src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.hpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 1907
c18cbe5936b8
child 2325
c760f78e0a53
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
    28 #include "gc_implementation/parallelScavenge/psVirtualspace.hpp"
    29 #include "utilities/bitMap.inline.hpp"
    31 class oopDesc;
    32 class ParMarkBitMapClosure;
    34 class ParMarkBitMap: public CHeapObj
    35 {
    36 public:
    37   typedef BitMap::idx_t idx_t;
    39   // Values returned by the iterate() methods.
    40   enum IterationStatus { incomplete, complete, full, would_overflow };
    42   inline ParMarkBitMap();
    43   inline ParMarkBitMap(MemRegion covered_region);
    44   bool initialize(MemRegion covered_region);
    46   // Atomically mark an object as live.
    47   bool mark_obj(HeapWord* addr, size_t size);
    48   inline bool mark_obj(oop obj, int size);
    49   inline bool mark_obj(oop obj);
    51   // Return whether the specified begin or end bit is set.
    52   inline bool is_obj_beg(idx_t bit) const;
    53   inline bool is_obj_end(idx_t bit) const;
    55   // Traditional interface for testing whether an object is marked or not (these
    56   // test only the begin bits).
    57   inline bool is_marked(idx_t bit)      const;
    58   inline bool is_marked(HeapWord* addr) const;
    59   inline bool is_marked(oop obj)        const;
    61   inline bool is_unmarked(idx_t bit)      const;
    62   inline bool is_unmarked(HeapWord* addr) const;
    63   inline bool is_unmarked(oop obj)        const;
    65   // Convert sizes from bits to HeapWords and back.  An object that is n bits
    66   // long will be bits_to_words(n) words long.  An object that is m words long
    67   // will take up words_to_bits(m) bits in the bitmap.
    68   inline static size_t bits_to_words(idx_t bits);
    69   inline static idx_t  words_to_bits(size_t words);
    71   // Return the size in words of an object given a begin bit and an end bit, or
    72   // the equivalent beg_addr and end_addr.
    73   inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
    74   inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
    76   // Return the size in words of the object (a search is done for the end bit).
    77   inline size_t obj_size(idx_t beg_bit)  const;
    78   inline size_t obj_size(HeapWord* addr) const;
    79   inline size_t obj_size(oop obj)        const;
    81   // Synonyms for the above.
    82   size_t obj_size_in_words(oop obj) const { return obj_size((HeapWord*)obj); }
    83   size_t obj_size_in_words(HeapWord* addr) const { return obj_size(addr); }
    85   // Apply live_closure to each live object that lies completely within the
    86   // range [live_range_beg, live_range_end).  This is used to iterate over the
    87   // compacted region of the heap.  Return values:
    88   //
    89   // incomplete         The iteration is not complete.  The last object that
    90   //                    begins in the range does not end in the range;
    91   //                    closure->source() is set to the start of that object.
    92   //
    93   // complete           The iteration is complete.  All objects in the range
    94   //                    were processed and the closure is not full;
    95   //                    closure->source() is set one past the end of the range.
    96   //
    97   // full               The closure is full; closure->source() is set to one
    98   //                    past the end of the last object processed.
    99   //
   100   // would_overflow     The next object in the range would overflow the closure;
   101   //                    closure->source() is set to the start of that object.
   102   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   103                           idx_t range_beg, idx_t range_end) const;
   104   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   105                                  HeapWord* range_beg,
   106                                  HeapWord* range_end) const;
   108   // Apply live closure as above and additionally apply dead_closure to all dead
   109   // space in the range [range_beg, dead_range_end).  Note that dead_range_end
   110   // must be >= range_end.  This is used to iterate over the dense prefix.
   111   //
   112   // This method assumes that if the first bit in the range (range_beg) is not
   113   // marked, then dead space begins at that point and the dead_closure is
   114   // applied.  Thus callers must ensure that range_beg is not in the middle of a
   115   // live object.
   116   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   117                           ParMarkBitMapClosure* dead_closure,
   118                           idx_t range_beg, idx_t range_end,
   119                           idx_t dead_range_end) const;
   120   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   121                                  ParMarkBitMapClosure* dead_closure,
   122                                  HeapWord* range_beg,
   123                                  HeapWord* range_end,
   124                                  HeapWord* dead_range_end) const;
   126   // Return the number of live words in the range [beg_addr, end_addr) due to
   127   // objects that start in the range.  If a live object extends onto the range,
   128   // the caller must detect and account for any live words due to that object.
   129   // If a live object extends beyond the end of the range, only the words within
   130   // the range are included in the result.
   131   size_t live_words_in_range(HeapWord* beg_addr, HeapWord* end_addr) const;
   133   // Same as the above, except the end of the range must be a live object, which
   134   // is the case when updating pointers.  This allows a branch to be removed
   135   // from inside the loop.
   136   size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
   138   inline HeapWord* region_start() const;
   139   inline HeapWord* region_end() const;
   140   inline size_t    region_size() const;
   141   inline size_t    size() const;
   143   // Convert a heap address to/from a bit index.
   144   inline idx_t     addr_to_bit(HeapWord* addr) const;
   145   inline HeapWord* bit_to_addr(idx_t bit) const;
   147   // Return the bit index of the first marked object that begins (or ends,
   148   // respectively) in the range [beg, end).  If no object is found, return end.
   149   inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
   150   inline idx_t find_obj_end(idx_t beg, idx_t end) const;
   152   inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
   153   inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
   155   // Clear a range of bits or the entire bitmap (both begin and end bits are
   156   // cleared).
   157   inline void clear_range(idx_t beg, idx_t end);
   158   inline void clear() { clear_range(0, size()); }
   160   // Return the number of bits required to represent the specified number of
   161   // HeapWords, or the specified region.
   162   static inline idx_t bits_required(size_t words);
   163   static inline idx_t bits_required(MemRegion covered_region);
   164   static inline idx_t words_required(MemRegion covered_region);
   166 #ifndef PRODUCT
   167   // CAS statistics.
   168   size_t cas_tries() { return _cas_tries; }
   169   size_t cas_retries() { return _cas_retries; }
   170   size_t cas_by_another() { return _cas_by_another; }
   172   void reset_counters();
   173 #endif  // #ifndef PRODUCT
   175 #ifdef  ASSERT
   176   void verify_clear() const;
   177   inline void verify_bit(idx_t bit) const;
   178   inline void verify_addr(HeapWord* addr) const;
   179 #endif  // #ifdef ASSERT
   181 private:
   182   // Each bit in the bitmap represents one unit of 'object granularity.' Objects
   183   // are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
   184   // granularity is 2, 64-bit is 1.
   185   static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
   186   static inline int obj_granularity_shift() { return LogMinObjAlignment; }
   188   HeapWord*       _region_start;
   189   size_t          _region_size;
   190   BitMap          _beg_bits;
   191   BitMap          _end_bits;
   192   PSVirtualSpace* _virtual_space;
   194 #ifndef PRODUCT
   195   size_t _cas_tries;
   196   size_t _cas_retries;
   197   size_t _cas_by_another;
   198 #endif  // #ifndef PRODUCT
   199 };
   201 inline ParMarkBitMap::ParMarkBitMap():
   202   _beg_bits(),
   203   _end_bits()
   204 {
   205   _region_start = 0;
   206   _virtual_space = 0;
   207 }
   209 inline ParMarkBitMap::ParMarkBitMap(MemRegion covered_region):
   210   _beg_bits(),
   211   _end_bits()
   212 {
   213   initialize(covered_region);
   214 }
   216 inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
   217 {
   218   _beg_bits.clear_range(beg, end);
   219   _end_bits.clear_range(beg, end);
   220 }
   222 inline ParMarkBitMap::idx_t
   223 ParMarkBitMap::bits_required(size_t words)
   224 {
   225   // Need two bits (one begin bit, one end bit) for each unit of 'object
   226   // granularity' in the heap.
   227   return words_to_bits(words * 2);
   228 }
   230 inline ParMarkBitMap::idx_t
   231 ParMarkBitMap::bits_required(MemRegion covered_region)
   232 {
   233   return bits_required(covered_region.word_size());
   234 }
   236 inline ParMarkBitMap::idx_t
   237 ParMarkBitMap::words_required(MemRegion covered_region)
   238 {
   239   return bits_required(covered_region) / BitsPerWord;
   240 }
   242 inline HeapWord*
   243 ParMarkBitMap::region_start() const
   244 {
   245   return _region_start;
   246 }
   248 inline HeapWord*
   249 ParMarkBitMap::region_end() const
   250 {
   251   return region_start() + region_size();
   252 }
   254 inline size_t
   255 ParMarkBitMap::region_size() const
   256 {
   257   return _region_size;
   258 }
   260 inline size_t
   261 ParMarkBitMap::size() const
   262 {
   263   return _beg_bits.size();
   264 }
   266 inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const
   267 {
   268   return _beg_bits.at(bit);
   269 }
   271 inline bool ParMarkBitMap::is_obj_end(idx_t bit) const
   272 {
   273   return _end_bits.at(bit);
   274 }
   276 inline bool ParMarkBitMap::is_marked(idx_t bit) const
   277 {
   278   return is_obj_beg(bit);
   279 }
   281 inline bool ParMarkBitMap::is_marked(HeapWord* addr) const
   282 {
   283   return is_marked(addr_to_bit(addr));
   284 }
   286 inline bool ParMarkBitMap::is_marked(oop obj) const
   287 {
   288   return is_marked((HeapWord*)obj);
   289 }
   291 inline bool ParMarkBitMap::is_unmarked(idx_t bit) const
   292 {
   293   return !is_marked(bit);
   294 }
   296 inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const
   297 {
   298   return !is_marked(addr);
   299 }
   301 inline bool ParMarkBitMap::is_unmarked(oop obj) const
   302 {
   303   return !is_marked(obj);
   304 }
   306 inline size_t
   307 ParMarkBitMap::bits_to_words(idx_t bits)
   308 {
   309   return bits << obj_granularity_shift();
   310 }
   312 inline ParMarkBitMap::idx_t
   313 ParMarkBitMap::words_to_bits(size_t words)
   314 {
   315   return words >> obj_granularity_shift();
   316 }
   318 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const
   319 {
   320   DEBUG_ONLY(verify_bit(beg_bit);)
   321   DEBUG_ONLY(verify_bit(end_bit);)
   322   return bits_to_words(end_bit - beg_bit + 1);
   323 }
   325 inline size_t
   326 ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
   327 {
   328   DEBUG_ONLY(verify_addr(beg_addr);)
   329   DEBUG_ONLY(verify_addr(end_addr);)
   330   return pointer_delta(end_addr, beg_addr) + obj_granularity();
   331 }
   333 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
   334 {
   335   const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
   336   assert(is_marked(beg_bit), "obj not marked");
   337   assert(end_bit < size(), "end bit missing");
   338   return obj_size(beg_bit, end_bit);
   339 }
   341 inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
   342 {
   343   return obj_size(addr_to_bit(addr));
   344 }
   346 inline size_t ParMarkBitMap::obj_size(oop obj) const
   347 {
   348   return obj_size((HeapWord*)obj);
   349 }
   351 inline ParMarkBitMap::IterationStatus
   352 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
   353                        HeapWord* range_beg,
   354                        HeapWord* range_end) const
   355 {
   356   return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
   357 }
   359 inline ParMarkBitMap::IterationStatus
   360 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
   361                        ParMarkBitMapClosure* dead_closure,
   362                        HeapWord* range_beg,
   363                        HeapWord* range_end,
   364                        HeapWord* dead_range_end) const
   365 {
   366   return iterate(live_closure, dead_closure,
   367                  addr_to_bit(range_beg), addr_to_bit(range_end),
   368                  addr_to_bit(dead_range_end));
   369 }
   371 inline bool
   372 ParMarkBitMap::mark_obj(oop obj, int size)
   373 {
   374   return mark_obj((HeapWord*)obj, (size_t)size);
   375 }
   377 inline BitMap::idx_t
   378 ParMarkBitMap::addr_to_bit(HeapWord* addr) const
   379 {
   380   DEBUG_ONLY(verify_addr(addr);)
   381   return words_to_bits(pointer_delta(addr, region_start()));
   382 }
   384 inline HeapWord*
   385 ParMarkBitMap::bit_to_addr(idx_t bit) const
   386 {
   387   DEBUG_ONLY(verify_bit(bit);)
   388   return region_start() + bits_to_words(bit);
   389 }
   391 inline ParMarkBitMap::idx_t
   392 ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const
   393 {
   394   return _beg_bits.get_next_one_offset_inline_aligned_right(beg, end);
   395 }
   397 inline ParMarkBitMap::idx_t
   398 ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const
   399 {
   400   return _end_bits.get_next_one_offset_inline_aligned_right(beg, end);
   401 }
   403 inline HeapWord*
   404 ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const
   405 {
   406   const idx_t beg_bit = addr_to_bit(beg);
   407   const idx_t end_bit = addr_to_bit(end);
   408   const idx_t search_end = BitMap::word_align_up(end_bit);
   409   const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit);
   410   return bit_to_addr(res_bit);
   411 }
   413 inline HeapWord*
   414 ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
   415 {
   416   const idx_t beg_bit = addr_to_bit(beg);
   417   const idx_t end_bit = addr_to_bit(end);
   418   const idx_t search_end = BitMap::word_align_up(end_bit);
   419   const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
   420   return bit_to_addr(res_bit);
   421 }
   423 #ifdef  ASSERT
   424 inline void ParMarkBitMap::verify_bit(idx_t bit) const {
   425   // Allow one past the last valid bit; useful for loop bounds.
   426   assert(bit <= _beg_bits.size(), "bit out of range");
   427 }
   429 inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
   430   // Allow one past the last valid address; useful for loop bounds.
   431   assert(addr >= region_start(), "addr too small");
   432   assert(addr <= region_start() + region_size(), "addr too big");
   433 }
   434 #endif  // #ifdef ASSERT
   436 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP

mercurial