src/share/classes/com/sun/tools/javac/comp/Attr.java

Mon, 02 Nov 2009 21:36:59 -0800

author
darcy
date
Mon, 02 Nov 2009 21:36:59 -0800
changeset 430
8fb9b4be3cb1
parent 383
8109aa93b212
child 504
6eca0895a644
permissions
-rw-r--r--

6827009: Project Coin: Strings in Switch
Reviewed-by: jjg, mcimadamore

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Sun designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Sun in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
    23  * have any questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.tools.JavaFileObject;
    33 import com.sun.tools.javac.code.*;
    34 import com.sun.tools.javac.jvm.*;
    35 import com.sun.tools.javac.tree.*;
    36 import com.sun.tools.javac.util.*;
    37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    38 import com.sun.tools.javac.util.List;
    40 import com.sun.tools.javac.jvm.Target;
    41 import com.sun.tools.javac.code.Symbol.*;
    42 import com.sun.tools.javac.tree.JCTree.*;
    43 import com.sun.tools.javac.code.Type.*;
    45 import com.sun.source.tree.IdentifierTree;
    46 import com.sun.source.tree.MemberSelectTree;
    47 import com.sun.source.tree.TreeVisitor;
    48 import com.sun.source.util.SimpleTreeVisitor;
    50 import static com.sun.tools.javac.code.Flags.*;
    51 import static com.sun.tools.javac.code.Kinds.*;
    52 import static com.sun.tools.javac.code.TypeTags.*;
    54 /** This is the main context-dependent analysis phase in GJC. It
    55  *  encompasses name resolution, type checking and constant folding as
    56  *  subtasks. Some subtasks involve auxiliary classes.
    57  *  @see Check
    58  *  @see Resolve
    59  *  @see ConstFold
    60  *  @see Infer
    61  *
    62  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
    63  *  you write code that depends on this, you do so at your own risk.
    64  *  This code and its internal interfaces are subject to change or
    65  *  deletion without notice.</b>
    66  */
    67 public class Attr extends JCTree.Visitor {
    68     protected static final Context.Key<Attr> attrKey =
    69         new Context.Key<Attr>();
    71     final Names names;
    72     final Log log;
    73     final Symtab syms;
    74     final Resolve rs;
    75     final Check chk;
    76     final MemberEnter memberEnter;
    77     final TreeMaker make;
    78     final ConstFold cfolder;
    79     final Enter enter;
    80     final Target target;
    81     final Types types;
    82     final JCDiagnostic.Factory diags;
    83     final Annotate annotate;
    85     public static Attr instance(Context context) {
    86         Attr instance = context.get(attrKey);
    87         if (instance == null)
    88             instance = new Attr(context);
    89         return instance;
    90     }
    92     protected Attr(Context context) {
    93         context.put(attrKey, this);
    95         names = Names.instance(context);
    96         log = Log.instance(context);
    97         syms = Symtab.instance(context);
    98         rs = Resolve.instance(context);
    99         chk = Check.instance(context);
   100         memberEnter = MemberEnter.instance(context);
   101         make = TreeMaker.instance(context);
   102         enter = Enter.instance(context);
   103         cfolder = ConstFold.instance(context);
   104         target = Target.instance(context);
   105         types = Types.instance(context);
   106         diags = JCDiagnostic.Factory.instance(context);
   107         annotate = Annotate.instance(context);
   109         Options options = Options.instance(context);
   111         Source source = Source.instance(context);
   112         allowGenerics = source.allowGenerics();
   113         allowVarargs = source.allowVarargs();
   114         allowEnums = source.allowEnums();
   115         allowBoxing = source.allowBoxing();
   116         allowCovariantReturns = source.allowCovariantReturns();
   117         allowAnonOuterThis = source.allowAnonOuterThis();
   118         allowStringsInSwitch = source.allowStringsInSwitch();
   119         sourceName = source.name;
   120         relax = (options.get("-retrofit") != null ||
   121                  options.get("-relax") != null);
   122         useBeforeDeclarationWarning = options.get("useBeforeDeclarationWarning") != null;
   123         allowInvokedynamic = options.get("invokedynamic") != null;
   124         enableSunApiLintControl = options.get("enableSunApiLintControl") != null;
   125     }
   127     /** Switch: relax some constraints for retrofit mode.
   128      */
   129     boolean relax;
   131     /** Switch: support generics?
   132      */
   133     boolean allowGenerics;
   135     /** Switch: allow variable-arity methods.
   136      */
   137     boolean allowVarargs;
   139     /** Switch: support enums?
   140      */
   141     boolean allowEnums;
   143     /** Switch: support boxing and unboxing?
   144      */
   145     boolean allowBoxing;
   147     /** Switch: support covariant result types?
   148      */
   149     boolean allowCovariantReturns;
   151     /** Switch: allow references to surrounding object from anonymous
   152      * objects during constructor call?
   153      */
   154     boolean allowAnonOuterThis;
   156     /** Switch: allow invokedynamic syntax
   157      */
   158     boolean allowInvokedynamic;
   160     /**
   161      * Switch: warn about use of variable before declaration?
   162      * RFE: 6425594
   163      */
   164     boolean useBeforeDeclarationWarning;
   166     /**
   167      * Switch: allow lint infrastructure to control Sun proprietary
   168      * API warnings.
   169      */
   170     boolean enableSunApiLintControl;
   172     /**
   173      * Switch: allow strings in switch?
   174      */
   175     boolean allowStringsInSwitch;
   177     /**
   178      * Switch: name of source level; used for error reporting.
   179      */
   180     String sourceName;
   182     /** Check kind and type of given tree against protokind and prototype.
   183      *  If check succeeds, store type in tree and return it.
   184      *  If check fails, store errType in tree and return it.
   185      *  No checks are performed if the prototype is a method type.
   186      *  It is not necessary in this case since we know that kind and type
   187      *  are correct.
   188      *
   189      *  @param tree     The tree whose kind and type is checked
   190      *  @param owntype  The computed type of the tree
   191      *  @param ownkind  The computed kind of the tree
   192      *  @param pkind    The expected kind (or: protokind) of the tree
   193      *  @param pt       The expected type (or: prototype) of the tree
   194      */
   195     Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
   196         if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
   197             if ((ownkind & ~pkind) == 0) {
   198                 owntype = chk.checkType(tree.pos(), owntype, pt);
   199             } else {
   200                 log.error(tree.pos(), "unexpected.type",
   201                           kindNames(pkind),
   202                           kindName(ownkind));
   203                 owntype = types.createErrorType(owntype);
   204             }
   205         }
   206         tree.type = owntype;
   207         return owntype;
   208     }
   210     Type checkReturn(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
   211         if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
   212             if ((ownkind & ~pkind) == 0) {
   213                 owntype = chk.checkReturnType(tree.pos(), owntype, pt);
   214             } else {
   215                 log.error(tree.pos(), "unexpected.type",
   216                           kindNames(pkind),
   217                           kindName(ownkind));
   218                 owntype = types.createErrorType(owntype);
   219             }
   220         }
   221         tree.type = owntype;
   222         return owntype;
   223     }
   225     /** Is given blank final variable assignable, i.e. in a scope where it
   226      *  may be assigned to even though it is final?
   227      *  @param v      The blank final variable.
   228      *  @param env    The current environment.
   229      */
   230     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   231         Symbol owner = env.info.scope.owner;
   232            // owner refers to the innermost variable, method or
   233            // initializer block declaration at this point.
   234         return
   235             v.owner == owner
   236             ||
   237             ((owner.name == names.init ||    // i.e. we are in a constructor
   238               owner.kind == VAR ||           // i.e. we are in a variable initializer
   239               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   240              &&
   241              v.owner == owner.owner
   242              &&
   243              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   244     }
   246     /** Check that variable can be assigned to.
   247      *  @param pos    The current source code position.
   248      *  @param v      The assigned varaible
   249      *  @param base   If the variable is referred to in a Select, the part
   250      *                to the left of the `.', null otherwise.
   251      *  @param env    The current environment.
   252      */
   253     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   254         if ((v.flags() & FINAL) != 0 &&
   255             ((v.flags() & HASINIT) != 0
   256              ||
   257              !((base == null ||
   258                (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
   259                isAssignableAsBlankFinal(v, env)))) {
   260             log.error(pos, "cant.assign.val.to.final.var", v);
   261         }
   262     }
   264     /** Does tree represent a static reference to an identifier?
   265      *  It is assumed that tree is either a SELECT or an IDENT.
   266      *  We have to weed out selects from non-type names here.
   267      *  @param tree    The candidate tree.
   268      */
   269     boolean isStaticReference(JCTree tree) {
   270         if (tree.getTag() == JCTree.SELECT) {
   271             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   272             if (lsym == null || lsym.kind != TYP) {
   273                 return false;
   274             }
   275         }
   276         return true;
   277     }
   279     /** Is this symbol a type?
   280      */
   281     static boolean isType(Symbol sym) {
   282         return sym != null && sym.kind == TYP;
   283     }
   285     /** The current `this' symbol.
   286      *  @param env    The current environment.
   287      */
   288     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   289         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   290     }
   292     /** Attribute a parsed identifier.
   293      * @param tree Parsed identifier name
   294      * @param topLevel The toplevel to use
   295      */
   296     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   297         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   298         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   299                                            syms.errSymbol.name,
   300                                            null, null, null, null);
   301         localEnv.enclClass.sym = syms.errSymbol;
   302         return tree.accept(identAttributer, localEnv);
   303     }
   304     // where
   305         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   306         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   307             @Override
   308             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   309                 Symbol site = visit(node.getExpression(), env);
   310                 if (site.kind == ERR)
   311                     return site;
   312                 Name name = (Name)node.getIdentifier();
   313                 if (site.kind == PCK) {
   314                     env.toplevel.packge = (PackageSymbol)site;
   315                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   316                 } else {
   317                     env.enclClass.sym = (ClassSymbol)site;
   318                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   319                 }
   320             }
   322             @Override
   323             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   324                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   325             }
   326         }
   328     public Type coerce(Type etype, Type ttype) {
   329         return cfolder.coerce(etype, ttype);
   330     }
   332     public Type attribType(JCTree node, TypeSymbol sym) {
   333         Env<AttrContext> env = enter.typeEnvs.get(sym);
   334         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   335         return attribTree(node, localEnv, Kinds.TYP, Type.noType);
   336     }
   338     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   339         breakTree = tree;
   340         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   341         try {
   342             attribExpr(expr, env);
   343         } catch (BreakAttr b) {
   344             return b.env;
   345         } finally {
   346             breakTree = null;
   347             log.useSource(prev);
   348         }
   349         return env;
   350     }
   352     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   353         breakTree = tree;
   354         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   355         try {
   356             attribStat(stmt, env);
   357         } catch (BreakAttr b) {
   358             return b.env;
   359         } finally {
   360             breakTree = null;
   361             log.useSource(prev);
   362         }
   363         return env;
   364     }
   366     private JCTree breakTree = null;
   368     private static class BreakAttr extends RuntimeException {
   369         static final long serialVersionUID = -6924771130405446405L;
   370         private Env<AttrContext> env;
   371         private BreakAttr(Env<AttrContext> env) {
   372             this.env = env;
   373         }
   374     }
   377 /* ************************************************************************
   378  * Visitor methods
   379  *************************************************************************/
   381     /** Visitor argument: the current environment.
   382      */
   383     Env<AttrContext> env;
   385     /** Visitor argument: the currently expected proto-kind.
   386      */
   387     int pkind;
   389     /** Visitor argument: the currently expected proto-type.
   390      */
   391     Type pt;
   393     /** Visitor result: the computed type.
   394      */
   395     Type result;
   397     /** Visitor method: attribute a tree, catching any completion failure
   398      *  exceptions. Return the tree's type.
   399      *
   400      *  @param tree    The tree to be visited.
   401      *  @param env     The environment visitor argument.
   402      *  @param pkind   The protokind visitor argument.
   403      *  @param pt      The prototype visitor argument.
   404      */
   405     Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
   406         Env<AttrContext> prevEnv = this.env;
   407         int prevPkind = this.pkind;
   408         Type prevPt = this.pt;
   409         try {
   410             this.env = env;
   411             this.pkind = pkind;
   412             this.pt = pt;
   413             tree.accept(this);
   414             if (tree == breakTree)
   415                 throw new BreakAttr(env);
   416             return result;
   417         } catch (CompletionFailure ex) {
   418             tree.type = syms.errType;
   419             return chk.completionError(tree.pos(), ex);
   420         } finally {
   421             this.env = prevEnv;
   422             this.pkind = prevPkind;
   423             this.pt = prevPt;
   424         }
   425     }
   427     /** Derived visitor method: attribute an expression tree.
   428      */
   429     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   430         return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
   431     }
   433     /** Derived visitor method: attribute an expression tree with
   434      *  no constraints on the computed type.
   435      */
   436     Type attribExpr(JCTree tree, Env<AttrContext> env) {
   437         return attribTree(tree, env, VAL, Type.noType);
   438     }
   440     /** Derived visitor method: attribute a type tree.
   441      */
   442     Type attribType(JCTree tree, Env<AttrContext> env) {
   443         Type result = attribType(tree, env, Type.noType);
   444         return result;
   445     }
   447     /** Derived visitor method: attribute a type tree.
   448      */
   449     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   450         Type result = attribTree(tree, env, TYP, pt);
   451         return result;
   452     }
   454     /** Derived visitor method: attribute a statement or definition tree.
   455      */
   456     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   457         return attribTree(tree, env, NIL, Type.noType);
   458     }
   460     /** Attribute a list of expressions, returning a list of types.
   461      */
   462     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   463         ListBuffer<Type> ts = new ListBuffer<Type>();
   464         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   465             ts.append(attribExpr(l.head, env, pt));
   466         return ts.toList();
   467     }
   469     /** Attribute a list of statements, returning nothing.
   470      */
   471     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   472         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   473             attribStat(l.head, env);
   474     }
   476     /** Attribute the arguments in a method call, returning a list of types.
   477      */
   478     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
   479         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   480         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   481             argtypes.append(chk.checkNonVoid(
   482                 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
   483         return argtypes.toList();
   484     }
   486     /** Attribute a type argument list, returning a list of types.
   487      *  Caller is responsible for calling checkRefTypes.
   488      */
   489     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   490         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   491         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   492             argtypes.append(attribType(l.head, env));
   493         return argtypes.toList();
   494     }
   496     /** Attribute a type argument list, returning a list of types.
   497      *  Check that all the types are references.
   498      */
   499     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   500         List<Type> types = attribAnyTypes(trees, env);
   501         return chk.checkRefTypes(trees, types);
   502     }
   504     /**
   505      * Attribute type variables (of generic classes or methods).
   506      * Compound types are attributed later in attribBounds.
   507      * @param typarams the type variables to enter
   508      * @param env      the current environment
   509      */
   510     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   511         for (JCTypeParameter tvar : typarams) {
   512             TypeVar a = (TypeVar)tvar.type;
   513             a.tsym.flags_field |= UNATTRIBUTED;
   514             a.bound = Type.noType;
   515             if (!tvar.bounds.isEmpty()) {
   516                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   517                 for (JCExpression bound : tvar.bounds.tail)
   518                     bounds = bounds.prepend(attribType(bound, env));
   519                 types.setBounds(a, bounds.reverse());
   520             } else {
   521                 // if no bounds are given, assume a single bound of
   522                 // java.lang.Object.
   523                 types.setBounds(a, List.of(syms.objectType));
   524             }
   525             a.tsym.flags_field &= ~UNATTRIBUTED;
   526         }
   527         for (JCTypeParameter tvar : typarams)
   528             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   529         attribStats(typarams, env);
   530     }
   532     void attribBounds(List<JCTypeParameter> typarams) {
   533         for (JCTypeParameter typaram : typarams) {
   534             Type bound = typaram.type.getUpperBound();
   535             if (bound != null && bound.tsym instanceof ClassSymbol) {
   536                 ClassSymbol c = (ClassSymbol)bound.tsym;
   537                 if ((c.flags_field & COMPOUND) != 0) {
   538                     assert (c.flags_field & UNATTRIBUTED) != 0 : c;
   539                     attribClass(typaram.pos(), c);
   540                 }
   541             }
   542         }
   543     }
   545     /**
   546      * Attribute the type references in a list of annotations.
   547      */
   548     void attribAnnotationTypes(List<JCAnnotation> annotations,
   549                                Env<AttrContext> env) {
   550         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   551             JCAnnotation a = al.head;
   552             attribType(a.annotationType, env);
   553         }
   554     }
   556     /** Attribute type reference in an `extends' or `implements' clause.
   557      *
   558      *  @param tree              The tree making up the type reference.
   559      *  @param env               The environment current at the reference.
   560      *  @param classExpected     true if only a class is expected here.
   561      *  @param interfaceExpected true if only an interface is expected here.
   562      */
   563     Type attribBase(JCTree tree,
   564                     Env<AttrContext> env,
   565                     boolean classExpected,
   566                     boolean interfaceExpected,
   567                     boolean checkExtensible) {
   568         Type t = attribType(tree, env);
   569         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   570     }
   571     Type checkBase(Type t,
   572                    JCTree tree,
   573                    Env<AttrContext> env,
   574                    boolean classExpected,
   575                    boolean interfaceExpected,
   576                    boolean checkExtensible) {
   577         if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
   578             // check that type variable is already visible
   579             if (t.getUpperBound() == null) {
   580                 log.error(tree.pos(), "illegal.forward.ref");
   581                 return types.createErrorType(t);
   582             }
   583         } else {
   584             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   585         }
   586         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   587             log.error(tree.pos(), "intf.expected.here");
   588             // return errType is necessary since otherwise there might
   589             // be undetected cycles which cause attribution to loop
   590             return types.createErrorType(t);
   591         } else if (checkExtensible &&
   592                    classExpected &&
   593                    (t.tsym.flags() & INTERFACE) != 0) {
   594             log.error(tree.pos(), "no.intf.expected.here");
   595             return types.createErrorType(t);
   596         }
   597         if (checkExtensible &&
   598             ((t.tsym.flags() & FINAL) != 0)) {
   599             log.error(tree.pos(),
   600                       "cant.inherit.from.final", t.tsym);
   601         }
   602         chk.checkNonCyclic(tree.pos(), t);
   603         return t;
   604     }
   606     public void visitClassDef(JCClassDecl tree) {
   607         // Local classes have not been entered yet, so we need to do it now:
   608         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   609             enter.classEnter(tree, env);
   611         ClassSymbol c = tree.sym;
   612         if (c == null) {
   613             // exit in case something drastic went wrong during enter.
   614             result = null;
   615         } else {
   616             // make sure class has been completed:
   617             c.complete();
   619             // If this class appears as an anonymous class
   620             // in a superclass constructor call where
   621             // no explicit outer instance is given,
   622             // disable implicit outer instance from being passed.
   623             // (This would be an illegal access to "this before super").
   624             if (env.info.isSelfCall &&
   625                 env.tree.getTag() == JCTree.NEWCLASS &&
   626                 ((JCNewClass) env.tree).encl == null)
   627             {
   628                 c.flags_field |= NOOUTERTHIS;
   629             }
   630             attribClass(tree.pos(), c);
   631             result = tree.type = c.type;
   632         }
   633     }
   635     public void visitMethodDef(JCMethodDecl tree) {
   636         MethodSymbol m = tree.sym;
   638         Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
   639         Lint prevLint = chk.setLint(lint);
   640         try {
   641             chk.checkDeprecatedAnnotation(tree.pos(), m);
   643             attribBounds(tree.typarams);
   645             // If we override any other methods, check that we do so properly.
   646             // JLS ???
   647             chk.checkOverride(tree, m);
   649             // Create a new environment with local scope
   650             // for attributing the method.
   651             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   653             localEnv.info.lint = lint;
   655             // Enter all type parameters into the local method scope.
   656             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   657                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   659             ClassSymbol owner = env.enclClass.sym;
   660             if ((owner.flags() & ANNOTATION) != 0 &&
   661                 tree.params.nonEmpty())
   662                 log.error(tree.params.head.pos(),
   663                           "intf.annotation.members.cant.have.params");
   665             // Attribute all value parameters.
   666             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   667                 attribStat(l.head, localEnv);
   668             }
   670             // Check that type parameters are well-formed.
   671             chk.validate(tree.typarams, localEnv);
   672             if ((owner.flags() & ANNOTATION) != 0 &&
   673                 tree.typarams.nonEmpty())
   674                 log.error(tree.typarams.head.pos(),
   675                           "intf.annotation.members.cant.have.type.params");
   677             // Check that result type is well-formed.
   678             chk.validate(tree.restype, localEnv);
   679             if ((owner.flags() & ANNOTATION) != 0)
   680                 chk.validateAnnotationType(tree.restype);
   682             if ((owner.flags() & ANNOTATION) != 0)
   683                 chk.validateAnnotationMethod(tree.pos(), m);
   685             // Check that all exceptions mentioned in the throws clause extend
   686             // java.lang.Throwable.
   687             if ((owner.flags() & ANNOTATION) != 0 && tree.thrown.nonEmpty())
   688                 log.error(tree.thrown.head.pos(),
   689                           "throws.not.allowed.in.intf.annotation");
   690             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   691                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   693             if (tree.body == null) {
   694                 // Empty bodies are only allowed for
   695                 // abstract, native, or interface methods, or for methods
   696                 // in a retrofit signature class.
   697                 if ((owner.flags() & INTERFACE) == 0 &&
   698                     (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
   699                     !relax)
   700                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   701                 if (tree.defaultValue != null) {
   702                     if ((owner.flags() & ANNOTATION) == 0)
   703                         log.error(tree.pos(),
   704                                   "default.allowed.in.intf.annotation.member");
   705                 }
   706             } else if ((owner.flags() & INTERFACE) != 0) {
   707                 log.error(tree.body.pos(), "intf.meth.cant.have.body");
   708             } else if ((tree.mods.flags & ABSTRACT) != 0) {
   709                 log.error(tree.pos(), "abstract.meth.cant.have.body");
   710             } else if ((tree.mods.flags & NATIVE) != 0) {
   711                 log.error(tree.pos(), "native.meth.cant.have.body");
   712             } else {
   713                 // Add an implicit super() call unless an explicit call to
   714                 // super(...) or this(...) is given
   715                 // or we are compiling class java.lang.Object.
   716                 if (tree.name == names.init && owner.type != syms.objectType) {
   717                     JCBlock body = tree.body;
   718                     if (body.stats.isEmpty() ||
   719                         !TreeInfo.isSelfCall(body.stats.head)) {
   720                         body.stats = body.stats.
   721                             prepend(memberEnter.SuperCall(make.at(body.pos),
   722                                                           List.<Type>nil(),
   723                                                           List.<JCVariableDecl>nil(),
   724                                                           false));
   725                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
   726                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
   727                                TreeInfo.isSuperCall(body.stats.head)) {
   728                         // enum constructors are not allowed to call super
   729                         // directly, so make sure there aren't any super calls
   730                         // in enum constructors, except in the compiler
   731                         // generated one.
   732                         log.error(tree.body.stats.head.pos(),
   733                                   "call.to.super.not.allowed.in.enum.ctor",
   734                                   env.enclClass.sym);
   735                     }
   736                 }
   738                 // Attribute method body.
   739                 attribStat(tree.body, localEnv);
   740             }
   741             localEnv.info.scope.leave();
   742             result = tree.type = m.type;
   743             chk.validateAnnotations(tree.mods.annotations, m);
   744         }
   745         finally {
   746             chk.setLint(prevLint);
   747         }
   748     }
   750     public void visitVarDef(JCVariableDecl tree) {
   751         // Local variables have not been entered yet, so we need to do it now:
   752         if (env.info.scope.owner.kind == MTH) {
   753             if (tree.sym != null) {
   754                 // parameters have already been entered
   755                 env.info.scope.enter(tree.sym);
   756             } else {
   757                 memberEnter.memberEnter(tree, env);
   758                 annotate.flush();
   759             }
   760         }
   762         VarSymbol v = tree.sym;
   763         Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
   764         Lint prevLint = chk.setLint(lint);
   766         // Check that the variable's declared type is well-formed.
   767         chk.validate(tree.vartype, env);
   769         try {
   770             chk.checkDeprecatedAnnotation(tree.pos(), v);
   772             if (tree.init != null) {
   773                 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
   774                     // In this case, `v' is final.  Ensure that it's initializer is
   775                     // evaluated.
   776                     v.getConstValue(); // ensure initializer is evaluated
   777                 } else {
   778                     // Attribute initializer in a new environment
   779                     // with the declared variable as owner.
   780                     // Check that initializer conforms to variable's declared type.
   781                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
   782                     initEnv.info.lint = lint;
   783                     // In order to catch self-references, we set the variable's
   784                     // declaration position to maximal possible value, effectively
   785                     // marking the variable as undefined.
   786                     initEnv.info.enclVar = v;
   787                     attribExpr(tree.init, initEnv, v.type);
   788                 }
   789             }
   790             result = tree.type = v.type;
   791             chk.validateAnnotations(tree.mods.annotations, v);
   792         }
   793         finally {
   794             chk.setLint(prevLint);
   795         }
   796     }
   798     public void visitSkip(JCSkip tree) {
   799         result = null;
   800     }
   802     public void visitBlock(JCBlock tree) {
   803         if (env.info.scope.owner.kind == TYP) {
   804             // Block is a static or instance initializer;
   805             // let the owner of the environment be a freshly
   806             // created BLOCK-method.
   807             Env<AttrContext> localEnv =
   808                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
   809             localEnv.info.scope.owner =
   810                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
   811                                  env.info.scope.owner);
   812             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
   813             attribStats(tree.stats, localEnv);
   814         } else {
   815             // Create a new local environment with a local scope.
   816             Env<AttrContext> localEnv =
   817                 env.dup(tree, env.info.dup(env.info.scope.dup()));
   818             attribStats(tree.stats, localEnv);
   819             localEnv.info.scope.leave();
   820         }
   821         result = null;
   822     }
   824     public void visitDoLoop(JCDoWhileLoop tree) {
   825         attribStat(tree.body, env.dup(tree));
   826         attribExpr(tree.cond, env, syms.booleanType);
   827         result = null;
   828     }
   830     public void visitWhileLoop(JCWhileLoop tree) {
   831         attribExpr(tree.cond, env, syms.booleanType);
   832         attribStat(tree.body, env.dup(tree));
   833         result = null;
   834     }
   836     public void visitForLoop(JCForLoop tree) {
   837         Env<AttrContext> loopEnv =
   838             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
   839         attribStats(tree.init, loopEnv);
   840         if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
   841         loopEnv.tree = tree; // before, we were not in loop!
   842         attribStats(tree.step, loopEnv);
   843         attribStat(tree.body, loopEnv);
   844         loopEnv.info.scope.leave();
   845         result = null;
   846     }
   848     public void visitForeachLoop(JCEnhancedForLoop tree) {
   849         Env<AttrContext> loopEnv =
   850             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
   851         attribStat(tree.var, loopEnv);
   852         Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
   853         chk.checkNonVoid(tree.pos(), exprType);
   854         Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
   855         if (elemtype == null) {
   856             // or perhaps expr implements Iterable<T>?
   857             Type base = types.asSuper(exprType, syms.iterableType.tsym);
   858             if (base == null) {
   859                 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
   860                 elemtype = types.createErrorType(exprType);
   861             } else {
   862                 List<Type> iterableParams = base.allparams();
   863                 elemtype = iterableParams.isEmpty()
   864                     ? syms.objectType
   865                     : types.upperBound(iterableParams.head);
   866             }
   867         }
   868         chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
   869         loopEnv.tree = tree; // before, we were not in loop!
   870         attribStat(tree.body, loopEnv);
   871         loopEnv.info.scope.leave();
   872         result = null;
   873     }
   875     public void visitLabelled(JCLabeledStatement tree) {
   876         // Check that label is not used in an enclosing statement
   877         Env<AttrContext> env1 = env;
   878         while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
   879             if (env1.tree.getTag() == JCTree.LABELLED &&
   880                 ((JCLabeledStatement) env1.tree).label == tree.label) {
   881                 log.error(tree.pos(), "label.already.in.use",
   882                           tree.label);
   883                 break;
   884             }
   885             env1 = env1.next;
   886         }
   888         attribStat(tree.body, env.dup(tree));
   889         result = null;
   890     }
   892     public void visitSwitch(JCSwitch tree) {
   893         Type seltype = attribExpr(tree.selector, env);
   895         Env<AttrContext> switchEnv =
   896             env.dup(tree, env.info.dup(env.info.scope.dup()));
   898         boolean enumSwitch =
   899             allowEnums &&
   900             (seltype.tsym.flags() & Flags.ENUM) != 0;
   901         boolean stringSwitch = false;
   902         if (types.isSameType(seltype, syms.stringType)) {
   903             if (allowStringsInSwitch) {
   904                 stringSwitch = true;
   905             } else {
   906                 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
   907             }
   908         }
   909         if (!enumSwitch && !stringSwitch)
   910             seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
   912         // Attribute all cases and
   913         // check that there are no duplicate case labels or default clauses.
   914         Set<Object> labels = new HashSet<Object>(); // The set of case labels.
   915         boolean hasDefault = false;      // Is there a default label?
   916         for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
   917             JCCase c = l.head;
   918             Env<AttrContext> caseEnv =
   919                 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
   920             if (c.pat != null) {
   921                 if (enumSwitch) {
   922                     Symbol sym = enumConstant(c.pat, seltype);
   923                     if (sym == null) {
   924                         log.error(c.pat.pos(), "enum.const.req");
   925                     } else if (!labels.add(sym)) {
   926                         log.error(c.pos(), "duplicate.case.label");
   927                     }
   928                 } else {
   929                     Type pattype = attribExpr(c.pat, switchEnv, seltype);
   930                     if (pattype.tag != ERROR) {
   931                         if (pattype.constValue() == null) {
   932                             log.error(c.pat.pos(),
   933                                       (stringSwitch ? "string.const.req" : "const.expr.req"));
   934                         } else if (labels.contains(pattype.constValue())) {
   935                             log.error(c.pos(), "duplicate.case.label");
   936                         } else {
   937                             labels.add(pattype.constValue());
   938                         }
   939                     }
   940                 }
   941             } else if (hasDefault) {
   942                 log.error(c.pos(), "duplicate.default.label");
   943             } else {
   944                 hasDefault = true;
   945             }
   946             attribStats(c.stats, caseEnv);
   947             caseEnv.info.scope.leave();
   948             addVars(c.stats, switchEnv.info.scope);
   949         }
   951         switchEnv.info.scope.leave();
   952         result = null;
   953     }
   954     // where
   955         /** Add any variables defined in stats to the switch scope. */
   956         private static void addVars(List<JCStatement> stats, Scope switchScope) {
   957             for (;stats.nonEmpty(); stats = stats.tail) {
   958                 JCTree stat = stats.head;
   959                 if (stat.getTag() == JCTree.VARDEF)
   960                     switchScope.enter(((JCVariableDecl) stat).sym);
   961             }
   962         }
   963     // where
   964     /** Return the selected enumeration constant symbol, or null. */
   965     private Symbol enumConstant(JCTree tree, Type enumType) {
   966         if (tree.getTag() != JCTree.IDENT) {
   967             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
   968             return syms.errSymbol;
   969         }
   970         JCIdent ident = (JCIdent)tree;
   971         Name name = ident.name;
   972         for (Scope.Entry e = enumType.tsym.members().lookup(name);
   973              e.scope != null; e = e.next()) {
   974             if (e.sym.kind == VAR) {
   975                 Symbol s = ident.sym = e.sym;
   976                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
   977                 ident.type = s.type;
   978                 return ((s.flags_field & Flags.ENUM) == 0)
   979                     ? null : s;
   980             }
   981         }
   982         return null;
   983     }
   985     public void visitSynchronized(JCSynchronized tree) {
   986         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
   987         attribStat(tree.body, env);
   988         result = null;
   989     }
   991     public void visitTry(JCTry tree) {
   992         // Attribute body
   993         attribStat(tree.body, env.dup(tree, env.info.dup()));
   995         // Attribute catch clauses
   996         for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
   997             JCCatch c = l.head;
   998             Env<AttrContext> catchEnv =
   999                 env.dup(c, env.info.dup(env.info.scope.dup()));
  1000             Type ctype = attribStat(c.param, catchEnv);
  1001             if (c.param.type.tsym.kind == Kinds.VAR) {
  1002                 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1004             chk.checkType(c.param.vartype.pos(),
  1005                           chk.checkClassType(c.param.vartype.pos(), ctype),
  1006                           syms.throwableType);
  1007             attribStat(c.body, catchEnv);
  1008             catchEnv.info.scope.leave();
  1011         // Attribute finalizer
  1012         if (tree.finalizer != null) attribStat(tree.finalizer, env);
  1013         result = null;
  1016     public void visitConditional(JCConditional tree) {
  1017         attribExpr(tree.cond, env, syms.booleanType);
  1018         attribExpr(tree.truepart, env);
  1019         attribExpr(tree.falsepart, env);
  1020         result = check(tree,
  1021                        capture(condType(tree.pos(), tree.cond.type,
  1022                                         tree.truepart.type, tree.falsepart.type)),
  1023                        VAL, pkind, pt);
  1025     //where
  1026         /** Compute the type of a conditional expression, after
  1027          *  checking that it exists. See Spec 15.25.
  1029          *  @param pos      The source position to be used for
  1030          *                  error diagnostics.
  1031          *  @param condtype The type of the expression's condition.
  1032          *  @param thentype The type of the expression's then-part.
  1033          *  @param elsetype The type of the expression's else-part.
  1034          */
  1035         private Type condType(DiagnosticPosition pos,
  1036                               Type condtype,
  1037                               Type thentype,
  1038                               Type elsetype) {
  1039             Type ctype = condType1(pos, condtype, thentype, elsetype);
  1041             // If condition and both arms are numeric constants,
  1042             // evaluate at compile-time.
  1043             return ((condtype.constValue() != null) &&
  1044                     (thentype.constValue() != null) &&
  1045                     (elsetype.constValue() != null))
  1046                 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
  1047                 : ctype;
  1049         /** Compute the type of a conditional expression, after
  1050          *  checking that it exists.  Does not take into
  1051          *  account the special case where condition and both arms
  1052          *  are constants.
  1054          *  @param pos      The source position to be used for error
  1055          *                  diagnostics.
  1056          *  @param condtype The type of the expression's condition.
  1057          *  @param thentype The type of the expression's then-part.
  1058          *  @param elsetype The type of the expression's else-part.
  1059          */
  1060         private Type condType1(DiagnosticPosition pos, Type condtype,
  1061                                Type thentype, Type elsetype) {
  1062             // If same type, that is the result
  1063             if (types.isSameType(thentype, elsetype))
  1064                 return thentype.baseType();
  1066             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1067                 ? thentype : types.unboxedType(thentype);
  1068             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1069                 ? elsetype : types.unboxedType(elsetype);
  1071             // Otherwise, if both arms can be converted to a numeric
  1072             // type, return the least numeric type that fits both arms
  1073             // (i.e. return larger of the two, or return int if one
  1074             // arm is short, the other is char).
  1075             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1076                 // If one arm has an integer subrange type (i.e., byte,
  1077                 // short, or char), and the other is an integer constant
  1078                 // that fits into the subrange, return the subrange type.
  1079                 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
  1080                     types.isAssignable(elseUnboxed, thenUnboxed))
  1081                     return thenUnboxed.baseType();
  1082                 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
  1083                     types.isAssignable(thenUnboxed, elseUnboxed))
  1084                     return elseUnboxed.baseType();
  1086                 for (int i = BYTE; i < VOID; i++) {
  1087                     Type candidate = syms.typeOfTag[i];
  1088                     if (types.isSubtype(thenUnboxed, candidate) &&
  1089                         types.isSubtype(elseUnboxed, candidate))
  1090                         return candidate;
  1094             // Those were all the cases that could result in a primitive
  1095             if (allowBoxing) {
  1096                 if (thentype.isPrimitive())
  1097                     thentype = types.boxedClass(thentype).type;
  1098                 if (elsetype.isPrimitive())
  1099                     elsetype = types.boxedClass(elsetype).type;
  1102             if (types.isSubtype(thentype, elsetype))
  1103                 return elsetype.baseType();
  1104             if (types.isSubtype(elsetype, thentype))
  1105                 return thentype.baseType();
  1107             if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
  1108                 log.error(pos, "neither.conditional.subtype",
  1109                           thentype, elsetype);
  1110                 return thentype.baseType();
  1113             // both are known to be reference types.  The result is
  1114             // lub(thentype,elsetype). This cannot fail, as it will
  1115             // always be possible to infer "Object" if nothing better.
  1116             return types.lub(thentype.baseType(), elsetype.baseType());
  1119     public void visitIf(JCIf tree) {
  1120         attribExpr(tree.cond, env, syms.booleanType);
  1121         attribStat(tree.thenpart, env);
  1122         if (tree.elsepart != null)
  1123             attribStat(tree.elsepart, env);
  1124         chk.checkEmptyIf(tree);
  1125         result = null;
  1128     public void visitExec(JCExpressionStatement tree) {
  1129         attribExpr(tree.expr, env);
  1130         result = null;
  1133     public void visitBreak(JCBreak tree) {
  1134         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1135         result = null;
  1138     public void visitContinue(JCContinue tree) {
  1139         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1140         result = null;
  1142     //where
  1143         /** Return the target of a break or continue statement, if it exists,
  1144          *  report an error if not.
  1145          *  Note: The target of a labelled break or continue is the
  1146          *  (non-labelled) statement tree referred to by the label,
  1147          *  not the tree representing the labelled statement itself.
  1149          *  @param pos     The position to be used for error diagnostics
  1150          *  @param tag     The tag of the jump statement. This is either
  1151          *                 Tree.BREAK or Tree.CONTINUE.
  1152          *  @param label   The label of the jump statement, or null if no
  1153          *                 label is given.
  1154          *  @param env     The environment current at the jump statement.
  1155          */
  1156         private JCTree findJumpTarget(DiagnosticPosition pos,
  1157                                     int tag,
  1158                                     Name label,
  1159                                     Env<AttrContext> env) {
  1160             // Search environments outwards from the point of jump.
  1161             Env<AttrContext> env1 = env;
  1162             LOOP:
  1163             while (env1 != null) {
  1164                 switch (env1.tree.getTag()) {
  1165                 case JCTree.LABELLED:
  1166                     JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1167                     if (label == labelled.label) {
  1168                         // If jump is a continue, check that target is a loop.
  1169                         if (tag == JCTree.CONTINUE) {
  1170                             if (labelled.body.getTag() != JCTree.DOLOOP &&
  1171                                 labelled.body.getTag() != JCTree.WHILELOOP &&
  1172                                 labelled.body.getTag() != JCTree.FORLOOP &&
  1173                                 labelled.body.getTag() != JCTree.FOREACHLOOP)
  1174                                 log.error(pos, "not.loop.label", label);
  1175                             // Found labelled statement target, now go inwards
  1176                             // to next non-labelled tree.
  1177                             return TreeInfo.referencedStatement(labelled);
  1178                         } else {
  1179                             return labelled;
  1182                     break;
  1183                 case JCTree.DOLOOP:
  1184                 case JCTree.WHILELOOP:
  1185                 case JCTree.FORLOOP:
  1186                 case JCTree.FOREACHLOOP:
  1187                     if (label == null) return env1.tree;
  1188                     break;
  1189                 case JCTree.SWITCH:
  1190                     if (label == null && tag == JCTree.BREAK) return env1.tree;
  1191                     break;
  1192                 case JCTree.METHODDEF:
  1193                 case JCTree.CLASSDEF:
  1194                     break LOOP;
  1195                 default:
  1197                 env1 = env1.next;
  1199             if (label != null)
  1200                 log.error(pos, "undef.label", label);
  1201             else if (tag == JCTree.CONTINUE)
  1202                 log.error(pos, "cont.outside.loop");
  1203             else
  1204                 log.error(pos, "break.outside.switch.loop");
  1205             return null;
  1208     public void visitReturn(JCReturn tree) {
  1209         // Check that there is an enclosing method which is
  1210         // nested within than the enclosing class.
  1211         if (env.enclMethod == null ||
  1212             env.enclMethod.sym.owner != env.enclClass.sym) {
  1213             log.error(tree.pos(), "ret.outside.meth");
  1215         } else {
  1216             // Attribute return expression, if it exists, and check that
  1217             // it conforms to result type of enclosing method.
  1218             Symbol m = env.enclMethod.sym;
  1219             if (m.type.getReturnType().tag == VOID) {
  1220                 if (tree.expr != null)
  1221                     log.error(tree.expr.pos(),
  1222                               "cant.ret.val.from.meth.decl.void");
  1223             } else if (tree.expr == null) {
  1224                 log.error(tree.pos(), "missing.ret.val");
  1225             } else {
  1226                 attribExpr(tree.expr, env, m.type.getReturnType());
  1229         result = null;
  1232     public void visitThrow(JCThrow tree) {
  1233         attribExpr(tree.expr, env, syms.throwableType);
  1234         result = null;
  1237     public void visitAssert(JCAssert tree) {
  1238         attribExpr(tree.cond, env, syms.booleanType);
  1239         if (tree.detail != null) {
  1240             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1242         result = null;
  1245      /** Visitor method for method invocations.
  1246      *  NOTE: The method part of an application will have in its type field
  1247      *        the return type of the method, not the method's type itself!
  1248      */
  1249     public void visitApply(JCMethodInvocation tree) {
  1250         // The local environment of a method application is
  1251         // a new environment nested in the current one.
  1252         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1254         // The types of the actual method arguments.
  1255         List<Type> argtypes;
  1257         // The types of the actual method type arguments.
  1258         List<Type> typeargtypes = null;
  1259         boolean typeargtypesNonRefOK = false;
  1261         Name methName = TreeInfo.name(tree.meth);
  1263         boolean isConstructorCall =
  1264             methName == names._this || methName == names._super;
  1266         if (isConstructorCall) {
  1267             // We are seeing a ...this(...) or ...super(...) call.
  1268             // Check that this is the first statement in a constructor.
  1269             if (checkFirstConstructorStat(tree, env)) {
  1271                 // Record the fact
  1272                 // that this is a constructor call (using isSelfCall).
  1273                 localEnv.info.isSelfCall = true;
  1275                 // Attribute arguments, yielding list of argument types.
  1276                 argtypes = attribArgs(tree.args, localEnv);
  1277                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1279                 // Variable `site' points to the class in which the called
  1280                 // constructor is defined.
  1281                 Type site = env.enclClass.sym.type;
  1282                 if (methName == names._super) {
  1283                     if (site == syms.objectType) {
  1284                         log.error(tree.meth.pos(), "no.superclass", site);
  1285                         site = types.createErrorType(syms.objectType);
  1286                     } else {
  1287                         site = types.supertype(site);
  1291                 if (site.tag == CLASS) {
  1292                     Type encl = site.getEnclosingType();
  1293                     while (encl != null && encl.tag == TYPEVAR)
  1294                         encl = encl.getUpperBound();
  1295                     if (encl.tag == CLASS) {
  1296                         // we are calling a nested class
  1298                         if (tree.meth.getTag() == JCTree.SELECT) {
  1299                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1301                             // We are seeing a prefixed call, of the form
  1302                             //     <expr>.super(...).
  1303                             // Check that the prefix expression conforms
  1304                             // to the outer instance type of the class.
  1305                             chk.checkRefType(qualifier.pos(),
  1306                                              attribExpr(qualifier, localEnv,
  1307                                                         encl));
  1308                         } else if (methName == names._super) {
  1309                             // qualifier omitted; check for existence
  1310                             // of an appropriate implicit qualifier.
  1311                             rs.resolveImplicitThis(tree.meth.pos(),
  1312                                                    localEnv, site);
  1314                     } else if (tree.meth.getTag() == JCTree.SELECT) {
  1315                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1316                                   site.tsym);
  1319                     // if we're calling a java.lang.Enum constructor,
  1320                     // prefix the implicit String and int parameters
  1321                     if (site.tsym == syms.enumSym && allowEnums)
  1322                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1324                     // Resolve the called constructor under the assumption
  1325                     // that we are referring to a superclass instance of the
  1326                     // current instance (JLS ???).
  1327                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1328                     localEnv.info.selectSuper = true;
  1329                     localEnv.info.varArgs = false;
  1330                     Symbol sym = rs.resolveConstructor(
  1331                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1332                     localEnv.info.selectSuper = selectSuperPrev;
  1334                     // Set method symbol to resolved constructor...
  1335                     TreeInfo.setSymbol(tree.meth, sym);
  1337                     // ...and check that it is legal in the current context.
  1338                     // (this will also set the tree's type)
  1339                     Type mpt = newMethTemplate(argtypes, typeargtypes);
  1340                     checkId(tree.meth, site, sym, localEnv, MTH,
  1341                             mpt, tree.varargsElement != null);
  1343                 // Otherwise, `site' is an error type and we do nothing
  1345             result = tree.type = syms.voidType;
  1346         } else {
  1347             // Otherwise, we are seeing a regular method call.
  1348             // Attribute the arguments, yielding list of argument types, ...
  1349             argtypes = attribArgs(tree.args, localEnv);
  1350             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1352             // ... and attribute the method using as a prototype a methodtype
  1353             // whose formal argument types is exactly the list of actual
  1354             // arguments (this will also set the method symbol).
  1355             Type mpt = newMethTemplate(argtypes, typeargtypes);
  1356             localEnv.info.varArgs = false;
  1357             Type mtype = attribExpr(tree.meth, localEnv, mpt);
  1358             if (localEnv.info.varArgs)
  1359                 assert mtype.isErroneous() || tree.varargsElement != null;
  1361             // Compute the result type.
  1362             Type restype = mtype.getReturnType();
  1363             assert restype.tag != WILDCARD : mtype;
  1365             // as a special case, array.clone() has a result that is
  1366             // the same as static type of the array being cloned
  1367             if (tree.meth.getTag() == JCTree.SELECT &&
  1368                 allowCovariantReturns &&
  1369                 methName == names.clone &&
  1370                 types.isArray(((JCFieldAccess) tree.meth).selected.type))
  1371                 restype = ((JCFieldAccess) tree.meth).selected.type;
  1373             // as a special case, x.getClass() has type Class<? extends |X|>
  1374             if (allowGenerics &&
  1375                 methName == names.getClass && tree.args.isEmpty()) {
  1376                 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
  1377                     ? ((JCFieldAccess) tree.meth).selected.type
  1378                     : env.enclClass.sym.type;
  1379                 restype = new
  1380                     ClassType(restype.getEnclosingType(),
  1381                               List.<Type>of(new WildcardType(types.erasure(qualifier),
  1382                                                                BoundKind.EXTENDS,
  1383                                                                syms.boundClass)),
  1384                               restype.tsym);
  1387             // as a special case, MethodHandle.<T>invoke(abc) and InvokeDynamic.<T>foo(abc)
  1388             // has type <T>, and T can be a primitive type.
  1389             if (tree.meth.getTag() == JCTree.SELECT && !typeargtypes.isEmpty()) {
  1390               Type selt = ((JCFieldAccess) tree.meth).selected.type;
  1391               if ((selt == syms.methodHandleType && methName == names.invoke) || selt == syms.invokeDynamicType) {
  1392                   assert types.isSameType(restype, typeargtypes.head) : mtype;
  1393                   typeargtypesNonRefOK = true;
  1397             if (!typeargtypesNonRefOK) {
  1398                 chk.checkRefTypes(tree.typeargs, typeargtypes);
  1401             // Check that value of resulting type is admissible in the
  1402             // current context.  Also, capture the return type
  1403             result = checkReturn(tree, capture(restype), VAL, pkind, pt);
  1405         chk.validate(tree.typeargs, localEnv);
  1407     //where
  1408         /** Check that given application node appears as first statement
  1409          *  in a constructor call.
  1410          *  @param tree   The application node
  1411          *  @param env    The environment current at the application.
  1412          */
  1413         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1414             JCMethodDecl enclMethod = env.enclMethod;
  1415             if (enclMethod != null && enclMethod.name == names.init) {
  1416                 JCBlock body = enclMethod.body;
  1417                 if (body.stats.head.getTag() == JCTree.EXEC &&
  1418                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1419                     return true;
  1421             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1422                       TreeInfo.name(tree.meth));
  1423             return false;
  1426         /** Obtain a method type with given argument types.
  1427          */
  1428         Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
  1429             MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
  1430             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1433     public void visitNewClass(JCNewClass tree) {
  1434         Type owntype = types.createErrorType(tree.type);
  1436         // The local environment of a class creation is
  1437         // a new environment nested in the current one.
  1438         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1440         // The anonymous inner class definition of the new expression,
  1441         // if one is defined by it.
  1442         JCClassDecl cdef = tree.def;
  1444         // If enclosing class is given, attribute it, and
  1445         // complete class name to be fully qualified
  1446         JCExpression clazz = tree.clazz; // Class field following new
  1447         JCExpression clazzid =          // Identifier in class field
  1448             (clazz.getTag() == JCTree.TYPEAPPLY)
  1449             ? ((JCTypeApply) clazz).clazz
  1450             : clazz;
  1452         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1454         if (tree.encl != null) {
  1455             // We are seeing a qualified new, of the form
  1456             //    <expr>.new C <...> (...) ...
  1457             // In this case, we let clazz stand for the name of the
  1458             // allocated class C prefixed with the type of the qualifier
  1459             // expression, so that we can
  1460             // resolve it with standard techniques later. I.e., if
  1461             // <expr> has type T, then <expr>.new C <...> (...)
  1462             // yields a clazz T.C.
  1463             Type encltype = chk.checkRefType(tree.encl.pos(),
  1464                                              attribExpr(tree.encl, env));
  1465             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1466                                                  ((JCIdent) clazzid).name);
  1467             if (clazz.getTag() == JCTree.TYPEAPPLY)
  1468                 clazz = make.at(tree.pos).
  1469                     TypeApply(clazzid1,
  1470                               ((JCTypeApply) clazz).arguments);
  1471             else
  1472                 clazz = clazzid1;
  1473 //          System.out.println(clazz + " generated.");//DEBUG
  1476         // Attribute clazz expression and store
  1477         // symbol + type back into the attributed tree.
  1478         Type clazztype = attribType(clazz, env);
  1479         chk.validate(clazz, localEnv);
  1480         clazztype = chk.checkNewClassType(clazz.pos(), clazztype, true, pt);
  1481         if (tree.encl != null) {
  1482             // We have to work in this case to store
  1483             // symbol + type back into the attributed tree.
  1484             tree.clazz.type = clazztype;
  1485             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1486             clazzid.type = ((JCIdent) clazzid).sym.type;
  1487             if (!clazztype.isErroneous()) {
  1488                 if (cdef != null && clazztype.tsym.isInterface()) {
  1489                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1490                 } else if (clazztype.tsym.isStatic()) {
  1491                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1494         } else if (!clazztype.tsym.isInterface() &&
  1495                    clazztype.getEnclosingType().tag == CLASS) {
  1496             // Check for the existence of an apropos outer instance
  1497             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1500         // Attribute constructor arguments.
  1501         List<Type> argtypes = attribArgs(tree.args, localEnv);
  1502         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  1504         // If we have made no mistakes in the class type...
  1505         if (clazztype.tag == CLASS) {
  1506             // Enums may not be instantiated except implicitly
  1507             if (allowEnums &&
  1508                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  1509                 (env.tree.getTag() != JCTree.VARDEF ||
  1510                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  1511                  ((JCVariableDecl) env.tree).init != tree))
  1512                 log.error(tree.pos(), "enum.cant.be.instantiated");
  1513             // Check that class is not abstract
  1514             if (cdef == null &&
  1515                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1516                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  1517                           clazztype.tsym);
  1518             } else if (cdef != null && clazztype.tsym.isInterface()) {
  1519                 // Check that no constructor arguments are given to
  1520                 // anonymous classes implementing an interface
  1521                 if (!argtypes.isEmpty())
  1522                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  1524                 if (!typeargtypes.isEmpty())
  1525                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  1527                 // Error recovery: pretend no arguments were supplied.
  1528                 argtypes = List.nil();
  1529                 typeargtypes = List.nil();
  1532             // Resolve the called constructor under the assumption
  1533             // that we are referring to a superclass instance of the
  1534             // current instance (JLS ???).
  1535             else {
  1536                 localEnv.info.selectSuper = cdef != null;
  1537                 localEnv.info.varArgs = false;
  1538                 tree.constructor = rs.resolveConstructor(
  1539                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  1540                 tree.constructorType = checkMethod(clazztype,
  1541                                             tree.constructor,
  1542                                             localEnv,
  1543                                             tree.args,
  1544                                             argtypes,
  1545                                             typeargtypes,
  1546                                             localEnv.info.varArgs);
  1547                 if (localEnv.info.varArgs)
  1548                     assert tree.constructorType.isErroneous() || tree.varargsElement != null;
  1551             if (cdef != null) {
  1552                 // We are seeing an anonymous class instance creation.
  1553                 // In this case, the class instance creation
  1554                 // expression
  1555                 //
  1556                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1557                 //
  1558                 // is represented internally as
  1559                 //
  1560                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  1561                 //
  1562                 // This expression is then *transformed* as follows:
  1563                 //
  1564                 // (1) add a STATIC flag to the class definition
  1565                 //     if the current environment is static
  1566                 // (2) add an extends or implements clause
  1567                 // (3) add a constructor.
  1568                 //
  1569                 // For instance, if C is a class, and ET is the type of E,
  1570                 // the expression
  1571                 //
  1572                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1573                 //
  1574                 // is translated to (where X is a fresh name and typarams is the
  1575                 // parameter list of the super constructor):
  1576                 //
  1577                 //   new <typeargs1>X(<*nullchk*>E, args) where
  1578                 //     X extends C<typargs2> {
  1579                 //       <typarams> X(ET e, args) {
  1580                 //         e.<typeargs1>super(args)
  1581                 //       }
  1582                 //       ...
  1583                 //     }
  1584                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  1585                 clazz = TreeInfo.isDiamond(tree) ?
  1586                     make.Type(clazztype)
  1587                     : clazz;
  1588                 if (clazztype.tsym.isInterface()) {
  1589                     cdef.implementing = List.of(clazz);
  1590                 } else {
  1591                     cdef.extending = clazz;
  1594                 attribStat(cdef, localEnv);
  1596                 // If an outer instance is given,
  1597                 // prefix it to the constructor arguments
  1598                 // and delete it from the new expression
  1599                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  1600                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  1601                     argtypes = argtypes.prepend(tree.encl.type);
  1602                     tree.encl = null;
  1605                 // Reassign clazztype and recompute constructor.
  1606                 clazztype = cdef.sym.type;
  1607                 Symbol sym = rs.resolveConstructor(
  1608                     tree.pos(), localEnv, clazztype, argtypes,
  1609                     typeargtypes, true, tree.varargsElement != null);
  1610                 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
  1611                 tree.constructor = sym;
  1612                 if (tree.constructor.kind > ERRONEOUS) {
  1613                     tree.constructorType =  syms.errType;
  1615                 else {
  1616                     tree.constructorType = checkMethod(clazztype,
  1617                             tree.constructor,
  1618                             localEnv,
  1619                             tree.args,
  1620                             argtypes,
  1621                             typeargtypes,
  1622                             localEnv.info.varArgs);
  1626             if (tree.constructor != null && tree.constructor.kind == MTH)
  1627                 owntype = clazztype;
  1629         result = check(tree, owntype, VAL, pkind, pt);
  1630         chk.validate(tree.typeargs, localEnv);
  1633     /** Make an attributed null check tree.
  1634      */
  1635     public JCExpression makeNullCheck(JCExpression arg) {
  1636         // optimization: X.this is never null; skip null check
  1637         Name name = TreeInfo.name(arg);
  1638         if (name == names._this || name == names._super) return arg;
  1640         int optag = JCTree.NULLCHK;
  1641         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  1642         tree.operator = syms.nullcheck;
  1643         tree.type = arg.type;
  1644         return tree;
  1647     public void visitNewArray(JCNewArray tree) {
  1648         Type owntype = types.createErrorType(tree.type);
  1649         Type elemtype;
  1650         if (tree.elemtype != null) {
  1651             elemtype = attribType(tree.elemtype, env);
  1652             chk.validate(tree.elemtype, env);
  1653             owntype = elemtype;
  1654             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  1655                 attribExpr(l.head, env, syms.intType);
  1656                 owntype = new ArrayType(owntype, syms.arrayClass);
  1658         } else {
  1659             // we are seeing an untyped aggregate { ... }
  1660             // this is allowed only if the prototype is an array
  1661             if (pt.tag == ARRAY) {
  1662                 elemtype = types.elemtype(pt);
  1663             } else {
  1664                 if (pt.tag != ERROR) {
  1665                     log.error(tree.pos(), "illegal.initializer.for.type",
  1666                               pt);
  1668                 elemtype = types.createErrorType(pt);
  1671         if (tree.elems != null) {
  1672             attribExprs(tree.elems, env, elemtype);
  1673             owntype = new ArrayType(elemtype, syms.arrayClass);
  1675         if (!types.isReifiable(elemtype))
  1676             log.error(tree.pos(), "generic.array.creation");
  1677         result = check(tree, owntype, VAL, pkind, pt);
  1680     public void visitParens(JCParens tree) {
  1681         Type owntype = attribTree(tree.expr, env, pkind, pt);
  1682         result = check(tree, owntype, pkind, pkind, pt);
  1683         Symbol sym = TreeInfo.symbol(tree);
  1684         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  1685             log.error(tree.pos(), "illegal.start.of.type");
  1688     public void visitAssign(JCAssign tree) {
  1689         Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
  1690         Type capturedType = capture(owntype);
  1691         attribExpr(tree.rhs, env, owntype);
  1692         result = check(tree, capturedType, VAL, pkind, pt);
  1695     public void visitAssignop(JCAssignOp tree) {
  1696         // Attribute arguments.
  1697         Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
  1698         Type operand = attribExpr(tree.rhs, env);
  1699         // Find operator.
  1700         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  1701             tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
  1702             owntype, operand);
  1704         if (operator.kind == MTH) {
  1705             chk.checkOperator(tree.pos(),
  1706                               (OperatorSymbol)operator,
  1707                               tree.getTag() - JCTree.ASGOffset,
  1708                               owntype,
  1709                               operand);
  1710             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  1711             chk.checkCastable(tree.rhs.pos(),
  1712                               operator.type.getReturnType(),
  1713                               owntype);
  1715         result = check(tree, owntype, VAL, pkind, pt);
  1718     public void visitUnary(JCUnary tree) {
  1719         // Attribute arguments.
  1720         Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
  1721             ? attribTree(tree.arg, env, VAR, Type.noType)
  1722             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  1724         // Find operator.
  1725         Symbol operator = tree.operator =
  1726             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  1728         Type owntype = types.createErrorType(tree.type);
  1729         if (operator.kind == MTH) {
  1730             owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
  1731                 ? tree.arg.type
  1732                 : operator.type.getReturnType();
  1733             int opc = ((OperatorSymbol)operator).opcode;
  1735             // If the argument is constant, fold it.
  1736             if (argtype.constValue() != null) {
  1737                 Type ctype = cfolder.fold1(opc, argtype);
  1738                 if (ctype != null) {
  1739                     owntype = cfolder.coerce(ctype, owntype);
  1741                     // Remove constant types from arguments to
  1742                     // conserve space. The parser will fold concatenations
  1743                     // of string literals; the code here also
  1744                     // gets rid of intermediate results when some of the
  1745                     // operands are constant identifiers.
  1746                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  1747                         tree.arg.type = syms.stringType;
  1752         result = check(tree, owntype, VAL, pkind, pt);
  1755     public void visitBinary(JCBinary tree) {
  1756         // Attribute arguments.
  1757         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  1758         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  1760         // Find operator.
  1761         Symbol operator = tree.operator =
  1762             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  1764         Type owntype = types.createErrorType(tree.type);
  1765         if (operator.kind == MTH) {
  1766             owntype = operator.type.getReturnType();
  1767             int opc = chk.checkOperator(tree.lhs.pos(),
  1768                                         (OperatorSymbol)operator,
  1769                                         tree.getTag(),
  1770                                         left,
  1771                                         right);
  1773             // If both arguments are constants, fold them.
  1774             if (left.constValue() != null && right.constValue() != null) {
  1775                 Type ctype = cfolder.fold2(opc, left, right);
  1776                 if (ctype != null) {
  1777                     owntype = cfolder.coerce(ctype, owntype);
  1779                     // Remove constant types from arguments to
  1780                     // conserve space. The parser will fold concatenations
  1781                     // of string literals; the code here also
  1782                     // gets rid of intermediate results when some of the
  1783                     // operands are constant identifiers.
  1784                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  1785                         tree.lhs.type = syms.stringType;
  1787                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  1788                         tree.rhs.type = syms.stringType;
  1793             // Check that argument types of a reference ==, != are
  1794             // castable to each other, (JLS???).
  1795             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  1796                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
  1797                     log.error(tree.pos(), "incomparable.types", left, right);
  1801             chk.checkDivZero(tree.rhs.pos(), operator, right);
  1803         result = check(tree, owntype, VAL, pkind, pt);
  1806     public void visitTypeCast(JCTypeCast tree) {
  1807         Type clazztype = attribType(tree.clazz, env);
  1808         chk.validate(tree.clazz, env);
  1809         Type exprtype = attribExpr(tree.expr, env, Infer.anyPoly);
  1810         Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  1811         if (exprtype.constValue() != null)
  1812             owntype = cfolder.coerce(exprtype, owntype);
  1813         result = check(tree, capture(owntype), VAL, pkind, pt);
  1816     public void visitTypeTest(JCInstanceOf tree) {
  1817         Type exprtype = chk.checkNullOrRefType(
  1818             tree.expr.pos(), attribExpr(tree.expr, env));
  1819         Type clazztype = chk.checkReifiableReferenceType(
  1820             tree.clazz.pos(), attribType(tree.clazz, env));
  1821         chk.validate(tree.clazz, env);
  1822         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  1823         result = check(tree, syms.booleanType, VAL, pkind, pt);
  1826     public void visitIndexed(JCArrayAccess tree) {
  1827         Type owntype = types.createErrorType(tree.type);
  1828         Type atype = attribExpr(tree.indexed, env);
  1829         attribExpr(tree.index, env, syms.intType);
  1830         if (types.isArray(atype))
  1831             owntype = types.elemtype(atype);
  1832         else if (atype.tag != ERROR)
  1833             log.error(tree.pos(), "array.req.but.found", atype);
  1834         if ((pkind & VAR) == 0) owntype = capture(owntype);
  1835         result = check(tree, owntype, VAR, pkind, pt);
  1838     public void visitIdent(JCIdent tree) {
  1839         Symbol sym;
  1840         boolean varArgs = false;
  1842         // Find symbol
  1843         if (pt.tag == METHOD || pt.tag == FORALL) {
  1844             // If we are looking for a method, the prototype `pt' will be a
  1845             // method type with the type of the call's arguments as parameters.
  1846             env.info.varArgs = false;
  1847             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
  1848             varArgs = env.info.varArgs;
  1849         } else if (tree.sym != null && tree.sym.kind != VAR) {
  1850             sym = tree.sym;
  1851         } else {
  1852             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
  1854         tree.sym = sym;
  1856         // (1) Also find the environment current for the class where
  1857         //     sym is defined (`symEnv').
  1858         // Only for pre-tiger versions (1.4 and earlier):
  1859         // (2) Also determine whether we access symbol out of an anonymous
  1860         //     class in a this or super call.  This is illegal for instance
  1861         //     members since such classes don't carry a this$n link.
  1862         //     (`noOuterThisPath').
  1863         Env<AttrContext> symEnv = env;
  1864         boolean noOuterThisPath = false;
  1865         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  1866             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  1867             sym.owner.kind == TYP &&
  1868             tree.name != names._this && tree.name != names._super) {
  1870             // Find environment in which identifier is defined.
  1871             while (symEnv.outer != null &&
  1872                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  1873                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  1874                     noOuterThisPath = !allowAnonOuterThis;
  1875                 symEnv = symEnv.outer;
  1879         // If symbol is a variable, ...
  1880         if (sym.kind == VAR) {
  1881             VarSymbol v = (VarSymbol)sym;
  1883             // ..., evaluate its initializer, if it has one, and check for
  1884             // illegal forward reference.
  1885             checkInit(tree, env, v, false);
  1887             // If symbol is a local variable accessed from an embedded
  1888             // inner class check that it is final.
  1889             if (v.owner.kind == MTH &&
  1890                 v.owner != env.info.scope.owner &&
  1891                 (v.flags_field & FINAL) == 0) {
  1892                 log.error(tree.pos(),
  1893                           "local.var.accessed.from.icls.needs.final",
  1894                           v);
  1897             // If we are expecting a variable (as opposed to a value), check
  1898             // that the variable is assignable in the current environment.
  1899             if (pkind == VAR)
  1900                 checkAssignable(tree.pos(), v, null, env);
  1903         // In a constructor body,
  1904         // if symbol is a field or instance method, check that it is
  1905         // not accessed before the supertype constructor is called.
  1906         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  1907             (sym.kind & (VAR | MTH)) != 0 &&
  1908             sym.owner.kind == TYP &&
  1909             (sym.flags() & STATIC) == 0) {
  1910             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  1912         Env<AttrContext> env1 = env;
  1913         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  1914             // If the found symbol is inaccessible, then it is
  1915             // accessed through an enclosing instance.  Locate this
  1916             // enclosing instance:
  1917             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  1918                 env1 = env1.outer;
  1920         result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
  1923     public void visitSelect(JCFieldAccess tree) {
  1924         // Determine the expected kind of the qualifier expression.
  1925         int skind = 0;
  1926         if (tree.name == names._this || tree.name == names._super ||
  1927             tree.name == names._class)
  1929             skind = TYP;
  1930         } else {
  1931             if ((pkind & PCK) != 0) skind = skind | PCK;
  1932             if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
  1933             if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  1936         // Attribute the qualifier expression, and determine its symbol (if any).
  1937         Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
  1938         if ((pkind & (PCK | TYP)) == 0)
  1939             site = capture(site); // Capture field access
  1941         // don't allow T.class T[].class, etc
  1942         if (skind == TYP) {
  1943             Type elt = site;
  1944             while (elt.tag == ARRAY)
  1945                 elt = ((ArrayType)elt).elemtype;
  1946             if (elt.tag == TYPEVAR) {
  1947                 log.error(tree.pos(), "type.var.cant.be.deref");
  1948                 result = types.createErrorType(tree.type);
  1949                 return;
  1953         // If qualifier symbol is a type or `super', assert `selectSuper'
  1954         // for the selection. This is relevant for determining whether
  1955         // protected symbols are accessible.
  1956         Symbol sitesym = TreeInfo.symbol(tree.selected);
  1957         boolean selectSuperPrev = env.info.selectSuper;
  1958         env.info.selectSuper =
  1959             sitesym != null &&
  1960             sitesym.name == names._super;
  1962         // If selected expression is polymorphic, strip
  1963         // type parameters and remember in env.info.tvars, so that
  1964         // they can be added later (in Attr.checkId and Infer.instantiateMethod).
  1965         if (tree.selected.type.tag == FORALL) {
  1966             ForAll pstype = (ForAll)tree.selected.type;
  1967             env.info.tvars = pstype.tvars;
  1968             site = tree.selected.type = pstype.qtype;
  1971         // Determine the symbol represented by the selection.
  1972         env.info.varArgs = false;
  1973         Symbol sym = selectSym(tree, site, env, pt, pkind);
  1974         if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
  1975             site = capture(site);
  1976             sym = selectSym(tree, site, env, pt, pkind);
  1978         boolean varArgs = env.info.varArgs;
  1979         tree.sym = sym;
  1981         if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
  1982             while (site.tag == TYPEVAR) site = site.getUpperBound();
  1983             site = capture(site);
  1986         // If that symbol is a variable, ...
  1987         if (sym.kind == VAR) {
  1988             VarSymbol v = (VarSymbol)sym;
  1990             // ..., evaluate its initializer, if it has one, and check for
  1991             // illegal forward reference.
  1992             checkInit(tree, env, v, true);
  1994             // If we are expecting a variable (as opposed to a value), check
  1995             // that the variable is assignable in the current environment.
  1996             if (pkind == VAR)
  1997                 checkAssignable(tree.pos(), v, tree.selected, env);
  2000         // Disallow selecting a type from an expression
  2001         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  2002             tree.type = check(tree.selected, pt,
  2003                               sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
  2006         if (isType(sitesym)) {
  2007             if (sym.name == names._this) {
  2008                 // If `C' is the currently compiled class, check that
  2009                 // C.this' does not appear in a call to a super(...)
  2010                 if (env.info.isSelfCall &&
  2011                     site.tsym == env.enclClass.sym) {
  2012                     chk.earlyRefError(tree.pos(), sym);
  2014             } else {
  2015                 // Check if type-qualified fields or methods are static (JLS)
  2016                 if ((sym.flags() & STATIC) == 0 &&
  2017                     sym.name != names._super &&
  2018                     (sym.kind == VAR || sym.kind == MTH)) {
  2019                     rs.access(rs.new StaticError(sym),
  2020                               tree.pos(), site, sym.name, true);
  2025         // If we are selecting an instance member via a `super', ...
  2026         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  2028             // Check that super-qualified symbols are not abstract (JLS)
  2029             rs.checkNonAbstract(tree.pos(), sym);
  2031             if (site.isRaw()) {
  2032                 // Determine argument types for site.
  2033                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  2034                 if (site1 != null) site = site1;
  2038         env.info.selectSuper = selectSuperPrev;
  2039         result = checkId(tree, site, sym, env, pkind, pt, varArgs);
  2040         env.info.tvars = List.nil();
  2042     //where
  2043         /** Determine symbol referenced by a Select expression,
  2045          *  @param tree   The select tree.
  2046          *  @param site   The type of the selected expression,
  2047          *  @param env    The current environment.
  2048          *  @param pt     The current prototype.
  2049          *  @param pkind  The expected kind(s) of the Select expression.
  2050          */
  2051         private Symbol selectSym(JCFieldAccess tree,
  2052                                  Type site,
  2053                                  Env<AttrContext> env,
  2054                                  Type pt,
  2055                                  int pkind) {
  2056             DiagnosticPosition pos = tree.pos();
  2057             Name name = tree.name;
  2059             switch (site.tag) {
  2060             case PACKAGE:
  2061                 return rs.access(
  2062                     rs.findIdentInPackage(env, site.tsym, name, pkind),
  2063                     pos, site, name, true);
  2064             case ARRAY:
  2065             case CLASS:
  2066                 if (pt.tag == METHOD || pt.tag == FORALL) {
  2067                     return rs.resolveQualifiedMethod(
  2068                         pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
  2069                 } else if (name == names._this || name == names._super) {
  2070                     return rs.resolveSelf(pos, env, site.tsym, name);
  2071                 } else if (name == names._class) {
  2072                     // In this case, we have already made sure in
  2073                     // visitSelect that qualifier expression is a type.
  2074                     Type t = syms.classType;
  2075                     List<Type> typeargs = allowGenerics
  2076                         ? List.of(types.erasure(site))
  2077                         : List.<Type>nil();
  2078                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  2079                     return new VarSymbol(
  2080                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2081                 } else {
  2082                     // We are seeing a plain identifier as selector.
  2083                     Symbol sym = rs.findIdentInType(env, site, name, pkind);
  2084                     if ((pkind & ERRONEOUS) == 0)
  2085                         sym = rs.access(sym, pos, site, name, true);
  2086                     return sym;
  2088             case WILDCARD:
  2089                 throw new AssertionError(tree);
  2090             case TYPEVAR:
  2091                 // Normally, site.getUpperBound() shouldn't be null.
  2092                 // It should only happen during memberEnter/attribBase
  2093                 // when determining the super type which *must* be
  2094                 // done before attributing the type variables.  In
  2095                 // other words, we are seeing this illegal program:
  2096                 // class B<T> extends A<T.foo> {}
  2097                 Symbol sym = (site.getUpperBound() != null)
  2098                     ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
  2099                     : null;
  2100                 if (sym == null) {
  2101                     log.error(pos, "type.var.cant.be.deref");
  2102                     return syms.errSymbol;
  2103                 } else {
  2104                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  2105                         rs.new AccessError(env, site, sym) :
  2106                                 sym;
  2107                     rs.access(sym2, pos, site, name, true);
  2108                     return sym;
  2110             case ERROR:
  2111                 // preserve identifier names through errors
  2112                 return types.createErrorType(name, site.tsym, site).tsym;
  2113             default:
  2114                 // The qualifier expression is of a primitive type -- only
  2115                 // .class is allowed for these.
  2116                 if (name == names._class) {
  2117                     // In this case, we have already made sure in Select that
  2118                     // qualifier expression is a type.
  2119                     Type t = syms.classType;
  2120                     Type arg = types.boxedClass(site).type;
  2121                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  2122                     return new VarSymbol(
  2123                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2124                 } else {
  2125                     log.error(pos, "cant.deref", site);
  2126                     return syms.errSymbol;
  2131         /** Determine type of identifier or select expression and check that
  2132          *  (1) the referenced symbol is not deprecated
  2133          *  (2) the symbol's type is safe (@see checkSafe)
  2134          *  (3) if symbol is a variable, check that its type and kind are
  2135          *      compatible with the prototype and protokind.
  2136          *  (4) if symbol is an instance field of a raw type,
  2137          *      which is being assigned to, issue an unchecked warning if its
  2138          *      type changes under erasure.
  2139          *  (5) if symbol is an instance method of a raw type, issue an
  2140          *      unchecked warning if its argument types change under erasure.
  2141          *  If checks succeed:
  2142          *    If symbol is a constant, return its constant type
  2143          *    else if symbol is a method, return its result type
  2144          *    otherwise return its type.
  2145          *  Otherwise return errType.
  2147          *  @param tree       The syntax tree representing the identifier
  2148          *  @param site       If this is a select, the type of the selected
  2149          *                    expression, otherwise the type of the current class.
  2150          *  @param sym        The symbol representing the identifier.
  2151          *  @param env        The current environment.
  2152          *  @param pkind      The set of expected kinds.
  2153          *  @param pt         The expected type.
  2154          */
  2155         Type checkId(JCTree tree,
  2156                      Type site,
  2157                      Symbol sym,
  2158                      Env<AttrContext> env,
  2159                      int pkind,
  2160                      Type pt,
  2161                      boolean useVarargs) {
  2162             if (pt.isErroneous()) return types.createErrorType(site);
  2163             Type owntype; // The computed type of this identifier occurrence.
  2164             switch (sym.kind) {
  2165             case TYP:
  2166                 // For types, the computed type equals the symbol's type,
  2167                 // except for two situations:
  2168                 owntype = sym.type;
  2169                 if (owntype.tag == CLASS) {
  2170                     Type ownOuter = owntype.getEnclosingType();
  2172                     // (a) If the symbol's type is parameterized, erase it
  2173                     // because no type parameters were given.
  2174                     // We recover generic outer type later in visitTypeApply.
  2175                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  2176                         owntype = types.erasure(owntype);
  2179                     // (b) If the symbol's type is an inner class, then
  2180                     // we have to interpret its outer type as a superclass
  2181                     // of the site type. Example:
  2182                     //
  2183                     // class Tree<A> { class Visitor { ... } }
  2184                     // class PointTree extends Tree<Point> { ... }
  2185                     // ...PointTree.Visitor...
  2186                     //
  2187                     // Then the type of the last expression above is
  2188                     // Tree<Point>.Visitor.
  2189                     else if (ownOuter.tag == CLASS && site != ownOuter) {
  2190                         Type normOuter = site;
  2191                         if (normOuter.tag == CLASS)
  2192                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  2193                         if (normOuter == null) // perhaps from an import
  2194                             normOuter = types.erasure(ownOuter);
  2195                         if (normOuter != ownOuter)
  2196                             owntype = new ClassType(
  2197                                 normOuter, List.<Type>nil(), owntype.tsym);
  2200                 break;
  2201             case VAR:
  2202                 VarSymbol v = (VarSymbol)sym;
  2203                 // Test (4): if symbol is an instance field of a raw type,
  2204                 // which is being assigned to, issue an unchecked warning if
  2205                 // its type changes under erasure.
  2206                 if (allowGenerics &&
  2207                     pkind == VAR &&
  2208                     v.owner.kind == TYP &&
  2209                     (v.flags() & STATIC) == 0 &&
  2210                     (site.tag == CLASS || site.tag == TYPEVAR)) {
  2211                     Type s = types.asOuterSuper(site, v.owner);
  2212                     if (s != null &&
  2213                         s.isRaw() &&
  2214                         !types.isSameType(v.type, v.erasure(types))) {
  2215                         chk.warnUnchecked(tree.pos(),
  2216                                           "unchecked.assign.to.var",
  2217                                           v, s);
  2220                 // The computed type of a variable is the type of the
  2221                 // variable symbol, taken as a member of the site type.
  2222                 owntype = (sym.owner.kind == TYP &&
  2223                            sym.name != names._this && sym.name != names._super)
  2224                     ? types.memberType(site, sym)
  2225                     : sym.type;
  2227                 if (env.info.tvars.nonEmpty()) {
  2228                     Type owntype1 = new ForAll(env.info.tvars, owntype);
  2229                     for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
  2230                         if (!owntype.contains(l.head)) {
  2231                             log.error(tree.pos(), "undetermined.type", owntype1);
  2232                             owntype1 = types.createErrorType(owntype1);
  2234                     owntype = owntype1;
  2237                 // If the variable is a constant, record constant value in
  2238                 // computed type.
  2239                 if (v.getConstValue() != null && isStaticReference(tree))
  2240                     owntype = owntype.constType(v.getConstValue());
  2242                 if (pkind == VAL) {
  2243                     owntype = capture(owntype); // capture "names as expressions"
  2245                 break;
  2246             case MTH: {
  2247                 JCMethodInvocation app = (JCMethodInvocation)env.tree;
  2248                 owntype = checkMethod(site, sym, env, app.args,
  2249                                       pt.getParameterTypes(), pt.getTypeArguments(),
  2250                                       env.info.varArgs);
  2251                 break;
  2253             case PCK: case ERR:
  2254                 owntype = sym.type;
  2255                 break;
  2256             default:
  2257                 throw new AssertionError("unexpected kind: " + sym.kind +
  2258                                          " in tree " + tree);
  2261             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  2262             // (for constructors, the error was given when the constructor was
  2263             // resolved)
  2264             if (sym.name != names.init &&
  2265                 (sym.flags() & DEPRECATED) != 0 &&
  2266                 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
  2267                 sym.outermostClass() != env.info.scope.owner.outermostClass())
  2268                 chk.warnDeprecated(tree.pos(), sym);
  2270             if ((sym.flags() & PROPRIETARY) != 0) {
  2271                 if (enableSunApiLintControl)
  2272                   chk.warnSunApi(tree.pos(), "sun.proprietary", sym);
  2273                 else
  2274                   log.strictWarning(tree.pos(), "sun.proprietary", sym);
  2277             // Test (3): if symbol is a variable, check that its type and
  2278             // kind are compatible with the prototype and protokind.
  2279             return check(tree, owntype, sym.kind, pkind, pt);
  2282         /** Check that variable is initialized and evaluate the variable's
  2283          *  initializer, if not yet done. Also check that variable is not
  2284          *  referenced before it is defined.
  2285          *  @param tree    The tree making up the variable reference.
  2286          *  @param env     The current environment.
  2287          *  @param v       The variable's symbol.
  2288          */
  2289         private void checkInit(JCTree tree,
  2290                                Env<AttrContext> env,
  2291                                VarSymbol v,
  2292                                boolean onlyWarning) {
  2293 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  2294 //                             tree.pos + " " + v.pos + " " +
  2295 //                             Resolve.isStatic(env));//DEBUG
  2297             // A forward reference is diagnosed if the declaration position
  2298             // of the variable is greater than the current tree position
  2299             // and the tree and variable definition occur in the same class
  2300             // definition.  Note that writes don't count as references.
  2301             // This check applies only to class and instance
  2302             // variables.  Local variables follow different scope rules,
  2303             // and are subject to definite assignment checking.
  2304             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  2305                 v.owner.kind == TYP &&
  2306                 canOwnInitializer(env.info.scope.owner) &&
  2307                 v.owner == env.info.scope.owner.enclClass() &&
  2308                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  2309                 (env.tree.getTag() != JCTree.ASSIGN ||
  2310                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  2311                 String suffix = (env.info.enclVar == v) ?
  2312                                 "self.ref" : "forward.ref";
  2313                 if (!onlyWarning || isStaticEnumField(v)) {
  2314                     log.error(tree.pos(), "illegal." + suffix);
  2315                 } else if (useBeforeDeclarationWarning) {
  2316                     log.warning(tree.pos(), suffix, v);
  2320             v.getConstValue(); // ensure initializer is evaluated
  2322             checkEnumInitializer(tree, env, v);
  2325         /**
  2326          * Check for illegal references to static members of enum.  In
  2327          * an enum type, constructors and initializers may not
  2328          * reference its static members unless they are constant.
  2330          * @param tree    The tree making up the variable reference.
  2331          * @param env     The current environment.
  2332          * @param v       The variable's symbol.
  2333          * @see JLS 3rd Ed. (8.9 Enums)
  2334          */
  2335         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  2336             // JLS 3rd Ed.:
  2337             //
  2338             // "It is a compile-time error to reference a static field
  2339             // of an enum type that is not a compile-time constant
  2340             // (15.28) from constructors, instance initializer blocks,
  2341             // or instance variable initializer expressions of that
  2342             // type. It is a compile-time error for the constructors,
  2343             // instance initializer blocks, or instance variable
  2344             // initializer expressions of an enum constant e to refer
  2345             // to itself or to an enum constant of the same type that
  2346             // is declared to the right of e."
  2347             if (isStaticEnumField(v)) {
  2348                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  2350                 if (enclClass == null || enclClass.owner == null)
  2351                     return;
  2353                 // See if the enclosing class is the enum (or a
  2354                 // subclass thereof) declaring v.  If not, this
  2355                 // reference is OK.
  2356                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  2357                     return;
  2359                 // If the reference isn't from an initializer, then
  2360                 // the reference is OK.
  2361                 if (!Resolve.isInitializer(env))
  2362                     return;
  2364                 log.error(tree.pos(), "illegal.enum.static.ref");
  2368         /** Is the given symbol a static, non-constant field of an Enum?
  2369          *  Note: enum literals should not be regarded as such
  2370          */
  2371         private boolean isStaticEnumField(VarSymbol v) {
  2372             return Flags.isEnum(v.owner) &&
  2373                    Flags.isStatic(v) &&
  2374                    !Flags.isConstant(v) &&
  2375                    v.name != names._class;
  2378         /** Can the given symbol be the owner of code which forms part
  2379          *  if class initialization? This is the case if the symbol is
  2380          *  a type or field, or if the symbol is the synthetic method.
  2381          *  owning a block.
  2382          */
  2383         private boolean canOwnInitializer(Symbol sym) {
  2384             return
  2385                 (sym.kind & (VAR | TYP)) != 0 ||
  2386                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  2389     Warner noteWarner = new Warner();
  2391     /**
  2392      * Check that method arguments conform to its instantation.
  2393      **/
  2394     public Type checkMethod(Type site,
  2395                             Symbol sym,
  2396                             Env<AttrContext> env,
  2397                             final List<JCExpression> argtrees,
  2398                             List<Type> argtypes,
  2399                             List<Type> typeargtypes,
  2400                             boolean useVarargs) {
  2401         // Test (5): if symbol is an instance method of a raw type, issue
  2402         // an unchecked warning if its argument types change under erasure.
  2403         if (allowGenerics &&
  2404             (sym.flags() & STATIC) == 0 &&
  2405             (site.tag == CLASS || site.tag == TYPEVAR)) {
  2406             Type s = types.asOuterSuper(site, sym.owner);
  2407             if (s != null && s.isRaw() &&
  2408                 !types.isSameTypes(sym.type.getParameterTypes(),
  2409                                    sym.erasure(types).getParameterTypes())) {
  2410                 chk.warnUnchecked(env.tree.pos(),
  2411                                   "unchecked.call.mbr.of.raw.type",
  2412                                   sym, s);
  2416         // Compute the identifier's instantiated type.
  2417         // For methods, we need to compute the instance type by
  2418         // Resolve.instantiate from the symbol's type as well as
  2419         // any type arguments and value arguments.
  2420         noteWarner.warned = false;
  2421         Type owntype = rs.instantiate(env,
  2422                                       site,
  2423                                       sym,
  2424                                       argtypes,
  2425                                       typeargtypes,
  2426                                       true,
  2427                                       useVarargs,
  2428                                       noteWarner);
  2429         boolean warned = noteWarner.warned;
  2431         // If this fails, something went wrong; we should not have
  2432         // found the identifier in the first place.
  2433         if (owntype == null) {
  2434             if (!pt.isErroneous())
  2435                 log.error(env.tree.pos(),
  2436                           "internal.error.cant.instantiate",
  2437                           sym, site,
  2438                           Type.toString(pt.getParameterTypes()));
  2439             owntype = types.createErrorType(site);
  2440         } else {
  2441             // System.out.println("call   : " + env.tree);
  2442             // System.out.println("method : " + owntype);
  2443             // System.out.println("actuals: " + argtypes);
  2444             List<Type> formals = owntype.getParameterTypes();
  2445             Type last = useVarargs ? formals.last() : null;
  2446             if (sym.name==names.init &&
  2447                 sym.owner == syms.enumSym)
  2448                 formals = formals.tail.tail;
  2449             List<JCExpression> args = argtrees;
  2450             while (formals.head != last) {
  2451                 JCTree arg = args.head;
  2452                 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
  2453                 assertConvertible(arg, arg.type, formals.head, warn);
  2454                 warned |= warn.warned;
  2455                 args = args.tail;
  2456                 formals = formals.tail;
  2458             if (useVarargs) {
  2459                 Type varArg = types.elemtype(last);
  2460                 while (args.tail != null) {
  2461                     JCTree arg = args.head;
  2462                     Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
  2463                     assertConvertible(arg, arg.type, varArg, warn);
  2464                     warned |= warn.warned;
  2465                     args = args.tail;
  2467             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
  2468                 // non-varargs call to varargs method
  2469                 Type varParam = owntype.getParameterTypes().last();
  2470                 Type lastArg = argtypes.last();
  2471                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
  2472                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
  2473                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
  2474                                 types.elemtype(varParam),
  2475                                 varParam);
  2478             if (warned && sym.type.tag == FORALL) {
  2479                 chk.warnUnchecked(env.tree.pos(),
  2480                                   "unchecked.meth.invocation.applied",
  2481                                   kindName(sym),
  2482                                   sym.name,
  2483                                   rs.methodArguments(sym.type.getParameterTypes()),
  2484                                   rs.methodArguments(argtypes),
  2485                                   kindName(sym.location()),
  2486                                   sym.location());
  2487                 owntype = new MethodType(owntype.getParameterTypes(),
  2488                                          types.erasure(owntype.getReturnType()),
  2489                                          owntype.getThrownTypes(),
  2490                                          syms.methodClass);
  2492             if (useVarargs) {
  2493                 JCTree tree = env.tree;
  2494                 Type argtype = owntype.getParameterTypes().last();
  2495                 if (!types.isReifiable(argtype))
  2496                     chk.warnUnchecked(env.tree.pos(),
  2497                                       "unchecked.generic.array.creation",
  2498                                       argtype);
  2499                 Type elemtype = types.elemtype(argtype);
  2500                 switch (tree.getTag()) {
  2501                 case JCTree.APPLY:
  2502                     ((JCMethodInvocation) tree).varargsElement = elemtype;
  2503                     break;
  2504                 case JCTree.NEWCLASS:
  2505                     ((JCNewClass) tree).varargsElement = elemtype;
  2506                     break;
  2507                 default:
  2508                     throw new AssertionError(""+tree);
  2512         return owntype;
  2515     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
  2516         if (types.isConvertible(actual, formal, warn))
  2517             return;
  2519         if (formal.isCompound()
  2520             && types.isSubtype(actual, types.supertype(formal))
  2521             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
  2522             return;
  2524         if (false) {
  2525             // TODO: make assertConvertible work
  2526             chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
  2527             throw new AssertionError("Tree: " + tree
  2528                                      + " actual:" + actual
  2529                                      + " formal: " + formal);
  2533     public void visitLiteral(JCLiteral tree) {
  2534         result = check(
  2535             tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
  2537     //where
  2538     /** Return the type of a literal with given type tag.
  2539      */
  2540     Type litType(int tag) {
  2541         return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
  2544     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  2545         result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
  2548     public void visitTypeArray(JCArrayTypeTree tree) {
  2549         Type etype = attribType(tree.elemtype, env);
  2550         Type type = new ArrayType(etype, syms.arrayClass);
  2551         result = check(tree, type, TYP, pkind, pt);
  2554     /** Visitor method for parameterized types.
  2555      *  Bound checking is left until later, since types are attributed
  2556      *  before supertype structure is completely known
  2557      */
  2558     public void visitTypeApply(JCTypeApply tree) {
  2559         Type owntype = types.createErrorType(tree.type);
  2561         // Attribute functor part of application and make sure it's a class.
  2562         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  2564         // Attribute type parameters
  2565         List<Type> actuals = attribTypes(tree.arguments, env);
  2567         if (clazztype.tag == CLASS) {
  2568             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  2570             if (actuals.length() == formals.length() || actuals.isEmpty()) {
  2571                 List<Type> a = actuals;
  2572                 List<Type> f = formals;
  2573                 while (a.nonEmpty()) {
  2574                     a.head = a.head.withTypeVar(f.head);
  2575                     a = a.tail;
  2576                     f = f.tail;
  2578                 // Compute the proper generic outer
  2579                 Type clazzOuter = clazztype.getEnclosingType();
  2580                 if (clazzOuter.tag == CLASS) {
  2581                     Type site;
  2582                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  2583                     if (clazz.getTag() == JCTree.IDENT) {
  2584                         site = env.enclClass.sym.type;
  2585                     } else if (clazz.getTag() == JCTree.SELECT) {
  2586                         site = ((JCFieldAccess) clazz).selected.type;
  2587                     } else throw new AssertionError(""+tree);
  2588                     if (clazzOuter.tag == CLASS && site != clazzOuter) {
  2589                         if (site.tag == CLASS)
  2590                             site = types.asOuterSuper(site, clazzOuter.tsym);
  2591                         if (site == null)
  2592                             site = types.erasure(clazzOuter);
  2593                         clazzOuter = site;
  2596                 if (actuals.nonEmpty()) {
  2597                     owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  2599                 else if (TreeInfo.isDiamond(tree)) {
  2600                     //a type apply with no explicit type arguments - diamond operator
  2601                     //the result type is a forall F where F's tvars are the type-variables
  2602                     //that will be inferred when F is checked against the expected type
  2603                     List<Type> ftvars = clazztype.tsym.type.getTypeArguments();
  2604                     List<Type> new_tvars = types.newInstances(ftvars);
  2605                     clazztype = new ClassType(clazzOuter, new_tvars, clazztype.tsym);
  2606                     owntype = new ForAll(new_tvars, clazztype);
  2608             } else {
  2609                 if (formals.length() != 0) {
  2610                     log.error(tree.pos(), "wrong.number.type.args",
  2611                               Integer.toString(formals.length()));
  2612                 } else {
  2613                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  2615                 owntype = types.createErrorType(tree.type);
  2618         result = check(tree, owntype, TYP, pkind, pt);
  2621     public void visitTypeParameter(JCTypeParameter tree) {
  2622         TypeVar a = (TypeVar)tree.type;
  2623         Set<Type> boundSet = new HashSet<Type>();
  2624         if (a.bound.isErroneous())
  2625             return;
  2626         List<Type> bs = types.getBounds(a);
  2627         if (tree.bounds.nonEmpty()) {
  2628             // accept class or interface or typevar as first bound.
  2629             Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
  2630             boundSet.add(types.erasure(b));
  2631             if (b.isErroneous()) {
  2632                 a.bound = b;
  2634             else if (b.tag == TYPEVAR) {
  2635                 // if first bound was a typevar, do not accept further bounds.
  2636                 if (tree.bounds.tail.nonEmpty()) {
  2637                     log.error(tree.bounds.tail.head.pos(),
  2638                               "type.var.may.not.be.followed.by.other.bounds");
  2639                     tree.bounds = List.of(tree.bounds.head);
  2640                     a.bound = bs.head;
  2642             } else {
  2643                 // if first bound was a class or interface, accept only interfaces
  2644                 // as further bounds.
  2645                 for (JCExpression bound : tree.bounds.tail) {
  2646                     bs = bs.tail;
  2647                     Type i = checkBase(bs.head, bound, env, false, true, false);
  2648                     if (i.isErroneous())
  2649                         a.bound = i;
  2650                     else if (i.tag == CLASS)
  2651                         chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
  2655         bs = types.getBounds(a);
  2657         // in case of multiple bounds ...
  2658         if (bs.length() > 1) {
  2659             // ... the variable's bound is a class type flagged COMPOUND
  2660             // (see comment for TypeVar.bound).
  2661             // In this case, generate a class tree that represents the
  2662             // bound class, ...
  2663             JCTree extending;
  2664             List<JCExpression> implementing;
  2665             if ((bs.head.tsym.flags() & INTERFACE) == 0) {
  2666                 extending = tree.bounds.head;
  2667                 implementing = tree.bounds.tail;
  2668             } else {
  2669                 extending = null;
  2670                 implementing = tree.bounds;
  2672             JCClassDecl cd = make.at(tree.pos).ClassDef(
  2673                 make.Modifiers(PUBLIC | ABSTRACT),
  2674                 tree.name, List.<JCTypeParameter>nil(),
  2675                 extending, implementing, List.<JCTree>nil());
  2677             ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
  2678             assert (c.flags() & COMPOUND) != 0;
  2679             cd.sym = c;
  2680             c.sourcefile = env.toplevel.sourcefile;
  2682             // ... and attribute the bound class
  2683             c.flags_field |= UNATTRIBUTED;
  2684             Env<AttrContext> cenv = enter.classEnv(cd, env);
  2685             enter.typeEnvs.put(c, cenv);
  2690     public void visitWildcard(JCWildcard tree) {
  2691         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  2692         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  2693             ? syms.objectType
  2694             : attribType(tree.inner, env);
  2695         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  2696                                               tree.kind.kind,
  2697                                               syms.boundClass),
  2698                        TYP, pkind, pt);
  2701     public void visitAnnotation(JCAnnotation tree) {
  2702         log.error(tree.pos(), "annotation.not.valid.for.type", pt);
  2703         result = tree.type = syms.errType;
  2706     public void visitAnnotatedType(JCAnnotatedType tree) {
  2707         result = tree.type = attribType(tree.getUnderlyingType(), env);
  2710     public void visitErroneous(JCErroneous tree) {
  2711         if (tree.errs != null)
  2712             for (JCTree err : tree.errs)
  2713                 attribTree(err, env, ERR, pt);
  2714         result = tree.type = syms.errType;
  2717     /** Default visitor method for all other trees.
  2718      */
  2719     public void visitTree(JCTree tree) {
  2720         throw new AssertionError();
  2723     /** Main method: attribute class definition associated with given class symbol.
  2724      *  reporting completion failures at the given position.
  2725      *  @param pos The source position at which completion errors are to be
  2726      *             reported.
  2727      *  @param c   The class symbol whose definition will be attributed.
  2728      */
  2729     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  2730         try {
  2731             annotate.flush();
  2732             attribClass(c);
  2733         } catch (CompletionFailure ex) {
  2734             chk.completionError(pos, ex);
  2738     /** Attribute class definition associated with given class symbol.
  2739      *  @param c   The class symbol whose definition will be attributed.
  2740      */
  2741     void attribClass(ClassSymbol c) throws CompletionFailure {
  2742         if (c.type.tag == ERROR) return;
  2744         // Check for cycles in the inheritance graph, which can arise from
  2745         // ill-formed class files.
  2746         chk.checkNonCyclic(null, c.type);
  2748         Type st = types.supertype(c.type);
  2749         if ((c.flags_field & Flags.COMPOUND) == 0) {
  2750             // First, attribute superclass.
  2751             if (st.tag == CLASS)
  2752                 attribClass((ClassSymbol)st.tsym);
  2754             // Next attribute owner, if it is a class.
  2755             if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
  2756                 attribClass((ClassSymbol)c.owner);
  2759         // The previous operations might have attributed the current class
  2760         // if there was a cycle. So we test first whether the class is still
  2761         // UNATTRIBUTED.
  2762         if ((c.flags_field & UNATTRIBUTED) != 0) {
  2763             c.flags_field &= ~UNATTRIBUTED;
  2765             // Get environment current at the point of class definition.
  2766             Env<AttrContext> env = enter.typeEnvs.get(c);
  2768             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  2769             // because the annotations were not available at the time the env was created. Therefore,
  2770             // we look up the environment chain for the first enclosing environment for which the
  2771             // lint value is set. Typically, this is the parent env, but might be further if there
  2772             // are any envs created as a result of TypeParameter nodes.
  2773             Env<AttrContext> lintEnv = env;
  2774             while (lintEnv.info.lint == null)
  2775                 lintEnv = lintEnv.next;
  2777             // Having found the enclosing lint value, we can initialize the lint value for this class
  2778             env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
  2780             Lint prevLint = chk.setLint(env.info.lint);
  2781             JavaFileObject prev = log.useSource(c.sourcefile);
  2783             try {
  2784                 // java.lang.Enum may not be subclassed by a non-enum
  2785                 if (st.tsym == syms.enumSym &&
  2786                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  2787                     log.error(env.tree.pos(), "enum.no.subclassing");
  2789                 // Enums may not be extended by source-level classes
  2790                 if (st.tsym != null &&
  2791                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  2792                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
  2793                     !target.compilerBootstrap(c)) {
  2794                     log.error(env.tree.pos(), "enum.types.not.extensible");
  2796                 attribClassBody(env, c);
  2798                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  2799             } finally {
  2800                 log.useSource(prev);
  2801                 chk.setLint(prevLint);
  2807     public void visitImport(JCImport tree) {
  2808         // nothing to do
  2811     /** Finish the attribution of a class. */
  2812     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  2813         JCClassDecl tree = (JCClassDecl)env.tree;
  2814         assert c == tree.sym;
  2816         // Validate annotations
  2817         chk.validateAnnotations(tree.mods.annotations, c);
  2819         // Validate type parameters, supertype and interfaces.
  2820         attribBounds(tree.typarams);
  2821         chk.validate(tree.typarams, env);
  2822         chk.validate(tree.extending, env);
  2823         chk.validate(tree.implementing, env);
  2825         // If this is a non-abstract class, check that it has no abstract
  2826         // methods or unimplemented methods of an implemented interface.
  2827         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  2828             if (!relax)
  2829                 chk.checkAllDefined(tree.pos(), c);
  2832         if ((c.flags() & ANNOTATION) != 0) {
  2833             if (tree.implementing.nonEmpty())
  2834                 log.error(tree.implementing.head.pos(),
  2835                           "cant.extend.intf.annotation");
  2836             if (tree.typarams.nonEmpty())
  2837                 log.error(tree.typarams.head.pos(),
  2838                           "intf.annotation.cant.have.type.params");
  2839         } else {
  2840             // Check that all extended classes and interfaces
  2841             // are compatible (i.e. no two define methods with same arguments
  2842             // yet different return types).  (JLS 8.4.6.3)
  2843             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  2846         // Check that class does not import the same parameterized interface
  2847         // with two different argument lists.
  2848         chk.checkClassBounds(tree.pos(), c.type);
  2850         tree.type = c.type;
  2852         boolean assertsEnabled = false;
  2853         assert assertsEnabled = true;
  2854         if (assertsEnabled) {
  2855             for (List<JCTypeParameter> l = tree.typarams;
  2856                  l.nonEmpty(); l = l.tail)
  2857                 assert env.info.scope.lookup(l.head.name).scope != null;
  2860         // Check that a generic class doesn't extend Throwable
  2861         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  2862             log.error(tree.extending.pos(), "generic.throwable");
  2864         // Check that all methods which implement some
  2865         // method conform to the method they implement.
  2866         chk.checkImplementations(tree);
  2868         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2869             // Attribute declaration
  2870             attribStat(l.head, env);
  2871             // Check that declarations in inner classes are not static (JLS 8.1.2)
  2872             // Make an exception for static constants.
  2873             if (c.owner.kind != PCK &&
  2874                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  2875                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  2876                 Symbol sym = null;
  2877                 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
  2878                 if (sym == null ||
  2879                     sym.kind != VAR ||
  2880                     ((VarSymbol) sym).getConstValue() == null)
  2881                     log.error(l.head.pos(), "icls.cant.have.static.decl");
  2885         // Check for cycles among non-initial constructors.
  2886         chk.checkCyclicConstructors(tree);
  2888         // Check for cycles among annotation elements.
  2889         chk.checkNonCyclicElements(tree);
  2891         // Check for proper use of serialVersionUID
  2892         if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) &&
  2893             isSerializable(c) &&
  2894             (c.flags() & Flags.ENUM) == 0 &&
  2895             (c.flags() & ABSTRACT) == 0) {
  2896             checkSerialVersionUID(tree, c);
  2899         // Check type annotations applicability rules
  2900         validateTypeAnnotations(tree);
  2902         // where
  2903         /** check if a class is a subtype of Serializable, if that is available. */
  2904         private boolean isSerializable(ClassSymbol c) {
  2905             try {
  2906                 syms.serializableType.complete();
  2908             catch (CompletionFailure e) {
  2909                 return false;
  2911             return types.isSubtype(c.type, syms.serializableType);
  2914         /** Check that an appropriate serialVersionUID member is defined. */
  2915         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  2917             // check for presence of serialVersionUID
  2918             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  2919             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  2920             if (e.scope == null) {
  2921                 log.warning(tree.pos(), "missing.SVUID", c);
  2922                 return;
  2925             // check that it is static final
  2926             VarSymbol svuid = (VarSymbol)e.sym;
  2927             if ((svuid.flags() & (STATIC | FINAL)) !=
  2928                 (STATIC | FINAL))
  2929                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  2931             // check that it is long
  2932             else if (svuid.type.tag != TypeTags.LONG)
  2933                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  2935             // check constant
  2936             else if (svuid.getConstValue() == null)
  2937                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  2940     private Type capture(Type type) {
  2941         return types.capture(type);
  2944     private void validateTypeAnnotations(JCTree tree) {
  2945         tree.accept(typeAnnotationsValidator);
  2947     //where
  2948     private final JCTree.Visitor typeAnnotationsValidator =
  2949         new TreeScanner() {
  2950         public void visitAnnotation(JCAnnotation tree) {
  2951             if (tree instanceof JCTypeAnnotation) {
  2952                 chk.validateTypeAnnotation((JCTypeAnnotation)tree, false);
  2954             super.visitAnnotation(tree);
  2956         public void visitTypeParameter(JCTypeParameter tree) {
  2957             chk.validateTypeAnnotations(tree.annotations, true);
  2958             // don't call super. skip type annotations
  2959             scan(tree.bounds);
  2961         public void visitMethodDef(JCMethodDecl tree) {
  2962             // need to check static methods
  2963             if ((tree.sym.flags() & Flags.STATIC) != 0) {
  2964                 for (JCTypeAnnotation a : tree.receiverAnnotations) {
  2965                     if (chk.isTypeAnnotation(a, false))
  2966                         log.error(a.pos(), "annotation.type.not.applicable");
  2969             super.visitMethodDef(tree);
  2971     };

mercurial