src/share/classes/com/sun/tools/javac/comp/Check.java

Wed, 02 Jul 2008 12:56:02 -0700

author
xdono
date
Wed, 02 Jul 2008 12:56:02 -0700
changeset 54
eaf608c64fec
parent 42
f7e64b33d5a4
child 62
07c916ecfc71
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

     1 /*
     2  * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Sun designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Sun in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
    23  * have any questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 /** Type checking helper class for the attribution phase.
    49  *
    50  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
    51  *  you write code that depends on this, you do so at your own risk.
    52  *  This code and its internal interfaces are subject to change or
    53  *  deletion without notice.</b>
    54  */
    55 public class Check {
    56     protected static final Context.Key<Check> checkKey =
    57         new Context.Key<Check>();
    59     private final Name.Table names;
    60     private final Log log;
    61     private final Symtab syms;
    62     private final Infer infer;
    63     private final Target target;
    64     private final Source source;
    65     private final Types types;
    66     private final boolean skipAnnotations;
    67     private final TreeInfo treeinfo;
    69     // The set of lint options currently in effect. It is initialized
    70     // from the context, and then is set/reset as needed by Attr as it
    71     // visits all the various parts of the trees during attribution.
    72     private Lint lint;
    74     public static Check instance(Context context) {
    75         Check instance = context.get(checkKey);
    76         if (instance == null)
    77             instance = new Check(context);
    78         return instance;
    79     }
    81     protected Check(Context context) {
    82         context.put(checkKey, this);
    84         names = Name.Table.instance(context);
    85         log = Log.instance(context);
    86         syms = Symtab.instance(context);
    87         infer = Infer.instance(context);
    88         this.types = Types.instance(context);
    89         Options options = Options.instance(context);
    90         target = Target.instance(context);
    91         source = Source.instance(context);
    92         lint = Lint.instance(context);
    93         treeinfo = TreeInfo.instance(context);
    95         Source source = Source.instance(context);
    96         allowGenerics = source.allowGenerics();
    97         allowAnnotations = source.allowAnnotations();
    98         complexInference = options.get("-complexinference") != null;
    99         skipAnnotations = options.get("skipAnnotations") != null;
   101         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   102         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   104         deprecationHandler = new MandatoryWarningHandler(log,verboseDeprecated, "deprecated");
   105         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked, "unchecked");
   106     }
   108     /** Switch: generics enabled?
   109      */
   110     boolean allowGenerics;
   112     /** Switch: annotations enabled?
   113      */
   114     boolean allowAnnotations;
   116     /** Switch: -complexinference option set?
   117      */
   118     boolean complexInference;
   120     /** A table mapping flat names of all compiled classes in this run to their
   121      *  symbols; maintained from outside.
   122      */
   123     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   125     /** A handler for messages about deprecated usage.
   126      */
   127     private MandatoryWarningHandler deprecationHandler;
   129     /** A handler for messages about unchecked or unsafe usage.
   130      */
   131     private MandatoryWarningHandler uncheckedHandler;
   134 /* *************************************************************************
   135  * Errors and Warnings
   136  **************************************************************************/
   138     Lint setLint(Lint newLint) {
   139         Lint prev = lint;
   140         lint = newLint;
   141         return prev;
   142     }
   144     /** Warn about deprecated symbol.
   145      *  @param pos        Position to be used for error reporting.
   146      *  @param sym        The deprecated symbol.
   147      */
   148     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   149         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   150             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   151     }
   153     /** Warn about unchecked operation.
   154      *  @param pos        Position to be used for error reporting.
   155      *  @param msg        A string describing the problem.
   156      */
   157     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   158         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   159             uncheckedHandler.report(pos, msg, args);
   160     }
   162     /**
   163      * Report any deferred diagnostics.
   164      */
   165     public void reportDeferredDiagnostics() {
   166         deprecationHandler.reportDeferredDiagnostic();
   167         uncheckedHandler.reportDeferredDiagnostic();
   168     }
   171     /** Report a failure to complete a class.
   172      *  @param pos        Position to be used for error reporting.
   173      *  @param ex         The failure to report.
   174      */
   175     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   176         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   177         if (ex instanceof ClassReader.BadClassFile) throw new Abort();
   178         else return syms.errType;
   179     }
   181     /** Report a type error.
   182      *  @param pos        Position to be used for error reporting.
   183      *  @param problem    A string describing the error.
   184      *  @param found      The type that was found.
   185      *  @param req        The type that was required.
   186      */
   187     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   188         log.error(pos, "prob.found.req",
   189                   problem, found, req);
   190         return syms.errType;
   191     }
   193     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   194         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   195         return syms.errType;
   196     }
   198     /** Report an error that wrong type tag was found.
   199      *  @param pos        Position to be used for error reporting.
   200      *  @param required   An internationalized string describing the type tag
   201      *                    required.
   202      *  @param found      The type that was found.
   203      */
   204     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   205         log.error(pos, "type.found.req", found, required);
   206         return syms.errType;
   207     }
   209     /** Report an error that symbol cannot be referenced before super
   210      *  has been called.
   211      *  @param pos        Position to be used for error reporting.
   212      *  @param sym        The referenced symbol.
   213      */
   214     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   215         log.error(pos, "cant.ref.before.ctor.called", sym);
   216     }
   218     /** Report duplicate declaration error.
   219      */
   220     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   221         if (!sym.type.isErroneous()) {
   222             log.error(pos, "already.defined", sym, sym.location());
   223         }
   224     }
   226     /** Report array/varargs duplicate declaration
   227      */
   228     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   229         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   230             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   231         }
   232     }
   234 /* ************************************************************************
   235  * duplicate declaration checking
   236  *************************************************************************/
   238     /** Check that variable does not hide variable with same name in
   239      *  immediately enclosing local scope.
   240      *  @param pos           Position for error reporting.
   241      *  @param v             The symbol.
   242      *  @param s             The scope.
   243      */
   244     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   245         if (s.next != null) {
   246             for (Scope.Entry e = s.next.lookup(v.name);
   247                  e.scope != null && e.sym.owner == v.owner;
   248                  e = e.next()) {
   249                 if (e.sym.kind == VAR &&
   250                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   251                     v.name != names.error) {
   252                     duplicateError(pos, e.sym);
   253                     return;
   254                 }
   255             }
   256         }
   257     }
   259     /** Check that a class or interface does not hide a class or
   260      *  interface with same name in immediately enclosing local scope.
   261      *  @param pos           Position for error reporting.
   262      *  @param c             The symbol.
   263      *  @param s             The scope.
   264      */
   265     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   266         if (s.next != null) {
   267             for (Scope.Entry e = s.next.lookup(c.name);
   268                  e.scope != null && e.sym.owner == c.owner;
   269                  e = e.next()) {
   270                 if (e.sym.kind == TYP &&
   271                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   272                     c.name != names.error) {
   273                     duplicateError(pos, e.sym);
   274                     return;
   275                 }
   276             }
   277         }
   278     }
   280     /** Check that class does not have the same name as one of
   281      *  its enclosing classes, or as a class defined in its enclosing scope.
   282      *  return true if class is unique in its enclosing scope.
   283      *  @param pos           Position for error reporting.
   284      *  @param name          The class name.
   285      *  @param s             The enclosing scope.
   286      */
   287     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   288         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   289             if (e.sym.kind == TYP && e.sym.name != names.error) {
   290                 duplicateError(pos, e.sym);
   291                 return false;
   292             }
   293         }
   294         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   295             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   296                 duplicateError(pos, sym);
   297                 return true;
   298             }
   299         }
   300         return true;
   301     }
   303 /* *************************************************************************
   304  * Class name generation
   305  **************************************************************************/
   307     /** Return name of local class.
   308      *  This is of the form    <enclClass> $ n <classname>
   309      *  where
   310      *    enclClass is the flat name of the enclosing class,
   311      *    classname is the simple name of the local class
   312      */
   313     Name localClassName(ClassSymbol c) {
   314         for (int i=1; ; i++) {
   315             Name flatname = names.
   316                 fromString("" + c.owner.enclClass().flatname +
   317                            target.syntheticNameChar() + i +
   318                            c.name);
   319             if (compiled.get(flatname) == null) return flatname;
   320         }
   321     }
   323 /* *************************************************************************
   324  * Type Checking
   325  **************************************************************************/
   327     /** Check that a given type is assignable to a given proto-type.
   328      *  If it is, return the type, otherwise return errType.
   329      *  @param pos        Position to be used for error reporting.
   330      *  @param found      The type that was found.
   331      *  @param req        The type that was required.
   332      */
   333     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   334         if (req.tag == ERROR)
   335             return req;
   336         if (found.tag == FORALL)
   337             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   338         if (req.tag == NONE)
   339             return found;
   340         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   341             return found;
   342         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   343             return typeError(pos, JCDiagnostic.fragment("possible.loss.of.precision"), found, req);
   344         if (found.isSuperBound()) {
   345             log.error(pos, "assignment.from.super-bound", found);
   346             return syms.errType;
   347         }
   348         if (req.isExtendsBound()) {
   349             log.error(pos, "assignment.to.extends-bound", req);
   350             return syms.errType;
   351         }
   352         return typeError(pos, JCDiagnostic.fragment("incompatible.types"), found, req);
   353     }
   355     /** Instantiate polymorphic type to some prototype, unless
   356      *  prototype is `anyPoly' in which case polymorphic type
   357      *  is returned unchanged.
   358      */
   359     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) {
   360         if (pt == Infer.anyPoly && complexInference) {
   361             return t;
   362         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   363             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   364             return instantiatePoly(pos, t, newpt, warn);
   365         } else if (pt.tag == ERROR) {
   366             return pt;
   367         } else {
   368             try {
   369                 return infer.instantiateExpr(t, pt, warn);
   370             } catch (Infer.NoInstanceException ex) {
   371                 if (ex.isAmbiguous) {
   372                     JCDiagnostic d = ex.getDiagnostic();
   373                     log.error(pos,
   374                               "undetermined.type" + (d!=null ? ".1" : ""),
   375                               t, d);
   376                     return syms.errType;
   377                 } else {
   378                     JCDiagnostic d = ex.getDiagnostic();
   379                     return typeError(pos,
   380                                      JCDiagnostic.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   381                                      t, pt);
   382                 }
   383             }
   384         }
   385     }
   387     /** Check that a given type can be cast to a given target type.
   388      *  Return the result of the cast.
   389      *  @param pos        Position to be used for error reporting.
   390      *  @param found      The type that is being cast.
   391      *  @param req        The target type of the cast.
   392      */
   393     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   394         if (found.tag == FORALL) {
   395             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   396             return req;
   397         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   398             return req;
   399         } else {
   400             return typeError(pos,
   401                              JCDiagnostic.fragment("inconvertible.types"),
   402                              found, req);
   403         }
   404     }
   405 //where
   406         /** Is type a type variable, or a (possibly multi-dimensional) array of
   407          *  type variables?
   408          */
   409         boolean isTypeVar(Type t) {
   410             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   411         }
   413     /** Check that a type is within some bounds.
   414      *
   415      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   416      *  type argument.
   417      *  @param pos           Position to be used for error reporting.
   418      *  @param a             The type that should be bounded by bs.
   419      *  @param bs            The bound.
   420      */
   421     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   422         if (a.isUnbound()) {
   423             return;
   424         } else if (a.tag != WILDCARD) {
   425             a = types.upperBound(a);
   426             for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   427                 if (!types.isSubtype(a, l.head)) {
   428                     log.error(pos, "not.within.bounds", a);
   429                     return;
   430                 }
   431             }
   432         } else if (a.isExtendsBound()) {
   433             if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   434                 log.error(pos, "not.within.bounds", a);
   435         } else if (a.isSuperBound()) {
   436             if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   437                 log.error(pos, "not.within.bounds", a);
   438         }
   439     }
   441     /** Check that type is different from 'void'.
   442      *  @param pos           Position to be used for error reporting.
   443      *  @param t             The type to be checked.
   444      */
   445     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   446         if (t.tag == VOID) {
   447             log.error(pos, "void.not.allowed.here");
   448             return syms.errType;
   449         } else {
   450             return t;
   451         }
   452     }
   454     /** Check that type is a class or interface type.
   455      *  @param pos           Position to be used for error reporting.
   456      *  @param t             The type to be checked.
   457      */
   458     Type checkClassType(DiagnosticPosition pos, Type t) {
   459         if (t.tag != CLASS && t.tag != ERROR)
   460             return typeTagError(pos,
   461                                 JCDiagnostic.fragment("type.req.class"),
   462                                 (t.tag == TYPEVAR)
   463                                 ? JCDiagnostic.fragment("type.parameter", t)
   464                                 : t);
   465         else
   466             return t;
   467     }
   469     /** Check that type is a class or interface type.
   470      *  @param pos           Position to be used for error reporting.
   471      *  @param t             The type to be checked.
   472      *  @param noBounds    True if type bounds are illegal here.
   473      */
   474     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   475         t = checkClassType(pos, t);
   476         if (noBounds && t.isParameterized()) {
   477             List<Type> args = t.getTypeArguments();
   478             while (args.nonEmpty()) {
   479                 if (args.head.tag == WILDCARD)
   480                     return typeTagError(pos,
   481                                         log.getLocalizedString("type.req.exact"),
   482                                         args.head);
   483                 args = args.tail;
   484             }
   485         }
   486         return t;
   487     }
   489     /** Check that type is a reifiable class, interface or array type.
   490      *  @param pos           Position to be used for error reporting.
   491      *  @param t             The type to be checked.
   492      */
   493     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   494         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   495             return typeTagError(pos,
   496                                 JCDiagnostic.fragment("type.req.class.array"),
   497                                 t);
   498         } else if (!types.isReifiable(t)) {
   499             log.error(pos, "illegal.generic.type.for.instof");
   500             return syms.errType;
   501         } else {
   502             return t;
   503         }
   504     }
   506     /** Check that type is a reference type, i.e. a class, interface or array type
   507      *  or a type variable.
   508      *  @param pos           Position to be used for error reporting.
   509      *  @param t             The type to be checked.
   510      */
   511     Type checkRefType(DiagnosticPosition pos, Type t) {
   512         switch (t.tag) {
   513         case CLASS:
   514         case ARRAY:
   515         case TYPEVAR:
   516         case WILDCARD:
   517         case ERROR:
   518             return t;
   519         default:
   520             return typeTagError(pos,
   521                                 JCDiagnostic.fragment("type.req.ref"),
   522                                 t);
   523         }
   524     }
   526     /** Check that type is a null or reference type.
   527      *  @param pos           Position to be used for error reporting.
   528      *  @param t             The type to be checked.
   529      */
   530     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   531         switch (t.tag) {
   532         case CLASS:
   533         case ARRAY:
   534         case TYPEVAR:
   535         case WILDCARD:
   536         case BOT:
   537         case ERROR:
   538             return t;
   539         default:
   540             return typeTagError(pos,
   541                                 JCDiagnostic.fragment("type.req.ref"),
   542                                 t);
   543         }
   544     }
   546     /** Check that flag set does not contain elements of two conflicting sets. s
   547      *  Return true if it doesn't.
   548      *  @param pos           Position to be used for error reporting.
   549      *  @param flags         The set of flags to be checked.
   550      *  @param set1          Conflicting flags set #1.
   551      *  @param set2          Conflicting flags set #2.
   552      */
   553     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   554         if ((flags & set1) != 0 && (flags & set2) != 0) {
   555             log.error(pos,
   556                       "illegal.combination.of.modifiers",
   557                       TreeInfo.flagNames(TreeInfo.firstFlag(flags & set1)),
   558                       TreeInfo.flagNames(TreeInfo.firstFlag(flags & set2)));
   559             return false;
   560         } else
   561             return true;
   562     }
   564     /** Check that given modifiers are legal for given symbol and
   565      *  return modifiers together with any implicit modififiers for that symbol.
   566      *  Warning: we can't use flags() here since this method
   567      *  is called during class enter, when flags() would cause a premature
   568      *  completion.
   569      *  @param pos           Position to be used for error reporting.
   570      *  @param flags         The set of modifiers given in a definition.
   571      *  @param sym           The defined symbol.
   572      */
   573     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   574         long mask;
   575         long implicit = 0;
   576         switch (sym.kind) {
   577         case VAR:
   578             if (sym.owner.kind != TYP)
   579                 mask = LocalVarFlags;
   580             else if ((sym.owner.flags_field & INTERFACE) != 0)
   581                 mask = implicit = InterfaceVarFlags;
   582             else
   583                 mask = VarFlags;
   584             break;
   585         case MTH:
   586             if (sym.name == names.init) {
   587                 if ((sym.owner.flags_field & ENUM) != 0) {
   588                     // enum constructors cannot be declared public or
   589                     // protected and must be implicitly or explicitly
   590                     // private
   591                     implicit = PRIVATE;
   592                     mask = PRIVATE;
   593                 } else
   594                     mask = ConstructorFlags;
   595             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   596                 mask = implicit = InterfaceMethodFlags;
   597             else {
   598                 mask = MethodFlags;
   599             }
   600             // Imply STRICTFP if owner has STRICTFP set.
   601             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   602               implicit |= sym.owner.flags_field & STRICTFP;
   603             break;
   604         case TYP:
   605             if (sym.isLocal()) {
   606                 mask = LocalClassFlags;
   607                 if (sym.name.len == 0) { // Anonymous class
   608                     // Anonymous classes in static methods are themselves static;
   609                     // that's why we admit STATIC here.
   610                     mask |= STATIC;
   611                     // JLS: Anonymous classes are final.
   612                     implicit |= FINAL;
   613                 }
   614                 if ((sym.owner.flags_field & STATIC) == 0 &&
   615                     (flags & ENUM) != 0)
   616                     log.error(pos, "enums.must.be.static");
   617             } else if (sym.owner.kind == TYP) {
   618                 mask = MemberClassFlags;
   619                 if (sym.owner.owner.kind == PCK ||
   620                     (sym.owner.flags_field & STATIC) != 0)
   621                     mask |= STATIC;
   622                 else if ((flags & ENUM) != 0)
   623                     log.error(pos, "enums.must.be.static");
   624                 // Nested interfaces and enums are always STATIC (Spec ???)
   625                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   626             } else {
   627                 mask = ClassFlags;
   628             }
   629             // Interfaces are always ABSTRACT
   630             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   632             if ((flags & ENUM) != 0) {
   633                 // enums can't be declared abstract or final
   634                 mask &= ~(ABSTRACT | FINAL);
   635                 implicit |= implicitEnumFinalFlag(tree);
   636             }
   637             // Imply STRICTFP if owner has STRICTFP set.
   638             implicit |= sym.owner.flags_field & STRICTFP;
   639             break;
   640         default:
   641             throw new AssertionError();
   642         }
   643         long illegal = flags & StandardFlags & ~mask;
   644         if (illegal != 0) {
   645             if ((illegal & INTERFACE) != 0) {
   646                 log.error(pos, "intf.not.allowed.here");
   647                 mask |= INTERFACE;
   648             }
   649             else {
   650                 log.error(pos,
   651                           "mod.not.allowed.here", TreeInfo.flagNames(illegal));
   652             }
   653         }
   654         else if ((sym.kind == TYP ||
   655                   // ISSUE: Disallowing abstract&private is no longer appropriate
   656                   // in the presence of inner classes. Should it be deleted here?
   657                   checkDisjoint(pos, flags,
   658                                 ABSTRACT,
   659                                 PRIVATE | STATIC))
   660                  &&
   661                  checkDisjoint(pos, flags,
   662                                ABSTRACT | INTERFACE,
   663                                FINAL | NATIVE | SYNCHRONIZED)
   664                  &&
   665                  checkDisjoint(pos, flags,
   666                                PUBLIC,
   667                                PRIVATE | PROTECTED)
   668                  &&
   669                  checkDisjoint(pos, flags,
   670                                PRIVATE,
   671                                PUBLIC | PROTECTED)
   672                  &&
   673                  checkDisjoint(pos, flags,
   674                                FINAL,
   675                                VOLATILE)
   676                  &&
   677                  (sym.kind == TYP ||
   678                   checkDisjoint(pos, flags,
   679                                 ABSTRACT | NATIVE,
   680                                 STRICTFP))) {
   681             // skip
   682         }
   683         return flags & (mask | ~StandardFlags) | implicit;
   684     }
   687     /** Determine if this enum should be implicitly final.
   688      *
   689      *  If the enum has no specialized enum contants, it is final.
   690      *
   691      *  If the enum does have specialized enum contants, it is
   692      *  <i>not</i> final.
   693      */
   694     private long implicitEnumFinalFlag(JCTree tree) {
   695         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   696         class SpecialTreeVisitor extends JCTree.Visitor {
   697             boolean specialized;
   698             SpecialTreeVisitor() {
   699                 this.specialized = false;
   700             };
   702             public void visitTree(JCTree tree) { /* no-op */ }
   704             public void visitVarDef(JCVariableDecl tree) {
   705                 if ((tree.mods.flags & ENUM) != 0) {
   706                     if (tree.init instanceof JCNewClass &&
   707                         ((JCNewClass) tree.init).def != null) {
   708                         specialized = true;
   709                     }
   710                 }
   711             }
   712         }
   714         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   715         JCClassDecl cdef = (JCClassDecl) tree;
   716         for (JCTree defs: cdef.defs) {
   717             defs.accept(sts);
   718             if (sts.specialized) return 0;
   719         }
   720         return FINAL;
   721     }
   723 /* *************************************************************************
   724  * Type Validation
   725  **************************************************************************/
   727     /** Validate a type expression. That is,
   728      *  check that all type arguments of a parametric type are within
   729      *  their bounds. This must be done in a second phase after type attributon
   730      *  since a class might have a subclass as type parameter bound. E.g:
   731      *
   732      *  class B<A extends C> { ... }
   733      *  class C extends B<C> { ... }
   734      *
   735      *  and we can't make sure that the bound is already attributed because
   736      *  of possible cycles.
   737      */
   738     private Validator validator = new Validator();
   740     /** Visitor method: Validate a type expression, if it is not null, catching
   741      *  and reporting any completion failures.
   742      */
   743     void validate(JCTree tree) {
   744         try {
   745             if (tree != null) tree.accept(validator);
   746         } catch (CompletionFailure ex) {
   747             completionError(tree.pos(), ex);
   748         }
   749     }
   751     /** Visitor method: Validate a list of type expressions.
   752      */
   753     void validate(List<? extends JCTree> trees) {
   754         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   755             validate(l.head);
   756     }
   758     /** Visitor method: Validate a list of type parameters.
   759      */
   760     void validateTypeParams(List<JCTypeParameter> trees) {
   761         for (List<JCTypeParameter> l = trees; l.nonEmpty(); l = l.tail)
   762             validate(l.head);
   763     }
   765     /** A visitor class for type validation.
   766      */
   767     class Validator extends JCTree.Visitor {
   769         public void visitTypeArray(JCArrayTypeTree tree) {
   770             validate(tree.elemtype);
   771         }
   773         public void visitTypeApply(JCTypeApply tree) {
   774             if (tree.type.tag == CLASS) {
   775                 List<Type> formals = tree.type.tsym.type.getTypeArguments();
   776                 List<Type> actuals = tree.type.getTypeArguments();
   777                 List<JCExpression> args = tree.arguments;
   778                 List<Type> forms = formals;
   779                 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
   781                 // For matching pairs of actual argument types `a' and
   782                 // formal type parameters with declared bound `b' ...
   783                 while (args.nonEmpty() && forms.nonEmpty()) {
   784                     validate(args.head);
   786                     // exact type arguments needs to know their
   787                     // bounds (for upper and lower bound
   788                     // calculations).  So we create new TypeVars with
   789                     // bounds substed with actuals.
   790                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   791                                                       formals,
   792                                                       Type.removeBounds(actuals)));
   794                     args = args.tail;
   795                     forms = forms.tail;
   796                 }
   798                 args = tree.arguments;
   799                 List<TypeVar> tvars = tvars_buf.toList();
   800                 while (args.nonEmpty() && tvars.nonEmpty()) {
   801                     // Let the actual arguments know their bound
   802                     args.head.type.withTypeVar(tvars.head);
   803                     args = args.tail;
   804                     tvars = tvars.tail;
   805                 }
   807                 args = tree.arguments;
   808                 tvars = tvars_buf.toList();
   809                 while (args.nonEmpty() && tvars.nonEmpty()) {
   810                     checkExtends(args.head.pos(),
   811                                  args.head.type,
   812                                  tvars.head);
   813                     args = args.tail;
   814                     tvars = tvars.tail;
   815                 }
   817                 // Check that this type is either fully parameterized, or
   818                 // not parameterized at all.
   819                 if (tree.type.getEnclosingType().isRaw())
   820                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
   821                 if (tree.clazz.getTag() == JCTree.SELECT)
   822                     visitSelectInternal((JCFieldAccess)tree.clazz);
   823             }
   824         }
   826         public void visitTypeParameter(JCTypeParameter tree) {
   827             validate(tree.bounds);
   828             checkClassBounds(tree.pos(), tree.type);
   829         }
   831         @Override
   832         public void visitWildcard(JCWildcard tree) {
   833             if (tree.inner != null)
   834                 validate(tree.inner);
   835         }
   837         public void visitSelect(JCFieldAccess tree) {
   838             if (tree.type.tag == CLASS) {
   839                 visitSelectInternal(tree);
   841                 // Check that this type is either fully parameterized, or
   842                 // not parameterized at all.
   843                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
   844                     log.error(tree.pos(), "improperly.formed.type.param.missing");
   845             }
   846         }
   847         public void visitSelectInternal(JCFieldAccess tree) {
   848             if (tree.type.getEnclosingType().tag != CLASS &&
   849                 tree.selected.type.isParameterized()) {
   850                 // The enclosing type is not a class, so we are
   851                 // looking at a static member type.  However, the
   852                 // qualifying expression is parameterized.
   853                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
   854             } else {
   855                 // otherwise validate the rest of the expression
   856                 validate(tree.selected);
   857             }
   858         }
   860         /** Default visitor method: do nothing.
   861          */
   862         public void visitTree(JCTree tree) {
   863         }
   864     }
   866 /* *************************************************************************
   867  * Exception checking
   868  **************************************************************************/
   870     /* The following methods treat classes as sets that contain
   871      * the class itself and all their subclasses
   872      */
   874     /** Is given type a subtype of some of the types in given list?
   875      */
   876     boolean subset(Type t, List<Type> ts) {
   877         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   878             if (types.isSubtype(t, l.head)) return true;
   879         return false;
   880     }
   882     /** Is given type a subtype or supertype of
   883      *  some of the types in given list?
   884      */
   885     boolean intersects(Type t, List<Type> ts) {
   886         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   887             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
   888         return false;
   889     }
   891     /** Add type set to given type list, unless it is a subclass of some class
   892      *  in the list.
   893      */
   894     List<Type> incl(Type t, List<Type> ts) {
   895         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
   896     }
   898     /** Remove type set from type set list.
   899      */
   900     List<Type> excl(Type t, List<Type> ts) {
   901         if (ts.isEmpty()) {
   902             return ts;
   903         } else {
   904             List<Type> ts1 = excl(t, ts.tail);
   905             if (types.isSubtype(ts.head, t)) return ts1;
   906             else if (ts1 == ts.tail) return ts;
   907             else return ts1.prepend(ts.head);
   908         }
   909     }
   911     /** Form the union of two type set lists.
   912      */
   913     List<Type> union(List<Type> ts1, List<Type> ts2) {
   914         List<Type> ts = ts1;
   915         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   916             ts = incl(l.head, ts);
   917         return ts;
   918     }
   920     /** Form the difference of two type lists.
   921      */
   922     List<Type> diff(List<Type> ts1, List<Type> ts2) {
   923         List<Type> ts = ts1;
   924         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   925             ts = excl(l.head, ts);
   926         return ts;
   927     }
   929     /** Form the intersection of two type lists.
   930      */
   931     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
   932         List<Type> ts = List.nil();
   933         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
   934             if (subset(l.head, ts2)) ts = incl(l.head, ts);
   935         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   936             if (subset(l.head, ts1)) ts = incl(l.head, ts);
   937         return ts;
   938     }
   940     /** Is exc an exception symbol that need not be declared?
   941      */
   942     boolean isUnchecked(ClassSymbol exc) {
   943         return
   944             exc.kind == ERR ||
   945             exc.isSubClass(syms.errorType.tsym, types) ||
   946             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
   947     }
   949     /** Is exc an exception type that need not be declared?
   950      */
   951     boolean isUnchecked(Type exc) {
   952         return
   953             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
   954             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
   955             exc.tag == BOT;
   956     }
   958     /** Same, but handling completion failures.
   959      */
   960     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
   961         try {
   962             return isUnchecked(exc);
   963         } catch (CompletionFailure ex) {
   964             completionError(pos, ex);
   965             return true;
   966         }
   967     }
   969     /** Is exc handled by given exception list?
   970      */
   971     boolean isHandled(Type exc, List<Type> handled) {
   972         return isUnchecked(exc) || subset(exc, handled);
   973     }
   975     /** Return all exceptions in thrown list that are not in handled list.
   976      *  @param thrown     The list of thrown exceptions.
   977      *  @param handled    The list of handled exceptions.
   978      */
   979     List<Type> unHandled(List<Type> thrown, List<Type> handled) {
   980         List<Type> unhandled = List.nil();
   981         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
   982             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
   983         return unhandled;
   984     }
   986 /* *************************************************************************
   987  * Overriding/Implementation checking
   988  **************************************************************************/
   990     /** The level of access protection given by a flag set,
   991      *  where PRIVATE is highest and PUBLIC is lowest.
   992      */
   993     static int protection(long flags) {
   994         switch ((short)(flags & AccessFlags)) {
   995         case PRIVATE: return 3;
   996         case PROTECTED: return 1;
   997         default:
   998         case PUBLIC: return 0;
   999         case 0: return 2;
  1003     /** A string describing the access permission given by a flag set.
  1004      *  This always returns a space-separated list of Java Keywords.
  1005      */
  1006     private static String protectionString(long flags) {
  1007         long flags1 = flags & AccessFlags;
  1008         return (flags1 == 0) ? "package" : TreeInfo.flagNames(flags1);
  1011     /** A customized "cannot override" error message.
  1012      *  @param m      The overriding method.
  1013      *  @param other  The overridden method.
  1014      *  @return       An internationalized string.
  1015      */
  1016     static Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1017         String key;
  1018         if ((other.owner.flags() & INTERFACE) == 0)
  1019             key = "cant.override";
  1020         else if ((m.owner.flags() & INTERFACE) == 0)
  1021             key = "cant.implement";
  1022         else
  1023             key = "clashes.with";
  1024         return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
  1027     /** A customized "override" warning message.
  1028      *  @param m      The overriding method.
  1029      *  @param other  The overridden method.
  1030      *  @return       An internationalized string.
  1031      */
  1032     static Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1033         String key;
  1034         if ((other.owner.flags() & INTERFACE) == 0)
  1035             key = "unchecked.override";
  1036         else if ((m.owner.flags() & INTERFACE) == 0)
  1037             key = "unchecked.implement";
  1038         else
  1039             key = "unchecked.clash.with";
  1040         return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
  1043     /** A customized "override" warning message.
  1044      *  @param m      The overriding method.
  1045      *  @param other  The overridden method.
  1046      *  @return       An internationalized string.
  1047      */
  1048     static Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1049         String key;
  1050         if ((other.owner.flags() & INTERFACE) == 0)
  1051             key = "varargs.override";
  1052         else  if ((m.owner.flags() & INTERFACE) == 0)
  1053             key = "varargs.implement";
  1054         else
  1055             key = "varargs.clash.with";
  1056         return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
  1059     /** Check that this method conforms with overridden method 'other'.
  1060      *  where `origin' is the class where checking started.
  1061      *  Complications:
  1062      *  (1) Do not check overriding of synthetic methods
  1063      *      (reason: they might be final).
  1064      *      todo: check whether this is still necessary.
  1065      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1066      *      than the method it implements. Augment the proxy methods with the
  1067      *      undeclared exceptions in this case.
  1068      *  (3) When generics are enabled, admit the case where an interface proxy
  1069      *      has a result type
  1070      *      extended by the result type of the method it implements.
  1071      *      Change the proxies result type to the smaller type in this case.
  1073      *  @param tree         The tree from which positions
  1074      *                      are extracted for errors.
  1075      *  @param m            The overriding method.
  1076      *  @param other        The overridden method.
  1077      *  @param origin       The class of which the overriding method
  1078      *                      is a member.
  1079      */
  1080     void checkOverride(JCTree tree,
  1081                        MethodSymbol m,
  1082                        MethodSymbol other,
  1083                        ClassSymbol origin) {
  1084         // Don't check overriding of synthetic methods or by bridge methods.
  1085         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1086             return;
  1089         // Error if static method overrides instance method (JLS 8.4.6.2).
  1090         if ((m.flags() & STATIC) != 0 &&
  1091                    (other.flags() & STATIC) == 0) {
  1092             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1093                       cannotOverride(m, other));
  1094             return;
  1097         // Error if instance method overrides static or final
  1098         // method (JLS 8.4.6.1).
  1099         if ((other.flags() & FINAL) != 0 ||
  1100                  (m.flags() & STATIC) == 0 &&
  1101                  (other.flags() & STATIC) != 0) {
  1102             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1103                       cannotOverride(m, other),
  1104                       TreeInfo.flagNames(other.flags() & (FINAL | STATIC)));
  1105             return;
  1108         if ((m.owner.flags() & ANNOTATION) != 0) {
  1109             // handled in validateAnnotationMethod
  1110             return;
  1113         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1114         if ((origin.flags() & INTERFACE) == 0 &&
  1115                  protection(m.flags()) > protection(other.flags())) {
  1116             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1117                       cannotOverride(m, other),
  1118                       protectionString(other.flags()));
  1119             return;
  1123         Type mt = types.memberType(origin.type, m);
  1124         Type ot = types.memberType(origin.type, other);
  1125         // Error if overriding result type is different
  1126         // (or, in the case of generics mode, not a subtype) of
  1127         // overridden result type. We have to rename any type parameters
  1128         // before comparing types.
  1129         List<Type> mtvars = mt.getTypeArguments();
  1130         List<Type> otvars = ot.getTypeArguments();
  1131         Type mtres = mt.getReturnType();
  1132         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1134         overrideWarner.warned = false;
  1135         boolean resultTypesOK =
  1136             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1137         if (!resultTypesOK) {
  1138             if (!source.allowCovariantReturns() &&
  1139                 m.owner != origin &&
  1140                 m.owner.isSubClass(other.owner, types)) {
  1141                 // allow limited interoperability with covariant returns
  1142             } else {
  1143                 typeError(TreeInfo.diagnosticPositionFor(m, tree),
  1144                           JCDiagnostic.fragment("override.incompatible.ret",
  1145                                          cannotOverride(m, other)),
  1146                           mtres, otres);
  1147                 return;
  1149         } else if (overrideWarner.warned) {
  1150             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1151                           "prob.found.req",
  1152                           JCDiagnostic.fragment("override.unchecked.ret",
  1153                                               uncheckedOverrides(m, other)),
  1154                           mtres, otres);
  1157         // Error if overriding method throws an exception not reported
  1158         // by overridden method.
  1159         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1160         List<Type> unhandled = unHandled(mt.getThrownTypes(), otthrown);
  1161         if (unhandled.nonEmpty()) {
  1162             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1163                       "override.meth.doesnt.throw",
  1164                       cannotOverride(m, other),
  1165                       unhandled.head);
  1166             return;
  1169         // Optional warning if varargs don't agree
  1170         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1171             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1172             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1173                         ((m.flags() & Flags.VARARGS) != 0)
  1174                         ? "override.varargs.missing"
  1175                         : "override.varargs.extra",
  1176                         varargsOverrides(m, other));
  1179         // Warn if instance method overrides bridge method (compiler spec ??)
  1180         if ((other.flags() & BRIDGE) != 0) {
  1181             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1182                         uncheckedOverrides(m, other));
  1185         // Warn if a deprecated method overridden by a non-deprecated one.
  1186         if ((other.flags() & DEPRECATED) != 0
  1187             && (m.flags() & DEPRECATED) == 0
  1188             && m.outermostClass() != other.outermostClass()
  1189             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1190             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1193     // where
  1194         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1195             // If the method, m, is defined in an interface, then ignore the issue if the method
  1196             // is only inherited via a supertype and also implemented in the supertype,
  1197             // because in that case, we will rediscover the issue when examining the method
  1198             // in the supertype.
  1199             // If the method, m, is not defined in an interface, then the only time we need to
  1200             // address the issue is when the method is the supertype implemementation: any other
  1201             // case, we will have dealt with when examining the supertype classes
  1202             ClassSymbol mc = m.enclClass();
  1203             Type st = types.supertype(origin.type);
  1204             if (st.tag != CLASS)
  1205                 return true;
  1206             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1208             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1209                 List<Type> intfs = types.interfaces(origin.type);
  1210                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1212             else
  1213                 return (stimpl != m);
  1217     // used to check if there were any unchecked conversions
  1218     Warner overrideWarner = new Warner();
  1220     /** Check that a class does not inherit two concrete methods
  1221      *  with the same signature.
  1222      *  @param pos          Position to be used for error reporting.
  1223      *  @param site         The class type to be checked.
  1224      */
  1225     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1226         Type sup = types.supertype(site);
  1227         if (sup.tag != CLASS) return;
  1229         for (Type t1 = sup;
  1230              t1.tsym.type.isParameterized();
  1231              t1 = types.supertype(t1)) {
  1232             for (Scope.Entry e1 = t1.tsym.members().elems;
  1233                  e1 != null;
  1234                  e1 = e1.sibling) {
  1235                 Symbol s1 = e1.sym;
  1236                 if (s1.kind != MTH ||
  1237                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1238                     !s1.isInheritedIn(site.tsym, types) ||
  1239                     ((MethodSymbol)s1).implementation(site.tsym,
  1240                                                       types,
  1241                                                       true) != s1)
  1242                     continue;
  1243                 Type st1 = types.memberType(t1, s1);
  1244                 int s1ArgsLength = st1.getParameterTypes().length();
  1245                 if (st1 == s1.type) continue;
  1247                 for (Type t2 = sup;
  1248                      t2.tag == CLASS;
  1249                      t2 = types.supertype(t2)) {
  1250                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1251                          e2.scope != null;
  1252                          e2 = e2.next()) {
  1253                         Symbol s2 = e2.sym;
  1254                         if (s2 == s1 ||
  1255                             s2.kind != MTH ||
  1256                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1257                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1258                             !s2.isInheritedIn(site.tsym, types) ||
  1259                             ((MethodSymbol)s2).implementation(site.tsym,
  1260                                                               types,
  1261                                                               true) != s2)
  1262                             continue;
  1263                         Type st2 = types.memberType(t2, s2);
  1264                         if (types.overrideEquivalent(st1, st2))
  1265                             log.error(pos, "concrete.inheritance.conflict",
  1266                                       s1, t1, s2, t2, sup);
  1273     /** Check that classes (or interfaces) do not each define an abstract
  1274      *  method with same name and arguments but incompatible return types.
  1275      *  @param pos          Position to be used for error reporting.
  1276      *  @param t1           The first argument type.
  1277      *  @param t2           The second argument type.
  1278      */
  1279     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1280                                             Type t1,
  1281                                             Type t2) {
  1282         return checkCompatibleAbstracts(pos, t1, t2,
  1283                                         types.makeCompoundType(t1, t2));
  1286     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1287                                             Type t1,
  1288                                             Type t2,
  1289                                             Type site) {
  1290         Symbol sym = firstIncompatibility(t1, t2, site);
  1291         if (sym != null) {
  1292             log.error(pos, "types.incompatible.diff.ret",
  1293                       t1, t2, sym.name +
  1294                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1295             return false;
  1297         return true;
  1300     /** Return the first method which is defined with same args
  1301      *  but different return types in two given interfaces, or null if none
  1302      *  exists.
  1303      *  @param t1     The first type.
  1304      *  @param t2     The second type.
  1305      *  @param site   The most derived type.
  1306      *  @returns symbol from t2 that conflicts with one in t1.
  1307      */
  1308     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1309         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1310         closure(t1, interfaces1);
  1311         Map<TypeSymbol,Type> interfaces2;
  1312         if (t1 == t2)
  1313             interfaces2 = interfaces1;
  1314         else
  1315             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1317         for (Type t3 : interfaces1.values()) {
  1318             for (Type t4 : interfaces2.values()) {
  1319                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1320                 if (s != null) return s;
  1323         return null;
  1326     /** Compute all the supertypes of t, indexed by type symbol. */
  1327     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1328         if (t.tag != CLASS) return;
  1329         if (typeMap.put(t.tsym, t) == null) {
  1330             closure(types.supertype(t), typeMap);
  1331             for (Type i : types.interfaces(t))
  1332                 closure(i, typeMap);
  1336     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1337     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1338         if (t.tag != CLASS) return;
  1339         if (typesSkip.get(t.tsym) != null) return;
  1340         if (typeMap.put(t.tsym, t) == null) {
  1341             closure(types.supertype(t), typesSkip, typeMap);
  1342             for (Type i : types.interfaces(t))
  1343                 closure(i, typesSkip, typeMap);
  1347     /** Return the first method in t2 that conflicts with a method from t1. */
  1348     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1349         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1350             Symbol s1 = e1.sym;
  1351             Type st1 = null;
  1352             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1353             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1354             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1355             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1356                 Symbol s2 = e2.sym;
  1357                 if (s1 == s2) continue;
  1358                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1359                 if (st1 == null) st1 = types.memberType(t1, s1);
  1360                 Type st2 = types.memberType(t2, s2);
  1361                 if (types.overrideEquivalent(st1, st2)) {
  1362                     List<Type> tvars1 = st1.getTypeArguments();
  1363                     List<Type> tvars2 = st2.getTypeArguments();
  1364                     Type rt1 = st1.getReturnType();
  1365                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1366                     boolean compat =
  1367                         types.isSameType(rt1, rt2) ||
  1368                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1369                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1370                          types.covariantReturnType(rt2, rt1, Warner.noWarnings));
  1371                     if (!compat) return s2;
  1375         return null;
  1378     /** Check that a given method conforms with any method it overrides.
  1379      *  @param tree         The tree from which positions are extracted
  1380      *                      for errors.
  1381      *  @param m            The overriding method.
  1382      */
  1383     void checkOverride(JCTree tree, MethodSymbol m) {
  1384         ClassSymbol origin = (ClassSymbol)m.owner;
  1385         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1386             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1387                 log.error(tree.pos(), "enum.no.finalize");
  1388                 return;
  1390         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1391              t = types.supertype(t)) {
  1392             TypeSymbol c = t.tsym;
  1393             Scope.Entry e = c.members().lookup(m.name);
  1394             while (e.scope != null) {
  1395                 if (m.overrides(e.sym, origin, types, false))
  1396                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1397                 else if (e.sym.isInheritedIn(origin, types) && !m.isConstructor()) {
  1398                     Type er1 = m.erasure(types);
  1399                     Type er2 = e.sym.erasure(types);
  1400                     if (types.isSameType(er1,er2)) {
  1401                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1402                                     "name.clash.same.erasure.no.override",
  1403                                     m, m.location(),
  1404                                     e.sym, e.sym.location());
  1407                 e = e.next();
  1412     /** Check that all abstract members of given class have definitions.
  1413      *  @param pos          Position to be used for error reporting.
  1414      *  @param c            The class.
  1415      */
  1416     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1417         try {
  1418             MethodSymbol undef = firstUndef(c, c);
  1419             if (undef != null) {
  1420                 if ((c.flags() & ENUM) != 0 &&
  1421                     types.supertype(c.type).tsym == syms.enumSym &&
  1422                     (c.flags() & FINAL) == 0) {
  1423                     // add the ABSTRACT flag to an enum
  1424                     c.flags_field |= ABSTRACT;
  1425                 } else {
  1426                     MethodSymbol undef1 =
  1427                         new MethodSymbol(undef.flags(), undef.name,
  1428                                          types.memberType(c.type, undef), undef.owner);
  1429                     log.error(pos, "does.not.override.abstract",
  1430                               c, undef1, undef1.location());
  1433         } catch (CompletionFailure ex) {
  1434             completionError(pos, ex);
  1437 //where
  1438         /** Return first abstract member of class `c' that is not defined
  1439          *  in `impl', null if there is none.
  1440          */
  1441         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1442             MethodSymbol undef = null;
  1443             // Do not bother to search in classes that are not abstract,
  1444             // since they cannot have abstract members.
  1445             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1446                 Scope s = c.members();
  1447                 for (Scope.Entry e = s.elems;
  1448                      undef == null && e != null;
  1449                      e = e.sibling) {
  1450                     if (e.sym.kind == MTH &&
  1451                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1452                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1453                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1454                         if (implmeth == null || implmeth == absmeth)
  1455                             undef = absmeth;
  1458                 if (undef == null) {
  1459                     Type st = types.supertype(c.type);
  1460                     if (st.tag == CLASS)
  1461                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1463                 for (List<Type> l = types.interfaces(c.type);
  1464                      undef == null && l.nonEmpty();
  1465                      l = l.tail) {
  1466                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1469             return undef;
  1472     /** Check for cyclic references. Issue an error if the
  1473      *  symbol of the type referred to has a LOCKED flag set.
  1475      *  @param pos      Position to be used for error reporting.
  1476      *  @param t        The type referred to.
  1477      */
  1478     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1479         checkNonCyclicInternal(pos, t);
  1483     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1484         checkNonCyclic1(pos, t, new HashSet<TypeVar>());
  1487     private void checkNonCyclic1(DiagnosticPosition pos, Type t, Set<TypeVar> seen) {
  1488         final TypeVar tv;
  1489         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1490             return;
  1491         if (seen.contains(t)) {
  1492             tv = (TypeVar)t;
  1493             tv.bound = new ErrorType();
  1494             log.error(pos, "cyclic.inheritance", t);
  1495         } else if (t.tag == TYPEVAR) {
  1496             tv = (TypeVar)t;
  1497             seen.add(tv);
  1498             for (Type b : types.getBounds(tv))
  1499                 checkNonCyclic1(pos, b, seen);
  1503     /** Check for cyclic references. Issue an error if the
  1504      *  symbol of the type referred to has a LOCKED flag set.
  1506      *  @param pos      Position to be used for error reporting.
  1507      *  @param t        The type referred to.
  1508      *  @returns        True if the check completed on all attributed classes
  1509      */
  1510     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1511         boolean complete = true; // was the check complete?
  1512         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1513         Symbol c = t.tsym;
  1514         if ((c.flags_field & ACYCLIC) != 0) return true;
  1516         if ((c.flags_field & LOCKED) != 0) {
  1517             noteCyclic(pos, (ClassSymbol)c);
  1518         } else if (!c.type.isErroneous()) {
  1519             try {
  1520                 c.flags_field |= LOCKED;
  1521                 if (c.type.tag == CLASS) {
  1522                     ClassType clazz = (ClassType)c.type;
  1523                     if (clazz.interfaces_field != null)
  1524                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1525                             complete &= checkNonCyclicInternal(pos, l.head);
  1526                     if (clazz.supertype_field != null) {
  1527                         Type st = clazz.supertype_field;
  1528                         if (st != null && st.tag == CLASS)
  1529                             complete &= checkNonCyclicInternal(pos, st);
  1531                     if (c.owner.kind == TYP)
  1532                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1534             } finally {
  1535                 c.flags_field &= ~LOCKED;
  1538         if (complete)
  1539             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1540         if (complete) c.flags_field |= ACYCLIC;
  1541         return complete;
  1544     /** Note that we found an inheritance cycle. */
  1545     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1546         log.error(pos, "cyclic.inheritance", c);
  1547         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1548             l.head = new ErrorType((ClassSymbol)l.head.tsym);
  1549         Type st = types.supertype(c.type);
  1550         if (st.tag == CLASS)
  1551             ((ClassType)c.type).supertype_field = new ErrorType((ClassSymbol)st.tsym);
  1552         c.type = new ErrorType(c);
  1553         c.flags_field |= ACYCLIC;
  1556     /** Check that all methods which implement some
  1557      *  method conform to the method they implement.
  1558      *  @param tree         The class definition whose members are checked.
  1559      */
  1560     void checkImplementations(JCClassDecl tree) {
  1561         checkImplementations(tree, tree.sym);
  1563 //where
  1564         /** Check that all methods which implement some
  1565          *  method in `ic' conform to the method they implement.
  1566          */
  1567         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1568             ClassSymbol origin = tree.sym;
  1569             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1570                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1571                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1572                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1573                         if (e.sym.kind == MTH &&
  1574                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1575                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1576                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1577                             if (implmeth != null && implmeth != absmeth &&
  1578                                 (implmeth.owner.flags() & INTERFACE) ==
  1579                                 (origin.flags() & INTERFACE)) {
  1580                                 // don't check if implmeth is in a class, yet
  1581                                 // origin is an interface. This case arises only
  1582                                 // if implmeth is declared in Object. The reason is
  1583                                 // that interfaces really don't inherit from
  1584                                 // Object it's just that the compiler represents
  1585                                 // things that way.
  1586                                 checkOverride(tree, implmeth, absmeth, origin);
  1594     /** Check that all abstract methods implemented by a class are
  1595      *  mutually compatible.
  1596      *  @param pos          Position to be used for error reporting.
  1597      *  @param c            The class whose interfaces are checked.
  1598      */
  1599     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1600         List<Type> supertypes = types.interfaces(c);
  1601         Type supertype = types.supertype(c);
  1602         if (supertype.tag == CLASS &&
  1603             (supertype.tsym.flags() & ABSTRACT) != 0)
  1604             supertypes = supertypes.prepend(supertype);
  1605         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1606             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1607                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1608                 return;
  1609             for (List<Type> m = supertypes; m != l; m = m.tail)
  1610                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1611                     return;
  1613         checkCompatibleConcretes(pos, c);
  1616     /** Check that class c does not implement directly or indirectly
  1617      *  the same parameterized interface with two different argument lists.
  1618      *  @param pos          Position to be used for error reporting.
  1619      *  @param type         The type whose interfaces are checked.
  1620      */
  1621     void checkClassBounds(DiagnosticPosition pos, Type type) {
  1622         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1624 //where
  1625         /** Enter all interfaces of type `type' into the hash table `seensofar'
  1626          *  with their class symbol as key and their type as value. Make
  1627          *  sure no class is entered with two different types.
  1628          */
  1629         void checkClassBounds(DiagnosticPosition pos,
  1630                               Map<TypeSymbol,Type> seensofar,
  1631                               Type type) {
  1632             if (type.isErroneous()) return;
  1633             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1634                 Type it = l.head;
  1635                 Type oldit = seensofar.put(it.tsym, it);
  1636                 if (oldit != null) {
  1637                     List<Type> oldparams = oldit.allparams();
  1638                     List<Type> newparams = it.allparams();
  1639                     if (!types.containsTypeEquivalent(oldparams, newparams))
  1640                         log.error(pos, "cant.inherit.diff.arg",
  1641                                   it.tsym, Type.toString(oldparams),
  1642                                   Type.toString(newparams));
  1644                 checkClassBounds(pos, seensofar, it);
  1646             Type st = types.supertype(type);
  1647             if (st != null) checkClassBounds(pos, seensofar, st);
  1650     /** Enter interface into into set.
  1651      *  If it existed already, issue a "repeated interface" error.
  1652      */
  1653     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1654         if (its.contains(it))
  1655             log.error(pos, "repeated.interface");
  1656         else {
  1657             its.add(it);
  1661 /* *************************************************************************
  1662  * Check annotations
  1663  **************************************************************************/
  1665     /** Annotation types are restricted to primitives, String, an
  1666      *  enum, an annotation, Class, Class<?>, Class<? extends
  1667      *  Anything>, arrays of the preceding.
  1668      */
  1669     void validateAnnotationType(JCTree restype) {
  1670         // restype may be null if an error occurred, so don't bother validating it
  1671         if (restype != null) {
  1672             validateAnnotationType(restype.pos(), restype.type);
  1676     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1677         if (type.isPrimitive()) return;
  1678         if (types.isSameType(type, syms.stringType)) return;
  1679         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1680         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1681         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1682         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1683             validateAnnotationType(pos, types.elemtype(type));
  1684             return;
  1686         log.error(pos, "invalid.annotation.member.type");
  1689     /**
  1690      * "It is also a compile-time error if any method declared in an
  1691      * annotation type has a signature that is override-equivalent to
  1692      * that of any public or protected method declared in class Object
  1693      * or in the interface annotation.Annotation."
  1695      * @jls3 9.6 Annotation Types
  1696      */
  1697     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1698         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1699             Scope s = sup.tsym.members();
  1700             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1701                 if (e.sym.kind == MTH &&
  1702                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1703                     types.overrideEquivalent(m.type, e.sym.type))
  1704                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1709     /** Check the annotations of a symbol.
  1710      */
  1711     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1712         if (skipAnnotations) return;
  1713         for (JCAnnotation a : annotations)
  1714             validateAnnotation(a, s);
  1717     /** Check an annotation of a symbol.
  1718      */
  1719     public void validateAnnotation(JCAnnotation a, Symbol s) {
  1720         validateAnnotation(a);
  1722         if (!annotationApplicable(a, s))
  1723             log.error(a.pos(), "annotation.type.not.applicable");
  1725         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1726             if (!isOverrider(s))
  1727                 log.error(a.pos(), "method.does.not.override.superclass");
  1731     /** Is s a method symbol that overrides a method in a superclass? */
  1732     boolean isOverrider(Symbol s) {
  1733         if (s.kind != MTH || s.isStatic())
  1734             return false;
  1735         MethodSymbol m = (MethodSymbol)s;
  1736         TypeSymbol owner = (TypeSymbol)m.owner;
  1737         for (Type sup : types.closure(owner.type)) {
  1738             if (sup == owner.type)
  1739                 continue; // skip "this"
  1740             Scope scope = sup.tsym.members();
  1741             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  1742                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  1743                     return true;
  1746         return false;
  1749     /** Is the annotation applicable to the symbol? */
  1750     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  1751         Attribute.Compound atTarget =
  1752             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1753         if (atTarget == null) return true;
  1754         Attribute atValue = atTarget.member(names.value);
  1755         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  1756         Attribute.Array arr = (Attribute.Array) atValue;
  1757         for (Attribute app : arr.values) {
  1758             if (!(app instanceof Attribute.Enum)) return true; // recovery
  1759             Attribute.Enum e = (Attribute.Enum) app;
  1760             if (e.value.name == names.TYPE)
  1761                 { if (s.kind == TYP) return true; }
  1762             else if (e.value.name == names.FIELD)
  1763                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  1764             else if (e.value.name == names.METHOD)
  1765                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  1766             else if (e.value.name == names.PARAMETER)
  1767                 { if (s.kind == VAR &&
  1768                       s.owner.kind == MTH &&
  1769                       (s.flags() & PARAMETER) != 0)
  1770                     return true;
  1772             else if (e.value.name == names.CONSTRUCTOR)
  1773                 { if (s.kind == MTH && s.isConstructor()) return true; }
  1774             else if (e.value.name == names.LOCAL_VARIABLE)
  1775                 { if (s.kind == VAR && s.owner.kind == MTH &&
  1776                       (s.flags() & PARAMETER) == 0)
  1777                     return true;
  1779             else if (e.value.name == names.ANNOTATION_TYPE)
  1780                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  1781                     return true;
  1783             else if (e.value.name == names.PACKAGE)
  1784                 { if (s.kind == PCK) return true; }
  1785             else
  1786                 return true; // recovery
  1788         return false;
  1791     /** Check an annotation value.
  1792      */
  1793     public void validateAnnotation(JCAnnotation a) {
  1794         if (a.type.isErroneous()) return;
  1796         // collect an inventory of the members
  1797         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
  1798         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  1799              e != null;
  1800              e = e.sibling)
  1801             if (e.sym.kind == MTH)
  1802                 members.add((MethodSymbol) e.sym);
  1804         // count them off as they're annotated
  1805         for (JCTree arg : a.args) {
  1806             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  1807             JCAssign assign = (JCAssign) arg;
  1808             Symbol m = TreeInfo.symbol(assign.lhs);
  1809             if (m == null || m.type.isErroneous()) continue;
  1810             if (!members.remove(m))
  1811                 log.error(arg.pos(), "duplicate.annotation.member.value",
  1812                           m.name, a.type);
  1813             if (assign.rhs.getTag() == ANNOTATION)
  1814                 validateAnnotation((JCAnnotation)assign.rhs);
  1817         // all the remaining ones better have default values
  1818         for (MethodSymbol m : members)
  1819             if (m.defaultValue == null && !m.type.isErroneous())
  1820                 log.error(a.pos(), "annotation.missing.default.value",
  1821                           a.type, m.name);
  1823         // special case: java.lang.annotation.Target must not have
  1824         // repeated values in its value member
  1825         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  1826             a.args.tail == null)
  1827             return;
  1829         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  1830         JCAssign assign = (JCAssign) a.args.head;
  1831         Symbol m = TreeInfo.symbol(assign.lhs);
  1832         if (m.name != names.value) return;
  1833         JCTree rhs = assign.rhs;
  1834         if (rhs.getTag() != JCTree.NEWARRAY) return;
  1835         JCNewArray na = (JCNewArray) rhs;
  1836         Set<Symbol> targets = new HashSet<Symbol>();
  1837         for (JCTree elem : na.elems) {
  1838             if (!targets.add(TreeInfo.symbol(elem))) {
  1839                 log.error(elem.pos(), "repeated.annotation.target");
  1844     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  1845         if (allowAnnotations &&
  1846             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  1847             (s.flags() & DEPRECATED) != 0 &&
  1848             !syms.deprecatedType.isErroneous() &&
  1849             s.attribute(syms.deprecatedType.tsym) == null) {
  1850             log.warning(pos, "missing.deprecated.annotation");
  1854 /* *************************************************************************
  1855  * Check for recursive annotation elements.
  1856  **************************************************************************/
  1858     /** Check for cycles in the graph of annotation elements.
  1859      */
  1860     void checkNonCyclicElements(JCClassDecl tree) {
  1861         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  1862         assert (tree.sym.flags_field & LOCKED) == 0;
  1863         try {
  1864             tree.sym.flags_field |= LOCKED;
  1865             for (JCTree def : tree.defs) {
  1866                 if (def.getTag() != JCTree.METHODDEF) continue;
  1867                 JCMethodDecl meth = (JCMethodDecl)def;
  1868                 checkAnnotationResType(meth.pos(), meth.restype.type);
  1870         } finally {
  1871             tree.sym.flags_field &= ~LOCKED;
  1872             tree.sym.flags_field |= ACYCLIC_ANN;
  1876     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  1877         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  1878             return;
  1879         if ((tsym.flags_field & LOCKED) != 0) {
  1880             log.error(pos, "cyclic.annotation.element");
  1881             return;
  1883         try {
  1884             tsym.flags_field |= LOCKED;
  1885             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  1886                 Symbol s = e.sym;
  1887                 if (s.kind != Kinds.MTH)
  1888                     continue;
  1889                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  1891         } finally {
  1892             tsym.flags_field &= ~LOCKED;
  1893             tsym.flags_field |= ACYCLIC_ANN;
  1897     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  1898         switch (type.tag) {
  1899         case TypeTags.CLASS:
  1900             if ((type.tsym.flags() & ANNOTATION) != 0)
  1901                 checkNonCyclicElementsInternal(pos, type.tsym);
  1902             break;
  1903         case TypeTags.ARRAY:
  1904             checkAnnotationResType(pos, types.elemtype(type));
  1905             break;
  1906         default:
  1907             break; // int etc
  1911 /* *************************************************************************
  1912  * Check for cycles in the constructor call graph.
  1913  **************************************************************************/
  1915     /** Check for cycles in the graph of constructors calling other
  1916      *  constructors.
  1917      */
  1918     void checkCyclicConstructors(JCClassDecl tree) {
  1919         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  1921         // enter each constructor this-call into the map
  1922         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  1923             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  1924             if (app == null) continue;
  1925             JCMethodDecl meth = (JCMethodDecl) l.head;
  1926             if (TreeInfo.name(app.meth) == names._this) {
  1927                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  1928             } else {
  1929                 meth.sym.flags_field |= ACYCLIC;
  1933         // Check for cycles in the map
  1934         Symbol[] ctors = new Symbol[0];
  1935         ctors = callMap.keySet().toArray(ctors);
  1936         for (Symbol caller : ctors) {
  1937             checkCyclicConstructor(tree, caller, callMap);
  1941     /** Look in the map to see if the given constructor is part of a
  1942      *  call cycle.
  1943      */
  1944     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  1945                                         Map<Symbol,Symbol> callMap) {
  1946         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  1947             if ((ctor.flags_field & LOCKED) != 0) {
  1948                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  1949                           "recursive.ctor.invocation");
  1950             } else {
  1951                 ctor.flags_field |= LOCKED;
  1952                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  1953                 ctor.flags_field &= ~LOCKED;
  1955             ctor.flags_field |= ACYCLIC;
  1959 /* *************************************************************************
  1960  * Miscellaneous
  1961  **************************************************************************/
  1963     /**
  1964      * Return the opcode of the operator but emit an error if it is an
  1965      * error.
  1966      * @param pos        position for error reporting.
  1967      * @param operator   an operator
  1968      * @param tag        a tree tag
  1969      * @param left       type of left hand side
  1970      * @param right      type of right hand side
  1971      */
  1972     int checkOperator(DiagnosticPosition pos,
  1973                        OperatorSymbol operator,
  1974                        int tag,
  1975                        Type left,
  1976                        Type right) {
  1977         if (operator.opcode == ByteCodes.error) {
  1978             log.error(pos,
  1979                       "operator.cant.be.applied",
  1980                       treeinfo.operatorName(tag),
  1981                       left + "," + right);
  1983         return operator.opcode;
  1987     /**
  1988      *  Check for division by integer constant zero
  1989      *  @param pos           Position for error reporting.
  1990      *  @param operator      The operator for the expression
  1991      *  @param operand       The right hand operand for the expression
  1992      */
  1993     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  1994         if (operand.constValue() != null
  1995             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  1996             && operand.tag <= LONG
  1997             && ((Number) (operand.constValue())).longValue() == 0) {
  1998             int opc = ((OperatorSymbol)operator).opcode;
  1999             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2000                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2001                 log.warning(pos, "div.zero");
  2006     /**
  2007      * Check for empty statements after if
  2008      */
  2009     void checkEmptyIf(JCIf tree) {
  2010         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2011             log.warning(tree.thenpart.pos(), "empty.if");
  2014     /** Check that symbol is unique in given scope.
  2015      *  @param pos           Position for error reporting.
  2016      *  @param sym           The symbol.
  2017      *  @param s             The scope.
  2018      */
  2019     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2020         if (sym.type.isErroneous())
  2021             return true;
  2022         if (sym.owner.name == names.any) return false;
  2023         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2024             if (sym != e.sym &&
  2025                 sym.kind == e.sym.kind &&
  2026                 sym.name != names.error &&
  2027                 (sym.kind != MTH || types.overrideEquivalent(sym.type, e.sym.type))) {
  2028                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2029                     varargsDuplicateError(pos, sym, e.sym);
  2030                 else
  2031                     duplicateError(pos, e.sym);
  2032                 return false;
  2035         return true;
  2038     /** Check that single-type import is not already imported or top-level defined,
  2039      *  but make an exception for two single-type imports which denote the same type.
  2040      *  @param pos           Position for error reporting.
  2041      *  @param sym           The symbol.
  2042      *  @param s             The scope
  2043      */
  2044     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2045         return checkUniqueImport(pos, sym, s, false);
  2048     /** Check that static single-type import is not already imported or top-level defined,
  2049      *  but make an exception for two single-type imports which denote the same type.
  2050      *  @param pos           Position for error reporting.
  2051      *  @param sym           The symbol.
  2052      *  @param s             The scope
  2053      *  @param staticImport  Whether or not this was a static import
  2054      */
  2055     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2056         return checkUniqueImport(pos, sym, s, true);
  2059     /** Check that single-type import is not already imported or top-level defined,
  2060      *  but make an exception for two single-type imports which denote the same type.
  2061      *  @param pos           Position for error reporting.
  2062      *  @param sym           The symbol.
  2063      *  @param s             The scope.
  2064      *  @param staticImport  Whether or not this was a static import
  2065      */
  2066     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2067         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2068             // is encountered class entered via a class declaration?
  2069             boolean isClassDecl = e.scope == s;
  2070             if ((isClassDecl || sym != e.sym) &&
  2071                 sym.kind == e.sym.kind &&
  2072                 sym.name != names.error) {
  2073                 if (!e.sym.type.isErroneous()) {
  2074                     String what = e.sym.toString();
  2075                     if (!isClassDecl) {
  2076                         if (staticImport)
  2077                             log.error(pos, "already.defined.static.single.import", what);
  2078                         else
  2079                             log.error(pos, "already.defined.single.import", what);
  2081                     else if (sym != e.sym)
  2082                         log.error(pos, "already.defined.this.unit", what);
  2084                 return false;
  2087         return true;
  2090     /** Check that a qualified name is in canonical form (for import decls).
  2091      */
  2092     public void checkCanonical(JCTree tree) {
  2093         if (!isCanonical(tree))
  2094             log.error(tree.pos(), "import.requires.canonical",
  2095                       TreeInfo.symbol(tree));
  2097         // where
  2098         private boolean isCanonical(JCTree tree) {
  2099             while (tree.getTag() == JCTree.SELECT) {
  2100                 JCFieldAccess s = (JCFieldAccess) tree;
  2101                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2102                     return false;
  2103                 tree = s.selected;
  2105             return true;
  2108     private class ConversionWarner extends Warner {
  2109         final String key;
  2110         final Type found;
  2111         final Type expected;
  2112         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2113             super(pos);
  2114             this.key = key;
  2115             this.found = found;
  2116             this.expected = expected;
  2119         public void warnUnchecked() {
  2120             boolean warned = this.warned;
  2121             super.warnUnchecked();
  2122             if (warned) return; // suppress redundant diagnostics
  2123             Object problem = JCDiagnostic.fragment(key);
  2124             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2128     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2129         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2132     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2133         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial