src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.hpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1279
bd02caa94611
child 2314
f95d63e2154a
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2005, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 class oopDesc;
    26 class ParMarkBitMapClosure;
    28 class ParMarkBitMap: public CHeapObj
    29 {
    30 public:
    31   typedef BitMap::idx_t idx_t;
    33   // Values returned by the iterate() methods.
    34   enum IterationStatus { incomplete, complete, full, would_overflow };
    36   inline ParMarkBitMap();
    37   inline ParMarkBitMap(MemRegion covered_region);
    38   bool initialize(MemRegion covered_region);
    40   // Atomically mark an object as live.
    41   bool mark_obj(HeapWord* addr, size_t size);
    42   inline bool mark_obj(oop obj, int size);
    43   inline bool mark_obj(oop obj);
    45   // Return whether the specified begin or end bit is set.
    46   inline bool is_obj_beg(idx_t bit) const;
    47   inline bool is_obj_end(idx_t bit) const;
    49   // Traditional interface for testing whether an object is marked or not (these
    50   // test only the begin bits).
    51   inline bool is_marked(idx_t bit)      const;
    52   inline bool is_marked(HeapWord* addr) const;
    53   inline bool is_marked(oop obj)        const;
    55   inline bool is_unmarked(idx_t bit)      const;
    56   inline bool is_unmarked(HeapWord* addr) const;
    57   inline bool is_unmarked(oop obj)        const;
    59   // Convert sizes from bits to HeapWords and back.  An object that is n bits
    60   // long will be bits_to_words(n) words long.  An object that is m words long
    61   // will take up words_to_bits(m) bits in the bitmap.
    62   inline static size_t bits_to_words(idx_t bits);
    63   inline static idx_t  words_to_bits(size_t words);
    65   // Return the size in words of an object given a begin bit and an end bit, or
    66   // the equivalent beg_addr and end_addr.
    67   inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
    68   inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
    70   // Return the size in words of the object (a search is done for the end bit).
    71   inline size_t obj_size(idx_t beg_bit)  const;
    72   inline size_t obj_size(HeapWord* addr) const;
    73   inline size_t obj_size(oop obj)        const;
    75   // Synonyms for the above.
    76   size_t obj_size_in_words(oop obj) const { return obj_size((HeapWord*)obj); }
    77   size_t obj_size_in_words(HeapWord* addr) const { return obj_size(addr); }
    79   // Apply live_closure to each live object that lies completely within the
    80   // range [live_range_beg, live_range_end).  This is used to iterate over the
    81   // compacted region of the heap.  Return values:
    82   //
    83   // incomplete         The iteration is not complete.  The last object that
    84   //                    begins in the range does not end in the range;
    85   //                    closure->source() is set to the start of that object.
    86   //
    87   // complete           The iteration is complete.  All objects in the range
    88   //                    were processed and the closure is not full;
    89   //                    closure->source() is set one past the end of the range.
    90   //
    91   // full               The closure is full; closure->source() is set to one
    92   //                    past the end of the last object processed.
    93   //
    94   // would_overflow     The next object in the range would overflow the closure;
    95   //                    closure->source() is set to the start of that object.
    96   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
    97                           idx_t range_beg, idx_t range_end) const;
    98   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
    99                                  HeapWord* range_beg,
   100                                  HeapWord* range_end) const;
   102   // Apply live closure as above and additionally apply dead_closure to all dead
   103   // space in the range [range_beg, dead_range_end).  Note that dead_range_end
   104   // must be >= range_end.  This is used to iterate over the dense prefix.
   105   //
   106   // This method assumes that if the first bit in the range (range_beg) is not
   107   // marked, then dead space begins at that point and the dead_closure is
   108   // applied.  Thus callers must ensure that range_beg is not in the middle of a
   109   // live object.
   110   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   111                           ParMarkBitMapClosure* dead_closure,
   112                           idx_t range_beg, idx_t range_end,
   113                           idx_t dead_range_end) const;
   114   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   115                                  ParMarkBitMapClosure* dead_closure,
   116                                  HeapWord* range_beg,
   117                                  HeapWord* range_end,
   118                                  HeapWord* dead_range_end) const;
   120   // Return the number of live words in the range [beg_addr, end_addr) due to
   121   // objects that start in the range.  If a live object extends onto the range,
   122   // the caller must detect and account for any live words due to that object.
   123   // If a live object extends beyond the end of the range, only the words within
   124   // the range are included in the result.
   125   size_t live_words_in_range(HeapWord* beg_addr, HeapWord* end_addr) const;
   127   // Same as the above, except the end of the range must be a live object, which
   128   // is the case when updating pointers.  This allows a branch to be removed
   129   // from inside the loop.
   130   size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
   132   inline HeapWord* region_start() const;
   133   inline HeapWord* region_end() const;
   134   inline size_t    region_size() const;
   135   inline size_t    size() const;
   137   // Convert a heap address to/from a bit index.
   138   inline idx_t     addr_to_bit(HeapWord* addr) const;
   139   inline HeapWord* bit_to_addr(idx_t bit) const;
   141   // Return the bit index of the first marked object that begins (or ends,
   142   // respectively) in the range [beg, end).  If no object is found, return end.
   143   inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
   144   inline idx_t find_obj_end(idx_t beg, idx_t end) const;
   146   inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
   147   inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
   149   // Clear a range of bits or the entire bitmap (both begin and end bits are
   150   // cleared).
   151   inline void clear_range(idx_t beg, idx_t end);
   152   inline void clear() { clear_range(0, size()); }
   154   // Return the number of bits required to represent the specified number of
   155   // HeapWords, or the specified region.
   156   static inline idx_t bits_required(size_t words);
   157   static inline idx_t bits_required(MemRegion covered_region);
   158   static inline idx_t words_required(MemRegion covered_region);
   160 #ifndef PRODUCT
   161   // CAS statistics.
   162   size_t cas_tries() { return _cas_tries; }
   163   size_t cas_retries() { return _cas_retries; }
   164   size_t cas_by_another() { return _cas_by_another; }
   166   void reset_counters();
   167 #endif  // #ifndef PRODUCT
   169 #ifdef  ASSERT
   170   void verify_clear() const;
   171   inline void verify_bit(idx_t bit) const;
   172   inline void verify_addr(HeapWord* addr) const;
   173 #endif  // #ifdef ASSERT
   175 private:
   176   // Each bit in the bitmap represents one unit of 'object granularity.' Objects
   177   // are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
   178   // granularity is 2, 64-bit is 1.
   179   static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
   180   static inline int obj_granularity_shift() { return LogMinObjAlignment; }
   182   HeapWord*       _region_start;
   183   size_t          _region_size;
   184   BitMap          _beg_bits;
   185   BitMap          _end_bits;
   186   PSVirtualSpace* _virtual_space;
   188 #ifndef PRODUCT
   189   size_t _cas_tries;
   190   size_t _cas_retries;
   191   size_t _cas_by_another;
   192 #endif  // #ifndef PRODUCT
   193 };
   195 inline ParMarkBitMap::ParMarkBitMap():
   196   _beg_bits(),
   197   _end_bits()
   198 {
   199   _region_start = 0;
   200   _virtual_space = 0;
   201 }
   203 inline ParMarkBitMap::ParMarkBitMap(MemRegion covered_region):
   204   _beg_bits(),
   205   _end_bits()
   206 {
   207   initialize(covered_region);
   208 }
   210 inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
   211 {
   212   _beg_bits.clear_range(beg, end);
   213   _end_bits.clear_range(beg, end);
   214 }
   216 inline ParMarkBitMap::idx_t
   217 ParMarkBitMap::bits_required(size_t words)
   218 {
   219   // Need two bits (one begin bit, one end bit) for each unit of 'object
   220   // granularity' in the heap.
   221   return words_to_bits(words * 2);
   222 }
   224 inline ParMarkBitMap::idx_t
   225 ParMarkBitMap::bits_required(MemRegion covered_region)
   226 {
   227   return bits_required(covered_region.word_size());
   228 }
   230 inline ParMarkBitMap::idx_t
   231 ParMarkBitMap::words_required(MemRegion covered_region)
   232 {
   233   return bits_required(covered_region) / BitsPerWord;
   234 }
   236 inline HeapWord*
   237 ParMarkBitMap::region_start() const
   238 {
   239   return _region_start;
   240 }
   242 inline HeapWord*
   243 ParMarkBitMap::region_end() const
   244 {
   245   return region_start() + region_size();
   246 }
   248 inline size_t
   249 ParMarkBitMap::region_size() const
   250 {
   251   return _region_size;
   252 }
   254 inline size_t
   255 ParMarkBitMap::size() const
   256 {
   257   return _beg_bits.size();
   258 }
   260 inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const
   261 {
   262   return _beg_bits.at(bit);
   263 }
   265 inline bool ParMarkBitMap::is_obj_end(idx_t bit) const
   266 {
   267   return _end_bits.at(bit);
   268 }
   270 inline bool ParMarkBitMap::is_marked(idx_t bit) const
   271 {
   272   return is_obj_beg(bit);
   273 }
   275 inline bool ParMarkBitMap::is_marked(HeapWord* addr) const
   276 {
   277   return is_marked(addr_to_bit(addr));
   278 }
   280 inline bool ParMarkBitMap::is_marked(oop obj) const
   281 {
   282   return is_marked((HeapWord*)obj);
   283 }
   285 inline bool ParMarkBitMap::is_unmarked(idx_t bit) const
   286 {
   287   return !is_marked(bit);
   288 }
   290 inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const
   291 {
   292   return !is_marked(addr);
   293 }
   295 inline bool ParMarkBitMap::is_unmarked(oop obj) const
   296 {
   297   return !is_marked(obj);
   298 }
   300 inline size_t
   301 ParMarkBitMap::bits_to_words(idx_t bits)
   302 {
   303   return bits << obj_granularity_shift();
   304 }
   306 inline ParMarkBitMap::idx_t
   307 ParMarkBitMap::words_to_bits(size_t words)
   308 {
   309   return words >> obj_granularity_shift();
   310 }
   312 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const
   313 {
   314   DEBUG_ONLY(verify_bit(beg_bit);)
   315   DEBUG_ONLY(verify_bit(end_bit);)
   316   return bits_to_words(end_bit - beg_bit + 1);
   317 }
   319 inline size_t
   320 ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
   321 {
   322   DEBUG_ONLY(verify_addr(beg_addr);)
   323   DEBUG_ONLY(verify_addr(end_addr);)
   324   return pointer_delta(end_addr, beg_addr) + obj_granularity();
   325 }
   327 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
   328 {
   329   const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
   330   assert(is_marked(beg_bit), "obj not marked");
   331   assert(end_bit < size(), "end bit missing");
   332   return obj_size(beg_bit, end_bit);
   333 }
   335 inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
   336 {
   337   return obj_size(addr_to_bit(addr));
   338 }
   340 inline size_t ParMarkBitMap::obj_size(oop obj) const
   341 {
   342   return obj_size((HeapWord*)obj);
   343 }
   345 inline ParMarkBitMap::IterationStatus
   346 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
   347                        HeapWord* range_beg,
   348                        HeapWord* range_end) const
   349 {
   350   return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
   351 }
   353 inline ParMarkBitMap::IterationStatus
   354 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
   355                        ParMarkBitMapClosure* dead_closure,
   356                        HeapWord* range_beg,
   357                        HeapWord* range_end,
   358                        HeapWord* dead_range_end) const
   359 {
   360   return iterate(live_closure, dead_closure,
   361                  addr_to_bit(range_beg), addr_to_bit(range_end),
   362                  addr_to_bit(dead_range_end));
   363 }
   365 inline bool
   366 ParMarkBitMap::mark_obj(oop obj, int size)
   367 {
   368   return mark_obj((HeapWord*)obj, (size_t)size);
   369 }
   371 inline BitMap::idx_t
   372 ParMarkBitMap::addr_to_bit(HeapWord* addr) const
   373 {
   374   DEBUG_ONLY(verify_addr(addr);)
   375   return words_to_bits(pointer_delta(addr, region_start()));
   376 }
   378 inline HeapWord*
   379 ParMarkBitMap::bit_to_addr(idx_t bit) const
   380 {
   381   DEBUG_ONLY(verify_bit(bit);)
   382   return region_start() + bits_to_words(bit);
   383 }
   385 inline ParMarkBitMap::idx_t
   386 ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const
   387 {
   388   return _beg_bits.get_next_one_offset_inline_aligned_right(beg, end);
   389 }
   391 inline ParMarkBitMap::idx_t
   392 ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const
   393 {
   394   return _end_bits.get_next_one_offset_inline_aligned_right(beg, end);
   395 }
   397 inline HeapWord*
   398 ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const
   399 {
   400   const idx_t beg_bit = addr_to_bit(beg);
   401   const idx_t end_bit = addr_to_bit(end);
   402   const idx_t search_end = BitMap::word_align_up(end_bit);
   403   const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit);
   404   return bit_to_addr(res_bit);
   405 }
   407 inline HeapWord*
   408 ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
   409 {
   410   const idx_t beg_bit = addr_to_bit(beg);
   411   const idx_t end_bit = addr_to_bit(end);
   412   const idx_t search_end = BitMap::word_align_up(end_bit);
   413   const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
   414   return bit_to_addr(res_bit);
   415 }
   417 #ifdef  ASSERT
   418 inline void ParMarkBitMap::verify_bit(idx_t bit) const {
   419   // Allow one past the last valid bit; useful for loop bounds.
   420   assert(bit <= _beg_bits.size(), "bit out of range");
   421 }
   423 inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
   424   // Allow one past the last valid address; useful for loop bounds.
   425   assert(addr >= region_start(), "addr too small");
   426   assert(addr <= region_start() + region_size(), "addr too big");
   427 }
   428 #endif  // #ifdef ASSERT

mercurial