src/share/classes/com/sun/tools/javac/comp/Attr.java

Mon, 23 Aug 2010 15:13:33 -0700

author
jjg
date
Mon, 23 Aug 2010 15:13:33 -0700
changeset 643
a626d8c1de6e
parent 638
d6fe0ea070aa
child 664
4124840b35fe
permissions
-rw-r--r--

6976747: JCDiagnostic: replace "boolean mandatory" with new "Set<JCDiagnostic.Flag>"
Reviewed-by: mcimadamore

duke@1 1 /*
ohair@554 2 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30 import javax.lang.model.element.ElementKind;
duke@1 31 import javax.tools.JavaFileObject;
duke@1 32
duke@1 33 import com.sun.tools.javac.code.*;
duke@1 34 import com.sun.tools.javac.jvm.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38 import com.sun.tools.javac.util.List;
duke@1 39
duke@1 40 import com.sun.tools.javac.jvm.Target;
duke@1 41 import com.sun.tools.javac.code.Symbol.*;
duke@1 42 import com.sun.tools.javac.tree.JCTree.*;
duke@1 43 import com.sun.tools.javac.code.Type.*;
duke@1 44
duke@1 45 import com.sun.source.tree.IdentifierTree;
duke@1 46 import com.sun.source.tree.MemberSelectTree;
duke@1 47 import com.sun.source.tree.TreeVisitor;
duke@1 48 import com.sun.source.util.SimpleTreeVisitor;
duke@1 49
duke@1 50 import static com.sun.tools.javac.code.Flags.*;
duke@1 51 import static com.sun.tools.javac.code.Kinds.*;
duke@1 52 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 53
duke@1 54 /** This is the main context-dependent analysis phase in GJC. It
duke@1 55 * encompasses name resolution, type checking and constant folding as
duke@1 56 * subtasks. Some subtasks involve auxiliary classes.
duke@1 57 * @see Check
duke@1 58 * @see Resolve
duke@1 59 * @see ConstFold
duke@1 60 * @see Infer
duke@1 61 *
jjg@581 62 * <p><b>This is NOT part of any supported API.
jjg@581 63 * If you write code that depends on this, you do so at your own risk.
duke@1 64 * This code and its internal interfaces are subject to change or
duke@1 65 * deletion without notice.</b>
duke@1 66 */
duke@1 67 public class Attr extends JCTree.Visitor {
duke@1 68 protected static final Context.Key<Attr> attrKey =
duke@1 69 new Context.Key<Attr>();
duke@1 70
jjg@113 71 final Names names;
duke@1 72 final Log log;
duke@1 73 final Symtab syms;
duke@1 74 final Resolve rs;
mcimadamore@537 75 final Infer infer;
duke@1 76 final Check chk;
duke@1 77 final MemberEnter memberEnter;
duke@1 78 final TreeMaker make;
duke@1 79 final ConstFold cfolder;
duke@1 80 final Enter enter;
duke@1 81 final Target target;
duke@1 82 final Types types;
mcimadamore@89 83 final JCDiagnostic.Factory diags;
duke@1 84 final Annotate annotate;
duke@1 85
duke@1 86 public static Attr instance(Context context) {
duke@1 87 Attr instance = context.get(attrKey);
duke@1 88 if (instance == null)
duke@1 89 instance = new Attr(context);
duke@1 90 return instance;
duke@1 91 }
duke@1 92
duke@1 93 protected Attr(Context context) {
duke@1 94 context.put(attrKey, this);
duke@1 95
jjg@113 96 names = Names.instance(context);
duke@1 97 log = Log.instance(context);
duke@1 98 syms = Symtab.instance(context);
duke@1 99 rs = Resolve.instance(context);
duke@1 100 chk = Check.instance(context);
duke@1 101 memberEnter = MemberEnter.instance(context);
duke@1 102 make = TreeMaker.instance(context);
duke@1 103 enter = Enter.instance(context);
mcimadamore@537 104 infer = Infer.instance(context);
duke@1 105 cfolder = ConstFold.instance(context);
duke@1 106 target = Target.instance(context);
duke@1 107 types = Types.instance(context);
mcimadamore@89 108 diags = JCDiagnostic.Factory.instance(context);
duke@1 109 annotate = Annotate.instance(context);
duke@1 110
duke@1 111 Options options = Options.instance(context);
duke@1 112
duke@1 113 Source source = Source.instance(context);
duke@1 114 allowGenerics = source.allowGenerics();
duke@1 115 allowVarargs = source.allowVarargs();
duke@1 116 allowEnums = source.allowEnums();
duke@1 117 allowBoxing = source.allowBoxing();
duke@1 118 allowCovariantReturns = source.allowCovariantReturns();
duke@1 119 allowAnonOuterThis = source.allowAnonOuterThis();
darcy@430 120 allowStringsInSwitch = source.allowStringsInSwitch();
darcy@430 121 sourceName = source.name;
duke@1 122 relax = (options.get("-retrofit") != null ||
duke@1 123 options.get("-relax") != null);
duke@1 124 useBeforeDeclarationWarning = options.get("useBeforeDeclarationWarning") != null;
jjg@377 125 enableSunApiLintControl = options.get("enableSunApiLintControl") != null;
duke@1 126 }
duke@1 127
duke@1 128 /** Switch: relax some constraints for retrofit mode.
duke@1 129 */
duke@1 130 boolean relax;
duke@1 131
duke@1 132 /** Switch: support generics?
duke@1 133 */
duke@1 134 boolean allowGenerics;
duke@1 135
duke@1 136 /** Switch: allow variable-arity methods.
duke@1 137 */
duke@1 138 boolean allowVarargs;
duke@1 139
duke@1 140 /** Switch: support enums?
duke@1 141 */
duke@1 142 boolean allowEnums;
duke@1 143
duke@1 144 /** Switch: support boxing and unboxing?
duke@1 145 */
duke@1 146 boolean allowBoxing;
duke@1 147
duke@1 148 /** Switch: support covariant result types?
duke@1 149 */
duke@1 150 boolean allowCovariantReturns;
duke@1 151
duke@1 152 /** Switch: allow references to surrounding object from anonymous
duke@1 153 * objects during constructor call?
duke@1 154 */
duke@1 155 boolean allowAnonOuterThis;
duke@1 156
duke@1 157 /**
duke@1 158 * Switch: warn about use of variable before declaration?
duke@1 159 * RFE: 6425594
duke@1 160 */
duke@1 161 boolean useBeforeDeclarationWarning;
duke@1 162
jjg@377 163 /**
jjg@582 164 * Switch: allow lint infrastructure to control proprietary
jjg@377 165 * API warnings.
jjg@377 166 */
jjg@377 167 boolean enableSunApiLintControl;
jjg@377 168
darcy@430 169 /**
darcy@430 170 * Switch: allow strings in switch?
darcy@430 171 */
darcy@430 172 boolean allowStringsInSwitch;
darcy@430 173
darcy@430 174 /**
darcy@430 175 * Switch: name of source level; used for error reporting.
darcy@430 176 */
darcy@430 177 String sourceName;
darcy@430 178
duke@1 179 /** Check kind and type of given tree against protokind and prototype.
duke@1 180 * If check succeeds, store type in tree and return it.
duke@1 181 * If check fails, store errType in tree and return it.
duke@1 182 * No checks are performed if the prototype is a method type.
jjg@110 183 * It is not necessary in this case since we know that kind and type
duke@1 184 * are correct.
duke@1 185 *
duke@1 186 * @param tree The tree whose kind and type is checked
duke@1 187 * @param owntype The computed type of the tree
duke@1 188 * @param ownkind The computed kind of the tree
duke@1 189 * @param pkind The expected kind (or: protokind) of the tree
duke@1 190 * @param pt The expected type (or: prototype) of the tree
duke@1 191 */
duke@1 192 Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
duke@1 193 if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
duke@1 194 if ((ownkind & ~pkind) == 0) {
darcy@609 195 owntype = chk.checkType(tree.pos(), owntype, pt, errKey);
duke@1 196 } else {
duke@1 197 log.error(tree.pos(), "unexpected.type",
mcimadamore@80 198 kindNames(pkind),
mcimadamore@80 199 kindName(ownkind));
jjg@110 200 owntype = types.createErrorType(owntype);
duke@1 201 }
duke@1 202 }
duke@1 203 tree.type = owntype;
duke@1 204 return owntype;
duke@1 205 }
duke@1 206
duke@1 207 /** Is given blank final variable assignable, i.e. in a scope where it
duke@1 208 * may be assigned to even though it is final?
duke@1 209 * @param v The blank final variable.
duke@1 210 * @param env The current environment.
duke@1 211 */
duke@1 212 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
duke@1 213 Symbol owner = env.info.scope.owner;
duke@1 214 // owner refers to the innermost variable, method or
duke@1 215 // initializer block declaration at this point.
duke@1 216 return
duke@1 217 v.owner == owner
duke@1 218 ||
duke@1 219 ((owner.name == names.init || // i.e. we are in a constructor
duke@1 220 owner.kind == VAR || // i.e. we are in a variable initializer
duke@1 221 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block
duke@1 222 &&
duke@1 223 v.owner == owner.owner
duke@1 224 &&
duke@1 225 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
duke@1 226 }
duke@1 227
duke@1 228 /** Check that variable can be assigned to.
duke@1 229 * @param pos The current source code position.
duke@1 230 * @param v The assigned varaible
duke@1 231 * @param base If the variable is referred to in a Select, the part
duke@1 232 * to the left of the `.', null otherwise.
duke@1 233 * @param env The current environment.
duke@1 234 */
duke@1 235 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
duke@1 236 if ((v.flags() & FINAL) != 0 &&
duke@1 237 ((v.flags() & HASINIT) != 0
duke@1 238 ||
duke@1 239 !((base == null ||
duke@1 240 (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
duke@1 241 isAssignableAsBlankFinal(v, env)))) {
darcy@609 242 if (v.isResourceVariable()) { //TWR resource
darcy@609 243 log.error(pos, "twr.resource.may.not.be.assigned", v);
darcy@609 244 } else {
darcy@609 245 log.error(pos, "cant.assign.val.to.final.var", v);
darcy@609 246 }
duke@1 247 }
duke@1 248 }
duke@1 249
duke@1 250 /** Does tree represent a static reference to an identifier?
duke@1 251 * It is assumed that tree is either a SELECT or an IDENT.
duke@1 252 * We have to weed out selects from non-type names here.
duke@1 253 * @param tree The candidate tree.
duke@1 254 */
duke@1 255 boolean isStaticReference(JCTree tree) {
duke@1 256 if (tree.getTag() == JCTree.SELECT) {
duke@1 257 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
duke@1 258 if (lsym == null || lsym.kind != TYP) {
duke@1 259 return false;
duke@1 260 }
duke@1 261 }
duke@1 262 return true;
duke@1 263 }
duke@1 264
duke@1 265 /** Is this symbol a type?
duke@1 266 */
duke@1 267 static boolean isType(Symbol sym) {
duke@1 268 return sym != null && sym.kind == TYP;
duke@1 269 }
duke@1 270
duke@1 271 /** The current `this' symbol.
duke@1 272 * @param env The current environment.
duke@1 273 */
duke@1 274 Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
duke@1 275 return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
duke@1 276 }
duke@1 277
duke@1 278 /** Attribute a parsed identifier.
duke@1 279 * @param tree Parsed identifier name
duke@1 280 * @param topLevel The toplevel to use
duke@1 281 */
duke@1 282 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
duke@1 283 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
duke@1 284 localEnv.enclClass = make.ClassDef(make.Modifiers(0),
duke@1 285 syms.errSymbol.name,
duke@1 286 null, null, null, null);
duke@1 287 localEnv.enclClass.sym = syms.errSymbol;
duke@1 288 return tree.accept(identAttributer, localEnv);
duke@1 289 }
duke@1 290 // where
duke@1 291 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
duke@1 292 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
duke@1 293 @Override
duke@1 294 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
duke@1 295 Symbol site = visit(node.getExpression(), env);
duke@1 296 if (site.kind == ERR)
duke@1 297 return site;
duke@1 298 Name name = (Name)node.getIdentifier();
duke@1 299 if (site.kind == PCK) {
duke@1 300 env.toplevel.packge = (PackageSymbol)site;
duke@1 301 return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
duke@1 302 } else {
duke@1 303 env.enclClass.sym = (ClassSymbol)site;
duke@1 304 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
duke@1 305 }
duke@1 306 }
duke@1 307
duke@1 308 @Override
duke@1 309 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
duke@1 310 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
duke@1 311 }
duke@1 312 }
duke@1 313
duke@1 314 public Type coerce(Type etype, Type ttype) {
duke@1 315 return cfolder.coerce(etype, ttype);
duke@1 316 }
duke@1 317
duke@1 318 public Type attribType(JCTree node, TypeSymbol sym) {
duke@1 319 Env<AttrContext> env = enter.typeEnvs.get(sym);
duke@1 320 Env<AttrContext> localEnv = env.dup(node, env.info.dup());
duke@1 321 return attribTree(node, localEnv, Kinds.TYP, Type.noType);
duke@1 322 }
duke@1 323
duke@1 324 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
duke@1 325 breakTree = tree;
mcimadamore@303 326 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 327 try {
duke@1 328 attribExpr(expr, env);
duke@1 329 } catch (BreakAttr b) {
duke@1 330 return b.env;
duke@1 331 } finally {
duke@1 332 breakTree = null;
duke@1 333 log.useSource(prev);
duke@1 334 }
duke@1 335 return env;
duke@1 336 }
duke@1 337
duke@1 338 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
duke@1 339 breakTree = tree;
mcimadamore@303 340 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 341 try {
duke@1 342 attribStat(stmt, env);
duke@1 343 } catch (BreakAttr b) {
duke@1 344 return b.env;
duke@1 345 } finally {
duke@1 346 breakTree = null;
duke@1 347 log.useSource(prev);
duke@1 348 }
duke@1 349 return env;
duke@1 350 }
duke@1 351
duke@1 352 private JCTree breakTree = null;
duke@1 353
duke@1 354 private static class BreakAttr extends RuntimeException {
duke@1 355 static final long serialVersionUID = -6924771130405446405L;
duke@1 356 private Env<AttrContext> env;
duke@1 357 private BreakAttr(Env<AttrContext> env) {
duke@1 358 this.env = env;
duke@1 359 }
duke@1 360 }
duke@1 361
duke@1 362
duke@1 363 /* ************************************************************************
duke@1 364 * Visitor methods
duke@1 365 *************************************************************************/
duke@1 366
duke@1 367 /** Visitor argument: the current environment.
duke@1 368 */
duke@1 369 Env<AttrContext> env;
duke@1 370
duke@1 371 /** Visitor argument: the currently expected proto-kind.
duke@1 372 */
duke@1 373 int pkind;
duke@1 374
duke@1 375 /** Visitor argument: the currently expected proto-type.
duke@1 376 */
duke@1 377 Type pt;
duke@1 378
darcy@609 379 /** Visitor argument: the error key to be generated when a type error occurs
darcy@609 380 */
darcy@609 381 String errKey;
darcy@609 382
duke@1 383 /** Visitor result: the computed type.
duke@1 384 */
duke@1 385 Type result;
duke@1 386
duke@1 387 /** Visitor method: attribute a tree, catching any completion failure
duke@1 388 * exceptions. Return the tree's type.
duke@1 389 *
duke@1 390 * @param tree The tree to be visited.
duke@1 391 * @param env The environment visitor argument.
duke@1 392 * @param pkind The protokind visitor argument.
duke@1 393 * @param pt The prototype visitor argument.
duke@1 394 */
duke@1 395 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
darcy@609 396 return attribTree(tree, env, pkind, pt, "incompatible.types");
darcy@609 397 }
darcy@609 398
darcy@609 399 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt, String errKey) {
duke@1 400 Env<AttrContext> prevEnv = this.env;
duke@1 401 int prevPkind = this.pkind;
duke@1 402 Type prevPt = this.pt;
darcy@609 403 String prevErrKey = this.errKey;
duke@1 404 try {
duke@1 405 this.env = env;
duke@1 406 this.pkind = pkind;
duke@1 407 this.pt = pt;
darcy@609 408 this.errKey = errKey;
duke@1 409 tree.accept(this);
duke@1 410 if (tree == breakTree)
duke@1 411 throw new BreakAttr(env);
duke@1 412 return result;
duke@1 413 } catch (CompletionFailure ex) {
duke@1 414 tree.type = syms.errType;
duke@1 415 return chk.completionError(tree.pos(), ex);
duke@1 416 } finally {
duke@1 417 this.env = prevEnv;
duke@1 418 this.pkind = prevPkind;
duke@1 419 this.pt = prevPt;
darcy@609 420 this.errKey = prevErrKey;
duke@1 421 }
duke@1 422 }
duke@1 423
duke@1 424 /** Derived visitor method: attribute an expression tree.
duke@1 425 */
duke@1 426 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
duke@1 427 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
duke@1 428 }
duke@1 429
darcy@609 430 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt, String key) {
darcy@609 431 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType, key);
darcy@609 432 }
darcy@609 433
duke@1 434 /** Derived visitor method: attribute an expression tree with
duke@1 435 * no constraints on the computed type.
duke@1 436 */
duke@1 437 Type attribExpr(JCTree tree, Env<AttrContext> env) {
duke@1 438 return attribTree(tree, env, VAL, Type.noType);
duke@1 439 }
duke@1 440
duke@1 441 /** Derived visitor method: attribute a type tree.
duke@1 442 */
duke@1 443 Type attribType(JCTree tree, Env<AttrContext> env) {
mcimadamore@537 444 Type result = attribType(tree, env, Type.noType);
mcimadamore@537 445 return result;
mcimadamore@537 446 }
mcimadamore@537 447
mcimadamore@537 448 /** Derived visitor method: attribute a type tree.
mcimadamore@537 449 */
mcimadamore@537 450 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
mcimadamore@537 451 Type result = attribTree(tree, env, TYP, pt);
duke@1 452 return result;
duke@1 453 }
duke@1 454
duke@1 455 /** Derived visitor method: attribute a statement or definition tree.
duke@1 456 */
duke@1 457 public Type attribStat(JCTree tree, Env<AttrContext> env) {
duke@1 458 return attribTree(tree, env, NIL, Type.noType);
duke@1 459 }
duke@1 460
duke@1 461 /** Attribute a list of expressions, returning a list of types.
duke@1 462 */
duke@1 463 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
duke@1 464 ListBuffer<Type> ts = new ListBuffer<Type>();
duke@1 465 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 466 ts.append(attribExpr(l.head, env, pt));
duke@1 467 return ts.toList();
duke@1 468 }
duke@1 469
duke@1 470 /** Attribute a list of statements, returning nothing.
duke@1 471 */
duke@1 472 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
duke@1 473 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 474 attribStat(l.head, env);
duke@1 475 }
duke@1 476
duke@1 477 /** Attribute the arguments in a method call, returning a list of types.
duke@1 478 */
duke@1 479 List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 480 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 481 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 482 argtypes.append(chk.checkNonVoid(
duke@1 483 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
duke@1 484 return argtypes.toList();
duke@1 485 }
duke@1 486
duke@1 487 /** Attribute a type argument list, returning a list of types.
jrose@267 488 * Caller is responsible for calling checkRefTypes.
duke@1 489 */
jrose@267 490 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 491 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 492 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
jrose@267 493 argtypes.append(attribType(l.head, env));
duke@1 494 return argtypes.toList();
duke@1 495 }
duke@1 496
jrose@267 497 /** Attribute a type argument list, returning a list of types.
jrose@267 498 * Check that all the types are references.
jrose@267 499 */
jrose@267 500 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
jrose@267 501 List<Type> types = attribAnyTypes(trees, env);
jrose@267 502 return chk.checkRefTypes(trees, types);
jrose@267 503 }
duke@1 504
duke@1 505 /**
duke@1 506 * Attribute type variables (of generic classes or methods).
duke@1 507 * Compound types are attributed later in attribBounds.
duke@1 508 * @param typarams the type variables to enter
duke@1 509 * @param env the current environment
duke@1 510 */
duke@1 511 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
duke@1 512 for (JCTypeParameter tvar : typarams) {
duke@1 513 TypeVar a = (TypeVar)tvar.type;
mcimadamore@42 514 a.tsym.flags_field |= UNATTRIBUTED;
mcimadamore@42 515 a.bound = Type.noType;
duke@1 516 if (!tvar.bounds.isEmpty()) {
duke@1 517 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
duke@1 518 for (JCExpression bound : tvar.bounds.tail)
duke@1 519 bounds = bounds.prepend(attribType(bound, env));
duke@1 520 types.setBounds(a, bounds.reverse());
duke@1 521 } else {
duke@1 522 // if no bounds are given, assume a single bound of
duke@1 523 // java.lang.Object.
duke@1 524 types.setBounds(a, List.of(syms.objectType));
duke@1 525 }
mcimadamore@42 526 a.tsym.flags_field &= ~UNATTRIBUTED;
duke@1 527 }
duke@1 528 for (JCTypeParameter tvar : typarams)
duke@1 529 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
duke@1 530 attribStats(typarams, env);
mcimadamore@42 531 }
mcimadamore@42 532
mcimadamore@42 533 void attribBounds(List<JCTypeParameter> typarams) {
duke@1 534 for (JCTypeParameter typaram : typarams) {
duke@1 535 Type bound = typaram.type.getUpperBound();
duke@1 536 if (bound != null && bound.tsym instanceof ClassSymbol) {
duke@1 537 ClassSymbol c = (ClassSymbol)bound.tsym;
duke@1 538 if ((c.flags_field & COMPOUND) != 0) {
duke@1 539 assert (c.flags_field & UNATTRIBUTED) != 0 : c;
duke@1 540 attribClass(typaram.pos(), c);
duke@1 541 }
duke@1 542 }
duke@1 543 }
duke@1 544 }
duke@1 545
duke@1 546 /**
duke@1 547 * Attribute the type references in a list of annotations.
duke@1 548 */
duke@1 549 void attribAnnotationTypes(List<JCAnnotation> annotations,
duke@1 550 Env<AttrContext> env) {
duke@1 551 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
duke@1 552 JCAnnotation a = al.head;
duke@1 553 attribType(a.annotationType, env);
duke@1 554 }
duke@1 555 }
duke@1 556
duke@1 557 /** Attribute type reference in an `extends' or `implements' clause.
mcimadamore@537 558 * Supertypes of anonymous inner classes are usually already attributed.
duke@1 559 *
duke@1 560 * @param tree The tree making up the type reference.
duke@1 561 * @param env The environment current at the reference.
duke@1 562 * @param classExpected true if only a class is expected here.
duke@1 563 * @param interfaceExpected true if only an interface is expected here.
duke@1 564 */
duke@1 565 Type attribBase(JCTree tree,
duke@1 566 Env<AttrContext> env,
duke@1 567 boolean classExpected,
duke@1 568 boolean interfaceExpected,
duke@1 569 boolean checkExtensible) {
mcimadamore@537 570 Type t = tree.type != null ?
mcimadamore@537 571 tree.type :
mcimadamore@537 572 attribType(tree, env);
duke@1 573 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
duke@1 574 }
duke@1 575 Type checkBase(Type t,
duke@1 576 JCTree tree,
duke@1 577 Env<AttrContext> env,
duke@1 578 boolean classExpected,
duke@1 579 boolean interfaceExpected,
duke@1 580 boolean checkExtensible) {
duke@1 581 if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
duke@1 582 // check that type variable is already visible
duke@1 583 if (t.getUpperBound() == null) {
duke@1 584 log.error(tree.pos(), "illegal.forward.ref");
jjg@110 585 return types.createErrorType(t);
duke@1 586 }
duke@1 587 } else {
duke@1 588 t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
duke@1 589 }
duke@1 590 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
duke@1 591 log.error(tree.pos(), "intf.expected.here");
duke@1 592 // return errType is necessary since otherwise there might
duke@1 593 // be undetected cycles which cause attribution to loop
jjg@110 594 return types.createErrorType(t);
duke@1 595 } else if (checkExtensible &&
duke@1 596 classExpected &&
duke@1 597 (t.tsym.flags() & INTERFACE) != 0) {
duke@1 598 log.error(tree.pos(), "no.intf.expected.here");
jjg@110 599 return types.createErrorType(t);
duke@1 600 }
duke@1 601 if (checkExtensible &&
duke@1 602 ((t.tsym.flags() & FINAL) != 0)) {
duke@1 603 log.error(tree.pos(),
duke@1 604 "cant.inherit.from.final", t.tsym);
duke@1 605 }
duke@1 606 chk.checkNonCyclic(tree.pos(), t);
duke@1 607 return t;
duke@1 608 }
duke@1 609
duke@1 610 public void visitClassDef(JCClassDecl tree) {
duke@1 611 // Local classes have not been entered yet, so we need to do it now:
duke@1 612 if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
duke@1 613 enter.classEnter(tree, env);
duke@1 614
duke@1 615 ClassSymbol c = tree.sym;
duke@1 616 if (c == null) {
duke@1 617 // exit in case something drastic went wrong during enter.
duke@1 618 result = null;
duke@1 619 } else {
duke@1 620 // make sure class has been completed:
duke@1 621 c.complete();
duke@1 622
duke@1 623 // If this class appears as an anonymous class
duke@1 624 // in a superclass constructor call where
duke@1 625 // no explicit outer instance is given,
duke@1 626 // disable implicit outer instance from being passed.
duke@1 627 // (This would be an illegal access to "this before super").
duke@1 628 if (env.info.isSelfCall &&
duke@1 629 env.tree.getTag() == JCTree.NEWCLASS &&
duke@1 630 ((JCNewClass) env.tree).encl == null)
duke@1 631 {
duke@1 632 c.flags_field |= NOOUTERTHIS;
duke@1 633 }
duke@1 634 attribClass(tree.pos(), c);
duke@1 635 result = tree.type = c.type;
duke@1 636 }
duke@1 637 }
duke@1 638
duke@1 639 public void visitMethodDef(JCMethodDecl tree) {
duke@1 640 MethodSymbol m = tree.sym;
duke@1 641
duke@1 642 Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
duke@1 643 Lint prevLint = chk.setLint(lint);
duke@1 644 try {
duke@1 645 chk.checkDeprecatedAnnotation(tree.pos(), m);
duke@1 646
mcimadamore@42 647 attribBounds(tree.typarams);
duke@1 648
duke@1 649 // If we override any other methods, check that we do so properly.
duke@1 650 // JLS ???
duke@1 651 chk.checkOverride(tree, m);
duke@1 652
duke@1 653 // Create a new environment with local scope
duke@1 654 // for attributing the method.
duke@1 655 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
duke@1 656
duke@1 657 localEnv.info.lint = lint;
duke@1 658
duke@1 659 // Enter all type parameters into the local method scope.
duke@1 660 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
duke@1 661 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
duke@1 662
duke@1 663 ClassSymbol owner = env.enclClass.sym;
duke@1 664 if ((owner.flags() & ANNOTATION) != 0 &&
duke@1 665 tree.params.nonEmpty())
duke@1 666 log.error(tree.params.head.pos(),
duke@1 667 "intf.annotation.members.cant.have.params");
duke@1 668
duke@1 669 // Attribute all value parameters.
duke@1 670 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 671 attribStat(l.head, localEnv);
duke@1 672 }
duke@1 673
mcimadamore@580 674 chk.checkVarargMethodDecl(tree);
mcimadamore@580 675
duke@1 676 // Check that type parameters are well-formed.
mcimadamore@122 677 chk.validate(tree.typarams, localEnv);
duke@1 678
duke@1 679 // Check that result type is well-formed.
mcimadamore@122 680 chk.validate(tree.restype, localEnv);
mcimadamore@629 681
mcimadamore@629 682 // annotation method checks
mcimadamore@629 683 if ((owner.flags() & ANNOTATION) != 0) {
mcimadamore@629 684 // annotation method cannot have throws clause
mcimadamore@629 685 if (tree.thrown.nonEmpty()) {
mcimadamore@629 686 log.error(tree.thrown.head.pos(),
mcimadamore@629 687 "throws.not.allowed.in.intf.annotation");
mcimadamore@629 688 }
mcimadamore@629 689 // annotation method cannot declare type-parameters
mcimadamore@629 690 if (tree.typarams.nonEmpty()) {
mcimadamore@629 691 log.error(tree.typarams.head.pos(),
mcimadamore@629 692 "intf.annotation.members.cant.have.type.params");
mcimadamore@629 693 }
mcimadamore@629 694 // validate annotation method's return type (could be an annotation type)
duke@1 695 chk.validateAnnotationType(tree.restype);
mcimadamore@629 696 // ensure that annotation method does not clash with members of Object/Annotation
duke@1 697 chk.validateAnnotationMethod(tree.pos(), m);
duke@1 698
mcimadamore@634 699 if (tree.defaultValue != null) {
mcimadamore@634 700 // if default value is an annotation, check it is a well-formed
mcimadamore@634 701 // annotation value (e.g. no duplicate values, no missing values, etc.)
mcimadamore@634 702 chk.validateAnnotationTree(tree.defaultValue);
mcimadamore@634 703 }
mcimadamore@629 704 }
mcimadamore@629 705
duke@1 706 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
duke@1 707 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
duke@1 708
duke@1 709 if (tree.body == null) {
duke@1 710 // Empty bodies are only allowed for
duke@1 711 // abstract, native, or interface methods, or for methods
duke@1 712 // in a retrofit signature class.
duke@1 713 if ((owner.flags() & INTERFACE) == 0 &&
duke@1 714 (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
duke@1 715 !relax)
duke@1 716 log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
duke@1 717 if (tree.defaultValue != null) {
duke@1 718 if ((owner.flags() & ANNOTATION) == 0)
duke@1 719 log.error(tree.pos(),
duke@1 720 "default.allowed.in.intf.annotation.member");
duke@1 721 }
duke@1 722 } else if ((owner.flags() & INTERFACE) != 0) {
duke@1 723 log.error(tree.body.pos(), "intf.meth.cant.have.body");
duke@1 724 } else if ((tree.mods.flags & ABSTRACT) != 0) {
duke@1 725 log.error(tree.pos(), "abstract.meth.cant.have.body");
duke@1 726 } else if ((tree.mods.flags & NATIVE) != 0) {
duke@1 727 log.error(tree.pos(), "native.meth.cant.have.body");
duke@1 728 } else {
duke@1 729 // Add an implicit super() call unless an explicit call to
duke@1 730 // super(...) or this(...) is given
duke@1 731 // or we are compiling class java.lang.Object.
duke@1 732 if (tree.name == names.init && owner.type != syms.objectType) {
duke@1 733 JCBlock body = tree.body;
duke@1 734 if (body.stats.isEmpty() ||
duke@1 735 !TreeInfo.isSelfCall(body.stats.head)) {
duke@1 736 body.stats = body.stats.
duke@1 737 prepend(memberEnter.SuperCall(make.at(body.pos),
duke@1 738 List.<Type>nil(),
duke@1 739 List.<JCVariableDecl>nil(),
duke@1 740 false));
duke@1 741 } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
duke@1 742 (tree.mods.flags & GENERATEDCONSTR) == 0 &&
duke@1 743 TreeInfo.isSuperCall(body.stats.head)) {
duke@1 744 // enum constructors are not allowed to call super
duke@1 745 // directly, so make sure there aren't any super calls
duke@1 746 // in enum constructors, except in the compiler
duke@1 747 // generated one.
duke@1 748 log.error(tree.body.stats.head.pos(),
duke@1 749 "call.to.super.not.allowed.in.enum.ctor",
duke@1 750 env.enclClass.sym);
duke@1 751 }
duke@1 752 }
duke@1 753
duke@1 754 // Attribute method body.
duke@1 755 attribStat(tree.body, localEnv);
duke@1 756 }
duke@1 757 localEnv.info.scope.leave();
duke@1 758 result = tree.type = m.type;
duke@1 759 chk.validateAnnotations(tree.mods.annotations, m);
duke@1 760 }
duke@1 761 finally {
duke@1 762 chk.setLint(prevLint);
duke@1 763 }
duke@1 764 }
duke@1 765
duke@1 766 public void visitVarDef(JCVariableDecl tree) {
duke@1 767 // Local variables have not been entered yet, so we need to do it now:
duke@1 768 if (env.info.scope.owner.kind == MTH) {
duke@1 769 if (tree.sym != null) {
duke@1 770 // parameters have already been entered
duke@1 771 env.info.scope.enter(tree.sym);
duke@1 772 } else {
duke@1 773 memberEnter.memberEnter(tree, env);
duke@1 774 annotate.flush();
duke@1 775 }
duke@1 776 }
duke@1 777
duke@1 778 VarSymbol v = tree.sym;
duke@1 779 Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
duke@1 780 Lint prevLint = chk.setLint(lint);
duke@1 781
mcimadamore@165 782 // Check that the variable's declared type is well-formed.
mcimadamore@165 783 chk.validate(tree.vartype, env);
mcimadamore@165 784
duke@1 785 try {
duke@1 786 chk.checkDeprecatedAnnotation(tree.pos(), v);
duke@1 787
duke@1 788 if (tree.init != null) {
duke@1 789 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
duke@1 790 // In this case, `v' is final. Ensure that it's initializer is
duke@1 791 // evaluated.
duke@1 792 v.getConstValue(); // ensure initializer is evaluated
duke@1 793 } else {
duke@1 794 // Attribute initializer in a new environment
duke@1 795 // with the declared variable as owner.
duke@1 796 // Check that initializer conforms to variable's declared type.
duke@1 797 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
duke@1 798 initEnv.info.lint = lint;
duke@1 799 // In order to catch self-references, we set the variable's
duke@1 800 // declaration position to maximal possible value, effectively
duke@1 801 // marking the variable as undefined.
mcimadamore@94 802 initEnv.info.enclVar = v;
duke@1 803 attribExpr(tree.init, initEnv, v.type);
duke@1 804 }
duke@1 805 }
duke@1 806 result = tree.type = v.type;
duke@1 807 chk.validateAnnotations(tree.mods.annotations, v);
duke@1 808 }
duke@1 809 finally {
duke@1 810 chk.setLint(prevLint);
duke@1 811 }
duke@1 812 }
duke@1 813
duke@1 814 public void visitSkip(JCSkip tree) {
duke@1 815 result = null;
duke@1 816 }
duke@1 817
duke@1 818 public void visitBlock(JCBlock tree) {
duke@1 819 if (env.info.scope.owner.kind == TYP) {
duke@1 820 // Block is a static or instance initializer;
duke@1 821 // let the owner of the environment be a freshly
duke@1 822 // created BLOCK-method.
duke@1 823 Env<AttrContext> localEnv =
duke@1 824 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
duke@1 825 localEnv.info.scope.owner =
duke@1 826 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
duke@1 827 env.info.scope.owner);
duke@1 828 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
duke@1 829 attribStats(tree.stats, localEnv);
duke@1 830 } else {
duke@1 831 // Create a new local environment with a local scope.
duke@1 832 Env<AttrContext> localEnv =
duke@1 833 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 834 attribStats(tree.stats, localEnv);
duke@1 835 localEnv.info.scope.leave();
duke@1 836 }
duke@1 837 result = null;
duke@1 838 }
duke@1 839
duke@1 840 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 841 attribStat(tree.body, env.dup(tree));
duke@1 842 attribExpr(tree.cond, env, syms.booleanType);
duke@1 843 result = null;
duke@1 844 }
duke@1 845
duke@1 846 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 847 attribExpr(tree.cond, env, syms.booleanType);
duke@1 848 attribStat(tree.body, env.dup(tree));
duke@1 849 result = null;
duke@1 850 }
duke@1 851
duke@1 852 public void visitForLoop(JCForLoop tree) {
duke@1 853 Env<AttrContext> loopEnv =
duke@1 854 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 855 attribStats(tree.init, loopEnv);
duke@1 856 if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
duke@1 857 loopEnv.tree = tree; // before, we were not in loop!
duke@1 858 attribStats(tree.step, loopEnv);
duke@1 859 attribStat(tree.body, loopEnv);
duke@1 860 loopEnv.info.scope.leave();
duke@1 861 result = null;
duke@1 862 }
duke@1 863
duke@1 864 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 865 Env<AttrContext> loopEnv =
duke@1 866 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 867 attribStat(tree.var, loopEnv);
duke@1 868 Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
duke@1 869 chk.checkNonVoid(tree.pos(), exprType);
duke@1 870 Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
duke@1 871 if (elemtype == null) {
duke@1 872 // or perhaps expr implements Iterable<T>?
duke@1 873 Type base = types.asSuper(exprType, syms.iterableType.tsym);
duke@1 874 if (base == null) {
duke@1 875 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
jjg@110 876 elemtype = types.createErrorType(exprType);
duke@1 877 } else {
duke@1 878 List<Type> iterableParams = base.allparams();
duke@1 879 elemtype = iterableParams.isEmpty()
duke@1 880 ? syms.objectType
duke@1 881 : types.upperBound(iterableParams.head);
duke@1 882 }
duke@1 883 }
duke@1 884 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
duke@1 885 loopEnv.tree = tree; // before, we were not in loop!
duke@1 886 attribStat(tree.body, loopEnv);
duke@1 887 loopEnv.info.scope.leave();
duke@1 888 result = null;
duke@1 889 }
duke@1 890
duke@1 891 public void visitLabelled(JCLabeledStatement tree) {
duke@1 892 // Check that label is not used in an enclosing statement
duke@1 893 Env<AttrContext> env1 = env;
duke@1 894 while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
duke@1 895 if (env1.tree.getTag() == JCTree.LABELLED &&
duke@1 896 ((JCLabeledStatement) env1.tree).label == tree.label) {
duke@1 897 log.error(tree.pos(), "label.already.in.use",
duke@1 898 tree.label);
duke@1 899 break;
duke@1 900 }
duke@1 901 env1 = env1.next;
duke@1 902 }
duke@1 903
duke@1 904 attribStat(tree.body, env.dup(tree));
duke@1 905 result = null;
duke@1 906 }
duke@1 907
duke@1 908 public void visitSwitch(JCSwitch tree) {
duke@1 909 Type seltype = attribExpr(tree.selector, env);
duke@1 910
duke@1 911 Env<AttrContext> switchEnv =
duke@1 912 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 913
duke@1 914 boolean enumSwitch =
duke@1 915 allowEnums &&
duke@1 916 (seltype.tsym.flags() & Flags.ENUM) != 0;
darcy@430 917 boolean stringSwitch = false;
darcy@430 918 if (types.isSameType(seltype, syms.stringType)) {
darcy@430 919 if (allowStringsInSwitch) {
darcy@430 920 stringSwitch = true;
darcy@430 921 } else {
darcy@430 922 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
darcy@430 923 }
darcy@430 924 }
darcy@430 925 if (!enumSwitch && !stringSwitch)
duke@1 926 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
duke@1 927
duke@1 928 // Attribute all cases and
duke@1 929 // check that there are no duplicate case labels or default clauses.
duke@1 930 Set<Object> labels = new HashSet<Object>(); // The set of case labels.
duke@1 931 boolean hasDefault = false; // Is there a default label?
duke@1 932 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 933 JCCase c = l.head;
duke@1 934 Env<AttrContext> caseEnv =
duke@1 935 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
duke@1 936 if (c.pat != null) {
duke@1 937 if (enumSwitch) {
duke@1 938 Symbol sym = enumConstant(c.pat, seltype);
duke@1 939 if (sym == null) {
duke@1 940 log.error(c.pat.pos(), "enum.const.req");
duke@1 941 } else if (!labels.add(sym)) {
duke@1 942 log.error(c.pos(), "duplicate.case.label");
duke@1 943 }
duke@1 944 } else {
duke@1 945 Type pattype = attribExpr(c.pat, switchEnv, seltype);
duke@1 946 if (pattype.tag != ERROR) {
duke@1 947 if (pattype.constValue() == null) {
darcy@430 948 log.error(c.pat.pos(),
darcy@430 949 (stringSwitch ? "string.const.req" : "const.expr.req"));
duke@1 950 } else if (labels.contains(pattype.constValue())) {
duke@1 951 log.error(c.pos(), "duplicate.case.label");
duke@1 952 } else {
duke@1 953 labels.add(pattype.constValue());
duke@1 954 }
duke@1 955 }
duke@1 956 }
duke@1 957 } else if (hasDefault) {
duke@1 958 log.error(c.pos(), "duplicate.default.label");
duke@1 959 } else {
duke@1 960 hasDefault = true;
duke@1 961 }
duke@1 962 attribStats(c.stats, caseEnv);
duke@1 963 caseEnv.info.scope.leave();
duke@1 964 addVars(c.stats, switchEnv.info.scope);
duke@1 965 }
duke@1 966
duke@1 967 switchEnv.info.scope.leave();
duke@1 968 result = null;
duke@1 969 }
duke@1 970 // where
duke@1 971 /** Add any variables defined in stats to the switch scope. */
duke@1 972 private static void addVars(List<JCStatement> stats, Scope switchScope) {
duke@1 973 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 974 JCTree stat = stats.head;
duke@1 975 if (stat.getTag() == JCTree.VARDEF)
duke@1 976 switchScope.enter(((JCVariableDecl) stat).sym);
duke@1 977 }
duke@1 978 }
duke@1 979 // where
duke@1 980 /** Return the selected enumeration constant symbol, or null. */
duke@1 981 private Symbol enumConstant(JCTree tree, Type enumType) {
duke@1 982 if (tree.getTag() != JCTree.IDENT) {
duke@1 983 log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
duke@1 984 return syms.errSymbol;
duke@1 985 }
duke@1 986 JCIdent ident = (JCIdent)tree;
duke@1 987 Name name = ident.name;
duke@1 988 for (Scope.Entry e = enumType.tsym.members().lookup(name);
duke@1 989 e.scope != null; e = e.next()) {
duke@1 990 if (e.sym.kind == VAR) {
duke@1 991 Symbol s = ident.sym = e.sym;
duke@1 992 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
duke@1 993 ident.type = s.type;
duke@1 994 return ((s.flags_field & Flags.ENUM) == 0)
duke@1 995 ? null : s;
duke@1 996 }
duke@1 997 }
duke@1 998 return null;
duke@1 999 }
duke@1 1000
duke@1 1001 public void visitSynchronized(JCSynchronized tree) {
duke@1 1002 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
duke@1 1003 attribStat(tree.body, env);
duke@1 1004 result = null;
duke@1 1005 }
duke@1 1006
duke@1 1007 public void visitTry(JCTry tree) {
darcy@609 1008 // Create a new local environment with a local
darcy@609 1009 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
darcy@609 1010 boolean isTryWithResource = tree.resources.nonEmpty();
darcy@609 1011 // Create a nested environment for attributing the try block if needed
darcy@609 1012 Env<AttrContext> tryEnv = isTryWithResource ?
darcy@609 1013 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
darcy@609 1014 localEnv;
darcy@609 1015 // Attribute resource declarations
darcy@609 1016 for (JCTree resource : tree.resources) {
darcy@609 1017 if (resource.getTag() == JCTree.VARDEF) {
darcy@609 1018 attribStat(resource, tryEnv);
darcy@609 1019 chk.checkType(resource, resource.type, syms.autoCloseableType, "twr.not.applicable.to.type");
darcy@609 1020 VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
darcy@609 1021 var.setData(ElementKind.RESOURCE_VARIABLE);
darcy@609 1022 } else {
darcy@609 1023 attribExpr(resource, tryEnv, syms.autoCloseableType, "twr.not.applicable.to.type");
darcy@609 1024 }
darcy@609 1025 }
duke@1 1026 // Attribute body
darcy@609 1027 attribStat(tree.body, tryEnv);
darcy@609 1028 if (isTryWithResource)
darcy@609 1029 tryEnv.info.scope.leave();
duke@1 1030
duke@1 1031 // Attribute catch clauses
duke@1 1032 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 1033 JCCatch c = l.head;
duke@1 1034 Env<AttrContext> catchEnv =
darcy@609 1035 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
duke@1 1036 Type ctype = attribStat(c.param, catchEnv);
mcimadamore@550 1037 if (TreeInfo.isMultiCatch(c)) {
mcimadamore@550 1038 //check that multi-catch parameter is marked as final
mcimadamore@550 1039 if ((c.param.sym.flags() & FINAL) == 0) {
mcimadamore@550 1040 log.error(c.param.pos(), "multicatch.param.must.be.final", c.param.sym);
mcimadamore@550 1041 }
mcimadamore@550 1042 c.param.sym.flags_field = c.param.sym.flags() | DISJOINT;
mcimadamore@550 1043 }
duke@1 1044 if (c.param.type.tsym.kind == Kinds.VAR) {
duke@1 1045 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
duke@1 1046 }
duke@1 1047 chk.checkType(c.param.vartype.pos(),
duke@1 1048 chk.checkClassType(c.param.vartype.pos(), ctype),
duke@1 1049 syms.throwableType);
duke@1 1050 attribStat(c.body, catchEnv);
duke@1 1051 catchEnv.info.scope.leave();
duke@1 1052 }
duke@1 1053
duke@1 1054 // Attribute finalizer
darcy@609 1055 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
darcy@609 1056
darcy@609 1057 localEnv.info.scope.leave();
duke@1 1058 result = null;
duke@1 1059 }
duke@1 1060
duke@1 1061 public void visitConditional(JCConditional tree) {
duke@1 1062 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1063 attribExpr(tree.truepart, env);
duke@1 1064 attribExpr(tree.falsepart, env);
duke@1 1065 result = check(tree,
duke@1 1066 capture(condType(tree.pos(), tree.cond.type,
duke@1 1067 tree.truepart.type, tree.falsepart.type)),
duke@1 1068 VAL, pkind, pt);
duke@1 1069 }
duke@1 1070 //where
duke@1 1071 /** Compute the type of a conditional expression, after
duke@1 1072 * checking that it exists. See Spec 15.25.
duke@1 1073 *
duke@1 1074 * @param pos The source position to be used for
duke@1 1075 * error diagnostics.
duke@1 1076 * @param condtype The type of the expression's condition.
duke@1 1077 * @param thentype The type of the expression's then-part.
duke@1 1078 * @param elsetype The type of the expression's else-part.
duke@1 1079 */
duke@1 1080 private Type condType(DiagnosticPosition pos,
duke@1 1081 Type condtype,
duke@1 1082 Type thentype,
duke@1 1083 Type elsetype) {
duke@1 1084 Type ctype = condType1(pos, condtype, thentype, elsetype);
duke@1 1085
duke@1 1086 // If condition and both arms are numeric constants,
duke@1 1087 // evaluate at compile-time.
duke@1 1088 return ((condtype.constValue() != null) &&
duke@1 1089 (thentype.constValue() != null) &&
duke@1 1090 (elsetype.constValue() != null))
duke@1 1091 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
duke@1 1092 : ctype;
duke@1 1093 }
duke@1 1094 /** Compute the type of a conditional expression, after
duke@1 1095 * checking that it exists. Does not take into
duke@1 1096 * account the special case where condition and both arms
duke@1 1097 * are constants.
duke@1 1098 *
duke@1 1099 * @param pos The source position to be used for error
duke@1 1100 * diagnostics.
duke@1 1101 * @param condtype The type of the expression's condition.
duke@1 1102 * @param thentype The type of the expression's then-part.
duke@1 1103 * @param elsetype The type of the expression's else-part.
duke@1 1104 */
duke@1 1105 private Type condType1(DiagnosticPosition pos, Type condtype,
duke@1 1106 Type thentype, Type elsetype) {
duke@1 1107 // If same type, that is the result
duke@1 1108 if (types.isSameType(thentype, elsetype))
duke@1 1109 return thentype.baseType();
duke@1 1110
duke@1 1111 Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
duke@1 1112 ? thentype : types.unboxedType(thentype);
duke@1 1113 Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
duke@1 1114 ? elsetype : types.unboxedType(elsetype);
duke@1 1115
duke@1 1116 // Otherwise, if both arms can be converted to a numeric
duke@1 1117 // type, return the least numeric type that fits both arms
duke@1 1118 // (i.e. return larger of the two, or return int if one
duke@1 1119 // arm is short, the other is char).
duke@1 1120 if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
duke@1 1121 // If one arm has an integer subrange type (i.e., byte,
duke@1 1122 // short, or char), and the other is an integer constant
duke@1 1123 // that fits into the subrange, return the subrange type.
duke@1 1124 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
duke@1 1125 types.isAssignable(elseUnboxed, thenUnboxed))
duke@1 1126 return thenUnboxed.baseType();
duke@1 1127 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
duke@1 1128 types.isAssignable(thenUnboxed, elseUnboxed))
duke@1 1129 return elseUnboxed.baseType();
duke@1 1130
duke@1 1131 for (int i = BYTE; i < VOID; i++) {
duke@1 1132 Type candidate = syms.typeOfTag[i];
duke@1 1133 if (types.isSubtype(thenUnboxed, candidate) &&
duke@1 1134 types.isSubtype(elseUnboxed, candidate))
duke@1 1135 return candidate;
duke@1 1136 }
duke@1 1137 }
duke@1 1138
duke@1 1139 // Those were all the cases that could result in a primitive
duke@1 1140 if (allowBoxing) {
duke@1 1141 if (thentype.isPrimitive())
duke@1 1142 thentype = types.boxedClass(thentype).type;
duke@1 1143 if (elsetype.isPrimitive())
duke@1 1144 elsetype = types.boxedClass(elsetype).type;
duke@1 1145 }
duke@1 1146
duke@1 1147 if (types.isSubtype(thentype, elsetype))
duke@1 1148 return elsetype.baseType();
duke@1 1149 if (types.isSubtype(elsetype, thentype))
duke@1 1150 return thentype.baseType();
duke@1 1151
duke@1 1152 if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
duke@1 1153 log.error(pos, "neither.conditional.subtype",
duke@1 1154 thentype, elsetype);
duke@1 1155 return thentype.baseType();
duke@1 1156 }
duke@1 1157
duke@1 1158 // both are known to be reference types. The result is
duke@1 1159 // lub(thentype,elsetype). This cannot fail, as it will
duke@1 1160 // always be possible to infer "Object" if nothing better.
duke@1 1161 return types.lub(thentype.baseType(), elsetype.baseType());
duke@1 1162 }
duke@1 1163
duke@1 1164 public void visitIf(JCIf tree) {
duke@1 1165 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1166 attribStat(tree.thenpart, env);
duke@1 1167 if (tree.elsepart != null)
duke@1 1168 attribStat(tree.elsepart, env);
duke@1 1169 chk.checkEmptyIf(tree);
duke@1 1170 result = null;
duke@1 1171 }
duke@1 1172
duke@1 1173 public void visitExec(JCExpressionStatement tree) {
duke@1 1174 attribExpr(tree.expr, env);
duke@1 1175 result = null;
duke@1 1176 }
duke@1 1177
duke@1 1178 public void visitBreak(JCBreak tree) {
duke@1 1179 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1180 result = null;
duke@1 1181 }
duke@1 1182
duke@1 1183 public void visitContinue(JCContinue tree) {
duke@1 1184 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1185 result = null;
duke@1 1186 }
duke@1 1187 //where
duke@1 1188 /** Return the target of a break or continue statement, if it exists,
duke@1 1189 * report an error if not.
duke@1 1190 * Note: The target of a labelled break or continue is the
duke@1 1191 * (non-labelled) statement tree referred to by the label,
duke@1 1192 * not the tree representing the labelled statement itself.
duke@1 1193 *
duke@1 1194 * @param pos The position to be used for error diagnostics
duke@1 1195 * @param tag The tag of the jump statement. This is either
duke@1 1196 * Tree.BREAK or Tree.CONTINUE.
duke@1 1197 * @param label The label of the jump statement, or null if no
duke@1 1198 * label is given.
duke@1 1199 * @param env The environment current at the jump statement.
duke@1 1200 */
duke@1 1201 private JCTree findJumpTarget(DiagnosticPosition pos,
duke@1 1202 int tag,
duke@1 1203 Name label,
duke@1 1204 Env<AttrContext> env) {
duke@1 1205 // Search environments outwards from the point of jump.
duke@1 1206 Env<AttrContext> env1 = env;
duke@1 1207 LOOP:
duke@1 1208 while (env1 != null) {
duke@1 1209 switch (env1.tree.getTag()) {
duke@1 1210 case JCTree.LABELLED:
duke@1 1211 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
duke@1 1212 if (label == labelled.label) {
duke@1 1213 // If jump is a continue, check that target is a loop.
duke@1 1214 if (tag == JCTree.CONTINUE) {
duke@1 1215 if (labelled.body.getTag() != JCTree.DOLOOP &&
duke@1 1216 labelled.body.getTag() != JCTree.WHILELOOP &&
duke@1 1217 labelled.body.getTag() != JCTree.FORLOOP &&
duke@1 1218 labelled.body.getTag() != JCTree.FOREACHLOOP)
duke@1 1219 log.error(pos, "not.loop.label", label);
duke@1 1220 // Found labelled statement target, now go inwards
duke@1 1221 // to next non-labelled tree.
duke@1 1222 return TreeInfo.referencedStatement(labelled);
duke@1 1223 } else {
duke@1 1224 return labelled;
duke@1 1225 }
duke@1 1226 }
duke@1 1227 break;
duke@1 1228 case JCTree.DOLOOP:
duke@1 1229 case JCTree.WHILELOOP:
duke@1 1230 case JCTree.FORLOOP:
duke@1 1231 case JCTree.FOREACHLOOP:
duke@1 1232 if (label == null) return env1.tree;
duke@1 1233 break;
duke@1 1234 case JCTree.SWITCH:
duke@1 1235 if (label == null && tag == JCTree.BREAK) return env1.tree;
duke@1 1236 break;
duke@1 1237 case JCTree.METHODDEF:
duke@1 1238 case JCTree.CLASSDEF:
duke@1 1239 break LOOP;
duke@1 1240 default:
duke@1 1241 }
duke@1 1242 env1 = env1.next;
duke@1 1243 }
duke@1 1244 if (label != null)
duke@1 1245 log.error(pos, "undef.label", label);
duke@1 1246 else if (tag == JCTree.CONTINUE)
duke@1 1247 log.error(pos, "cont.outside.loop");
duke@1 1248 else
duke@1 1249 log.error(pos, "break.outside.switch.loop");
duke@1 1250 return null;
duke@1 1251 }
duke@1 1252
duke@1 1253 public void visitReturn(JCReturn tree) {
duke@1 1254 // Check that there is an enclosing method which is
duke@1 1255 // nested within than the enclosing class.
duke@1 1256 if (env.enclMethod == null ||
duke@1 1257 env.enclMethod.sym.owner != env.enclClass.sym) {
duke@1 1258 log.error(tree.pos(), "ret.outside.meth");
duke@1 1259
duke@1 1260 } else {
duke@1 1261 // Attribute return expression, if it exists, and check that
duke@1 1262 // it conforms to result type of enclosing method.
duke@1 1263 Symbol m = env.enclMethod.sym;
duke@1 1264 if (m.type.getReturnType().tag == VOID) {
duke@1 1265 if (tree.expr != null)
duke@1 1266 log.error(tree.expr.pos(),
duke@1 1267 "cant.ret.val.from.meth.decl.void");
duke@1 1268 } else if (tree.expr == null) {
duke@1 1269 log.error(tree.pos(), "missing.ret.val");
duke@1 1270 } else {
duke@1 1271 attribExpr(tree.expr, env, m.type.getReturnType());
duke@1 1272 }
duke@1 1273 }
duke@1 1274 result = null;
duke@1 1275 }
duke@1 1276
duke@1 1277 public void visitThrow(JCThrow tree) {
duke@1 1278 attribExpr(tree.expr, env, syms.throwableType);
duke@1 1279 result = null;
duke@1 1280 }
duke@1 1281
duke@1 1282 public void visitAssert(JCAssert tree) {
duke@1 1283 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1284 if (tree.detail != null) {
duke@1 1285 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
duke@1 1286 }
duke@1 1287 result = null;
duke@1 1288 }
duke@1 1289
duke@1 1290 /** Visitor method for method invocations.
duke@1 1291 * NOTE: The method part of an application will have in its type field
duke@1 1292 * the return type of the method, not the method's type itself!
duke@1 1293 */
duke@1 1294 public void visitApply(JCMethodInvocation tree) {
duke@1 1295 // The local environment of a method application is
duke@1 1296 // a new environment nested in the current one.
duke@1 1297 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1298
duke@1 1299 // The types of the actual method arguments.
duke@1 1300 List<Type> argtypes;
duke@1 1301
duke@1 1302 // The types of the actual method type arguments.
duke@1 1303 List<Type> typeargtypes = null;
jrose@267 1304 boolean typeargtypesNonRefOK = false;
duke@1 1305
duke@1 1306 Name methName = TreeInfo.name(tree.meth);
duke@1 1307
duke@1 1308 boolean isConstructorCall =
duke@1 1309 methName == names._this || methName == names._super;
duke@1 1310
duke@1 1311 if (isConstructorCall) {
duke@1 1312 // We are seeing a ...this(...) or ...super(...) call.
duke@1 1313 // Check that this is the first statement in a constructor.
duke@1 1314 if (checkFirstConstructorStat(tree, env)) {
duke@1 1315
duke@1 1316 // Record the fact
duke@1 1317 // that this is a constructor call (using isSelfCall).
duke@1 1318 localEnv.info.isSelfCall = true;
duke@1 1319
duke@1 1320 // Attribute arguments, yielding list of argument types.
duke@1 1321 argtypes = attribArgs(tree.args, localEnv);
duke@1 1322 typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1323
duke@1 1324 // Variable `site' points to the class in which the called
duke@1 1325 // constructor is defined.
duke@1 1326 Type site = env.enclClass.sym.type;
duke@1 1327 if (methName == names._super) {
duke@1 1328 if (site == syms.objectType) {
duke@1 1329 log.error(tree.meth.pos(), "no.superclass", site);
jjg@110 1330 site = types.createErrorType(syms.objectType);
duke@1 1331 } else {
duke@1 1332 site = types.supertype(site);
duke@1 1333 }
duke@1 1334 }
duke@1 1335
duke@1 1336 if (site.tag == CLASS) {
mcimadamore@361 1337 Type encl = site.getEnclosingType();
mcimadamore@361 1338 while (encl != null && encl.tag == TYPEVAR)
mcimadamore@361 1339 encl = encl.getUpperBound();
mcimadamore@361 1340 if (encl.tag == CLASS) {
duke@1 1341 // we are calling a nested class
duke@1 1342
duke@1 1343 if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1344 JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
duke@1 1345
duke@1 1346 // We are seeing a prefixed call, of the form
duke@1 1347 // <expr>.super(...).
duke@1 1348 // Check that the prefix expression conforms
duke@1 1349 // to the outer instance type of the class.
duke@1 1350 chk.checkRefType(qualifier.pos(),
duke@1 1351 attribExpr(qualifier, localEnv,
mcimadamore@361 1352 encl));
duke@1 1353 } else if (methName == names._super) {
duke@1 1354 // qualifier omitted; check for existence
duke@1 1355 // of an appropriate implicit qualifier.
duke@1 1356 rs.resolveImplicitThis(tree.meth.pos(),
duke@1 1357 localEnv, site);
duke@1 1358 }
duke@1 1359 } else if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1360 log.error(tree.meth.pos(), "illegal.qual.not.icls",
duke@1 1361 site.tsym);
duke@1 1362 }
duke@1 1363
duke@1 1364 // if we're calling a java.lang.Enum constructor,
duke@1 1365 // prefix the implicit String and int parameters
duke@1 1366 if (site.tsym == syms.enumSym && allowEnums)
duke@1 1367 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 1368
duke@1 1369 // Resolve the called constructor under the assumption
duke@1 1370 // that we are referring to a superclass instance of the
duke@1 1371 // current instance (JLS ???).
duke@1 1372 boolean selectSuperPrev = localEnv.info.selectSuper;
duke@1 1373 localEnv.info.selectSuper = true;
duke@1 1374 localEnv.info.varArgs = false;
duke@1 1375 Symbol sym = rs.resolveConstructor(
duke@1 1376 tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
duke@1 1377 localEnv.info.selectSuper = selectSuperPrev;
duke@1 1378
duke@1 1379 // Set method symbol to resolved constructor...
duke@1 1380 TreeInfo.setSymbol(tree.meth, sym);
duke@1 1381
duke@1 1382 // ...and check that it is legal in the current context.
duke@1 1383 // (this will also set the tree's type)
duke@1 1384 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1385 checkId(tree.meth, site, sym, localEnv, MTH,
duke@1 1386 mpt, tree.varargsElement != null);
duke@1 1387 }
duke@1 1388 // Otherwise, `site' is an error type and we do nothing
duke@1 1389 }
duke@1 1390 result = tree.type = syms.voidType;
duke@1 1391 } else {
duke@1 1392 // Otherwise, we are seeing a regular method call.
duke@1 1393 // Attribute the arguments, yielding list of argument types, ...
duke@1 1394 argtypes = attribArgs(tree.args, localEnv);
jrose@267 1395 typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
duke@1 1396
duke@1 1397 // ... and attribute the method using as a prototype a methodtype
duke@1 1398 // whose formal argument types is exactly the list of actual
duke@1 1399 // arguments (this will also set the method symbol).
duke@1 1400 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1401 localEnv.info.varArgs = false;
duke@1 1402 Type mtype = attribExpr(tree.meth, localEnv, mpt);
duke@1 1403 if (localEnv.info.varArgs)
duke@1 1404 assert mtype.isErroneous() || tree.varargsElement != null;
duke@1 1405
duke@1 1406 // Compute the result type.
duke@1 1407 Type restype = mtype.getReturnType();
duke@1 1408 assert restype.tag != WILDCARD : mtype;
duke@1 1409
duke@1 1410 // as a special case, array.clone() has a result that is
duke@1 1411 // the same as static type of the array being cloned
duke@1 1412 if (tree.meth.getTag() == JCTree.SELECT &&
duke@1 1413 allowCovariantReturns &&
duke@1 1414 methName == names.clone &&
duke@1 1415 types.isArray(((JCFieldAccess) tree.meth).selected.type))
duke@1 1416 restype = ((JCFieldAccess) tree.meth).selected.type;
duke@1 1417
duke@1 1418 // as a special case, x.getClass() has type Class<? extends |X|>
duke@1 1419 if (allowGenerics &&
duke@1 1420 methName == names.getClass && tree.args.isEmpty()) {
duke@1 1421 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
duke@1 1422 ? ((JCFieldAccess) tree.meth).selected.type
duke@1 1423 : env.enclClass.sym.type;
duke@1 1424 restype = new
duke@1 1425 ClassType(restype.getEnclosingType(),
duke@1 1426 List.<Type>of(new WildcardType(types.erasure(qualifier),
duke@1 1427 BoundKind.EXTENDS,
duke@1 1428 syms.boundClass)),
duke@1 1429 restype.tsym);
duke@1 1430 }
duke@1 1431
jrose@267 1432 // as a special case, MethodHandle.<T>invoke(abc) and InvokeDynamic.<T>foo(abc)
jrose@267 1433 // has type <T>, and T can be a primitive type.
jrose@267 1434 if (tree.meth.getTag() == JCTree.SELECT && !typeargtypes.isEmpty()) {
jrose@571 1435 JCFieldAccess mfield = (JCFieldAccess) tree.meth;
jrose@571 1436 if ((mfield.selected.type.tsym != null &&
jrose@571 1437 (mfield.selected.type.tsym.flags() & POLYMORPHIC_SIGNATURE) != 0)
jrose@571 1438 ||
jrose@571 1439 (mfield.sym != null &&
jrose@571 1440 (mfield.sym.flags() & POLYMORPHIC_SIGNATURE) != 0)) {
jrose@267 1441 assert types.isSameType(restype, typeargtypes.head) : mtype;
jrose@571 1442 assert mfield.selected.type == syms.methodHandleType
jrose@571 1443 || mfield.selected.type == syms.invokeDynamicType;
jrose@267 1444 typeargtypesNonRefOK = true;
jrose@267 1445 }
jrose@267 1446 }
jrose@267 1447
jrose@267 1448 if (!typeargtypesNonRefOK) {
jrose@267 1449 chk.checkRefTypes(tree.typeargs, typeargtypes);
jrose@267 1450 }
jrose@267 1451
duke@1 1452 // Check that value of resulting type is admissible in the
duke@1 1453 // current context. Also, capture the return type
mcimadamore@536 1454 result = check(tree, capture(restype), VAL, pkind, pt);
duke@1 1455 }
mcimadamore@122 1456 chk.validate(tree.typeargs, localEnv);
duke@1 1457 }
duke@1 1458 //where
duke@1 1459 /** Check that given application node appears as first statement
duke@1 1460 * in a constructor call.
duke@1 1461 * @param tree The application node
duke@1 1462 * @param env The environment current at the application.
duke@1 1463 */
duke@1 1464 boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
duke@1 1465 JCMethodDecl enclMethod = env.enclMethod;
duke@1 1466 if (enclMethod != null && enclMethod.name == names.init) {
duke@1 1467 JCBlock body = enclMethod.body;
duke@1 1468 if (body.stats.head.getTag() == JCTree.EXEC &&
duke@1 1469 ((JCExpressionStatement) body.stats.head).expr == tree)
duke@1 1470 return true;
duke@1 1471 }
duke@1 1472 log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
duke@1 1473 TreeInfo.name(tree.meth));
duke@1 1474 return false;
duke@1 1475 }
duke@1 1476
duke@1 1477 /** Obtain a method type with given argument types.
duke@1 1478 */
duke@1 1479 Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
duke@1 1480 MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
duke@1 1481 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
duke@1 1482 }
duke@1 1483
duke@1 1484 public void visitNewClass(JCNewClass tree) {
jjg@110 1485 Type owntype = types.createErrorType(tree.type);
duke@1 1486
duke@1 1487 // The local environment of a class creation is
duke@1 1488 // a new environment nested in the current one.
duke@1 1489 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1490
duke@1 1491 // The anonymous inner class definition of the new expression,
duke@1 1492 // if one is defined by it.
duke@1 1493 JCClassDecl cdef = tree.def;
duke@1 1494
duke@1 1495 // If enclosing class is given, attribute it, and
duke@1 1496 // complete class name to be fully qualified
duke@1 1497 JCExpression clazz = tree.clazz; // Class field following new
duke@1 1498 JCExpression clazzid = // Identifier in class field
duke@1 1499 (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1500 ? ((JCTypeApply) clazz).clazz
duke@1 1501 : clazz;
duke@1 1502
duke@1 1503 JCExpression clazzid1 = clazzid; // The same in fully qualified form
duke@1 1504
duke@1 1505 if (tree.encl != null) {
duke@1 1506 // We are seeing a qualified new, of the form
duke@1 1507 // <expr>.new C <...> (...) ...
duke@1 1508 // In this case, we let clazz stand for the name of the
duke@1 1509 // allocated class C prefixed with the type of the qualifier
duke@1 1510 // expression, so that we can
duke@1 1511 // resolve it with standard techniques later. I.e., if
duke@1 1512 // <expr> has type T, then <expr>.new C <...> (...)
duke@1 1513 // yields a clazz T.C.
duke@1 1514 Type encltype = chk.checkRefType(tree.encl.pos(),
duke@1 1515 attribExpr(tree.encl, env));
duke@1 1516 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
duke@1 1517 ((JCIdent) clazzid).name);
duke@1 1518 if (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1519 clazz = make.at(tree.pos).
duke@1 1520 TypeApply(clazzid1,
duke@1 1521 ((JCTypeApply) clazz).arguments);
duke@1 1522 else
duke@1 1523 clazz = clazzid1;
duke@1 1524 }
duke@1 1525
duke@1 1526 // Attribute clazz expression and store
duke@1 1527 // symbol + type back into the attributed tree.
mcimadamore@537 1528 Type clazztype = attribType(clazz, env);
mcimadamore@562 1529 Pair<Scope,Scope> mapping = getSyntheticScopeMapping(clazztype);
mcimadamore@537 1530 if (!TreeInfo.isDiamond(tree)) {
mcimadamore@537 1531 clazztype = chk.checkClassType(
mcimadamore@537 1532 tree.clazz.pos(), clazztype, true);
mcimadamore@537 1533 }
mcimadamore@122 1534 chk.validate(clazz, localEnv);
duke@1 1535 if (tree.encl != null) {
duke@1 1536 // We have to work in this case to store
duke@1 1537 // symbol + type back into the attributed tree.
duke@1 1538 tree.clazz.type = clazztype;
duke@1 1539 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
duke@1 1540 clazzid.type = ((JCIdent) clazzid).sym.type;
duke@1 1541 if (!clazztype.isErroneous()) {
duke@1 1542 if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1543 log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
duke@1 1544 } else if (clazztype.tsym.isStatic()) {
duke@1 1545 log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
duke@1 1546 }
duke@1 1547 }
duke@1 1548 } else if (!clazztype.tsym.isInterface() &&
duke@1 1549 clazztype.getEnclosingType().tag == CLASS) {
duke@1 1550 // Check for the existence of an apropos outer instance
duke@1 1551 rs.resolveImplicitThis(tree.pos(), env, clazztype);
duke@1 1552 }
duke@1 1553
duke@1 1554 // Attribute constructor arguments.
duke@1 1555 List<Type> argtypes = attribArgs(tree.args, localEnv);
duke@1 1556 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1557
mcimadamore@537 1558 if (TreeInfo.isDiamond(tree)) {
mcimadamore@631 1559 clazztype = attribDiamond(localEnv, tree, clazztype, mapping, argtypes, typeargtypes);
mcimadamore@537 1560 clazz.type = clazztype;
mcimadamore@537 1561 }
mcimadamore@537 1562
duke@1 1563 // If we have made no mistakes in the class type...
duke@1 1564 if (clazztype.tag == CLASS) {
duke@1 1565 // Enums may not be instantiated except implicitly
duke@1 1566 if (allowEnums &&
duke@1 1567 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
duke@1 1568 (env.tree.getTag() != JCTree.VARDEF ||
duke@1 1569 (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
duke@1 1570 ((JCVariableDecl) env.tree).init != tree))
duke@1 1571 log.error(tree.pos(), "enum.cant.be.instantiated");
duke@1 1572 // Check that class is not abstract
duke@1 1573 if (cdef == null &&
duke@1 1574 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1575 log.error(tree.pos(), "abstract.cant.be.instantiated",
duke@1 1576 clazztype.tsym);
duke@1 1577 } else if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1578 // Check that no constructor arguments are given to
duke@1 1579 // anonymous classes implementing an interface
duke@1 1580 if (!argtypes.isEmpty())
duke@1 1581 log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
duke@1 1582
duke@1 1583 if (!typeargtypes.isEmpty())
duke@1 1584 log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
duke@1 1585
duke@1 1586 // Error recovery: pretend no arguments were supplied.
duke@1 1587 argtypes = List.nil();
duke@1 1588 typeargtypes = List.nil();
duke@1 1589 }
duke@1 1590
duke@1 1591 // Resolve the called constructor under the assumption
duke@1 1592 // that we are referring to a superclass instance of the
duke@1 1593 // current instance (JLS ???).
duke@1 1594 else {
duke@1 1595 localEnv.info.selectSuper = cdef != null;
duke@1 1596 localEnv.info.varArgs = false;
duke@1 1597 tree.constructor = rs.resolveConstructor(
duke@1 1598 tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
mcimadamore@630 1599 tree.constructorType = tree.constructor.type.isErroneous() ?
mcimadamore@630 1600 syms.errType :
mcimadamore@630 1601 checkMethod(clazztype,
mcimadamore@630 1602 tree.constructor,
mcimadamore@630 1603 localEnv,
mcimadamore@630 1604 tree.args,
mcimadamore@630 1605 argtypes,
mcimadamore@630 1606 typeargtypes,
mcimadamore@630 1607 localEnv.info.varArgs);
duke@1 1608 if (localEnv.info.varArgs)
mcimadamore@186 1609 assert tree.constructorType.isErroneous() || tree.varargsElement != null;
duke@1 1610 }
duke@1 1611
duke@1 1612 if (cdef != null) {
duke@1 1613 // We are seeing an anonymous class instance creation.
duke@1 1614 // In this case, the class instance creation
duke@1 1615 // expression
duke@1 1616 //
duke@1 1617 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1618 //
duke@1 1619 // is represented internally as
duke@1 1620 //
duke@1 1621 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) .
duke@1 1622 //
duke@1 1623 // This expression is then *transformed* as follows:
duke@1 1624 //
duke@1 1625 // (1) add a STATIC flag to the class definition
duke@1 1626 // if the current environment is static
duke@1 1627 // (2) add an extends or implements clause
duke@1 1628 // (3) add a constructor.
duke@1 1629 //
duke@1 1630 // For instance, if C is a class, and ET is the type of E,
duke@1 1631 // the expression
duke@1 1632 //
duke@1 1633 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1634 //
duke@1 1635 // is translated to (where X is a fresh name and typarams is the
duke@1 1636 // parameter list of the super constructor):
duke@1 1637 //
duke@1 1638 // new <typeargs1>X(<*nullchk*>E, args) where
duke@1 1639 // X extends C<typargs2> {
duke@1 1640 // <typarams> X(ET e, args) {
duke@1 1641 // e.<typeargs1>super(args)
duke@1 1642 // }
duke@1 1643 // ...
duke@1 1644 // }
duke@1 1645 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
mcimadamore@536 1646
duke@1 1647 if (clazztype.tsym.isInterface()) {
duke@1 1648 cdef.implementing = List.of(clazz);
duke@1 1649 } else {
duke@1 1650 cdef.extending = clazz;
duke@1 1651 }
duke@1 1652
duke@1 1653 attribStat(cdef, localEnv);
duke@1 1654
duke@1 1655 // If an outer instance is given,
duke@1 1656 // prefix it to the constructor arguments
duke@1 1657 // and delete it from the new expression
duke@1 1658 if (tree.encl != null && !clazztype.tsym.isInterface()) {
duke@1 1659 tree.args = tree.args.prepend(makeNullCheck(tree.encl));
duke@1 1660 argtypes = argtypes.prepend(tree.encl.type);
duke@1 1661 tree.encl = null;
duke@1 1662 }
duke@1 1663
duke@1 1664 // Reassign clazztype and recompute constructor.
duke@1 1665 clazztype = cdef.sym.type;
duke@1 1666 Symbol sym = rs.resolveConstructor(
duke@1 1667 tree.pos(), localEnv, clazztype, argtypes,
duke@1 1668 typeargtypes, true, tree.varargsElement != null);
duke@1 1669 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
duke@1 1670 tree.constructor = sym;
mcimadamore@358 1671 if (tree.constructor.kind > ERRONEOUS) {
mcimadamore@358 1672 tree.constructorType = syms.errType;
mcimadamore@358 1673 }
mcimadamore@358 1674 else {
mcimadamore@358 1675 tree.constructorType = checkMethod(clazztype,
mcimadamore@358 1676 tree.constructor,
mcimadamore@358 1677 localEnv,
mcimadamore@358 1678 tree.args,
mcimadamore@358 1679 argtypes,
mcimadamore@358 1680 typeargtypes,
mcimadamore@358 1681 localEnv.info.varArgs);
mcimadamore@358 1682 }
duke@1 1683 }
duke@1 1684
duke@1 1685 if (tree.constructor != null && tree.constructor.kind == MTH)
duke@1 1686 owntype = clazztype;
duke@1 1687 }
duke@1 1688 result = check(tree, owntype, VAL, pkind, pt);
mcimadamore@122 1689 chk.validate(tree.typeargs, localEnv);
duke@1 1690 }
duke@1 1691
mcimadamore@537 1692 Type attribDiamond(Env<AttrContext> env,
mcimadamore@537 1693 JCNewClass tree,
mcimadamore@537 1694 Type clazztype,
mcimadamore@537 1695 Pair<Scope, Scope> mapping,
mcimadamore@537 1696 List<Type> argtypes,
mcimadamore@631 1697 List<Type> typeargtypes) {
mcimadamore@562 1698 if (clazztype.isErroneous() || mapping == erroneousMapping) {
mcimadamore@562 1699 //if the type of the instance creation expression is erroneous,
mcimadamore@562 1700 //or something prevented us to form a valid mapping, return the
mcimadamore@562 1701 //(possibly erroneous) type unchanged
mcimadamore@537 1702 return clazztype;
mcimadamore@537 1703 }
mcimadamore@537 1704 else if (clazztype.isInterface()) {
mcimadamore@537 1705 //if the type of the instance creation expression is an interface
mcimadamore@537 1706 //skip the method resolution step (JLS 15.12.2.7). The type to be
mcimadamore@537 1707 //inferred is of the kind <X1,X2, ... Xn>C<X1,X2, ... Xn>
mcimadamore@615 1708 clazztype = new ForAll(clazztype.tsym.type.allparams(), clazztype.tsym.type) {
mcimadamore@615 1709 @Override
mcimadamore@615 1710 public List<Type> getConstraints(TypeVar tv, ConstraintKind ck) {
mcimadamore@615 1711 switch (ck) {
mcimadamore@615 1712 case EXTENDS: return types.getBounds(tv);
mcimadamore@615 1713 default: return List.nil();
mcimadamore@615 1714 }
mcimadamore@615 1715 }
mcimadamore@615 1716 @Override
mcimadamore@615 1717 public Type inst(List<Type> inferred, Types types) throws Infer.NoInstanceException {
mcimadamore@615 1718 // check that inferred bounds conform to their bounds
mcimadamore@615 1719 infer.checkWithinBounds(tvars,
mcimadamore@615 1720 types.subst(tvars, tvars, inferred), Warner.noWarnings);
mcimadamore@615 1721 return super.inst(inferred, types);
mcimadamore@615 1722 }
mcimadamore@615 1723 };
mcimadamore@537 1724 } else {
mcimadamore@537 1725 //if the type of the instance creation expression is a class type
mcimadamore@537 1726 //apply method resolution inference (JLS 15.12.2.7). The return type
mcimadamore@537 1727 //of the resolved constructor will be a partially instantiated type
mcimadamore@537 1728 ((ClassSymbol) clazztype.tsym).members_field = mapping.snd;
mcimadamore@537 1729 Symbol constructor;
mcimadamore@537 1730 try {
mcimadamore@537 1731 constructor = rs.resolveDiamond(tree.pos(),
mcimadamore@537 1732 env,
mcimadamore@537 1733 clazztype.tsym.type,
mcimadamore@537 1734 argtypes,
mcimadamore@631 1735 typeargtypes);
mcimadamore@537 1736 } finally {
mcimadamore@537 1737 ((ClassSymbol) clazztype.tsym).members_field = mapping.fst;
mcimadamore@537 1738 }
mcimadamore@537 1739 if (constructor.kind == MTH) {
mcimadamore@537 1740 ClassType ct = new ClassType(clazztype.getEnclosingType(),
mcimadamore@537 1741 clazztype.tsym.type.getTypeArguments(),
mcimadamore@537 1742 clazztype.tsym);
mcimadamore@537 1743 clazztype = checkMethod(ct,
mcimadamore@537 1744 constructor,
mcimadamore@537 1745 env,
mcimadamore@537 1746 tree.args,
mcimadamore@537 1747 argtypes,
mcimadamore@537 1748 typeargtypes,
mcimadamore@537 1749 env.info.varArgs).getReturnType();
mcimadamore@537 1750 } else {
mcimadamore@537 1751 clazztype = syms.errType;
mcimadamore@537 1752 }
mcimadamore@537 1753 }
mcimadamore@537 1754 if (clazztype.tag == FORALL && !pt.isErroneous()) {
mcimadamore@537 1755 //if the resolved constructor's return type has some uninferred
mcimadamore@537 1756 //type-variables, infer them using the expected type and declared
mcimadamore@537 1757 //bounds (JLS 15.12.2.8).
mcimadamore@537 1758 try {
mcimadamore@537 1759 clazztype = infer.instantiateExpr((ForAll) clazztype,
mcimadamore@537 1760 pt.tag == NONE ? syms.objectType : pt,
mcimadamore@537 1761 Warner.noWarnings);
mcimadamore@537 1762 } catch (Infer.InferenceException ex) {
mcimadamore@537 1763 //an error occurred while inferring uninstantiated type-variables
mcimadamore@631 1764 log.error(tree.clazz.pos(),
mcimadamore@631 1765 "cant.apply.diamond.1",
mcimadamore@631 1766 diags.fragment("diamond", clazztype.tsym),
mcimadamore@631 1767 ex.diagnostic);
mcimadamore@631 1768 }
mcimadamore@631 1769 }
mcimadamore@631 1770 clazztype = chk.checkClassType(tree.clazz.pos(),
mcimadamore@631 1771 clazztype,
mcimadamore@631 1772 true);
mcimadamore@631 1773 if (clazztype.tag == CLASS) {
mcimadamore@631 1774 List<Type> invalidDiamondArgs = chk.checkDiamond((ClassType)clazztype);
mcimadamore@631 1775 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
mcimadamore@631 1776 //one or more types inferred in the previous steps is either a
mcimadamore@631 1777 //captured type or an intersection type --- we need to report an error.
mcimadamore@631 1778 String subkey = invalidDiamondArgs.size() > 1 ?
mcimadamore@631 1779 "diamond.invalid.args" :
mcimadamore@631 1780 "diamond.invalid.arg";
mcimadamore@631 1781 //The error message is of the kind:
mcimadamore@631 1782 //
mcimadamore@631 1783 //cannot infer type arguments for {clazztype}<>;
mcimadamore@631 1784 //reason: {subkey}
mcimadamore@631 1785 //
mcimadamore@631 1786 //where subkey is a fragment of the kind:
mcimadamore@631 1787 //
mcimadamore@631 1788 //type argument(s) {invalidDiamondArgs} inferred for {clazztype}<> is not allowed in this context
mcimadamore@631 1789 log.error(tree.clazz.pos(),
mcimadamore@537 1790 "cant.apply.diamond.1",
mcimadamore@537 1791 diags.fragment("diamond", clazztype.tsym),
mcimadamore@631 1792 diags.fragment(subkey,
mcimadamore@631 1793 invalidDiamondArgs,
mcimadamore@631 1794 diags.fragment("diamond", clazztype.tsym)));
mcimadamore@537 1795 }
mcimadamore@537 1796 }
mcimadamore@537 1797 return clazztype;
mcimadamore@537 1798 }
mcimadamore@537 1799
mcimadamore@537 1800 /** Creates a synthetic scope containing fake generic constructors.
mcimadamore@537 1801 * Assuming that the original scope contains a constructor of the kind:
mcimadamore@537 1802 * Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
mcimadamore@537 1803 * the synthetic scope is added a generic constructor of the kind:
mcimadamore@537 1804 * <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
mcimadamore@537 1805 * inference. The inferred return type of the synthetic constructor IS
mcimadamore@537 1806 * the inferred type for the diamond operator.
mcimadamore@537 1807 */
mcimadamore@562 1808 private Pair<Scope, Scope> getSyntheticScopeMapping(Type ctype) {
mcimadamore@562 1809 if (ctype.tag != CLASS) {
mcimadamore@562 1810 return erroneousMapping;
mcimadamore@562 1811 }
mcimadamore@537 1812 Pair<Scope, Scope> mapping =
mcimadamore@537 1813 new Pair<Scope, Scope>(ctype.tsym.members(), new Scope(ctype.tsym));
mcimadamore@537 1814 List<Type> typevars = ctype.tsym.type.getTypeArguments();
mcimadamore@537 1815 for (Scope.Entry e = mapping.fst.lookup(names.init);
mcimadamore@537 1816 e.scope != null;
mcimadamore@537 1817 e = e.next()) {
mcimadamore@537 1818 MethodSymbol newConstr = (MethodSymbol) e.sym.clone(ctype.tsym);
mcimadamore@537 1819 newConstr.name = names.init;
mcimadamore@537 1820 List<Type> oldTypeargs = List.nil();
mcimadamore@537 1821 if (newConstr.type.tag == FORALL) {
mcimadamore@537 1822 oldTypeargs = ((ForAll) newConstr.type).tvars;
mcimadamore@537 1823 }
mcimadamore@537 1824 newConstr.type = new MethodType(newConstr.type.getParameterTypes(),
mcimadamore@537 1825 new ClassType(ctype.getEnclosingType(), ctype.tsym.type.getTypeArguments(), ctype.tsym),
mcimadamore@537 1826 newConstr.type.getThrownTypes(),
mcimadamore@537 1827 syms.methodClass);
mcimadamore@537 1828 newConstr.type = new ForAll(typevars.prependList(oldTypeargs), newConstr.type);
mcimadamore@537 1829 mapping.snd.enter(newConstr);
mcimadamore@537 1830 }
mcimadamore@537 1831 return mapping;
mcimadamore@537 1832 }
mcimadamore@537 1833
mcimadamore@562 1834 private final Pair<Scope,Scope> erroneousMapping = new Pair<Scope,Scope>(null, null);
mcimadamore@562 1835
duke@1 1836 /** Make an attributed null check tree.
duke@1 1837 */
duke@1 1838 public JCExpression makeNullCheck(JCExpression arg) {
duke@1 1839 // optimization: X.this is never null; skip null check
duke@1 1840 Name name = TreeInfo.name(arg);
duke@1 1841 if (name == names._this || name == names._super) return arg;
duke@1 1842
duke@1 1843 int optag = JCTree.NULLCHK;
duke@1 1844 JCUnary tree = make.at(arg.pos).Unary(optag, arg);
duke@1 1845 tree.operator = syms.nullcheck;
duke@1 1846 tree.type = arg.type;
duke@1 1847 return tree;
duke@1 1848 }
duke@1 1849
duke@1 1850 public void visitNewArray(JCNewArray tree) {
jjg@110 1851 Type owntype = types.createErrorType(tree.type);
duke@1 1852 Type elemtype;
duke@1 1853 if (tree.elemtype != null) {
duke@1 1854 elemtype = attribType(tree.elemtype, env);
mcimadamore@122 1855 chk.validate(tree.elemtype, env);
duke@1 1856 owntype = elemtype;
duke@1 1857 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
duke@1 1858 attribExpr(l.head, env, syms.intType);
duke@1 1859 owntype = new ArrayType(owntype, syms.arrayClass);
duke@1 1860 }
duke@1 1861 } else {
duke@1 1862 // we are seeing an untyped aggregate { ... }
duke@1 1863 // this is allowed only if the prototype is an array
duke@1 1864 if (pt.tag == ARRAY) {
duke@1 1865 elemtype = types.elemtype(pt);
duke@1 1866 } else {
duke@1 1867 if (pt.tag != ERROR) {
duke@1 1868 log.error(tree.pos(), "illegal.initializer.for.type",
duke@1 1869 pt);
duke@1 1870 }
jjg@110 1871 elemtype = types.createErrorType(pt);
duke@1 1872 }
duke@1 1873 }
duke@1 1874 if (tree.elems != null) {
duke@1 1875 attribExprs(tree.elems, env, elemtype);
duke@1 1876 owntype = new ArrayType(elemtype, syms.arrayClass);
duke@1 1877 }
duke@1 1878 if (!types.isReifiable(elemtype))
duke@1 1879 log.error(tree.pos(), "generic.array.creation");
duke@1 1880 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1881 }
duke@1 1882
duke@1 1883 public void visitParens(JCParens tree) {
duke@1 1884 Type owntype = attribTree(tree.expr, env, pkind, pt);
duke@1 1885 result = check(tree, owntype, pkind, pkind, pt);
duke@1 1886 Symbol sym = TreeInfo.symbol(tree);
duke@1 1887 if (sym != null && (sym.kind&(TYP|PCK)) != 0)
duke@1 1888 log.error(tree.pos(), "illegal.start.of.type");
duke@1 1889 }
duke@1 1890
duke@1 1891 public void visitAssign(JCAssign tree) {
duke@1 1892 Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
duke@1 1893 Type capturedType = capture(owntype);
duke@1 1894 attribExpr(tree.rhs, env, owntype);
duke@1 1895 result = check(tree, capturedType, VAL, pkind, pt);
duke@1 1896 }
duke@1 1897
duke@1 1898 public void visitAssignop(JCAssignOp tree) {
duke@1 1899 // Attribute arguments.
duke@1 1900 Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
duke@1 1901 Type operand = attribExpr(tree.rhs, env);
duke@1 1902 // Find operator.
duke@1 1903 Symbol operator = tree.operator = rs.resolveBinaryOperator(
duke@1 1904 tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
duke@1 1905 owntype, operand);
duke@1 1906
duke@1 1907 if (operator.kind == MTH) {
duke@1 1908 chk.checkOperator(tree.pos(),
duke@1 1909 (OperatorSymbol)operator,
duke@1 1910 tree.getTag() - JCTree.ASGOffset,
duke@1 1911 owntype,
duke@1 1912 operand);
jjg@9 1913 chk.checkDivZero(tree.rhs.pos(), operator, operand);
jjg@9 1914 chk.checkCastable(tree.rhs.pos(),
jjg@9 1915 operator.type.getReturnType(),
jjg@9 1916 owntype);
duke@1 1917 }
duke@1 1918 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1919 }
duke@1 1920
duke@1 1921 public void visitUnary(JCUnary tree) {
duke@1 1922 // Attribute arguments.
duke@1 1923 Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 1924 ? attribTree(tree.arg, env, VAR, Type.noType)
duke@1 1925 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
duke@1 1926
duke@1 1927 // Find operator.
duke@1 1928 Symbol operator = tree.operator =
duke@1 1929 rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
duke@1 1930
jjg@110 1931 Type owntype = types.createErrorType(tree.type);
duke@1 1932 if (operator.kind == MTH) {
duke@1 1933 owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 1934 ? tree.arg.type
duke@1 1935 : operator.type.getReturnType();
duke@1 1936 int opc = ((OperatorSymbol)operator).opcode;
duke@1 1937
duke@1 1938 // If the argument is constant, fold it.
duke@1 1939 if (argtype.constValue() != null) {
duke@1 1940 Type ctype = cfolder.fold1(opc, argtype);
duke@1 1941 if (ctype != null) {
duke@1 1942 owntype = cfolder.coerce(ctype, owntype);
duke@1 1943
duke@1 1944 // Remove constant types from arguments to
duke@1 1945 // conserve space. The parser will fold concatenations
duke@1 1946 // of string literals; the code here also
duke@1 1947 // gets rid of intermediate results when some of the
duke@1 1948 // operands are constant identifiers.
duke@1 1949 if (tree.arg.type.tsym == syms.stringType.tsym) {
duke@1 1950 tree.arg.type = syms.stringType;
duke@1 1951 }
duke@1 1952 }
duke@1 1953 }
duke@1 1954 }
duke@1 1955 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1956 }
duke@1 1957
duke@1 1958 public void visitBinary(JCBinary tree) {
duke@1 1959 // Attribute arguments.
duke@1 1960 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
duke@1 1961 Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
duke@1 1962
duke@1 1963 // Find operator.
duke@1 1964 Symbol operator = tree.operator =
duke@1 1965 rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
duke@1 1966
jjg@110 1967 Type owntype = types.createErrorType(tree.type);
duke@1 1968 if (operator.kind == MTH) {
duke@1 1969 owntype = operator.type.getReturnType();
duke@1 1970 int opc = chk.checkOperator(tree.lhs.pos(),
duke@1 1971 (OperatorSymbol)operator,
duke@1 1972 tree.getTag(),
duke@1 1973 left,
duke@1 1974 right);
duke@1 1975
duke@1 1976 // If both arguments are constants, fold them.
duke@1 1977 if (left.constValue() != null && right.constValue() != null) {
duke@1 1978 Type ctype = cfolder.fold2(opc, left, right);
duke@1 1979 if (ctype != null) {
duke@1 1980 owntype = cfolder.coerce(ctype, owntype);
duke@1 1981
duke@1 1982 // Remove constant types from arguments to
duke@1 1983 // conserve space. The parser will fold concatenations
duke@1 1984 // of string literals; the code here also
duke@1 1985 // gets rid of intermediate results when some of the
duke@1 1986 // operands are constant identifiers.
duke@1 1987 if (tree.lhs.type.tsym == syms.stringType.tsym) {
duke@1 1988 tree.lhs.type = syms.stringType;
duke@1 1989 }
duke@1 1990 if (tree.rhs.type.tsym == syms.stringType.tsym) {
duke@1 1991 tree.rhs.type = syms.stringType;
duke@1 1992 }
duke@1 1993 }
duke@1 1994 }
duke@1 1995
duke@1 1996 // Check that argument types of a reference ==, != are
duke@1 1997 // castable to each other, (JLS???).
duke@1 1998 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
duke@1 1999 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
duke@1 2000 log.error(tree.pos(), "incomparable.types", left, right);
duke@1 2001 }
duke@1 2002 }
duke@1 2003
duke@1 2004 chk.checkDivZero(tree.rhs.pos(), operator, right);
duke@1 2005 }
duke@1 2006 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2007 }
duke@1 2008
duke@1 2009 public void visitTypeCast(JCTypeCast tree) {
duke@1 2010 Type clazztype = attribType(tree.clazz, env);
mcimadamore@638 2011 chk.validate(tree.clazz, env, false);
duke@1 2012 Type exprtype = attribExpr(tree.expr, env, Infer.anyPoly);
duke@1 2013 Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 2014 if (exprtype.constValue() != null)
duke@1 2015 owntype = cfolder.coerce(exprtype, owntype);
duke@1 2016 result = check(tree, capture(owntype), VAL, pkind, pt);
duke@1 2017 }
duke@1 2018
duke@1 2019 public void visitTypeTest(JCInstanceOf tree) {
duke@1 2020 Type exprtype = chk.checkNullOrRefType(
duke@1 2021 tree.expr.pos(), attribExpr(tree.expr, env));
duke@1 2022 Type clazztype = chk.checkReifiableReferenceType(
duke@1 2023 tree.clazz.pos(), attribType(tree.clazz, env));
mcimadamore@638 2024 chk.validate(tree.clazz, env, false);
duke@1 2025 chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 2026 result = check(tree, syms.booleanType, VAL, pkind, pt);
duke@1 2027 }
duke@1 2028
duke@1 2029 public void visitIndexed(JCArrayAccess tree) {
jjg@110 2030 Type owntype = types.createErrorType(tree.type);
duke@1 2031 Type atype = attribExpr(tree.indexed, env);
duke@1 2032 attribExpr(tree.index, env, syms.intType);
duke@1 2033 if (types.isArray(atype))
duke@1 2034 owntype = types.elemtype(atype);
duke@1 2035 else if (atype.tag != ERROR)
duke@1 2036 log.error(tree.pos(), "array.req.but.found", atype);
duke@1 2037 if ((pkind & VAR) == 0) owntype = capture(owntype);
duke@1 2038 result = check(tree, owntype, VAR, pkind, pt);
duke@1 2039 }
duke@1 2040
duke@1 2041 public void visitIdent(JCIdent tree) {
duke@1 2042 Symbol sym;
duke@1 2043 boolean varArgs = false;
duke@1 2044
duke@1 2045 // Find symbol
duke@1 2046 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2047 // If we are looking for a method, the prototype `pt' will be a
duke@1 2048 // method type with the type of the call's arguments as parameters.
duke@1 2049 env.info.varArgs = false;
duke@1 2050 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2051 varArgs = env.info.varArgs;
duke@1 2052 } else if (tree.sym != null && tree.sym.kind != VAR) {
duke@1 2053 sym = tree.sym;
duke@1 2054 } else {
duke@1 2055 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
duke@1 2056 }
duke@1 2057 tree.sym = sym;
duke@1 2058
duke@1 2059 // (1) Also find the environment current for the class where
duke@1 2060 // sym is defined (`symEnv').
duke@1 2061 // Only for pre-tiger versions (1.4 and earlier):
duke@1 2062 // (2) Also determine whether we access symbol out of an anonymous
duke@1 2063 // class in a this or super call. This is illegal for instance
duke@1 2064 // members since such classes don't carry a this$n link.
duke@1 2065 // (`noOuterThisPath').
duke@1 2066 Env<AttrContext> symEnv = env;
duke@1 2067 boolean noOuterThisPath = false;
duke@1 2068 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
duke@1 2069 (sym.kind & (VAR | MTH | TYP)) != 0 &&
duke@1 2070 sym.owner.kind == TYP &&
duke@1 2071 tree.name != names._this && tree.name != names._super) {
duke@1 2072
duke@1 2073 // Find environment in which identifier is defined.
duke@1 2074 while (symEnv.outer != null &&
duke@1 2075 !sym.isMemberOf(symEnv.enclClass.sym, types)) {
duke@1 2076 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
duke@1 2077 noOuterThisPath = !allowAnonOuterThis;
duke@1 2078 symEnv = symEnv.outer;
duke@1 2079 }
duke@1 2080 }
duke@1 2081
duke@1 2082 // If symbol is a variable, ...
duke@1 2083 if (sym.kind == VAR) {
duke@1 2084 VarSymbol v = (VarSymbol)sym;
duke@1 2085
duke@1 2086 // ..., evaluate its initializer, if it has one, and check for
duke@1 2087 // illegal forward reference.
duke@1 2088 checkInit(tree, env, v, false);
duke@1 2089
duke@1 2090 // If symbol is a local variable accessed from an embedded
duke@1 2091 // inner class check that it is final.
duke@1 2092 if (v.owner.kind == MTH &&
duke@1 2093 v.owner != env.info.scope.owner &&
duke@1 2094 (v.flags_field & FINAL) == 0) {
duke@1 2095 log.error(tree.pos(),
duke@1 2096 "local.var.accessed.from.icls.needs.final",
duke@1 2097 v);
duke@1 2098 }
duke@1 2099
duke@1 2100 // If we are expecting a variable (as opposed to a value), check
duke@1 2101 // that the variable is assignable in the current environment.
duke@1 2102 if (pkind == VAR)
duke@1 2103 checkAssignable(tree.pos(), v, null, env);
duke@1 2104 }
duke@1 2105
duke@1 2106 // In a constructor body,
duke@1 2107 // if symbol is a field or instance method, check that it is
duke@1 2108 // not accessed before the supertype constructor is called.
duke@1 2109 if ((symEnv.info.isSelfCall || noOuterThisPath) &&
duke@1 2110 (sym.kind & (VAR | MTH)) != 0 &&
duke@1 2111 sym.owner.kind == TYP &&
duke@1 2112 (sym.flags() & STATIC) == 0) {
duke@1 2113 chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
duke@1 2114 }
duke@1 2115 Env<AttrContext> env1 = env;
mcimadamore@28 2116 if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
duke@1 2117 // If the found symbol is inaccessible, then it is
duke@1 2118 // accessed through an enclosing instance. Locate this
duke@1 2119 // enclosing instance:
duke@1 2120 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
duke@1 2121 env1 = env1.outer;
duke@1 2122 }
duke@1 2123 result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
duke@1 2124 }
duke@1 2125
duke@1 2126 public void visitSelect(JCFieldAccess tree) {
duke@1 2127 // Determine the expected kind of the qualifier expression.
duke@1 2128 int skind = 0;
duke@1 2129 if (tree.name == names._this || tree.name == names._super ||
duke@1 2130 tree.name == names._class)
duke@1 2131 {
duke@1 2132 skind = TYP;
duke@1 2133 } else {
duke@1 2134 if ((pkind & PCK) != 0) skind = skind | PCK;
duke@1 2135 if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
duke@1 2136 if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
duke@1 2137 }
duke@1 2138
duke@1 2139 // Attribute the qualifier expression, and determine its symbol (if any).
duke@1 2140 Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
duke@1 2141 if ((pkind & (PCK | TYP)) == 0)
duke@1 2142 site = capture(site); // Capture field access
duke@1 2143
duke@1 2144 // don't allow T.class T[].class, etc
duke@1 2145 if (skind == TYP) {
duke@1 2146 Type elt = site;
duke@1 2147 while (elt.tag == ARRAY)
duke@1 2148 elt = ((ArrayType)elt).elemtype;
duke@1 2149 if (elt.tag == TYPEVAR) {
duke@1 2150 log.error(tree.pos(), "type.var.cant.be.deref");
jjg@110 2151 result = types.createErrorType(tree.type);
duke@1 2152 return;
duke@1 2153 }
duke@1 2154 }
duke@1 2155
duke@1 2156 // If qualifier symbol is a type or `super', assert `selectSuper'
duke@1 2157 // for the selection. This is relevant for determining whether
duke@1 2158 // protected symbols are accessible.
duke@1 2159 Symbol sitesym = TreeInfo.symbol(tree.selected);
duke@1 2160 boolean selectSuperPrev = env.info.selectSuper;
duke@1 2161 env.info.selectSuper =
duke@1 2162 sitesym != null &&
duke@1 2163 sitesym.name == names._super;
duke@1 2164
duke@1 2165 // If selected expression is polymorphic, strip
duke@1 2166 // type parameters and remember in env.info.tvars, so that
duke@1 2167 // they can be added later (in Attr.checkId and Infer.instantiateMethod).
duke@1 2168 if (tree.selected.type.tag == FORALL) {
duke@1 2169 ForAll pstype = (ForAll)tree.selected.type;
duke@1 2170 env.info.tvars = pstype.tvars;
duke@1 2171 site = tree.selected.type = pstype.qtype;
duke@1 2172 }
duke@1 2173
duke@1 2174 // Determine the symbol represented by the selection.
duke@1 2175 env.info.varArgs = false;
duke@1 2176 Symbol sym = selectSym(tree, site, env, pt, pkind);
duke@1 2177 if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
duke@1 2178 site = capture(site);
duke@1 2179 sym = selectSym(tree, site, env, pt, pkind);
duke@1 2180 }
duke@1 2181 boolean varArgs = env.info.varArgs;
duke@1 2182 tree.sym = sym;
duke@1 2183
mcimadamore@27 2184 if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
mcimadamore@27 2185 while (site.tag == TYPEVAR) site = site.getUpperBound();
mcimadamore@27 2186 site = capture(site);
mcimadamore@27 2187 }
duke@1 2188
duke@1 2189 // If that symbol is a variable, ...
duke@1 2190 if (sym.kind == VAR) {
duke@1 2191 VarSymbol v = (VarSymbol)sym;
duke@1 2192
duke@1 2193 // ..., evaluate its initializer, if it has one, and check for
duke@1 2194 // illegal forward reference.
duke@1 2195 checkInit(tree, env, v, true);
duke@1 2196
duke@1 2197 // If we are expecting a variable (as opposed to a value), check
duke@1 2198 // that the variable is assignable in the current environment.
duke@1 2199 if (pkind == VAR)
duke@1 2200 checkAssignable(tree.pos(), v, tree.selected, env);
duke@1 2201 }
duke@1 2202
darcy@609 2203 if (sitesym != null &&
darcy@609 2204 sitesym.kind == VAR &&
darcy@609 2205 ((VarSymbol)sitesym).isResourceVariable() &&
darcy@609 2206 sym.kind == MTH &&
darcy@609 2207 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
darcy@609 2208 env.info.lint.isEnabled(Lint.LintCategory.ARM)) {
darcy@609 2209 log.warning(tree, "twr.explicit.close.call");
darcy@609 2210 }
darcy@609 2211
duke@1 2212 // Disallow selecting a type from an expression
duke@1 2213 if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
duke@1 2214 tree.type = check(tree.selected, pt,
duke@1 2215 sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
duke@1 2216 }
duke@1 2217
duke@1 2218 if (isType(sitesym)) {
duke@1 2219 if (sym.name == names._this) {
duke@1 2220 // If `C' is the currently compiled class, check that
duke@1 2221 // C.this' does not appear in a call to a super(...)
duke@1 2222 if (env.info.isSelfCall &&
duke@1 2223 site.tsym == env.enclClass.sym) {
duke@1 2224 chk.earlyRefError(tree.pos(), sym);
duke@1 2225 }
duke@1 2226 } else {
duke@1 2227 // Check if type-qualified fields or methods are static (JLS)
duke@1 2228 if ((sym.flags() & STATIC) == 0 &&
duke@1 2229 sym.name != names._super &&
duke@1 2230 (sym.kind == VAR || sym.kind == MTH)) {
duke@1 2231 rs.access(rs.new StaticError(sym),
duke@1 2232 tree.pos(), site, sym.name, true);
duke@1 2233 }
duke@1 2234 }
jjg@505 2235 } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
jjg@505 2236 // If the qualified item is not a type and the selected item is static, report
jjg@505 2237 // a warning. Make allowance for the class of an array type e.g. Object[].class)
jjg@505 2238 chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
duke@1 2239 }
duke@1 2240
duke@1 2241 // If we are selecting an instance member via a `super', ...
duke@1 2242 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
duke@1 2243
duke@1 2244 // Check that super-qualified symbols are not abstract (JLS)
duke@1 2245 rs.checkNonAbstract(tree.pos(), sym);
duke@1 2246
duke@1 2247 if (site.isRaw()) {
duke@1 2248 // Determine argument types for site.
duke@1 2249 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
duke@1 2250 if (site1 != null) site = site1;
duke@1 2251 }
duke@1 2252 }
duke@1 2253
duke@1 2254 env.info.selectSuper = selectSuperPrev;
duke@1 2255 result = checkId(tree, site, sym, env, pkind, pt, varArgs);
duke@1 2256 env.info.tvars = List.nil();
duke@1 2257 }
duke@1 2258 //where
duke@1 2259 /** Determine symbol referenced by a Select expression,
duke@1 2260 *
duke@1 2261 * @param tree The select tree.
duke@1 2262 * @param site The type of the selected expression,
duke@1 2263 * @param env The current environment.
duke@1 2264 * @param pt The current prototype.
duke@1 2265 * @param pkind The expected kind(s) of the Select expression.
duke@1 2266 */
duke@1 2267 private Symbol selectSym(JCFieldAccess tree,
duke@1 2268 Type site,
duke@1 2269 Env<AttrContext> env,
duke@1 2270 Type pt,
duke@1 2271 int pkind) {
duke@1 2272 DiagnosticPosition pos = tree.pos();
duke@1 2273 Name name = tree.name;
duke@1 2274
duke@1 2275 switch (site.tag) {
duke@1 2276 case PACKAGE:
duke@1 2277 return rs.access(
duke@1 2278 rs.findIdentInPackage(env, site.tsym, name, pkind),
duke@1 2279 pos, site, name, true);
duke@1 2280 case ARRAY:
duke@1 2281 case CLASS:
duke@1 2282 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2283 return rs.resolveQualifiedMethod(
duke@1 2284 pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2285 } else if (name == names._this || name == names._super) {
duke@1 2286 return rs.resolveSelf(pos, env, site.tsym, name);
duke@1 2287 } else if (name == names._class) {
duke@1 2288 // In this case, we have already made sure in
duke@1 2289 // visitSelect that qualifier expression is a type.
duke@1 2290 Type t = syms.classType;
duke@1 2291 List<Type> typeargs = allowGenerics
duke@1 2292 ? List.of(types.erasure(site))
duke@1 2293 : List.<Type>nil();
duke@1 2294 t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
duke@1 2295 return new VarSymbol(
duke@1 2296 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2297 } else {
duke@1 2298 // We are seeing a plain identifier as selector.
duke@1 2299 Symbol sym = rs.findIdentInType(env, site, name, pkind);
duke@1 2300 if ((pkind & ERRONEOUS) == 0)
duke@1 2301 sym = rs.access(sym, pos, site, name, true);
duke@1 2302 return sym;
duke@1 2303 }
duke@1 2304 case WILDCARD:
duke@1 2305 throw new AssertionError(tree);
duke@1 2306 case TYPEVAR:
duke@1 2307 // Normally, site.getUpperBound() shouldn't be null.
duke@1 2308 // It should only happen during memberEnter/attribBase
duke@1 2309 // when determining the super type which *must* be
duke@1 2310 // done before attributing the type variables. In
duke@1 2311 // other words, we are seeing this illegal program:
duke@1 2312 // class B<T> extends A<T.foo> {}
duke@1 2313 Symbol sym = (site.getUpperBound() != null)
duke@1 2314 ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
duke@1 2315 : null;
mcimadamore@361 2316 if (sym == null) {
duke@1 2317 log.error(pos, "type.var.cant.be.deref");
duke@1 2318 return syms.errSymbol;
duke@1 2319 } else {
mcimadamore@155 2320 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
mcimadamore@155 2321 rs.new AccessError(env, site, sym) :
mcimadamore@155 2322 sym;
mcimadamore@155 2323 rs.access(sym2, pos, site, name, true);
duke@1 2324 return sym;
duke@1 2325 }
duke@1 2326 case ERROR:
duke@1 2327 // preserve identifier names through errors
jjg@110 2328 return types.createErrorType(name, site.tsym, site).tsym;
duke@1 2329 default:
duke@1 2330 // The qualifier expression is of a primitive type -- only
duke@1 2331 // .class is allowed for these.
duke@1 2332 if (name == names._class) {
duke@1 2333 // In this case, we have already made sure in Select that
duke@1 2334 // qualifier expression is a type.
duke@1 2335 Type t = syms.classType;
duke@1 2336 Type arg = types.boxedClass(site).type;
duke@1 2337 t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
duke@1 2338 return new VarSymbol(
duke@1 2339 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2340 } else {
duke@1 2341 log.error(pos, "cant.deref", site);
duke@1 2342 return syms.errSymbol;
duke@1 2343 }
duke@1 2344 }
duke@1 2345 }
duke@1 2346
duke@1 2347 /** Determine type of identifier or select expression and check that
duke@1 2348 * (1) the referenced symbol is not deprecated
duke@1 2349 * (2) the symbol's type is safe (@see checkSafe)
duke@1 2350 * (3) if symbol is a variable, check that its type and kind are
duke@1 2351 * compatible with the prototype and protokind.
duke@1 2352 * (4) if symbol is an instance field of a raw type,
duke@1 2353 * which is being assigned to, issue an unchecked warning if its
duke@1 2354 * type changes under erasure.
duke@1 2355 * (5) if symbol is an instance method of a raw type, issue an
duke@1 2356 * unchecked warning if its argument types change under erasure.
duke@1 2357 * If checks succeed:
duke@1 2358 * If symbol is a constant, return its constant type
duke@1 2359 * else if symbol is a method, return its result type
duke@1 2360 * otherwise return its type.
duke@1 2361 * Otherwise return errType.
duke@1 2362 *
duke@1 2363 * @param tree The syntax tree representing the identifier
duke@1 2364 * @param site If this is a select, the type of the selected
duke@1 2365 * expression, otherwise the type of the current class.
duke@1 2366 * @param sym The symbol representing the identifier.
duke@1 2367 * @param env The current environment.
duke@1 2368 * @param pkind The set of expected kinds.
duke@1 2369 * @param pt The expected type.
duke@1 2370 */
duke@1 2371 Type checkId(JCTree tree,
duke@1 2372 Type site,
duke@1 2373 Symbol sym,
duke@1 2374 Env<AttrContext> env,
duke@1 2375 int pkind,
duke@1 2376 Type pt,
duke@1 2377 boolean useVarargs) {
jjg@110 2378 if (pt.isErroneous()) return types.createErrorType(site);
duke@1 2379 Type owntype; // The computed type of this identifier occurrence.
duke@1 2380 switch (sym.kind) {
duke@1 2381 case TYP:
duke@1 2382 // For types, the computed type equals the symbol's type,
duke@1 2383 // except for two situations:
duke@1 2384 owntype = sym.type;
duke@1 2385 if (owntype.tag == CLASS) {
duke@1 2386 Type ownOuter = owntype.getEnclosingType();
duke@1 2387
duke@1 2388 // (a) If the symbol's type is parameterized, erase it
duke@1 2389 // because no type parameters were given.
duke@1 2390 // We recover generic outer type later in visitTypeApply.
duke@1 2391 if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
duke@1 2392 owntype = types.erasure(owntype);
duke@1 2393 }
duke@1 2394
duke@1 2395 // (b) If the symbol's type is an inner class, then
duke@1 2396 // we have to interpret its outer type as a superclass
duke@1 2397 // of the site type. Example:
duke@1 2398 //
duke@1 2399 // class Tree<A> { class Visitor { ... } }
duke@1 2400 // class PointTree extends Tree<Point> { ... }
duke@1 2401 // ...PointTree.Visitor...
duke@1 2402 //
duke@1 2403 // Then the type of the last expression above is
duke@1 2404 // Tree<Point>.Visitor.
duke@1 2405 else if (ownOuter.tag == CLASS && site != ownOuter) {
duke@1 2406 Type normOuter = site;
duke@1 2407 if (normOuter.tag == CLASS)
duke@1 2408 normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
duke@1 2409 if (normOuter == null) // perhaps from an import
duke@1 2410 normOuter = types.erasure(ownOuter);
duke@1 2411 if (normOuter != ownOuter)
duke@1 2412 owntype = new ClassType(
duke@1 2413 normOuter, List.<Type>nil(), owntype.tsym);
duke@1 2414 }
duke@1 2415 }
duke@1 2416 break;
duke@1 2417 case VAR:
duke@1 2418 VarSymbol v = (VarSymbol)sym;
duke@1 2419 // Test (4): if symbol is an instance field of a raw type,
duke@1 2420 // which is being assigned to, issue an unchecked warning if
duke@1 2421 // its type changes under erasure.
duke@1 2422 if (allowGenerics &&
duke@1 2423 pkind == VAR &&
duke@1 2424 v.owner.kind == TYP &&
duke@1 2425 (v.flags() & STATIC) == 0 &&
duke@1 2426 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2427 Type s = types.asOuterSuper(site, v.owner);
duke@1 2428 if (s != null &&
duke@1 2429 s.isRaw() &&
duke@1 2430 !types.isSameType(v.type, v.erasure(types))) {
duke@1 2431 chk.warnUnchecked(tree.pos(),
duke@1 2432 "unchecked.assign.to.var",
duke@1 2433 v, s);
duke@1 2434 }
duke@1 2435 }
duke@1 2436 // The computed type of a variable is the type of the
duke@1 2437 // variable symbol, taken as a member of the site type.
duke@1 2438 owntype = (sym.owner.kind == TYP &&
duke@1 2439 sym.name != names._this && sym.name != names._super)
duke@1 2440 ? types.memberType(site, sym)
duke@1 2441 : sym.type;
duke@1 2442
duke@1 2443 if (env.info.tvars.nonEmpty()) {
duke@1 2444 Type owntype1 = new ForAll(env.info.tvars, owntype);
duke@1 2445 for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
duke@1 2446 if (!owntype.contains(l.head)) {
duke@1 2447 log.error(tree.pos(), "undetermined.type", owntype1);
jjg@110 2448 owntype1 = types.createErrorType(owntype1);
duke@1 2449 }
duke@1 2450 owntype = owntype1;
duke@1 2451 }
duke@1 2452
duke@1 2453 // If the variable is a constant, record constant value in
duke@1 2454 // computed type.
duke@1 2455 if (v.getConstValue() != null && isStaticReference(tree))
duke@1 2456 owntype = owntype.constType(v.getConstValue());
duke@1 2457
duke@1 2458 if (pkind == VAL) {
duke@1 2459 owntype = capture(owntype); // capture "names as expressions"
duke@1 2460 }
duke@1 2461 break;
duke@1 2462 case MTH: {
duke@1 2463 JCMethodInvocation app = (JCMethodInvocation)env.tree;
duke@1 2464 owntype = checkMethod(site, sym, env, app.args,
duke@1 2465 pt.getParameterTypes(), pt.getTypeArguments(),
duke@1 2466 env.info.varArgs);
duke@1 2467 break;
duke@1 2468 }
duke@1 2469 case PCK: case ERR:
duke@1 2470 owntype = sym.type;
duke@1 2471 break;
duke@1 2472 default:
duke@1 2473 throw new AssertionError("unexpected kind: " + sym.kind +
duke@1 2474 " in tree " + tree);
duke@1 2475 }
duke@1 2476
duke@1 2477 // Test (1): emit a `deprecation' warning if symbol is deprecated.
duke@1 2478 // (for constructors, the error was given when the constructor was
duke@1 2479 // resolved)
duke@1 2480 if (sym.name != names.init &&
duke@1 2481 (sym.flags() & DEPRECATED) != 0 &&
duke@1 2482 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
duke@1 2483 sym.outermostClass() != env.info.scope.owner.outermostClass())
duke@1 2484 chk.warnDeprecated(tree.pos(), sym);
duke@1 2485
jjg@377 2486 if ((sym.flags() & PROPRIETARY) != 0) {
jjg@377 2487 if (enableSunApiLintControl)
jjg@377 2488 chk.warnSunApi(tree.pos(), "sun.proprietary", sym);
jjg@377 2489 else
jjg@377 2490 log.strictWarning(tree.pos(), "sun.proprietary", sym);
jjg@377 2491 }
duke@1 2492
duke@1 2493 // Test (3): if symbol is a variable, check that its type and
duke@1 2494 // kind are compatible with the prototype and protokind.
duke@1 2495 return check(tree, owntype, sym.kind, pkind, pt);
duke@1 2496 }
duke@1 2497
duke@1 2498 /** Check that variable is initialized and evaluate the variable's
duke@1 2499 * initializer, if not yet done. Also check that variable is not
duke@1 2500 * referenced before it is defined.
duke@1 2501 * @param tree The tree making up the variable reference.
duke@1 2502 * @param env The current environment.
duke@1 2503 * @param v The variable's symbol.
duke@1 2504 */
duke@1 2505 private void checkInit(JCTree tree,
duke@1 2506 Env<AttrContext> env,
duke@1 2507 VarSymbol v,
duke@1 2508 boolean onlyWarning) {
duke@1 2509 // System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
duke@1 2510 // tree.pos + " " + v.pos + " " +
duke@1 2511 // Resolve.isStatic(env));//DEBUG
duke@1 2512
duke@1 2513 // A forward reference is diagnosed if the declaration position
duke@1 2514 // of the variable is greater than the current tree position
duke@1 2515 // and the tree and variable definition occur in the same class
duke@1 2516 // definition. Note that writes don't count as references.
duke@1 2517 // This check applies only to class and instance
duke@1 2518 // variables. Local variables follow different scope rules,
duke@1 2519 // and are subject to definite assignment checking.
mcimadamore@94 2520 if ((env.info.enclVar == v || v.pos > tree.pos) &&
duke@1 2521 v.owner.kind == TYP &&
duke@1 2522 canOwnInitializer(env.info.scope.owner) &&
duke@1 2523 v.owner == env.info.scope.owner.enclClass() &&
duke@1 2524 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
duke@1 2525 (env.tree.getTag() != JCTree.ASSIGN ||
duke@1 2526 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
mcimadamore@94 2527 String suffix = (env.info.enclVar == v) ?
mcimadamore@94 2528 "self.ref" : "forward.ref";
mcimadamore@18 2529 if (!onlyWarning || isStaticEnumField(v)) {
mcimadamore@94 2530 log.error(tree.pos(), "illegal." + suffix);
duke@1 2531 } else if (useBeforeDeclarationWarning) {
mcimadamore@94 2532 log.warning(tree.pos(), suffix, v);
duke@1 2533 }
duke@1 2534 }
duke@1 2535
duke@1 2536 v.getConstValue(); // ensure initializer is evaluated
duke@1 2537
duke@1 2538 checkEnumInitializer(tree, env, v);
duke@1 2539 }
duke@1 2540
duke@1 2541 /**
duke@1 2542 * Check for illegal references to static members of enum. In
duke@1 2543 * an enum type, constructors and initializers may not
duke@1 2544 * reference its static members unless they are constant.
duke@1 2545 *
duke@1 2546 * @param tree The tree making up the variable reference.
duke@1 2547 * @param env The current environment.
duke@1 2548 * @param v The variable's symbol.
duke@1 2549 * @see JLS 3rd Ed. (8.9 Enums)
duke@1 2550 */
duke@1 2551 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
duke@1 2552 // JLS 3rd Ed.:
duke@1 2553 //
duke@1 2554 // "It is a compile-time error to reference a static field
duke@1 2555 // of an enum type that is not a compile-time constant
duke@1 2556 // (15.28) from constructors, instance initializer blocks,
duke@1 2557 // or instance variable initializer expressions of that
duke@1 2558 // type. It is a compile-time error for the constructors,
duke@1 2559 // instance initializer blocks, or instance variable
duke@1 2560 // initializer expressions of an enum constant e to refer
duke@1 2561 // to itself or to an enum constant of the same type that
duke@1 2562 // is declared to the right of e."
mcimadamore@18 2563 if (isStaticEnumField(v)) {
duke@1 2564 ClassSymbol enclClass = env.info.scope.owner.enclClass();
duke@1 2565
duke@1 2566 if (enclClass == null || enclClass.owner == null)
duke@1 2567 return;
duke@1 2568
duke@1 2569 // See if the enclosing class is the enum (or a
duke@1 2570 // subclass thereof) declaring v. If not, this
duke@1 2571 // reference is OK.
duke@1 2572 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
duke@1 2573 return;
duke@1 2574
duke@1 2575 // If the reference isn't from an initializer, then
duke@1 2576 // the reference is OK.
duke@1 2577 if (!Resolve.isInitializer(env))
duke@1 2578 return;
duke@1 2579
duke@1 2580 log.error(tree.pos(), "illegal.enum.static.ref");
duke@1 2581 }
duke@1 2582 }
duke@1 2583
mcimadamore@18 2584 /** Is the given symbol a static, non-constant field of an Enum?
mcimadamore@18 2585 * Note: enum literals should not be regarded as such
mcimadamore@18 2586 */
mcimadamore@18 2587 private boolean isStaticEnumField(VarSymbol v) {
mcimadamore@18 2588 return Flags.isEnum(v.owner) &&
mcimadamore@18 2589 Flags.isStatic(v) &&
mcimadamore@18 2590 !Flags.isConstant(v) &&
mcimadamore@18 2591 v.name != names._class;
duke@1 2592 }
duke@1 2593
duke@1 2594 /** Can the given symbol be the owner of code which forms part
duke@1 2595 * if class initialization? This is the case if the symbol is
duke@1 2596 * a type or field, or if the symbol is the synthetic method.
duke@1 2597 * owning a block.
duke@1 2598 */
duke@1 2599 private boolean canOwnInitializer(Symbol sym) {
duke@1 2600 return
duke@1 2601 (sym.kind & (VAR | TYP)) != 0 ||
duke@1 2602 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
duke@1 2603 }
duke@1 2604
duke@1 2605 Warner noteWarner = new Warner();
duke@1 2606
duke@1 2607 /**
duke@1 2608 * Check that method arguments conform to its instantation.
duke@1 2609 **/
duke@1 2610 public Type checkMethod(Type site,
duke@1 2611 Symbol sym,
duke@1 2612 Env<AttrContext> env,
duke@1 2613 final List<JCExpression> argtrees,
duke@1 2614 List<Type> argtypes,
duke@1 2615 List<Type> typeargtypes,
duke@1 2616 boolean useVarargs) {
duke@1 2617 // Test (5): if symbol is an instance method of a raw type, issue
duke@1 2618 // an unchecked warning if its argument types change under erasure.
duke@1 2619 if (allowGenerics &&
duke@1 2620 (sym.flags() & STATIC) == 0 &&
duke@1 2621 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2622 Type s = types.asOuterSuper(site, sym.owner);
duke@1 2623 if (s != null && s.isRaw() &&
duke@1 2624 !types.isSameTypes(sym.type.getParameterTypes(),
duke@1 2625 sym.erasure(types).getParameterTypes())) {
duke@1 2626 chk.warnUnchecked(env.tree.pos(),
duke@1 2627 "unchecked.call.mbr.of.raw.type",
duke@1 2628 sym, s);
duke@1 2629 }
duke@1 2630 }
duke@1 2631
duke@1 2632 // Compute the identifier's instantiated type.
duke@1 2633 // For methods, we need to compute the instance type by
duke@1 2634 // Resolve.instantiate from the symbol's type as well as
duke@1 2635 // any type arguments and value arguments.
duke@1 2636 noteWarner.warned = false;
duke@1 2637 Type owntype = rs.instantiate(env,
duke@1 2638 site,
duke@1 2639 sym,
duke@1 2640 argtypes,
duke@1 2641 typeargtypes,
duke@1 2642 true,
duke@1 2643 useVarargs,
duke@1 2644 noteWarner);
duke@1 2645 boolean warned = noteWarner.warned;
duke@1 2646
duke@1 2647 // If this fails, something went wrong; we should not have
duke@1 2648 // found the identifier in the first place.
duke@1 2649 if (owntype == null) {
duke@1 2650 if (!pt.isErroneous())
duke@1 2651 log.error(env.tree.pos(),
duke@1 2652 "internal.error.cant.instantiate",
duke@1 2653 sym, site,
duke@1 2654 Type.toString(pt.getParameterTypes()));
jjg@110 2655 owntype = types.createErrorType(site);
duke@1 2656 } else {
duke@1 2657 // System.out.println("call : " + env.tree);
duke@1 2658 // System.out.println("method : " + owntype);
duke@1 2659 // System.out.println("actuals: " + argtypes);
duke@1 2660 List<Type> formals = owntype.getParameterTypes();
duke@1 2661 Type last = useVarargs ? formals.last() : null;
duke@1 2662 if (sym.name==names.init &&
duke@1 2663 sym.owner == syms.enumSym)
duke@1 2664 formals = formals.tail.tail;
duke@1 2665 List<JCExpression> args = argtrees;
duke@1 2666 while (formals.head != last) {
duke@1 2667 JCTree arg = args.head;
duke@1 2668 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
duke@1 2669 assertConvertible(arg, arg.type, formals.head, warn);
duke@1 2670 warned |= warn.warned;
duke@1 2671 args = args.tail;
duke@1 2672 formals = formals.tail;
duke@1 2673 }
duke@1 2674 if (useVarargs) {
duke@1 2675 Type varArg = types.elemtype(last);
duke@1 2676 while (args.tail != null) {
duke@1 2677 JCTree arg = args.head;
duke@1 2678 Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
duke@1 2679 assertConvertible(arg, arg.type, varArg, warn);
duke@1 2680 warned |= warn.warned;
duke@1 2681 args = args.tail;
duke@1 2682 }
duke@1 2683 } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
duke@1 2684 // non-varargs call to varargs method
duke@1 2685 Type varParam = owntype.getParameterTypes().last();
duke@1 2686 Type lastArg = argtypes.last();
duke@1 2687 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
duke@1 2688 !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
duke@1 2689 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
duke@1 2690 types.elemtype(varParam),
duke@1 2691 varParam);
duke@1 2692 }
duke@1 2693
duke@1 2694 if (warned && sym.type.tag == FORALL) {
duke@1 2695 chk.warnUnchecked(env.tree.pos(),
duke@1 2696 "unchecked.meth.invocation.applied",
mcimadamore@161 2697 kindName(sym),
mcimadamore@161 2698 sym.name,
mcimadamore@161 2699 rs.methodArguments(sym.type.getParameterTypes()),
mcimadamore@161 2700 rs.methodArguments(argtypes),
mcimadamore@161 2701 kindName(sym.location()),
mcimadamore@161 2702 sym.location());
duke@1 2703 owntype = new MethodType(owntype.getParameterTypes(),
duke@1 2704 types.erasure(owntype.getReturnType()),
duke@1 2705 owntype.getThrownTypes(),
duke@1 2706 syms.methodClass);
duke@1 2707 }
duke@1 2708 if (useVarargs) {
duke@1 2709 JCTree tree = env.tree;
mcimadamore@580 2710 Type argtype = owntype.getParameterTypes().last();
mcimadamore@547 2711 if (owntype.getReturnType().tag != FORALL || warned) {
mcimadamore@580 2712 chk.checkVararg(env.tree.pos(), owntype.getParameterTypes(), sym, env);
mcimadamore@547 2713 }
mcimadamore@580 2714 Type elemtype = types.elemtype(argtype);
duke@1 2715 switch (tree.getTag()) {
duke@1 2716 case JCTree.APPLY:
duke@1 2717 ((JCMethodInvocation) tree).varargsElement = elemtype;
duke@1 2718 break;
duke@1 2719 case JCTree.NEWCLASS:
duke@1 2720 ((JCNewClass) tree).varargsElement = elemtype;
duke@1 2721 break;
duke@1 2722 default:
duke@1 2723 throw new AssertionError(""+tree);
duke@1 2724 }
duke@1 2725 }
duke@1 2726 }
duke@1 2727 return owntype;
duke@1 2728 }
duke@1 2729
duke@1 2730 private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
duke@1 2731 if (types.isConvertible(actual, formal, warn))
duke@1 2732 return;
duke@1 2733
duke@1 2734 if (formal.isCompound()
duke@1 2735 && types.isSubtype(actual, types.supertype(formal))
duke@1 2736 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
duke@1 2737 return;
duke@1 2738
duke@1 2739 if (false) {
duke@1 2740 // TODO: make assertConvertible work
mcimadamore@89 2741 chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
duke@1 2742 throw new AssertionError("Tree: " + tree
duke@1 2743 + " actual:" + actual
duke@1 2744 + " formal: " + formal);
duke@1 2745 }
duke@1 2746 }
duke@1 2747
duke@1 2748 public void visitLiteral(JCLiteral tree) {
duke@1 2749 result = check(
duke@1 2750 tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
duke@1 2751 }
duke@1 2752 //where
duke@1 2753 /** Return the type of a literal with given type tag.
duke@1 2754 */
duke@1 2755 Type litType(int tag) {
duke@1 2756 return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
duke@1 2757 }
duke@1 2758
duke@1 2759 public void visitTypeIdent(JCPrimitiveTypeTree tree) {
duke@1 2760 result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
duke@1 2761 }
duke@1 2762
duke@1 2763 public void visitTypeArray(JCArrayTypeTree tree) {
duke@1 2764 Type etype = attribType(tree.elemtype, env);
duke@1 2765 Type type = new ArrayType(etype, syms.arrayClass);
duke@1 2766 result = check(tree, type, TYP, pkind, pt);
duke@1 2767 }
duke@1 2768
duke@1 2769 /** Visitor method for parameterized types.
duke@1 2770 * Bound checking is left until later, since types are attributed
duke@1 2771 * before supertype structure is completely known
duke@1 2772 */
duke@1 2773 public void visitTypeApply(JCTypeApply tree) {
jjg@110 2774 Type owntype = types.createErrorType(tree.type);
duke@1 2775
duke@1 2776 // Attribute functor part of application and make sure it's a class.
duke@1 2777 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
duke@1 2778
duke@1 2779 // Attribute type parameters
duke@1 2780 List<Type> actuals = attribTypes(tree.arguments, env);
duke@1 2781
duke@1 2782 if (clazztype.tag == CLASS) {
duke@1 2783 List<Type> formals = clazztype.tsym.type.getTypeArguments();
duke@1 2784
mcimadamore@537 2785 if (actuals.length() == formals.length() || actuals.length() == 0) {
duke@1 2786 List<Type> a = actuals;
duke@1 2787 List<Type> f = formals;
duke@1 2788 while (a.nonEmpty()) {
duke@1 2789 a.head = a.head.withTypeVar(f.head);
duke@1 2790 a = a.tail;
duke@1 2791 f = f.tail;
duke@1 2792 }
duke@1 2793 // Compute the proper generic outer
duke@1 2794 Type clazzOuter = clazztype.getEnclosingType();
duke@1 2795 if (clazzOuter.tag == CLASS) {
duke@1 2796 Type site;
jjg@308 2797 JCExpression clazz = TreeInfo.typeIn(tree.clazz);
jjg@308 2798 if (clazz.getTag() == JCTree.IDENT) {
duke@1 2799 site = env.enclClass.sym.type;
jjg@308 2800 } else if (clazz.getTag() == JCTree.SELECT) {
jjg@308 2801 site = ((JCFieldAccess) clazz).selected.type;
duke@1 2802 } else throw new AssertionError(""+tree);
duke@1 2803 if (clazzOuter.tag == CLASS && site != clazzOuter) {
duke@1 2804 if (site.tag == CLASS)
duke@1 2805 site = types.asOuterSuper(site, clazzOuter.tsym);
duke@1 2806 if (site == null)
duke@1 2807 site = types.erasure(clazzOuter);
duke@1 2808 clazzOuter = site;
duke@1 2809 }
duke@1 2810 }
mcimadamore@536 2811 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
duke@1 2812 } else {
duke@1 2813 if (formals.length() != 0) {
duke@1 2814 log.error(tree.pos(), "wrong.number.type.args",
duke@1 2815 Integer.toString(formals.length()));
duke@1 2816 } else {
duke@1 2817 log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
duke@1 2818 }
jjg@110 2819 owntype = types.createErrorType(tree.type);
duke@1 2820 }
duke@1 2821 }
duke@1 2822 result = check(tree, owntype, TYP, pkind, pt);
duke@1 2823 }
duke@1 2824
mcimadamore@550 2825 public void visitTypeDisjoint(JCTypeDisjoint tree) {
mcimadamore@550 2826 List<Type> componentTypes = attribTypes(tree.components, env);
mcimadamore@550 2827 tree.type = result = check(tree, types.lub(componentTypes), TYP, pkind, pt);
mcimadamore@550 2828 }
mcimadamore@550 2829
duke@1 2830 public void visitTypeParameter(JCTypeParameter tree) {
duke@1 2831 TypeVar a = (TypeVar)tree.type;
duke@1 2832 Set<Type> boundSet = new HashSet<Type>();
duke@1 2833 if (a.bound.isErroneous())
duke@1 2834 return;
duke@1 2835 List<Type> bs = types.getBounds(a);
duke@1 2836 if (tree.bounds.nonEmpty()) {
duke@1 2837 // accept class or interface or typevar as first bound.
duke@1 2838 Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
duke@1 2839 boundSet.add(types.erasure(b));
mcimadamore@159 2840 if (b.isErroneous()) {
mcimadamore@159 2841 a.bound = b;
mcimadamore@159 2842 }
mcimadamore@159 2843 else if (b.tag == TYPEVAR) {
duke@1 2844 // if first bound was a typevar, do not accept further bounds.
duke@1 2845 if (tree.bounds.tail.nonEmpty()) {
duke@1 2846 log.error(tree.bounds.tail.head.pos(),
duke@1 2847 "type.var.may.not.be.followed.by.other.bounds");
jjg@504 2848 log.unrecoverableError = true;
duke@1 2849 tree.bounds = List.of(tree.bounds.head);
mcimadamore@7 2850 a.bound = bs.head;
duke@1 2851 }
duke@1 2852 } else {
duke@1 2853 // if first bound was a class or interface, accept only interfaces
duke@1 2854 // as further bounds.
duke@1 2855 for (JCExpression bound : tree.bounds.tail) {
duke@1 2856 bs = bs.tail;
duke@1 2857 Type i = checkBase(bs.head, bound, env, false, true, false);
mcimadamore@159 2858 if (i.isErroneous())
mcimadamore@159 2859 a.bound = i;
mcimadamore@159 2860 else if (i.tag == CLASS)
duke@1 2861 chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
duke@1 2862 }
duke@1 2863 }
duke@1 2864 }
duke@1 2865 bs = types.getBounds(a);
duke@1 2866
duke@1 2867 // in case of multiple bounds ...
duke@1 2868 if (bs.length() > 1) {
duke@1 2869 // ... the variable's bound is a class type flagged COMPOUND
duke@1 2870 // (see comment for TypeVar.bound).
duke@1 2871 // In this case, generate a class tree that represents the
duke@1 2872 // bound class, ...
duke@1 2873 JCTree extending;
duke@1 2874 List<JCExpression> implementing;
duke@1 2875 if ((bs.head.tsym.flags() & INTERFACE) == 0) {
duke@1 2876 extending = tree.bounds.head;
duke@1 2877 implementing = tree.bounds.tail;
duke@1 2878 } else {
duke@1 2879 extending = null;
duke@1 2880 implementing = tree.bounds;
duke@1 2881 }
duke@1 2882 JCClassDecl cd = make.at(tree.pos).ClassDef(
duke@1 2883 make.Modifiers(PUBLIC | ABSTRACT),
duke@1 2884 tree.name, List.<JCTypeParameter>nil(),
duke@1 2885 extending, implementing, List.<JCTree>nil());
duke@1 2886
duke@1 2887 ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
duke@1 2888 assert (c.flags() & COMPOUND) != 0;
duke@1 2889 cd.sym = c;
duke@1 2890 c.sourcefile = env.toplevel.sourcefile;
duke@1 2891
duke@1 2892 // ... and attribute the bound class
duke@1 2893 c.flags_field |= UNATTRIBUTED;
duke@1 2894 Env<AttrContext> cenv = enter.classEnv(cd, env);
duke@1 2895 enter.typeEnvs.put(c, cenv);
duke@1 2896 }
duke@1 2897 }
duke@1 2898
duke@1 2899
duke@1 2900 public void visitWildcard(JCWildcard tree) {
duke@1 2901 //- System.err.println("visitWildcard("+tree+");");//DEBUG
duke@1 2902 Type type = (tree.kind.kind == BoundKind.UNBOUND)
duke@1 2903 ? syms.objectType
duke@1 2904 : attribType(tree.inner, env);
duke@1 2905 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
duke@1 2906 tree.kind.kind,
duke@1 2907 syms.boundClass),
duke@1 2908 TYP, pkind, pt);
duke@1 2909 }
duke@1 2910
duke@1 2911 public void visitAnnotation(JCAnnotation tree) {
duke@1 2912 log.error(tree.pos(), "annotation.not.valid.for.type", pt);
duke@1 2913 result = tree.type = syms.errType;
duke@1 2914 }
duke@1 2915
jjg@308 2916 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 2917 result = tree.type = attribType(tree.getUnderlyingType(), env);
jjg@308 2918 }
jjg@308 2919
duke@1 2920 public void visitErroneous(JCErroneous tree) {
duke@1 2921 if (tree.errs != null)
duke@1 2922 for (JCTree err : tree.errs)
duke@1 2923 attribTree(err, env, ERR, pt);
duke@1 2924 result = tree.type = syms.errType;
duke@1 2925 }
duke@1 2926
duke@1 2927 /** Default visitor method for all other trees.
duke@1 2928 */
duke@1 2929 public void visitTree(JCTree tree) {
duke@1 2930 throw new AssertionError();
duke@1 2931 }
duke@1 2932
duke@1 2933 /** Main method: attribute class definition associated with given class symbol.
duke@1 2934 * reporting completion failures at the given position.
duke@1 2935 * @param pos The source position at which completion errors are to be
duke@1 2936 * reported.
duke@1 2937 * @param c The class symbol whose definition will be attributed.
duke@1 2938 */
duke@1 2939 public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
duke@1 2940 try {
duke@1 2941 annotate.flush();
duke@1 2942 attribClass(c);
duke@1 2943 } catch (CompletionFailure ex) {
duke@1 2944 chk.completionError(pos, ex);
duke@1 2945 }
duke@1 2946 }
duke@1 2947
duke@1 2948 /** Attribute class definition associated with given class symbol.
duke@1 2949 * @param c The class symbol whose definition will be attributed.
duke@1 2950 */
duke@1 2951 void attribClass(ClassSymbol c) throws CompletionFailure {
duke@1 2952 if (c.type.tag == ERROR) return;
duke@1 2953
duke@1 2954 // Check for cycles in the inheritance graph, which can arise from
duke@1 2955 // ill-formed class files.
duke@1 2956 chk.checkNonCyclic(null, c.type);
duke@1 2957
duke@1 2958 Type st = types.supertype(c.type);
duke@1 2959 if ((c.flags_field & Flags.COMPOUND) == 0) {
duke@1 2960 // First, attribute superclass.
duke@1 2961 if (st.tag == CLASS)
duke@1 2962 attribClass((ClassSymbol)st.tsym);
duke@1 2963
duke@1 2964 // Next attribute owner, if it is a class.
duke@1 2965 if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
duke@1 2966 attribClass((ClassSymbol)c.owner);
duke@1 2967 }
duke@1 2968
duke@1 2969 // The previous operations might have attributed the current class
duke@1 2970 // if there was a cycle. So we test first whether the class is still
duke@1 2971 // UNATTRIBUTED.
duke@1 2972 if ((c.flags_field & UNATTRIBUTED) != 0) {
duke@1 2973 c.flags_field &= ~UNATTRIBUTED;
duke@1 2974
duke@1 2975 // Get environment current at the point of class definition.
duke@1 2976 Env<AttrContext> env = enter.typeEnvs.get(c);
duke@1 2977
duke@1 2978 // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
duke@1 2979 // because the annotations were not available at the time the env was created. Therefore,
duke@1 2980 // we look up the environment chain for the first enclosing environment for which the
duke@1 2981 // lint value is set. Typically, this is the parent env, but might be further if there
duke@1 2982 // are any envs created as a result of TypeParameter nodes.
duke@1 2983 Env<AttrContext> lintEnv = env;
duke@1 2984 while (lintEnv.info.lint == null)
duke@1 2985 lintEnv = lintEnv.next;
duke@1 2986
duke@1 2987 // Having found the enclosing lint value, we can initialize the lint value for this class
duke@1 2988 env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
duke@1 2989
duke@1 2990 Lint prevLint = chk.setLint(env.info.lint);
duke@1 2991 JavaFileObject prev = log.useSource(c.sourcefile);
duke@1 2992
duke@1 2993 try {
duke@1 2994 // java.lang.Enum may not be subclassed by a non-enum
duke@1 2995 if (st.tsym == syms.enumSym &&
duke@1 2996 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
duke@1 2997 log.error(env.tree.pos(), "enum.no.subclassing");
duke@1 2998
duke@1 2999 // Enums may not be extended by source-level classes
duke@1 3000 if (st.tsym != null &&
duke@1 3001 ((st.tsym.flags_field & Flags.ENUM) != 0) &&
mcimadamore@82 3002 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
duke@1 3003 !target.compilerBootstrap(c)) {
duke@1 3004 log.error(env.tree.pos(), "enum.types.not.extensible");
duke@1 3005 }
duke@1 3006 attribClassBody(env, c);
duke@1 3007
duke@1 3008 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
duke@1 3009 } finally {
duke@1 3010 log.useSource(prev);
duke@1 3011 chk.setLint(prevLint);
duke@1 3012 }
duke@1 3013
duke@1 3014 }
duke@1 3015 }
duke@1 3016
duke@1 3017 public void visitImport(JCImport tree) {
duke@1 3018 // nothing to do
duke@1 3019 }
duke@1 3020
duke@1 3021 /** Finish the attribution of a class. */
duke@1 3022 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
duke@1 3023 JCClassDecl tree = (JCClassDecl)env.tree;
duke@1 3024 assert c == tree.sym;
duke@1 3025
duke@1 3026 // Validate annotations
duke@1 3027 chk.validateAnnotations(tree.mods.annotations, c);
duke@1 3028
duke@1 3029 // Validate type parameters, supertype and interfaces.
mcimadamore@42 3030 attribBounds(tree.typarams);
mcimadamore@537 3031 if (!c.isAnonymous()) {
mcimadamore@537 3032 //already checked if anonymous
mcimadamore@537 3033 chk.validate(tree.typarams, env);
mcimadamore@537 3034 chk.validate(tree.extending, env);
mcimadamore@537 3035 chk.validate(tree.implementing, env);
mcimadamore@537 3036 }
duke@1 3037
duke@1 3038 // If this is a non-abstract class, check that it has no abstract
duke@1 3039 // methods or unimplemented methods of an implemented interface.
duke@1 3040 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
duke@1 3041 if (!relax)
duke@1 3042 chk.checkAllDefined(tree.pos(), c);
duke@1 3043 }
duke@1 3044
duke@1 3045 if ((c.flags() & ANNOTATION) != 0) {
duke@1 3046 if (tree.implementing.nonEmpty())
duke@1 3047 log.error(tree.implementing.head.pos(),
duke@1 3048 "cant.extend.intf.annotation");
duke@1 3049 if (tree.typarams.nonEmpty())
duke@1 3050 log.error(tree.typarams.head.pos(),
duke@1 3051 "intf.annotation.cant.have.type.params");
duke@1 3052 } else {
duke@1 3053 // Check that all extended classes and interfaces
duke@1 3054 // are compatible (i.e. no two define methods with same arguments
duke@1 3055 // yet different return types). (JLS 8.4.6.3)
duke@1 3056 chk.checkCompatibleSupertypes(tree.pos(), c.type);
duke@1 3057 }
duke@1 3058
duke@1 3059 // Check that class does not import the same parameterized interface
duke@1 3060 // with two different argument lists.
duke@1 3061 chk.checkClassBounds(tree.pos(), c.type);
duke@1 3062
duke@1 3063 tree.type = c.type;
duke@1 3064
duke@1 3065 boolean assertsEnabled = false;
duke@1 3066 assert assertsEnabled = true;
duke@1 3067 if (assertsEnabled) {
duke@1 3068 for (List<JCTypeParameter> l = tree.typarams;
duke@1 3069 l.nonEmpty(); l = l.tail)
duke@1 3070 assert env.info.scope.lookup(l.head.name).scope != null;
duke@1 3071 }
duke@1 3072
duke@1 3073 // Check that a generic class doesn't extend Throwable
duke@1 3074 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
duke@1 3075 log.error(tree.extending.pos(), "generic.throwable");
duke@1 3076
duke@1 3077 // Check that all methods which implement some
duke@1 3078 // method conform to the method they implement.
duke@1 3079 chk.checkImplementations(tree);
duke@1 3080
duke@1 3081 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 3082 // Attribute declaration
duke@1 3083 attribStat(l.head, env);
duke@1 3084 // Check that declarations in inner classes are not static (JLS 8.1.2)
duke@1 3085 // Make an exception for static constants.
duke@1 3086 if (c.owner.kind != PCK &&
duke@1 3087 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
duke@1 3088 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
duke@1 3089 Symbol sym = null;
duke@1 3090 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
duke@1 3091 if (sym == null ||
duke@1 3092 sym.kind != VAR ||
duke@1 3093 ((VarSymbol) sym).getConstValue() == null)
duke@1 3094 log.error(l.head.pos(), "icls.cant.have.static.decl");
duke@1 3095 }
duke@1 3096 }
duke@1 3097
duke@1 3098 // Check for cycles among non-initial constructors.
duke@1 3099 chk.checkCyclicConstructors(tree);
duke@1 3100
duke@1 3101 // Check for cycles among annotation elements.
duke@1 3102 chk.checkNonCyclicElements(tree);
duke@1 3103
duke@1 3104 // Check for proper use of serialVersionUID
duke@1 3105 if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) &&
duke@1 3106 isSerializable(c) &&
duke@1 3107 (c.flags() & Flags.ENUM) == 0 &&
duke@1 3108 (c.flags() & ABSTRACT) == 0) {
duke@1 3109 checkSerialVersionUID(tree, c);
duke@1 3110 }
jjg@308 3111
jjg@308 3112 // Check type annotations applicability rules
jjg@308 3113 validateTypeAnnotations(tree);
duke@1 3114 }
duke@1 3115 // where
duke@1 3116 /** check if a class is a subtype of Serializable, if that is available. */
duke@1 3117 private boolean isSerializable(ClassSymbol c) {
duke@1 3118 try {
duke@1 3119 syms.serializableType.complete();
duke@1 3120 }
duke@1 3121 catch (CompletionFailure e) {
duke@1 3122 return false;
duke@1 3123 }
duke@1 3124 return types.isSubtype(c.type, syms.serializableType);
duke@1 3125 }
duke@1 3126
duke@1 3127 /** Check that an appropriate serialVersionUID member is defined. */
duke@1 3128 private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
duke@1 3129
duke@1 3130 // check for presence of serialVersionUID
duke@1 3131 Scope.Entry e = c.members().lookup(names.serialVersionUID);
duke@1 3132 while (e.scope != null && e.sym.kind != VAR) e = e.next();
duke@1 3133 if (e.scope == null) {
jjg@612 3134 log.warning(Lint.LintCategory.SERIAL,
jjg@612 3135 tree.pos(), "missing.SVUID", c);
duke@1 3136 return;
duke@1 3137 }
duke@1 3138
duke@1 3139 // check that it is static final
duke@1 3140 VarSymbol svuid = (VarSymbol)e.sym;
duke@1 3141 if ((svuid.flags() & (STATIC | FINAL)) !=
duke@1 3142 (STATIC | FINAL))
jjg@612 3143 log.warning(Lint.LintCategory.SERIAL,
jjg@612 3144 TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
duke@1 3145
duke@1 3146 // check that it is long
duke@1 3147 else if (svuid.type.tag != TypeTags.LONG)
jjg@612 3148 log.warning(Lint.LintCategory.SERIAL,
jjg@612 3149 TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
duke@1 3150
duke@1 3151 // check constant
duke@1 3152 else if (svuid.getConstValue() == null)
jjg@612 3153 log.warning(Lint.LintCategory.SERIAL,
jjg@612 3154 TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
duke@1 3155 }
duke@1 3156
duke@1 3157 private Type capture(Type type) {
duke@1 3158 return types.capture(type);
duke@1 3159 }
jjg@308 3160
jjg@308 3161 private void validateTypeAnnotations(JCTree tree) {
jjg@308 3162 tree.accept(typeAnnotationsValidator);
jjg@308 3163 }
jjg@308 3164 //where
jjg@308 3165 private final JCTree.Visitor typeAnnotationsValidator =
jjg@308 3166 new TreeScanner() {
jjg@308 3167 public void visitAnnotation(JCAnnotation tree) {
jjg@308 3168 if (tree instanceof JCTypeAnnotation) {
jjg@308 3169 chk.validateTypeAnnotation((JCTypeAnnotation)tree, false);
jjg@308 3170 }
jjg@308 3171 super.visitAnnotation(tree);
jjg@308 3172 }
jjg@308 3173 public void visitTypeParameter(JCTypeParameter tree) {
jjg@308 3174 chk.validateTypeAnnotations(tree.annotations, true);
jjg@308 3175 // don't call super. skip type annotations
jjg@308 3176 scan(tree.bounds);
jjg@308 3177 }
jjg@308 3178 public void visitMethodDef(JCMethodDecl tree) {
jjg@308 3179 // need to check static methods
jjg@308 3180 if ((tree.sym.flags() & Flags.STATIC) != 0) {
jjg@308 3181 for (JCTypeAnnotation a : tree.receiverAnnotations) {
jjg@308 3182 if (chk.isTypeAnnotation(a, false))
jjg@308 3183 log.error(a.pos(), "annotation.type.not.applicable");
jjg@308 3184 }
jjg@308 3185 }
jjg@308 3186 super.visitMethodDef(tree);
jjg@308 3187 }
jjg@308 3188 };
duke@1 3189 }

mercurial