src/share/classes/com/sun/tools/javac/comp/Attr.java

Mon, 23 Aug 2010 15:13:33 -0700

author
jjg
date
Mon, 23 Aug 2010 15:13:33 -0700
changeset 643
a626d8c1de6e
parent 638
d6fe0ea070aa
child 664
4124840b35fe
permissions
-rw-r--r--

6976747: JCDiagnostic: replace "boolean mandatory" with new "Set<JCDiagnostic.Flag>"
Reviewed-by: mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.tools.JavaFileObject;
    33 import com.sun.tools.javac.code.*;
    34 import com.sun.tools.javac.jvm.*;
    35 import com.sun.tools.javac.tree.*;
    36 import com.sun.tools.javac.util.*;
    37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    38 import com.sun.tools.javac.util.List;
    40 import com.sun.tools.javac.jvm.Target;
    41 import com.sun.tools.javac.code.Symbol.*;
    42 import com.sun.tools.javac.tree.JCTree.*;
    43 import com.sun.tools.javac.code.Type.*;
    45 import com.sun.source.tree.IdentifierTree;
    46 import com.sun.source.tree.MemberSelectTree;
    47 import com.sun.source.tree.TreeVisitor;
    48 import com.sun.source.util.SimpleTreeVisitor;
    50 import static com.sun.tools.javac.code.Flags.*;
    51 import static com.sun.tools.javac.code.Kinds.*;
    52 import static com.sun.tools.javac.code.TypeTags.*;
    54 /** This is the main context-dependent analysis phase in GJC. It
    55  *  encompasses name resolution, type checking and constant folding as
    56  *  subtasks. Some subtasks involve auxiliary classes.
    57  *  @see Check
    58  *  @see Resolve
    59  *  @see ConstFold
    60  *  @see Infer
    61  *
    62  *  <p><b>This is NOT part of any supported API.
    63  *  If you write code that depends on this, you do so at your own risk.
    64  *  This code and its internal interfaces are subject to change or
    65  *  deletion without notice.</b>
    66  */
    67 public class Attr extends JCTree.Visitor {
    68     protected static final Context.Key<Attr> attrKey =
    69         new Context.Key<Attr>();
    71     final Names names;
    72     final Log log;
    73     final Symtab syms;
    74     final Resolve rs;
    75     final Infer infer;
    76     final Check chk;
    77     final MemberEnter memberEnter;
    78     final TreeMaker make;
    79     final ConstFold cfolder;
    80     final Enter enter;
    81     final Target target;
    82     final Types types;
    83     final JCDiagnostic.Factory diags;
    84     final Annotate annotate;
    86     public static Attr instance(Context context) {
    87         Attr instance = context.get(attrKey);
    88         if (instance == null)
    89             instance = new Attr(context);
    90         return instance;
    91     }
    93     protected Attr(Context context) {
    94         context.put(attrKey, this);
    96         names = Names.instance(context);
    97         log = Log.instance(context);
    98         syms = Symtab.instance(context);
    99         rs = Resolve.instance(context);
   100         chk = Check.instance(context);
   101         memberEnter = MemberEnter.instance(context);
   102         make = TreeMaker.instance(context);
   103         enter = Enter.instance(context);
   104         infer = Infer.instance(context);
   105         cfolder = ConstFold.instance(context);
   106         target = Target.instance(context);
   107         types = Types.instance(context);
   108         diags = JCDiagnostic.Factory.instance(context);
   109         annotate = Annotate.instance(context);
   111         Options options = Options.instance(context);
   113         Source source = Source.instance(context);
   114         allowGenerics = source.allowGenerics();
   115         allowVarargs = source.allowVarargs();
   116         allowEnums = source.allowEnums();
   117         allowBoxing = source.allowBoxing();
   118         allowCovariantReturns = source.allowCovariantReturns();
   119         allowAnonOuterThis = source.allowAnonOuterThis();
   120         allowStringsInSwitch = source.allowStringsInSwitch();
   121         sourceName = source.name;
   122         relax = (options.get("-retrofit") != null ||
   123                  options.get("-relax") != null);
   124         useBeforeDeclarationWarning = options.get("useBeforeDeclarationWarning") != null;
   125         enableSunApiLintControl = options.get("enableSunApiLintControl") != null;
   126     }
   128     /** Switch: relax some constraints for retrofit mode.
   129      */
   130     boolean relax;
   132     /** Switch: support generics?
   133      */
   134     boolean allowGenerics;
   136     /** Switch: allow variable-arity methods.
   137      */
   138     boolean allowVarargs;
   140     /** Switch: support enums?
   141      */
   142     boolean allowEnums;
   144     /** Switch: support boxing and unboxing?
   145      */
   146     boolean allowBoxing;
   148     /** Switch: support covariant result types?
   149      */
   150     boolean allowCovariantReturns;
   152     /** Switch: allow references to surrounding object from anonymous
   153      * objects during constructor call?
   154      */
   155     boolean allowAnonOuterThis;
   157     /**
   158      * Switch: warn about use of variable before declaration?
   159      * RFE: 6425594
   160      */
   161     boolean useBeforeDeclarationWarning;
   163     /**
   164      * Switch: allow lint infrastructure to control proprietary
   165      * API warnings.
   166      */
   167     boolean enableSunApiLintControl;
   169     /**
   170      * Switch: allow strings in switch?
   171      */
   172     boolean allowStringsInSwitch;
   174     /**
   175      * Switch: name of source level; used for error reporting.
   176      */
   177     String sourceName;
   179     /** Check kind and type of given tree against protokind and prototype.
   180      *  If check succeeds, store type in tree and return it.
   181      *  If check fails, store errType in tree and return it.
   182      *  No checks are performed if the prototype is a method type.
   183      *  It is not necessary in this case since we know that kind and type
   184      *  are correct.
   185      *
   186      *  @param tree     The tree whose kind and type is checked
   187      *  @param owntype  The computed type of the tree
   188      *  @param ownkind  The computed kind of the tree
   189      *  @param pkind    The expected kind (or: protokind) of the tree
   190      *  @param pt       The expected type (or: prototype) of the tree
   191      */
   192     Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
   193         if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
   194             if ((ownkind & ~pkind) == 0) {
   195                 owntype = chk.checkType(tree.pos(), owntype, pt, errKey);
   196             } else {
   197                 log.error(tree.pos(), "unexpected.type",
   198                           kindNames(pkind),
   199                           kindName(ownkind));
   200                 owntype = types.createErrorType(owntype);
   201             }
   202         }
   203         tree.type = owntype;
   204         return owntype;
   205     }
   207     /** Is given blank final variable assignable, i.e. in a scope where it
   208      *  may be assigned to even though it is final?
   209      *  @param v      The blank final variable.
   210      *  @param env    The current environment.
   211      */
   212     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   213         Symbol owner = env.info.scope.owner;
   214            // owner refers to the innermost variable, method or
   215            // initializer block declaration at this point.
   216         return
   217             v.owner == owner
   218             ||
   219             ((owner.name == names.init ||    // i.e. we are in a constructor
   220               owner.kind == VAR ||           // i.e. we are in a variable initializer
   221               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   222              &&
   223              v.owner == owner.owner
   224              &&
   225              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   226     }
   228     /** Check that variable can be assigned to.
   229      *  @param pos    The current source code position.
   230      *  @param v      The assigned varaible
   231      *  @param base   If the variable is referred to in a Select, the part
   232      *                to the left of the `.', null otherwise.
   233      *  @param env    The current environment.
   234      */
   235     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   236         if ((v.flags() & FINAL) != 0 &&
   237             ((v.flags() & HASINIT) != 0
   238              ||
   239              !((base == null ||
   240                (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
   241                isAssignableAsBlankFinal(v, env)))) {
   242             if (v.isResourceVariable()) { //TWR resource
   243                 log.error(pos, "twr.resource.may.not.be.assigned", v);
   244             } else {
   245                 log.error(pos, "cant.assign.val.to.final.var", v);
   246             }
   247         }
   248     }
   250     /** Does tree represent a static reference to an identifier?
   251      *  It is assumed that tree is either a SELECT or an IDENT.
   252      *  We have to weed out selects from non-type names here.
   253      *  @param tree    The candidate tree.
   254      */
   255     boolean isStaticReference(JCTree tree) {
   256         if (tree.getTag() == JCTree.SELECT) {
   257             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   258             if (lsym == null || lsym.kind != TYP) {
   259                 return false;
   260             }
   261         }
   262         return true;
   263     }
   265     /** Is this symbol a type?
   266      */
   267     static boolean isType(Symbol sym) {
   268         return sym != null && sym.kind == TYP;
   269     }
   271     /** The current `this' symbol.
   272      *  @param env    The current environment.
   273      */
   274     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   275         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   276     }
   278     /** Attribute a parsed identifier.
   279      * @param tree Parsed identifier name
   280      * @param topLevel The toplevel to use
   281      */
   282     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   283         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   284         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   285                                            syms.errSymbol.name,
   286                                            null, null, null, null);
   287         localEnv.enclClass.sym = syms.errSymbol;
   288         return tree.accept(identAttributer, localEnv);
   289     }
   290     // where
   291         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   292         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   293             @Override
   294             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   295                 Symbol site = visit(node.getExpression(), env);
   296                 if (site.kind == ERR)
   297                     return site;
   298                 Name name = (Name)node.getIdentifier();
   299                 if (site.kind == PCK) {
   300                     env.toplevel.packge = (PackageSymbol)site;
   301                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   302                 } else {
   303                     env.enclClass.sym = (ClassSymbol)site;
   304                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   305                 }
   306             }
   308             @Override
   309             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   310                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   311             }
   312         }
   314     public Type coerce(Type etype, Type ttype) {
   315         return cfolder.coerce(etype, ttype);
   316     }
   318     public Type attribType(JCTree node, TypeSymbol sym) {
   319         Env<AttrContext> env = enter.typeEnvs.get(sym);
   320         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   321         return attribTree(node, localEnv, Kinds.TYP, Type.noType);
   322     }
   324     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   325         breakTree = tree;
   326         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   327         try {
   328             attribExpr(expr, env);
   329         } catch (BreakAttr b) {
   330             return b.env;
   331         } finally {
   332             breakTree = null;
   333             log.useSource(prev);
   334         }
   335         return env;
   336     }
   338     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   339         breakTree = tree;
   340         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   341         try {
   342             attribStat(stmt, env);
   343         } catch (BreakAttr b) {
   344             return b.env;
   345         } finally {
   346             breakTree = null;
   347             log.useSource(prev);
   348         }
   349         return env;
   350     }
   352     private JCTree breakTree = null;
   354     private static class BreakAttr extends RuntimeException {
   355         static final long serialVersionUID = -6924771130405446405L;
   356         private Env<AttrContext> env;
   357         private BreakAttr(Env<AttrContext> env) {
   358             this.env = env;
   359         }
   360     }
   363 /* ************************************************************************
   364  * Visitor methods
   365  *************************************************************************/
   367     /** Visitor argument: the current environment.
   368      */
   369     Env<AttrContext> env;
   371     /** Visitor argument: the currently expected proto-kind.
   372      */
   373     int pkind;
   375     /** Visitor argument: the currently expected proto-type.
   376      */
   377     Type pt;
   379     /** Visitor argument: the error key to be generated when a type error occurs
   380      */
   381     String errKey;
   383     /** Visitor result: the computed type.
   384      */
   385     Type result;
   387     /** Visitor method: attribute a tree, catching any completion failure
   388      *  exceptions. Return the tree's type.
   389      *
   390      *  @param tree    The tree to be visited.
   391      *  @param env     The environment visitor argument.
   392      *  @param pkind   The protokind visitor argument.
   393      *  @param pt      The prototype visitor argument.
   394      */
   395     Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
   396         return attribTree(tree, env, pkind, pt, "incompatible.types");
   397     }
   399     Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt, String errKey) {
   400         Env<AttrContext> prevEnv = this.env;
   401         int prevPkind = this.pkind;
   402         Type prevPt = this.pt;
   403         String prevErrKey = this.errKey;
   404         try {
   405             this.env = env;
   406             this.pkind = pkind;
   407             this.pt = pt;
   408             this.errKey = errKey;
   409             tree.accept(this);
   410             if (tree == breakTree)
   411                 throw new BreakAttr(env);
   412             return result;
   413         } catch (CompletionFailure ex) {
   414             tree.type = syms.errType;
   415             return chk.completionError(tree.pos(), ex);
   416         } finally {
   417             this.env = prevEnv;
   418             this.pkind = prevPkind;
   419             this.pt = prevPt;
   420             this.errKey = prevErrKey;
   421         }
   422     }
   424     /** Derived visitor method: attribute an expression tree.
   425      */
   426     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   427         return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
   428     }
   430     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt, String key) {
   431         return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType, key);
   432     }
   434     /** Derived visitor method: attribute an expression tree with
   435      *  no constraints on the computed type.
   436      */
   437     Type attribExpr(JCTree tree, Env<AttrContext> env) {
   438         return attribTree(tree, env, VAL, Type.noType);
   439     }
   441     /** Derived visitor method: attribute a type tree.
   442      */
   443     Type attribType(JCTree tree, Env<AttrContext> env) {
   444         Type result = attribType(tree, env, Type.noType);
   445         return result;
   446     }
   448     /** Derived visitor method: attribute a type tree.
   449      */
   450     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   451         Type result = attribTree(tree, env, TYP, pt);
   452         return result;
   453     }
   455     /** Derived visitor method: attribute a statement or definition tree.
   456      */
   457     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   458         return attribTree(tree, env, NIL, Type.noType);
   459     }
   461     /** Attribute a list of expressions, returning a list of types.
   462      */
   463     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   464         ListBuffer<Type> ts = new ListBuffer<Type>();
   465         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   466             ts.append(attribExpr(l.head, env, pt));
   467         return ts.toList();
   468     }
   470     /** Attribute a list of statements, returning nothing.
   471      */
   472     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   473         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   474             attribStat(l.head, env);
   475     }
   477     /** Attribute the arguments in a method call, returning a list of types.
   478      */
   479     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
   480         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   481         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   482             argtypes.append(chk.checkNonVoid(
   483                 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
   484         return argtypes.toList();
   485     }
   487     /** Attribute a type argument list, returning a list of types.
   488      *  Caller is responsible for calling checkRefTypes.
   489      */
   490     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   491         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   492         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   493             argtypes.append(attribType(l.head, env));
   494         return argtypes.toList();
   495     }
   497     /** Attribute a type argument list, returning a list of types.
   498      *  Check that all the types are references.
   499      */
   500     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   501         List<Type> types = attribAnyTypes(trees, env);
   502         return chk.checkRefTypes(trees, types);
   503     }
   505     /**
   506      * Attribute type variables (of generic classes or methods).
   507      * Compound types are attributed later in attribBounds.
   508      * @param typarams the type variables to enter
   509      * @param env      the current environment
   510      */
   511     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   512         for (JCTypeParameter tvar : typarams) {
   513             TypeVar a = (TypeVar)tvar.type;
   514             a.tsym.flags_field |= UNATTRIBUTED;
   515             a.bound = Type.noType;
   516             if (!tvar.bounds.isEmpty()) {
   517                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   518                 for (JCExpression bound : tvar.bounds.tail)
   519                     bounds = bounds.prepend(attribType(bound, env));
   520                 types.setBounds(a, bounds.reverse());
   521             } else {
   522                 // if no bounds are given, assume a single bound of
   523                 // java.lang.Object.
   524                 types.setBounds(a, List.of(syms.objectType));
   525             }
   526             a.tsym.flags_field &= ~UNATTRIBUTED;
   527         }
   528         for (JCTypeParameter tvar : typarams)
   529             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   530         attribStats(typarams, env);
   531     }
   533     void attribBounds(List<JCTypeParameter> typarams) {
   534         for (JCTypeParameter typaram : typarams) {
   535             Type bound = typaram.type.getUpperBound();
   536             if (bound != null && bound.tsym instanceof ClassSymbol) {
   537                 ClassSymbol c = (ClassSymbol)bound.tsym;
   538                 if ((c.flags_field & COMPOUND) != 0) {
   539                     assert (c.flags_field & UNATTRIBUTED) != 0 : c;
   540                     attribClass(typaram.pos(), c);
   541                 }
   542             }
   543         }
   544     }
   546     /**
   547      * Attribute the type references in a list of annotations.
   548      */
   549     void attribAnnotationTypes(List<JCAnnotation> annotations,
   550                                Env<AttrContext> env) {
   551         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   552             JCAnnotation a = al.head;
   553             attribType(a.annotationType, env);
   554         }
   555     }
   557     /** Attribute type reference in an `extends' or `implements' clause.
   558      *  Supertypes of anonymous inner classes are usually already attributed.
   559      *
   560      *  @param tree              The tree making up the type reference.
   561      *  @param env               The environment current at the reference.
   562      *  @param classExpected     true if only a class is expected here.
   563      *  @param interfaceExpected true if only an interface is expected here.
   564      */
   565     Type attribBase(JCTree tree,
   566                     Env<AttrContext> env,
   567                     boolean classExpected,
   568                     boolean interfaceExpected,
   569                     boolean checkExtensible) {
   570         Type t = tree.type != null ?
   571             tree.type :
   572             attribType(tree, env);
   573         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   574     }
   575     Type checkBase(Type t,
   576                    JCTree tree,
   577                    Env<AttrContext> env,
   578                    boolean classExpected,
   579                    boolean interfaceExpected,
   580                    boolean checkExtensible) {
   581         if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
   582             // check that type variable is already visible
   583             if (t.getUpperBound() == null) {
   584                 log.error(tree.pos(), "illegal.forward.ref");
   585                 return types.createErrorType(t);
   586             }
   587         } else {
   588             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   589         }
   590         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   591             log.error(tree.pos(), "intf.expected.here");
   592             // return errType is necessary since otherwise there might
   593             // be undetected cycles which cause attribution to loop
   594             return types.createErrorType(t);
   595         } else if (checkExtensible &&
   596                    classExpected &&
   597                    (t.tsym.flags() & INTERFACE) != 0) {
   598             log.error(tree.pos(), "no.intf.expected.here");
   599             return types.createErrorType(t);
   600         }
   601         if (checkExtensible &&
   602             ((t.tsym.flags() & FINAL) != 0)) {
   603             log.error(tree.pos(),
   604                       "cant.inherit.from.final", t.tsym);
   605         }
   606         chk.checkNonCyclic(tree.pos(), t);
   607         return t;
   608     }
   610     public void visitClassDef(JCClassDecl tree) {
   611         // Local classes have not been entered yet, so we need to do it now:
   612         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   613             enter.classEnter(tree, env);
   615         ClassSymbol c = tree.sym;
   616         if (c == null) {
   617             // exit in case something drastic went wrong during enter.
   618             result = null;
   619         } else {
   620             // make sure class has been completed:
   621             c.complete();
   623             // If this class appears as an anonymous class
   624             // in a superclass constructor call where
   625             // no explicit outer instance is given,
   626             // disable implicit outer instance from being passed.
   627             // (This would be an illegal access to "this before super").
   628             if (env.info.isSelfCall &&
   629                 env.tree.getTag() == JCTree.NEWCLASS &&
   630                 ((JCNewClass) env.tree).encl == null)
   631             {
   632                 c.flags_field |= NOOUTERTHIS;
   633             }
   634             attribClass(tree.pos(), c);
   635             result = tree.type = c.type;
   636         }
   637     }
   639     public void visitMethodDef(JCMethodDecl tree) {
   640         MethodSymbol m = tree.sym;
   642         Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
   643         Lint prevLint = chk.setLint(lint);
   644         try {
   645             chk.checkDeprecatedAnnotation(tree.pos(), m);
   647             attribBounds(tree.typarams);
   649             // If we override any other methods, check that we do so properly.
   650             // JLS ???
   651             chk.checkOverride(tree, m);
   653             // Create a new environment with local scope
   654             // for attributing the method.
   655             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   657             localEnv.info.lint = lint;
   659             // Enter all type parameters into the local method scope.
   660             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   661                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   663             ClassSymbol owner = env.enclClass.sym;
   664             if ((owner.flags() & ANNOTATION) != 0 &&
   665                 tree.params.nonEmpty())
   666                 log.error(tree.params.head.pos(),
   667                           "intf.annotation.members.cant.have.params");
   669             // Attribute all value parameters.
   670             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   671                 attribStat(l.head, localEnv);
   672             }
   674             chk.checkVarargMethodDecl(tree);
   676             // Check that type parameters are well-formed.
   677             chk.validate(tree.typarams, localEnv);
   679             // Check that result type is well-formed.
   680             chk.validate(tree.restype, localEnv);
   682             // annotation method checks
   683             if ((owner.flags() & ANNOTATION) != 0) {
   684                 // annotation method cannot have throws clause
   685                 if (tree.thrown.nonEmpty()) {
   686                     log.error(tree.thrown.head.pos(),
   687                             "throws.not.allowed.in.intf.annotation");
   688                 }
   689                 // annotation method cannot declare type-parameters
   690                 if (tree.typarams.nonEmpty()) {
   691                     log.error(tree.typarams.head.pos(),
   692                             "intf.annotation.members.cant.have.type.params");
   693                 }
   694                 // validate annotation method's return type (could be an annotation type)
   695                 chk.validateAnnotationType(tree.restype);
   696                 // ensure that annotation method does not clash with members of Object/Annotation
   697                 chk.validateAnnotationMethod(tree.pos(), m);
   699                 if (tree.defaultValue != null) {
   700                     // if default value is an annotation, check it is a well-formed
   701                     // annotation value (e.g. no duplicate values, no missing values, etc.)
   702                     chk.validateAnnotationTree(tree.defaultValue);
   703                 }
   704             }
   706             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   707                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   709             if (tree.body == null) {
   710                 // Empty bodies are only allowed for
   711                 // abstract, native, or interface methods, or for methods
   712                 // in a retrofit signature class.
   713                 if ((owner.flags() & INTERFACE) == 0 &&
   714                     (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
   715                     !relax)
   716                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   717                 if (tree.defaultValue != null) {
   718                     if ((owner.flags() & ANNOTATION) == 0)
   719                         log.error(tree.pos(),
   720                                   "default.allowed.in.intf.annotation.member");
   721                 }
   722             } else if ((owner.flags() & INTERFACE) != 0) {
   723                 log.error(tree.body.pos(), "intf.meth.cant.have.body");
   724             } else if ((tree.mods.flags & ABSTRACT) != 0) {
   725                 log.error(tree.pos(), "abstract.meth.cant.have.body");
   726             } else if ((tree.mods.flags & NATIVE) != 0) {
   727                 log.error(tree.pos(), "native.meth.cant.have.body");
   728             } else {
   729                 // Add an implicit super() call unless an explicit call to
   730                 // super(...) or this(...) is given
   731                 // or we are compiling class java.lang.Object.
   732                 if (tree.name == names.init && owner.type != syms.objectType) {
   733                     JCBlock body = tree.body;
   734                     if (body.stats.isEmpty() ||
   735                         !TreeInfo.isSelfCall(body.stats.head)) {
   736                         body.stats = body.stats.
   737                             prepend(memberEnter.SuperCall(make.at(body.pos),
   738                                                           List.<Type>nil(),
   739                                                           List.<JCVariableDecl>nil(),
   740                                                           false));
   741                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
   742                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
   743                                TreeInfo.isSuperCall(body.stats.head)) {
   744                         // enum constructors are not allowed to call super
   745                         // directly, so make sure there aren't any super calls
   746                         // in enum constructors, except in the compiler
   747                         // generated one.
   748                         log.error(tree.body.stats.head.pos(),
   749                                   "call.to.super.not.allowed.in.enum.ctor",
   750                                   env.enclClass.sym);
   751                     }
   752                 }
   754                 // Attribute method body.
   755                 attribStat(tree.body, localEnv);
   756             }
   757             localEnv.info.scope.leave();
   758             result = tree.type = m.type;
   759             chk.validateAnnotations(tree.mods.annotations, m);
   760         }
   761         finally {
   762             chk.setLint(prevLint);
   763         }
   764     }
   766     public void visitVarDef(JCVariableDecl tree) {
   767         // Local variables have not been entered yet, so we need to do it now:
   768         if (env.info.scope.owner.kind == MTH) {
   769             if (tree.sym != null) {
   770                 // parameters have already been entered
   771                 env.info.scope.enter(tree.sym);
   772             } else {
   773                 memberEnter.memberEnter(tree, env);
   774                 annotate.flush();
   775             }
   776         }
   778         VarSymbol v = tree.sym;
   779         Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
   780         Lint prevLint = chk.setLint(lint);
   782         // Check that the variable's declared type is well-formed.
   783         chk.validate(tree.vartype, env);
   785         try {
   786             chk.checkDeprecatedAnnotation(tree.pos(), v);
   788             if (tree.init != null) {
   789                 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
   790                     // In this case, `v' is final.  Ensure that it's initializer is
   791                     // evaluated.
   792                     v.getConstValue(); // ensure initializer is evaluated
   793                 } else {
   794                     // Attribute initializer in a new environment
   795                     // with the declared variable as owner.
   796                     // Check that initializer conforms to variable's declared type.
   797                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
   798                     initEnv.info.lint = lint;
   799                     // In order to catch self-references, we set the variable's
   800                     // declaration position to maximal possible value, effectively
   801                     // marking the variable as undefined.
   802                     initEnv.info.enclVar = v;
   803                     attribExpr(tree.init, initEnv, v.type);
   804                 }
   805             }
   806             result = tree.type = v.type;
   807             chk.validateAnnotations(tree.mods.annotations, v);
   808         }
   809         finally {
   810             chk.setLint(prevLint);
   811         }
   812     }
   814     public void visitSkip(JCSkip tree) {
   815         result = null;
   816     }
   818     public void visitBlock(JCBlock tree) {
   819         if (env.info.scope.owner.kind == TYP) {
   820             // Block is a static or instance initializer;
   821             // let the owner of the environment be a freshly
   822             // created BLOCK-method.
   823             Env<AttrContext> localEnv =
   824                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
   825             localEnv.info.scope.owner =
   826                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
   827                                  env.info.scope.owner);
   828             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
   829             attribStats(tree.stats, localEnv);
   830         } else {
   831             // Create a new local environment with a local scope.
   832             Env<AttrContext> localEnv =
   833                 env.dup(tree, env.info.dup(env.info.scope.dup()));
   834             attribStats(tree.stats, localEnv);
   835             localEnv.info.scope.leave();
   836         }
   837         result = null;
   838     }
   840     public void visitDoLoop(JCDoWhileLoop tree) {
   841         attribStat(tree.body, env.dup(tree));
   842         attribExpr(tree.cond, env, syms.booleanType);
   843         result = null;
   844     }
   846     public void visitWhileLoop(JCWhileLoop tree) {
   847         attribExpr(tree.cond, env, syms.booleanType);
   848         attribStat(tree.body, env.dup(tree));
   849         result = null;
   850     }
   852     public void visitForLoop(JCForLoop tree) {
   853         Env<AttrContext> loopEnv =
   854             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
   855         attribStats(tree.init, loopEnv);
   856         if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
   857         loopEnv.tree = tree; // before, we were not in loop!
   858         attribStats(tree.step, loopEnv);
   859         attribStat(tree.body, loopEnv);
   860         loopEnv.info.scope.leave();
   861         result = null;
   862     }
   864     public void visitForeachLoop(JCEnhancedForLoop tree) {
   865         Env<AttrContext> loopEnv =
   866             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
   867         attribStat(tree.var, loopEnv);
   868         Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
   869         chk.checkNonVoid(tree.pos(), exprType);
   870         Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
   871         if (elemtype == null) {
   872             // or perhaps expr implements Iterable<T>?
   873             Type base = types.asSuper(exprType, syms.iterableType.tsym);
   874             if (base == null) {
   875                 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
   876                 elemtype = types.createErrorType(exprType);
   877             } else {
   878                 List<Type> iterableParams = base.allparams();
   879                 elemtype = iterableParams.isEmpty()
   880                     ? syms.objectType
   881                     : types.upperBound(iterableParams.head);
   882             }
   883         }
   884         chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
   885         loopEnv.tree = tree; // before, we were not in loop!
   886         attribStat(tree.body, loopEnv);
   887         loopEnv.info.scope.leave();
   888         result = null;
   889     }
   891     public void visitLabelled(JCLabeledStatement tree) {
   892         // Check that label is not used in an enclosing statement
   893         Env<AttrContext> env1 = env;
   894         while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
   895             if (env1.tree.getTag() == JCTree.LABELLED &&
   896                 ((JCLabeledStatement) env1.tree).label == tree.label) {
   897                 log.error(tree.pos(), "label.already.in.use",
   898                           tree.label);
   899                 break;
   900             }
   901             env1 = env1.next;
   902         }
   904         attribStat(tree.body, env.dup(tree));
   905         result = null;
   906     }
   908     public void visitSwitch(JCSwitch tree) {
   909         Type seltype = attribExpr(tree.selector, env);
   911         Env<AttrContext> switchEnv =
   912             env.dup(tree, env.info.dup(env.info.scope.dup()));
   914         boolean enumSwitch =
   915             allowEnums &&
   916             (seltype.tsym.flags() & Flags.ENUM) != 0;
   917         boolean stringSwitch = false;
   918         if (types.isSameType(seltype, syms.stringType)) {
   919             if (allowStringsInSwitch) {
   920                 stringSwitch = true;
   921             } else {
   922                 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
   923             }
   924         }
   925         if (!enumSwitch && !stringSwitch)
   926             seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
   928         // Attribute all cases and
   929         // check that there are no duplicate case labels or default clauses.
   930         Set<Object> labels = new HashSet<Object>(); // The set of case labels.
   931         boolean hasDefault = false;      // Is there a default label?
   932         for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
   933             JCCase c = l.head;
   934             Env<AttrContext> caseEnv =
   935                 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
   936             if (c.pat != null) {
   937                 if (enumSwitch) {
   938                     Symbol sym = enumConstant(c.pat, seltype);
   939                     if (sym == null) {
   940                         log.error(c.pat.pos(), "enum.const.req");
   941                     } else if (!labels.add(sym)) {
   942                         log.error(c.pos(), "duplicate.case.label");
   943                     }
   944                 } else {
   945                     Type pattype = attribExpr(c.pat, switchEnv, seltype);
   946                     if (pattype.tag != ERROR) {
   947                         if (pattype.constValue() == null) {
   948                             log.error(c.pat.pos(),
   949                                       (stringSwitch ? "string.const.req" : "const.expr.req"));
   950                         } else if (labels.contains(pattype.constValue())) {
   951                             log.error(c.pos(), "duplicate.case.label");
   952                         } else {
   953                             labels.add(pattype.constValue());
   954                         }
   955                     }
   956                 }
   957             } else if (hasDefault) {
   958                 log.error(c.pos(), "duplicate.default.label");
   959             } else {
   960                 hasDefault = true;
   961             }
   962             attribStats(c.stats, caseEnv);
   963             caseEnv.info.scope.leave();
   964             addVars(c.stats, switchEnv.info.scope);
   965         }
   967         switchEnv.info.scope.leave();
   968         result = null;
   969     }
   970     // where
   971         /** Add any variables defined in stats to the switch scope. */
   972         private static void addVars(List<JCStatement> stats, Scope switchScope) {
   973             for (;stats.nonEmpty(); stats = stats.tail) {
   974                 JCTree stat = stats.head;
   975                 if (stat.getTag() == JCTree.VARDEF)
   976                     switchScope.enter(((JCVariableDecl) stat).sym);
   977             }
   978         }
   979     // where
   980     /** Return the selected enumeration constant symbol, or null. */
   981     private Symbol enumConstant(JCTree tree, Type enumType) {
   982         if (tree.getTag() != JCTree.IDENT) {
   983             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
   984             return syms.errSymbol;
   985         }
   986         JCIdent ident = (JCIdent)tree;
   987         Name name = ident.name;
   988         for (Scope.Entry e = enumType.tsym.members().lookup(name);
   989              e.scope != null; e = e.next()) {
   990             if (e.sym.kind == VAR) {
   991                 Symbol s = ident.sym = e.sym;
   992                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
   993                 ident.type = s.type;
   994                 return ((s.flags_field & Flags.ENUM) == 0)
   995                     ? null : s;
   996             }
   997         }
   998         return null;
   999     }
  1001     public void visitSynchronized(JCSynchronized tree) {
  1002         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1003         attribStat(tree.body, env);
  1004         result = null;
  1007     public void visitTry(JCTry tree) {
  1008         // Create a new local environment with a local
  1009         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1010         boolean isTryWithResource = tree.resources.nonEmpty();
  1011         // Create a nested environment for attributing the try block if needed
  1012         Env<AttrContext> tryEnv = isTryWithResource ?
  1013             env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1014             localEnv;
  1015         // Attribute resource declarations
  1016         for (JCTree resource : tree.resources) {
  1017             if (resource.getTag() == JCTree.VARDEF) {
  1018                 attribStat(resource, tryEnv);
  1019                 chk.checkType(resource, resource.type, syms.autoCloseableType, "twr.not.applicable.to.type");
  1020                 VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
  1021                 var.setData(ElementKind.RESOURCE_VARIABLE);
  1022             } else {
  1023                 attribExpr(resource, tryEnv, syms.autoCloseableType, "twr.not.applicable.to.type");
  1026         // Attribute body
  1027         attribStat(tree.body, tryEnv);
  1028         if (isTryWithResource)
  1029             tryEnv.info.scope.leave();
  1031         // Attribute catch clauses
  1032         for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1033             JCCatch c = l.head;
  1034             Env<AttrContext> catchEnv =
  1035                 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1036             Type ctype = attribStat(c.param, catchEnv);
  1037             if (TreeInfo.isMultiCatch(c)) {
  1038                 //check that multi-catch parameter is marked as final
  1039                 if ((c.param.sym.flags() & FINAL) == 0) {
  1040                     log.error(c.param.pos(), "multicatch.param.must.be.final", c.param.sym);
  1042                 c.param.sym.flags_field = c.param.sym.flags() | DISJOINT;
  1044             if (c.param.type.tsym.kind == Kinds.VAR) {
  1045                 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1047             chk.checkType(c.param.vartype.pos(),
  1048                           chk.checkClassType(c.param.vartype.pos(), ctype),
  1049                           syms.throwableType);
  1050             attribStat(c.body, catchEnv);
  1051             catchEnv.info.scope.leave();
  1054         // Attribute finalizer
  1055         if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1057         localEnv.info.scope.leave();
  1058         result = null;
  1061     public void visitConditional(JCConditional tree) {
  1062         attribExpr(tree.cond, env, syms.booleanType);
  1063         attribExpr(tree.truepart, env);
  1064         attribExpr(tree.falsepart, env);
  1065         result = check(tree,
  1066                        capture(condType(tree.pos(), tree.cond.type,
  1067                                         tree.truepart.type, tree.falsepart.type)),
  1068                        VAL, pkind, pt);
  1070     //where
  1071         /** Compute the type of a conditional expression, after
  1072          *  checking that it exists. See Spec 15.25.
  1074          *  @param pos      The source position to be used for
  1075          *                  error diagnostics.
  1076          *  @param condtype The type of the expression's condition.
  1077          *  @param thentype The type of the expression's then-part.
  1078          *  @param elsetype The type of the expression's else-part.
  1079          */
  1080         private Type condType(DiagnosticPosition pos,
  1081                               Type condtype,
  1082                               Type thentype,
  1083                               Type elsetype) {
  1084             Type ctype = condType1(pos, condtype, thentype, elsetype);
  1086             // If condition and both arms are numeric constants,
  1087             // evaluate at compile-time.
  1088             return ((condtype.constValue() != null) &&
  1089                     (thentype.constValue() != null) &&
  1090                     (elsetype.constValue() != null))
  1091                 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
  1092                 : ctype;
  1094         /** Compute the type of a conditional expression, after
  1095          *  checking that it exists.  Does not take into
  1096          *  account the special case where condition and both arms
  1097          *  are constants.
  1099          *  @param pos      The source position to be used for error
  1100          *                  diagnostics.
  1101          *  @param condtype The type of the expression's condition.
  1102          *  @param thentype The type of the expression's then-part.
  1103          *  @param elsetype The type of the expression's else-part.
  1104          */
  1105         private Type condType1(DiagnosticPosition pos, Type condtype,
  1106                                Type thentype, Type elsetype) {
  1107             // If same type, that is the result
  1108             if (types.isSameType(thentype, elsetype))
  1109                 return thentype.baseType();
  1111             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1112                 ? thentype : types.unboxedType(thentype);
  1113             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1114                 ? elsetype : types.unboxedType(elsetype);
  1116             // Otherwise, if both arms can be converted to a numeric
  1117             // type, return the least numeric type that fits both arms
  1118             // (i.e. return larger of the two, or return int if one
  1119             // arm is short, the other is char).
  1120             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1121                 // If one arm has an integer subrange type (i.e., byte,
  1122                 // short, or char), and the other is an integer constant
  1123                 // that fits into the subrange, return the subrange type.
  1124                 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
  1125                     types.isAssignable(elseUnboxed, thenUnboxed))
  1126                     return thenUnboxed.baseType();
  1127                 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
  1128                     types.isAssignable(thenUnboxed, elseUnboxed))
  1129                     return elseUnboxed.baseType();
  1131                 for (int i = BYTE; i < VOID; i++) {
  1132                     Type candidate = syms.typeOfTag[i];
  1133                     if (types.isSubtype(thenUnboxed, candidate) &&
  1134                         types.isSubtype(elseUnboxed, candidate))
  1135                         return candidate;
  1139             // Those were all the cases that could result in a primitive
  1140             if (allowBoxing) {
  1141                 if (thentype.isPrimitive())
  1142                     thentype = types.boxedClass(thentype).type;
  1143                 if (elsetype.isPrimitive())
  1144                     elsetype = types.boxedClass(elsetype).type;
  1147             if (types.isSubtype(thentype, elsetype))
  1148                 return elsetype.baseType();
  1149             if (types.isSubtype(elsetype, thentype))
  1150                 return thentype.baseType();
  1152             if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
  1153                 log.error(pos, "neither.conditional.subtype",
  1154                           thentype, elsetype);
  1155                 return thentype.baseType();
  1158             // both are known to be reference types.  The result is
  1159             // lub(thentype,elsetype). This cannot fail, as it will
  1160             // always be possible to infer "Object" if nothing better.
  1161             return types.lub(thentype.baseType(), elsetype.baseType());
  1164     public void visitIf(JCIf tree) {
  1165         attribExpr(tree.cond, env, syms.booleanType);
  1166         attribStat(tree.thenpart, env);
  1167         if (tree.elsepart != null)
  1168             attribStat(tree.elsepart, env);
  1169         chk.checkEmptyIf(tree);
  1170         result = null;
  1173     public void visitExec(JCExpressionStatement tree) {
  1174         attribExpr(tree.expr, env);
  1175         result = null;
  1178     public void visitBreak(JCBreak tree) {
  1179         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1180         result = null;
  1183     public void visitContinue(JCContinue tree) {
  1184         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1185         result = null;
  1187     //where
  1188         /** Return the target of a break or continue statement, if it exists,
  1189          *  report an error if not.
  1190          *  Note: The target of a labelled break or continue is the
  1191          *  (non-labelled) statement tree referred to by the label,
  1192          *  not the tree representing the labelled statement itself.
  1194          *  @param pos     The position to be used for error diagnostics
  1195          *  @param tag     The tag of the jump statement. This is either
  1196          *                 Tree.BREAK or Tree.CONTINUE.
  1197          *  @param label   The label of the jump statement, or null if no
  1198          *                 label is given.
  1199          *  @param env     The environment current at the jump statement.
  1200          */
  1201         private JCTree findJumpTarget(DiagnosticPosition pos,
  1202                                     int tag,
  1203                                     Name label,
  1204                                     Env<AttrContext> env) {
  1205             // Search environments outwards from the point of jump.
  1206             Env<AttrContext> env1 = env;
  1207             LOOP:
  1208             while (env1 != null) {
  1209                 switch (env1.tree.getTag()) {
  1210                 case JCTree.LABELLED:
  1211                     JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1212                     if (label == labelled.label) {
  1213                         // If jump is a continue, check that target is a loop.
  1214                         if (tag == JCTree.CONTINUE) {
  1215                             if (labelled.body.getTag() != JCTree.DOLOOP &&
  1216                                 labelled.body.getTag() != JCTree.WHILELOOP &&
  1217                                 labelled.body.getTag() != JCTree.FORLOOP &&
  1218                                 labelled.body.getTag() != JCTree.FOREACHLOOP)
  1219                                 log.error(pos, "not.loop.label", label);
  1220                             // Found labelled statement target, now go inwards
  1221                             // to next non-labelled tree.
  1222                             return TreeInfo.referencedStatement(labelled);
  1223                         } else {
  1224                             return labelled;
  1227                     break;
  1228                 case JCTree.DOLOOP:
  1229                 case JCTree.WHILELOOP:
  1230                 case JCTree.FORLOOP:
  1231                 case JCTree.FOREACHLOOP:
  1232                     if (label == null) return env1.tree;
  1233                     break;
  1234                 case JCTree.SWITCH:
  1235                     if (label == null && tag == JCTree.BREAK) return env1.tree;
  1236                     break;
  1237                 case JCTree.METHODDEF:
  1238                 case JCTree.CLASSDEF:
  1239                     break LOOP;
  1240                 default:
  1242                 env1 = env1.next;
  1244             if (label != null)
  1245                 log.error(pos, "undef.label", label);
  1246             else if (tag == JCTree.CONTINUE)
  1247                 log.error(pos, "cont.outside.loop");
  1248             else
  1249                 log.error(pos, "break.outside.switch.loop");
  1250             return null;
  1253     public void visitReturn(JCReturn tree) {
  1254         // Check that there is an enclosing method which is
  1255         // nested within than the enclosing class.
  1256         if (env.enclMethod == null ||
  1257             env.enclMethod.sym.owner != env.enclClass.sym) {
  1258             log.error(tree.pos(), "ret.outside.meth");
  1260         } else {
  1261             // Attribute return expression, if it exists, and check that
  1262             // it conforms to result type of enclosing method.
  1263             Symbol m = env.enclMethod.sym;
  1264             if (m.type.getReturnType().tag == VOID) {
  1265                 if (tree.expr != null)
  1266                     log.error(tree.expr.pos(),
  1267                               "cant.ret.val.from.meth.decl.void");
  1268             } else if (tree.expr == null) {
  1269                 log.error(tree.pos(), "missing.ret.val");
  1270             } else {
  1271                 attribExpr(tree.expr, env, m.type.getReturnType());
  1274         result = null;
  1277     public void visitThrow(JCThrow tree) {
  1278         attribExpr(tree.expr, env, syms.throwableType);
  1279         result = null;
  1282     public void visitAssert(JCAssert tree) {
  1283         attribExpr(tree.cond, env, syms.booleanType);
  1284         if (tree.detail != null) {
  1285             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1287         result = null;
  1290      /** Visitor method for method invocations.
  1291      *  NOTE: The method part of an application will have in its type field
  1292      *        the return type of the method, not the method's type itself!
  1293      */
  1294     public void visitApply(JCMethodInvocation tree) {
  1295         // The local environment of a method application is
  1296         // a new environment nested in the current one.
  1297         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1299         // The types of the actual method arguments.
  1300         List<Type> argtypes;
  1302         // The types of the actual method type arguments.
  1303         List<Type> typeargtypes = null;
  1304         boolean typeargtypesNonRefOK = false;
  1306         Name methName = TreeInfo.name(tree.meth);
  1308         boolean isConstructorCall =
  1309             methName == names._this || methName == names._super;
  1311         if (isConstructorCall) {
  1312             // We are seeing a ...this(...) or ...super(...) call.
  1313             // Check that this is the first statement in a constructor.
  1314             if (checkFirstConstructorStat(tree, env)) {
  1316                 // Record the fact
  1317                 // that this is a constructor call (using isSelfCall).
  1318                 localEnv.info.isSelfCall = true;
  1320                 // Attribute arguments, yielding list of argument types.
  1321                 argtypes = attribArgs(tree.args, localEnv);
  1322                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1324                 // Variable `site' points to the class in which the called
  1325                 // constructor is defined.
  1326                 Type site = env.enclClass.sym.type;
  1327                 if (methName == names._super) {
  1328                     if (site == syms.objectType) {
  1329                         log.error(tree.meth.pos(), "no.superclass", site);
  1330                         site = types.createErrorType(syms.objectType);
  1331                     } else {
  1332                         site = types.supertype(site);
  1336                 if (site.tag == CLASS) {
  1337                     Type encl = site.getEnclosingType();
  1338                     while (encl != null && encl.tag == TYPEVAR)
  1339                         encl = encl.getUpperBound();
  1340                     if (encl.tag == CLASS) {
  1341                         // we are calling a nested class
  1343                         if (tree.meth.getTag() == JCTree.SELECT) {
  1344                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1346                             // We are seeing a prefixed call, of the form
  1347                             //     <expr>.super(...).
  1348                             // Check that the prefix expression conforms
  1349                             // to the outer instance type of the class.
  1350                             chk.checkRefType(qualifier.pos(),
  1351                                              attribExpr(qualifier, localEnv,
  1352                                                         encl));
  1353                         } else if (methName == names._super) {
  1354                             // qualifier omitted; check for existence
  1355                             // of an appropriate implicit qualifier.
  1356                             rs.resolveImplicitThis(tree.meth.pos(),
  1357                                                    localEnv, site);
  1359                     } else if (tree.meth.getTag() == JCTree.SELECT) {
  1360                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1361                                   site.tsym);
  1364                     // if we're calling a java.lang.Enum constructor,
  1365                     // prefix the implicit String and int parameters
  1366                     if (site.tsym == syms.enumSym && allowEnums)
  1367                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1369                     // Resolve the called constructor under the assumption
  1370                     // that we are referring to a superclass instance of the
  1371                     // current instance (JLS ???).
  1372                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1373                     localEnv.info.selectSuper = true;
  1374                     localEnv.info.varArgs = false;
  1375                     Symbol sym = rs.resolveConstructor(
  1376                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1377                     localEnv.info.selectSuper = selectSuperPrev;
  1379                     // Set method symbol to resolved constructor...
  1380                     TreeInfo.setSymbol(tree.meth, sym);
  1382                     // ...and check that it is legal in the current context.
  1383                     // (this will also set the tree's type)
  1384                     Type mpt = newMethTemplate(argtypes, typeargtypes);
  1385                     checkId(tree.meth, site, sym, localEnv, MTH,
  1386                             mpt, tree.varargsElement != null);
  1388                 // Otherwise, `site' is an error type and we do nothing
  1390             result = tree.type = syms.voidType;
  1391         } else {
  1392             // Otherwise, we are seeing a regular method call.
  1393             // Attribute the arguments, yielding list of argument types, ...
  1394             argtypes = attribArgs(tree.args, localEnv);
  1395             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1397             // ... and attribute the method using as a prototype a methodtype
  1398             // whose formal argument types is exactly the list of actual
  1399             // arguments (this will also set the method symbol).
  1400             Type mpt = newMethTemplate(argtypes, typeargtypes);
  1401             localEnv.info.varArgs = false;
  1402             Type mtype = attribExpr(tree.meth, localEnv, mpt);
  1403             if (localEnv.info.varArgs)
  1404                 assert mtype.isErroneous() || tree.varargsElement != null;
  1406             // Compute the result type.
  1407             Type restype = mtype.getReturnType();
  1408             assert restype.tag != WILDCARD : mtype;
  1410             // as a special case, array.clone() has a result that is
  1411             // the same as static type of the array being cloned
  1412             if (tree.meth.getTag() == JCTree.SELECT &&
  1413                 allowCovariantReturns &&
  1414                 methName == names.clone &&
  1415                 types.isArray(((JCFieldAccess) tree.meth).selected.type))
  1416                 restype = ((JCFieldAccess) tree.meth).selected.type;
  1418             // as a special case, x.getClass() has type Class<? extends |X|>
  1419             if (allowGenerics &&
  1420                 methName == names.getClass && tree.args.isEmpty()) {
  1421                 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
  1422                     ? ((JCFieldAccess) tree.meth).selected.type
  1423                     : env.enclClass.sym.type;
  1424                 restype = new
  1425                     ClassType(restype.getEnclosingType(),
  1426                               List.<Type>of(new WildcardType(types.erasure(qualifier),
  1427                                                                BoundKind.EXTENDS,
  1428                                                                syms.boundClass)),
  1429                               restype.tsym);
  1432             // as a special case, MethodHandle.<T>invoke(abc) and InvokeDynamic.<T>foo(abc)
  1433             // has type <T>, and T can be a primitive type.
  1434             if (tree.meth.getTag() == JCTree.SELECT && !typeargtypes.isEmpty()) {
  1435               JCFieldAccess mfield = (JCFieldAccess) tree.meth;
  1436               if ((mfield.selected.type.tsym != null &&
  1437                    (mfield.selected.type.tsym.flags() & POLYMORPHIC_SIGNATURE) != 0)
  1438                   ||
  1439                   (mfield.sym != null &&
  1440                    (mfield.sym.flags() & POLYMORPHIC_SIGNATURE) != 0)) {
  1441                   assert types.isSameType(restype, typeargtypes.head) : mtype;
  1442                   assert mfield.selected.type == syms.methodHandleType
  1443                       || mfield.selected.type == syms.invokeDynamicType;
  1444                   typeargtypesNonRefOK = true;
  1448             if (!typeargtypesNonRefOK) {
  1449                 chk.checkRefTypes(tree.typeargs, typeargtypes);
  1452             // Check that value of resulting type is admissible in the
  1453             // current context.  Also, capture the return type
  1454             result = check(tree, capture(restype), VAL, pkind, pt);
  1456         chk.validate(tree.typeargs, localEnv);
  1458     //where
  1459         /** Check that given application node appears as first statement
  1460          *  in a constructor call.
  1461          *  @param tree   The application node
  1462          *  @param env    The environment current at the application.
  1463          */
  1464         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1465             JCMethodDecl enclMethod = env.enclMethod;
  1466             if (enclMethod != null && enclMethod.name == names.init) {
  1467                 JCBlock body = enclMethod.body;
  1468                 if (body.stats.head.getTag() == JCTree.EXEC &&
  1469                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1470                     return true;
  1472             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1473                       TreeInfo.name(tree.meth));
  1474             return false;
  1477         /** Obtain a method type with given argument types.
  1478          */
  1479         Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
  1480             MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
  1481             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1484     public void visitNewClass(JCNewClass tree) {
  1485         Type owntype = types.createErrorType(tree.type);
  1487         // The local environment of a class creation is
  1488         // a new environment nested in the current one.
  1489         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1491         // The anonymous inner class definition of the new expression,
  1492         // if one is defined by it.
  1493         JCClassDecl cdef = tree.def;
  1495         // If enclosing class is given, attribute it, and
  1496         // complete class name to be fully qualified
  1497         JCExpression clazz = tree.clazz; // Class field following new
  1498         JCExpression clazzid =          // Identifier in class field
  1499             (clazz.getTag() == JCTree.TYPEAPPLY)
  1500             ? ((JCTypeApply) clazz).clazz
  1501             : clazz;
  1503         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1505         if (tree.encl != null) {
  1506             // We are seeing a qualified new, of the form
  1507             //    <expr>.new C <...> (...) ...
  1508             // In this case, we let clazz stand for the name of the
  1509             // allocated class C prefixed with the type of the qualifier
  1510             // expression, so that we can
  1511             // resolve it with standard techniques later. I.e., if
  1512             // <expr> has type T, then <expr>.new C <...> (...)
  1513             // yields a clazz T.C.
  1514             Type encltype = chk.checkRefType(tree.encl.pos(),
  1515                                              attribExpr(tree.encl, env));
  1516             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1517                                                  ((JCIdent) clazzid).name);
  1518             if (clazz.getTag() == JCTree.TYPEAPPLY)
  1519                 clazz = make.at(tree.pos).
  1520                     TypeApply(clazzid1,
  1521                               ((JCTypeApply) clazz).arguments);
  1522             else
  1523                 clazz = clazzid1;
  1526         // Attribute clazz expression and store
  1527         // symbol + type back into the attributed tree.
  1528         Type clazztype = attribType(clazz, env);
  1529         Pair<Scope,Scope> mapping = getSyntheticScopeMapping(clazztype);
  1530         if (!TreeInfo.isDiamond(tree)) {
  1531             clazztype = chk.checkClassType(
  1532                 tree.clazz.pos(), clazztype, true);
  1534         chk.validate(clazz, localEnv);
  1535         if (tree.encl != null) {
  1536             // We have to work in this case to store
  1537             // symbol + type back into the attributed tree.
  1538             tree.clazz.type = clazztype;
  1539             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1540             clazzid.type = ((JCIdent) clazzid).sym.type;
  1541             if (!clazztype.isErroneous()) {
  1542                 if (cdef != null && clazztype.tsym.isInterface()) {
  1543                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1544                 } else if (clazztype.tsym.isStatic()) {
  1545                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1548         } else if (!clazztype.tsym.isInterface() &&
  1549                    clazztype.getEnclosingType().tag == CLASS) {
  1550             // Check for the existence of an apropos outer instance
  1551             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1554         // Attribute constructor arguments.
  1555         List<Type> argtypes = attribArgs(tree.args, localEnv);
  1556         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  1558         if (TreeInfo.isDiamond(tree)) {
  1559             clazztype = attribDiamond(localEnv, tree, clazztype, mapping, argtypes, typeargtypes);
  1560             clazz.type = clazztype;
  1563         // If we have made no mistakes in the class type...
  1564         if (clazztype.tag == CLASS) {
  1565             // Enums may not be instantiated except implicitly
  1566             if (allowEnums &&
  1567                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  1568                 (env.tree.getTag() != JCTree.VARDEF ||
  1569                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  1570                  ((JCVariableDecl) env.tree).init != tree))
  1571                 log.error(tree.pos(), "enum.cant.be.instantiated");
  1572             // Check that class is not abstract
  1573             if (cdef == null &&
  1574                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1575                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  1576                           clazztype.tsym);
  1577             } else if (cdef != null && clazztype.tsym.isInterface()) {
  1578                 // Check that no constructor arguments are given to
  1579                 // anonymous classes implementing an interface
  1580                 if (!argtypes.isEmpty())
  1581                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  1583                 if (!typeargtypes.isEmpty())
  1584                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  1586                 // Error recovery: pretend no arguments were supplied.
  1587                 argtypes = List.nil();
  1588                 typeargtypes = List.nil();
  1591             // Resolve the called constructor under the assumption
  1592             // that we are referring to a superclass instance of the
  1593             // current instance (JLS ???).
  1594             else {
  1595                 localEnv.info.selectSuper = cdef != null;
  1596                 localEnv.info.varArgs = false;
  1597                 tree.constructor = rs.resolveConstructor(
  1598                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  1599                 tree.constructorType = tree.constructor.type.isErroneous() ?
  1600                     syms.errType :
  1601                     checkMethod(clazztype,
  1602                         tree.constructor,
  1603                         localEnv,
  1604                         tree.args,
  1605                         argtypes,
  1606                         typeargtypes,
  1607                         localEnv.info.varArgs);
  1608                 if (localEnv.info.varArgs)
  1609                     assert tree.constructorType.isErroneous() || tree.varargsElement != null;
  1612             if (cdef != null) {
  1613                 // We are seeing an anonymous class instance creation.
  1614                 // In this case, the class instance creation
  1615                 // expression
  1616                 //
  1617                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1618                 //
  1619                 // is represented internally as
  1620                 //
  1621                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  1622                 //
  1623                 // This expression is then *transformed* as follows:
  1624                 //
  1625                 // (1) add a STATIC flag to the class definition
  1626                 //     if the current environment is static
  1627                 // (2) add an extends or implements clause
  1628                 // (3) add a constructor.
  1629                 //
  1630                 // For instance, if C is a class, and ET is the type of E,
  1631                 // the expression
  1632                 //
  1633                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1634                 //
  1635                 // is translated to (where X is a fresh name and typarams is the
  1636                 // parameter list of the super constructor):
  1637                 //
  1638                 //   new <typeargs1>X(<*nullchk*>E, args) where
  1639                 //     X extends C<typargs2> {
  1640                 //       <typarams> X(ET e, args) {
  1641                 //         e.<typeargs1>super(args)
  1642                 //       }
  1643                 //       ...
  1644                 //     }
  1645                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  1647                 if (clazztype.tsym.isInterface()) {
  1648                     cdef.implementing = List.of(clazz);
  1649                 } else {
  1650                     cdef.extending = clazz;
  1653                 attribStat(cdef, localEnv);
  1655                 // If an outer instance is given,
  1656                 // prefix it to the constructor arguments
  1657                 // and delete it from the new expression
  1658                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  1659                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  1660                     argtypes = argtypes.prepend(tree.encl.type);
  1661                     tree.encl = null;
  1664                 // Reassign clazztype and recompute constructor.
  1665                 clazztype = cdef.sym.type;
  1666                 Symbol sym = rs.resolveConstructor(
  1667                     tree.pos(), localEnv, clazztype, argtypes,
  1668                     typeargtypes, true, tree.varargsElement != null);
  1669                 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
  1670                 tree.constructor = sym;
  1671                 if (tree.constructor.kind > ERRONEOUS) {
  1672                     tree.constructorType =  syms.errType;
  1674                 else {
  1675                     tree.constructorType = checkMethod(clazztype,
  1676                             tree.constructor,
  1677                             localEnv,
  1678                             tree.args,
  1679                             argtypes,
  1680                             typeargtypes,
  1681                             localEnv.info.varArgs);
  1685             if (tree.constructor != null && tree.constructor.kind == MTH)
  1686                 owntype = clazztype;
  1688         result = check(tree, owntype, VAL, pkind, pt);
  1689         chk.validate(tree.typeargs, localEnv);
  1692     Type attribDiamond(Env<AttrContext> env,
  1693                         JCNewClass tree,
  1694                         Type clazztype,
  1695                         Pair<Scope, Scope> mapping,
  1696                         List<Type> argtypes,
  1697                         List<Type> typeargtypes) {
  1698         if (clazztype.isErroneous() || mapping == erroneousMapping) {
  1699             //if the type of the instance creation expression is erroneous,
  1700             //or something prevented us to form a valid mapping, return the
  1701             //(possibly erroneous) type unchanged
  1702             return clazztype;
  1704         else if (clazztype.isInterface()) {
  1705             //if the type of the instance creation expression is an interface
  1706             //skip the method resolution step (JLS 15.12.2.7). The type to be
  1707             //inferred is of the kind <X1,X2, ... Xn>C<X1,X2, ... Xn>
  1708             clazztype = new ForAll(clazztype.tsym.type.allparams(), clazztype.tsym.type) {
  1709                 @Override
  1710                 public List<Type> getConstraints(TypeVar tv, ConstraintKind ck) {
  1711                     switch (ck) {
  1712                         case EXTENDS: return types.getBounds(tv);
  1713                         default: return List.nil();
  1716                 @Override
  1717                 public Type inst(List<Type> inferred, Types types) throws Infer.NoInstanceException {
  1718                     // check that inferred bounds conform to their bounds
  1719                     infer.checkWithinBounds(tvars,
  1720                            types.subst(tvars, tvars, inferred), Warner.noWarnings);
  1721                     return super.inst(inferred, types);
  1723             };
  1724         } else {
  1725             //if the type of the instance creation expression is a class type
  1726             //apply method resolution inference (JLS 15.12.2.7). The return type
  1727             //of the resolved constructor will be a partially instantiated type
  1728             ((ClassSymbol) clazztype.tsym).members_field = mapping.snd;
  1729             Symbol constructor;
  1730             try {
  1731                 constructor = rs.resolveDiamond(tree.pos(),
  1732                         env,
  1733                         clazztype.tsym.type,
  1734                         argtypes,
  1735                         typeargtypes);
  1736             } finally {
  1737                 ((ClassSymbol) clazztype.tsym).members_field = mapping.fst;
  1739             if (constructor.kind == MTH) {
  1740                 ClassType ct = new ClassType(clazztype.getEnclosingType(),
  1741                         clazztype.tsym.type.getTypeArguments(),
  1742                         clazztype.tsym);
  1743                 clazztype = checkMethod(ct,
  1744                         constructor,
  1745                         env,
  1746                         tree.args,
  1747                         argtypes,
  1748                         typeargtypes,
  1749                         env.info.varArgs).getReturnType();
  1750             } else {
  1751                 clazztype = syms.errType;
  1754         if (clazztype.tag == FORALL && !pt.isErroneous()) {
  1755             //if the resolved constructor's return type has some uninferred
  1756             //type-variables, infer them using the expected type and declared
  1757             //bounds (JLS 15.12.2.8).
  1758             try {
  1759                 clazztype = infer.instantiateExpr((ForAll) clazztype,
  1760                         pt.tag == NONE ? syms.objectType : pt,
  1761                         Warner.noWarnings);
  1762             } catch (Infer.InferenceException ex) {
  1763                 //an error occurred while inferring uninstantiated type-variables
  1764                 log.error(tree.clazz.pos(),
  1765                         "cant.apply.diamond.1",
  1766                         diags.fragment("diamond", clazztype.tsym),
  1767                         ex.diagnostic);
  1770         clazztype = chk.checkClassType(tree.clazz.pos(),
  1771                 clazztype,
  1772                 true);
  1773         if (clazztype.tag == CLASS) {
  1774             List<Type> invalidDiamondArgs = chk.checkDiamond((ClassType)clazztype);
  1775             if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
  1776                 //one or more types inferred in the previous steps is either a
  1777                 //captured type or an intersection type --- we need to report an error.
  1778                 String subkey = invalidDiamondArgs.size() > 1 ?
  1779                     "diamond.invalid.args" :
  1780                     "diamond.invalid.arg";
  1781                 //The error message is of the kind:
  1782                 //
  1783                 //cannot infer type arguments for {clazztype}<>;
  1784                 //reason: {subkey}
  1785                 //
  1786                 //where subkey is a fragment of the kind:
  1787                 //
  1788                 //type argument(s) {invalidDiamondArgs} inferred for {clazztype}<> is not allowed in this context
  1789                 log.error(tree.clazz.pos(),
  1790                             "cant.apply.diamond.1",
  1791                             diags.fragment("diamond", clazztype.tsym),
  1792                             diags.fragment(subkey,
  1793                                            invalidDiamondArgs,
  1794                                            diags.fragment("diamond", clazztype.tsym)));
  1797         return clazztype;
  1800     /** Creates a synthetic scope containing fake generic constructors.
  1801      *  Assuming that the original scope contains a constructor of the kind:
  1802      *  Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
  1803      *  the synthetic scope is added a generic constructor of the kind:
  1804      *  <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
  1805      *  inference. The inferred return type of the synthetic constructor IS
  1806      *  the inferred type for the diamond operator.
  1807      */
  1808     private Pair<Scope, Scope> getSyntheticScopeMapping(Type ctype) {
  1809         if (ctype.tag != CLASS) {
  1810             return erroneousMapping;
  1812         Pair<Scope, Scope> mapping =
  1813                 new Pair<Scope, Scope>(ctype.tsym.members(), new Scope(ctype.tsym));
  1814         List<Type> typevars = ctype.tsym.type.getTypeArguments();
  1815         for (Scope.Entry e = mapping.fst.lookup(names.init);
  1816                 e.scope != null;
  1817                 e = e.next()) {
  1818             MethodSymbol newConstr = (MethodSymbol) e.sym.clone(ctype.tsym);
  1819             newConstr.name = names.init;
  1820             List<Type> oldTypeargs = List.nil();
  1821             if (newConstr.type.tag == FORALL) {
  1822                 oldTypeargs = ((ForAll) newConstr.type).tvars;
  1824             newConstr.type = new MethodType(newConstr.type.getParameterTypes(),
  1825                     new ClassType(ctype.getEnclosingType(), ctype.tsym.type.getTypeArguments(), ctype.tsym),
  1826                     newConstr.type.getThrownTypes(),
  1827                     syms.methodClass);
  1828             newConstr.type = new ForAll(typevars.prependList(oldTypeargs), newConstr.type);
  1829             mapping.snd.enter(newConstr);
  1831         return mapping;
  1834     private final Pair<Scope,Scope> erroneousMapping = new Pair<Scope,Scope>(null, null);
  1836     /** Make an attributed null check tree.
  1837      */
  1838     public JCExpression makeNullCheck(JCExpression arg) {
  1839         // optimization: X.this is never null; skip null check
  1840         Name name = TreeInfo.name(arg);
  1841         if (name == names._this || name == names._super) return arg;
  1843         int optag = JCTree.NULLCHK;
  1844         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  1845         tree.operator = syms.nullcheck;
  1846         tree.type = arg.type;
  1847         return tree;
  1850     public void visitNewArray(JCNewArray tree) {
  1851         Type owntype = types.createErrorType(tree.type);
  1852         Type elemtype;
  1853         if (tree.elemtype != null) {
  1854             elemtype = attribType(tree.elemtype, env);
  1855             chk.validate(tree.elemtype, env);
  1856             owntype = elemtype;
  1857             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  1858                 attribExpr(l.head, env, syms.intType);
  1859                 owntype = new ArrayType(owntype, syms.arrayClass);
  1861         } else {
  1862             // we are seeing an untyped aggregate { ... }
  1863             // this is allowed only if the prototype is an array
  1864             if (pt.tag == ARRAY) {
  1865                 elemtype = types.elemtype(pt);
  1866             } else {
  1867                 if (pt.tag != ERROR) {
  1868                     log.error(tree.pos(), "illegal.initializer.for.type",
  1869                               pt);
  1871                 elemtype = types.createErrorType(pt);
  1874         if (tree.elems != null) {
  1875             attribExprs(tree.elems, env, elemtype);
  1876             owntype = new ArrayType(elemtype, syms.arrayClass);
  1878         if (!types.isReifiable(elemtype))
  1879             log.error(tree.pos(), "generic.array.creation");
  1880         result = check(tree, owntype, VAL, pkind, pt);
  1883     public void visitParens(JCParens tree) {
  1884         Type owntype = attribTree(tree.expr, env, pkind, pt);
  1885         result = check(tree, owntype, pkind, pkind, pt);
  1886         Symbol sym = TreeInfo.symbol(tree);
  1887         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  1888             log.error(tree.pos(), "illegal.start.of.type");
  1891     public void visitAssign(JCAssign tree) {
  1892         Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
  1893         Type capturedType = capture(owntype);
  1894         attribExpr(tree.rhs, env, owntype);
  1895         result = check(tree, capturedType, VAL, pkind, pt);
  1898     public void visitAssignop(JCAssignOp tree) {
  1899         // Attribute arguments.
  1900         Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
  1901         Type operand = attribExpr(tree.rhs, env);
  1902         // Find operator.
  1903         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  1904             tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
  1905             owntype, operand);
  1907         if (operator.kind == MTH) {
  1908             chk.checkOperator(tree.pos(),
  1909                               (OperatorSymbol)operator,
  1910                               tree.getTag() - JCTree.ASGOffset,
  1911                               owntype,
  1912                               operand);
  1913             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  1914             chk.checkCastable(tree.rhs.pos(),
  1915                               operator.type.getReturnType(),
  1916                               owntype);
  1918         result = check(tree, owntype, VAL, pkind, pt);
  1921     public void visitUnary(JCUnary tree) {
  1922         // Attribute arguments.
  1923         Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
  1924             ? attribTree(tree.arg, env, VAR, Type.noType)
  1925             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  1927         // Find operator.
  1928         Symbol operator = tree.operator =
  1929             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  1931         Type owntype = types.createErrorType(tree.type);
  1932         if (operator.kind == MTH) {
  1933             owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
  1934                 ? tree.arg.type
  1935                 : operator.type.getReturnType();
  1936             int opc = ((OperatorSymbol)operator).opcode;
  1938             // If the argument is constant, fold it.
  1939             if (argtype.constValue() != null) {
  1940                 Type ctype = cfolder.fold1(opc, argtype);
  1941                 if (ctype != null) {
  1942                     owntype = cfolder.coerce(ctype, owntype);
  1944                     // Remove constant types from arguments to
  1945                     // conserve space. The parser will fold concatenations
  1946                     // of string literals; the code here also
  1947                     // gets rid of intermediate results when some of the
  1948                     // operands are constant identifiers.
  1949                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  1950                         tree.arg.type = syms.stringType;
  1955         result = check(tree, owntype, VAL, pkind, pt);
  1958     public void visitBinary(JCBinary tree) {
  1959         // Attribute arguments.
  1960         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  1961         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  1963         // Find operator.
  1964         Symbol operator = tree.operator =
  1965             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  1967         Type owntype = types.createErrorType(tree.type);
  1968         if (operator.kind == MTH) {
  1969             owntype = operator.type.getReturnType();
  1970             int opc = chk.checkOperator(tree.lhs.pos(),
  1971                                         (OperatorSymbol)operator,
  1972                                         tree.getTag(),
  1973                                         left,
  1974                                         right);
  1976             // If both arguments are constants, fold them.
  1977             if (left.constValue() != null && right.constValue() != null) {
  1978                 Type ctype = cfolder.fold2(opc, left, right);
  1979                 if (ctype != null) {
  1980                     owntype = cfolder.coerce(ctype, owntype);
  1982                     // Remove constant types from arguments to
  1983                     // conserve space. The parser will fold concatenations
  1984                     // of string literals; the code here also
  1985                     // gets rid of intermediate results when some of the
  1986                     // operands are constant identifiers.
  1987                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  1988                         tree.lhs.type = syms.stringType;
  1990                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  1991                         tree.rhs.type = syms.stringType;
  1996             // Check that argument types of a reference ==, != are
  1997             // castable to each other, (JLS???).
  1998             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  1999                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
  2000                     log.error(tree.pos(), "incomparable.types", left, right);
  2004             chk.checkDivZero(tree.rhs.pos(), operator, right);
  2006         result = check(tree, owntype, VAL, pkind, pt);
  2009     public void visitTypeCast(JCTypeCast tree) {
  2010         Type clazztype = attribType(tree.clazz, env);
  2011         chk.validate(tree.clazz, env, false);
  2012         Type exprtype = attribExpr(tree.expr, env, Infer.anyPoly);
  2013         Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2014         if (exprtype.constValue() != null)
  2015             owntype = cfolder.coerce(exprtype, owntype);
  2016         result = check(tree, capture(owntype), VAL, pkind, pt);
  2019     public void visitTypeTest(JCInstanceOf tree) {
  2020         Type exprtype = chk.checkNullOrRefType(
  2021             tree.expr.pos(), attribExpr(tree.expr, env));
  2022         Type clazztype = chk.checkReifiableReferenceType(
  2023             tree.clazz.pos(), attribType(tree.clazz, env));
  2024         chk.validate(tree.clazz, env, false);
  2025         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2026         result = check(tree, syms.booleanType, VAL, pkind, pt);
  2029     public void visitIndexed(JCArrayAccess tree) {
  2030         Type owntype = types.createErrorType(tree.type);
  2031         Type atype = attribExpr(tree.indexed, env);
  2032         attribExpr(tree.index, env, syms.intType);
  2033         if (types.isArray(atype))
  2034             owntype = types.elemtype(atype);
  2035         else if (atype.tag != ERROR)
  2036             log.error(tree.pos(), "array.req.but.found", atype);
  2037         if ((pkind & VAR) == 0) owntype = capture(owntype);
  2038         result = check(tree, owntype, VAR, pkind, pt);
  2041     public void visitIdent(JCIdent tree) {
  2042         Symbol sym;
  2043         boolean varArgs = false;
  2045         // Find symbol
  2046         if (pt.tag == METHOD || pt.tag == FORALL) {
  2047             // If we are looking for a method, the prototype `pt' will be a
  2048             // method type with the type of the call's arguments as parameters.
  2049             env.info.varArgs = false;
  2050             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
  2051             varArgs = env.info.varArgs;
  2052         } else if (tree.sym != null && tree.sym.kind != VAR) {
  2053             sym = tree.sym;
  2054         } else {
  2055             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
  2057         tree.sym = sym;
  2059         // (1) Also find the environment current for the class where
  2060         //     sym is defined (`symEnv').
  2061         // Only for pre-tiger versions (1.4 and earlier):
  2062         // (2) Also determine whether we access symbol out of an anonymous
  2063         //     class in a this or super call.  This is illegal for instance
  2064         //     members since such classes don't carry a this$n link.
  2065         //     (`noOuterThisPath').
  2066         Env<AttrContext> symEnv = env;
  2067         boolean noOuterThisPath = false;
  2068         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  2069             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  2070             sym.owner.kind == TYP &&
  2071             tree.name != names._this && tree.name != names._super) {
  2073             // Find environment in which identifier is defined.
  2074             while (symEnv.outer != null &&
  2075                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  2076                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  2077                     noOuterThisPath = !allowAnonOuterThis;
  2078                 symEnv = symEnv.outer;
  2082         // If symbol is a variable, ...
  2083         if (sym.kind == VAR) {
  2084             VarSymbol v = (VarSymbol)sym;
  2086             // ..., evaluate its initializer, if it has one, and check for
  2087             // illegal forward reference.
  2088             checkInit(tree, env, v, false);
  2090             // If symbol is a local variable accessed from an embedded
  2091             // inner class check that it is final.
  2092             if (v.owner.kind == MTH &&
  2093                 v.owner != env.info.scope.owner &&
  2094                 (v.flags_field & FINAL) == 0) {
  2095                 log.error(tree.pos(),
  2096                           "local.var.accessed.from.icls.needs.final",
  2097                           v);
  2100             // If we are expecting a variable (as opposed to a value), check
  2101             // that the variable is assignable in the current environment.
  2102             if (pkind == VAR)
  2103                 checkAssignable(tree.pos(), v, null, env);
  2106         // In a constructor body,
  2107         // if symbol is a field or instance method, check that it is
  2108         // not accessed before the supertype constructor is called.
  2109         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  2110             (sym.kind & (VAR | MTH)) != 0 &&
  2111             sym.owner.kind == TYP &&
  2112             (sym.flags() & STATIC) == 0) {
  2113             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  2115         Env<AttrContext> env1 = env;
  2116         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  2117             // If the found symbol is inaccessible, then it is
  2118             // accessed through an enclosing instance.  Locate this
  2119             // enclosing instance:
  2120             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  2121                 env1 = env1.outer;
  2123         result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
  2126     public void visitSelect(JCFieldAccess tree) {
  2127         // Determine the expected kind of the qualifier expression.
  2128         int skind = 0;
  2129         if (tree.name == names._this || tree.name == names._super ||
  2130             tree.name == names._class)
  2132             skind = TYP;
  2133         } else {
  2134             if ((pkind & PCK) != 0) skind = skind | PCK;
  2135             if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
  2136             if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  2139         // Attribute the qualifier expression, and determine its symbol (if any).
  2140         Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
  2141         if ((pkind & (PCK | TYP)) == 0)
  2142             site = capture(site); // Capture field access
  2144         // don't allow T.class T[].class, etc
  2145         if (skind == TYP) {
  2146             Type elt = site;
  2147             while (elt.tag == ARRAY)
  2148                 elt = ((ArrayType)elt).elemtype;
  2149             if (elt.tag == TYPEVAR) {
  2150                 log.error(tree.pos(), "type.var.cant.be.deref");
  2151                 result = types.createErrorType(tree.type);
  2152                 return;
  2156         // If qualifier symbol is a type or `super', assert `selectSuper'
  2157         // for the selection. This is relevant for determining whether
  2158         // protected symbols are accessible.
  2159         Symbol sitesym = TreeInfo.symbol(tree.selected);
  2160         boolean selectSuperPrev = env.info.selectSuper;
  2161         env.info.selectSuper =
  2162             sitesym != null &&
  2163             sitesym.name == names._super;
  2165         // If selected expression is polymorphic, strip
  2166         // type parameters and remember in env.info.tvars, so that
  2167         // they can be added later (in Attr.checkId and Infer.instantiateMethod).
  2168         if (tree.selected.type.tag == FORALL) {
  2169             ForAll pstype = (ForAll)tree.selected.type;
  2170             env.info.tvars = pstype.tvars;
  2171             site = tree.selected.type = pstype.qtype;
  2174         // Determine the symbol represented by the selection.
  2175         env.info.varArgs = false;
  2176         Symbol sym = selectSym(tree, site, env, pt, pkind);
  2177         if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
  2178             site = capture(site);
  2179             sym = selectSym(tree, site, env, pt, pkind);
  2181         boolean varArgs = env.info.varArgs;
  2182         tree.sym = sym;
  2184         if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
  2185             while (site.tag == TYPEVAR) site = site.getUpperBound();
  2186             site = capture(site);
  2189         // If that symbol is a variable, ...
  2190         if (sym.kind == VAR) {
  2191             VarSymbol v = (VarSymbol)sym;
  2193             // ..., evaluate its initializer, if it has one, and check for
  2194             // illegal forward reference.
  2195             checkInit(tree, env, v, true);
  2197             // If we are expecting a variable (as opposed to a value), check
  2198             // that the variable is assignable in the current environment.
  2199             if (pkind == VAR)
  2200                 checkAssignable(tree.pos(), v, tree.selected, env);
  2203         if (sitesym != null &&
  2204                 sitesym.kind == VAR &&
  2205                 ((VarSymbol)sitesym).isResourceVariable() &&
  2206                 sym.kind == MTH &&
  2207                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  2208                 env.info.lint.isEnabled(Lint.LintCategory.ARM)) {
  2209             log.warning(tree, "twr.explicit.close.call");
  2212         // Disallow selecting a type from an expression
  2213         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  2214             tree.type = check(tree.selected, pt,
  2215                               sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
  2218         if (isType(sitesym)) {
  2219             if (sym.name == names._this) {
  2220                 // If `C' is the currently compiled class, check that
  2221                 // C.this' does not appear in a call to a super(...)
  2222                 if (env.info.isSelfCall &&
  2223                     site.tsym == env.enclClass.sym) {
  2224                     chk.earlyRefError(tree.pos(), sym);
  2226             } else {
  2227                 // Check if type-qualified fields or methods are static (JLS)
  2228                 if ((sym.flags() & STATIC) == 0 &&
  2229                     sym.name != names._super &&
  2230                     (sym.kind == VAR || sym.kind == MTH)) {
  2231                     rs.access(rs.new StaticError(sym),
  2232                               tree.pos(), site, sym.name, true);
  2235         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  2236             // If the qualified item is not a type and the selected item is static, report
  2237             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  2238             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  2241         // If we are selecting an instance member via a `super', ...
  2242         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  2244             // Check that super-qualified symbols are not abstract (JLS)
  2245             rs.checkNonAbstract(tree.pos(), sym);
  2247             if (site.isRaw()) {
  2248                 // Determine argument types for site.
  2249                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  2250                 if (site1 != null) site = site1;
  2254         env.info.selectSuper = selectSuperPrev;
  2255         result = checkId(tree, site, sym, env, pkind, pt, varArgs);
  2256         env.info.tvars = List.nil();
  2258     //where
  2259         /** Determine symbol referenced by a Select expression,
  2261          *  @param tree   The select tree.
  2262          *  @param site   The type of the selected expression,
  2263          *  @param env    The current environment.
  2264          *  @param pt     The current prototype.
  2265          *  @param pkind  The expected kind(s) of the Select expression.
  2266          */
  2267         private Symbol selectSym(JCFieldAccess tree,
  2268                                  Type site,
  2269                                  Env<AttrContext> env,
  2270                                  Type pt,
  2271                                  int pkind) {
  2272             DiagnosticPosition pos = tree.pos();
  2273             Name name = tree.name;
  2275             switch (site.tag) {
  2276             case PACKAGE:
  2277                 return rs.access(
  2278                     rs.findIdentInPackage(env, site.tsym, name, pkind),
  2279                     pos, site, name, true);
  2280             case ARRAY:
  2281             case CLASS:
  2282                 if (pt.tag == METHOD || pt.tag == FORALL) {
  2283                     return rs.resolveQualifiedMethod(
  2284                         pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
  2285                 } else if (name == names._this || name == names._super) {
  2286                     return rs.resolveSelf(pos, env, site.tsym, name);
  2287                 } else if (name == names._class) {
  2288                     // In this case, we have already made sure in
  2289                     // visitSelect that qualifier expression is a type.
  2290                     Type t = syms.classType;
  2291                     List<Type> typeargs = allowGenerics
  2292                         ? List.of(types.erasure(site))
  2293                         : List.<Type>nil();
  2294                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  2295                     return new VarSymbol(
  2296                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2297                 } else {
  2298                     // We are seeing a plain identifier as selector.
  2299                     Symbol sym = rs.findIdentInType(env, site, name, pkind);
  2300                     if ((pkind & ERRONEOUS) == 0)
  2301                         sym = rs.access(sym, pos, site, name, true);
  2302                     return sym;
  2304             case WILDCARD:
  2305                 throw new AssertionError(tree);
  2306             case TYPEVAR:
  2307                 // Normally, site.getUpperBound() shouldn't be null.
  2308                 // It should only happen during memberEnter/attribBase
  2309                 // when determining the super type which *must* be
  2310                 // done before attributing the type variables.  In
  2311                 // other words, we are seeing this illegal program:
  2312                 // class B<T> extends A<T.foo> {}
  2313                 Symbol sym = (site.getUpperBound() != null)
  2314                     ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
  2315                     : null;
  2316                 if (sym == null) {
  2317                     log.error(pos, "type.var.cant.be.deref");
  2318                     return syms.errSymbol;
  2319                 } else {
  2320                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  2321                         rs.new AccessError(env, site, sym) :
  2322                                 sym;
  2323                     rs.access(sym2, pos, site, name, true);
  2324                     return sym;
  2326             case ERROR:
  2327                 // preserve identifier names through errors
  2328                 return types.createErrorType(name, site.tsym, site).tsym;
  2329             default:
  2330                 // The qualifier expression is of a primitive type -- only
  2331                 // .class is allowed for these.
  2332                 if (name == names._class) {
  2333                     // In this case, we have already made sure in Select that
  2334                     // qualifier expression is a type.
  2335                     Type t = syms.classType;
  2336                     Type arg = types.boxedClass(site).type;
  2337                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  2338                     return new VarSymbol(
  2339                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2340                 } else {
  2341                     log.error(pos, "cant.deref", site);
  2342                     return syms.errSymbol;
  2347         /** Determine type of identifier or select expression and check that
  2348          *  (1) the referenced symbol is not deprecated
  2349          *  (2) the symbol's type is safe (@see checkSafe)
  2350          *  (3) if symbol is a variable, check that its type and kind are
  2351          *      compatible with the prototype and protokind.
  2352          *  (4) if symbol is an instance field of a raw type,
  2353          *      which is being assigned to, issue an unchecked warning if its
  2354          *      type changes under erasure.
  2355          *  (5) if symbol is an instance method of a raw type, issue an
  2356          *      unchecked warning if its argument types change under erasure.
  2357          *  If checks succeed:
  2358          *    If symbol is a constant, return its constant type
  2359          *    else if symbol is a method, return its result type
  2360          *    otherwise return its type.
  2361          *  Otherwise return errType.
  2363          *  @param tree       The syntax tree representing the identifier
  2364          *  @param site       If this is a select, the type of the selected
  2365          *                    expression, otherwise the type of the current class.
  2366          *  @param sym        The symbol representing the identifier.
  2367          *  @param env        The current environment.
  2368          *  @param pkind      The set of expected kinds.
  2369          *  @param pt         The expected type.
  2370          */
  2371         Type checkId(JCTree tree,
  2372                      Type site,
  2373                      Symbol sym,
  2374                      Env<AttrContext> env,
  2375                      int pkind,
  2376                      Type pt,
  2377                      boolean useVarargs) {
  2378             if (pt.isErroneous()) return types.createErrorType(site);
  2379             Type owntype; // The computed type of this identifier occurrence.
  2380             switch (sym.kind) {
  2381             case TYP:
  2382                 // For types, the computed type equals the symbol's type,
  2383                 // except for two situations:
  2384                 owntype = sym.type;
  2385                 if (owntype.tag == CLASS) {
  2386                     Type ownOuter = owntype.getEnclosingType();
  2388                     // (a) If the symbol's type is parameterized, erase it
  2389                     // because no type parameters were given.
  2390                     // We recover generic outer type later in visitTypeApply.
  2391                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  2392                         owntype = types.erasure(owntype);
  2395                     // (b) If the symbol's type is an inner class, then
  2396                     // we have to interpret its outer type as a superclass
  2397                     // of the site type. Example:
  2398                     //
  2399                     // class Tree<A> { class Visitor { ... } }
  2400                     // class PointTree extends Tree<Point> { ... }
  2401                     // ...PointTree.Visitor...
  2402                     //
  2403                     // Then the type of the last expression above is
  2404                     // Tree<Point>.Visitor.
  2405                     else if (ownOuter.tag == CLASS && site != ownOuter) {
  2406                         Type normOuter = site;
  2407                         if (normOuter.tag == CLASS)
  2408                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  2409                         if (normOuter == null) // perhaps from an import
  2410                             normOuter = types.erasure(ownOuter);
  2411                         if (normOuter != ownOuter)
  2412                             owntype = new ClassType(
  2413                                 normOuter, List.<Type>nil(), owntype.tsym);
  2416                 break;
  2417             case VAR:
  2418                 VarSymbol v = (VarSymbol)sym;
  2419                 // Test (4): if symbol is an instance field of a raw type,
  2420                 // which is being assigned to, issue an unchecked warning if
  2421                 // its type changes under erasure.
  2422                 if (allowGenerics &&
  2423                     pkind == VAR &&
  2424                     v.owner.kind == TYP &&
  2425                     (v.flags() & STATIC) == 0 &&
  2426                     (site.tag == CLASS || site.tag == TYPEVAR)) {
  2427                     Type s = types.asOuterSuper(site, v.owner);
  2428                     if (s != null &&
  2429                         s.isRaw() &&
  2430                         !types.isSameType(v.type, v.erasure(types))) {
  2431                         chk.warnUnchecked(tree.pos(),
  2432                                           "unchecked.assign.to.var",
  2433                                           v, s);
  2436                 // The computed type of a variable is the type of the
  2437                 // variable symbol, taken as a member of the site type.
  2438                 owntype = (sym.owner.kind == TYP &&
  2439                            sym.name != names._this && sym.name != names._super)
  2440                     ? types.memberType(site, sym)
  2441                     : sym.type;
  2443                 if (env.info.tvars.nonEmpty()) {
  2444                     Type owntype1 = new ForAll(env.info.tvars, owntype);
  2445                     for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
  2446                         if (!owntype.contains(l.head)) {
  2447                             log.error(tree.pos(), "undetermined.type", owntype1);
  2448                             owntype1 = types.createErrorType(owntype1);
  2450                     owntype = owntype1;
  2453                 // If the variable is a constant, record constant value in
  2454                 // computed type.
  2455                 if (v.getConstValue() != null && isStaticReference(tree))
  2456                     owntype = owntype.constType(v.getConstValue());
  2458                 if (pkind == VAL) {
  2459                     owntype = capture(owntype); // capture "names as expressions"
  2461                 break;
  2462             case MTH: {
  2463                 JCMethodInvocation app = (JCMethodInvocation)env.tree;
  2464                 owntype = checkMethod(site, sym, env, app.args,
  2465                                       pt.getParameterTypes(), pt.getTypeArguments(),
  2466                                       env.info.varArgs);
  2467                 break;
  2469             case PCK: case ERR:
  2470                 owntype = sym.type;
  2471                 break;
  2472             default:
  2473                 throw new AssertionError("unexpected kind: " + sym.kind +
  2474                                          " in tree " + tree);
  2477             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  2478             // (for constructors, the error was given when the constructor was
  2479             // resolved)
  2480             if (sym.name != names.init &&
  2481                 (sym.flags() & DEPRECATED) != 0 &&
  2482                 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
  2483                 sym.outermostClass() != env.info.scope.owner.outermostClass())
  2484                 chk.warnDeprecated(tree.pos(), sym);
  2486             if ((sym.flags() & PROPRIETARY) != 0) {
  2487                 if (enableSunApiLintControl)
  2488                   chk.warnSunApi(tree.pos(), "sun.proprietary", sym);
  2489                 else
  2490                   log.strictWarning(tree.pos(), "sun.proprietary", sym);
  2493             // Test (3): if symbol is a variable, check that its type and
  2494             // kind are compatible with the prototype and protokind.
  2495             return check(tree, owntype, sym.kind, pkind, pt);
  2498         /** Check that variable is initialized and evaluate the variable's
  2499          *  initializer, if not yet done. Also check that variable is not
  2500          *  referenced before it is defined.
  2501          *  @param tree    The tree making up the variable reference.
  2502          *  @param env     The current environment.
  2503          *  @param v       The variable's symbol.
  2504          */
  2505         private void checkInit(JCTree tree,
  2506                                Env<AttrContext> env,
  2507                                VarSymbol v,
  2508                                boolean onlyWarning) {
  2509 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  2510 //                             tree.pos + " " + v.pos + " " +
  2511 //                             Resolve.isStatic(env));//DEBUG
  2513             // A forward reference is diagnosed if the declaration position
  2514             // of the variable is greater than the current tree position
  2515             // and the tree and variable definition occur in the same class
  2516             // definition.  Note that writes don't count as references.
  2517             // This check applies only to class and instance
  2518             // variables.  Local variables follow different scope rules,
  2519             // and are subject to definite assignment checking.
  2520             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  2521                 v.owner.kind == TYP &&
  2522                 canOwnInitializer(env.info.scope.owner) &&
  2523                 v.owner == env.info.scope.owner.enclClass() &&
  2524                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  2525                 (env.tree.getTag() != JCTree.ASSIGN ||
  2526                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  2527                 String suffix = (env.info.enclVar == v) ?
  2528                                 "self.ref" : "forward.ref";
  2529                 if (!onlyWarning || isStaticEnumField(v)) {
  2530                     log.error(tree.pos(), "illegal." + suffix);
  2531                 } else if (useBeforeDeclarationWarning) {
  2532                     log.warning(tree.pos(), suffix, v);
  2536             v.getConstValue(); // ensure initializer is evaluated
  2538             checkEnumInitializer(tree, env, v);
  2541         /**
  2542          * Check for illegal references to static members of enum.  In
  2543          * an enum type, constructors and initializers may not
  2544          * reference its static members unless they are constant.
  2546          * @param tree    The tree making up the variable reference.
  2547          * @param env     The current environment.
  2548          * @param v       The variable's symbol.
  2549          * @see JLS 3rd Ed. (8.9 Enums)
  2550          */
  2551         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  2552             // JLS 3rd Ed.:
  2553             //
  2554             // "It is a compile-time error to reference a static field
  2555             // of an enum type that is not a compile-time constant
  2556             // (15.28) from constructors, instance initializer blocks,
  2557             // or instance variable initializer expressions of that
  2558             // type. It is a compile-time error for the constructors,
  2559             // instance initializer blocks, or instance variable
  2560             // initializer expressions of an enum constant e to refer
  2561             // to itself or to an enum constant of the same type that
  2562             // is declared to the right of e."
  2563             if (isStaticEnumField(v)) {
  2564                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  2566                 if (enclClass == null || enclClass.owner == null)
  2567                     return;
  2569                 // See if the enclosing class is the enum (or a
  2570                 // subclass thereof) declaring v.  If not, this
  2571                 // reference is OK.
  2572                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  2573                     return;
  2575                 // If the reference isn't from an initializer, then
  2576                 // the reference is OK.
  2577                 if (!Resolve.isInitializer(env))
  2578                     return;
  2580                 log.error(tree.pos(), "illegal.enum.static.ref");
  2584         /** Is the given symbol a static, non-constant field of an Enum?
  2585          *  Note: enum literals should not be regarded as such
  2586          */
  2587         private boolean isStaticEnumField(VarSymbol v) {
  2588             return Flags.isEnum(v.owner) &&
  2589                    Flags.isStatic(v) &&
  2590                    !Flags.isConstant(v) &&
  2591                    v.name != names._class;
  2594         /** Can the given symbol be the owner of code which forms part
  2595          *  if class initialization? This is the case if the symbol is
  2596          *  a type or field, or if the symbol is the synthetic method.
  2597          *  owning a block.
  2598          */
  2599         private boolean canOwnInitializer(Symbol sym) {
  2600             return
  2601                 (sym.kind & (VAR | TYP)) != 0 ||
  2602                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  2605     Warner noteWarner = new Warner();
  2607     /**
  2608      * Check that method arguments conform to its instantation.
  2609      **/
  2610     public Type checkMethod(Type site,
  2611                             Symbol sym,
  2612                             Env<AttrContext> env,
  2613                             final List<JCExpression> argtrees,
  2614                             List<Type> argtypes,
  2615                             List<Type> typeargtypes,
  2616                             boolean useVarargs) {
  2617         // Test (5): if symbol is an instance method of a raw type, issue
  2618         // an unchecked warning if its argument types change under erasure.
  2619         if (allowGenerics &&
  2620             (sym.flags() & STATIC) == 0 &&
  2621             (site.tag == CLASS || site.tag == TYPEVAR)) {
  2622             Type s = types.asOuterSuper(site, sym.owner);
  2623             if (s != null && s.isRaw() &&
  2624                 !types.isSameTypes(sym.type.getParameterTypes(),
  2625                                    sym.erasure(types).getParameterTypes())) {
  2626                 chk.warnUnchecked(env.tree.pos(),
  2627                                   "unchecked.call.mbr.of.raw.type",
  2628                                   sym, s);
  2632         // Compute the identifier's instantiated type.
  2633         // For methods, we need to compute the instance type by
  2634         // Resolve.instantiate from the symbol's type as well as
  2635         // any type arguments and value arguments.
  2636         noteWarner.warned = false;
  2637         Type owntype = rs.instantiate(env,
  2638                                       site,
  2639                                       sym,
  2640                                       argtypes,
  2641                                       typeargtypes,
  2642                                       true,
  2643                                       useVarargs,
  2644                                       noteWarner);
  2645         boolean warned = noteWarner.warned;
  2647         // If this fails, something went wrong; we should not have
  2648         // found the identifier in the first place.
  2649         if (owntype == null) {
  2650             if (!pt.isErroneous())
  2651                 log.error(env.tree.pos(),
  2652                           "internal.error.cant.instantiate",
  2653                           sym, site,
  2654                           Type.toString(pt.getParameterTypes()));
  2655             owntype = types.createErrorType(site);
  2656         } else {
  2657             // System.out.println("call   : " + env.tree);
  2658             // System.out.println("method : " + owntype);
  2659             // System.out.println("actuals: " + argtypes);
  2660             List<Type> formals = owntype.getParameterTypes();
  2661             Type last = useVarargs ? formals.last() : null;
  2662             if (sym.name==names.init &&
  2663                 sym.owner == syms.enumSym)
  2664                 formals = formals.tail.tail;
  2665             List<JCExpression> args = argtrees;
  2666             while (formals.head != last) {
  2667                 JCTree arg = args.head;
  2668                 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
  2669                 assertConvertible(arg, arg.type, formals.head, warn);
  2670                 warned |= warn.warned;
  2671                 args = args.tail;
  2672                 formals = formals.tail;
  2674             if (useVarargs) {
  2675                 Type varArg = types.elemtype(last);
  2676                 while (args.tail != null) {
  2677                     JCTree arg = args.head;
  2678                     Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
  2679                     assertConvertible(arg, arg.type, varArg, warn);
  2680                     warned |= warn.warned;
  2681                     args = args.tail;
  2683             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
  2684                 // non-varargs call to varargs method
  2685                 Type varParam = owntype.getParameterTypes().last();
  2686                 Type lastArg = argtypes.last();
  2687                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
  2688                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
  2689                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
  2690                                 types.elemtype(varParam),
  2691                                 varParam);
  2694             if (warned && sym.type.tag == FORALL) {
  2695                 chk.warnUnchecked(env.tree.pos(),
  2696                                   "unchecked.meth.invocation.applied",
  2697                                   kindName(sym),
  2698                                   sym.name,
  2699                                   rs.methodArguments(sym.type.getParameterTypes()),
  2700                                   rs.methodArguments(argtypes),
  2701                                   kindName(sym.location()),
  2702                                   sym.location());
  2703                 owntype = new MethodType(owntype.getParameterTypes(),
  2704                                          types.erasure(owntype.getReturnType()),
  2705                                          owntype.getThrownTypes(),
  2706                                          syms.methodClass);
  2708             if (useVarargs) {
  2709                 JCTree tree = env.tree;
  2710                 Type argtype = owntype.getParameterTypes().last();
  2711                 if (owntype.getReturnType().tag != FORALL || warned) {
  2712                     chk.checkVararg(env.tree.pos(), owntype.getParameterTypes(), sym, env);
  2714                 Type elemtype = types.elemtype(argtype);
  2715                 switch (tree.getTag()) {
  2716                 case JCTree.APPLY:
  2717                     ((JCMethodInvocation) tree).varargsElement = elemtype;
  2718                     break;
  2719                 case JCTree.NEWCLASS:
  2720                     ((JCNewClass) tree).varargsElement = elemtype;
  2721                     break;
  2722                 default:
  2723                     throw new AssertionError(""+tree);
  2727         return owntype;
  2730     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
  2731         if (types.isConvertible(actual, formal, warn))
  2732             return;
  2734         if (formal.isCompound()
  2735             && types.isSubtype(actual, types.supertype(formal))
  2736             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
  2737             return;
  2739         if (false) {
  2740             // TODO: make assertConvertible work
  2741             chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
  2742             throw new AssertionError("Tree: " + tree
  2743                                      + " actual:" + actual
  2744                                      + " formal: " + formal);
  2748     public void visitLiteral(JCLiteral tree) {
  2749         result = check(
  2750             tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
  2752     //where
  2753     /** Return the type of a literal with given type tag.
  2754      */
  2755     Type litType(int tag) {
  2756         return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
  2759     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  2760         result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
  2763     public void visitTypeArray(JCArrayTypeTree tree) {
  2764         Type etype = attribType(tree.elemtype, env);
  2765         Type type = new ArrayType(etype, syms.arrayClass);
  2766         result = check(tree, type, TYP, pkind, pt);
  2769     /** Visitor method for parameterized types.
  2770      *  Bound checking is left until later, since types are attributed
  2771      *  before supertype structure is completely known
  2772      */
  2773     public void visitTypeApply(JCTypeApply tree) {
  2774         Type owntype = types.createErrorType(tree.type);
  2776         // Attribute functor part of application and make sure it's a class.
  2777         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  2779         // Attribute type parameters
  2780         List<Type> actuals = attribTypes(tree.arguments, env);
  2782         if (clazztype.tag == CLASS) {
  2783             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  2785             if (actuals.length() == formals.length() || actuals.length() == 0) {
  2786                 List<Type> a = actuals;
  2787                 List<Type> f = formals;
  2788                 while (a.nonEmpty()) {
  2789                     a.head = a.head.withTypeVar(f.head);
  2790                     a = a.tail;
  2791                     f = f.tail;
  2793                 // Compute the proper generic outer
  2794                 Type clazzOuter = clazztype.getEnclosingType();
  2795                 if (clazzOuter.tag == CLASS) {
  2796                     Type site;
  2797                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  2798                     if (clazz.getTag() == JCTree.IDENT) {
  2799                         site = env.enclClass.sym.type;
  2800                     } else if (clazz.getTag() == JCTree.SELECT) {
  2801                         site = ((JCFieldAccess) clazz).selected.type;
  2802                     } else throw new AssertionError(""+tree);
  2803                     if (clazzOuter.tag == CLASS && site != clazzOuter) {
  2804                         if (site.tag == CLASS)
  2805                             site = types.asOuterSuper(site, clazzOuter.tsym);
  2806                         if (site == null)
  2807                             site = types.erasure(clazzOuter);
  2808                         clazzOuter = site;
  2811                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  2812             } else {
  2813                 if (formals.length() != 0) {
  2814                     log.error(tree.pos(), "wrong.number.type.args",
  2815                               Integer.toString(formals.length()));
  2816                 } else {
  2817                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  2819                 owntype = types.createErrorType(tree.type);
  2822         result = check(tree, owntype, TYP, pkind, pt);
  2825     public void visitTypeDisjoint(JCTypeDisjoint tree) {
  2826         List<Type> componentTypes = attribTypes(tree.components, env);
  2827         tree.type = result = check(tree, types.lub(componentTypes), TYP, pkind, pt);
  2830     public void visitTypeParameter(JCTypeParameter tree) {
  2831         TypeVar a = (TypeVar)tree.type;
  2832         Set<Type> boundSet = new HashSet<Type>();
  2833         if (a.bound.isErroneous())
  2834             return;
  2835         List<Type> bs = types.getBounds(a);
  2836         if (tree.bounds.nonEmpty()) {
  2837             // accept class or interface or typevar as first bound.
  2838             Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
  2839             boundSet.add(types.erasure(b));
  2840             if (b.isErroneous()) {
  2841                 a.bound = b;
  2843             else if (b.tag == TYPEVAR) {
  2844                 // if first bound was a typevar, do not accept further bounds.
  2845                 if (tree.bounds.tail.nonEmpty()) {
  2846                     log.error(tree.bounds.tail.head.pos(),
  2847                               "type.var.may.not.be.followed.by.other.bounds");
  2848                     log.unrecoverableError = true;
  2849                     tree.bounds = List.of(tree.bounds.head);
  2850                     a.bound = bs.head;
  2852             } else {
  2853                 // if first bound was a class or interface, accept only interfaces
  2854                 // as further bounds.
  2855                 for (JCExpression bound : tree.bounds.tail) {
  2856                     bs = bs.tail;
  2857                     Type i = checkBase(bs.head, bound, env, false, true, false);
  2858                     if (i.isErroneous())
  2859                         a.bound = i;
  2860                     else if (i.tag == CLASS)
  2861                         chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
  2865         bs = types.getBounds(a);
  2867         // in case of multiple bounds ...
  2868         if (bs.length() > 1) {
  2869             // ... the variable's bound is a class type flagged COMPOUND
  2870             // (see comment for TypeVar.bound).
  2871             // In this case, generate a class tree that represents the
  2872             // bound class, ...
  2873             JCTree extending;
  2874             List<JCExpression> implementing;
  2875             if ((bs.head.tsym.flags() & INTERFACE) == 0) {
  2876                 extending = tree.bounds.head;
  2877                 implementing = tree.bounds.tail;
  2878             } else {
  2879                 extending = null;
  2880                 implementing = tree.bounds;
  2882             JCClassDecl cd = make.at(tree.pos).ClassDef(
  2883                 make.Modifiers(PUBLIC | ABSTRACT),
  2884                 tree.name, List.<JCTypeParameter>nil(),
  2885                 extending, implementing, List.<JCTree>nil());
  2887             ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
  2888             assert (c.flags() & COMPOUND) != 0;
  2889             cd.sym = c;
  2890             c.sourcefile = env.toplevel.sourcefile;
  2892             // ... and attribute the bound class
  2893             c.flags_field |= UNATTRIBUTED;
  2894             Env<AttrContext> cenv = enter.classEnv(cd, env);
  2895             enter.typeEnvs.put(c, cenv);
  2900     public void visitWildcard(JCWildcard tree) {
  2901         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  2902         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  2903             ? syms.objectType
  2904             : attribType(tree.inner, env);
  2905         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  2906                                               tree.kind.kind,
  2907                                               syms.boundClass),
  2908                        TYP, pkind, pt);
  2911     public void visitAnnotation(JCAnnotation tree) {
  2912         log.error(tree.pos(), "annotation.not.valid.for.type", pt);
  2913         result = tree.type = syms.errType;
  2916     public void visitAnnotatedType(JCAnnotatedType tree) {
  2917         result = tree.type = attribType(tree.getUnderlyingType(), env);
  2920     public void visitErroneous(JCErroneous tree) {
  2921         if (tree.errs != null)
  2922             for (JCTree err : tree.errs)
  2923                 attribTree(err, env, ERR, pt);
  2924         result = tree.type = syms.errType;
  2927     /** Default visitor method for all other trees.
  2928      */
  2929     public void visitTree(JCTree tree) {
  2930         throw new AssertionError();
  2933     /** Main method: attribute class definition associated with given class symbol.
  2934      *  reporting completion failures at the given position.
  2935      *  @param pos The source position at which completion errors are to be
  2936      *             reported.
  2937      *  @param c   The class symbol whose definition will be attributed.
  2938      */
  2939     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  2940         try {
  2941             annotate.flush();
  2942             attribClass(c);
  2943         } catch (CompletionFailure ex) {
  2944             chk.completionError(pos, ex);
  2948     /** Attribute class definition associated with given class symbol.
  2949      *  @param c   The class symbol whose definition will be attributed.
  2950      */
  2951     void attribClass(ClassSymbol c) throws CompletionFailure {
  2952         if (c.type.tag == ERROR) return;
  2954         // Check for cycles in the inheritance graph, which can arise from
  2955         // ill-formed class files.
  2956         chk.checkNonCyclic(null, c.type);
  2958         Type st = types.supertype(c.type);
  2959         if ((c.flags_field & Flags.COMPOUND) == 0) {
  2960             // First, attribute superclass.
  2961             if (st.tag == CLASS)
  2962                 attribClass((ClassSymbol)st.tsym);
  2964             // Next attribute owner, if it is a class.
  2965             if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
  2966                 attribClass((ClassSymbol)c.owner);
  2969         // The previous operations might have attributed the current class
  2970         // if there was a cycle. So we test first whether the class is still
  2971         // UNATTRIBUTED.
  2972         if ((c.flags_field & UNATTRIBUTED) != 0) {
  2973             c.flags_field &= ~UNATTRIBUTED;
  2975             // Get environment current at the point of class definition.
  2976             Env<AttrContext> env = enter.typeEnvs.get(c);
  2978             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  2979             // because the annotations were not available at the time the env was created. Therefore,
  2980             // we look up the environment chain for the first enclosing environment for which the
  2981             // lint value is set. Typically, this is the parent env, but might be further if there
  2982             // are any envs created as a result of TypeParameter nodes.
  2983             Env<AttrContext> lintEnv = env;
  2984             while (lintEnv.info.lint == null)
  2985                 lintEnv = lintEnv.next;
  2987             // Having found the enclosing lint value, we can initialize the lint value for this class
  2988             env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
  2990             Lint prevLint = chk.setLint(env.info.lint);
  2991             JavaFileObject prev = log.useSource(c.sourcefile);
  2993             try {
  2994                 // java.lang.Enum may not be subclassed by a non-enum
  2995                 if (st.tsym == syms.enumSym &&
  2996                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  2997                     log.error(env.tree.pos(), "enum.no.subclassing");
  2999                 // Enums may not be extended by source-level classes
  3000                 if (st.tsym != null &&
  3001                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  3002                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
  3003                     !target.compilerBootstrap(c)) {
  3004                     log.error(env.tree.pos(), "enum.types.not.extensible");
  3006                 attribClassBody(env, c);
  3008                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  3009             } finally {
  3010                 log.useSource(prev);
  3011                 chk.setLint(prevLint);
  3017     public void visitImport(JCImport tree) {
  3018         // nothing to do
  3021     /** Finish the attribution of a class. */
  3022     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  3023         JCClassDecl tree = (JCClassDecl)env.tree;
  3024         assert c == tree.sym;
  3026         // Validate annotations
  3027         chk.validateAnnotations(tree.mods.annotations, c);
  3029         // Validate type parameters, supertype and interfaces.
  3030         attribBounds(tree.typarams);
  3031         if (!c.isAnonymous()) {
  3032             //already checked if anonymous
  3033             chk.validate(tree.typarams, env);
  3034             chk.validate(tree.extending, env);
  3035             chk.validate(tree.implementing, env);
  3038         // If this is a non-abstract class, check that it has no abstract
  3039         // methods or unimplemented methods of an implemented interface.
  3040         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  3041             if (!relax)
  3042                 chk.checkAllDefined(tree.pos(), c);
  3045         if ((c.flags() & ANNOTATION) != 0) {
  3046             if (tree.implementing.nonEmpty())
  3047                 log.error(tree.implementing.head.pos(),
  3048                           "cant.extend.intf.annotation");
  3049             if (tree.typarams.nonEmpty())
  3050                 log.error(tree.typarams.head.pos(),
  3051                           "intf.annotation.cant.have.type.params");
  3052         } else {
  3053             // Check that all extended classes and interfaces
  3054             // are compatible (i.e. no two define methods with same arguments
  3055             // yet different return types).  (JLS 8.4.6.3)
  3056             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  3059         // Check that class does not import the same parameterized interface
  3060         // with two different argument lists.
  3061         chk.checkClassBounds(tree.pos(), c.type);
  3063         tree.type = c.type;
  3065         boolean assertsEnabled = false;
  3066         assert assertsEnabled = true;
  3067         if (assertsEnabled) {
  3068             for (List<JCTypeParameter> l = tree.typarams;
  3069                  l.nonEmpty(); l = l.tail)
  3070                 assert env.info.scope.lookup(l.head.name).scope != null;
  3073         // Check that a generic class doesn't extend Throwable
  3074         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  3075             log.error(tree.extending.pos(), "generic.throwable");
  3077         // Check that all methods which implement some
  3078         // method conform to the method they implement.
  3079         chk.checkImplementations(tree);
  3081         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3082             // Attribute declaration
  3083             attribStat(l.head, env);
  3084             // Check that declarations in inner classes are not static (JLS 8.1.2)
  3085             // Make an exception for static constants.
  3086             if (c.owner.kind != PCK &&
  3087                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  3088                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  3089                 Symbol sym = null;
  3090                 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
  3091                 if (sym == null ||
  3092                     sym.kind != VAR ||
  3093                     ((VarSymbol) sym).getConstValue() == null)
  3094                     log.error(l.head.pos(), "icls.cant.have.static.decl");
  3098         // Check for cycles among non-initial constructors.
  3099         chk.checkCyclicConstructors(tree);
  3101         // Check for cycles among annotation elements.
  3102         chk.checkNonCyclicElements(tree);
  3104         // Check for proper use of serialVersionUID
  3105         if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) &&
  3106             isSerializable(c) &&
  3107             (c.flags() & Flags.ENUM) == 0 &&
  3108             (c.flags() & ABSTRACT) == 0) {
  3109             checkSerialVersionUID(tree, c);
  3112         // Check type annotations applicability rules
  3113         validateTypeAnnotations(tree);
  3115         // where
  3116         /** check if a class is a subtype of Serializable, if that is available. */
  3117         private boolean isSerializable(ClassSymbol c) {
  3118             try {
  3119                 syms.serializableType.complete();
  3121             catch (CompletionFailure e) {
  3122                 return false;
  3124             return types.isSubtype(c.type, syms.serializableType);
  3127         /** Check that an appropriate serialVersionUID member is defined. */
  3128         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  3130             // check for presence of serialVersionUID
  3131             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  3132             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  3133             if (e.scope == null) {
  3134                 log.warning(Lint.LintCategory.SERIAL,
  3135                         tree.pos(), "missing.SVUID", c);
  3136                 return;
  3139             // check that it is static final
  3140             VarSymbol svuid = (VarSymbol)e.sym;
  3141             if ((svuid.flags() & (STATIC | FINAL)) !=
  3142                 (STATIC | FINAL))
  3143                 log.warning(Lint.LintCategory.SERIAL,
  3144                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  3146             // check that it is long
  3147             else if (svuid.type.tag != TypeTags.LONG)
  3148                 log.warning(Lint.LintCategory.SERIAL,
  3149                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  3151             // check constant
  3152             else if (svuid.getConstValue() == null)
  3153                 log.warning(Lint.LintCategory.SERIAL,
  3154                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  3157     private Type capture(Type type) {
  3158         return types.capture(type);
  3161     private void validateTypeAnnotations(JCTree tree) {
  3162         tree.accept(typeAnnotationsValidator);
  3164     //where
  3165     private final JCTree.Visitor typeAnnotationsValidator =
  3166         new TreeScanner() {
  3167         public void visitAnnotation(JCAnnotation tree) {
  3168             if (tree instanceof JCTypeAnnotation) {
  3169                 chk.validateTypeAnnotation((JCTypeAnnotation)tree, false);
  3171             super.visitAnnotation(tree);
  3173         public void visitTypeParameter(JCTypeParameter tree) {
  3174             chk.validateTypeAnnotations(tree.annotations, true);
  3175             // don't call super. skip type annotations
  3176             scan(tree.bounds);
  3178         public void visitMethodDef(JCMethodDecl tree) {
  3179             // need to check static methods
  3180             if ((tree.sym.flags() & Flags.STATIC) != 0) {
  3181                 for (JCTypeAnnotation a : tree.receiverAnnotations) {
  3182                     if (chk.isTypeAnnotation(a, false))
  3183                         log.error(a.pos(), "annotation.type.not.applicable");
  3186             super.visitMethodDef(tree);
  3188     };

mercurial