src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.hpp

Wed, 01 Dec 2010 15:04:06 +0100

author
stefank
date
Wed, 01 Dec 2010 15:04:06 +0100
changeset 2325
c760f78e0a53
parent 2314
f95d63e2154a
child 3900
d2a62e0f25eb
permissions
-rw-r--r--

7003125: precompiled.hpp is included when precompiled headers are not used
Summary: Added an ifndef DONT_USE_PRECOMPILED_HEADER to precompiled.hpp. Set up DONT_USE_PRECOMPILED_HEADER when compiling with Sun Studio or when the user specifies USE_PRECOMPILED_HEADER=0. Fixed broken include dependencies.
Reviewed-by: coleenp, kvn

     1 /*
     2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
    28 #include "memory/memRegion.hpp"
    29 #include "gc_implementation/parallelScavenge/psVirtualspace.hpp"
    30 #include "utilities/bitMap.inline.hpp"
    32 class oopDesc;
    33 class ParMarkBitMapClosure;
    35 class ParMarkBitMap: public CHeapObj
    36 {
    37 public:
    38   typedef BitMap::idx_t idx_t;
    40   // Values returned by the iterate() methods.
    41   enum IterationStatus { incomplete, complete, full, would_overflow };
    43   inline ParMarkBitMap();
    44   inline ParMarkBitMap(MemRegion covered_region);
    45   bool initialize(MemRegion covered_region);
    47   // Atomically mark an object as live.
    48   bool mark_obj(HeapWord* addr, size_t size);
    49   inline bool mark_obj(oop obj, int size);
    50   inline bool mark_obj(oop obj);
    52   // Return whether the specified begin or end bit is set.
    53   inline bool is_obj_beg(idx_t bit) const;
    54   inline bool is_obj_end(idx_t bit) const;
    56   // Traditional interface for testing whether an object is marked or not (these
    57   // test only the begin bits).
    58   inline bool is_marked(idx_t bit)      const;
    59   inline bool is_marked(HeapWord* addr) const;
    60   inline bool is_marked(oop obj)        const;
    62   inline bool is_unmarked(idx_t bit)      const;
    63   inline bool is_unmarked(HeapWord* addr) const;
    64   inline bool is_unmarked(oop obj)        const;
    66   // Convert sizes from bits to HeapWords and back.  An object that is n bits
    67   // long will be bits_to_words(n) words long.  An object that is m words long
    68   // will take up words_to_bits(m) bits in the bitmap.
    69   inline static size_t bits_to_words(idx_t bits);
    70   inline static idx_t  words_to_bits(size_t words);
    72   // Return the size in words of an object given a begin bit and an end bit, or
    73   // the equivalent beg_addr and end_addr.
    74   inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
    75   inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
    77   // Return the size in words of the object (a search is done for the end bit).
    78   inline size_t obj_size(idx_t beg_bit)  const;
    79   inline size_t obj_size(HeapWord* addr) const;
    80   inline size_t obj_size(oop obj)        const;
    82   // Synonyms for the above.
    83   size_t obj_size_in_words(oop obj) const { return obj_size((HeapWord*)obj); }
    84   size_t obj_size_in_words(HeapWord* addr) const { return obj_size(addr); }
    86   // Apply live_closure to each live object that lies completely within the
    87   // range [live_range_beg, live_range_end).  This is used to iterate over the
    88   // compacted region of the heap.  Return values:
    89   //
    90   // incomplete         The iteration is not complete.  The last object that
    91   //                    begins in the range does not end in the range;
    92   //                    closure->source() is set to the start of that object.
    93   //
    94   // complete           The iteration is complete.  All objects in the range
    95   //                    were processed and the closure is not full;
    96   //                    closure->source() is set one past the end of the range.
    97   //
    98   // full               The closure is full; closure->source() is set to one
    99   //                    past the end of the last object processed.
   100   //
   101   // would_overflow     The next object in the range would overflow the closure;
   102   //                    closure->source() is set to the start of that object.
   103   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   104                           idx_t range_beg, idx_t range_end) const;
   105   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   106                                  HeapWord* range_beg,
   107                                  HeapWord* range_end) const;
   109   // Apply live closure as above and additionally apply dead_closure to all dead
   110   // space in the range [range_beg, dead_range_end).  Note that dead_range_end
   111   // must be >= range_end.  This is used to iterate over the dense prefix.
   112   //
   113   // This method assumes that if the first bit in the range (range_beg) is not
   114   // marked, then dead space begins at that point and the dead_closure is
   115   // applied.  Thus callers must ensure that range_beg is not in the middle of a
   116   // live object.
   117   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   118                           ParMarkBitMapClosure* dead_closure,
   119                           idx_t range_beg, idx_t range_end,
   120                           idx_t dead_range_end) const;
   121   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   122                                  ParMarkBitMapClosure* dead_closure,
   123                                  HeapWord* range_beg,
   124                                  HeapWord* range_end,
   125                                  HeapWord* dead_range_end) const;
   127   // Return the number of live words in the range [beg_addr, end_addr) due to
   128   // objects that start in the range.  If a live object extends onto the range,
   129   // the caller must detect and account for any live words due to that object.
   130   // If a live object extends beyond the end of the range, only the words within
   131   // the range are included in the result.
   132   size_t live_words_in_range(HeapWord* beg_addr, HeapWord* end_addr) const;
   134   // Same as the above, except the end of the range must be a live object, which
   135   // is the case when updating pointers.  This allows a branch to be removed
   136   // from inside the loop.
   137   size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
   139   inline HeapWord* region_start() const;
   140   inline HeapWord* region_end() const;
   141   inline size_t    region_size() const;
   142   inline size_t    size() const;
   144   // Convert a heap address to/from a bit index.
   145   inline idx_t     addr_to_bit(HeapWord* addr) const;
   146   inline HeapWord* bit_to_addr(idx_t bit) const;
   148   // Return the bit index of the first marked object that begins (or ends,
   149   // respectively) in the range [beg, end).  If no object is found, return end.
   150   inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
   151   inline idx_t find_obj_end(idx_t beg, idx_t end) const;
   153   inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
   154   inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
   156   // Clear a range of bits or the entire bitmap (both begin and end bits are
   157   // cleared).
   158   inline void clear_range(idx_t beg, idx_t end);
   159   inline void clear() { clear_range(0, size()); }
   161   // Return the number of bits required to represent the specified number of
   162   // HeapWords, or the specified region.
   163   static inline idx_t bits_required(size_t words);
   164   static inline idx_t bits_required(MemRegion covered_region);
   165   static inline idx_t words_required(MemRegion covered_region);
   167 #ifndef PRODUCT
   168   // CAS statistics.
   169   size_t cas_tries() { return _cas_tries; }
   170   size_t cas_retries() { return _cas_retries; }
   171   size_t cas_by_another() { return _cas_by_another; }
   173   void reset_counters();
   174 #endif  // #ifndef PRODUCT
   176 #ifdef  ASSERT
   177   void verify_clear() const;
   178   inline void verify_bit(idx_t bit) const;
   179   inline void verify_addr(HeapWord* addr) const;
   180 #endif  // #ifdef ASSERT
   182 private:
   183   // Each bit in the bitmap represents one unit of 'object granularity.' Objects
   184   // are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
   185   // granularity is 2, 64-bit is 1.
   186   static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
   187   static inline int obj_granularity_shift() { return LogMinObjAlignment; }
   189   HeapWord*       _region_start;
   190   size_t          _region_size;
   191   BitMap          _beg_bits;
   192   BitMap          _end_bits;
   193   PSVirtualSpace* _virtual_space;
   195 #ifndef PRODUCT
   196   size_t _cas_tries;
   197   size_t _cas_retries;
   198   size_t _cas_by_another;
   199 #endif  // #ifndef PRODUCT
   200 };
   202 inline ParMarkBitMap::ParMarkBitMap():
   203   _beg_bits(),
   204   _end_bits()
   205 {
   206   _region_start = 0;
   207   _virtual_space = 0;
   208 }
   210 inline ParMarkBitMap::ParMarkBitMap(MemRegion covered_region):
   211   _beg_bits(),
   212   _end_bits()
   213 {
   214   initialize(covered_region);
   215 }
   217 inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
   218 {
   219   _beg_bits.clear_range(beg, end);
   220   _end_bits.clear_range(beg, end);
   221 }
   223 inline ParMarkBitMap::idx_t
   224 ParMarkBitMap::bits_required(size_t words)
   225 {
   226   // Need two bits (one begin bit, one end bit) for each unit of 'object
   227   // granularity' in the heap.
   228   return words_to_bits(words * 2);
   229 }
   231 inline ParMarkBitMap::idx_t
   232 ParMarkBitMap::bits_required(MemRegion covered_region)
   233 {
   234   return bits_required(covered_region.word_size());
   235 }
   237 inline ParMarkBitMap::idx_t
   238 ParMarkBitMap::words_required(MemRegion covered_region)
   239 {
   240   return bits_required(covered_region) / BitsPerWord;
   241 }
   243 inline HeapWord*
   244 ParMarkBitMap::region_start() const
   245 {
   246   return _region_start;
   247 }
   249 inline HeapWord*
   250 ParMarkBitMap::region_end() const
   251 {
   252   return region_start() + region_size();
   253 }
   255 inline size_t
   256 ParMarkBitMap::region_size() const
   257 {
   258   return _region_size;
   259 }
   261 inline size_t
   262 ParMarkBitMap::size() const
   263 {
   264   return _beg_bits.size();
   265 }
   267 inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const
   268 {
   269   return _beg_bits.at(bit);
   270 }
   272 inline bool ParMarkBitMap::is_obj_end(idx_t bit) const
   273 {
   274   return _end_bits.at(bit);
   275 }
   277 inline bool ParMarkBitMap::is_marked(idx_t bit) const
   278 {
   279   return is_obj_beg(bit);
   280 }
   282 inline bool ParMarkBitMap::is_marked(HeapWord* addr) const
   283 {
   284   return is_marked(addr_to_bit(addr));
   285 }
   287 inline bool ParMarkBitMap::is_marked(oop obj) const
   288 {
   289   return is_marked((HeapWord*)obj);
   290 }
   292 inline bool ParMarkBitMap::is_unmarked(idx_t bit) const
   293 {
   294   return !is_marked(bit);
   295 }
   297 inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const
   298 {
   299   return !is_marked(addr);
   300 }
   302 inline bool ParMarkBitMap::is_unmarked(oop obj) const
   303 {
   304   return !is_marked(obj);
   305 }
   307 inline size_t
   308 ParMarkBitMap::bits_to_words(idx_t bits)
   309 {
   310   return bits << obj_granularity_shift();
   311 }
   313 inline ParMarkBitMap::idx_t
   314 ParMarkBitMap::words_to_bits(size_t words)
   315 {
   316   return words >> obj_granularity_shift();
   317 }
   319 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const
   320 {
   321   DEBUG_ONLY(verify_bit(beg_bit);)
   322   DEBUG_ONLY(verify_bit(end_bit);)
   323   return bits_to_words(end_bit - beg_bit + 1);
   324 }
   326 inline size_t
   327 ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
   328 {
   329   DEBUG_ONLY(verify_addr(beg_addr);)
   330   DEBUG_ONLY(verify_addr(end_addr);)
   331   return pointer_delta(end_addr, beg_addr) + obj_granularity();
   332 }
   334 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
   335 {
   336   const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
   337   assert(is_marked(beg_bit), "obj not marked");
   338   assert(end_bit < size(), "end bit missing");
   339   return obj_size(beg_bit, end_bit);
   340 }
   342 inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
   343 {
   344   return obj_size(addr_to_bit(addr));
   345 }
   347 inline size_t ParMarkBitMap::obj_size(oop obj) const
   348 {
   349   return obj_size((HeapWord*)obj);
   350 }
   352 inline ParMarkBitMap::IterationStatus
   353 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
   354                        HeapWord* range_beg,
   355                        HeapWord* range_end) const
   356 {
   357   return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
   358 }
   360 inline ParMarkBitMap::IterationStatus
   361 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
   362                        ParMarkBitMapClosure* dead_closure,
   363                        HeapWord* range_beg,
   364                        HeapWord* range_end,
   365                        HeapWord* dead_range_end) const
   366 {
   367   return iterate(live_closure, dead_closure,
   368                  addr_to_bit(range_beg), addr_to_bit(range_end),
   369                  addr_to_bit(dead_range_end));
   370 }
   372 inline bool
   373 ParMarkBitMap::mark_obj(oop obj, int size)
   374 {
   375   return mark_obj((HeapWord*)obj, (size_t)size);
   376 }
   378 inline BitMap::idx_t
   379 ParMarkBitMap::addr_to_bit(HeapWord* addr) const
   380 {
   381   DEBUG_ONLY(verify_addr(addr);)
   382   return words_to_bits(pointer_delta(addr, region_start()));
   383 }
   385 inline HeapWord*
   386 ParMarkBitMap::bit_to_addr(idx_t bit) const
   387 {
   388   DEBUG_ONLY(verify_bit(bit);)
   389   return region_start() + bits_to_words(bit);
   390 }
   392 inline ParMarkBitMap::idx_t
   393 ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const
   394 {
   395   return _beg_bits.get_next_one_offset_inline_aligned_right(beg, end);
   396 }
   398 inline ParMarkBitMap::idx_t
   399 ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const
   400 {
   401   return _end_bits.get_next_one_offset_inline_aligned_right(beg, end);
   402 }
   404 inline HeapWord*
   405 ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const
   406 {
   407   const idx_t beg_bit = addr_to_bit(beg);
   408   const idx_t end_bit = addr_to_bit(end);
   409   const idx_t search_end = BitMap::word_align_up(end_bit);
   410   const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit);
   411   return bit_to_addr(res_bit);
   412 }
   414 inline HeapWord*
   415 ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
   416 {
   417   const idx_t beg_bit = addr_to_bit(beg);
   418   const idx_t end_bit = addr_to_bit(end);
   419   const idx_t search_end = BitMap::word_align_up(end_bit);
   420   const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
   421   return bit_to_addr(res_bit);
   422 }
   424 #ifdef  ASSERT
   425 inline void ParMarkBitMap::verify_bit(idx_t bit) const {
   426   // Allow one past the last valid bit; useful for loop bounds.
   427   assert(bit <= _beg_bits.size(), "bit out of range");
   428 }
   430 inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
   431   // Allow one past the last valid address; useful for loop bounds.
   432   assert(addr >= region_start(), "addr too small");
   433   assert(addr <= region_start() + region_size(), "addr too big");
   434 }
   435 #endif  // #ifdef ASSERT
   437 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP

mercurial