diff -r 000000000000 -r 9a66ca7c79fa src/share/classes/com/sun/tools/javac/comp/Check.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/share/classes/com/sun/tools/javac/comp/Check.java Sat Dec 01 00:00:00 2007 +0000 @@ -0,0 +1,2123 @@ +/* + * Copyright 1999-2006 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Sun designates this + * particular file as subject to the "Classpath" exception as provided + * by Sun in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + */ + +package com.sun.tools.javac.comp; + +import java.util.*; +import java.util.Set; + +import com.sun.tools.javac.code.*; +import com.sun.tools.javac.jvm.*; +import com.sun.tools.javac.tree.*; +import com.sun.tools.javac.util.*; +import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; +import com.sun.tools.javac.util.List; + +import com.sun.tools.javac.tree.JCTree.*; +import com.sun.tools.javac.code.Lint; +import com.sun.tools.javac.code.Lint.LintCategory; +import com.sun.tools.javac.code.Type.*; +import com.sun.tools.javac.code.Symbol.*; + +import static com.sun.tools.javac.code.Flags.*; +import static com.sun.tools.javac.code.Kinds.*; +import static com.sun.tools.javac.code.TypeTags.*; + +/** Type checking helper class for the attribution phase. + * + *

This is NOT part of any API supported by Sun Microsystems. If + * you write code that depends on this, you do so at your own risk. + * This code and its internal interfaces are subject to change or + * deletion without notice. + */ +public class Check { + protected static final Context.Key checkKey = + new Context.Key(); + + private final Name.Table names; + private final Log log; + private final Symtab syms; + private final Infer infer; + private final Target target; + private final Source source; + private final Types types; + private final boolean skipAnnotations; + private final TreeInfo treeinfo; + + // The set of lint options currently in effect. It is initialized + // from the context, and then is set/reset as needed by Attr as it + // visits all the various parts of the trees during attribution. + private Lint lint; + + public static Check instance(Context context) { + Check instance = context.get(checkKey); + if (instance == null) + instance = new Check(context); + return instance; + } + + protected Check(Context context) { + context.put(checkKey, this); + + names = Name.Table.instance(context); + log = Log.instance(context); + syms = Symtab.instance(context); + infer = Infer.instance(context); + this.types = Types.instance(context); + Options options = Options.instance(context); + target = Target.instance(context); + source = Source.instance(context); + lint = Lint.instance(context); + treeinfo = TreeInfo.instance(context); + + Source source = Source.instance(context); + allowGenerics = source.allowGenerics(); + allowAnnotations = source.allowAnnotations(); + complexInference = options.get("-complexinference") != null; + skipAnnotations = options.get("skipAnnotations") != null; + + boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION); + boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED); + + deprecationHandler = new MandatoryWarningHandler(log,verboseDeprecated, "deprecated"); + uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked, "unchecked"); + } + + /** Switch: generics enabled? + */ + boolean allowGenerics; + + /** Switch: annotations enabled? + */ + boolean allowAnnotations; + + /** Switch: -complexinference option set? + */ + boolean complexInference; + + /** A table mapping flat names of all compiled classes in this run to their + * symbols; maintained from outside. + */ + public Map compiled = new HashMap(); + + /** A handler for messages about deprecated usage. + */ + private MandatoryWarningHandler deprecationHandler; + + /** A handler for messages about unchecked or unsafe usage. + */ + private MandatoryWarningHandler uncheckedHandler; + + +/* ************************************************************************* + * Errors and Warnings + **************************************************************************/ + + Lint setLint(Lint newLint) { + Lint prev = lint; + lint = newLint; + return prev; + } + + /** Warn about deprecated symbol. + * @param pos Position to be used for error reporting. + * @param sym The deprecated symbol. + */ + void warnDeprecated(DiagnosticPosition pos, Symbol sym) { + if (!lint.isSuppressed(LintCategory.DEPRECATION)) + deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location()); + } + + /** Warn about unchecked operation. + * @param pos Position to be used for error reporting. + * @param msg A string describing the problem. + */ + public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) { + if (!lint.isSuppressed(LintCategory.UNCHECKED)) + uncheckedHandler.report(pos, msg, args); + } + + /** + * Report any deferred diagnostics. + */ + public void reportDeferredDiagnostics() { + deprecationHandler.reportDeferredDiagnostic(); + uncheckedHandler.reportDeferredDiagnostic(); + } + + + /** Report a failure to complete a class. + * @param pos Position to be used for error reporting. + * @param ex The failure to report. + */ + public Type completionError(DiagnosticPosition pos, CompletionFailure ex) { + log.error(pos, "cant.access", ex.sym, ex.errmsg); + if (ex instanceof ClassReader.BadClassFile) throw new Abort(); + else return syms.errType; + } + + /** Report a type error. + * @param pos Position to be used for error reporting. + * @param problem A string describing the error. + * @param found The type that was found. + * @param req The type that was required. + */ + Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) { + log.error(pos, "prob.found.req", + problem, found, req); + return syms.errType; + } + + Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) { + log.error(pos, "prob.found.req.1", problem, found, req, explanation); + return syms.errType; + } + + /** Report an error that wrong type tag was found. + * @param pos Position to be used for error reporting. + * @param required An internationalized string describing the type tag + * required. + * @param found The type that was found. + */ + Type typeTagError(DiagnosticPosition pos, Object required, Object found) { + log.error(pos, "type.found.req", found, required); + return syms.errType; + } + + /** Report an error that symbol cannot be referenced before super + * has been called. + * @param pos Position to be used for error reporting. + * @param sym The referenced symbol. + */ + void earlyRefError(DiagnosticPosition pos, Symbol sym) { + log.error(pos, "cant.ref.before.ctor.called", sym); + } + + /** Report duplicate declaration error. + */ + void duplicateError(DiagnosticPosition pos, Symbol sym) { + if (!sym.type.isErroneous()) { + log.error(pos, "already.defined", sym, sym.location()); + } + } + + /** Report array/varargs duplicate declaration + */ + void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) { + if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) { + log.error(pos, "array.and.varargs", sym1, sym2, sym2.location()); + } + } + +/* ************************************************************************ + * duplicate declaration checking + *************************************************************************/ + + /** Check that variable does not hide variable with same name in + * immediately enclosing local scope. + * @param pos Position for error reporting. + * @param v The symbol. + * @param s The scope. + */ + void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) { + if (s.next != null) { + for (Scope.Entry e = s.next.lookup(v.name); + e.scope != null && e.sym.owner == v.owner; + e = e.next()) { + if (e.sym.kind == VAR && + (e.sym.owner.kind & (VAR | MTH)) != 0 && + v.name != names.error) { + duplicateError(pos, e.sym); + return; + } + } + } + } + + /** Check that a class or interface does not hide a class or + * interface with same name in immediately enclosing local scope. + * @param pos Position for error reporting. + * @param c The symbol. + * @param s The scope. + */ + void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) { + if (s.next != null) { + for (Scope.Entry e = s.next.lookup(c.name); + e.scope != null && e.sym.owner == c.owner; + e = e.next()) { + if (e.sym.kind == TYP && + (e.sym.owner.kind & (VAR | MTH)) != 0 && + c.name != names.error) { + duplicateError(pos, e.sym); + return; + } + } + } + } + + /** Check that class does not have the same name as one of + * its enclosing classes, or as a class defined in its enclosing scope. + * return true if class is unique in its enclosing scope. + * @param pos Position for error reporting. + * @param name The class name. + * @param s The enclosing scope. + */ + boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) { + for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) { + if (e.sym.kind == TYP && e.sym.name != names.error) { + duplicateError(pos, e.sym); + return false; + } + } + for (Symbol sym = s.owner; sym != null; sym = sym.owner) { + if (sym.kind == TYP && sym.name == name && sym.name != names.error) { + duplicateError(pos, sym); + return true; + } + } + return true; + } + +/* ************************************************************************* + * Class name generation + **************************************************************************/ + + /** Return name of local class. + * This is of the form $ n + * where + * enclClass is the flat name of the enclosing class, + * classname is the simple name of the local class + */ + Name localClassName(ClassSymbol c) { + for (int i=1; ; i++) { + Name flatname = names. + fromString("" + c.owner.enclClass().flatname + + target.syntheticNameChar() + i + + c.name); + if (compiled.get(flatname) == null) return flatname; + } + } + +/* ************************************************************************* + * Type Checking + **************************************************************************/ + + /** Check that a given type is assignable to a given proto-type. + * If it is, return the type, otherwise return errType. + * @param pos Position to be used for error reporting. + * @param found The type that was found. + * @param req The type that was required. + */ + Type checkType(DiagnosticPosition pos, Type found, Type req) { + if (req.tag == ERROR) + return req; + if (found.tag == FORALL) + return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req)); + if (req.tag == NONE) + return found; + if (types.isAssignable(found, req, convertWarner(pos, found, req))) + return found; + if (found.tag <= DOUBLE && req.tag <= DOUBLE) + return typeError(pos, JCDiagnostic.fragment("possible.loss.of.precision"), found, req); + if (found.isSuperBound()) { + log.error(pos, "assignment.from.super-bound", found); + return syms.errType; + } + if (req.isExtendsBound()) { + log.error(pos, "assignment.to.extends-bound", req); + return syms.errType; + } + return typeError(pos, JCDiagnostic.fragment("incompatible.types"), found, req); + } + + /** Instantiate polymorphic type to some prototype, unless + * prototype is `anyPoly' in which case polymorphic type + * is returned unchanged. + */ + Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) { + if (pt == Infer.anyPoly && complexInference) { + return t; + } else if (pt == Infer.anyPoly || pt.tag == NONE) { + Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType; + return instantiatePoly(pos, t, newpt, warn); + } else if (pt.tag == ERROR) { + return pt; + } else { + try { + return infer.instantiateExpr(t, pt, warn); + } catch (Infer.NoInstanceException ex) { + if (ex.isAmbiguous) { + JCDiagnostic d = ex.getDiagnostic(); + log.error(pos, + "undetermined.type" + (d!=null ? ".1" : ""), + t, d); + return syms.errType; + } else { + JCDiagnostic d = ex.getDiagnostic(); + return typeError(pos, + JCDiagnostic.fragment("incompatible.types" + (d!=null ? ".1" : ""), d), + t, pt); + } + } + } + } + + /** Check that a given type can be cast to a given target type. + * Return the result of the cast. + * @param pos Position to be used for error reporting. + * @param found The type that is being cast. + * @param req The target type of the cast. + */ + Type checkCastable(DiagnosticPosition pos, Type found, Type req) { + if (found.tag == FORALL) { + instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req)); + return req; + } else if (types.isCastable(found, req, castWarner(pos, found, req))) { + return req; + } else { + return typeError(pos, + JCDiagnostic.fragment("inconvertible.types"), + found, req); + } + } +//where + /** Is type a type variable, or a (possibly multi-dimensional) array of + * type variables? + */ + boolean isTypeVar(Type t) { + return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t)); + } + + /** Check that a type is within some bounds. + * + * Used in TypeApply to verify that, e.g., X in V is a valid + * type argument. + * @param pos Position to be used for error reporting. + * @param a The type that should be bounded by bs. + * @param bs The bound. + */ + private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) { + if (a.isUnbound()) { + return; + } else if (a.tag != WILDCARD) { + a = types.upperBound(a); + for (List l = types.getBounds(bs); l.nonEmpty(); l = l.tail) { + if (!types.isSubtype(a, l.head)) { + log.error(pos, "not.within.bounds", a); + return; + } + } + } else if (a.isExtendsBound()) { + if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings)) + log.error(pos, "not.within.bounds", a); + } else if (a.isSuperBound()) { + if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound())) + log.error(pos, "not.within.bounds", a); + } + } + + /** Check that type is different from 'void'. + * @param pos Position to be used for error reporting. + * @param t The type to be checked. + */ + Type checkNonVoid(DiagnosticPosition pos, Type t) { + if (t.tag == VOID) { + log.error(pos, "void.not.allowed.here"); + return syms.errType; + } else { + return t; + } + } + + /** Check that type is a class or interface type. + * @param pos Position to be used for error reporting. + * @param t The type to be checked. + */ + Type checkClassType(DiagnosticPosition pos, Type t) { + if (t.tag != CLASS && t.tag != ERROR) + return typeTagError(pos, + JCDiagnostic.fragment("type.req.class"), + (t.tag == TYPEVAR) + ? JCDiagnostic.fragment("type.parameter", t) + : t); + else + return t; + } + + /** Check that type is a class or interface type. + * @param pos Position to be used for error reporting. + * @param t The type to be checked. + * @param noBounds True if type bounds are illegal here. + */ + Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) { + t = checkClassType(pos, t); + if (noBounds && t.isParameterized()) { + List args = t.getTypeArguments(); + while (args.nonEmpty()) { + if (args.head.tag == WILDCARD) + return typeTagError(pos, + log.getLocalizedString("type.req.exact"), + args.head); + args = args.tail; + } + } + return t; + } + + /** Check that type is a reifiable class, interface or array type. + * @param pos Position to be used for error reporting. + * @param t The type to be checked. + */ + Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) { + if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) { + return typeTagError(pos, + JCDiagnostic.fragment("type.req.class.array"), + t); + } else if (!types.isReifiable(t)) { + log.error(pos, "illegal.generic.type.for.instof"); + return syms.errType; + } else { + return t; + } + } + + /** Check that type is a reference type, i.e. a class, interface or array type + * or a type variable. + * @param pos Position to be used for error reporting. + * @param t The type to be checked. + */ + Type checkRefType(DiagnosticPosition pos, Type t) { + switch (t.tag) { + case CLASS: + case ARRAY: + case TYPEVAR: + case WILDCARD: + case ERROR: + return t; + default: + return typeTagError(pos, + JCDiagnostic.fragment("type.req.ref"), + t); + } + } + + /** Check that type is a null or reference type. + * @param pos Position to be used for error reporting. + * @param t The type to be checked. + */ + Type checkNullOrRefType(DiagnosticPosition pos, Type t) { + switch (t.tag) { + case CLASS: + case ARRAY: + case TYPEVAR: + case WILDCARD: + case BOT: + case ERROR: + return t; + default: + return typeTagError(pos, + JCDiagnostic.fragment("type.req.ref"), + t); + } + } + + /** Check that flag set does not contain elements of two conflicting sets. s + * Return true if it doesn't. + * @param pos Position to be used for error reporting. + * @param flags The set of flags to be checked. + * @param set1 Conflicting flags set #1. + * @param set2 Conflicting flags set #2. + */ + boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) { + if ((flags & set1) != 0 && (flags & set2) != 0) { + log.error(pos, + "illegal.combination.of.modifiers", + TreeInfo.flagNames(TreeInfo.firstFlag(flags & set1)), + TreeInfo.flagNames(TreeInfo.firstFlag(flags & set2))); + return false; + } else + return true; + } + + /** Check that given modifiers are legal for given symbol and + * return modifiers together with any implicit modififiers for that symbol. + * Warning: we can't use flags() here since this method + * is called during class enter, when flags() would cause a premature + * completion. + * @param pos Position to be used for error reporting. + * @param flags The set of modifiers given in a definition. + * @param sym The defined symbol. + */ + long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) { + long mask; + long implicit = 0; + switch (sym.kind) { + case VAR: + if (sym.owner.kind != TYP) + mask = LocalVarFlags; + else if ((sym.owner.flags_field & INTERFACE) != 0) + mask = implicit = InterfaceVarFlags; + else + mask = VarFlags; + break; + case MTH: + if (sym.name == names.init) { + if ((sym.owner.flags_field & ENUM) != 0) { + // enum constructors cannot be declared public or + // protected and must be implicitly or explicitly + // private + implicit = PRIVATE; + mask = PRIVATE; + } else + mask = ConstructorFlags; + } else if ((sym.owner.flags_field & INTERFACE) != 0) + mask = implicit = InterfaceMethodFlags; + else { + mask = MethodFlags; + } + // Imply STRICTFP if owner has STRICTFP set. + if (((flags|implicit) & Flags.ABSTRACT) == 0) + implicit |= sym.owner.flags_field & STRICTFP; + break; + case TYP: + if (sym.isLocal()) { + mask = LocalClassFlags; + if (sym.name.len == 0) { // Anonymous class + // Anonymous classes in static methods are themselves static; + // that's why we admit STATIC here. + mask |= STATIC; + // JLS: Anonymous classes are final. + implicit |= FINAL; + } + if ((sym.owner.flags_field & STATIC) == 0 && + (flags & ENUM) != 0) + log.error(pos, "enums.must.be.static"); + } else if (sym.owner.kind == TYP) { + mask = MemberClassFlags; + if (sym.owner.owner.kind == PCK || + (sym.owner.flags_field & STATIC) != 0) + mask |= STATIC; + else if ((flags & ENUM) != 0) + log.error(pos, "enums.must.be.static"); + // Nested interfaces and enums are always STATIC (Spec ???) + if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC; + } else { + mask = ClassFlags; + } + // Interfaces are always ABSTRACT + if ((flags & INTERFACE) != 0) implicit |= ABSTRACT; + + if ((flags & ENUM) != 0) { + // enums can't be declared abstract or final + mask &= ~(ABSTRACT | FINAL); + implicit |= implicitEnumFinalFlag(tree); + } + // Imply STRICTFP if owner has STRICTFP set. + implicit |= sym.owner.flags_field & STRICTFP; + break; + default: + throw new AssertionError(); + } + long illegal = flags & StandardFlags & ~mask; + if (illegal != 0) { + if ((illegal & INTERFACE) != 0) { + log.error(pos, "intf.not.allowed.here"); + mask |= INTERFACE; + } + else { + log.error(pos, + "mod.not.allowed.here", TreeInfo.flagNames(illegal)); + } + } + else if ((sym.kind == TYP || + // ISSUE: Disallowing abstract&private is no longer appropriate + // in the presence of inner classes. Should it be deleted here? + checkDisjoint(pos, flags, + ABSTRACT, + PRIVATE | STATIC)) + && + checkDisjoint(pos, flags, + ABSTRACT | INTERFACE, + FINAL | NATIVE | SYNCHRONIZED) + && + checkDisjoint(pos, flags, + PUBLIC, + PRIVATE | PROTECTED) + && + checkDisjoint(pos, flags, + PRIVATE, + PUBLIC | PROTECTED) + && + checkDisjoint(pos, flags, + FINAL, + VOLATILE) + && + (sym.kind == TYP || + checkDisjoint(pos, flags, + ABSTRACT | NATIVE, + STRICTFP))) { + // skip + } + return flags & (mask | ~StandardFlags) | implicit; + } + + + /** Determine if this enum should be implicitly final. + * + * If the enum has no specialized enum contants, it is final. + * + * If the enum does have specialized enum contants, it is + * not final. + */ + private long implicitEnumFinalFlag(JCTree tree) { + if (tree.getTag() != JCTree.CLASSDEF) return 0; + class SpecialTreeVisitor extends JCTree.Visitor { + boolean specialized; + SpecialTreeVisitor() { + this.specialized = false; + }; + + public void visitTree(JCTree tree) { /* no-op */ } + + public void visitVarDef(JCVariableDecl tree) { + if ((tree.mods.flags & ENUM) != 0) { + if (tree.init instanceof JCNewClass && + ((JCNewClass) tree.init).def != null) { + specialized = true; + } + } + } + } + + SpecialTreeVisitor sts = new SpecialTreeVisitor(); + JCClassDecl cdef = (JCClassDecl) tree; + for (JCTree defs: cdef.defs) { + defs.accept(sts); + if (sts.specialized) return 0; + } + return FINAL; + } + +/* ************************************************************************* + * Type Validation + **************************************************************************/ + + /** Validate a type expression. That is, + * check that all type arguments of a parametric type are within + * their bounds. This must be done in a second phase after type attributon + * since a class might have a subclass as type parameter bound. E.g: + * + * class B { ... } + * class C extends B { ... } + * + * and we can't make sure that the bound is already attributed because + * of possible cycles. + */ + private Validator validator = new Validator(); + + /** Visitor method: Validate a type expression, if it is not null, catching + * and reporting any completion failures. + */ + void validate(JCTree tree) { + try { + if (tree != null) tree.accept(validator); + } catch (CompletionFailure ex) { + completionError(tree.pos(), ex); + } + } + + /** Visitor method: Validate a list of type expressions. + */ + void validate(List trees) { + for (List l = trees; l.nonEmpty(); l = l.tail) + validate(l.head); + } + + /** Visitor method: Validate a list of type parameters. + */ + void validateTypeParams(List trees) { + for (List l = trees; l.nonEmpty(); l = l.tail) + validate(l.head); + } + + /** A visitor class for type validation. + */ + class Validator extends JCTree.Visitor { + + public void visitTypeArray(JCArrayTypeTree tree) { + validate(tree.elemtype); + } + + public void visitTypeApply(JCTypeApply tree) { + if (tree.type.tag == CLASS) { + List formals = tree.type.tsym.type.getTypeArguments(); + List actuals = tree.type.getTypeArguments(); + List args = tree.arguments; + List forms = formals; + ListBuffer tvars_buf = new ListBuffer(); + + // For matching pairs of actual argument types `a' and + // formal type parameters with declared bound `b' ... + while (args.nonEmpty() && forms.nonEmpty()) { + validate(args.head); + + // exact type arguments needs to know their + // bounds (for upper and lower bound + // calculations). So we create new TypeVars with + // bounds substed with actuals. + tvars_buf.append(types.substBound(((TypeVar)forms.head), + formals, + Type.removeBounds(actuals))); + + args = args.tail; + forms = forms.tail; + } + + args = tree.arguments; + List tvars = tvars_buf.toList(); + while (args.nonEmpty() && tvars.nonEmpty()) { + // Let the actual arguments know their bound + args.head.type.withTypeVar(tvars.head); + args = args.tail; + tvars = tvars.tail; + } + + args = tree.arguments; + tvars = tvars_buf.toList(); + while (args.nonEmpty() && tvars.nonEmpty()) { + checkExtends(args.head.pos(), + args.head.type, + tvars.head); + args = args.tail; + tvars = tvars.tail; + } + + // Check that this type is either fully parameterized, or + // not parameterized at all. + if (tree.type.getEnclosingType().isRaw()) + log.error(tree.pos(), "improperly.formed.type.inner.raw.param"); + if (tree.clazz.getTag() == JCTree.SELECT) + visitSelectInternal((JCFieldAccess)tree.clazz); + } + } + + public void visitTypeParameter(JCTypeParameter tree) { + validate(tree.bounds); + checkClassBounds(tree.pos(), tree.type); + } + + @Override + public void visitWildcard(JCWildcard tree) { + if (tree.inner != null) + validate(tree.inner); + } + + public void visitSelect(JCFieldAccess tree) { + if (tree.type.tag == CLASS) { + visitSelectInternal(tree); + + // Check that this type is either fully parameterized, or + // not parameterized at all. + if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty()) + log.error(tree.pos(), "improperly.formed.type.param.missing"); + } + } + public void visitSelectInternal(JCFieldAccess tree) { + if (tree.type.getEnclosingType().tag != CLASS && + tree.selected.type.isParameterized()) { + // The enclosing type is not a class, so we are + // looking at a static member type. However, the + // qualifying expression is parameterized. + log.error(tree.pos(), "cant.select.static.class.from.param.type"); + } else { + // otherwise validate the rest of the expression + validate(tree.selected); + } + } + + /** Default visitor method: do nothing. + */ + public void visitTree(JCTree tree) { + } + } + +/* ************************************************************************* + * Exception checking + **************************************************************************/ + + /* The following methods treat classes as sets that contain + * the class itself and all their subclasses + */ + + /** Is given type a subtype of some of the types in given list? + */ + boolean subset(Type t, List ts) { + for (List l = ts; l.nonEmpty(); l = l.tail) + if (types.isSubtype(t, l.head)) return true; + return false; + } + + /** Is given type a subtype or supertype of + * some of the types in given list? + */ + boolean intersects(Type t, List ts) { + for (List l = ts; l.nonEmpty(); l = l.tail) + if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true; + return false; + } + + /** Add type set to given type list, unless it is a subclass of some class + * in the list. + */ + List incl(Type t, List ts) { + return subset(t, ts) ? ts : excl(t, ts).prepend(t); + } + + /** Remove type set from type set list. + */ + List excl(Type t, List ts) { + if (ts.isEmpty()) { + return ts; + } else { + List ts1 = excl(t, ts.tail); + if (types.isSubtype(ts.head, t)) return ts1; + else if (ts1 == ts.tail) return ts; + else return ts1.prepend(ts.head); + } + } + + /** Form the union of two type set lists. + */ + List union(List ts1, List ts2) { + List ts = ts1; + for (List l = ts2; l.nonEmpty(); l = l.tail) + ts = incl(l.head, ts); + return ts; + } + + /** Form the difference of two type lists. + */ + List diff(List ts1, List ts2) { + List ts = ts1; + for (List l = ts2; l.nonEmpty(); l = l.tail) + ts = excl(l.head, ts); + return ts; + } + + /** Form the intersection of two type lists. + */ + public List intersect(List ts1, List ts2) { + List ts = List.nil(); + for (List l = ts1; l.nonEmpty(); l = l.tail) + if (subset(l.head, ts2)) ts = incl(l.head, ts); + for (List l = ts2; l.nonEmpty(); l = l.tail) + if (subset(l.head, ts1)) ts = incl(l.head, ts); + return ts; + } + + /** Is exc an exception symbol that need not be declared? + */ + boolean isUnchecked(ClassSymbol exc) { + return + exc.kind == ERR || + exc.isSubClass(syms.errorType.tsym, types) || + exc.isSubClass(syms.runtimeExceptionType.tsym, types); + } + + /** Is exc an exception type that need not be declared? + */ + boolean isUnchecked(Type exc) { + return + (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) : + (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) : + exc.tag == BOT; + } + + /** Same, but handling completion failures. + */ + boolean isUnchecked(DiagnosticPosition pos, Type exc) { + try { + return isUnchecked(exc); + } catch (CompletionFailure ex) { + completionError(pos, ex); + return true; + } + } + + /** Is exc handled by given exception list? + */ + boolean isHandled(Type exc, List handled) { + return isUnchecked(exc) || subset(exc, handled); + } + + /** Return all exceptions in thrown list that are not in handled list. + * @param thrown The list of thrown exceptions. + * @param handled The list of handled exceptions. + */ + List unHandled(List thrown, List handled) { + List unhandled = List.nil(); + for (List l = thrown; l.nonEmpty(); l = l.tail) + if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head); + return unhandled; + } + +/* ************************************************************************* + * Overriding/Implementation checking + **************************************************************************/ + + /** The level of access protection given by a flag set, + * where PRIVATE is highest and PUBLIC is lowest. + */ + static int protection(long flags) { + switch ((short)(flags & AccessFlags)) { + case PRIVATE: return 3; + case PROTECTED: return 1; + default: + case PUBLIC: return 0; + case 0: return 2; + } + } + + /** A string describing the access permission given by a flag set. + * This always returns a space-separated list of Java Keywords. + */ + private static String protectionString(long flags) { + long flags1 = flags & AccessFlags; + return (flags1 == 0) ? "package" : TreeInfo.flagNames(flags1); + } + + /** A customized "cannot override" error message. + * @param m The overriding method. + * @param other The overridden method. + * @return An internationalized string. + */ + static Object cannotOverride(MethodSymbol m, MethodSymbol other) { + String key; + if ((other.owner.flags() & INTERFACE) == 0) + key = "cant.override"; + else if ((m.owner.flags() & INTERFACE) == 0) + key = "cant.implement"; + else + key = "clashes.with"; + return JCDiagnostic.fragment(key, m, m.location(), other, other.location()); + } + + /** A customized "override" warning message. + * @param m The overriding method. + * @param other The overridden method. + * @return An internationalized string. + */ + static Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) { + String key; + if ((other.owner.flags() & INTERFACE) == 0) + key = "unchecked.override"; + else if ((m.owner.flags() & INTERFACE) == 0) + key = "unchecked.implement"; + else + key = "unchecked.clash.with"; + return JCDiagnostic.fragment(key, m, m.location(), other, other.location()); + } + + /** A customized "override" warning message. + * @param m The overriding method. + * @param other The overridden method. + * @return An internationalized string. + */ + static Object varargsOverrides(MethodSymbol m, MethodSymbol other) { + String key; + if ((other.owner.flags() & INTERFACE) == 0) + key = "varargs.override"; + else if ((m.owner.flags() & INTERFACE) == 0) + key = "varargs.implement"; + else + key = "varargs.clash.with"; + return JCDiagnostic.fragment(key, m, m.location(), other, other.location()); + } + + /** Check that this method conforms with overridden method 'other'. + * where `origin' is the class where checking started. + * Complications: + * (1) Do not check overriding of synthetic methods + * (reason: they might be final). + * todo: check whether this is still necessary. + * (2) Admit the case where an interface proxy throws fewer exceptions + * than the method it implements. Augment the proxy methods with the + * undeclared exceptions in this case. + * (3) When generics are enabled, admit the case where an interface proxy + * has a result type + * extended by the result type of the method it implements. + * Change the proxies result type to the smaller type in this case. + * + * @param tree The tree from which positions + * are extracted for errors. + * @param m The overriding method. + * @param other The overridden method. + * @param origin The class of which the overriding method + * is a member. + */ + void checkOverride(JCTree tree, + MethodSymbol m, + MethodSymbol other, + ClassSymbol origin) { + // Don't check overriding of synthetic methods or by bridge methods. + if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) { + return; + } + + // Error if static method overrides instance method (JLS 8.4.6.2). + if ((m.flags() & STATIC) != 0 && + (other.flags() & STATIC) == 0) { + log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static", + cannotOverride(m, other)); + return; + } + + // Error if instance method overrides static or final + // method (JLS 8.4.6.1). + if ((other.flags() & FINAL) != 0 || + (m.flags() & STATIC) == 0 && + (other.flags() & STATIC) != 0) { + log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth", + cannotOverride(m, other), + TreeInfo.flagNames(other.flags() & (FINAL | STATIC))); + return; + } + + if ((m.owner.flags() & ANNOTATION) != 0) { + // handled in validateAnnotationMethod + return; + } + + // Error if overriding method has weaker access (JLS 8.4.6.3). + if ((origin.flags() & INTERFACE) == 0 && + protection(m.flags()) > protection(other.flags())) { + log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access", + cannotOverride(m, other), + protectionString(other.flags())); + return; + + } + + Type mt = types.memberType(origin.type, m); + Type ot = types.memberType(origin.type, other); + // Error if overriding result type is different + // (or, in the case of generics mode, not a subtype) of + // overridden result type. We have to rename any type parameters + // before comparing types. + List mtvars = mt.getTypeArguments(); + List otvars = ot.getTypeArguments(); + Type mtres = mt.getReturnType(); + Type otres = types.subst(ot.getReturnType(), otvars, mtvars); + + overrideWarner.warned = false; + boolean resultTypesOK = + types.returnTypeSubstitutable(mt, ot, otres, overrideWarner); + if (!resultTypesOK) { + if (!source.allowCovariantReturns() && + m.owner != origin && + m.owner.isSubClass(other.owner, types)) { + // allow limited interoperability with covariant returns + } else { + typeError(TreeInfo.diagnosticPositionFor(m, tree), + JCDiagnostic.fragment("override.incompatible.ret", + cannotOverride(m, other)), + mtres, otres); + return; + } + } else if (overrideWarner.warned) { + warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree), + "prob.found.req", + JCDiagnostic.fragment("override.unchecked.ret", + uncheckedOverrides(m, other)), + mtres, otres); + } + + // Error if overriding method throws an exception not reported + // by overridden method. + List otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars); + List unhandled = unHandled(mt.getThrownTypes(), otthrown); + if (unhandled.nonEmpty()) { + log.error(TreeInfo.diagnosticPositionFor(m, tree), + "override.meth.doesnt.throw", + cannotOverride(m, other), + unhandled.head); + return; + } + + // Optional warning if varargs don't agree + if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0) + && lint.isEnabled(Lint.LintCategory.OVERRIDES)) { + log.warning(TreeInfo.diagnosticPositionFor(m, tree), + ((m.flags() & Flags.VARARGS) != 0) + ? "override.varargs.missing" + : "override.varargs.extra", + varargsOverrides(m, other)); + } + + // Warn if instance method overrides bridge method (compiler spec ??) + if ((other.flags() & BRIDGE) != 0) { + log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge", + uncheckedOverrides(m, other)); + } + + // Warn if a deprecated method overridden by a non-deprecated one. + if ((other.flags() & DEPRECATED) != 0 + && (m.flags() & DEPRECATED) == 0 + && m.outermostClass() != other.outermostClass() + && !isDeprecatedOverrideIgnorable(other, origin)) { + warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other); + } + } + // where + private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) { + // If the method, m, is defined in an interface, then ignore the issue if the method + // is only inherited via a supertype and also implemented in the supertype, + // because in that case, we will rediscover the issue when examining the method + // in the supertype. + // If the method, m, is not defined in an interface, then the only time we need to + // address the issue is when the method is the supertype implemementation: any other + // case, we will have dealt with when examining the supertype classes + ClassSymbol mc = m.enclClass(); + Type st = types.supertype(origin.type); + if (st.tag != CLASS) + return true; + MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false); + + if (mc != null && ((mc.flags() & INTERFACE) != 0)) { + List intfs = types.interfaces(origin.type); + return (intfs.contains(mc.type) ? false : (stimpl != null)); + } + else + return (stimpl != m); + } + + + // used to check if there were any unchecked conversions + Warner overrideWarner = new Warner(); + + /** Check that a class does not inherit two concrete methods + * with the same signature. + * @param pos Position to be used for error reporting. + * @param site The class type to be checked. + */ + public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) { + Type sup = types.supertype(site); + if (sup.tag != CLASS) return; + + for (Type t1 = sup; + t1.tsym.type.isParameterized(); + t1 = types.supertype(t1)) { + for (Scope.Entry e1 = t1.tsym.members().elems; + e1 != null; + e1 = e1.sibling) { + Symbol s1 = e1.sym; + if (s1.kind != MTH || + (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 || + !s1.isInheritedIn(site.tsym, types) || + ((MethodSymbol)s1).implementation(site.tsym, + types, + true) != s1) + continue; + Type st1 = types.memberType(t1, s1); + int s1ArgsLength = st1.getParameterTypes().length(); + if (st1 == s1.type) continue; + + for (Type t2 = sup; + t2.tag == CLASS; + t2 = types.supertype(t2)) { + for (Scope.Entry e2 = t1.tsym.members().lookup(s1.name); + e2.scope != null; + e2 = e2.next()) { + Symbol s2 = e2.sym; + if (s2 == s1 || + s2.kind != MTH || + (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 || + s2.type.getParameterTypes().length() != s1ArgsLength || + !s2.isInheritedIn(site.tsym, types) || + ((MethodSymbol)s2).implementation(site.tsym, + types, + true) != s2) + continue; + Type st2 = types.memberType(t2, s2); + if (types.overrideEquivalent(st1, st2)) + log.error(pos, "concrete.inheritance.conflict", + s1, t1, s2, t2, sup); + } + } + } + } + } + + /** Check that classes (or interfaces) do not each define an abstract + * method with same name and arguments but incompatible return types. + * @param pos Position to be used for error reporting. + * @param t1 The first argument type. + * @param t2 The second argument type. + */ + public boolean checkCompatibleAbstracts(DiagnosticPosition pos, + Type t1, + Type t2) { + return checkCompatibleAbstracts(pos, t1, t2, + types.makeCompoundType(t1, t2)); + } + + public boolean checkCompatibleAbstracts(DiagnosticPosition pos, + Type t1, + Type t2, + Type site) { + Symbol sym = firstIncompatibility(t1, t2, site); + if (sym != null) { + log.error(pos, "types.incompatible.diff.ret", + t1, t2, sym.name + + "(" + types.memberType(t2, sym).getParameterTypes() + ")"); + return false; + } + return true; + } + + /** Return the first method which is defined with same args + * but different return types in two given interfaces, or null if none + * exists. + * @param t1 The first type. + * @param t2 The second type. + * @param site The most derived type. + * @returns symbol from t2 that conflicts with one in t1. + */ + private Symbol firstIncompatibility(Type t1, Type t2, Type site) { + Map interfaces1 = new HashMap(); + closure(t1, interfaces1); + Map interfaces2; + if (t1 == t2) + interfaces2 = interfaces1; + else + closure(t2, interfaces1, interfaces2 = new HashMap()); + + for (Type t3 : interfaces1.values()) { + for (Type t4 : interfaces2.values()) { + Symbol s = firstDirectIncompatibility(t3, t4, site); + if (s != null) return s; + } + } + return null; + } + + /** Compute all the supertypes of t, indexed by type symbol. */ + private void closure(Type t, Map typeMap) { + if (t.tag != CLASS) return; + if (typeMap.put(t.tsym, t) == null) { + closure(types.supertype(t), typeMap); + for (Type i : types.interfaces(t)) + closure(i, typeMap); + } + } + + /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */ + private void closure(Type t, Map typesSkip, Map typeMap) { + if (t.tag != CLASS) return; + if (typesSkip.get(t.tsym) != null) return; + if (typeMap.put(t.tsym, t) == null) { + closure(types.supertype(t), typesSkip, typeMap); + for (Type i : types.interfaces(t)) + closure(i, typesSkip, typeMap); + } + } + + /** Return the first method in t2 that conflicts with a method from t1. */ + private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) { + for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) { + Symbol s1 = e1.sym; + Type st1 = null; + if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue; + Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false); + if (impl != null && (impl.flags() & ABSTRACT) == 0) continue; + for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) { + Symbol s2 = e2.sym; + if (s1 == s2) continue; + if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue; + if (st1 == null) st1 = types.memberType(t1, s1); + Type st2 = types.memberType(t2, s2); + if (types.overrideEquivalent(st1, st2)) { + List tvars1 = st1.getTypeArguments(); + List tvars2 = st2.getTypeArguments(); + Type rt1 = st1.getReturnType(); + Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1); + boolean compat = + types.isSameType(rt1, rt2) || + rt1.tag >= CLASS && rt2.tag >= CLASS && + (types.covariantReturnType(rt1, rt2, Warner.noWarnings) || + types.covariantReturnType(rt2, rt1, Warner.noWarnings)); + if (!compat) return s2; + } + } + } + return null; + } + + /** Check that a given method conforms with any method it overrides. + * @param tree The tree from which positions are extracted + * for errors. + * @param m The overriding method. + */ + void checkOverride(JCTree tree, MethodSymbol m) { + ClassSymbol origin = (ClassSymbol)m.owner; + if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name)) + if (m.overrides(syms.enumFinalFinalize, origin, types, false)) { + log.error(tree.pos(), "enum.no.finalize"); + return; + } + for (Type t = types.supertype(origin.type); t.tag == CLASS; + t = types.supertype(t)) { + TypeSymbol c = t.tsym; + Scope.Entry e = c.members().lookup(m.name); + while (e.scope != null) { + if (m.overrides(e.sym, origin, types, false)) + checkOverride(tree, m, (MethodSymbol)e.sym, origin); + e = e.next(); + } + } + } + + /** Check that all abstract members of given class have definitions. + * @param pos Position to be used for error reporting. + * @param c The class. + */ + void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) { + try { + MethodSymbol undef = firstUndef(c, c); + if (undef != null) { + if ((c.flags() & ENUM) != 0 && + types.supertype(c.type).tsym == syms.enumSym && + (c.flags() & FINAL) == 0) { + // add the ABSTRACT flag to an enum + c.flags_field |= ABSTRACT; + } else { + MethodSymbol undef1 = + new MethodSymbol(undef.flags(), undef.name, + types.memberType(c.type, undef), undef.owner); + log.error(pos, "does.not.override.abstract", + c, undef1, undef1.location()); + } + } + } catch (CompletionFailure ex) { + completionError(pos, ex); + } + } +//where + /** Return first abstract member of class `c' that is not defined + * in `impl', null if there is none. + */ + private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) { + MethodSymbol undef = null; + // Do not bother to search in classes that are not abstract, + // since they cannot have abstract members. + if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) { + Scope s = c.members(); + for (Scope.Entry e = s.elems; + undef == null && e != null; + e = e.sibling) { + if (e.sym.kind == MTH && + (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) { + MethodSymbol absmeth = (MethodSymbol)e.sym; + MethodSymbol implmeth = absmeth.implementation(impl, types, true); + if (implmeth == null || implmeth == absmeth) + undef = absmeth; + } + } + if (undef == null) { + Type st = types.supertype(c.type); + if (st.tag == CLASS) + undef = firstUndef(impl, (ClassSymbol)st.tsym); + } + for (List l = types.interfaces(c.type); + undef == null && l.nonEmpty(); + l = l.tail) { + undef = firstUndef(impl, (ClassSymbol)l.head.tsym); + } + } + return undef; + } + + /** Check for cyclic references. Issue an error if the + * symbol of the type referred to has a LOCKED flag set. + * + * @param pos Position to be used for error reporting. + * @param t The type referred to. + */ + void checkNonCyclic(DiagnosticPosition pos, Type t) { + checkNonCyclicInternal(pos, t); + } + + + void checkNonCyclic(DiagnosticPosition pos, TypeVar t) { + checkNonCyclic1(pos, t, new HashSet()); + } + + private void checkNonCyclic1(DiagnosticPosition pos, Type t, Set seen) { + final TypeVar tv; + if (seen.contains(t)) { + tv = (TypeVar)t; + tv.bound = new ErrorType(); + log.error(pos, "cyclic.inheritance", t); + } else if (t.tag == TYPEVAR) { + tv = (TypeVar)t; + seen.add(tv); + for (Type b : types.getBounds(tv)) + checkNonCyclic1(pos, b, seen); + } + } + + /** Check for cyclic references. Issue an error if the + * symbol of the type referred to has a LOCKED flag set. + * + * @param pos Position to be used for error reporting. + * @param t The type referred to. + * @returns True if the check completed on all attributed classes + */ + private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) { + boolean complete = true; // was the check complete? + //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG + Symbol c = t.tsym; + if ((c.flags_field & ACYCLIC) != 0) return true; + + if ((c.flags_field & LOCKED) != 0) { + noteCyclic(pos, (ClassSymbol)c); + } else if (!c.type.isErroneous()) { + try { + c.flags_field |= LOCKED; + if (c.type.tag == CLASS) { + ClassType clazz = (ClassType)c.type; + if (clazz.interfaces_field != null) + for (List l=clazz.interfaces_field; l.nonEmpty(); l=l.tail) + complete &= checkNonCyclicInternal(pos, l.head); + if (clazz.supertype_field != null) { + Type st = clazz.supertype_field; + if (st != null && st.tag == CLASS) + complete &= checkNonCyclicInternal(pos, st); + } + if (c.owner.kind == TYP) + complete &= checkNonCyclicInternal(pos, c.owner.type); + } + } finally { + c.flags_field &= ~LOCKED; + } + } + if (complete) + complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null; + if (complete) c.flags_field |= ACYCLIC; + return complete; + } + + /** Note that we found an inheritance cycle. */ + private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) { + log.error(pos, "cyclic.inheritance", c); + for (List l=types.interfaces(c.type); l.nonEmpty(); l=l.tail) + l.head = new ErrorType((ClassSymbol)l.head.tsym); + Type st = types.supertype(c.type); + if (st.tag == CLASS) + ((ClassType)c.type).supertype_field = new ErrorType((ClassSymbol)st.tsym); + c.type = new ErrorType(c); + c.flags_field |= ACYCLIC; + } + + /** Check that all methods which implement some + * method conform to the method they implement. + * @param tree The class definition whose members are checked. + */ + void checkImplementations(JCClassDecl tree) { + checkImplementations(tree, tree.sym); + } +//where + /** Check that all methods which implement some + * method in `ic' conform to the method they implement. + */ + void checkImplementations(JCClassDecl tree, ClassSymbol ic) { + ClassSymbol origin = tree.sym; + for (List l = types.closure(ic.type); l.nonEmpty(); l = l.tail) { + ClassSymbol lc = (ClassSymbol)l.head.tsym; + if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) { + for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) { + if (e.sym.kind == MTH && + (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) { + MethodSymbol absmeth = (MethodSymbol)e.sym; + MethodSymbol implmeth = absmeth.implementation(origin, types, false); + if (implmeth != null && implmeth != absmeth && + (implmeth.owner.flags() & INTERFACE) == + (origin.flags() & INTERFACE)) { + // don't check if implmeth is in a class, yet + // origin is an interface. This case arises only + // if implmeth is declared in Object. The reason is + // that interfaces really don't inherit from + // Object it's just that the compiler represents + // things that way. + checkOverride(tree, implmeth, absmeth, origin); + } + } + } + } + } + } + + /** Check that all abstract methods implemented by a class are + * mutually compatible. + * @param pos Position to be used for error reporting. + * @param c The class whose interfaces are checked. + */ + void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) { + List supertypes = types.interfaces(c); + Type supertype = types.supertype(c); + if (supertype.tag == CLASS && + (supertype.tsym.flags() & ABSTRACT) != 0) + supertypes = supertypes.prepend(supertype); + for (List l = supertypes; l.nonEmpty(); l = l.tail) { + if (allowGenerics && !l.head.getTypeArguments().isEmpty() && + !checkCompatibleAbstracts(pos, l.head, l.head, c)) + return; + for (List m = supertypes; m != l; m = m.tail) + if (!checkCompatibleAbstracts(pos, l.head, m.head, c)) + return; + } + checkCompatibleConcretes(pos, c); + } + + /** Check that class c does not implement directly or indirectly + * the same parameterized interface with two different argument lists. + * @param pos Position to be used for error reporting. + * @param type The type whose interfaces are checked. + */ + void checkClassBounds(DiagnosticPosition pos, Type type) { + checkClassBounds(pos, new HashMap(), type); + } +//where + /** Enter all interfaces of type `type' into the hash table `seensofar' + * with their class symbol as key and their type as value. Make + * sure no class is entered with two different types. + */ + void checkClassBounds(DiagnosticPosition pos, + Map seensofar, + Type type) { + if (type.isErroneous()) return; + for (List l = types.interfaces(type); l.nonEmpty(); l = l.tail) { + Type it = l.head; + Type oldit = seensofar.put(it.tsym, it); + if (oldit != null) { + List oldparams = oldit.allparams(); + List newparams = it.allparams(); + if (!types.containsTypeEquivalent(oldparams, newparams)) + log.error(pos, "cant.inherit.diff.arg", + it.tsym, Type.toString(oldparams), + Type.toString(newparams)); + } + checkClassBounds(pos, seensofar, it); + } + Type st = types.supertype(type); + if (st != null) checkClassBounds(pos, seensofar, st); + } + + /** Enter interface into into set. + * If it existed already, issue a "repeated interface" error. + */ + void checkNotRepeated(DiagnosticPosition pos, Type it, Set its) { + if (its.contains(it)) + log.error(pos, "repeated.interface"); + else { + its.add(it); + } + } + +/* ************************************************************************* + * Check annotations + **************************************************************************/ + + /** Annotation types are restricted to primitives, String, an + * enum, an annotation, Class, Class, Class, arrays of the preceding. + */ + void validateAnnotationType(JCTree restype) { + // restype may be null if an error occurred, so don't bother validating it + if (restype != null) { + validateAnnotationType(restype.pos(), restype.type); + } + } + + void validateAnnotationType(DiagnosticPosition pos, Type type) { + if (type.isPrimitive()) return; + if (types.isSameType(type, syms.stringType)) return; + if ((type.tsym.flags() & Flags.ENUM) != 0) return; + if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return; + if (types.lowerBound(type).tsym == syms.classType.tsym) return; + if (types.isArray(type) && !types.isArray(types.elemtype(type))) { + validateAnnotationType(pos, types.elemtype(type)); + return; + } + log.error(pos, "invalid.annotation.member.type"); + } + + /** + * "It is also a compile-time error if any method declared in an + * annotation type has a signature that is override-equivalent to + * that of any public or protected method declared in class Object + * or in the interface annotation.Annotation." + * + * @jls3 9.6 Annotation Types + */ + void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) { + for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) { + Scope s = sup.tsym.members(); + for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) { + if (e.sym.kind == MTH && + (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 && + types.overrideEquivalent(m.type, e.sym.type)) + log.error(pos, "intf.annotation.member.clash", e.sym, sup); + } + } + } + + /** Check the annotations of a symbol. + */ + public void validateAnnotations(List annotations, Symbol s) { + if (skipAnnotations) return; + for (JCAnnotation a : annotations) + validateAnnotation(a, s); + } + + /** Check an annotation of a symbol. + */ + public void validateAnnotation(JCAnnotation a, Symbol s) { + validateAnnotation(a); + + if (!annotationApplicable(a, s)) + log.error(a.pos(), "annotation.type.not.applicable"); + + if (a.annotationType.type.tsym == syms.overrideType.tsym) { + if (!isOverrider(s)) + log.error(a.pos(), "method.does.not.override.superclass"); + } + } + + /** Is s a method symbol that overrides a method in a superclass? */ + boolean isOverrider(Symbol s) { + if (s.kind != MTH || s.isStatic()) + return false; + MethodSymbol m = (MethodSymbol)s; + TypeSymbol owner = (TypeSymbol)m.owner; + for (Type sup : types.closure(owner.type)) { + if (sup == owner.type) + continue; // skip "this" + Scope scope = sup.tsym.members(); + for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) { + if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true)) + return true; + } + } + return false; + } + + /** Is the annotation applicable to the symbol? */ + boolean annotationApplicable(JCAnnotation a, Symbol s) { + Attribute.Compound atTarget = + a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym); + if (atTarget == null) return true; + Attribute atValue = atTarget.member(names.value); + if (!(atValue instanceof Attribute.Array)) return true; // error recovery + Attribute.Array arr = (Attribute.Array) atValue; + for (Attribute app : arr.values) { + if (!(app instanceof Attribute.Enum)) return true; // recovery + Attribute.Enum e = (Attribute.Enum) app; + if (e.value.name == names.TYPE) + { if (s.kind == TYP) return true; } + else if (e.value.name == names.FIELD) + { if (s.kind == VAR && s.owner.kind != MTH) return true; } + else if (e.value.name == names.METHOD) + { if (s.kind == MTH && !s.isConstructor()) return true; } + else if (e.value.name == names.PARAMETER) + { if (s.kind == VAR && + s.owner.kind == MTH && + (s.flags() & PARAMETER) != 0) + return true; + } + else if (e.value.name == names.CONSTRUCTOR) + { if (s.kind == MTH && s.isConstructor()) return true; } + else if (e.value.name == names.LOCAL_VARIABLE) + { if (s.kind == VAR && s.owner.kind == MTH && + (s.flags() & PARAMETER) == 0) + return true; + } + else if (e.value.name == names.ANNOTATION_TYPE) + { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) + return true; + } + else if (e.value.name == names.PACKAGE) + { if (s.kind == PCK) return true; } + else + return true; // recovery + } + return false; + } + + /** Check an annotation value. + */ + public void validateAnnotation(JCAnnotation a) { + if (a.type.isErroneous()) return; + + // collect an inventory of the members + Set members = new HashSet(); + for (Scope.Entry e = a.annotationType.type.tsym.members().elems; + e != null; + e = e.sibling) + if (e.sym.kind == MTH) + members.add((MethodSymbol) e.sym); + + // count them off as they're annotated + for (JCTree arg : a.args) { + if (arg.getTag() != JCTree.ASSIGN) continue; // recovery + JCAssign assign = (JCAssign) arg; + Symbol m = TreeInfo.symbol(assign.lhs); + if (m == null || m.type.isErroneous()) continue; + if (!members.remove(m)) + log.error(arg.pos(), "duplicate.annotation.member.value", + m.name, a.type); + if (assign.rhs.getTag() == ANNOTATION) + validateAnnotation((JCAnnotation)assign.rhs); + } + + // all the remaining ones better have default values + for (MethodSymbol m : members) + if (m.defaultValue == null && !m.type.isErroneous()) + log.error(a.pos(), "annotation.missing.default.value", + a.type, m.name); + + // special case: java.lang.annotation.Target must not have + // repeated values in its value member + if (a.annotationType.type.tsym != syms.annotationTargetType.tsym || + a.args.tail == null) + return; + + if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery + JCAssign assign = (JCAssign) a.args.head; + Symbol m = TreeInfo.symbol(assign.lhs); + if (m.name != names.value) return; + JCTree rhs = assign.rhs; + if (rhs.getTag() != JCTree.NEWARRAY) return; + JCNewArray na = (JCNewArray) rhs; + Set targets = new HashSet(); + for (JCTree elem : na.elems) { + if (!targets.add(TreeInfo.symbol(elem))) { + log.error(elem.pos(), "repeated.annotation.target"); + } + } + } + + void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) { + if (allowAnnotations && + lint.isEnabled(Lint.LintCategory.DEP_ANN) && + (s.flags() & DEPRECATED) != 0 && + !syms.deprecatedType.isErroneous() && + s.attribute(syms.deprecatedType.tsym) == null) { + log.warning(pos, "missing.deprecated.annotation"); + } + } + +/* ************************************************************************* + * Check for recursive annotation elements. + **************************************************************************/ + + /** Check for cycles in the graph of annotation elements. + */ + void checkNonCyclicElements(JCClassDecl tree) { + if ((tree.sym.flags_field & ANNOTATION) == 0) return; + assert (tree.sym.flags_field & LOCKED) == 0; + try { + tree.sym.flags_field |= LOCKED; + for (JCTree def : tree.defs) { + if (def.getTag() != JCTree.METHODDEF) continue; + JCMethodDecl meth = (JCMethodDecl)def; + checkAnnotationResType(meth.pos(), meth.restype.type); + } + } finally { + tree.sym.flags_field &= ~LOCKED; + tree.sym.flags_field |= ACYCLIC_ANN; + } + } + + void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) { + if ((tsym.flags_field & ACYCLIC_ANN) != 0) + return; + if ((tsym.flags_field & LOCKED) != 0) { + log.error(pos, "cyclic.annotation.element"); + return; + } + try { + tsym.flags_field |= LOCKED; + for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) { + Symbol s = e.sym; + if (s.kind != Kinds.MTH) + continue; + checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType()); + } + } finally { + tsym.flags_field &= ~LOCKED; + tsym.flags_field |= ACYCLIC_ANN; + } + } + + void checkAnnotationResType(DiagnosticPosition pos, Type type) { + switch (type.tag) { + case TypeTags.CLASS: + if ((type.tsym.flags() & ANNOTATION) != 0) + checkNonCyclicElementsInternal(pos, type.tsym); + break; + case TypeTags.ARRAY: + checkAnnotationResType(pos, types.elemtype(type)); + break; + default: + break; // int etc + } + } + +/* ************************************************************************* + * Check for cycles in the constructor call graph. + **************************************************************************/ + + /** Check for cycles in the graph of constructors calling other + * constructors. + */ + void checkCyclicConstructors(JCClassDecl tree) { + Map callMap = new HashMap(); + + // enter each constructor this-call into the map + for (List l = tree.defs; l.nonEmpty(); l = l.tail) { + JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head); + if (app == null) continue; + JCMethodDecl meth = (JCMethodDecl) l.head; + if (TreeInfo.name(app.meth) == names._this) { + callMap.put(meth.sym, TreeInfo.symbol(app.meth)); + } else { + meth.sym.flags_field |= ACYCLIC; + } + } + + // Check for cycles in the map + Symbol[] ctors = new Symbol[0]; + ctors = callMap.keySet().toArray(ctors); + for (Symbol caller : ctors) { + checkCyclicConstructor(tree, caller, callMap); + } + } + + /** Look in the map to see if the given constructor is part of a + * call cycle. + */ + private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor, + Map callMap) { + if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) { + if ((ctor.flags_field & LOCKED) != 0) { + log.error(TreeInfo.diagnosticPositionFor(ctor, tree), + "recursive.ctor.invocation"); + } else { + ctor.flags_field |= LOCKED; + checkCyclicConstructor(tree, callMap.remove(ctor), callMap); + ctor.flags_field &= ~LOCKED; + } + ctor.flags_field |= ACYCLIC; + } + } + +/* ************************************************************************* + * Miscellaneous + **************************************************************************/ + + /** + * Return the opcode of the operator but emit an error if it is an + * error. + * @param pos position for error reporting. + * @param operator an operator + * @param tag a tree tag + * @param left type of left hand side + * @param right type of right hand side + */ + int checkOperator(DiagnosticPosition pos, + OperatorSymbol operator, + int tag, + Type left, + Type right) { + if (operator.opcode == ByteCodes.error) { + log.error(pos, + "operator.cant.be.applied", + treeinfo.operatorName(tag), + left + "," + right); + } + return operator.opcode; + } + + + /** + * Check for division by integer constant zero + * @param pos Position for error reporting. + * @param operator The operator for the expression + * @param operand The right hand operand for the expression + */ + void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) { + if (operand.constValue() != null + && lint.isEnabled(Lint.LintCategory.DIVZERO) + && operand.tag <= LONG + && ((Number) (operand.constValue())).longValue() == 0) { + int opc = ((OperatorSymbol)operator).opcode; + if (opc == ByteCodes.idiv || opc == ByteCodes.imod + || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) { + log.warning(pos, "div.zero"); + } + } + } + + /** + * Check for empty statements after if + */ + void checkEmptyIf(JCIf tree) { + if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY)) + log.warning(tree.thenpart.pos(), "empty.if"); + } + + /** Check that symbol is unique in given scope. + * @param pos Position for error reporting. + * @param sym The symbol. + * @param s The scope. + */ + boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) { + if (sym.type.isErroneous()) + return true; + if (sym.owner.name == names.any) return false; + for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) { + if (sym != e.sym && + sym.kind == e.sym.kind && + sym.name != names.error && + (sym.kind != MTH || types.overrideEquivalent(sym.type, e.sym.type))) { + if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) + varargsDuplicateError(pos, sym, e.sym); + else + duplicateError(pos, e.sym); + return false; + } + } + return true; + } + + /** Check that single-type import is not already imported or top-level defined, + * but make an exception for two single-type imports which denote the same type. + * @param pos Position for error reporting. + * @param sym The symbol. + * @param s The scope + */ + boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) { + return checkUniqueImport(pos, sym, s, false); + } + + /** Check that static single-type import is not already imported or top-level defined, + * but make an exception for two single-type imports which denote the same type. + * @param pos Position for error reporting. + * @param sym The symbol. + * @param s The scope + * @param staticImport Whether or not this was a static import + */ + boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) { + return checkUniqueImport(pos, sym, s, true); + } + + /** Check that single-type import is not already imported or top-level defined, + * but make an exception for two single-type imports which denote the same type. + * @param pos Position for error reporting. + * @param sym The symbol. + * @param s The scope. + * @param staticImport Whether or not this was a static import + */ + private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) { + for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) { + // is encountered class entered via a class declaration? + boolean isClassDecl = e.scope == s; + if ((isClassDecl || sym != e.sym) && + sym.kind == e.sym.kind && + sym.name != names.error) { + if (!e.sym.type.isErroneous()) { + String what = e.sym.toString(); + if (!isClassDecl) { + if (staticImport) + log.error(pos, "already.defined.static.single.import", what); + else + log.error(pos, "already.defined.single.import", what); + } + else if (sym != e.sym) + log.error(pos, "already.defined.this.unit", what); + } + return false; + } + } + return true; + } + + /** Check that a qualified name is in canonical form (for import decls). + */ + public void checkCanonical(JCTree tree) { + if (!isCanonical(tree)) + log.error(tree.pos(), "import.requires.canonical", + TreeInfo.symbol(tree)); + } + // where + private boolean isCanonical(JCTree tree) { + while (tree.getTag() == JCTree.SELECT) { + JCFieldAccess s = (JCFieldAccess) tree; + if (s.sym.owner != TreeInfo.symbol(s.selected)) + return false; + tree = s.selected; + } + return true; + } + + private class ConversionWarner extends Warner { + final String key; + final Type found; + final Type expected; + public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) { + super(pos); + this.key = key; + this.found = found; + this.expected = expected; + } + + public void warnUnchecked() { + boolean warned = this.warned; + super.warnUnchecked(); + if (warned) return; // suppress redundant diagnostics + Object problem = JCDiagnostic.fragment(key); + Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected); + } + } + + public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) { + return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected); + } + + public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) { + return new ConversionWarner(pos, "unchecked.assign", found, expected); + } +}