */
  1897     void checkNonCyclicElements(JCClassDecl tree) {
  1898         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  1899         assert (tree.sym.flags_field & LOCKED) == 0;
  1900         try {
  1901             tree.sym.flags_field |= LOCKED;
  1902             for (JCTree def : tree.defs) {
  1903                 if (def.getTag() != JCTree.METHODDEF) continue;
  1904                 JCMethodDecl meth = (JCMethodDecl)def;
  1905                 checkAnnotationResType(meth.pos(), meth.restype.type);
  1907         } finally {
  1908             tree.sym.flags_field &= ~LOCKED;
  1909             tree.sym.flags_field |= ACYCLIC_ANN;
  1913     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  1914         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  1915             return;
  1916         if ((tsym.flags_field & LOCKED) != 0) {
  1917             log.error(pos, "cyclic.annotation.element");
  1918             return;
  1920         try {
  1921             tsym.flags_field |= LOCKED;
  1922             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  1923                 Symbol s = e.sym;
  1924                 if (s.kind != Kinds.MTH)
  1925                     continue;
  1926                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  1928         } finally {
  1929             tsym.flags_field &= ~LOCKED;
  1930             tsym.flags_field |= ACYCLIC_ANN;
  1934     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  1935         switch (type.tag) {
  1936         case TypeTags.CLASS:
  1937             if ((type.tsym.flags() & ANNOTATION) != 0)
  1938                 checkNonCyclicElementsInternal(pos, type.tsym);
  1939             break;
  1940         case TypeTags.ARRAY:
  1941             checkAnnotationResType(pos, types.elemtype(type));
  1942             break;
  1943         default:
  1944             break; // int etc
  1948 /* *************************************************************************
  1949  * Check for cycles in the constructor call graph.
  1950  **************************************************************************/
  1952     /** Check for cycles in the graph of constructors calling other
  1953      *  constructors.
  1954      */
  1955     void checkCyclicConstructors(JCClassDecl tree) {
  1956         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  1958         // enter each constructor this-call into the map
  1959         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  1960             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  1961             if (app == null) continue;
  1962             JCMethodDecl meth = (JCMethodDecl) l.head;
  1963             if (TreeInfo.name(app.meth) == names._this) {
  1964                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  1965             } else {
  1966                 meth.sym.flags_field |= ACYCLIC;
  1970         // Check for cycles in the map
  1971         Symbol[] ctors = new Symbol[0];
  1972         ctors = callMap.keySet().toArray(ctors);
  1973         for (Symbol caller : ctors) {
  1974             checkCyclicConstructor(tree, caller, callMap);
  1978     /** Look in the map to see if the given constructor is part of a
  1979      *  call cycle.
  1980      */
  1981     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  1982                                         Map<Symbol,Symbol> callMap) {
  1983         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  1984             if ((ctor.flags_field & LOCKED) != 0) {
  1985                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  1986                           "recursive.ctor.invocation");
  1987             } else {
  1988                 ctor.flags_field |= LOCKED;
  1989                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  1990                 ctor.flags_field &= ~LOCKED;
  1992             ctor.flags_field |= ACYCLIC;
  1996 /* *************************************************************************
  1997  * Miscellaneous
  1998  **************************************************************************/
  2000     /**
  2001      * Return the opcode of the operator but emit an error if it is an
  2002      * error.
  2003      * @param pos        position for error reporting.
  2004      * @param operator   an operator
  2005      * @param tag        a tree tag
  2006      * @param left       type of left hand side
  2007      * @param right      type of right hand side
  2008      */
  2009     int checkOperator(DiagnosticPosition pos,
  2010                        OperatorSymbol operator,
  2011                        int tag,
  2012                        Type left,
  2013                        Type right) {
  2014         if (operator.opcode == ByteCodes.error) {
  2015             log.error(pos,
  2016                       "operator.cant.be.applied",
  2017                       treeinfo.operatorName(tag),
  2018                       left + "," + right);
  2020         return operator.opcode;
  2024     /**
  2025      *  Check for division by integer constant zero
  2026      *  @param pos           Position for error reporting.
  2027      *  @param operator      The operator for the expression
  2028      *  @param operand       The right hand operand for the expression
  2029      */
  2030     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2031         if (operand.constValue() != null
  2032             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  2033             && operand.tag <= LONG
  2034             && ((Number) (operand.constValue())).longValue() == 0) {
  2035             int opc = ((OperatorSymbol)operator).opcode;
  2036             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2037                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2038                 log.warning(pos, "div.zero");
  2043     /**
  2044      * Check for empty statements after if
  2045      */
  2046     void checkEmptyIf(JCIf tree) {
  2047         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2048             log.warning(tree.thenpart.pos(), "empty.if");
  2051     /** Check that symbol is unique in given scope.
  2052      *  @param pos           Position for error reporting.
  2053      *  @param sym           The symbol.
  2054      *  @param s             The scope.
  2055      */
  2056     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2057         if (sym.type.isErroneous())
  2058             return true;
  2059         if (sym.owner.name == names.any) return false;
  2060         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2061             if (sym != e.sym &&
  2062                 sym.kind == e.sym.kind &&
  2063                 sym.name != names.error &&
  2064                 (sym.kind != MTH || types.overrideEquivalent(sym.type, e.sym.type))) {
  2065                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2066                     varargsDuplicateError(pos, sym, e.sym);
  2067                 else
  2068                     duplicateError(pos, e.sym);
  2069                 return false;
  2072         return true;
  2075     /** Check that single-type import is not already imported or top-level defined,
  2076      *  but make an exception for two single-type imports which denote the same type.
  2077      *  @param pos           Position for error reporting.
  2078      *  @param sym           The symbol.
  2079      *  @param s             The scope
  2080      */
  2081     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2082         return checkUniqueImport(pos, sym, s, false);
  2085     /** Check that static single-type import is not already imported or top-level defined,
  2086      *  but make an exception for two single-type imports which denote the same type.
  2087      *  @param pos           Position for error reporting.
  2088      *  @param sym           The symbol.
  2089      *  @param s             The scope
  2090      *  @param staticImport  Whether or not this was a static import
  2091      */
  2092     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2093         return checkUniqueImport(pos, sym, s, true);
  2096     /** Check that single-type import is not already imported or top-level defined,
  2097      *  but make an exception for two single-type imports which denote the same type.
  2098      *  @param pos           Position for error reporting.
  2099      *  @param sym           The symbol.
  2100      *  @param s             The scope.
  2101      *  @param staticImport  Whether or not this was a static import
  2102      */
  2103     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2104         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2105             // is encountered class entered via a class declaration?
  2106             boolean isClassDecl = e.scope == s;
  2107             if ((isClassDecl || sym != e.sym) &&
  2108                 sym.kind == e.sym.kind &&
  2109                 sym.name != names.error) {
  2110                 if (!e.sym.type.isErroneous()) {
  2111                     String what = e.sym.toString();
  2112                     if (!isClassDecl) {
  2113                         if (staticImport)
  2114                             log.error(pos, "already.defined.static.single.import", what);
  2115                         else
  2116                             log.error(pos, "already.defined.single.import", what);
  2118                     else if (sym != e.sym)
  2119                         log.error(pos, "already.defined.this.unit", what);
  2121                 return false;
  2124         return true;
  2127     /** Check that a qualified name is in canonical form (for import decls).
  2128      */
  2129     public void checkCanonical(JCTree tree) {
  2130         if (!isCanonical(tree))
  2131             log.error(tree.pos(), "import.requires.canonical",
  2132                       TreeInfo.symbol(tree));
  2134         // where
  2135         private boolean isCanonical(JCTree tree) {
  2136             while (tree.getTag() == JCTree.SELECT) {
  2137                 JCFieldAccess s = (JCFieldAccess) tree;
  2138                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2139                     return false;
  2140                 tree = s.selected;
  2142             return true;
  2145     private class ConversionWarner extends Warner {
  2146         final String key;
  2147         final Type found;
  2148         final Type expected;
  2149         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2150             super(pos);
  2151             this.key = key;
  2152             this.found = found;
  2153             this.expected = expected;
  2156         public void warnUnchecked() {
  2157             boolean warned = this.warned;
  2158             super.warnUnchecked();
  2159             if (warned) return; // suppress redundant diagnostics
  2160             Object problem = JCDiagnostic.fragment(key);
  2161             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2165     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2166         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2169     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2170         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial