src/share/classes/com/sun/tools/javac/comp/Check.java

Fri, 04 Jul 2008 15:06:27 -0700

author
tbell
date
Fri, 04 Jul 2008 15:06:27 -0700
changeset 62
07c916ecfc71
parent 60
29d2485c1085
parent 54
eaf608c64fec
child 78
77dba8b57346
permissions
-rw-r--r--

Merge

duke@1 1 /*
xdono@54 2 * Copyright 1999-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30
duke@1 31 import com.sun.tools.javac.code.*;
duke@1 32 import com.sun.tools.javac.jvm.*;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.tree.JCTree.*;
duke@1 39 import com.sun.tools.javac.code.Lint;
duke@1 40 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 41 import com.sun.tools.javac.code.Type.*;
duke@1 42 import com.sun.tools.javac.code.Symbol.*;
duke@1 43
duke@1 44 import static com.sun.tools.javac.code.Flags.*;
duke@1 45 import static com.sun.tools.javac.code.Kinds.*;
duke@1 46 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 47
duke@1 48 /** Type checking helper class for the attribution phase.
duke@1 49 *
duke@1 50 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 51 * you write code that depends on this, you do so at your own risk.
duke@1 52 * This code and its internal interfaces are subject to change or
duke@1 53 * deletion without notice.</b>
duke@1 54 */
duke@1 55 public class Check {
duke@1 56 protected static final Context.Key<Check> checkKey =
duke@1 57 new Context.Key<Check>();
duke@1 58
duke@1 59 private final Name.Table names;
duke@1 60 private final Log log;
duke@1 61 private final Symtab syms;
duke@1 62 private final Infer infer;
duke@1 63 private final Target target;
duke@1 64 private final Source source;
duke@1 65 private final Types types;
duke@1 66 private final boolean skipAnnotations;
duke@1 67 private final TreeInfo treeinfo;
duke@1 68
duke@1 69 // The set of lint options currently in effect. It is initialized
duke@1 70 // from the context, and then is set/reset as needed by Attr as it
duke@1 71 // visits all the various parts of the trees during attribution.
duke@1 72 private Lint lint;
duke@1 73
duke@1 74 public static Check instance(Context context) {
duke@1 75 Check instance = context.get(checkKey);
duke@1 76 if (instance == null)
duke@1 77 instance = new Check(context);
duke@1 78 return instance;
duke@1 79 }
duke@1 80
duke@1 81 protected Check(Context context) {
duke@1 82 context.put(checkKey, this);
duke@1 83
duke@1 84 names = Name.Table.instance(context);
duke@1 85 log = Log.instance(context);
duke@1 86 syms = Symtab.instance(context);
duke@1 87 infer = Infer.instance(context);
duke@1 88 this.types = Types.instance(context);
duke@1 89 Options options = Options.instance(context);
duke@1 90 target = Target.instance(context);
duke@1 91 source = Source.instance(context);
duke@1 92 lint = Lint.instance(context);
duke@1 93 treeinfo = TreeInfo.instance(context);
duke@1 94
duke@1 95 Source source = Source.instance(context);
duke@1 96 allowGenerics = source.allowGenerics();
duke@1 97 allowAnnotations = source.allowAnnotations();
duke@1 98 complexInference = options.get("-complexinference") != null;
duke@1 99 skipAnnotations = options.get("skipAnnotations") != null;
duke@1 100
duke@1 101 boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
duke@1 102 boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
jjg@60 103 boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
duke@1 104
jjg@60 105 deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
jjg@60 106 enforceMandatoryWarnings, "deprecated");
jjg@60 107 uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
jjg@60 108 enforceMandatoryWarnings, "unchecked");
duke@1 109 }
duke@1 110
duke@1 111 /** Switch: generics enabled?
duke@1 112 */
duke@1 113 boolean allowGenerics;
duke@1 114
duke@1 115 /** Switch: annotations enabled?
duke@1 116 */
duke@1 117 boolean allowAnnotations;
duke@1 118
duke@1 119 /** Switch: -complexinference option set?
duke@1 120 */
duke@1 121 boolean complexInference;
duke@1 122
duke@1 123 /** A table mapping flat names of all compiled classes in this run to their
duke@1 124 * symbols; maintained from outside.
duke@1 125 */
duke@1 126 public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
duke@1 127
duke@1 128 /** A handler for messages about deprecated usage.
duke@1 129 */
duke@1 130 private MandatoryWarningHandler deprecationHandler;
duke@1 131
duke@1 132 /** A handler for messages about unchecked or unsafe usage.
duke@1 133 */
duke@1 134 private MandatoryWarningHandler uncheckedHandler;
duke@1 135
duke@1 136
duke@1 137 /* *************************************************************************
duke@1 138 * Errors and Warnings
duke@1 139 **************************************************************************/
duke@1 140
duke@1 141 Lint setLint(Lint newLint) {
duke@1 142 Lint prev = lint;
duke@1 143 lint = newLint;
duke@1 144 return prev;
duke@1 145 }
duke@1 146
duke@1 147 /** Warn about deprecated symbol.
duke@1 148 * @param pos Position to be used for error reporting.
duke@1 149 * @param sym The deprecated symbol.
duke@1 150 */
duke@1 151 void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
duke@1 152 if (!lint.isSuppressed(LintCategory.DEPRECATION))
duke@1 153 deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
duke@1 154 }
duke@1 155
duke@1 156 /** Warn about unchecked operation.
duke@1 157 * @param pos Position to be used for error reporting.
duke@1 158 * @param msg A string describing the problem.
duke@1 159 */
duke@1 160 public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
duke@1 161 if (!lint.isSuppressed(LintCategory.UNCHECKED))
duke@1 162 uncheckedHandler.report(pos, msg, args);
duke@1 163 }
duke@1 164
duke@1 165 /**
duke@1 166 * Report any deferred diagnostics.
duke@1 167 */
duke@1 168 public void reportDeferredDiagnostics() {
duke@1 169 deprecationHandler.reportDeferredDiagnostic();
duke@1 170 uncheckedHandler.reportDeferredDiagnostic();
duke@1 171 }
duke@1 172
duke@1 173
duke@1 174 /** Report a failure to complete a class.
duke@1 175 * @param pos Position to be used for error reporting.
duke@1 176 * @param ex The failure to report.
duke@1 177 */
duke@1 178 public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
jjg@12 179 log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
duke@1 180 if (ex instanceof ClassReader.BadClassFile) throw new Abort();
duke@1 181 else return syms.errType;
duke@1 182 }
duke@1 183
duke@1 184 /** Report a type error.
duke@1 185 * @param pos Position to be used for error reporting.
duke@1 186 * @param problem A string describing the error.
duke@1 187 * @param found The type that was found.
duke@1 188 * @param req The type that was required.
duke@1 189 */
duke@1 190 Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
duke@1 191 log.error(pos, "prob.found.req",
duke@1 192 problem, found, req);
duke@1 193 return syms.errType;
duke@1 194 }
duke@1 195
duke@1 196 Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
duke@1 197 log.error(pos, "prob.found.req.1", problem, found, req, explanation);
duke@1 198 return syms.errType;
duke@1 199 }
duke@1 200
duke@1 201 /** Report an error that wrong type tag was found.
duke@1 202 * @param pos Position to be used for error reporting.
duke@1 203 * @param required An internationalized string describing the type tag
duke@1 204 * required.
duke@1 205 * @param found The type that was found.
duke@1 206 */
duke@1 207 Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
duke@1 208 log.error(pos, "type.found.req", found, required);
duke@1 209 return syms.errType;
duke@1 210 }
duke@1 211
duke@1 212 /** Report an error that symbol cannot be referenced before super
duke@1 213 * has been called.
duke@1 214 * @param pos Position to be used for error reporting.
duke@1 215 * @param sym The referenced symbol.
duke@1 216 */
duke@1 217 void earlyRefError(DiagnosticPosition pos, Symbol sym) {
duke@1 218 log.error(pos, "cant.ref.before.ctor.called", sym);
duke@1 219 }
duke@1 220
duke@1 221 /** Report duplicate declaration error.
duke@1 222 */
duke@1 223 void duplicateError(DiagnosticPosition pos, Symbol sym) {
duke@1 224 if (!sym.type.isErroneous()) {
duke@1 225 log.error(pos, "already.defined", sym, sym.location());
duke@1 226 }
duke@1 227 }
duke@1 228
duke@1 229 /** Report array/varargs duplicate declaration
duke@1 230 */
duke@1 231 void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
duke@1 232 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
duke@1 233 log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
duke@1 234 }
duke@1 235 }
duke@1 236
duke@1 237 /* ************************************************************************
duke@1 238 * duplicate declaration checking
duke@1 239 *************************************************************************/
duke@1 240
duke@1 241 /** Check that variable does not hide variable with same name in
duke@1 242 * immediately enclosing local scope.
duke@1 243 * @param pos Position for error reporting.
duke@1 244 * @param v The symbol.
duke@1 245 * @param s The scope.
duke@1 246 */
duke@1 247 void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
duke@1 248 if (s.next != null) {
duke@1 249 for (Scope.Entry e = s.next.lookup(v.name);
duke@1 250 e.scope != null && e.sym.owner == v.owner;
duke@1 251 e = e.next()) {
duke@1 252 if (e.sym.kind == VAR &&
duke@1 253 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 254 v.name != names.error) {
duke@1 255 duplicateError(pos, e.sym);
duke@1 256 return;
duke@1 257 }
duke@1 258 }
duke@1 259 }
duke@1 260 }
duke@1 261
duke@1 262 /** Check that a class or interface does not hide a class or
duke@1 263 * interface with same name in immediately enclosing local scope.
duke@1 264 * @param pos Position for error reporting.
duke@1 265 * @param c The symbol.
duke@1 266 * @param s The scope.
duke@1 267 */
duke@1 268 void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
duke@1 269 if (s.next != null) {
duke@1 270 for (Scope.Entry e = s.next.lookup(c.name);
duke@1 271 e.scope != null && e.sym.owner == c.owner;
duke@1 272 e = e.next()) {
duke@1 273 if (e.sym.kind == TYP &&
duke@1 274 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 275 c.name != names.error) {
duke@1 276 duplicateError(pos, e.sym);
duke@1 277 return;
duke@1 278 }
duke@1 279 }
duke@1 280 }
duke@1 281 }
duke@1 282
duke@1 283 /** Check that class does not have the same name as one of
duke@1 284 * its enclosing classes, or as a class defined in its enclosing scope.
duke@1 285 * return true if class is unique in its enclosing scope.
duke@1 286 * @param pos Position for error reporting.
duke@1 287 * @param name The class name.
duke@1 288 * @param s The enclosing scope.
duke@1 289 */
duke@1 290 boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
duke@1 291 for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
duke@1 292 if (e.sym.kind == TYP && e.sym.name != names.error) {
duke@1 293 duplicateError(pos, e.sym);
duke@1 294 return false;
duke@1 295 }
duke@1 296 }
duke@1 297 for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
duke@1 298 if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
duke@1 299 duplicateError(pos, sym);
duke@1 300 return true;
duke@1 301 }
duke@1 302 }
duke@1 303 return true;
duke@1 304 }
duke@1 305
duke@1 306 /* *************************************************************************
duke@1 307 * Class name generation
duke@1 308 **************************************************************************/
duke@1 309
duke@1 310 /** Return name of local class.
duke@1 311 * This is of the form <enclClass> $ n <classname>
duke@1 312 * where
duke@1 313 * enclClass is the flat name of the enclosing class,
duke@1 314 * classname is the simple name of the local class
duke@1 315 */
duke@1 316 Name localClassName(ClassSymbol c) {
duke@1 317 for (int i=1; ; i++) {
duke@1 318 Name flatname = names.
duke@1 319 fromString("" + c.owner.enclClass().flatname +
duke@1 320 target.syntheticNameChar() + i +
duke@1 321 c.name);
duke@1 322 if (compiled.get(flatname) == null) return flatname;
duke@1 323 }
duke@1 324 }
duke@1 325
duke@1 326 /* *************************************************************************
duke@1 327 * Type Checking
duke@1 328 **************************************************************************/
duke@1 329
duke@1 330 /** Check that a given type is assignable to a given proto-type.
duke@1 331 * If it is, return the type, otherwise return errType.
duke@1 332 * @param pos Position to be used for error reporting.
duke@1 333 * @param found The type that was found.
duke@1 334 * @param req The type that was required.
duke@1 335 */
duke@1 336 Type checkType(DiagnosticPosition pos, Type found, Type req) {
duke@1 337 if (req.tag == ERROR)
duke@1 338 return req;
duke@1 339 if (found.tag == FORALL)
duke@1 340 return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
duke@1 341 if (req.tag == NONE)
duke@1 342 return found;
duke@1 343 if (types.isAssignable(found, req, convertWarner(pos, found, req)))
duke@1 344 return found;
duke@1 345 if (found.tag <= DOUBLE && req.tag <= DOUBLE)
duke@1 346 return typeError(pos, JCDiagnostic.fragment("possible.loss.of.precision"), found, req);
duke@1 347 if (found.isSuperBound()) {
duke@1 348 log.error(pos, "assignment.from.super-bound", found);
duke@1 349 return syms.errType;
duke@1 350 }
duke@1 351 if (req.isExtendsBound()) {
duke@1 352 log.error(pos, "assignment.to.extends-bound", req);
duke@1 353 return syms.errType;
duke@1 354 }
duke@1 355 return typeError(pos, JCDiagnostic.fragment("incompatible.types"), found, req);
duke@1 356 }
duke@1 357
duke@1 358 /** Instantiate polymorphic type to some prototype, unless
duke@1 359 * prototype is `anyPoly' in which case polymorphic type
duke@1 360 * is returned unchanged.
duke@1 361 */
duke@1 362 Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) {
duke@1 363 if (pt == Infer.anyPoly && complexInference) {
duke@1 364 return t;
duke@1 365 } else if (pt == Infer.anyPoly || pt.tag == NONE) {
duke@1 366 Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
duke@1 367 return instantiatePoly(pos, t, newpt, warn);
duke@1 368 } else if (pt.tag == ERROR) {
duke@1 369 return pt;
duke@1 370 } else {
duke@1 371 try {
duke@1 372 return infer.instantiateExpr(t, pt, warn);
duke@1 373 } catch (Infer.NoInstanceException ex) {
duke@1 374 if (ex.isAmbiguous) {
duke@1 375 JCDiagnostic d = ex.getDiagnostic();
duke@1 376 log.error(pos,
duke@1 377 "undetermined.type" + (d!=null ? ".1" : ""),
duke@1 378 t, d);
duke@1 379 return syms.errType;
duke@1 380 } else {
duke@1 381 JCDiagnostic d = ex.getDiagnostic();
duke@1 382 return typeError(pos,
duke@1 383 JCDiagnostic.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
duke@1 384 t, pt);
duke@1 385 }
duke@1 386 }
duke@1 387 }
duke@1 388 }
duke@1 389
duke@1 390 /** Check that a given type can be cast to a given target type.
duke@1 391 * Return the result of the cast.
duke@1 392 * @param pos Position to be used for error reporting.
duke@1 393 * @param found The type that is being cast.
duke@1 394 * @param req The target type of the cast.
duke@1 395 */
duke@1 396 Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
duke@1 397 if (found.tag == FORALL) {
duke@1 398 instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
duke@1 399 return req;
duke@1 400 } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
duke@1 401 return req;
duke@1 402 } else {
duke@1 403 return typeError(pos,
duke@1 404 JCDiagnostic.fragment("inconvertible.types"),
duke@1 405 found, req);
duke@1 406 }
duke@1 407 }
duke@1 408 //where
duke@1 409 /** Is type a type variable, or a (possibly multi-dimensional) array of
duke@1 410 * type variables?
duke@1 411 */
duke@1 412 boolean isTypeVar(Type t) {
duke@1 413 return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
duke@1 414 }
duke@1 415
duke@1 416 /** Check that a type is within some bounds.
duke@1 417 *
duke@1 418 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
duke@1 419 * type argument.
duke@1 420 * @param pos Position to be used for error reporting.
duke@1 421 * @param a The type that should be bounded by bs.
duke@1 422 * @param bs The bound.
duke@1 423 */
duke@1 424 private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
duke@1 425 if (a.isUnbound()) {
duke@1 426 return;
duke@1 427 } else if (a.tag != WILDCARD) {
duke@1 428 a = types.upperBound(a);
duke@1 429 for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
duke@1 430 if (!types.isSubtype(a, l.head)) {
duke@1 431 log.error(pos, "not.within.bounds", a);
duke@1 432 return;
duke@1 433 }
duke@1 434 }
duke@1 435 } else if (a.isExtendsBound()) {
duke@1 436 if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
duke@1 437 log.error(pos, "not.within.bounds", a);
duke@1 438 } else if (a.isSuperBound()) {
duke@1 439 if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
duke@1 440 log.error(pos, "not.within.bounds", a);
duke@1 441 }
duke@1 442 }
duke@1 443
duke@1 444 /** Check that type is different from 'void'.
duke@1 445 * @param pos Position to be used for error reporting.
duke@1 446 * @param t The type to be checked.
duke@1 447 */
duke@1 448 Type checkNonVoid(DiagnosticPosition pos, Type t) {
duke@1 449 if (t.tag == VOID) {
duke@1 450 log.error(pos, "void.not.allowed.here");
duke@1 451 return syms.errType;
duke@1 452 } else {
duke@1 453 return t;
duke@1 454 }
duke@1 455 }
duke@1 456
duke@1 457 /** Check that type is a class or interface type.
duke@1 458 * @param pos Position to be used for error reporting.
duke@1 459 * @param t The type to be checked.
duke@1 460 */
duke@1 461 Type checkClassType(DiagnosticPosition pos, Type t) {
duke@1 462 if (t.tag != CLASS && t.tag != ERROR)
duke@1 463 return typeTagError(pos,
duke@1 464 JCDiagnostic.fragment("type.req.class"),
duke@1 465 (t.tag == TYPEVAR)
duke@1 466 ? JCDiagnostic.fragment("type.parameter", t)
duke@1 467 : t);
duke@1 468 else
duke@1 469 return t;
duke@1 470 }
duke@1 471
duke@1 472 /** Check that type is a class or interface type.
duke@1 473 * @param pos Position to be used for error reporting.
duke@1 474 * @param t The type to be checked.
duke@1 475 * @param noBounds True if type bounds are illegal here.
duke@1 476 */
duke@1 477 Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
duke@1 478 t = checkClassType(pos, t);
duke@1 479 if (noBounds && t.isParameterized()) {
duke@1 480 List<Type> args = t.getTypeArguments();
duke@1 481 while (args.nonEmpty()) {
duke@1 482 if (args.head.tag == WILDCARD)
duke@1 483 return typeTagError(pos,
duke@1 484 log.getLocalizedString("type.req.exact"),
duke@1 485 args.head);
duke@1 486 args = args.tail;
duke@1 487 }
duke@1 488 }
duke@1 489 return t;
duke@1 490 }
duke@1 491
duke@1 492 /** Check that type is a reifiable class, interface or array type.
duke@1 493 * @param pos Position to be used for error reporting.
duke@1 494 * @param t The type to be checked.
duke@1 495 */
duke@1 496 Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
duke@1 497 if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
duke@1 498 return typeTagError(pos,
duke@1 499 JCDiagnostic.fragment("type.req.class.array"),
duke@1 500 t);
duke@1 501 } else if (!types.isReifiable(t)) {
duke@1 502 log.error(pos, "illegal.generic.type.for.instof");
duke@1 503 return syms.errType;
duke@1 504 } else {
duke@1 505 return t;
duke@1 506 }
duke@1 507 }
duke@1 508
duke@1 509 /** Check that type is a reference type, i.e. a class, interface or array type
duke@1 510 * or a type variable.
duke@1 511 * @param pos Position to be used for error reporting.
duke@1 512 * @param t The type to be checked.
duke@1 513 */
duke@1 514 Type checkRefType(DiagnosticPosition pos, Type t) {
duke@1 515 switch (t.tag) {
duke@1 516 case CLASS:
duke@1 517 case ARRAY:
duke@1 518 case TYPEVAR:
duke@1 519 case WILDCARD:
duke@1 520 case ERROR:
duke@1 521 return t;
duke@1 522 default:
duke@1 523 return typeTagError(pos,
duke@1 524 JCDiagnostic.fragment("type.req.ref"),
duke@1 525 t);
duke@1 526 }
duke@1 527 }
duke@1 528
duke@1 529 /** Check that type is a null or reference type.
duke@1 530 * @param pos Position to be used for error reporting.
duke@1 531 * @param t The type to be checked.
duke@1 532 */
duke@1 533 Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
duke@1 534 switch (t.tag) {
duke@1 535 case CLASS:
duke@1 536 case ARRAY:
duke@1 537 case TYPEVAR:
duke@1 538 case WILDCARD:
duke@1 539 case BOT:
duke@1 540 case ERROR:
duke@1 541 return t;
duke@1 542 default:
duke@1 543 return typeTagError(pos,
duke@1 544 JCDiagnostic.fragment("type.req.ref"),
duke@1 545 t);
duke@1 546 }
duke@1 547 }
duke@1 548
duke@1 549 /** Check that flag set does not contain elements of two conflicting sets. s
duke@1 550 * Return true if it doesn't.
duke@1 551 * @param pos Position to be used for error reporting.
duke@1 552 * @param flags The set of flags to be checked.
duke@1 553 * @param set1 Conflicting flags set #1.
duke@1 554 * @param set2 Conflicting flags set #2.
duke@1 555 */
duke@1 556 boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
duke@1 557 if ((flags & set1) != 0 && (flags & set2) != 0) {
duke@1 558 log.error(pos,
duke@1 559 "illegal.combination.of.modifiers",
duke@1 560 TreeInfo.flagNames(TreeInfo.firstFlag(flags & set1)),
duke@1 561 TreeInfo.flagNames(TreeInfo.firstFlag(flags & set2)));
duke@1 562 return false;
duke@1 563 } else
duke@1 564 return true;
duke@1 565 }
duke@1 566
duke@1 567 /** Check that given modifiers are legal for given symbol and
duke@1 568 * return modifiers together with any implicit modififiers for that symbol.
duke@1 569 * Warning: we can't use flags() here since this method
duke@1 570 * is called during class enter, when flags() would cause a premature
duke@1 571 * completion.
duke@1 572 * @param pos Position to be used for error reporting.
duke@1 573 * @param flags The set of modifiers given in a definition.
duke@1 574 * @param sym The defined symbol.
duke@1 575 */
duke@1 576 long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
duke@1 577 long mask;
duke@1 578 long implicit = 0;
duke@1 579 switch (sym.kind) {
duke@1 580 case VAR:
duke@1 581 if (sym.owner.kind != TYP)
duke@1 582 mask = LocalVarFlags;
duke@1 583 else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 584 mask = implicit = InterfaceVarFlags;
duke@1 585 else
duke@1 586 mask = VarFlags;
duke@1 587 break;
duke@1 588 case MTH:
duke@1 589 if (sym.name == names.init) {
duke@1 590 if ((sym.owner.flags_field & ENUM) != 0) {
duke@1 591 // enum constructors cannot be declared public or
duke@1 592 // protected and must be implicitly or explicitly
duke@1 593 // private
duke@1 594 implicit = PRIVATE;
duke@1 595 mask = PRIVATE;
duke@1 596 } else
duke@1 597 mask = ConstructorFlags;
duke@1 598 } else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 599 mask = implicit = InterfaceMethodFlags;
duke@1 600 else {
duke@1 601 mask = MethodFlags;
duke@1 602 }
duke@1 603 // Imply STRICTFP if owner has STRICTFP set.
duke@1 604 if (((flags|implicit) & Flags.ABSTRACT) == 0)
duke@1 605 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 606 break;
duke@1 607 case TYP:
duke@1 608 if (sym.isLocal()) {
duke@1 609 mask = LocalClassFlags;
duke@1 610 if (sym.name.len == 0) { // Anonymous class
duke@1 611 // Anonymous classes in static methods are themselves static;
duke@1 612 // that's why we admit STATIC here.
duke@1 613 mask |= STATIC;
duke@1 614 // JLS: Anonymous classes are final.
duke@1 615 implicit |= FINAL;
duke@1 616 }
duke@1 617 if ((sym.owner.flags_field & STATIC) == 0 &&
duke@1 618 (flags & ENUM) != 0)
duke@1 619 log.error(pos, "enums.must.be.static");
duke@1 620 } else if (sym.owner.kind == TYP) {
duke@1 621 mask = MemberClassFlags;
duke@1 622 if (sym.owner.owner.kind == PCK ||
duke@1 623 (sym.owner.flags_field & STATIC) != 0)
duke@1 624 mask |= STATIC;
duke@1 625 else if ((flags & ENUM) != 0)
duke@1 626 log.error(pos, "enums.must.be.static");
duke@1 627 // Nested interfaces and enums are always STATIC (Spec ???)
duke@1 628 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
duke@1 629 } else {
duke@1 630 mask = ClassFlags;
duke@1 631 }
duke@1 632 // Interfaces are always ABSTRACT
duke@1 633 if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
duke@1 634
duke@1 635 if ((flags & ENUM) != 0) {
duke@1 636 // enums can't be declared abstract or final
duke@1 637 mask &= ~(ABSTRACT | FINAL);
duke@1 638 implicit |= implicitEnumFinalFlag(tree);
duke@1 639 }
duke@1 640 // Imply STRICTFP if owner has STRICTFP set.
duke@1 641 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 642 break;
duke@1 643 default:
duke@1 644 throw new AssertionError();
duke@1 645 }
duke@1 646 long illegal = flags & StandardFlags & ~mask;
duke@1 647 if (illegal != 0) {
duke@1 648 if ((illegal & INTERFACE) != 0) {
duke@1 649 log.error(pos, "intf.not.allowed.here");
duke@1 650 mask |= INTERFACE;
duke@1 651 }
duke@1 652 else {
duke@1 653 log.error(pos,
duke@1 654 "mod.not.allowed.here", TreeInfo.flagNames(illegal));
duke@1 655 }
duke@1 656 }
duke@1 657 else if ((sym.kind == TYP ||
duke@1 658 // ISSUE: Disallowing abstract&private is no longer appropriate
duke@1 659 // in the presence of inner classes. Should it be deleted here?
duke@1 660 checkDisjoint(pos, flags,
duke@1 661 ABSTRACT,
duke@1 662 PRIVATE | STATIC))
duke@1 663 &&
duke@1 664 checkDisjoint(pos, flags,
duke@1 665 ABSTRACT | INTERFACE,
duke@1 666 FINAL | NATIVE | SYNCHRONIZED)
duke@1 667 &&
duke@1 668 checkDisjoint(pos, flags,
duke@1 669 PUBLIC,
duke@1 670 PRIVATE | PROTECTED)
duke@1 671 &&
duke@1 672 checkDisjoint(pos, flags,
duke@1 673 PRIVATE,
duke@1 674 PUBLIC | PROTECTED)
duke@1 675 &&
duke@1 676 checkDisjoint(pos, flags,
duke@1 677 FINAL,
duke@1 678 VOLATILE)
duke@1 679 &&
duke@1 680 (sym.kind == TYP ||
duke@1 681 checkDisjoint(pos, flags,
duke@1 682 ABSTRACT | NATIVE,
duke@1 683 STRICTFP))) {
duke@1 684 // skip
duke@1 685 }
duke@1 686 return flags & (mask | ~StandardFlags) | implicit;
duke@1 687 }
duke@1 688
duke@1 689
duke@1 690 /** Determine if this enum should be implicitly final.
duke@1 691 *
duke@1 692 * If the enum has no specialized enum contants, it is final.
duke@1 693 *
duke@1 694 * If the enum does have specialized enum contants, it is
duke@1 695 * <i>not</i> final.
duke@1 696 */
duke@1 697 private long implicitEnumFinalFlag(JCTree tree) {
duke@1 698 if (tree.getTag() != JCTree.CLASSDEF) return 0;
duke@1 699 class SpecialTreeVisitor extends JCTree.Visitor {
duke@1 700 boolean specialized;
duke@1 701 SpecialTreeVisitor() {
duke@1 702 this.specialized = false;
duke@1 703 };
duke@1 704
duke@1 705 public void visitTree(JCTree tree) { /* no-op */ }
duke@1 706
duke@1 707 public void visitVarDef(JCVariableDecl tree) {
duke@1 708 if ((tree.mods.flags & ENUM) != 0) {
duke@1 709 if (tree.init instanceof JCNewClass &&
duke@1 710 ((JCNewClass) tree.init).def != null) {
duke@1 711 specialized = true;
duke@1 712 }
duke@1 713 }
duke@1 714 }
duke@1 715 }
duke@1 716
duke@1 717 SpecialTreeVisitor sts = new SpecialTreeVisitor();
duke@1 718 JCClassDecl cdef = (JCClassDecl) tree;
duke@1 719 for (JCTree defs: cdef.defs) {
duke@1 720 defs.accept(sts);
duke@1 721 if (sts.specialized) return 0;
duke@1 722 }
duke@1 723 return FINAL;
duke@1 724 }
duke@1 725
duke@1 726 /* *************************************************************************
duke@1 727 * Type Validation
duke@1 728 **************************************************************************/
duke@1 729
duke@1 730 /** Validate a type expression. That is,
duke@1 731 * check that all type arguments of a parametric type are within
duke@1 732 * their bounds. This must be done in a second phase after type attributon
duke@1 733 * since a class might have a subclass as type parameter bound. E.g:
duke@1 734 *
duke@1 735 * class B<A extends C> { ... }
duke@1 736 * class C extends B<C> { ... }
duke@1 737 *
duke@1 738 * and we can't make sure that the bound is already attributed because
duke@1 739 * of possible cycles.
duke@1 740 */
duke@1 741 private Validator validator = new Validator();
duke@1 742
duke@1 743 /** Visitor method: Validate a type expression, if it is not null, catching
duke@1 744 * and reporting any completion failures.
duke@1 745 */
duke@1 746 void validate(JCTree tree) {
duke@1 747 try {
duke@1 748 if (tree != null) tree.accept(validator);
duke@1 749 } catch (CompletionFailure ex) {
duke@1 750 completionError(tree.pos(), ex);
duke@1 751 }
duke@1 752 }
duke@1 753
duke@1 754 /** Visitor method: Validate a list of type expressions.
duke@1 755 */
duke@1 756 void validate(List<? extends JCTree> trees) {
duke@1 757 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
duke@1 758 validate(l.head);
duke@1 759 }
duke@1 760
duke@1 761 /** Visitor method: Validate a list of type parameters.
duke@1 762 */
duke@1 763 void validateTypeParams(List<JCTypeParameter> trees) {
duke@1 764 for (List<JCTypeParameter> l = trees; l.nonEmpty(); l = l.tail)
duke@1 765 validate(l.head);
duke@1 766 }
duke@1 767
duke@1 768 /** A visitor class for type validation.
duke@1 769 */
duke@1 770 class Validator extends JCTree.Visitor {
duke@1 771
duke@1 772 public void visitTypeArray(JCArrayTypeTree tree) {
duke@1 773 validate(tree.elemtype);
duke@1 774 }
duke@1 775
duke@1 776 public void visitTypeApply(JCTypeApply tree) {
duke@1 777 if (tree.type.tag == CLASS) {
duke@1 778 List<Type> formals = tree.type.tsym.type.getTypeArguments();
duke@1 779 List<Type> actuals = tree.type.getTypeArguments();
duke@1 780 List<JCExpression> args = tree.arguments;
duke@1 781 List<Type> forms = formals;
duke@1 782 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
duke@1 783
duke@1 784 // For matching pairs of actual argument types `a' and
duke@1 785 // formal type parameters with declared bound `b' ...
duke@1 786 while (args.nonEmpty() && forms.nonEmpty()) {
duke@1 787 validate(args.head);
duke@1 788
duke@1 789 // exact type arguments needs to know their
duke@1 790 // bounds (for upper and lower bound
duke@1 791 // calculations). So we create new TypeVars with
duke@1 792 // bounds substed with actuals.
duke@1 793 tvars_buf.append(types.substBound(((TypeVar)forms.head),
duke@1 794 formals,
duke@1 795 Type.removeBounds(actuals)));
duke@1 796
duke@1 797 args = args.tail;
duke@1 798 forms = forms.tail;
duke@1 799 }
duke@1 800
duke@1 801 args = tree.arguments;
duke@1 802 List<TypeVar> tvars = tvars_buf.toList();
duke@1 803 while (args.nonEmpty() && tvars.nonEmpty()) {
duke@1 804 // Let the actual arguments know their bound
duke@1 805 args.head.type.withTypeVar(tvars.head);
duke@1 806 args = args.tail;
duke@1 807 tvars = tvars.tail;
duke@1 808 }
duke@1 809
duke@1 810 args = tree.arguments;
duke@1 811 tvars = tvars_buf.toList();
duke@1 812 while (args.nonEmpty() && tvars.nonEmpty()) {
duke@1 813 checkExtends(args.head.pos(),
duke@1 814 args.head.type,
duke@1 815 tvars.head);
duke@1 816 args = args.tail;
duke@1 817 tvars = tvars.tail;
duke@1 818 }
duke@1 819
duke@1 820 // Check that this type is either fully parameterized, or
duke@1 821 // not parameterized at all.
duke@1 822 if (tree.type.getEnclosingType().isRaw())
duke@1 823 log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
duke@1 824 if (tree.clazz.getTag() == JCTree.SELECT)
duke@1 825 visitSelectInternal((JCFieldAccess)tree.clazz);
duke@1 826 }
duke@1 827 }
duke@1 828
duke@1 829 public void visitTypeParameter(JCTypeParameter tree) {
duke@1 830 validate(tree.bounds);
duke@1 831 checkClassBounds(tree.pos(), tree.type);
duke@1 832 }
duke@1 833
duke@1 834 @Override
duke@1 835 public void visitWildcard(JCWildcard tree) {
duke@1 836 if (tree.inner != null)
duke@1 837 validate(tree.inner);
duke@1 838 }
duke@1 839
duke@1 840 public void visitSelect(JCFieldAccess tree) {
duke@1 841 if (tree.type.tag == CLASS) {
duke@1 842 visitSelectInternal(tree);
duke@1 843
duke@1 844 // Check that this type is either fully parameterized, or
duke@1 845 // not parameterized at all.
duke@1 846 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
duke@1 847 log.error(tree.pos(), "improperly.formed.type.param.missing");
duke@1 848 }
duke@1 849 }
duke@1 850 public void visitSelectInternal(JCFieldAccess tree) {
duke@1 851 if (tree.type.getEnclosingType().tag != CLASS &&
duke@1 852 tree.selected.type.isParameterized()) {
duke@1 853 // The enclosing type is not a class, so we are
duke@1 854 // looking at a static member type. However, the
duke@1 855 // qualifying expression is parameterized.
duke@1 856 log.error(tree.pos(), "cant.select.static.class.from.param.type");
duke@1 857 } else {
duke@1 858 // otherwise validate the rest of the expression
duke@1 859 validate(tree.selected);
duke@1 860 }
duke@1 861 }
duke@1 862
duke@1 863 /** Default visitor method: do nothing.
duke@1 864 */
duke@1 865 public void visitTree(JCTree tree) {
duke@1 866 }
duke@1 867 }
duke@1 868
duke@1 869 /* *************************************************************************
duke@1 870 * Exception checking
duke@1 871 **************************************************************************/
duke@1 872
duke@1 873 /* The following methods treat classes as sets that contain
duke@1 874 * the class itself and all their subclasses
duke@1 875 */
duke@1 876
duke@1 877 /** Is given type a subtype of some of the types in given list?
duke@1 878 */
duke@1 879 boolean subset(Type t, List<Type> ts) {
duke@1 880 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 881 if (types.isSubtype(t, l.head)) return true;
duke@1 882 return false;
duke@1 883 }
duke@1 884
duke@1 885 /** Is given type a subtype or supertype of
duke@1 886 * some of the types in given list?
duke@1 887 */
duke@1 888 boolean intersects(Type t, List<Type> ts) {
duke@1 889 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 890 if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
duke@1 891 return false;
duke@1 892 }
duke@1 893
duke@1 894 /** Add type set to given type list, unless it is a subclass of some class
duke@1 895 * in the list.
duke@1 896 */
duke@1 897 List<Type> incl(Type t, List<Type> ts) {
duke@1 898 return subset(t, ts) ? ts : excl(t, ts).prepend(t);
duke@1 899 }
duke@1 900
duke@1 901 /** Remove type set from type set list.
duke@1 902 */
duke@1 903 List<Type> excl(Type t, List<Type> ts) {
duke@1 904 if (ts.isEmpty()) {
duke@1 905 return ts;
duke@1 906 } else {
duke@1 907 List<Type> ts1 = excl(t, ts.tail);
duke@1 908 if (types.isSubtype(ts.head, t)) return ts1;
duke@1 909 else if (ts1 == ts.tail) return ts;
duke@1 910 else return ts1.prepend(ts.head);
duke@1 911 }
duke@1 912 }
duke@1 913
duke@1 914 /** Form the union of two type set lists.
duke@1 915 */
duke@1 916 List<Type> union(List<Type> ts1, List<Type> ts2) {
duke@1 917 List<Type> ts = ts1;
duke@1 918 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 919 ts = incl(l.head, ts);
duke@1 920 return ts;
duke@1 921 }
duke@1 922
duke@1 923 /** Form the difference of two type lists.
duke@1 924 */
duke@1 925 List<Type> diff(List<Type> ts1, List<Type> ts2) {
duke@1 926 List<Type> ts = ts1;
duke@1 927 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 928 ts = excl(l.head, ts);
duke@1 929 return ts;
duke@1 930 }
duke@1 931
duke@1 932 /** Form the intersection of two type lists.
duke@1 933 */
duke@1 934 public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
duke@1 935 List<Type> ts = List.nil();
duke@1 936 for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
duke@1 937 if (subset(l.head, ts2)) ts = incl(l.head, ts);
duke@1 938 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 939 if (subset(l.head, ts1)) ts = incl(l.head, ts);
duke@1 940 return ts;
duke@1 941 }
duke@1 942
duke@1 943 /** Is exc an exception symbol that need not be declared?
duke@1 944 */
duke@1 945 boolean isUnchecked(ClassSymbol exc) {
duke@1 946 return
duke@1 947 exc.kind == ERR ||
duke@1 948 exc.isSubClass(syms.errorType.tsym, types) ||
duke@1 949 exc.isSubClass(syms.runtimeExceptionType.tsym, types);
duke@1 950 }
duke@1 951
duke@1 952 /** Is exc an exception type that need not be declared?
duke@1 953 */
duke@1 954 boolean isUnchecked(Type exc) {
duke@1 955 return
duke@1 956 (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
duke@1 957 (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
duke@1 958 exc.tag == BOT;
duke@1 959 }
duke@1 960
duke@1 961 /** Same, but handling completion failures.
duke@1 962 */
duke@1 963 boolean isUnchecked(DiagnosticPosition pos, Type exc) {
duke@1 964 try {
duke@1 965 return isUnchecked(exc);
duke@1 966 } catch (CompletionFailure ex) {
duke@1 967 completionError(pos, ex);
duke@1 968 return true;
duke@1 969 }
duke@1 970 }
duke@1 971
duke@1 972 /** Is exc handled by given exception list?
duke@1 973 */
duke@1 974 boolean isHandled(Type exc, List<Type> handled) {
duke@1 975 return isUnchecked(exc) || subset(exc, handled);
duke@1 976 }
duke@1 977
duke@1 978 /** Return all exceptions in thrown list that are not in handled list.
duke@1 979 * @param thrown The list of thrown exceptions.
duke@1 980 * @param handled The list of handled exceptions.
duke@1 981 */
duke@1 982 List<Type> unHandled(List<Type> thrown, List<Type> handled) {
duke@1 983 List<Type> unhandled = List.nil();
duke@1 984 for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
duke@1 985 if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
duke@1 986 return unhandled;
duke@1 987 }
duke@1 988
duke@1 989 /* *************************************************************************
duke@1 990 * Overriding/Implementation checking
duke@1 991 **************************************************************************/
duke@1 992
duke@1 993 /** The level of access protection given by a flag set,
duke@1 994 * where PRIVATE is highest and PUBLIC is lowest.
duke@1 995 */
duke@1 996 static int protection(long flags) {
duke@1 997 switch ((short)(flags & AccessFlags)) {
duke@1 998 case PRIVATE: return 3;
duke@1 999 case PROTECTED: return 1;
duke@1 1000 default:
duke@1 1001 case PUBLIC: return 0;
duke@1 1002 case 0: return 2;
duke@1 1003 }
duke@1 1004 }
duke@1 1005
duke@1 1006 /** A string describing the access permission given by a flag set.
duke@1 1007 * This always returns a space-separated list of Java Keywords.
duke@1 1008 */
duke@1 1009 private static String protectionString(long flags) {
duke@1 1010 long flags1 = flags & AccessFlags;
duke@1 1011 return (flags1 == 0) ? "package" : TreeInfo.flagNames(flags1);
duke@1 1012 }
duke@1 1013
duke@1 1014 /** A customized "cannot override" error message.
duke@1 1015 * @param m The overriding method.
duke@1 1016 * @param other The overridden method.
duke@1 1017 * @return An internationalized string.
duke@1 1018 */
duke@1 1019 static Object cannotOverride(MethodSymbol m, MethodSymbol other) {
duke@1 1020 String key;
duke@1 1021 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1022 key = "cant.override";
duke@1 1023 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1024 key = "cant.implement";
duke@1 1025 else
duke@1 1026 key = "clashes.with";
duke@1 1027 return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
duke@1 1028 }
duke@1 1029
duke@1 1030 /** A customized "override" warning message.
duke@1 1031 * @param m The overriding method.
duke@1 1032 * @param other The overridden method.
duke@1 1033 * @return An internationalized string.
duke@1 1034 */
duke@1 1035 static Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1036 String key;
duke@1 1037 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1038 key = "unchecked.override";
duke@1 1039 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1040 key = "unchecked.implement";
duke@1 1041 else
duke@1 1042 key = "unchecked.clash.with";
duke@1 1043 return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
duke@1 1044 }
duke@1 1045
duke@1 1046 /** A customized "override" warning message.
duke@1 1047 * @param m The overriding method.
duke@1 1048 * @param other The overridden method.
duke@1 1049 * @return An internationalized string.
duke@1 1050 */
duke@1 1051 static Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1052 String key;
duke@1 1053 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1054 key = "varargs.override";
duke@1 1055 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1056 key = "varargs.implement";
duke@1 1057 else
duke@1 1058 key = "varargs.clash.with";
duke@1 1059 return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
duke@1 1060 }
duke@1 1061
duke@1 1062 /** Check that this method conforms with overridden method 'other'.
duke@1 1063 * where `origin' is the class where checking started.
duke@1 1064 * Complications:
duke@1 1065 * (1) Do not check overriding of synthetic methods
duke@1 1066 * (reason: they might be final).
duke@1 1067 * todo: check whether this is still necessary.
duke@1 1068 * (2) Admit the case where an interface proxy throws fewer exceptions
duke@1 1069 * than the method it implements. Augment the proxy methods with the
duke@1 1070 * undeclared exceptions in this case.
duke@1 1071 * (3) When generics are enabled, admit the case where an interface proxy
duke@1 1072 * has a result type
duke@1 1073 * extended by the result type of the method it implements.
duke@1 1074 * Change the proxies result type to the smaller type in this case.
duke@1 1075 *
duke@1 1076 * @param tree The tree from which positions
duke@1 1077 * are extracted for errors.
duke@1 1078 * @param m The overriding method.
duke@1 1079 * @param other The overridden method.
duke@1 1080 * @param origin The class of which the overriding method
duke@1 1081 * is a member.
duke@1 1082 */
duke@1 1083 void checkOverride(JCTree tree,
duke@1 1084 MethodSymbol m,
duke@1 1085 MethodSymbol other,
duke@1 1086 ClassSymbol origin) {
duke@1 1087 // Don't check overriding of synthetic methods or by bridge methods.
duke@1 1088 if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
duke@1 1089 return;
duke@1 1090 }
duke@1 1091
duke@1 1092 // Error if static method overrides instance method (JLS 8.4.6.2).
duke@1 1093 if ((m.flags() & STATIC) != 0 &&
duke@1 1094 (other.flags() & STATIC) == 0) {
duke@1 1095 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
duke@1 1096 cannotOverride(m, other));
duke@1 1097 return;
duke@1 1098 }
duke@1 1099
duke@1 1100 // Error if instance method overrides static or final
duke@1 1101 // method (JLS 8.4.6.1).
duke@1 1102 if ((other.flags() & FINAL) != 0 ||
duke@1 1103 (m.flags() & STATIC) == 0 &&
duke@1 1104 (other.flags() & STATIC) != 0) {
duke@1 1105 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
duke@1 1106 cannotOverride(m, other),
duke@1 1107 TreeInfo.flagNames(other.flags() & (FINAL | STATIC)));
duke@1 1108 return;
duke@1 1109 }
duke@1 1110
duke@1 1111 if ((m.owner.flags() & ANNOTATION) != 0) {
duke@1 1112 // handled in validateAnnotationMethod
duke@1 1113 return;
duke@1 1114 }
duke@1 1115
duke@1 1116 // Error if overriding method has weaker access (JLS 8.4.6.3).
duke@1 1117 if ((origin.flags() & INTERFACE) == 0 &&
duke@1 1118 protection(m.flags()) > protection(other.flags())) {
duke@1 1119 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
duke@1 1120 cannotOverride(m, other),
duke@1 1121 protectionString(other.flags()));
duke@1 1122 return;
duke@1 1123
duke@1 1124 }
duke@1 1125
duke@1 1126 Type mt = types.memberType(origin.type, m);
duke@1 1127 Type ot = types.memberType(origin.type, other);
duke@1 1128 // Error if overriding result type is different
duke@1 1129 // (or, in the case of generics mode, not a subtype) of
duke@1 1130 // overridden result type. We have to rename any type parameters
duke@1 1131 // before comparing types.
duke@1 1132 List<Type> mtvars = mt.getTypeArguments();
duke@1 1133 List<Type> otvars = ot.getTypeArguments();
duke@1 1134 Type mtres = mt.getReturnType();
duke@1 1135 Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
duke@1 1136
duke@1 1137 overrideWarner.warned = false;
duke@1 1138 boolean resultTypesOK =
duke@1 1139 types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
duke@1 1140 if (!resultTypesOK) {
duke@1 1141 if (!source.allowCovariantReturns() &&
duke@1 1142 m.owner != origin &&
duke@1 1143 m.owner.isSubClass(other.owner, types)) {
duke@1 1144 // allow limited interoperability with covariant returns
duke@1 1145 } else {
duke@1 1146 typeError(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1147 JCDiagnostic.fragment("override.incompatible.ret",
duke@1 1148 cannotOverride(m, other)),
duke@1 1149 mtres, otres);
duke@1 1150 return;
duke@1 1151 }
duke@1 1152 } else if (overrideWarner.warned) {
duke@1 1153 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1154 "prob.found.req",
duke@1 1155 JCDiagnostic.fragment("override.unchecked.ret",
duke@1 1156 uncheckedOverrides(m, other)),
duke@1 1157 mtres, otres);
duke@1 1158 }
duke@1 1159
duke@1 1160 // Error if overriding method throws an exception not reported
duke@1 1161 // by overridden method.
duke@1 1162 List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
duke@1 1163 List<Type> unhandled = unHandled(mt.getThrownTypes(), otthrown);
duke@1 1164 if (unhandled.nonEmpty()) {
duke@1 1165 log.error(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1166 "override.meth.doesnt.throw",
duke@1 1167 cannotOverride(m, other),
duke@1 1168 unhandled.head);
duke@1 1169 return;
duke@1 1170 }
duke@1 1171
duke@1 1172 // Optional warning if varargs don't agree
duke@1 1173 if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
duke@1 1174 && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
duke@1 1175 log.warning(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1176 ((m.flags() & Flags.VARARGS) != 0)
duke@1 1177 ? "override.varargs.missing"
duke@1 1178 : "override.varargs.extra",
duke@1 1179 varargsOverrides(m, other));
duke@1 1180 }
duke@1 1181
duke@1 1182 // Warn if instance method overrides bridge method (compiler spec ??)
duke@1 1183 if ((other.flags() & BRIDGE) != 0) {
duke@1 1184 log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
duke@1 1185 uncheckedOverrides(m, other));
duke@1 1186 }
duke@1 1187
duke@1 1188 // Warn if a deprecated method overridden by a non-deprecated one.
duke@1 1189 if ((other.flags() & DEPRECATED) != 0
duke@1 1190 && (m.flags() & DEPRECATED) == 0
duke@1 1191 && m.outermostClass() != other.outermostClass()
duke@1 1192 && !isDeprecatedOverrideIgnorable(other, origin)) {
duke@1 1193 warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
duke@1 1194 }
duke@1 1195 }
duke@1 1196 // where
duke@1 1197 private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
duke@1 1198 // If the method, m, is defined in an interface, then ignore the issue if the method
duke@1 1199 // is only inherited via a supertype and also implemented in the supertype,
duke@1 1200 // because in that case, we will rediscover the issue when examining the method
duke@1 1201 // in the supertype.
duke@1 1202 // If the method, m, is not defined in an interface, then the only time we need to
duke@1 1203 // address the issue is when the method is the supertype implemementation: any other
duke@1 1204 // case, we will have dealt with when examining the supertype classes
duke@1 1205 ClassSymbol mc = m.enclClass();
duke@1 1206 Type st = types.supertype(origin.type);
duke@1 1207 if (st.tag != CLASS)
duke@1 1208 return true;
duke@1 1209 MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
duke@1 1210
duke@1 1211 if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
duke@1 1212 List<Type> intfs = types.interfaces(origin.type);
duke@1 1213 return (intfs.contains(mc.type) ? false : (stimpl != null));
duke@1 1214 }
duke@1 1215 else
duke@1 1216 return (stimpl != m);
duke@1 1217 }
duke@1 1218
duke@1 1219
duke@1 1220 // used to check if there were any unchecked conversions
duke@1 1221 Warner overrideWarner = new Warner();
duke@1 1222
duke@1 1223 /** Check that a class does not inherit two concrete methods
duke@1 1224 * with the same signature.
duke@1 1225 * @param pos Position to be used for error reporting.
duke@1 1226 * @param site The class type to be checked.
duke@1 1227 */
duke@1 1228 public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
duke@1 1229 Type sup = types.supertype(site);
duke@1 1230 if (sup.tag != CLASS) return;
duke@1 1231
duke@1 1232 for (Type t1 = sup;
duke@1 1233 t1.tsym.type.isParameterized();
duke@1 1234 t1 = types.supertype(t1)) {
duke@1 1235 for (Scope.Entry e1 = t1.tsym.members().elems;
duke@1 1236 e1 != null;
duke@1 1237 e1 = e1.sibling) {
duke@1 1238 Symbol s1 = e1.sym;
duke@1 1239 if (s1.kind != MTH ||
duke@1 1240 (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1241 !s1.isInheritedIn(site.tsym, types) ||
duke@1 1242 ((MethodSymbol)s1).implementation(site.tsym,
duke@1 1243 types,
duke@1 1244 true) != s1)
duke@1 1245 continue;
duke@1 1246 Type st1 = types.memberType(t1, s1);
duke@1 1247 int s1ArgsLength = st1.getParameterTypes().length();
duke@1 1248 if (st1 == s1.type) continue;
duke@1 1249
duke@1 1250 for (Type t2 = sup;
duke@1 1251 t2.tag == CLASS;
duke@1 1252 t2 = types.supertype(t2)) {
mcimadamore@24 1253 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
duke@1 1254 e2.scope != null;
duke@1 1255 e2 = e2.next()) {
duke@1 1256 Symbol s2 = e2.sym;
duke@1 1257 if (s2 == s1 ||
duke@1 1258 s2.kind != MTH ||
duke@1 1259 (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1260 s2.type.getParameterTypes().length() != s1ArgsLength ||
duke@1 1261 !s2.isInheritedIn(site.tsym, types) ||
duke@1 1262 ((MethodSymbol)s2).implementation(site.tsym,
duke@1 1263 types,
duke@1 1264 true) != s2)
duke@1 1265 continue;
duke@1 1266 Type st2 = types.memberType(t2, s2);
duke@1 1267 if (types.overrideEquivalent(st1, st2))
duke@1 1268 log.error(pos, "concrete.inheritance.conflict",
duke@1 1269 s1, t1, s2, t2, sup);
duke@1 1270 }
duke@1 1271 }
duke@1 1272 }
duke@1 1273 }
duke@1 1274 }
duke@1 1275
duke@1 1276 /** Check that classes (or interfaces) do not each define an abstract
duke@1 1277 * method with same name and arguments but incompatible return types.
duke@1 1278 * @param pos Position to be used for error reporting.
duke@1 1279 * @param t1 The first argument type.
duke@1 1280 * @param t2 The second argument type.
duke@1 1281 */
duke@1 1282 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1283 Type t1,
duke@1 1284 Type t2) {
duke@1 1285 return checkCompatibleAbstracts(pos, t1, t2,
duke@1 1286 types.makeCompoundType(t1, t2));
duke@1 1287 }
duke@1 1288
duke@1 1289 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1290 Type t1,
duke@1 1291 Type t2,
duke@1 1292 Type site) {
duke@1 1293 Symbol sym = firstIncompatibility(t1, t2, site);
duke@1 1294 if (sym != null) {
duke@1 1295 log.error(pos, "types.incompatible.diff.ret",
duke@1 1296 t1, t2, sym.name +
duke@1 1297 "(" + types.memberType(t2, sym).getParameterTypes() + ")");
duke@1 1298 return false;
duke@1 1299 }
duke@1 1300 return true;
duke@1 1301 }
duke@1 1302
duke@1 1303 /** Return the first method which is defined with same args
duke@1 1304 * but different return types in two given interfaces, or null if none
duke@1 1305 * exists.
duke@1 1306 * @param t1 The first type.
duke@1 1307 * @param t2 The second type.
duke@1 1308 * @param site The most derived type.
duke@1 1309 * @returns symbol from t2 that conflicts with one in t1.
duke@1 1310 */
duke@1 1311 private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
duke@1 1312 Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
duke@1 1313 closure(t1, interfaces1);
duke@1 1314 Map<TypeSymbol,Type> interfaces2;
duke@1 1315 if (t1 == t2)
duke@1 1316 interfaces2 = interfaces1;
duke@1 1317 else
duke@1 1318 closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
duke@1 1319
duke@1 1320 for (Type t3 : interfaces1.values()) {
duke@1 1321 for (Type t4 : interfaces2.values()) {
duke@1 1322 Symbol s = firstDirectIncompatibility(t3, t4, site);
duke@1 1323 if (s != null) return s;
duke@1 1324 }
duke@1 1325 }
duke@1 1326 return null;
duke@1 1327 }
duke@1 1328
duke@1 1329 /** Compute all the supertypes of t, indexed by type symbol. */
duke@1 1330 private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
duke@1 1331 if (t.tag != CLASS) return;
duke@1 1332 if (typeMap.put(t.tsym, t) == null) {
duke@1 1333 closure(types.supertype(t), typeMap);
duke@1 1334 for (Type i : types.interfaces(t))
duke@1 1335 closure(i, typeMap);
duke@1 1336 }
duke@1 1337 }
duke@1 1338
duke@1 1339 /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
duke@1 1340 private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
duke@1 1341 if (t.tag != CLASS) return;
duke@1 1342 if (typesSkip.get(t.tsym) != null) return;
duke@1 1343 if (typeMap.put(t.tsym, t) == null) {
duke@1 1344 closure(types.supertype(t), typesSkip, typeMap);
duke@1 1345 for (Type i : types.interfaces(t))
duke@1 1346 closure(i, typesSkip, typeMap);
duke@1 1347 }
duke@1 1348 }
duke@1 1349
duke@1 1350 /** Return the first method in t2 that conflicts with a method from t1. */
duke@1 1351 private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
duke@1 1352 for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
duke@1 1353 Symbol s1 = e1.sym;
duke@1 1354 Type st1 = null;
duke@1 1355 if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
duke@1 1356 Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
duke@1 1357 if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
duke@1 1358 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
duke@1 1359 Symbol s2 = e2.sym;
duke@1 1360 if (s1 == s2) continue;
duke@1 1361 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
duke@1 1362 if (st1 == null) st1 = types.memberType(t1, s1);
duke@1 1363 Type st2 = types.memberType(t2, s2);
duke@1 1364 if (types.overrideEquivalent(st1, st2)) {
duke@1 1365 List<Type> tvars1 = st1.getTypeArguments();
duke@1 1366 List<Type> tvars2 = st2.getTypeArguments();
duke@1 1367 Type rt1 = st1.getReturnType();
duke@1 1368 Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
duke@1 1369 boolean compat =
duke@1 1370 types.isSameType(rt1, rt2) ||
duke@1 1371 rt1.tag >= CLASS && rt2.tag >= CLASS &&
duke@1 1372 (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
mcimadamore@59 1373 types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
mcimadamore@59 1374 checkCommonOverriderIn(s1,s2,site);
duke@1 1375 if (!compat) return s2;
duke@1 1376 }
duke@1 1377 }
duke@1 1378 }
duke@1 1379 return null;
duke@1 1380 }
mcimadamore@59 1381 //WHERE
mcimadamore@59 1382 boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
mcimadamore@59 1383 Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
mcimadamore@59 1384 Type st1 = types.memberType(site, s1);
mcimadamore@59 1385 Type st2 = types.memberType(site, s2);
mcimadamore@59 1386 closure(site, supertypes);
mcimadamore@59 1387 for (Type t : supertypes.values()) {
mcimadamore@59 1388 for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
mcimadamore@59 1389 Symbol s3 = e.sym;
mcimadamore@59 1390 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
mcimadamore@59 1391 Type st3 = types.memberType(site,s3);
mcimadamore@59 1392 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
mcimadamore@59 1393 if (s3.owner == site.tsym) {
mcimadamore@59 1394 return true;
mcimadamore@59 1395 }
mcimadamore@59 1396 List<Type> tvars1 = st1.getTypeArguments();
mcimadamore@59 1397 List<Type> tvars2 = st2.getTypeArguments();
mcimadamore@59 1398 List<Type> tvars3 = st3.getTypeArguments();
mcimadamore@59 1399 Type rt1 = st1.getReturnType();
mcimadamore@59 1400 Type rt2 = st2.getReturnType();
mcimadamore@59 1401 Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
mcimadamore@59 1402 Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
mcimadamore@59 1403 boolean compat =
mcimadamore@59 1404 rt13.tag >= CLASS && rt23.tag >= CLASS &&
mcimadamore@59 1405 (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
mcimadamore@59 1406 types.covariantReturnType(rt23, rt2, Warner.noWarnings));
mcimadamore@59 1407 if (compat)
mcimadamore@59 1408 return true;
mcimadamore@59 1409 }
mcimadamore@59 1410 }
mcimadamore@59 1411 }
mcimadamore@59 1412 return false;
mcimadamore@59 1413 }
duke@1 1414
duke@1 1415 /** Check that a given method conforms with any method it overrides.
duke@1 1416 * @param tree The tree from which positions are extracted
duke@1 1417 * for errors.
duke@1 1418 * @param m The overriding method.
duke@1 1419 */
duke@1 1420 void checkOverride(JCTree tree, MethodSymbol m) {
duke@1 1421 ClassSymbol origin = (ClassSymbol)m.owner;
duke@1 1422 if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
duke@1 1423 if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
duke@1 1424 log.error(tree.pos(), "enum.no.finalize");
duke@1 1425 return;
duke@1 1426 }
duke@1 1427 for (Type t = types.supertype(origin.type); t.tag == CLASS;
duke@1 1428 t = types.supertype(t)) {
duke@1 1429 TypeSymbol c = t.tsym;
duke@1 1430 Scope.Entry e = c.members().lookup(m.name);
duke@1 1431 while (e.scope != null) {
duke@1 1432 if (m.overrides(e.sym, origin, types, false))
duke@1 1433 checkOverride(tree, m, (MethodSymbol)e.sym, origin);
mcimadamore@24 1434 else if (e.sym.isInheritedIn(origin, types) && !m.isConstructor()) {
mcimadamore@24 1435 Type er1 = m.erasure(types);
mcimadamore@24 1436 Type er2 = e.sym.erasure(types);
mcimadamore@24 1437 if (types.isSameType(er1,er2)) {
mcimadamore@24 1438 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@24 1439 "name.clash.same.erasure.no.override",
mcimadamore@24 1440 m, m.location(),
mcimadamore@24 1441 e.sym, e.sym.location());
mcimadamore@24 1442 }
mcimadamore@24 1443 }
duke@1 1444 e = e.next();
duke@1 1445 }
duke@1 1446 }
duke@1 1447 }
duke@1 1448
duke@1 1449 /** Check that all abstract members of given class have definitions.
duke@1 1450 * @param pos Position to be used for error reporting.
duke@1 1451 * @param c The class.
duke@1 1452 */
duke@1 1453 void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1454 try {
duke@1 1455 MethodSymbol undef = firstUndef(c, c);
duke@1 1456 if (undef != null) {
duke@1 1457 if ((c.flags() & ENUM) != 0 &&
duke@1 1458 types.supertype(c.type).tsym == syms.enumSym &&
duke@1 1459 (c.flags() & FINAL) == 0) {
duke@1 1460 // add the ABSTRACT flag to an enum
duke@1 1461 c.flags_field |= ABSTRACT;
duke@1 1462 } else {
duke@1 1463 MethodSymbol undef1 =
duke@1 1464 new MethodSymbol(undef.flags(), undef.name,
duke@1 1465 types.memberType(c.type, undef), undef.owner);
duke@1 1466 log.error(pos, "does.not.override.abstract",
duke@1 1467 c, undef1, undef1.location());
duke@1 1468 }
duke@1 1469 }
duke@1 1470 } catch (CompletionFailure ex) {
duke@1 1471 completionError(pos, ex);
duke@1 1472 }
duke@1 1473 }
duke@1 1474 //where
duke@1 1475 /** Return first abstract member of class `c' that is not defined
duke@1 1476 * in `impl', null if there is none.
duke@1 1477 */
duke@1 1478 private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
duke@1 1479 MethodSymbol undef = null;
duke@1 1480 // Do not bother to search in classes that are not abstract,
duke@1 1481 // since they cannot have abstract members.
duke@1 1482 if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1483 Scope s = c.members();
duke@1 1484 for (Scope.Entry e = s.elems;
duke@1 1485 undef == null && e != null;
duke@1 1486 e = e.sibling) {
duke@1 1487 if (e.sym.kind == MTH &&
duke@1 1488 (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
duke@1 1489 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1490 MethodSymbol implmeth = absmeth.implementation(impl, types, true);
duke@1 1491 if (implmeth == null || implmeth == absmeth)
duke@1 1492 undef = absmeth;
duke@1 1493 }
duke@1 1494 }
duke@1 1495 if (undef == null) {
duke@1 1496 Type st = types.supertype(c.type);
duke@1 1497 if (st.tag == CLASS)
duke@1 1498 undef = firstUndef(impl, (ClassSymbol)st.tsym);
duke@1 1499 }
duke@1 1500 for (List<Type> l = types.interfaces(c.type);
duke@1 1501 undef == null && l.nonEmpty();
duke@1 1502 l = l.tail) {
duke@1 1503 undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
duke@1 1504 }
duke@1 1505 }
duke@1 1506 return undef;
duke@1 1507 }
duke@1 1508
duke@1 1509 /** Check for cyclic references. Issue an error if the
duke@1 1510 * symbol of the type referred to has a LOCKED flag set.
duke@1 1511 *
duke@1 1512 * @param pos Position to be used for error reporting.
duke@1 1513 * @param t The type referred to.
duke@1 1514 */
duke@1 1515 void checkNonCyclic(DiagnosticPosition pos, Type t) {
duke@1 1516 checkNonCyclicInternal(pos, t);
duke@1 1517 }
duke@1 1518
duke@1 1519
duke@1 1520 void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
duke@1 1521 checkNonCyclic1(pos, t, new HashSet<TypeVar>());
duke@1 1522 }
duke@1 1523
duke@1 1524 private void checkNonCyclic1(DiagnosticPosition pos, Type t, Set<TypeVar> seen) {
duke@1 1525 final TypeVar tv;
mcimadamore@42 1526 if (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
mcimadamore@42 1527 return;
duke@1 1528 if (seen.contains(t)) {
duke@1 1529 tv = (TypeVar)t;
duke@1 1530 tv.bound = new ErrorType();
duke@1 1531 log.error(pos, "cyclic.inheritance", t);
duke@1 1532 } else if (t.tag == TYPEVAR) {
duke@1 1533 tv = (TypeVar)t;
duke@1 1534 seen.add(tv);
duke@1 1535 for (Type b : types.getBounds(tv))
duke@1 1536 checkNonCyclic1(pos, b, seen);
duke@1 1537 }
duke@1 1538 }
duke@1 1539
duke@1 1540 /** Check for cyclic references. Issue an error if the
duke@1 1541 * symbol of the type referred to has a LOCKED flag set.
duke@1 1542 *
duke@1 1543 * @param pos Position to be used for error reporting.
duke@1 1544 * @param t The type referred to.
duke@1 1545 * @returns True if the check completed on all attributed classes
duke@1 1546 */
duke@1 1547 private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
duke@1 1548 boolean complete = true; // was the check complete?
duke@1 1549 //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
duke@1 1550 Symbol c = t.tsym;
duke@1 1551 if ((c.flags_field & ACYCLIC) != 0) return true;
duke@1 1552
duke@1 1553 if ((c.flags_field & LOCKED) != 0) {
duke@1 1554 noteCyclic(pos, (ClassSymbol)c);
duke@1 1555 } else if (!c.type.isErroneous()) {
duke@1 1556 try {
duke@1 1557 c.flags_field |= LOCKED;
duke@1 1558 if (c.type.tag == CLASS) {
duke@1 1559 ClassType clazz = (ClassType)c.type;
duke@1 1560 if (clazz.interfaces_field != null)
duke@1 1561 for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
duke@1 1562 complete &= checkNonCyclicInternal(pos, l.head);
duke@1 1563 if (clazz.supertype_field != null) {
duke@1 1564 Type st = clazz.supertype_field;
duke@1 1565 if (st != null && st.tag == CLASS)
duke@1 1566 complete &= checkNonCyclicInternal(pos, st);
duke@1 1567 }
duke@1 1568 if (c.owner.kind == TYP)
duke@1 1569 complete &= checkNonCyclicInternal(pos, c.owner.type);
duke@1 1570 }
duke@1 1571 } finally {
duke@1 1572 c.flags_field &= ~LOCKED;
duke@1 1573 }
duke@1 1574 }
duke@1 1575 if (complete)
duke@1 1576 complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
duke@1 1577 if (complete) c.flags_field |= ACYCLIC;
duke@1 1578 return complete;
duke@1 1579 }
duke@1 1580
duke@1 1581 /** Note that we found an inheritance cycle. */
duke@1 1582 private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1583 log.error(pos, "cyclic.inheritance", c);
duke@1 1584 for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
duke@1 1585 l.head = new ErrorType((ClassSymbol)l.head.tsym);
duke@1 1586 Type st = types.supertype(c.type);
duke@1 1587 if (st.tag == CLASS)
duke@1 1588 ((ClassType)c.type).supertype_field = new ErrorType((ClassSymbol)st.tsym);
duke@1 1589 c.type = new ErrorType(c);
duke@1 1590 c.flags_field |= ACYCLIC;
duke@1 1591 }
duke@1 1592
duke@1 1593 /** Check that all methods which implement some
duke@1 1594 * method conform to the method they implement.
duke@1 1595 * @param tree The class definition whose members are checked.
duke@1 1596 */
duke@1 1597 void checkImplementations(JCClassDecl tree) {
duke@1 1598 checkImplementations(tree, tree.sym);
duke@1 1599 }
duke@1 1600 //where
duke@1 1601 /** Check that all methods which implement some
duke@1 1602 * method in `ic' conform to the method they implement.
duke@1 1603 */
duke@1 1604 void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
duke@1 1605 ClassSymbol origin = tree.sym;
duke@1 1606 for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
duke@1 1607 ClassSymbol lc = (ClassSymbol)l.head.tsym;
duke@1 1608 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
duke@1 1609 for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
duke@1 1610 if (e.sym.kind == MTH &&
duke@1 1611 (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
duke@1 1612 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1613 MethodSymbol implmeth = absmeth.implementation(origin, types, false);
duke@1 1614 if (implmeth != null && implmeth != absmeth &&
duke@1 1615 (implmeth.owner.flags() & INTERFACE) ==
duke@1 1616 (origin.flags() & INTERFACE)) {
duke@1 1617 // don't check if implmeth is in a class, yet
duke@1 1618 // origin is an interface. This case arises only
duke@1 1619 // if implmeth is declared in Object. The reason is
duke@1 1620 // that interfaces really don't inherit from
duke@1 1621 // Object it's just that the compiler represents
duke@1 1622 // things that way.
duke@1 1623 checkOverride(tree, implmeth, absmeth, origin);
duke@1 1624 }
duke@1 1625 }
duke@1 1626 }
duke@1 1627 }
duke@1 1628 }
duke@1 1629 }
duke@1 1630
duke@1 1631 /** Check that all abstract methods implemented by a class are
duke@1 1632 * mutually compatible.
duke@1 1633 * @param pos Position to be used for error reporting.
duke@1 1634 * @param c The class whose interfaces are checked.
duke@1 1635 */
duke@1 1636 void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
duke@1 1637 List<Type> supertypes = types.interfaces(c);
duke@1 1638 Type supertype = types.supertype(c);
duke@1 1639 if (supertype.tag == CLASS &&
duke@1 1640 (supertype.tsym.flags() & ABSTRACT) != 0)
duke@1 1641 supertypes = supertypes.prepend(supertype);
duke@1 1642 for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
duke@1 1643 if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
duke@1 1644 !checkCompatibleAbstracts(pos, l.head, l.head, c))
duke@1 1645 return;
duke@1 1646 for (List<Type> m = supertypes; m != l; m = m.tail)
duke@1 1647 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
duke@1 1648 return;
duke@1 1649 }
duke@1 1650 checkCompatibleConcretes(pos, c);
duke@1 1651 }
duke@1 1652
duke@1 1653 /** Check that class c does not implement directly or indirectly
duke@1 1654 * the same parameterized interface with two different argument lists.
duke@1 1655 * @param pos Position to be used for error reporting.
duke@1 1656 * @param type The type whose interfaces are checked.
duke@1 1657 */
duke@1 1658 void checkClassBounds(DiagnosticPosition pos, Type type) {
duke@1 1659 checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
duke@1 1660 }
duke@1 1661 //where
duke@1 1662 /** Enter all interfaces of type `type' into the hash table `seensofar'
duke@1 1663 * with their class symbol as key and their type as value. Make
duke@1 1664 * sure no class is entered with two different types.
duke@1 1665 */
duke@1 1666 void checkClassBounds(DiagnosticPosition pos,
duke@1 1667 Map<TypeSymbol,Type> seensofar,
duke@1 1668 Type type) {
duke@1 1669 if (type.isErroneous()) return;
duke@1 1670 for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
duke@1 1671 Type it = l.head;
duke@1 1672 Type oldit = seensofar.put(it.tsym, it);
duke@1 1673 if (oldit != null) {
duke@1 1674 List<Type> oldparams = oldit.allparams();
duke@1 1675 List<Type> newparams = it.allparams();
duke@1 1676 if (!types.containsTypeEquivalent(oldparams, newparams))
duke@1 1677 log.error(pos, "cant.inherit.diff.arg",
duke@1 1678 it.tsym, Type.toString(oldparams),
duke@1 1679 Type.toString(newparams));
duke@1 1680 }
duke@1 1681 checkClassBounds(pos, seensofar, it);
duke@1 1682 }
duke@1 1683 Type st = types.supertype(type);
duke@1 1684 if (st != null) checkClassBounds(pos, seensofar, st);
duke@1 1685 }
duke@1 1686
duke@1 1687 /** Enter interface into into set.
duke@1 1688 * If it existed already, issue a "repeated interface" error.
duke@1 1689 */
duke@1 1690 void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
duke@1 1691 if (its.contains(it))
duke@1 1692 log.error(pos, "repeated.interface");
duke@1 1693 else {
duke@1 1694 its.add(it);
duke@1 1695 }
duke@1 1696 }
duke@1 1697
duke@1 1698 /* *************************************************************************
duke@1 1699 * Check annotations
duke@1 1700 **************************************************************************/
duke@1 1701
duke@1 1702 /** Annotation types are restricted to primitives, String, an
duke@1 1703 * enum, an annotation, Class, Class<?>, Class<? extends
duke@1 1704 * Anything>, arrays of the preceding.
duke@1 1705 */
duke@1 1706 void validateAnnotationType(JCTree restype) {
duke@1 1707 // restype may be null if an error occurred, so don't bother validating it
duke@1 1708 if (restype != null) {
duke@1 1709 validateAnnotationType(restype.pos(), restype.type);
duke@1 1710 }
duke@1 1711 }
duke@1 1712
duke@1 1713 void validateAnnotationType(DiagnosticPosition pos, Type type) {
duke@1 1714 if (type.isPrimitive()) return;
duke@1 1715 if (types.isSameType(type, syms.stringType)) return;
duke@1 1716 if ((type.tsym.flags() & Flags.ENUM) != 0) return;
duke@1 1717 if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
duke@1 1718 if (types.lowerBound(type).tsym == syms.classType.tsym) return;
duke@1 1719 if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
duke@1 1720 validateAnnotationType(pos, types.elemtype(type));
duke@1 1721 return;
duke@1 1722 }
duke@1 1723 log.error(pos, "invalid.annotation.member.type");
duke@1 1724 }
duke@1 1725
duke@1 1726 /**
duke@1 1727 * "It is also a compile-time error if any method declared in an
duke@1 1728 * annotation type has a signature that is override-equivalent to
duke@1 1729 * that of any public or protected method declared in class Object
duke@1 1730 * or in the interface annotation.Annotation."
duke@1 1731 *
duke@1 1732 * @jls3 9.6 Annotation Types
duke@1 1733 */
duke@1 1734 void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
duke@1 1735 for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
duke@1 1736 Scope s = sup.tsym.members();
duke@1 1737 for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1738 if (e.sym.kind == MTH &&
duke@1 1739 (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
duke@1 1740 types.overrideEquivalent(m.type, e.sym.type))
duke@1 1741 log.error(pos, "intf.annotation.member.clash", e.sym, sup);
duke@1 1742 }
duke@1 1743 }
duke@1 1744 }
duke@1 1745
duke@1 1746 /** Check the annotations of a symbol.
duke@1 1747 */
duke@1 1748 public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
duke@1 1749 if (skipAnnotations) return;
duke@1 1750 for (JCAnnotation a : annotations)
duke@1 1751 validateAnnotation(a, s);
duke@1 1752 }
duke@1 1753
duke@1 1754 /** Check an annotation of a symbol.
duke@1 1755 */
duke@1 1756 public void validateAnnotation(JCAnnotation a, Symbol s) {
duke@1 1757 validateAnnotation(a);
duke@1 1758
duke@1 1759 if (!annotationApplicable(a, s))
duke@1 1760 log.error(a.pos(), "annotation.type.not.applicable");
duke@1 1761
duke@1 1762 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
duke@1 1763 if (!isOverrider(s))
duke@1 1764 log.error(a.pos(), "method.does.not.override.superclass");
duke@1 1765 }
duke@1 1766 }
duke@1 1767
duke@1 1768 /** Is s a method symbol that overrides a method in a superclass? */
duke@1 1769 boolean isOverrider(Symbol s) {
duke@1 1770 if (s.kind != MTH || s.isStatic())
duke@1 1771 return false;
duke@1 1772 MethodSymbol m = (MethodSymbol)s;
duke@1 1773 TypeSymbol owner = (TypeSymbol)m.owner;
duke@1 1774 for (Type sup : types.closure(owner.type)) {
duke@1 1775 if (sup == owner.type)
duke@1 1776 continue; // skip "this"
duke@1 1777 Scope scope = sup.tsym.members();
duke@1 1778 for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1779 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
duke@1 1780 return true;
duke@1 1781 }
duke@1 1782 }
duke@1 1783 return false;
duke@1 1784 }
duke@1 1785
duke@1 1786 /** Is the annotation applicable to the symbol? */
duke@1 1787 boolean annotationApplicable(JCAnnotation a, Symbol s) {
duke@1 1788 Attribute.Compound atTarget =
duke@1 1789 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
duke@1 1790 if (atTarget == null) return true;
duke@1 1791 Attribute atValue = atTarget.member(names.value);
duke@1 1792 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
duke@1 1793 Attribute.Array arr = (Attribute.Array) atValue;
duke@1 1794 for (Attribute app : arr.values) {
duke@1 1795 if (!(app instanceof Attribute.Enum)) return true; // recovery
duke@1 1796 Attribute.Enum e = (Attribute.Enum) app;
duke@1 1797 if (e.value.name == names.TYPE)
duke@1 1798 { if (s.kind == TYP) return true; }
duke@1 1799 else if (e.value.name == names.FIELD)
duke@1 1800 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
duke@1 1801 else if (e.value.name == names.METHOD)
duke@1 1802 { if (s.kind == MTH && !s.isConstructor()) return true; }
duke@1 1803 else if (e.value.name == names.PARAMETER)
duke@1 1804 { if (s.kind == VAR &&
duke@1 1805 s.owner.kind == MTH &&
duke@1 1806 (s.flags() & PARAMETER) != 0)
duke@1 1807 return true;
duke@1 1808 }
duke@1 1809 else if (e.value.name == names.CONSTRUCTOR)
duke@1 1810 { if (s.kind == MTH && s.isConstructor()) return true; }
duke@1 1811 else if (e.value.name == names.LOCAL_VARIABLE)
duke@1 1812 { if (s.kind == VAR && s.owner.kind == MTH &&
duke@1 1813 (s.flags() & PARAMETER) == 0)
duke@1 1814 return true;
duke@1 1815 }
duke@1 1816 else if (e.value.name == names.ANNOTATION_TYPE)
duke@1 1817 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
duke@1 1818 return true;
duke@1 1819 }
duke@1 1820 else if (e.value.name == names.PACKAGE)
duke@1 1821 { if (s.kind == PCK) return true; }
duke@1 1822 else
duke@1 1823 return true; // recovery
duke@1 1824 }
duke@1 1825 return false;
duke@1 1826 }
duke@1 1827
duke@1 1828 /** Check an annotation value.
duke@1 1829 */
duke@1 1830 public void validateAnnotation(JCAnnotation a) {
duke@1 1831 if (a.type.isErroneous()) return;
duke@1 1832
duke@1 1833 // collect an inventory of the members
duke@1 1834 Set<MethodSymbol> members = new HashSet<MethodSymbol>();
duke@1 1835 for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
duke@1 1836 e != null;
duke@1 1837 e = e.sibling)
duke@1 1838 if (e.sym.kind == MTH)
duke@1 1839 members.add((MethodSymbol) e.sym);
duke@1 1840
duke@1 1841 // count them off as they're annotated
duke@1 1842 for (JCTree arg : a.args) {
duke@1 1843 if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
duke@1 1844 JCAssign assign = (JCAssign) arg;
duke@1 1845 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 1846 if (m == null || m.type.isErroneous()) continue;
duke@1 1847 if (!members.remove(m))
duke@1 1848 log.error(arg.pos(), "duplicate.annotation.member.value",
duke@1 1849 m.name, a.type);
duke@1 1850 if (assign.rhs.getTag() == ANNOTATION)
duke@1 1851 validateAnnotation((JCAnnotation)assign.rhs);
duke@1 1852 }
duke@1 1853
duke@1 1854 // all the remaining ones better have default values
duke@1 1855 for (MethodSymbol m : members)
duke@1 1856 if (m.defaultValue == null && !m.type.isErroneous())
duke@1 1857 log.error(a.pos(), "annotation.missing.default.value",
duke@1 1858 a.type, m.name);
duke@1 1859
duke@1 1860 // special case: java.lang.annotation.Target must not have
duke@1 1861 // repeated values in its value member
duke@1 1862 if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
duke@1 1863 a.args.tail == null)
duke@1 1864 return;
duke@1 1865
duke@1 1866 if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
duke@1 1867 JCAssign assign = (JCAssign) a.args.head;
duke@1 1868 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 1869 if (m.name != names.value) return;
duke@1 1870 JCTree rhs = assign.rhs;
duke@1 1871 if (rhs.getTag() != JCTree.NEWARRAY) return;
duke@1 1872 JCNewArray na = (JCNewArray) rhs;
duke@1 1873 Set<Symbol> targets = new HashSet<Symbol>();
duke@1 1874 for (JCTree elem : na.elems) {
duke@1 1875 if (!targets.add(TreeInfo.symbol(elem))) {
duke@1 1876 log.error(elem.pos(), "repeated.annotation.target");
duke@1 1877 }
duke@1 1878 }
duke@1 1879 }
duke@1 1880
duke@1 1881 void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
duke@1 1882 if (allowAnnotations &&
duke@1 1883 lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
duke@1 1884 (s.flags() & DEPRECATED) != 0 &&
duke@1 1885 !syms.deprecatedType.isErroneous() &&
duke@1 1886 s.attribute(syms.deprecatedType.tsym) == null) {
duke@1 1887 log.warning(pos, "missing.deprecated.annotation");
duke@1 1888 }
duke@1 1889 }
duke@1 1890
duke@1 1891 /* *************************************************************************
duke@1 1892 * Check for recursive annotation elements.
duke@1 1893 **************************************************************************/
duke@1 1894
duke@1 1895 /** Check for cycles in the graph of annotation elements.
duke@1 1896 */
duke@1 1897 void checkNonCyclicElements(JCClassDecl tree) {
duke@1 1898 if ((tree.sym.flags_field & ANNOTATION) == 0) return;
duke@1 1899 assert (tree.sym.flags_field & LOCKED) == 0;
duke@1 1900 try {
duke@1 1901 tree.sym.flags_field |= LOCKED;
duke@1 1902 for (JCTree def : tree.defs) {
duke@1 1903 if (def.getTag() != JCTree.METHODDEF) continue;
duke@1 1904 JCMethodDecl meth = (JCMethodDecl)def;
duke@1 1905 checkAnnotationResType(meth.pos(), meth.restype.type);
duke@1 1906 }
duke@1 1907 } finally {
duke@1 1908 tree.sym.flags_field &= ~LOCKED;
duke@1 1909 tree.sym.flags_field |= ACYCLIC_ANN;
duke@1 1910 }
duke@1 1911 }
duke@1 1912
duke@1 1913 void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
duke@1 1914 if ((tsym.flags_field & ACYCLIC_ANN) != 0)
duke@1 1915 return;
duke@1 1916 if ((tsym.flags_field & LOCKED) != 0) {
duke@1 1917 log.error(pos, "cyclic.annotation.element");
duke@1 1918 return;
duke@1 1919 }
duke@1 1920 try {
duke@1 1921 tsym.flags_field |= LOCKED;
duke@1 1922 for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
duke@1 1923 Symbol s = e.sym;
duke@1 1924 if (s.kind != Kinds.MTH)
duke@1 1925 continue;
duke@1 1926 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
duke@1 1927 }
duke@1 1928 } finally {
duke@1 1929 tsym.flags_field &= ~LOCKED;
duke@1 1930 tsym.flags_field |= ACYCLIC_ANN;
duke@1 1931 }
duke@1 1932 }
duke@1 1933
duke@1 1934 void checkAnnotationResType(DiagnosticPosition pos, Type type) {
duke@1 1935 switch (type.tag) {
duke@1 1936 case TypeTags.CLASS:
duke@1 1937 if ((type.tsym.flags() & ANNOTATION) != 0)
duke@1 1938 checkNonCyclicElementsInternal(pos, type.tsym);
duke@1 1939 break;
duke@1 1940 case TypeTags.ARRAY:
duke@1 1941 checkAnnotationResType(pos, types.elemtype(type));
duke@1 1942 break;
duke@1 1943 default:
duke@1 1944 break; // int etc
duke@1 1945 }
duke@1 1946 }
duke@1 1947
duke@1 1948 /* *************************************************************************
duke@1 1949 * Check for cycles in the constructor call graph.
duke@1 1950 **************************************************************************/
duke@1 1951
duke@1 1952 /** Check for cycles in the graph of constructors calling other
duke@1 1953 * constructors.
duke@1 1954 */
duke@1 1955 void checkCyclicConstructors(JCClassDecl tree) {
duke@1 1956 Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
duke@1 1957
duke@1 1958 // enter each constructor this-call into the map
duke@1 1959 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 1960 JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
duke@1 1961 if (app == null) continue;
duke@1 1962 JCMethodDecl meth = (JCMethodDecl) l.head;
duke@1 1963 if (TreeInfo.name(app.meth) == names._this) {
duke@1 1964 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
duke@1 1965 } else {
duke@1 1966 meth.sym.flags_field |= ACYCLIC;
duke@1 1967 }
duke@1 1968 }
duke@1 1969
duke@1 1970 // Check for cycles in the map
duke@1 1971 Symbol[] ctors = new Symbol[0];
duke@1 1972 ctors = callMap.keySet().toArray(ctors);
duke@1 1973 for (Symbol caller : ctors) {
duke@1 1974 checkCyclicConstructor(tree, caller, callMap);
duke@1 1975 }
duke@1 1976 }
duke@1 1977
duke@1 1978 /** Look in the map to see if the given constructor is part of a
duke@1 1979 * call cycle.
duke@1 1980 */
duke@1 1981 private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
duke@1 1982 Map<Symbol,Symbol> callMap) {
duke@1 1983 if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
duke@1 1984 if ((ctor.flags_field & LOCKED) != 0) {
duke@1 1985 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
duke@1 1986 "recursive.ctor.invocation");
duke@1 1987 } else {
duke@1 1988 ctor.flags_field |= LOCKED;
duke@1 1989 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
duke@1 1990 ctor.flags_field &= ~LOCKED;
duke@1 1991 }
duke@1 1992 ctor.flags_field |= ACYCLIC;
duke@1 1993 }
duke@1 1994 }
duke@1 1995
duke@1 1996 /* *************************************************************************
duke@1 1997 * Miscellaneous
duke@1 1998 **************************************************************************/
duke@1 1999
duke@1 2000 /**
duke@1 2001 * Return the opcode of the operator but emit an error if it is an
duke@1 2002 * error.
duke@1 2003 * @param pos position for error reporting.
duke@1 2004 * @param operator an operator
duke@1 2005 * @param tag a tree tag
duke@1 2006 * @param left type of left hand side
duke@1 2007 * @param right type of right hand side
duke@1 2008 */
duke@1 2009 int checkOperator(DiagnosticPosition pos,
duke@1 2010 OperatorSymbol operator,
duke@1 2011 int tag,
duke@1 2012 Type left,
duke@1 2013 Type right) {
duke@1 2014 if (operator.opcode == ByteCodes.error) {
duke@1 2015 log.error(pos,
duke@1 2016 "operator.cant.be.applied",
duke@1 2017 treeinfo.operatorName(tag),
duke@1 2018 left + "," + right);
duke@1 2019 }
duke@1 2020 return operator.opcode;
duke@1 2021 }
duke@1 2022
duke@1 2023
duke@1 2024 /**
duke@1 2025 * Check for division by integer constant zero
duke@1 2026 * @param pos Position for error reporting.
duke@1 2027 * @param operator The operator for the expression
duke@1 2028 * @param operand The right hand operand for the expression
duke@1 2029 */
duke@1 2030 void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
duke@1 2031 if (operand.constValue() != null
duke@1 2032 && lint.isEnabled(Lint.LintCategory.DIVZERO)
duke@1 2033 && operand.tag <= LONG
duke@1 2034 && ((Number) (operand.constValue())).longValue() == 0) {
duke@1 2035 int opc = ((OperatorSymbol)operator).opcode;
duke@1 2036 if (opc == ByteCodes.idiv || opc == ByteCodes.imod
duke@1 2037 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
duke@1 2038 log.warning(pos, "div.zero");
duke@1 2039 }
duke@1 2040 }
duke@1 2041 }
duke@1 2042
duke@1 2043 /**
duke@1 2044 * Check for empty statements after if
duke@1 2045 */
duke@1 2046 void checkEmptyIf(JCIf tree) {
duke@1 2047 if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
duke@1 2048 log.warning(tree.thenpart.pos(), "empty.if");
duke@1 2049 }
duke@1 2050
duke@1 2051 /** Check that symbol is unique in given scope.
duke@1 2052 * @param pos Position for error reporting.
duke@1 2053 * @param sym The symbol.
duke@1 2054 * @param s The scope.
duke@1 2055 */
duke@1 2056 boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2057 if (sym.type.isErroneous())
duke@1 2058 return true;
duke@1 2059 if (sym.owner.name == names.any) return false;
duke@1 2060 for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
duke@1 2061 if (sym != e.sym &&
duke@1 2062 sym.kind == e.sym.kind &&
duke@1 2063 sym.name != names.error &&
duke@1 2064 (sym.kind != MTH || types.overrideEquivalent(sym.type, e.sym.type))) {
duke@1 2065 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
duke@1 2066 varargsDuplicateError(pos, sym, e.sym);
duke@1 2067 else
duke@1 2068 duplicateError(pos, e.sym);
duke@1 2069 return false;
duke@1 2070 }
duke@1 2071 }
duke@1 2072 return true;
duke@1 2073 }
duke@1 2074
duke@1 2075 /** Check that single-type import is not already imported or top-level defined,
duke@1 2076 * but make an exception for two single-type imports which denote the same type.
duke@1 2077 * @param pos Position for error reporting.
duke@1 2078 * @param sym The symbol.
duke@1 2079 * @param s The scope
duke@1 2080 */
duke@1 2081 boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2082 return checkUniqueImport(pos, sym, s, false);
duke@1 2083 }
duke@1 2084
duke@1 2085 /** Check that static single-type import is not already imported or top-level defined,
duke@1 2086 * but make an exception for two single-type imports which denote the same type.
duke@1 2087 * @param pos Position for error reporting.
duke@1 2088 * @param sym The symbol.
duke@1 2089 * @param s The scope
duke@1 2090 * @param staticImport Whether or not this was a static import
duke@1 2091 */
duke@1 2092 boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2093 return checkUniqueImport(pos, sym, s, true);
duke@1 2094 }
duke@1 2095
duke@1 2096 /** Check that single-type import is not already imported or top-level defined,
duke@1 2097 * but make an exception for two single-type imports which denote the same type.
duke@1 2098 * @param pos Position for error reporting.
duke@1 2099 * @param sym The symbol.
duke@1 2100 * @param s The scope.
duke@1 2101 * @param staticImport Whether or not this was a static import
duke@1 2102 */
duke@1 2103 private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
duke@1 2104 for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
duke@1 2105 // is encountered class entered via a class declaration?
duke@1 2106 boolean isClassDecl = e.scope == s;
duke@1 2107 if ((isClassDecl || sym != e.sym) &&
duke@1 2108 sym.kind == e.sym.kind &&
duke@1 2109 sym.name != names.error) {
duke@1 2110 if (!e.sym.type.isErroneous()) {
duke@1 2111 String what = e.sym.toString();
duke@1 2112 if (!isClassDecl) {
duke@1 2113 if (staticImport)
duke@1 2114 log.error(pos, "already.defined.static.single.import", what);
duke@1 2115 else
duke@1 2116 log.error(pos, "already.defined.single.import", what);
duke@1 2117 }
duke@1 2118 else if (sym != e.sym)
duke@1 2119 log.error(pos, "already.defined.this.unit", what);
duke@1 2120 }
duke@1 2121 return false;
duke@1 2122 }
duke@1 2123 }
duke@1 2124 return true;
duke@1 2125 }
duke@1 2126
duke@1 2127 /** Check that a qualified name is in canonical form (for import decls).
duke@1 2128 */
duke@1 2129 public void checkCanonical(JCTree tree) {
duke@1 2130 if (!isCanonical(tree))
duke@1 2131 log.error(tree.pos(), "import.requires.canonical",
duke@1 2132 TreeInfo.symbol(tree));
duke@1 2133 }
duke@1 2134 // where
duke@1 2135 private boolean isCanonical(JCTree tree) {
duke@1 2136 while (tree.getTag() == JCTree.SELECT) {
duke@1 2137 JCFieldAccess s = (JCFieldAccess) tree;
duke@1 2138 if (s.sym.owner != TreeInfo.symbol(s.selected))
duke@1 2139 return false;
duke@1 2140 tree = s.selected;
duke@1 2141 }
duke@1 2142 return true;
duke@1 2143 }
duke@1 2144
duke@1 2145 private class ConversionWarner extends Warner {
duke@1 2146 final String key;
duke@1 2147 final Type found;
duke@1 2148 final Type expected;
duke@1 2149 public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
duke@1 2150 super(pos);
duke@1 2151 this.key = key;
duke@1 2152 this.found = found;
duke@1 2153 this.expected = expected;
duke@1 2154 }
duke@1 2155
duke@1 2156 public void warnUnchecked() {
duke@1 2157 boolean warned = this.warned;
duke@1 2158 super.warnUnchecked();
duke@1 2159 if (warned) return; // suppress redundant diagnostics
duke@1 2160 Object problem = JCDiagnostic.fragment(key);
duke@1 2161 Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
duke@1 2162 }
duke@1 2163 }
duke@1 2164
duke@1 2165 public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2166 return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
duke@1 2167 }
duke@1 2168
duke@1 2169 public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2170 return new ConversionWarner(pos, "unchecked.assign", found, expected);
duke@1 2171 }
duke@1 2172 }

mercurial