src/share/classes/com/sun/tools/javac/comp/Check.java

changeset 1
9a66ca7c79fa
child 12
7366066839bb
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/classes/com/sun/tools/javac/comp/Check.java	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,2123 @@
     1.4 +/*
     1.5 + * Copyright 1999-2006 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Sun designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Sun in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.25 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.26 + * have any questions.
    1.27 + */
    1.28 +
    1.29 +package com.sun.tools.javac.comp;
    1.30 +
    1.31 +import java.util.*;
    1.32 +import java.util.Set;
    1.33 +
    1.34 +import com.sun.tools.javac.code.*;
    1.35 +import com.sun.tools.javac.jvm.*;
    1.36 +import com.sun.tools.javac.tree.*;
    1.37 +import com.sun.tools.javac.util.*;
    1.38 +import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    1.39 +import com.sun.tools.javac.util.List;
    1.40 +
    1.41 +import com.sun.tools.javac.tree.JCTree.*;
    1.42 +import com.sun.tools.javac.code.Lint;
    1.43 +import com.sun.tools.javac.code.Lint.LintCategory;
    1.44 +import com.sun.tools.javac.code.Type.*;
    1.45 +import com.sun.tools.javac.code.Symbol.*;
    1.46 +
    1.47 +import static com.sun.tools.javac.code.Flags.*;
    1.48 +import static com.sun.tools.javac.code.Kinds.*;
    1.49 +import static com.sun.tools.javac.code.TypeTags.*;
    1.50 +
    1.51 +/** Type checking helper class for the attribution phase.
    1.52 + *
    1.53 + *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
    1.54 + *  you write code that depends on this, you do so at your own risk.
    1.55 + *  This code and its internal interfaces are subject to change or
    1.56 + *  deletion without notice.</b>
    1.57 + */
    1.58 +public class Check {
    1.59 +    protected static final Context.Key<Check> checkKey =
    1.60 +        new Context.Key<Check>();
    1.61 +
    1.62 +    private final Name.Table names;
    1.63 +    private final Log log;
    1.64 +    private final Symtab syms;
    1.65 +    private final Infer infer;
    1.66 +    private final Target target;
    1.67 +    private final Source source;
    1.68 +    private final Types types;
    1.69 +    private final boolean skipAnnotations;
    1.70 +    private final TreeInfo treeinfo;
    1.71 +
    1.72 +    // The set of lint options currently in effect. It is initialized
    1.73 +    // from the context, and then is set/reset as needed by Attr as it
    1.74 +    // visits all the various parts of the trees during attribution.
    1.75 +    private Lint lint;
    1.76 +
    1.77 +    public static Check instance(Context context) {
    1.78 +        Check instance = context.get(checkKey);
    1.79 +        if (instance == null)
    1.80 +            instance = new Check(context);
    1.81 +        return instance;
    1.82 +    }
    1.83 +
    1.84 +    protected Check(Context context) {
    1.85 +        context.put(checkKey, this);
    1.86 +
    1.87 +        names = Name.Table.instance(context);
    1.88 +        log = Log.instance(context);
    1.89 +        syms = Symtab.instance(context);
    1.90 +        infer = Infer.instance(context);
    1.91 +        this.types = Types.instance(context);
    1.92 +        Options options = Options.instance(context);
    1.93 +        target = Target.instance(context);
    1.94 +        source = Source.instance(context);
    1.95 +        lint = Lint.instance(context);
    1.96 +        treeinfo = TreeInfo.instance(context);
    1.97 +
    1.98 +        Source source = Source.instance(context);
    1.99 +        allowGenerics = source.allowGenerics();
   1.100 +        allowAnnotations = source.allowAnnotations();
   1.101 +        complexInference = options.get("-complexinference") != null;
   1.102 +        skipAnnotations = options.get("skipAnnotations") != null;
   1.103 +
   1.104 +        boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   1.105 +        boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   1.106 +
   1.107 +        deprecationHandler = new MandatoryWarningHandler(log,verboseDeprecated, "deprecated");
   1.108 +        uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked, "unchecked");
   1.109 +    }
   1.110 +
   1.111 +    /** Switch: generics enabled?
   1.112 +     */
   1.113 +    boolean allowGenerics;
   1.114 +
   1.115 +    /** Switch: annotations enabled?
   1.116 +     */
   1.117 +    boolean allowAnnotations;
   1.118 +
   1.119 +    /** Switch: -complexinference option set?
   1.120 +     */
   1.121 +    boolean complexInference;
   1.122 +
   1.123 +    /** A table mapping flat names of all compiled classes in this run to their
   1.124 +     *  symbols; maintained from outside.
   1.125 +     */
   1.126 +    public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   1.127 +
   1.128 +    /** A handler for messages about deprecated usage.
   1.129 +     */
   1.130 +    private MandatoryWarningHandler deprecationHandler;
   1.131 +
   1.132 +    /** A handler for messages about unchecked or unsafe usage.
   1.133 +     */
   1.134 +    private MandatoryWarningHandler uncheckedHandler;
   1.135 +
   1.136 +
   1.137 +/* *************************************************************************
   1.138 + * Errors and Warnings
   1.139 + **************************************************************************/
   1.140 +
   1.141 +    Lint setLint(Lint newLint) {
   1.142 +        Lint prev = lint;
   1.143 +        lint = newLint;
   1.144 +        return prev;
   1.145 +    }
   1.146 +
   1.147 +    /** Warn about deprecated symbol.
   1.148 +     *  @param pos        Position to be used for error reporting.
   1.149 +     *  @param sym        The deprecated symbol.
   1.150 +     */
   1.151 +    void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   1.152 +        if (!lint.isSuppressed(LintCategory.DEPRECATION))
   1.153 +            deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   1.154 +    }
   1.155 +
   1.156 +    /** Warn about unchecked operation.
   1.157 +     *  @param pos        Position to be used for error reporting.
   1.158 +     *  @param msg        A string describing the problem.
   1.159 +     */
   1.160 +    public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   1.161 +        if (!lint.isSuppressed(LintCategory.UNCHECKED))
   1.162 +            uncheckedHandler.report(pos, msg, args);
   1.163 +    }
   1.164 +
   1.165 +    /**
   1.166 +     * Report any deferred diagnostics.
   1.167 +     */
   1.168 +    public void reportDeferredDiagnostics() {
   1.169 +        deprecationHandler.reportDeferredDiagnostic();
   1.170 +        uncheckedHandler.reportDeferredDiagnostic();
   1.171 +    }
   1.172 +
   1.173 +
   1.174 +    /** Report a failure to complete a class.
   1.175 +     *  @param pos        Position to be used for error reporting.
   1.176 +     *  @param ex         The failure to report.
   1.177 +     */
   1.178 +    public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   1.179 +        log.error(pos, "cant.access", ex.sym, ex.errmsg);
   1.180 +        if (ex instanceof ClassReader.BadClassFile) throw new Abort();
   1.181 +        else return syms.errType;
   1.182 +    }
   1.183 +
   1.184 +    /** Report a type error.
   1.185 +     *  @param pos        Position to be used for error reporting.
   1.186 +     *  @param problem    A string describing the error.
   1.187 +     *  @param found      The type that was found.
   1.188 +     *  @param req        The type that was required.
   1.189 +     */
   1.190 +    Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   1.191 +        log.error(pos, "prob.found.req",
   1.192 +                  problem, found, req);
   1.193 +        return syms.errType;
   1.194 +    }
   1.195 +
   1.196 +    Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   1.197 +        log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   1.198 +        return syms.errType;
   1.199 +    }
   1.200 +
   1.201 +    /** Report an error that wrong type tag was found.
   1.202 +     *  @param pos        Position to be used for error reporting.
   1.203 +     *  @param required   An internationalized string describing the type tag
   1.204 +     *                    required.
   1.205 +     *  @param found      The type that was found.
   1.206 +     */
   1.207 +    Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   1.208 +        log.error(pos, "type.found.req", found, required);
   1.209 +        return syms.errType;
   1.210 +    }
   1.211 +
   1.212 +    /** Report an error that symbol cannot be referenced before super
   1.213 +     *  has been called.
   1.214 +     *  @param pos        Position to be used for error reporting.
   1.215 +     *  @param sym        The referenced symbol.
   1.216 +     */
   1.217 +    void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   1.218 +        log.error(pos, "cant.ref.before.ctor.called", sym);
   1.219 +    }
   1.220 +
   1.221 +    /** Report duplicate declaration error.
   1.222 +     */
   1.223 +    void duplicateError(DiagnosticPosition pos, Symbol sym) {
   1.224 +        if (!sym.type.isErroneous()) {
   1.225 +            log.error(pos, "already.defined", sym, sym.location());
   1.226 +        }
   1.227 +    }
   1.228 +
   1.229 +    /** Report array/varargs duplicate declaration
   1.230 +     */
   1.231 +    void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   1.232 +        if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   1.233 +            log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   1.234 +        }
   1.235 +    }
   1.236 +
   1.237 +/* ************************************************************************
   1.238 + * duplicate declaration checking
   1.239 + *************************************************************************/
   1.240 +
   1.241 +    /** Check that variable does not hide variable with same name in
   1.242 +     *  immediately enclosing local scope.
   1.243 +     *  @param pos           Position for error reporting.
   1.244 +     *  @param v             The symbol.
   1.245 +     *  @param s             The scope.
   1.246 +     */
   1.247 +    void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   1.248 +        if (s.next != null) {
   1.249 +            for (Scope.Entry e = s.next.lookup(v.name);
   1.250 +                 e.scope != null && e.sym.owner == v.owner;
   1.251 +                 e = e.next()) {
   1.252 +                if (e.sym.kind == VAR &&
   1.253 +                    (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   1.254 +                    v.name != names.error) {
   1.255 +                    duplicateError(pos, e.sym);
   1.256 +                    return;
   1.257 +                }
   1.258 +            }
   1.259 +        }
   1.260 +    }
   1.261 +
   1.262 +    /** Check that a class or interface does not hide a class or
   1.263 +     *  interface with same name in immediately enclosing local scope.
   1.264 +     *  @param pos           Position for error reporting.
   1.265 +     *  @param c             The symbol.
   1.266 +     *  @param s             The scope.
   1.267 +     */
   1.268 +    void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   1.269 +        if (s.next != null) {
   1.270 +            for (Scope.Entry e = s.next.lookup(c.name);
   1.271 +                 e.scope != null && e.sym.owner == c.owner;
   1.272 +                 e = e.next()) {
   1.273 +                if (e.sym.kind == TYP &&
   1.274 +                    (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   1.275 +                    c.name != names.error) {
   1.276 +                    duplicateError(pos, e.sym);
   1.277 +                    return;
   1.278 +                }
   1.279 +            }
   1.280 +        }
   1.281 +    }
   1.282 +
   1.283 +    /** Check that class does not have the same name as one of
   1.284 +     *  its enclosing classes, or as a class defined in its enclosing scope.
   1.285 +     *  return true if class is unique in its enclosing scope.
   1.286 +     *  @param pos           Position for error reporting.
   1.287 +     *  @param name          The class name.
   1.288 +     *  @param s             The enclosing scope.
   1.289 +     */
   1.290 +    boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   1.291 +        for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   1.292 +            if (e.sym.kind == TYP && e.sym.name != names.error) {
   1.293 +                duplicateError(pos, e.sym);
   1.294 +                return false;
   1.295 +            }
   1.296 +        }
   1.297 +        for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   1.298 +            if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   1.299 +                duplicateError(pos, sym);
   1.300 +                return true;
   1.301 +            }
   1.302 +        }
   1.303 +        return true;
   1.304 +    }
   1.305 +
   1.306 +/* *************************************************************************
   1.307 + * Class name generation
   1.308 + **************************************************************************/
   1.309 +
   1.310 +    /** Return name of local class.
   1.311 +     *  This is of the form    <enclClass> $ n <classname>
   1.312 +     *  where
   1.313 +     *    enclClass is the flat name of the enclosing class,
   1.314 +     *    classname is the simple name of the local class
   1.315 +     */
   1.316 +    Name localClassName(ClassSymbol c) {
   1.317 +        for (int i=1; ; i++) {
   1.318 +            Name flatname = names.
   1.319 +                fromString("" + c.owner.enclClass().flatname +
   1.320 +                           target.syntheticNameChar() + i +
   1.321 +                           c.name);
   1.322 +            if (compiled.get(flatname) == null) return flatname;
   1.323 +        }
   1.324 +    }
   1.325 +
   1.326 +/* *************************************************************************
   1.327 + * Type Checking
   1.328 + **************************************************************************/
   1.329 +
   1.330 +    /** Check that a given type is assignable to a given proto-type.
   1.331 +     *  If it is, return the type, otherwise return errType.
   1.332 +     *  @param pos        Position to be used for error reporting.
   1.333 +     *  @param found      The type that was found.
   1.334 +     *  @param req        The type that was required.
   1.335 +     */
   1.336 +    Type checkType(DiagnosticPosition pos, Type found, Type req) {
   1.337 +        if (req.tag == ERROR)
   1.338 +            return req;
   1.339 +        if (found.tag == FORALL)
   1.340 +            return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   1.341 +        if (req.tag == NONE)
   1.342 +            return found;
   1.343 +        if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   1.344 +            return found;
   1.345 +        if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   1.346 +            return typeError(pos, JCDiagnostic.fragment("possible.loss.of.precision"), found, req);
   1.347 +        if (found.isSuperBound()) {
   1.348 +            log.error(pos, "assignment.from.super-bound", found);
   1.349 +            return syms.errType;
   1.350 +        }
   1.351 +        if (req.isExtendsBound()) {
   1.352 +            log.error(pos, "assignment.to.extends-bound", req);
   1.353 +            return syms.errType;
   1.354 +        }
   1.355 +        return typeError(pos, JCDiagnostic.fragment("incompatible.types"), found, req);
   1.356 +    }
   1.357 +
   1.358 +    /** Instantiate polymorphic type to some prototype, unless
   1.359 +     *  prototype is `anyPoly' in which case polymorphic type
   1.360 +     *  is returned unchanged.
   1.361 +     */
   1.362 +    Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) {
   1.363 +        if (pt == Infer.anyPoly && complexInference) {
   1.364 +            return t;
   1.365 +        } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   1.366 +            Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   1.367 +            return instantiatePoly(pos, t, newpt, warn);
   1.368 +        } else if (pt.tag == ERROR) {
   1.369 +            return pt;
   1.370 +        } else {
   1.371 +            try {
   1.372 +                return infer.instantiateExpr(t, pt, warn);
   1.373 +            } catch (Infer.NoInstanceException ex) {
   1.374 +                if (ex.isAmbiguous) {
   1.375 +                    JCDiagnostic d = ex.getDiagnostic();
   1.376 +                    log.error(pos,
   1.377 +                              "undetermined.type" + (d!=null ? ".1" : ""),
   1.378 +                              t, d);
   1.379 +                    return syms.errType;
   1.380 +                } else {
   1.381 +                    JCDiagnostic d = ex.getDiagnostic();
   1.382 +                    return typeError(pos,
   1.383 +                                     JCDiagnostic.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   1.384 +                                     t, pt);
   1.385 +                }
   1.386 +            }
   1.387 +        }
   1.388 +    }
   1.389 +
   1.390 +    /** Check that a given type can be cast to a given target type.
   1.391 +     *  Return the result of the cast.
   1.392 +     *  @param pos        Position to be used for error reporting.
   1.393 +     *  @param found      The type that is being cast.
   1.394 +     *  @param req        The target type of the cast.
   1.395 +     */
   1.396 +    Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   1.397 +        if (found.tag == FORALL) {
   1.398 +            instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   1.399 +            return req;
   1.400 +        } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   1.401 +            return req;
   1.402 +        } else {
   1.403 +            return typeError(pos,
   1.404 +                             JCDiagnostic.fragment("inconvertible.types"),
   1.405 +                             found, req);
   1.406 +        }
   1.407 +    }
   1.408 +//where
   1.409 +        /** Is type a type variable, or a (possibly multi-dimensional) array of
   1.410 +         *  type variables?
   1.411 +         */
   1.412 +        boolean isTypeVar(Type t) {
   1.413 +            return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   1.414 +        }
   1.415 +
   1.416 +    /** Check that a type is within some bounds.
   1.417 +     *
   1.418 +     *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   1.419 +     *  type argument.
   1.420 +     *  @param pos           Position to be used for error reporting.
   1.421 +     *  @param a             The type that should be bounded by bs.
   1.422 +     *  @param bs            The bound.
   1.423 +     */
   1.424 +    private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   1.425 +        if (a.isUnbound()) {
   1.426 +            return;
   1.427 +        } else if (a.tag != WILDCARD) {
   1.428 +            a = types.upperBound(a);
   1.429 +            for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   1.430 +                if (!types.isSubtype(a, l.head)) {
   1.431 +                    log.error(pos, "not.within.bounds", a);
   1.432 +                    return;
   1.433 +                }
   1.434 +            }
   1.435 +        } else if (a.isExtendsBound()) {
   1.436 +            if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   1.437 +                log.error(pos, "not.within.bounds", a);
   1.438 +        } else if (a.isSuperBound()) {
   1.439 +            if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   1.440 +                log.error(pos, "not.within.bounds", a);
   1.441 +        }
   1.442 +    }
   1.443 +
   1.444 +    /** Check that type is different from 'void'.
   1.445 +     *  @param pos           Position to be used for error reporting.
   1.446 +     *  @param t             The type to be checked.
   1.447 +     */
   1.448 +    Type checkNonVoid(DiagnosticPosition pos, Type t) {
   1.449 +        if (t.tag == VOID) {
   1.450 +            log.error(pos, "void.not.allowed.here");
   1.451 +            return syms.errType;
   1.452 +        } else {
   1.453 +            return t;
   1.454 +        }
   1.455 +    }
   1.456 +
   1.457 +    /** Check that type is a class or interface type.
   1.458 +     *  @param pos           Position to be used for error reporting.
   1.459 +     *  @param t             The type to be checked.
   1.460 +     */
   1.461 +    Type checkClassType(DiagnosticPosition pos, Type t) {
   1.462 +        if (t.tag != CLASS && t.tag != ERROR)
   1.463 +            return typeTagError(pos,
   1.464 +                                JCDiagnostic.fragment("type.req.class"),
   1.465 +                                (t.tag == TYPEVAR)
   1.466 +                                ? JCDiagnostic.fragment("type.parameter", t)
   1.467 +                                : t);
   1.468 +        else
   1.469 +            return t;
   1.470 +    }
   1.471 +
   1.472 +    /** Check that type is a class or interface type.
   1.473 +     *  @param pos           Position to be used for error reporting.
   1.474 +     *  @param t             The type to be checked.
   1.475 +     *  @param noBounds    True if type bounds are illegal here.
   1.476 +     */
   1.477 +    Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   1.478 +        t = checkClassType(pos, t);
   1.479 +        if (noBounds && t.isParameterized()) {
   1.480 +            List<Type> args = t.getTypeArguments();
   1.481 +            while (args.nonEmpty()) {
   1.482 +                if (args.head.tag == WILDCARD)
   1.483 +                    return typeTagError(pos,
   1.484 +                                        log.getLocalizedString("type.req.exact"),
   1.485 +                                        args.head);
   1.486 +                args = args.tail;
   1.487 +            }
   1.488 +        }
   1.489 +        return t;
   1.490 +    }
   1.491 +
   1.492 +    /** Check that type is a reifiable class, interface or array type.
   1.493 +     *  @param pos           Position to be used for error reporting.
   1.494 +     *  @param t             The type to be checked.
   1.495 +     */
   1.496 +    Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   1.497 +        if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   1.498 +            return typeTagError(pos,
   1.499 +                                JCDiagnostic.fragment("type.req.class.array"),
   1.500 +                                t);
   1.501 +        } else if (!types.isReifiable(t)) {
   1.502 +            log.error(pos, "illegal.generic.type.for.instof");
   1.503 +            return syms.errType;
   1.504 +        } else {
   1.505 +            return t;
   1.506 +        }
   1.507 +    }
   1.508 +
   1.509 +    /** Check that type is a reference type, i.e. a class, interface or array type
   1.510 +     *  or a type variable.
   1.511 +     *  @param pos           Position to be used for error reporting.
   1.512 +     *  @param t             The type to be checked.
   1.513 +     */
   1.514 +    Type checkRefType(DiagnosticPosition pos, Type t) {
   1.515 +        switch (t.tag) {
   1.516 +        case CLASS:
   1.517 +        case ARRAY:
   1.518 +        case TYPEVAR:
   1.519 +        case WILDCARD:
   1.520 +        case ERROR:
   1.521 +            return t;
   1.522 +        default:
   1.523 +            return typeTagError(pos,
   1.524 +                                JCDiagnostic.fragment("type.req.ref"),
   1.525 +                                t);
   1.526 +        }
   1.527 +    }
   1.528 +
   1.529 +    /** Check that type is a null or reference type.
   1.530 +     *  @param pos           Position to be used for error reporting.
   1.531 +     *  @param t             The type to be checked.
   1.532 +     */
   1.533 +    Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   1.534 +        switch (t.tag) {
   1.535 +        case CLASS:
   1.536 +        case ARRAY:
   1.537 +        case TYPEVAR:
   1.538 +        case WILDCARD:
   1.539 +        case BOT:
   1.540 +        case ERROR:
   1.541 +            return t;
   1.542 +        default:
   1.543 +            return typeTagError(pos,
   1.544 +                                JCDiagnostic.fragment("type.req.ref"),
   1.545 +                                t);
   1.546 +        }
   1.547 +    }
   1.548 +
   1.549 +    /** Check that flag set does not contain elements of two conflicting sets. s
   1.550 +     *  Return true if it doesn't.
   1.551 +     *  @param pos           Position to be used for error reporting.
   1.552 +     *  @param flags         The set of flags to be checked.
   1.553 +     *  @param set1          Conflicting flags set #1.
   1.554 +     *  @param set2          Conflicting flags set #2.
   1.555 +     */
   1.556 +    boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   1.557 +        if ((flags & set1) != 0 && (flags & set2) != 0) {
   1.558 +            log.error(pos,
   1.559 +                      "illegal.combination.of.modifiers",
   1.560 +                      TreeInfo.flagNames(TreeInfo.firstFlag(flags & set1)),
   1.561 +                      TreeInfo.flagNames(TreeInfo.firstFlag(flags & set2)));
   1.562 +            return false;
   1.563 +        } else
   1.564 +            return true;
   1.565 +    }
   1.566 +
   1.567 +    /** Check that given modifiers are legal for given symbol and
   1.568 +     *  return modifiers together with any implicit modififiers for that symbol.
   1.569 +     *  Warning: we can't use flags() here since this method
   1.570 +     *  is called during class enter, when flags() would cause a premature
   1.571 +     *  completion.
   1.572 +     *  @param pos           Position to be used for error reporting.
   1.573 +     *  @param flags         The set of modifiers given in a definition.
   1.574 +     *  @param sym           The defined symbol.
   1.575 +     */
   1.576 +    long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   1.577 +        long mask;
   1.578 +        long implicit = 0;
   1.579 +        switch (sym.kind) {
   1.580 +        case VAR:
   1.581 +            if (sym.owner.kind != TYP)
   1.582 +                mask = LocalVarFlags;
   1.583 +            else if ((sym.owner.flags_field & INTERFACE) != 0)
   1.584 +                mask = implicit = InterfaceVarFlags;
   1.585 +            else
   1.586 +                mask = VarFlags;
   1.587 +            break;
   1.588 +        case MTH:
   1.589 +            if (sym.name == names.init) {
   1.590 +                if ((sym.owner.flags_field & ENUM) != 0) {
   1.591 +                    // enum constructors cannot be declared public or
   1.592 +                    // protected and must be implicitly or explicitly
   1.593 +                    // private
   1.594 +                    implicit = PRIVATE;
   1.595 +                    mask = PRIVATE;
   1.596 +                } else
   1.597 +                    mask = ConstructorFlags;
   1.598 +            }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   1.599 +                mask = implicit = InterfaceMethodFlags;
   1.600 +            else {
   1.601 +                mask = MethodFlags;
   1.602 +            }
   1.603 +            // Imply STRICTFP if owner has STRICTFP set.
   1.604 +            if (((flags|implicit) & Flags.ABSTRACT) == 0)
   1.605 +              implicit |= sym.owner.flags_field & STRICTFP;
   1.606 +            break;
   1.607 +        case TYP:
   1.608 +            if (sym.isLocal()) {
   1.609 +                mask = LocalClassFlags;
   1.610 +                if (sym.name.len == 0) { // Anonymous class
   1.611 +                    // Anonymous classes in static methods are themselves static;
   1.612 +                    // that's why we admit STATIC here.
   1.613 +                    mask |= STATIC;
   1.614 +                    // JLS: Anonymous classes are final.
   1.615 +                    implicit |= FINAL;
   1.616 +                }
   1.617 +                if ((sym.owner.flags_field & STATIC) == 0 &&
   1.618 +                    (flags & ENUM) != 0)
   1.619 +                    log.error(pos, "enums.must.be.static");
   1.620 +            } else if (sym.owner.kind == TYP) {
   1.621 +                mask = MemberClassFlags;
   1.622 +                if (sym.owner.owner.kind == PCK ||
   1.623 +                    (sym.owner.flags_field & STATIC) != 0)
   1.624 +                    mask |= STATIC;
   1.625 +                else if ((flags & ENUM) != 0)
   1.626 +                    log.error(pos, "enums.must.be.static");
   1.627 +                // Nested interfaces and enums are always STATIC (Spec ???)
   1.628 +                if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   1.629 +            } else {
   1.630 +                mask = ClassFlags;
   1.631 +            }
   1.632 +            // Interfaces are always ABSTRACT
   1.633 +            if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   1.634 +
   1.635 +            if ((flags & ENUM) != 0) {
   1.636 +                // enums can't be declared abstract or final
   1.637 +                mask &= ~(ABSTRACT | FINAL);
   1.638 +                implicit |= implicitEnumFinalFlag(tree);
   1.639 +            }
   1.640 +            // Imply STRICTFP if owner has STRICTFP set.
   1.641 +            implicit |= sym.owner.flags_field & STRICTFP;
   1.642 +            break;
   1.643 +        default:
   1.644 +            throw new AssertionError();
   1.645 +        }
   1.646 +        long illegal = flags & StandardFlags & ~mask;
   1.647 +        if (illegal != 0) {
   1.648 +            if ((illegal & INTERFACE) != 0) {
   1.649 +                log.error(pos, "intf.not.allowed.here");
   1.650 +                mask |= INTERFACE;
   1.651 +            }
   1.652 +            else {
   1.653 +                log.error(pos,
   1.654 +                          "mod.not.allowed.here", TreeInfo.flagNames(illegal));
   1.655 +            }
   1.656 +        }
   1.657 +        else if ((sym.kind == TYP ||
   1.658 +                  // ISSUE: Disallowing abstract&private is no longer appropriate
   1.659 +                  // in the presence of inner classes. Should it be deleted here?
   1.660 +                  checkDisjoint(pos, flags,
   1.661 +                                ABSTRACT,
   1.662 +                                PRIVATE | STATIC))
   1.663 +                 &&
   1.664 +                 checkDisjoint(pos, flags,
   1.665 +                               ABSTRACT | INTERFACE,
   1.666 +                               FINAL | NATIVE | SYNCHRONIZED)
   1.667 +                 &&
   1.668 +                 checkDisjoint(pos, flags,
   1.669 +                               PUBLIC,
   1.670 +                               PRIVATE | PROTECTED)
   1.671 +                 &&
   1.672 +                 checkDisjoint(pos, flags,
   1.673 +                               PRIVATE,
   1.674 +                               PUBLIC | PROTECTED)
   1.675 +                 &&
   1.676 +                 checkDisjoint(pos, flags,
   1.677 +                               FINAL,
   1.678 +                               VOLATILE)
   1.679 +                 &&
   1.680 +                 (sym.kind == TYP ||
   1.681 +                  checkDisjoint(pos, flags,
   1.682 +                                ABSTRACT | NATIVE,
   1.683 +                                STRICTFP))) {
   1.684 +            // skip
   1.685 +        }
   1.686 +        return flags & (mask | ~StandardFlags) | implicit;
   1.687 +    }
   1.688 +
   1.689 +
   1.690 +    /** Determine if this enum should be implicitly final.
   1.691 +     *
   1.692 +     *  If the enum has no specialized enum contants, it is final.
   1.693 +     *
   1.694 +     *  If the enum does have specialized enum contants, it is
   1.695 +     *  <i>not</i> final.
   1.696 +     */
   1.697 +    private long implicitEnumFinalFlag(JCTree tree) {
   1.698 +        if (tree.getTag() != JCTree.CLASSDEF) return 0;
   1.699 +        class SpecialTreeVisitor extends JCTree.Visitor {
   1.700 +            boolean specialized;
   1.701 +            SpecialTreeVisitor() {
   1.702 +                this.specialized = false;
   1.703 +            };
   1.704 +
   1.705 +            public void visitTree(JCTree tree) { /* no-op */ }
   1.706 +
   1.707 +            public void visitVarDef(JCVariableDecl tree) {
   1.708 +                if ((tree.mods.flags & ENUM) != 0) {
   1.709 +                    if (tree.init instanceof JCNewClass &&
   1.710 +                        ((JCNewClass) tree.init).def != null) {
   1.711 +                        specialized = true;
   1.712 +                    }
   1.713 +                }
   1.714 +            }
   1.715 +        }
   1.716 +
   1.717 +        SpecialTreeVisitor sts = new SpecialTreeVisitor();
   1.718 +        JCClassDecl cdef = (JCClassDecl) tree;
   1.719 +        for (JCTree defs: cdef.defs) {
   1.720 +            defs.accept(sts);
   1.721 +            if (sts.specialized) return 0;
   1.722 +        }
   1.723 +        return FINAL;
   1.724 +    }
   1.725 +
   1.726 +/* *************************************************************************
   1.727 + * Type Validation
   1.728 + **************************************************************************/
   1.729 +
   1.730 +    /** Validate a type expression. That is,
   1.731 +     *  check that all type arguments of a parametric type are within
   1.732 +     *  their bounds. This must be done in a second phase after type attributon
   1.733 +     *  since a class might have a subclass as type parameter bound. E.g:
   1.734 +     *
   1.735 +     *  class B<A extends C> { ... }
   1.736 +     *  class C extends B<C> { ... }
   1.737 +     *
   1.738 +     *  and we can't make sure that the bound is already attributed because
   1.739 +     *  of possible cycles.
   1.740 +     */
   1.741 +    private Validator validator = new Validator();
   1.742 +
   1.743 +    /** Visitor method: Validate a type expression, if it is not null, catching
   1.744 +     *  and reporting any completion failures.
   1.745 +     */
   1.746 +    void validate(JCTree tree) {
   1.747 +        try {
   1.748 +            if (tree != null) tree.accept(validator);
   1.749 +        } catch (CompletionFailure ex) {
   1.750 +            completionError(tree.pos(), ex);
   1.751 +        }
   1.752 +    }
   1.753 +
   1.754 +    /** Visitor method: Validate a list of type expressions.
   1.755 +     */
   1.756 +    void validate(List<? extends JCTree> trees) {
   1.757 +        for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   1.758 +            validate(l.head);
   1.759 +    }
   1.760 +
   1.761 +    /** Visitor method: Validate a list of type parameters.
   1.762 +     */
   1.763 +    void validateTypeParams(List<JCTypeParameter> trees) {
   1.764 +        for (List<JCTypeParameter> l = trees; l.nonEmpty(); l = l.tail)
   1.765 +            validate(l.head);
   1.766 +    }
   1.767 +
   1.768 +    /** A visitor class for type validation.
   1.769 +     */
   1.770 +    class Validator extends JCTree.Visitor {
   1.771 +
   1.772 +        public void visitTypeArray(JCArrayTypeTree tree) {
   1.773 +            validate(tree.elemtype);
   1.774 +        }
   1.775 +
   1.776 +        public void visitTypeApply(JCTypeApply tree) {
   1.777 +            if (tree.type.tag == CLASS) {
   1.778 +                List<Type> formals = tree.type.tsym.type.getTypeArguments();
   1.779 +                List<Type> actuals = tree.type.getTypeArguments();
   1.780 +                List<JCExpression> args = tree.arguments;
   1.781 +                List<Type> forms = formals;
   1.782 +                ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
   1.783 +
   1.784 +                // For matching pairs of actual argument types `a' and
   1.785 +                // formal type parameters with declared bound `b' ...
   1.786 +                while (args.nonEmpty() && forms.nonEmpty()) {
   1.787 +                    validate(args.head);
   1.788 +
   1.789 +                    // exact type arguments needs to know their
   1.790 +                    // bounds (for upper and lower bound
   1.791 +                    // calculations).  So we create new TypeVars with
   1.792 +                    // bounds substed with actuals.
   1.793 +                    tvars_buf.append(types.substBound(((TypeVar)forms.head),
   1.794 +                                                      formals,
   1.795 +                                                      Type.removeBounds(actuals)));
   1.796 +
   1.797 +                    args = args.tail;
   1.798 +                    forms = forms.tail;
   1.799 +                }
   1.800 +
   1.801 +                args = tree.arguments;
   1.802 +                List<TypeVar> tvars = tvars_buf.toList();
   1.803 +                while (args.nonEmpty() && tvars.nonEmpty()) {
   1.804 +                    // Let the actual arguments know their bound
   1.805 +                    args.head.type.withTypeVar(tvars.head);
   1.806 +                    args = args.tail;
   1.807 +                    tvars = tvars.tail;
   1.808 +                }
   1.809 +
   1.810 +                args = tree.arguments;
   1.811 +                tvars = tvars_buf.toList();
   1.812 +                while (args.nonEmpty() && tvars.nonEmpty()) {
   1.813 +                    checkExtends(args.head.pos(),
   1.814 +                                 args.head.type,
   1.815 +                                 tvars.head);
   1.816 +                    args = args.tail;
   1.817 +                    tvars = tvars.tail;
   1.818 +                }
   1.819 +
   1.820 +                // Check that this type is either fully parameterized, or
   1.821 +                // not parameterized at all.
   1.822 +                if (tree.type.getEnclosingType().isRaw())
   1.823 +                    log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
   1.824 +                if (tree.clazz.getTag() == JCTree.SELECT)
   1.825 +                    visitSelectInternal((JCFieldAccess)tree.clazz);
   1.826 +            }
   1.827 +        }
   1.828 +
   1.829 +        public void visitTypeParameter(JCTypeParameter tree) {
   1.830 +            validate(tree.bounds);
   1.831 +            checkClassBounds(tree.pos(), tree.type);
   1.832 +        }
   1.833 +
   1.834 +        @Override
   1.835 +        public void visitWildcard(JCWildcard tree) {
   1.836 +            if (tree.inner != null)
   1.837 +                validate(tree.inner);
   1.838 +        }
   1.839 +
   1.840 +        public void visitSelect(JCFieldAccess tree) {
   1.841 +            if (tree.type.tag == CLASS) {
   1.842 +                visitSelectInternal(tree);
   1.843 +
   1.844 +                // Check that this type is either fully parameterized, or
   1.845 +                // not parameterized at all.
   1.846 +                if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
   1.847 +                    log.error(tree.pos(), "improperly.formed.type.param.missing");
   1.848 +            }
   1.849 +        }
   1.850 +        public void visitSelectInternal(JCFieldAccess tree) {
   1.851 +            if (tree.type.getEnclosingType().tag != CLASS &&
   1.852 +                tree.selected.type.isParameterized()) {
   1.853 +                // The enclosing type is not a class, so we are
   1.854 +                // looking at a static member type.  However, the
   1.855 +                // qualifying expression is parameterized.
   1.856 +                log.error(tree.pos(), "cant.select.static.class.from.param.type");
   1.857 +            } else {
   1.858 +                // otherwise validate the rest of the expression
   1.859 +                validate(tree.selected);
   1.860 +            }
   1.861 +        }
   1.862 +
   1.863 +        /** Default visitor method: do nothing.
   1.864 +         */
   1.865 +        public void visitTree(JCTree tree) {
   1.866 +        }
   1.867 +    }
   1.868 +
   1.869 +/* *************************************************************************
   1.870 + * Exception checking
   1.871 + **************************************************************************/
   1.872 +
   1.873 +    /* The following methods treat classes as sets that contain
   1.874 +     * the class itself and all their subclasses
   1.875 +     */
   1.876 +
   1.877 +    /** Is given type a subtype of some of the types in given list?
   1.878 +     */
   1.879 +    boolean subset(Type t, List<Type> ts) {
   1.880 +        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   1.881 +            if (types.isSubtype(t, l.head)) return true;
   1.882 +        return false;
   1.883 +    }
   1.884 +
   1.885 +    /** Is given type a subtype or supertype of
   1.886 +     *  some of the types in given list?
   1.887 +     */
   1.888 +    boolean intersects(Type t, List<Type> ts) {
   1.889 +        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   1.890 +            if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
   1.891 +        return false;
   1.892 +    }
   1.893 +
   1.894 +    /** Add type set to given type list, unless it is a subclass of some class
   1.895 +     *  in the list.
   1.896 +     */
   1.897 +    List<Type> incl(Type t, List<Type> ts) {
   1.898 +        return subset(t, ts) ? ts : excl(t, ts).prepend(t);
   1.899 +    }
   1.900 +
   1.901 +    /** Remove type set from type set list.
   1.902 +     */
   1.903 +    List<Type> excl(Type t, List<Type> ts) {
   1.904 +        if (ts.isEmpty()) {
   1.905 +            return ts;
   1.906 +        } else {
   1.907 +            List<Type> ts1 = excl(t, ts.tail);
   1.908 +            if (types.isSubtype(ts.head, t)) return ts1;
   1.909 +            else if (ts1 == ts.tail) return ts;
   1.910 +            else return ts1.prepend(ts.head);
   1.911 +        }
   1.912 +    }
   1.913 +
   1.914 +    /** Form the union of two type set lists.
   1.915 +     */
   1.916 +    List<Type> union(List<Type> ts1, List<Type> ts2) {
   1.917 +        List<Type> ts = ts1;
   1.918 +        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   1.919 +            ts = incl(l.head, ts);
   1.920 +        return ts;
   1.921 +    }
   1.922 +
   1.923 +    /** Form the difference of two type lists.
   1.924 +     */
   1.925 +    List<Type> diff(List<Type> ts1, List<Type> ts2) {
   1.926 +        List<Type> ts = ts1;
   1.927 +        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   1.928 +            ts = excl(l.head, ts);
   1.929 +        return ts;
   1.930 +    }
   1.931 +
   1.932 +    /** Form the intersection of two type lists.
   1.933 +     */
   1.934 +    public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
   1.935 +        List<Type> ts = List.nil();
   1.936 +        for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
   1.937 +            if (subset(l.head, ts2)) ts = incl(l.head, ts);
   1.938 +        for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   1.939 +            if (subset(l.head, ts1)) ts = incl(l.head, ts);
   1.940 +        return ts;
   1.941 +    }
   1.942 +
   1.943 +    /** Is exc an exception symbol that need not be declared?
   1.944 +     */
   1.945 +    boolean isUnchecked(ClassSymbol exc) {
   1.946 +        return
   1.947 +            exc.kind == ERR ||
   1.948 +            exc.isSubClass(syms.errorType.tsym, types) ||
   1.949 +            exc.isSubClass(syms.runtimeExceptionType.tsym, types);
   1.950 +    }
   1.951 +
   1.952 +    /** Is exc an exception type that need not be declared?
   1.953 +     */
   1.954 +    boolean isUnchecked(Type exc) {
   1.955 +        return
   1.956 +            (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
   1.957 +            (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
   1.958 +            exc.tag == BOT;
   1.959 +    }
   1.960 +
   1.961 +    /** Same, but handling completion failures.
   1.962 +     */
   1.963 +    boolean isUnchecked(DiagnosticPosition pos, Type exc) {
   1.964 +        try {
   1.965 +            return isUnchecked(exc);
   1.966 +        } catch (CompletionFailure ex) {
   1.967 +            completionError(pos, ex);
   1.968 +            return true;
   1.969 +        }
   1.970 +    }
   1.971 +
   1.972 +    /** Is exc handled by given exception list?
   1.973 +     */
   1.974 +    boolean isHandled(Type exc, List<Type> handled) {
   1.975 +        return isUnchecked(exc) || subset(exc, handled);
   1.976 +    }
   1.977 +
   1.978 +    /** Return all exceptions in thrown list that are not in handled list.
   1.979 +     *  @param thrown     The list of thrown exceptions.
   1.980 +     *  @param handled    The list of handled exceptions.
   1.981 +     */
   1.982 +    List<Type> unHandled(List<Type> thrown, List<Type> handled) {
   1.983 +        List<Type> unhandled = List.nil();
   1.984 +        for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
   1.985 +            if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
   1.986 +        return unhandled;
   1.987 +    }
   1.988 +
   1.989 +/* *************************************************************************
   1.990 + * Overriding/Implementation checking
   1.991 + **************************************************************************/
   1.992 +
   1.993 +    /** The level of access protection given by a flag set,
   1.994 +     *  where PRIVATE is highest and PUBLIC is lowest.
   1.995 +     */
   1.996 +    static int protection(long flags) {
   1.997 +        switch ((short)(flags & AccessFlags)) {
   1.998 +        case PRIVATE: return 3;
   1.999 +        case PROTECTED: return 1;
  1.1000 +        default:
  1.1001 +        case PUBLIC: return 0;
  1.1002 +        case 0: return 2;
  1.1003 +        }
  1.1004 +    }
  1.1005 +
  1.1006 +    /** A string describing the access permission given by a flag set.
  1.1007 +     *  This always returns a space-separated list of Java Keywords.
  1.1008 +     */
  1.1009 +    private static String protectionString(long flags) {
  1.1010 +        long flags1 = flags & AccessFlags;
  1.1011 +        return (flags1 == 0) ? "package" : TreeInfo.flagNames(flags1);
  1.1012 +    }
  1.1013 +
  1.1014 +    /** A customized "cannot override" error message.
  1.1015 +     *  @param m      The overriding method.
  1.1016 +     *  @param other  The overridden method.
  1.1017 +     *  @return       An internationalized string.
  1.1018 +     */
  1.1019 +    static Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1.1020 +        String key;
  1.1021 +        if ((other.owner.flags() & INTERFACE) == 0)
  1.1022 +            key = "cant.override";
  1.1023 +        else if ((m.owner.flags() & INTERFACE) == 0)
  1.1024 +            key = "cant.implement";
  1.1025 +        else
  1.1026 +            key = "clashes.with";
  1.1027 +        return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
  1.1028 +    }
  1.1029 +
  1.1030 +    /** A customized "override" warning message.
  1.1031 +     *  @param m      The overriding method.
  1.1032 +     *  @param other  The overridden method.
  1.1033 +     *  @return       An internationalized string.
  1.1034 +     */
  1.1035 +    static Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1.1036 +        String key;
  1.1037 +        if ((other.owner.flags() & INTERFACE) == 0)
  1.1038 +            key = "unchecked.override";
  1.1039 +        else if ((m.owner.flags() & INTERFACE) == 0)
  1.1040 +            key = "unchecked.implement";
  1.1041 +        else
  1.1042 +            key = "unchecked.clash.with";
  1.1043 +        return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
  1.1044 +    }
  1.1045 +
  1.1046 +    /** A customized "override" warning message.
  1.1047 +     *  @param m      The overriding method.
  1.1048 +     *  @param other  The overridden method.
  1.1049 +     *  @return       An internationalized string.
  1.1050 +     */
  1.1051 +    static Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1.1052 +        String key;
  1.1053 +        if ((other.owner.flags() & INTERFACE) == 0)
  1.1054 +            key = "varargs.override";
  1.1055 +        else  if ((m.owner.flags() & INTERFACE) == 0)
  1.1056 +            key = "varargs.implement";
  1.1057 +        else
  1.1058 +            key = "varargs.clash.with";
  1.1059 +        return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
  1.1060 +    }
  1.1061 +
  1.1062 +    /** Check that this method conforms with overridden method 'other'.
  1.1063 +     *  where `origin' is the class where checking started.
  1.1064 +     *  Complications:
  1.1065 +     *  (1) Do not check overriding of synthetic methods
  1.1066 +     *      (reason: they might be final).
  1.1067 +     *      todo: check whether this is still necessary.
  1.1068 +     *  (2) Admit the case where an interface proxy throws fewer exceptions
  1.1069 +     *      than the method it implements. Augment the proxy methods with the
  1.1070 +     *      undeclared exceptions in this case.
  1.1071 +     *  (3) When generics are enabled, admit the case where an interface proxy
  1.1072 +     *      has a result type
  1.1073 +     *      extended by the result type of the method it implements.
  1.1074 +     *      Change the proxies result type to the smaller type in this case.
  1.1075 +     *
  1.1076 +     *  @param tree         The tree from which positions
  1.1077 +     *                      are extracted for errors.
  1.1078 +     *  @param m            The overriding method.
  1.1079 +     *  @param other        The overridden method.
  1.1080 +     *  @param origin       The class of which the overriding method
  1.1081 +     *                      is a member.
  1.1082 +     */
  1.1083 +    void checkOverride(JCTree tree,
  1.1084 +                       MethodSymbol m,
  1.1085 +                       MethodSymbol other,
  1.1086 +                       ClassSymbol origin) {
  1.1087 +        // Don't check overriding of synthetic methods or by bridge methods.
  1.1088 +        if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1.1089 +            return;
  1.1090 +        }
  1.1091 +
  1.1092 +        // Error if static method overrides instance method (JLS 8.4.6.2).
  1.1093 +        if ((m.flags() & STATIC) != 0 &&
  1.1094 +                   (other.flags() & STATIC) == 0) {
  1.1095 +            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1.1096 +                      cannotOverride(m, other));
  1.1097 +            return;
  1.1098 +        }
  1.1099 +
  1.1100 +        // Error if instance method overrides static or final
  1.1101 +        // method (JLS 8.4.6.1).
  1.1102 +        if ((other.flags() & FINAL) != 0 ||
  1.1103 +                 (m.flags() & STATIC) == 0 &&
  1.1104 +                 (other.flags() & STATIC) != 0) {
  1.1105 +            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1.1106 +                      cannotOverride(m, other),
  1.1107 +                      TreeInfo.flagNames(other.flags() & (FINAL | STATIC)));
  1.1108 +            return;
  1.1109 +        }
  1.1110 +
  1.1111 +        if ((m.owner.flags() & ANNOTATION) != 0) {
  1.1112 +            // handled in validateAnnotationMethod
  1.1113 +            return;
  1.1114 +        }
  1.1115 +
  1.1116 +        // Error if overriding method has weaker access (JLS 8.4.6.3).
  1.1117 +        if ((origin.flags() & INTERFACE) == 0 &&
  1.1118 +                 protection(m.flags()) > protection(other.flags())) {
  1.1119 +            log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1.1120 +                      cannotOverride(m, other),
  1.1121 +                      protectionString(other.flags()));
  1.1122 +            return;
  1.1123 +
  1.1124 +        }
  1.1125 +
  1.1126 +        Type mt = types.memberType(origin.type, m);
  1.1127 +        Type ot = types.memberType(origin.type, other);
  1.1128 +        // Error if overriding result type is different
  1.1129 +        // (or, in the case of generics mode, not a subtype) of
  1.1130 +        // overridden result type. We have to rename any type parameters
  1.1131 +        // before comparing types.
  1.1132 +        List<Type> mtvars = mt.getTypeArguments();
  1.1133 +        List<Type> otvars = ot.getTypeArguments();
  1.1134 +        Type mtres = mt.getReturnType();
  1.1135 +        Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1.1136 +
  1.1137 +        overrideWarner.warned = false;
  1.1138 +        boolean resultTypesOK =
  1.1139 +            types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1.1140 +        if (!resultTypesOK) {
  1.1141 +            if (!source.allowCovariantReturns() &&
  1.1142 +                m.owner != origin &&
  1.1143 +                m.owner.isSubClass(other.owner, types)) {
  1.1144 +                // allow limited interoperability with covariant returns
  1.1145 +            } else {
  1.1146 +                typeError(TreeInfo.diagnosticPositionFor(m, tree),
  1.1147 +                          JCDiagnostic.fragment("override.incompatible.ret",
  1.1148 +                                         cannotOverride(m, other)),
  1.1149 +                          mtres, otres);
  1.1150 +                return;
  1.1151 +            }
  1.1152 +        } else if (overrideWarner.warned) {
  1.1153 +            warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1.1154 +                          "prob.found.req",
  1.1155 +                          JCDiagnostic.fragment("override.unchecked.ret",
  1.1156 +                                              uncheckedOverrides(m, other)),
  1.1157 +                          mtres, otres);
  1.1158 +        }
  1.1159 +
  1.1160 +        // Error if overriding method throws an exception not reported
  1.1161 +        // by overridden method.
  1.1162 +        List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1.1163 +        List<Type> unhandled = unHandled(mt.getThrownTypes(), otthrown);
  1.1164 +        if (unhandled.nonEmpty()) {
  1.1165 +            log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1.1166 +                      "override.meth.doesnt.throw",
  1.1167 +                      cannotOverride(m, other),
  1.1168 +                      unhandled.head);
  1.1169 +            return;
  1.1170 +        }
  1.1171 +
  1.1172 +        // Optional warning if varargs don't agree
  1.1173 +        if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1.1174 +            && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1.1175 +            log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1.1176 +                        ((m.flags() & Flags.VARARGS) != 0)
  1.1177 +                        ? "override.varargs.missing"
  1.1178 +                        : "override.varargs.extra",
  1.1179 +                        varargsOverrides(m, other));
  1.1180 +        }
  1.1181 +
  1.1182 +        // Warn if instance method overrides bridge method (compiler spec ??)
  1.1183 +        if ((other.flags() & BRIDGE) != 0) {
  1.1184 +            log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1.1185 +                        uncheckedOverrides(m, other));
  1.1186 +        }
  1.1187 +
  1.1188 +        // Warn if a deprecated method overridden by a non-deprecated one.
  1.1189 +        if ((other.flags() & DEPRECATED) != 0
  1.1190 +            && (m.flags() & DEPRECATED) == 0
  1.1191 +            && m.outermostClass() != other.outermostClass()
  1.1192 +            && !isDeprecatedOverrideIgnorable(other, origin)) {
  1.1193 +            warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1.1194 +        }
  1.1195 +    }
  1.1196 +    // where
  1.1197 +        private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1.1198 +            // If the method, m, is defined in an interface, then ignore the issue if the method
  1.1199 +            // is only inherited via a supertype and also implemented in the supertype,
  1.1200 +            // because in that case, we will rediscover the issue when examining the method
  1.1201 +            // in the supertype.
  1.1202 +            // If the method, m, is not defined in an interface, then the only time we need to
  1.1203 +            // address the issue is when the method is the supertype implemementation: any other
  1.1204 +            // case, we will have dealt with when examining the supertype classes
  1.1205 +            ClassSymbol mc = m.enclClass();
  1.1206 +            Type st = types.supertype(origin.type);
  1.1207 +            if (st.tag != CLASS)
  1.1208 +                return true;
  1.1209 +            MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1.1210 +
  1.1211 +            if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1.1212 +                List<Type> intfs = types.interfaces(origin.type);
  1.1213 +                return (intfs.contains(mc.type) ? false : (stimpl != null));
  1.1214 +            }
  1.1215 +            else
  1.1216 +                return (stimpl != m);
  1.1217 +        }
  1.1218 +
  1.1219 +
  1.1220 +    // used to check if there were any unchecked conversions
  1.1221 +    Warner overrideWarner = new Warner();
  1.1222 +
  1.1223 +    /** Check that a class does not inherit two concrete methods
  1.1224 +     *  with the same signature.
  1.1225 +     *  @param pos          Position to be used for error reporting.
  1.1226 +     *  @param site         The class type to be checked.
  1.1227 +     */
  1.1228 +    public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1.1229 +        Type sup = types.supertype(site);
  1.1230 +        if (sup.tag != CLASS) return;
  1.1231 +
  1.1232 +        for (Type t1 = sup;
  1.1233 +             t1.tsym.type.isParameterized();
  1.1234 +             t1 = types.supertype(t1)) {
  1.1235 +            for (Scope.Entry e1 = t1.tsym.members().elems;
  1.1236 +                 e1 != null;
  1.1237 +                 e1 = e1.sibling) {
  1.1238 +                Symbol s1 = e1.sym;
  1.1239 +                if (s1.kind != MTH ||
  1.1240 +                    (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1.1241 +                    !s1.isInheritedIn(site.tsym, types) ||
  1.1242 +                    ((MethodSymbol)s1).implementation(site.tsym,
  1.1243 +                                                      types,
  1.1244 +                                                      true) != s1)
  1.1245 +                    continue;
  1.1246 +                Type st1 = types.memberType(t1, s1);
  1.1247 +                int s1ArgsLength = st1.getParameterTypes().length();
  1.1248 +                if (st1 == s1.type) continue;
  1.1249 +
  1.1250 +                for (Type t2 = sup;
  1.1251 +                     t2.tag == CLASS;
  1.1252 +                     t2 = types.supertype(t2)) {
  1.1253 +                    for (Scope.Entry e2 = t1.tsym.members().lookup(s1.name);
  1.1254 +                         e2.scope != null;
  1.1255 +                         e2 = e2.next()) {
  1.1256 +                        Symbol s2 = e2.sym;
  1.1257 +                        if (s2 == s1 ||
  1.1258 +                            s2.kind != MTH ||
  1.1259 +                            (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1.1260 +                            s2.type.getParameterTypes().length() != s1ArgsLength ||
  1.1261 +                            !s2.isInheritedIn(site.tsym, types) ||
  1.1262 +                            ((MethodSymbol)s2).implementation(site.tsym,
  1.1263 +                                                              types,
  1.1264 +                                                              true) != s2)
  1.1265 +                            continue;
  1.1266 +                        Type st2 = types.memberType(t2, s2);
  1.1267 +                        if (types.overrideEquivalent(st1, st2))
  1.1268 +                            log.error(pos, "concrete.inheritance.conflict",
  1.1269 +                                      s1, t1, s2, t2, sup);
  1.1270 +                    }
  1.1271 +                }
  1.1272 +            }
  1.1273 +        }
  1.1274 +    }
  1.1275 +
  1.1276 +    /** Check that classes (or interfaces) do not each define an abstract
  1.1277 +     *  method with same name and arguments but incompatible return types.
  1.1278 +     *  @param pos          Position to be used for error reporting.
  1.1279 +     *  @param t1           The first argument type.
  1.1280 +     *  @param t2           The second argument type.
  1.1281 +     */
  1.1282 +    public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1.1283 +                                            Type t1,
  1.1284 +                                            Type t2) {
  1.1285 +        return checkCompatibleAbstracts(pos, t1, t2,
  1.1286 +                                        types.makeCompoundType(t1, t2));
  1.1287 +    }
  1.1288 +
  1.1289 +    public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1.1290 +                                            Type t1,
  1.1291 +                                            Type t2,
  1.1292 +                                            Type site) {
  1.1293 +        Symbol sym = firstIncompatibility(t1, t2, site);
  1.1294 +        if (sym != null) {
  1.1295 +            log.error(pos, "types.incompatible.diff.ret",
  1.1296 +                      t1, t2, sym.name +
  1.1297 +                      "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1.1298 +            return false;
  1.1299 +        }
  1.1300 +        return true;
  1.1301 +    }
  1.1302 +
  1.1303 +    /** Return the first method which is defined with same args
  1.1304 +     *  but different return types in two given interfaces, or null if none
  1.1305 +     *  exists.
  1.1306 +     *  @param t1     The first type.
  1.1307 +     *  @param t2     The second type.
  1.1308 +     *  @param site   The most derived type.
  1.1309 +     *  @returns symbol from t2 that conflicts with one in t1.
  1.1310 +     */
  1.1311 +    private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1.1312 +        Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1.1313 +        closure(t1, interfaces1);
  1.1314 +        Map<TypeSymbol,Type> interfaces2;
  1.1315 +        if (t1 == t2)
  1.1316 +            interfaces2 = interfaces1;
  1.1317 +        else
  1.1318 +            closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1.1319 +
  1.1320 +        for (Type t3 : interfaces1.values()) {
  1.1321 +            for (Type t4 : interfaces2.values()) {
  1.1322 +                Symbol s = firstDirectIncompatibility(t3, t4, site);
  1.1323 +                if (s != null) return s;
  1.1324 +            }
  1.1325 +        }
  1.1326 +        return null;
  1.1327 +    }
  1.1328 +
  1.1329 +    /** Compute all the supertypes of t, indexed by type symbol. */
  1.1330 +    private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1.1331 +        if (t.tag != CLASS) return;
  1.1332 +        if (typeMap.put(t.tsym, t) == null) {
  1.1333 +            closure(types.supertype(t), typeMap);
  1.1334 +            for (Type i : types.interfaces(t))
  1.1335 +                closure(i, typeMap);
  1.1336 +        }
  1.1337 +    }
  1.1338 +
  1.1339 +    /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1.1340 +    private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1.1341 +        if (t.tag != CLASS) return;
  1.1342 +        if (typesSkip.get(t.tsym) != null) return;
  1.1343 +        if (typeMap.put(t.tsym, t) == null) {
  1.1344 +            closure(types.supertype(t), typesSkip, typeMap);
  1.1345 +            for (Type i : types.interfaces(t))
  1.1346 +                closure(i, typesSkip, typeMap);
  1.1347 +        }
  1.1348 +    }
  1.1349 +
  1.1350 +    /** Return the first method in t2 that conflicts with a method from t1. */
  1.1351 +    private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1.1352 +        for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1.1353 +            Symbol s1 = e1.sym;
  1.1354 +            Type st1 = null;
  1.1355 +            if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1.1356 +            Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1.1357 +            if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1.1358 +            for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1.1359 +                Symbol s2 = e2.sym;
  1.1360 +                if (s1 == s2) continue;
  1.1361 +                if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1.1362 +                if (st1 == null) st1 = types.memberType(t1, s1);
  1.1363 +                Type st2 = types.memberType(t2, s2);
  1.1364 +                if (types.overrideEquivalent(st1, st2)) {
  1.1365 +                    List<Type> tvars1 = st1.getTypeArguments();
  1.1366 +                    List<Type> tvars2 = st2.getTypeArguments();
  1.1367 +                    Type rt1 = st1.getReturnType();
  1.1368 +                    Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1.1369 +                    boolean compat =
  1.1370 +                        types.isSameType(rt1, rt2) ||
  1.1371 +                        rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1.1372 +                        (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1.1373 +                         types.covariantReturnType(rt2, rt1, Warner.noWarnings));
  1.1374 +                    if (!compat) return s2;
  1.1375 +                }
  1.1376 +            }
  1.1377 +        }
  1.1378 +        return null;
  1.1379 +    }
  1.1380 +
  1.1381 +    /** Check that a given method conforms with any method it overrides.
  1.1382 +     *  @param tree         The tree from which positions are extracted
  1.1383 +     *                      for errors.
  1.1384 +     *  @param m            The overriding method.
  1.1385 +     */
  1.1386 +    void checkOverride(JCTree tree, MethodSymbol m) {
  1.1387 +        ClassSymbol origin = (ClassSymbol)m.owner;
  1.1388 +        if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1.1389 +            if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1.1390 +                log.error(tree.pos(), "enum.no.finalize");
  1.1391 +                return;
  1.1392 +            }
  1.1393 +        for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1.1394 +             t = types.supertype(t)) {
  1.1395 +            TypeSymbol c = t.tsym;
  1.1396 +            Scope.Entry e = c.members().lookup(m.name);
  1.1397 +            while (e.scope != null) {
  1.1398 +                if (m.overrides(e.sym, origin, types, false))
  1.1399 +                    checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1.1400 +                e = e.next();
  1.1401 +            }
  1.1402 +        }
  1.1403 +    }
  1.1404 +
  1.1405 +    /** Check that all abstract members of given class have definitions.
  1.1406 +     *  @param pos          Position to be used for error reporting.
  1.1407 +     *  @param c            The class.
  1.1408 +     */
  1.1409 +    void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1.1410 +        try {
  1.1411 +            MethodSymbol undef = firstUndef(c, c);
  1.1412 +            if (undef != null) {
  1.1413 +                if ((c.flags() & ENUM) != 0 &&
  1.1414 +                    types.supertype(c.type).tsym == syms.enumSym &&
  1.1415 +                    (c.flags() & FINAL) == 0) {
  1.1416 +                    // add the ABSTRACT flag to an enum
  1.1417 +                    c.flags_field |= ABSTRACT;
  1.1418 +                } else {
  1.1419 +                    MethodSymbol undef1 =
  1.1420 +                        new MethodSymbol(undef.flags(), undef.name,
  1.1421 +                                         types.memberType(c.type, undef), undef.owner);
  1.1422 +                    log.error(pos, "does.not.override.abstract",
  1.1423 +                              c, undef1, undef1.location());
  1.1424 +                }
  1.1425 +            }
  1.1426 +        } catch (CompletionFailure ex) {
  1.1427 +            completionError(pos, ex);
  1.1428 +        }
  1.1429 +    }
  1.1430 +//where
  1.1431 +        /** Return first abstract member of class `c' that is not defined
  1.1432 +         *  in `impl', null if there is none.
  1.1433 +         */
  1.1434 +        private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1.1435 +            MethodSymbol undef = null;
  1.1436 +            // Do not bother to search in classes that are not abstract,
  1.1437 +            // since they cannot have abstract members.
  1.1438 +            if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1.1439 +                Scope s = c.members();
  1.1440 +                for (Scope.Entry e = s.elems;
  1.1441 +                     undef == null && e != null;
  1.1442 +                     e = e.sibling) {
  1.1443 +                    if (e.sym.kind == MTH &&
  1.1444 +                        (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1.1445 +                        MethodSymbol absmeth = (MethodSymbol)e.sym;
  1.1446 +                        MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1.1447 +                        if (implmeth == null || implmeth == absmeth)
  1.1448 +                            undef = absmeth;
  1.1449 +                    }
  1.1450 +                }
  1.1451 +                if (undef == null) {
  1.1452 +                    Type st = types.supertype(c.type);
  1.1453 +                    if (st.tag == CLASS)
  1.1454 +                        undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1.1455 +                }
  1.1456 +                for (List<Type> l = types.interfaces(c.type);
  1.1457 +                     undef == null && l.nonEmpty();
  1.1458 +                     l = l.tail) {
  1.1459 +                    undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1.1460 +                }
  1.1461 +            }
  1.1462 +            return undef;
  1.1463 +        }
  1.1464 +
  1.1465 +    /** Check for cyclic references. Issue an error if the
  1.1466 +     *  symbol of the type referred to has a LOCKED flag set.
  1.1467 +     *
  1.1468 +     *  @param pos      Position to be used for error reporting.
  1.1469 +     *  @param t        The type referred to.
  1.1470 +     */
  1.1471 +    void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1.1472 +        checkNonCyclicInternal(pos, t);
  1.1473 +    }
  1.1474 +
  1.1475 +
  1.1476 +    void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1.1477 +        checkNonCyclic1(pos, t, new HashSet<TypeVar>());
  1.1478 +    }
  1.1479 +
  1.1480 +    private void checkNonCyclic1(DiagnosticPosition pos, Type t, Set<TypeVar> seen) {
  1.1481 +        final TypeVar tv;
  1.1482 +        if (seen.contains(t)) {
  1.1483 +            tv = (TypeVar)t;
  1.1484 +            tv.bound = new ErrorType();
  1.1485 +            log.error(pos, "cyclic.inheritance", t);
  1.1486 +        } else if (t.tag == TYPEVAR) {
  1.1487 +            tv = (TypeVar)t;
  1.1488 +            seen.add(tv);
  1.1489 +            for (Type b : types.getBounds(tv))
  1.1490 +                checkNonCyclic1(pos, b, seen);
  1.1491 +        }
  1.1492 +    }
  1.1493 +
  1.1494 +    /** Check for cyclic references. Issue an error if the
  1.1495 +     *  symbol of the type referred to has a LOCKED flag set.
  1.1496 +     *
  1.1497 +     *  @param pos      Position to be used for error reporting.
  1.1498 +     *  @param t        The type referred to.
  1.1499 +     *  @returns        True if the check completed on all attributed classes
  1.1500 +     */
  1.1501 +    private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1.1502 +        boolean complete = true; // was the check complete?
  1.1503 +        //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1.1504 +        Symbol c = t.tsym;
  1.1505 +        if ((c.flags_field & ACYCLIC) != 0) return true;
  1.1506 +
  1.1507 +        if ((c.flags_field & LOCKED) != 0) {
  1.1508 +            noteCyclic(pos, (ClassSymbol)c);
  1.1509 +        } else if (!c.type.isErroneous()) {
  1.1510 +            try {
  1.1511 +                c.flags_field |= LOCKED;
  1.1512 +                if (c.type.tag == CLASS) {
  1.1513 +                    ClassType clazz = (ClassType)c.type;
  1.1514 +                    if (clazz.interfaces_field != null)
  1.1515 +                        for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1.1516 +                            complete &= checkNonCyclicInternal(pos, l.head);
  1.1517 +                    if (clazz.supertype_field != null) {
  1.1518 +                        Type st = clazz.supertype_field;
  1.1519 +                        if (st != null && st.tag == CLASS)
  1.1520 +                            complete &= checkNonCyclicInternal(pos, st);
  1.1521 +                    }
  1.1522 +                    if (c.owner.kind == TYP)
  1.1523 +                        complete &= checkNonCyclicInternal(pos, c.owner.type);
  1.1524 +                }
  1.1525 +            } finally {
  1.1526 +                c.flags_field &= ~LOCKED;
  1.1527 +            }
  1.1528 +        }
  1.1529 +        if (complete)
  1.1530 +            complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1.1531 +        if (complete) c.flags_field |= ACYCLIC;
  1.1532 +        return complete;
  1.1533 +    }
  1.1534 +
  1.1535 +    /** Note that we found an inheritance cycle. */
  1.1536 +    private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1.1537 +        log.error(pos, "cyclic.inheritance", c);
  1.1538 +        for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1.1539 +            l.head = new ErrorType((ClassSymbol)l.head.tsym);
  1.1540 +        Type st = types.supertype(c.type);
  1.1541 +        if (st.tag == CLASS)
  1.1542 +            ((ClassType)c.type).supertype_field = new ErrorType((ClassSymbol)st.tsym);
  1.1543 +        c.type = new ErrorType(c);
  1.1544 +        c.flags_field |= ACYCLIC;
  1.1545 +    }
  1.1546 +
  1.1547 +    /** Check that all methods which implement some
  1.1548 +     *  method conform to the method they implement.
  1.1549 +     *  @param tree         The class definition whose members are checked.
  1.1550 +     */
  1.1551 +    void checkImplementations(JCClassDecl tree) {
  1.1552 +        checkImplementations(tree, tree.sym);
  1.1553 +    }
  1.1554 +//where
  1.1555 +        /** Check that all methods which implement some
  1.1556 +         *  method in `ic' conform to the method they implement.
  1.1557 +         */
  1.1558 +        void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1.1559 +            ClassSymbol origin = tree.sym;
  1.1560 +            for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1.1561 +                ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1.1562 +                if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1.1563 +                    for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1.1564 +                        if (e.sym.kind == MTH &&
  1.1565 +                            (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1.1566 +                            MethodSymbol absmeth = (MethodSymbol)e.sym;
  1.1567 +                            MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1.1568 +                            if (implmeth != null && implmeth != absmeth &&
  1.1569 +                                (implmeth.owner.flags() & INTERFACE) ==
  1.1570 +                                (origin.flags() & INTERFACE)) {
  1.1571 +                                // don't check if implmeth is in a class, yet
  1.1572 +                                // origin is an interface. This case arises only
  1.1573 +                                // if implmeth is declared in Object. The reason is
  1.1574 +                                // that interfaces really don't inherit from
  1.1575 +                                // Object it's just that the compiler represents
  1.1576 +                                // things that way.
  1.1577 +                                checkOverride(tree, implmeth, absmeth, origin);
  1.1578 +                            }
  1.1579 +                        }
  1.1580 +                    }
  1.1581 +                }
  1.1582 +            }
  1.1583 +        }
  1.1584 +
  1.1585 +    /** Check that all abstract methods implemented by a class are
  1.1586 +     *  mutually compatible.
  1.1587 +     *  @param pos          Position to be used for error reporting.
  1.1588 +     *  @param c            The class whose interfaces are checked.
  1.1589 +     */
  1.1590 +    void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1.1591 +        List<Type> supertypes = types.interfaces(c);
  1.1592 +        Type supertype = types.supertype(c);
  1.1593 +        if (supertype.tag == CLASS &&
  1.1594 +            (supertype.tsym.flags() & ABSTRACT) != 0)
  1.1595 +            supertypes = supertypes.prepend(supertype);
  1.1596 +        for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1.1597 +            if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1.1598 +                !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1.1599 +                return;
  1.1600 +            for (List<Type> m = supertypes; m != l; m = m.tail)
  1.1601 +                if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1.1602 +                    return;
  1.1603 +        }
  1.1604 +        checkCompatibleConcretes(pos, c);
  1.1605 +    }
  1.1606 +
  1.1607 +    /** Check that class c does not implement directly or indirectly
  1.1608 +     *  the same parameterized interface with two different argument lists.
  1.1609 +     *  @param pos          Position to be used for error reporting.
  1.1610 +     *  @param type         The type whose interfaces are checked.
  1.1611 +     */
  1.1612 +    void checkClassBounds(DiagnosticPosition pos, Type type) {
  1.1613 +        checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1.1614 +    }
  1.1615 +//where
  1.1616 +        /** Enter all interfaces of type `type' into the hash table `seensofar'
  1.1617 +         *  with their class symbol as key and their type as value. Make
  1.1618 +         *  sure no class is entered with two different types.
  1.1619 +         */
  1.1620 +        void checkClassBounds(DiagnosticPosition pos,
  1.1621 +                              Map<TypeSymbol,Type> seensofar,
  1.1622 +                              Type type) {
  1.1623 +            if (type.isErroneous()) return;
  1.1624 +            for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1.1625 +                Type it = l.head;
  1.1626 +                Type oldit = seensofar.put(it.tsym, it);
  1.1627 +                if (oldit != null) {
  1.1628 +                    List<Type> oldparams = oldit.allparams();
  1.1629 +                    List<Type> newparams = it.allparams();
  1.1630 +                    if (!types.containsTypeEquivalent(oldparams, newparams))
  1.1631 +                        log.error(pos, "cant.inherit.diff.arg",
  1.1632 +                                  it.tsym, Type.toString(oldparams),
  1.1633 +                                  Type.toString(newparams));
  1.1634 +                }
  1.1635 +                checkClassBounds(pos, seensofar, it);
  1.1636 +            }
  1.1637 +            Type st = types.supertype(type);
  1.1638 +            if (st != null) checkClassBounds(pos, seensofar, st);
  1.1639 +        }
  1.1640 +
  1.1641 +    /** Enter interface into into set.
  1.1642 +     *  If it existed already, issue a "repeated interface" error.
  1.1643 +     */
  1.1644 +    void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1.1645 +        if (its.contains(it))
  1.1646 +            log.error(pos, "repeated.interface");
  1.1647 +        else {
  1.1648 +            its.add(it);
  1.1649 +        }
  1.1650 +    }
  1.1651 +
  1.1652 +/* *************************************************************************
  1.1653 + * Check annotations
  1.1654 + **************************************************************************/
  1.1655 +
  1.1656 +    /** Annotation types are restricted to primitives, String, an
  1.1657 +     *  enum, an annotation, Class, Class<?>, Class<? extends
  1.1658 +     *  Anything>, arrays of the preceding.
  1.1659 +     */
  1.1660 +    void validateAnnotationType(JCTree restype) {
  1.1661 +        // restype may be null if an error occurred, so don't bother validating it
  1.1662 +        if (restype != null) {
  1.1663 +            validateAnnotationType(restype.pos(), restype.type);
  1.1664 +        }
  1.1665 +    }
  1.1666 +
  1.1667 +    void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1.1668 +        if (type.isPrimitive()) return;
  1.1669 +        if (types.isSameType(type, syms.stringType)) return;
  1.1670 +        if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1.1671 +        if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1.1672 +        if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1.1673 +        if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1.1674 +            validateAnnotationType(pos, types.elemtype(type));
  1.1675 +            return;
  1.1676 +        }
  1.1677 +        log.error(pos, "invalid.annotation.member.type");
  1.1678 +    }
  1.1679 +
  1.1680 +    /**
  1.1681 +     * "It is also a compile-time error if any method declared in an
  1.1682 +     * annotation type has a signature that is override-equivalent to
  1.1683 +     * that of any public or protected method declared in class Object
  1.1684 +     * or in the interface annotation.Annotation."
  1.1685 +     *
  1.1686 +     * @jls3 9.6 Annotation Types
  1.1687 +     */
  1.1688 +    void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1.1689 +        for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1.1690 +            Scope s = sup.tsym.members();
  1.1691 +            for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1.1692 +                if (e.sym.kind == MTH &&
  1.1693 +                    (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1.1694 +                    types.overrideEquivalent(m.type, e.sym.type))
  1.1695 +                    log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1.1696 +            }
  1.1697 +        }
  1.1698 +    }
  1.1699 +
  1.1700 +    /** Check the annotations of a symbol.
  1.1701 +     */
  1.1702 +    public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1.1703 +        if (skipAnnotations) return;
  1.1704 +        for (JCAnnotation a : annotations)
  1.1705 +            validateAnnotation(a, s);
  1.1706 +    }
  1.1707 +
  1.1708 +    /** Check an annotation of a symbol.
  1.1709 +     */
  1.1710 +    public void validateAnnotation(JCAnnotation a, Symbol s) {
  1.1711 +        validateAnnotation(a);
  1.1712 +
  1.1713 +        if (!annotationApplicable(a, s))
  1.1714 +            log.error(a.pos(), "annotation.type.not.applicable");
  1.1715 +
  1.1716 +        if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1.1717 +            if (!isOverrider(s))
  1.1718 +                log.error(a.pos(), "method.does.not.override.superclass");
  1.1719 +        }
  1.1720 +    }
  1.1721 +
  1.1722 +    /** Is s a method symbol that overrides a method in a superclass? */
  1.1723 +    boolean isOverrider(Symbol s) {
  1.1724 +        if (s.kind != MTH || s.isStatic())
  1.1725 +            return false;
  1.1726 +        MethodSymbol m = (MethodSymbol)s;
  1.1727 +        TypeSymbol owner = (TypeSymbol)m.owner;
  1.1728 +        for (Type sup : types.closure(owner.type)) {
  1.1729 +            if (sup == owner.type)
  1.1730 +                continue; // skip "this"
  1.1731 +            Scope scope = sup.tsym.members();
  1.1732 +            for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  1.1733 +                if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  1.1734 +                    return true;
  1.1735 +            }
  1.1736 +        }
  1.1737 +        return false;
  1.1738 +    }
  1.1739 +
  1.1740 +    /** Is the annotation applicable to the symbol? */
  1.1741 +    boolean annotationApplicable(JCAnnotation a, Symbol s) {
  1.1742 +        Attribute.Compound atTarget =
  1.1743 +            a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1.1744 +        if (atTarget == null) return true;
  1.1745 +        Attribute atValue = atTarget.member(names.value);
  1.1746 +        if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  1.1747 +        Attribute.Array arr = (Attribute.Array) atValue;
  1.1748 +        for (Attribute app : arr.values) {
  1.1749 +            if (!(app instanceof Attribute.Enum)) return true; // recovery
  1.1750 +            Attribute.Enum e = (Attribute.Enum) app;
  1.1751 +            if (e.value.name == names.TYPE)
  1.1752 +                { if (s.kind == TYP) return true; }
  1.1753 +            else if (e.value.name == names.FIELD)
  1.1754 +                { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  1.1755 +            else if (e.value.name == names.METHOD)
  1.1756 +                { if (s.kind == MTH && !s.isConstructor()) return true; }
  1.1757 +            else if (e.value.name == names.PARAMETER)
  1.1758 +                { if (s.kind == VAR &&
  1.1759 +                      s.owner.kind == MTH &&
  1.1760 +                      (s.flags() & PARAMETER) != 0)
  1.1761 +                    return true;
  1.1762 +                }
  1.1763 +            else if (e.value.name == names.CONSTRUCTOR)
  1.1764 +                { if (s.kind == MTH && s.isConstructor()) return true; }
  1.1765 +            else if (e.value.name == names.LOCAL_VARIABLE)
  1.1766 +                { if (s.kind == VAR && s.owner.kind == MTH &&
  1.1767 +                      (s.flags() & PARAMETER) == 0)
  1.1768 +                    return true;
  1.1769 +                }
  1.1770 +            else if (e.value.name == names.ANNOTATION_TYPE)
  1.1771 +                { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  1.1772 +                    return true;
  1.1773 +                }
  1.1774 +            else if (e.value.name == names.PACKAGE)
  1.1775 +                { if (s.kind == PCK) return true; }
  1.1776 +            else
  1.1777 +                return true; // recovery
  1.1778 +        }
  1.1779 +        return false;
  1.1780 +    }
  1.1781 +
  1.1782 +    /** Check an annotation value.
  1.1783 +     */
  1.1784 +    public void validateAnnotation(JCAnnotation a) {
  1.1785 +        if (a.type.isErroneous()) return;
  1.1786 +
  1.1787 +        // collect an inventory of the members
  1.1788 +        Set<MethodSymbol> members = new HashSet<MethodSymbol>();
  1.1789 +        for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  1.1790 +             e != null;
  1.1791 +             e = e.sibling)
  1.1792 +            if (e.sym.kind == MTH)
  1.1793 +                members.add((MethodSymbol) e.sym);
  1.1794 +
  1.1795 +        // count them off as they're annotated
  1.1796 +        for (JCTree arg : a.args) {
  1.1797 +            if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  1.1798 +            JCAssign assign = (JCAssign) arg;
  1.1799 +            Symbol m = TreeInfo.symbol(assign.lhs);
  1.1800 +            if (m == null || m.type.isErroneous()) continue;
  1.1801 +            if (!members.remove(m))
  1.1802 +                log.error(arg.pos(), "duplicate.annotation.member.value",
  1.1803 +                          m.name, a.type);
  1.1804 +            if (assign.rhs.getTag() == ANNOTATION)
  1.1805 +                validateAnnotation((JCAnnotation)assign.rhs);
  1.1806 +        }
  1.1807 +
  1.1808 +        // all the remaining ones better have default values
  1.1809 +        for (MethodSymbol m : members)
  1.1810 +            if (m.defaultValue == null && !m.type.isErroneous())
  1.1811 +                log.error(a.pos(), "annotation.missing.default.value",
  1.1812 +                          a.type, m.name);
  1.1813 +
  1.1814 +        // special case: java.lang.annotation.Target must not have
  1.1815 +        // repeated values in its value member
  1.1816 +        if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  1.1817 +            a.args.tail == null)
  1.1818 +            return;
  1.1819 +
  1.1820 +        if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  1.1821 +        JCAssign assign = (JCAssign) a.args.head;
  1.1822 +        Symbol m = TreeInfo.symbol(assign.lhs);
  1.1823 +        if (m.name != names.value) return;
  1.1824 +        JCTree rhs = assign.rhs;
  1.1825 +        if (rhs.getTag() != JCTree.NEWARRAY) return;
  1.1826 +        JCNewArray na = (JCNewArray) rhs;
  1.1827 +        Set<Symbol> targets = new HashSet<Symbol>();
  1.1828 +        for (JCTree elem : na.elems) {
  1.1829 +            if (!targets.add(TreeInfo.symbol(elem))) {
  1.1830 +                log.error(elem.pos(), "repeated.annotation.target");
  1.1831 +            }
  1.1832 +        }
  1.1833 +    }
  1.1834 +
  1.1835 +    void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  1.1836 +        if (allowAnnotations &&
  1.1837 +            lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  1.1838 +            (s.flags() & DEPRECATED) != 0 &&
  1.1839 +            !syms.deprecatedType.isErroneous() &&
  1.1840 +            s.attribute(syms.deprecatedType.tsym) == null) {
  1.1841 +            log.warning(pos, "missing.deprecated.annotation");
  1.1842 +        }
  1.1843 +    }
  1.1844 +
  1.1845 +/* *************************************************************************
  1.1846 + * Check for recursive annotation elements.
  1.1847 + **************************************************************************/
  1.1848 +
  1.1849 +    /** Check for cycles in the graph of annotation elements.
  1.1850 +     */
  1.1851 +    void checkNonCyclicElements(JCClassDecl tree) {
  1.1852 +        if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  1.1853 +        assert (tree.sym.flags_field & LOCKED) == 0;
  1.1854 +        try {
  1.1855 +            tree.sym.flags_field |= LOCKED;
  1.1856 +            for (JCTree def : tree.defs) {
  1.1857 +                if (def.getTag() != JCTree.METHODDEF) continue;
  1.1858 +                JCMethodDecl meth = (JCMethodDecl)def;
  1.1859 +                checkAnnotationResType(meth.pos(), meth.restype.type);
  1.1860 +            }
  1.1861 +        } finally {
  1.1862 +            tree.sym.flags_field &= ~LOCKED;
  1.1863 +            tree.sym.flags_field |= ACYCLIC_ANN;
  1.1864 +        }
  1.1865 +    }
  1.1866 +
  1.1867 +    void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  1.1868 +        if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  1.1869 +            return;
  1.1870 +        if ((tsym.flags_field & LOCKED) != 0) {
  1.1871 +            log.error(pos, "cyclic.annotation.element");
  1.1872 +            return;
  1.1873 +        }
  1.1874 +        try {
  1.1875 +            tsym.flags_field |= LOCKED;
  1.1876 +            for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  1.1877 +                Symbol s = e.sym;
  1.1878 +                if (s.kind != Kinds.MTH)
  1.1879 +                    continue;
  1.1880 +                checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  1.1881 +            }
  1.1882 +        } finally {
  1.1883 +            tsym.flags_field &= ~LOCKED;
  1.1884 +            tsym.flags_field |= ACYCLIC_ANN;
  1.1885 +        }
  1.1886 +    }
  1.1887 +
  1.1888 +    void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  1.1889 +        switch (type.tag) {
  1.1890 +        case TypeTags.CLASS:
  1.1891 +            if ((type.tsym.flags() & ANNOTATION) != 0)
  1.1892 +                checkNonCyclicElementsInternal(pos, type.tsym);
  1.1893 +            break;
  1.1894 +        case TypeTags.ARRAY:
  1.1895 +            checkAnnotationResType(pos, types.elemtype(type));
  1.1896 +            break;
  1.1897 +        default:
  1.1898 +            break; // int etc
  1.1899 +        }
  1.1900 +    }
  1.1901 +
  1.1902 +/* *************************************************************************
  1.1903 + * Check for cycles in the constructor call graph.
  1.1904 + **************************************************************************/
  1.1905 +
  1.1906 +    /** Check for cycles in the graph of constructors calling other
  1.1907 +     *  constructors.
  1.1908 +     */
  1.1909 +    void checkCyclicConstructors(JCClassDecl tree) {
  1.1910 +        Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  1.1911 +
  1.1912 +        // enter each constructor this-call into the map
  1.1913 +        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  1.1914 +            JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  1.1915 +            if (app == null) continue;
  1.1916 +            JCMethodDecl meth = (JCMethodDecl) l.head;
  1.1917 +            if (TreeInfo.name(app.meth) == names._this) {
  1.1918 +                callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  1.1919 +            } else {
  1.1920 +                meth.sym.flags_field |= ACYCLIC;
  1.1921 +            }
  1.1922 +        }
  1.1923 +
  1.1924 +        // Check for cycles in the map
  1.1925 +        Symbol[] ctors = new Symbol[0];
  1.1926 +        ctors = callMap.keySet().toArray(ctors);
  1.1927 +        for (Symbol caller : ctors) {
  1.1928 +            checkCyclicConstructor(tree, caller, callMap);
  1.1929 +        }
  1.1930 +    }
  1.1931 +
  1.1932 +    /** Look in the map to see if the given constructor is part of a
  1.1933 +     *  call cycle.
  1.1934 +     */
  1.1935 +    private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  1.1936 +                                        Map<Symbol,Symbol> callMap) {
  1.1937 +        if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  1.1938 +            if ((ctor.flags_field & LOCKED) != 0) {
  1.1939 +                log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  1.1940 +                          "recursive.ctor.invocation");
  1.1941 +            } else {
  1.1942 +                ctor.flags_field |= LOCKED;
  1.1943 +                checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  1.1944 +                ctor.flags_field &= ~LOCKED;
  1.1945 +            }
  1.1946 +            ctor.flags_field |= ACYCLIC;
  1.1947 +        }
  1.1948 +    }
  1.1949 +
  1.1950 +/* *************************************************************************
  1.1951 + * Miscellaneous
  1.1952 + **************************************************************************/
  1.1953 +
  1.1954 +    /**
  1.1955 +     * Return the opcode of the operator but emit an error if it is an
  1.1956 +     * error.
  1.1957 +     * @param pos        position for error reporting.
  1.1958 +     * @param operator   an operator
  1.1959 +     * @param tag        a tree tag
  1.1960 +     * @param left       type of left hand side
  1.1961 +     * @param right      type of right hand side
  1.1962 +     */
  1.1963 +    int checkOperator(DiagnosticPosition pos,
  1.1964 +                       OperatorSymbol operator,
  1.1965 +                       int tag,
  1.1966 +                       Type left,
  1.1967 +                       Type right) {
  1.1968 +        if (operator.opcode == ByteCodes.error) {
  1.1969 +            log.error(pos,
  1.1970 +                      "operator.cant.be.applied",
  1.1971 +                      treeinfo.operatorName(tag),
  1.1972 +                      left + "," + right);
  1.1973 +        }
  1.1974 +        return operator.opcode;
  1.1975 +    }
  1.1976 +
  1.1977 +
  1.1978 +    /**
  1.1979 +     *  Check for division by integer constant zero
  1.1980 +     *  @param pos           Position for error reporting.
  1.1981 +     *  @param operator      The operator for the expression
  1.1982 +     *  @param operand       The right hand operand for the expression
  1.1983 +     */
  1.1984 +    void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  1.1985 +        if (operand.constValue() != null
  1.1986 +            && lint.isEnabled(Lint.LintCategory.DIVZERO)
  1.1987 +            && operand.tag <= LONG
  1.1988 +            && ((Number) (operand.constValue())).longValue() == 0) {
  1.1989 +            int opc = ((OperatorSymbol)operator).opcode;
  1.1990 +            if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  1.1991 +                || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  1.1992 +                log.warning(pos, "div.zero");
  1.1993 +            }
  1.1994 +        }
  1.1995 +    }
  1.1996 +
  1.1997 +    /**
  1.1998 +     * Check for empty statements after if
  1.1999 +     */
  1.2000 +    void checkEmptyIf(JCIf tree) {
  1.2001 +        if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  1.2002 +            log.warning(tree.thenpart.pos(), "empty.if");
  1.2003 +    }
  1.2004 +
  1.2005 +    /** Check that symbol is unique in given scope.
  1.2006 +     *  @param pos           Position for error reporting.
  1.2007 +     *  @param sym           The symbol.
  1.2008 +     *  @param s             The scope.
  1.2009 +     */
  1.2010 +    boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  1.2011 +        if (sym.type.isErroneous())
  1.2012 +            return true;
  1.2013 +        if (sym.owner.name == names.any) return false;
  1.2014 +        for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  1.2015 +            if (sym != e.sym &&
  1.2016 +                sym.kind == e.sym.kind &&
  1.2017 +                sym.name != names.error &&
  1.2018 +                (sym.kind != MTH || types.overrideEquivalent(sym.type, e.sym.type))) {
  1.2019 +                if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  1.2020 +                    varargsDuplicateError(pos, sym, e.sym);
  1.2021 +                else
  1.2022 +                    duplicateError(pos, e.sym);
  1.2023 +                return false;
  1.2024 +            }
  1.2025 +        }
  1.2026 +        return true;
  1.2027 +    }
  1.2028 +
  1.2029 +    /** Check that single-type import is not already imported or top-level defined,
  1.2030 +     *  but make an exception for two single-type imports which denote the same type.
  1.2031 +     *  @param pos           Position for error reporting.
  1.2032 +     *  @param sym           The symbol.
  1.2033 +     *  @param s             The scope
  1.2034 +     */
  1.2035 +    boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  1.2036 +        return checkUniqueImport(pos, sym, s, false);
  1.2037 +    }
  1.2038 +
  1.2039 +    /** Check that static single-type import is not already imported or top-level defined,
  1.2040 +     *  but make an exception for two single-type imports which denote the same type.
  1.2041 +     *  @param pos           Position for error reporting.
  1.2042 +     *  @param sym           The symbol.
  1.2043 +     *  @param s             The scope
  1.2044 +     *  @param staticImport  Whether or not this was a static import
  1.2045 +     */
  1.2046 +    boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  1.2047 +        return checkUniqueImport(pos, sym, s, true);
  1.2048 +    }
  1.2049 +
  1.2050 +    /** Check that single-type import is not already imported or top-level defined,
  1.2051 +     *  but make an exception for two single-type imports which denote the same type.
  1.2052 +     *  @param pos           Position for error reporting.
  1.2053 +     *  @param sym           The symbol.
  1.2054 +     *  @param s             The scope.
  1.2055 +     *  @param staticImport  Whether or not this was a static import
  1.2056 +     */
  1.2057 +    private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  1.2058 +        for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  1.2059 +            // is encountered class entered via a class declaration?
  1.2060 +            boolean isClassDecl = e.scope == s;
  1.2061 +            if ((isClassDecl || sym != e.sym) &&
  1.2062 +                sym.kind == e.sym.kind &&
  1.2063 +                sym.name != names.error) {
  1.2064 +                if (!e.sym.type.isErroneous()) {
  1.2065 +                    String what = e.sym.toString();
  1.2066 +                    if (!isClassDecl) {
  1.2067 +                        if (staticImport)
  1.2068 +                            log.error(pos, "already.defined.static.single.import", what);
  1.2069 +                        else
  1.2070 +                            log.error(pos, "already.defined.single.import", what);
  1.2071 +                    }
  1.2072 +                    else if (sym != e.sym)
  1.2073 +                        log.error(pos, "already.defined.this.unit", what);
  1.2074 +                }
  1.2075 +                return false;
  1.2076 +            }
  1.2077 +        }
  1.2078 +        return true;
  1.2079 +    }
  1.2080 +
  1.2081 +    /** Check that a qualified name is in canonical form (for import decls).
  1.2082 +     */
  1.2083 +    public void checkCanonical(JCTree tree) {
  1.2084 +        if (!isCanonical(tree))
  1.2085 +            log.error(tree.pos(), "import.requires.canonical",
  1.2086 +                      TreeInfo.symbol(tree));
  1.2087 +    }
  1.2088 +        // where
  1.2089 +        private boolean isCanonical(JCTree tree) {
  1.2090 +            while (tree.getTag() == JCTree.SELECT) {
  1.2091 +                JCFieldAccess s = (JCFieldAccess) tree;
  1.2092 +                if (s.sym.owner != TreeInfo.symbol(s.selected))
  1.2093 +                    return false;
  1.2094 +                tree = s.selected;
  1.2095 +            }
  1.2096 +            return true;
  1.2097 +        }
  1.2098 +
  1.2099 +    private class ConversionWarner extends Warner {
  1.2100 +        final String key;
  1.2101 +        final Type found;
  1.2102 +        final Type expected;
  1.2103 +        public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  1.2104 +            super(pos);
  1.2105 +            this.key = key;
  1.2106 +            this.found = found;
  1.2107 +            this.expected = expected;
  1.2108 +        }
  1.2109 +
  1.2110 +        public void warnUnchecked() {
  1.2111 +            boolean warned = this.warned;
  1.2112 +            super.warnUnchecked();
  1.2113 +            if (warned) return; // suppress redundant diagnostics
  1.2114 +            Object problem = JCDiagnostic.fragment(key);
  1.2115 +            Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  1.2116 +        }
  1.2117 +    }
  1.2118 +
  1.2119 +    public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  1.2120 +        return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  1.2121 +    }
  1.2122 +
  1.2123 +    public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  1.2124 +        return new ConversionWarner(pos, "unchecked.assign", found, expected);
  1.2125 +    }
  1.2126 +}

mercurial