src/cpu/ppc/vm/ppc.ad

Thu, 02 Oct 2014 09:32:53 +0200

author
goetz
date
Thu, 02 Oct 2014 09:32:53 +0200
changeset 7222
f6bde7889409
parent 6723
0bf37f737702
child 7358
327e7269f90d
permissions
-rw-r--r--

8059592: Recent bugfixes in ppc64 port.
Reviewed-by: kvn

     1 //
     2 // Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
     3 // Copyright 2012, 2014 SAP AG. All rights reserved.
     4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5 //
     6 // This code is free software; you can redistribute it and/or modify it
     7 // under the terms of the GNU General Public License version 2 only, as
     8 // published by the Free Software Foundation.
     9 //
    10 // This code is distributed in the hope that it will be useful, but WITHOUT
    11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13 // version 2 for more details (a copy is included in the LICENSE file that
    14 // accompanied this code).
    15 //
    16 // You should have received a copy of the GNU General Public License version
    17 // 2 along with this work; if not, write to the Free Software Foundation,
    18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19 //
    20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21 // or visit www.oracle.com if you need additional information or have any
    22 // questions.
    23 //
    24 //
    26 //
    27 // PPC64 Architecture Description File
    28 //
    30 //----------REGISTER DEFINITION BLOCK------------------------------------------
    31 // This information is used by the matcher and the register allocator to
    32 // describe individual registers and classes of registers within the target
    33 // architecture.
    34 register %{
    35 //----------Architecture Description Register Definitions----------------------
    36 // General Registers
    37 // "reg_def"  name (register save type, C convention save type,
    38 //                  ideal register type, encoding);
    39 //
    40 // Register Save Types:
    41 //
    42 //   NS  = No-Save:     The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method, &
    44 //                      that they do not need to be saved at call sites.
    45 //
    46 //   SOC = Save-On-Call: The register allocator assumes that these registers
    47 //                      can be used without saving upon entry to the method,
    48 //                      but that they must be saved at call sites.
    49 //                      These are called "volatiles" on ppc.
    50 //
    51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, but they do not need to be saved at call
    54 //                      sites.
    55 //                      These are called "nonvolatiles" on ppc.
    56 //
    57 //   AS  = Always-Save:   The register allocator assumes that these registers
    58 //                      must be saved before using them upon entry to the
    59 //                      method, & that they must be saved at call sites.
    60 //
    61 // Ideal Register Type is used to determine how to save & restore a
    62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
    64 //
    65 // The encoding number is the actual bit-pattern placed into the opcodes.
    66 //
    67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
    68 // Supplement Version 1.7 as of 2003-10-29.
    69 //
    70 // For each 64-bit register we must define two registers: the register
    71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
    72 // e.g. R3_H, which is needed by the allocator, but is not used
    73 // for stores, loads, etc.
    75 // ----------------------------
    76 // Integer/Long Registers
    77 // ----------------------------
    79   // PPC64 has 32 64-bit integer registers.
    81   // types: v = volatile, nv = non-volatile, s = system
    82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
    83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
    84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
    85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
    86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
    87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
    88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
    89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
    90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
    91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
    92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
    93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
    94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
    95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
    96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
    97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
    98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
    99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
   100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
   101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
   102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
   103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
   104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
   105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
   106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
   107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
   108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
   109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
   110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
   111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
   112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
   113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
   114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
   115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
   116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
   117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
   118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
   119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
   120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
   121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
   122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
   123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
   124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
   125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
   126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
   127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
   128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
   129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
   130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
   131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
   132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
   133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
   134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
   135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
   136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
   137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
   138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
   139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
   140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
   141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
   142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
   143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
   144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
   145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
   148 // ----------------------------
   149 // Float/Double Registers
   150 // ----------------------------
   152   // Double Registers
   153   // The rules of ADL require that double registers be defined in pairs.
   154   // Each pair must be two 32-bit values, but not necessarily a pair of
   155   // single float registers. In each pair, ADLC-assigned register numbers
   156   // must be adjacent, with the lower number even. Finally, when the
   157   // CPU stores such a register pair to memory, the word associated with
   158   // the lower ADLC-assigned number must be stored to the lower address.
   160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
   161   // or double precision floating-point value.
   163   // types: v = volatile, nv = non-volatile, s = system
   164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
   165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
   166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
   167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
   168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
   169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
   170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
   171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
   172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
   173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
   174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
   175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
   176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
   177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
   178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
   179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
   180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
   181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
   182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
   183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
   184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
   185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
   186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
   187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
   188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
   189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
   190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
   191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
   192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
   193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
   194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
   195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
   196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
   197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
   198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
   199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
   200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
   201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
   202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
   203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
   204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
   205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
   206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
   207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
   208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
   209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
   210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
   211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
   212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
   213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
   214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
   215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
   216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
   217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
   218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
   219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
   220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
   221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
   222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
   223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
   224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
   225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
   226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
   227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
   229 // ----------------------------
   230 // Special Registers
   231 // ----------------------------
   233 // Condition Codes Flag Registers
   235   // PPC64 has 8 condition code "registers" which are all contained
   236   // in the CR register.
   238   // types: v = volatile, nv = non-volatile, s = system
   239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
   240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
   241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
   242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
   243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
   244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
   245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
   246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
   248   // Special registers of PPC64
   250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
   251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
   252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
   253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
   254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
   255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
   258 // ----------------------------
   259 // Specify priority of register selection within phases of register
   260 // allocation. Highest priority is first. A useful heuristic is to
   261 // give registers a low priority when they are required by machine
   262 // instructions, like EAX and EDX on I486, and choose no-save registers
   263 // before save-on-call, & save-on-call before save-on-entry. Registers
   264 // which participate in fixed calling sequences should come last.
   265 // Registers which are used as pairs must fall on an even boundary.
   267 // It's worth about 1% on SPEC geomean to get this right.
   269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
   270 // in adGlobals_ppc64.hpp which defines the <register>_num values, e.g.
   271 // R3_num. Therefore, R3_num may not be (and in reality is not)
   272 // the same as R3->encoding()! Furthermore, we cannot make any
   273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
   274 // Additionally, the function
   275 //   static enum RC rc_class(OptoReg::Name reg )
   276 // maps a given <register>_num value to its chunk type (except for flags)
   277 // and its current implementation relies on chunk0 and chunk1 having a
   278 // size of 64 each.
   280 // If you change this allocation class, please have a look at the
   281 // default values for the parameters RoundRobinIntegerRegIntervalStart
   282 // and RoundRobinFloatRegIntervalStart
   284 alloc_class chunk0 (
   285   // Chunk0 contains *all* 64 integer registers halves.
   287   // "non-volatile" registers
   288   R14, R14_H,
   289   R15, R15_H,
   290   R17, R17_H,
   291   R18, R18_H,
   292   R19, R19_H,
   293   R20, R20_H,
   294   R21, R21_H,
   295   R22, R22_H,
   296   R23, R23_H,
   297   R24, R24_H,
   298   R25, R25_H,
   299   R26, R26_H,
   300   R27, R27_H,
   301   R28, R28_H,
   302   R29, R29_H,
   303   R30, R30_H,
   304   R31, R31_H,
   306   // scratch/special registers
   307   R11, R11_H,
   308   R12, R12_H,
   310   // argument registers
   311   R10, R10_H,
   312   R9,  R9_H,
   313   R8,  R8_H,
   314   R7,  R7_H,
   315   R6,  R6_H,
   316   R5,  R5_H,
   317   R4,  R4_H,
   318   R3,  R3_H,
   320   // special registers, not available for allocation
   321   R16, R16_H,     // R16_thread
   322   R13, R13_H,     // system thread id
   323   R2,  R2_H,      // may be used for TOC
   324   R1,  R1_H,      // SP
   325   R0,  R0_H       // R0 (scratch)
   326 );
   328 // If you change this allocation class, please have a look at the
   329 // default values for the parameters RoundRobinIntegerRegIntervalStart
   330 // and RoundRobinFloatRegIntervalStart
   332 alloc_class chunk1 (
   333   // Chunk1 contains *all* 64 floating-point registers halves.
   335   // scratch register
   336   F0,  F0_H,
   338   // argument registers
   339   F13, F13_H,
   340   F12, F12_H,
   341   F11, F11_H,
   342   F10, F10_H,
   343   F9,  F9_H,
   344   F8,  F8_H,
   345   F7,  F7_H,
   346   F6,  F6_H,
   347   F5,  F5_H,
   348   F4,  F4_H,
   349   F3,  F3_H,
   350   F2,  F2_H,
   351   F1,  F1_H,
   353   // non-volatile registers
   354   F14, F14_H,
   355   F15, F15_H,
   356   F16, F16_H,
   357   F17, F17_H,
   358   F18, F18_H,
   359   F19, F19_H,
   360   F20, F20_H,
   361   F21, F21_H,
   362   F22, F22_H,
   363   F23, F23_H,
   364   F24, F24_H,
   365   F25, F25_H,
   366   F26, F26_H,
   367   F27, F27_H,
   368   F28, F28_H,
   369   F29, F29_H,
   370   F30, F30_H,
   371   F31, F31_H
   372 );
   374 alloc_class chunk2 (
   375   // Chunk2 contains *all* 8 condition code registers.
   377   CCR0,
   378   CCR1,
   379   CCR2,
   380   CCR3,
   381   CCR4,
   382   CCR5,
   383   CCR6,
   384   CCR7
   385 );
   387 alloc_class chunk3 (
   388   // special registers
   389   // These registers are not allocated, but used for nodes generated by postalloc expand.
   390   SR_XER,
   391   SR_LR,
   392   SR_CTR,
   393   SR_VRSAVE,
   394   SR_SPEFSCR,
   395   SR_PPR
   396 );
   398 //-------Architecture Description Register Classes-----------------------
   400 // Several register classes are automatically defined based upon
   401 // information in this architecture description.
   403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
   405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   407 //
   409 // ----------------------------
   410 // 32 Bit Register Classes
   411 // ----------------------------
   413 // We specify registers twice, once as read/write, and once read-only.
   414 // We use the read-only registers for source operands. With this, we
   415 // can include preset read only registers in this class, as a hard-coded
   416 // '0'-register. (We used to simulate this on ppc.)
   418 // 32 bit registers that can be read and written i.e. these registers
   419 // can be dest (or src) of normal instructions.
   420 reg_class bits32_reg_rw(
   421 /*R0*/              // R0
   422 /*R1*/              // SP
   423   R2,               // TOC
   424   R3,
   425   R4,
   426   R5,
   427   R6,
   428   R7,
   429   R8,
   430   R9,
   431   R10,
   432   R11,
   433   R12,
   434 /*R13*/             // system thread id
   435   R14,
   436   R15,
   437 /*R16*/             // R16_thread
   438   R17,
   439   R18,
   440   R19,
   441   R20,
   442   R21,
   443   R22,
   444   R23,
   445   R24,
   446   R25,
   447   R26,
   448   R27,
   449   R28,
   450 /*R29*/             // global TOC
   451 /*R30*/             // Narrow Oop Base
   452   R31
   453 );
   455 // 32 bit registers that can only be read i.e. these registers can
   456 // only be src of all instructions.
   457 reg_class bits32_reg_ro(
   458 /*R0*/              // R0
   459 /*R1*/              // SP
   460   R2                // TOC
   461   R3,
   462   R4,
   463   R5,
   464   R6,
   465   R7,
   466   R8,
   467   R9,
   468   R10,
   469   R11,
   470   R12,
   471 /*R13*/             // system thread id
   472   R14,
   473   R15,
   474 /*R16*/             // R16_thread
   475   R17,
   476   R18,
   477   R19,
   478   R20,
   479   R21,
   480   R22,
   481   R23,
   482   R24,
   483   R25,
   484   R26,
   485   R27,
   486   R28,
   487 /*R29*/
   488 /*R30*/             // Narrow Oop Base
   489   R31
   490 );
   492 // Complement-required-in-pipeline operands for narrow oops.
   493 reg_class bits32_reg_ro_not_complement (
   494 /*R0*/     // R0
   495   R1,      // SP
   496   R2,      // TOC
   497   R3,
   498   R4,
   499   R5,
   500   R6,
   501   R7,
   502   R8,
   503   R9,
   504   R10,
   505   R11,
   506   R12,
   507 /*R13,*/   // system thread id
   508   R14,
   509   R15,
   510   R16,    // R16_thread
   511   R17,
   512   R18,
   513   R19,
   514   R20,
   515   R21,
   516   R22,
   517 /*R23,
   518   R24,
   519   R25,
   520   R26,
   521   R27,
   522   R28,*/
   523 /*R29,*/ // TODO: let allocator handle TOC!!
   524 /*R30,*/
   525   R31
   526 );
   528 // Complement-required-in-pipeline operands for narrow oops.
   529 // See 64-bit declaration.
   530 reg_class bits32_reg_ro_complement (
   531   R23,
   532   R24,
   533   R25,
   534   R26,
   535   R27,
   536   R28
   537 );
   539 reg_class rscratch1_bits32_reg(R11);
   540 reg_class rscratch2_bits32_reg(R12);
   541 reg_class rarg1_bits32_reg(R3);
   542 reg_class rarg2_bits32_reg(R4);
   543 reg_class rarg3_bits32_reg(R5);
   544 reg_class rarg4_bits32_reg(R6);
   546 // ----------------------------
   547 // 64 Bit Register Classes
   548 // ----------------------------
   549 // 64-bit build means 64-bit pointers means hi/lo pairs
   551 reg_class rscratch1_bits64_reg(R11_H, R11);
   552 reg_class rscratch2_bits64_reg(R12_H, R12);
   553 reg_class rarg1_bits64_reg(R3_H, R3);
   554 reg_class rarg2_bits64_reg(R4_H, R4);
   555 reg_class rarg3_bits64_reg(R5_H, R5);
   556 reg_class rarg4_bits64_reg(R6_H, R6);
   557 // Thread register, 'written' by tlsLoadP, see there.
   558 reg_class thread_bits64_reg(R16_H, R16);
   560 reg_class r19_bits64_reg(R19_H, R19);
   562 // 64 bit registers that can be read and written i.e. these registers
   563 // can be dest (or src) of normal instructions.
   564 reg_class bits64_reg_rw(
   565 /*R0_H,  R0*/     // R0
   566 /*R1_H,  R1*/     // SP
   567   R2_H,  R2,      // TOC
   568   R3_H,  R3,
   569   R4_H,  R4,
   570   R5_H,  R5,
   571   R6_H,  R6,
   572   R7_H,  R7,
   573   R8_H,  R8,
   574   R9_H,  R9,
   575   R10_H, R10,
   576   R11_H, R11,
   577   R12_H, R12,
   578 /*R13_H, R13*/   // system thread id
   579   R14_H, R14,
   580   R15_H, R15,
   581 /*R16_H, R16*/   // R16_thread
   582   R17_H, R17,
   583   R18_H, R18,
   584   R19_H, R19,
   585   R20_H, R20,
   586   R21_H, R21,
   587   R22_H, R22,
   588   R23_H, R23,
   589   R24_H, R24,
   590   R25_H, R25,
   591   R26_H, R26,
   592   R27_H, R27,
   593   R28_H, R28,
   594 /*R29_H, R29*/
   595 /*R30_H, R30*/
   596   R31_H, R31
   597 );
   599 // 64 bit registers used excluding r2, r11 and r12
   600 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
   601 // r2, r11 and r12 internally.
   602 reg_class bits64_reg_leaf_call(
   603 /*R0_H,  R0*/     // R0
   604 /*R1_H,  R1*/     // SP
   605 /*R2_H,  R2*/     // TOC
   606   R3_H,  R3,
   607   R4_H,  R4,
   608   R5_H,  R5,
   609   R6_H,  R6,
   610   R7_H,  R7,
   611   R8_H,  R8,
   612   R9_H,  R9,
   613   R10_H, R10,
   614 /*R11_H, R11*/
   615 /*R12_H, R12*/
   616 /*R13_H, R13*/   // system thread id
   617   R14_H, R14,
   618   R15_H, R15,
   619 /*R16_H, R16*/   // R16_thread
   620   R17_H, R17,
   621   R18_H, R18,
   622   R19_H, R19,
   623   R20_H, R20,
   624   R21_H, R21,
   625   R22_H, R22,
   626   R23_H, R23,
   627   R24_H, R24,
   628   R25_H, R25,
   629   R26_H, R26,
   630   R27_H, R27,
   631   R28_H, R28,
   632 /*R29_H, R29*/
   633 /*R30_H, R30*/
   634   R31_H, R31
   635 );
   637 // Used to hold the TOC to avoid collisions with expanded DynamicCall
   638 // which uses r19 as inline cache internally and expanded LeafCall which uses
   639 // r2, r11 and r12 internally.
   640 reg_class bits64_constant_table_base(
   641 /*R0_H,  R0*/     // R0
   642 /*R1_H,  R1*/     // SP
   643 /*R2_H,  R2*/     // TOC
   644   R3_H,  R3,
   645   R4_H,  R4,
   646   R5_H,  R5,
   647   R6_H,  R6,
   648   R7_H,  R7,
   649   R8_H,  R8,
   650   R9_H,  R9,
   651   R10_H, R10,
   652 /*R11_H, R11*/
   653 /*R12_H, R12*/
   654 /*R13_H, R13*/   // system thread id
   655   R14_H, R14,
   656   R15_H, R15,
   657 /*R16_H, R16*/   // R16_thread
   658   R17_H, R17,
   659   R18_H, R18,
   660 /*R19_H, R19*/
   661   R20_H, R20,
   662   R21_H, R21,
   663   R22_H, R22,
   664   R23_H, R23,
   665   R24_H, R24,
   666   R25_H, R25,
   667   R26_H, R26,
   668   R27_H, R27,
   669   R28_H, R28,
   670 /*R29_H, R29*/
   671 /*R30_H, R30*/
   672   R31_H, R31
   673 );
   675 // 64 bit registers that can only be read i.e. these registers can
   676 // only be src of all instructions.
   677 reg_class bits64_reg_ro(
   678 /*R0_H,  R0*/     // R0
   679   R1_H,  R1,
   680   R2_H,  R2,       // TOC
   681   R3_H,  R3,
   682   R4_H,  R4,
   683   R5_H,  R5,
   684   R6_H,  R6,
   685   R7_H,  R7,
   686   R8_H,  R8,
   687   R9_H,  R9,
   688   R10_H, R10,
   689   R11_H, R11,
   690   R12_H, R12,
   691 /*R13_H, R13*/   // system thread id
   692   R14_H, R14,
   693   R15_H, R15,
   694   R16_H, R16,    // R16_thread
   695   R17_H, R17,
   696   R18_H, R18,
   697   R19_H, R19,
   698   R20_H, R20,
   699   R21_H, R21,
   700   R22_H, R22,
   701   R23_H, R23,
   702   R24_H, R24,
   703   R25_H, R25,
   704   R26_H, R26,
   705   R27_H, R27,
   706   R28_H, R28,
   707 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
   708 /*R30_H, R30,*/
   709   R31_H, R31
   710 );
   712 // Complement-required-in-pipeline operands.
   713 reg_class bits64_reg_ro_not_complement (
   714 /*R0_H,  R0*/     // R0
   715   R1_H,  R1,      // SP
   716   R2_H,  R2,      // TOC
   717   R3_H,  R3,
   718   R4_H,  R4,
   719   R5_H,  R5,
   720   R6_H,  R6,
   721   R7_H,  R7,
   722   R8_H,  R8,
   723   R9_H,  R9,
   724   R10_H, R10,
   725   R11_H, R11,
   726   R12_H, R12,
   727 /*R13_H, R13*/   // system thread id
   728   R14_H, R14,
   729   R15_H, R15,
   730   R16_H, R16,    // R16_thread
   731   R17_H, R17,
   732   R18_H, R18,
   733   R19_H, R19,
   734   R20_H, R20,
   735   R21_H, R21,
   736   R22_H, R22,
   737 /*R23_H, R23,
   738   R24_H, R24,
   739   R25_H, R25,
   740   R26_H, R26,
   741   R27_H, R27,
   742   R28_H, R28,*/
   743 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
   744 /*R30_H, R30,*/
   745   R31_H, R31
   746 );
   748 // Complement-required-in-pipeline operands.
   749 // This register mask is used for the trap instructions that implement
   750 // the null checks on AIX. The trap instruction first computes the
   751 // complement of the value it shall trap on. Because of this, the
   752 // instruction can not be scheduled in the same cycle as an other
   753 // instruction reading the normal value of the same register. So we
   754 // force the value to check into 'bits64_reg_ro_not_complement'
   755 // and then copy it to 'bits64_reg_ro_complement' for the trap.
   756 reg_class bits64_reg_ro_complement (
   757   R23_H, R23,
   758   R24_H, R24,
   759   R25_H, R25,
   760   R26_H, R26,
   761   R27_H, R27,
   762   R28_H, R28
   763 );
   766 // ----------------------------
   767 // Special Class for Condition Code Flags Register
   769 reg_class int_flags(
   770 /*CCR0*/             // scratch
   771 /*CCR1*/             // scratch
   772 /*CCR2*/             // nv!
   773 /*CCR3*/             // nv!
   774 /*CCR4*/             // nv!
   775   CCR5,
   776   CCR6,
   777   CCR7
   778 );
   780 reg_class int_flags_CR0(CCR0);
   781 reg_class int_flags_CR1(CCR1);
   782 reg_class int_flags_CR6(CCR6);
   783 reg_class ctr_reg(SR_CTR);
   785 // ----------------------------
   786 // Float Register Classes
   787 // ----------------------------
   789 reg_class flt_reg(
   790 /*F0*/              // scratch
   791   F1,
   792   F2,
   793   F3,
   794   F4,
   795   F5,
   796   F6,
   797   F7,
   798   F8,
   799   F9,
   800   F10,
   801   F11,
   802   F12,
   803   F13,
   804   F14,              // nv!
   805   F15,              // nv!
   806   F16,              // nv!
   807   F17,              // nv!
   808   F18,              // nv!
   809   F19,              // nv!
   810   F20,              // nv!
   811   F21,              // nv!
   812   F22,              // nv!
   813   F23,              // nv!
   814   F24,              // nv!
   815   F25,              // nv!
   816   F26,              // nv!
   817   F27,              // nv!
   818   F28,              // nv!
   819   F29,              // nv!
   820   F30,              // nv!
   821   F31               // nv!
   822 );
   824 // Double precision float registers have virtual `high halves' that
   825 // are needed by the allocator.
   826 reg_class dbl_reg(
   827 /*F0,  F0_H*/     // scratch
   828   F1,  F1_H,
   829   F2,  F2_H,
   830   F3,  F3_H,
   831   F4,  F4_H,
   832   F5,  F5_H,
   833   F6,  F6_H,
   834   F7,  F7_H,
   835   F8,  F8_H,
   836   F9,  F9_H,
   837   F10, F10_H,
   838   F11, F11_H,
   839   F12, F12_H,
   840   F13, F13_H,
   841   F14, F14_H,    // nv!
   842   F15, F15_H,    // nv!
   843   F16, F16_H,    // nv!
   844   F17, F17_H,    // nv!
   845   F18, F18_H,    // nv!
   846   F19, F19_H,    // nv!
   847   F20, F20_H,    // nv!
   848   F21, F21_H,    // nv!
   849   F22, F22_H,    // nv!
   850   F23, F23_H,    // nv!
   851   F24, F24_H,    // nv!
   852   F25, F25_H,    // nv!
   853   F26, F26_H,    // nv!
   854   F27, F27_H,    // nv!
   855   F28, F28_H,    // nv!
   856   F29, F29_H,    // nv!
   857   F30, F30_H,    // nv!
   858   F31, F31_H     // nv!
   859 );
   861  %}
   863 //----------DEFINITION BLOCK---------------------------------------------------
   864 // Define name --> value mappings to inform the ADLC of an integer valued name
   865 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   866 // Format:
   867 //        int_def  <name>         ( <int_value>, <expression>);
   868 // Generated Code in ad_<arch>.hpp
   869 //        #define  <name>   (<expression>)
   870 //        // value == <int_value>
   871 // Generated code in ad_<arch>.cpp adlc_verification()
   872 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   873 //
   874 definitions %{
   875   // The default cost (of an ALU instruction).
   876   int_def DEFAULT_COST_LOW        (     30,      30);
   877   int_def DEFAULT_COST            (    100,     100);
   878   int_def HUGE_COST               (1000000, 1000000);
   880   // Memory refs
   881   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
   882   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
   884   // Branches are even more expensive.
   885   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
   886   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
   887 %}
   890 //----------SOURCE BLOCK-------------------------------------------------------
   891 // This is a block of C++ code which provides values, functions, and
   892 // definitions necessary in the rest of the architecture description.
   893 source_hpp %{
   894   // Header information of the source block.
   895   // Method declarations/definitions which are used outside
   896   // the ad-scope can conveniently be defined here.
   897   //
   898   // To keep related declarations/definitions/uses close together,
   899   // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   901   // Returns true if Node n is followed by a MemBar node that
   902   // will do an acquire. If so, this node must not do the acquire
   903   // operation.
   904   bool followed_by_acquire(const Node *n);
   905 %}
   907 source %{
   909 // Optimize load-acquire.
   910 //
   911 // Check if acquire is unnecessary due to following operation that does
   912 // acquire anyways.
   913 // Walk the pattern:
   914 //
   915 //      n: Load.acq
   916 //           |
   917 //      MemBarAcquire
   918 //       |         |
   919 //  Proj(ctrl)  Proj(mem)
   920 //       |         |
   921 //   MemBarRelease/Volatile
   922 //
   923 bool followed_by_acquire(const Node *load) {
   924   assert(load->is_Load(), "So far implemented only for loads.");
   926   // Find MemBarAcquire.
   927   const Node *mba = NULL;
   928   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
   929     const Node *out = load->fast_out(i);
   930     if (out->Opcode() == Op_MemBarAcquire) {
   931       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
   932       mba = out;
   933       break;
   934     }
   935   }
   936   if (!mba) return false;
   938   // Find following MemBar node.
   939   //
   940   // The following node must be reachable by control AND memory
   941   // edge to assure no other operations are in between the two nodes.
   942   //
   943   // So first get the Proj node, mem_proj, to use it to iterate forward.
   944   Node *mem_proj = NULL;
   945   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
   946     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
   947     assert(mem_proj->is_Proj(), "only projections here");
   948     ProjNode *proj = mem_proj->as_Proj();
   949     if (proj->_con == TypeFunc::Memory &&
   950         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
   951       break;
   952   }
   953   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
   955   // Search MemBar behind Proj. If there are other memory operations
   956   // behind the Proj we lost.
   957   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
   958     Node *x = mem_proj->fast_out(j);
   959     // Proj might have an edge to a store or load node which precedes the membar.
   960     if (x->is_Mem()) return false;
   962     // On PPC64 release and volatile are implemented by an instruction
   963     // that also has acquire semantics. I.e. there is no need for an
   964     // acquire before these.
   965     int xop = x->Opcode();
   966     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
   967       // Make sure we're not missing Call/Phi/MergeMem by checking
   968       // control edges. The control edge must directly lead back
   969       // to the MemBarAcquire
   970       Node *ctrl_proj = x->in(0);
   971       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
   972         return true;
   973       }
   974     }
   975   }
   977   return false;
   978 }
   980 #define __ _masm.
   982 // Tertiary op of a LoadP or StoreP encoding.
   983 #define REGP_OP true
   985 // ****************************************************************************
   987 // REQUIRED FUNCTIONALITY
   989 // !!!!! Special hack to get all type of calls to specify the byte offset
   990 //       from the start of the call to the point where the return address
   991 //       will point.
   993 // PPC port: Removed use of lazy constant construct.
   995 int MachCallStaticJavaNode::ret_addr_offset() {
   996   // It's only a single branch-and-link instruction.
   997   return 4;
   998 }
  1000 int MachCallDynamicJavaNode::ret_addr_offset() {
  1001   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
  1002   // postalloc expanded calls if we use inline caches and do not update method data.
  1003   if (UseInlineCaches)
  1004     return 4;
  1006   int vtable_index = this->_vtable_index;
  1007   if (vtable_index < 0) {
  1008     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  1009     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  1010     return 12;
  1011   } else {
  1012     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  1013     return 24;
  1017 int MachCallRuntimeNode::ret_addr_offset() {
  1018 #if defined(ABI_ELFv2)
  1019   return 28;
  1020 #else
  1021   return 40;
  1022 #endif
  1025 //=============================================================================
  1027 // condition code conversions
  1029 static int cc_to_boint(int cc) {
  1030   return Assembler::bcondCRbiIs0 | (cc & 8);
  1033 static int cc_to_inverse_boint(int cc) {
  1034   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
  1037 static int cc_to_biint(int cc, int flags_reg) {
  1038   return (flags_reg << 2) | (cc & 3);
  1041 //=============================================================================
  1043 // Compute padding required for nodes which need alignment. The padding
  1044 // is the number of bytes (not instructions) which will be inserted before
  1045 // the instruction. The padding must match the size of a NOP instruction.
  1047 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
  1048   return (3*4-current_offset)&31;
  1051 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
  1052   return (2*4-current_offset)&31;
  1055 int string_indexOf_immNode::compute_padding(int current_offset) const {
  1056   return (3*4-current_offset)&31;
  1059 int string_indexOfNode::compute_padding(int current_offset) const {
  1060   return (1*4-current_offset)&31;
  1063 int string_compareNode::compute_padding(int current_offset) const {
  1064   return (4*4-current_offset)&31;
  1067 int string_equals_immNode::compute_padding(int current_offset) const {
  1068   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
  1069   return (2*4-current_offset)&31;
  1072 int string_equalsNode::compute_padding(int current_offset) const {
  1073   return (7*4-current_offset)&31;
  1076 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
  1077   return (2*4-current_offset)&31;
  1080 //=============================================================================
  1082 // Indicate if the safepoint node needs the polling page as an input.
  1083 bool SafePointNode::needs_polling_address_input() {
  1084   // The address is loaded from thread by a seperate node.
  1085   return true;
  1088 //=============================================================================
  1090 // Emit an interrupt that is caught by the debugger (for debugging compiler).
  1091 void emit_break(CodeBuffer &cbuf) {
  1092   MacroAssembler _masm(&cbuf);
  1093   __ illtrap();
  1096 #ifndef PRODUCT
  1097 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1098   st->print("BREAKPOINT");
  1100 #endif
  1102 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1103   emit_break(cbuf);
  1106 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
  1107   return MachNode::size(ra_);
  1110 //=============================================================================
  1112 void emit_nop(CodeBuffer &cbuf) {
  1113   MacroAssembler _masm(&cbuf);
  1114   __ nop();
  1117 static inline void emit_long(CodeBuffer &cbuf, int value) {
  1118   *((int*)(cbuf.insts_end())) = value;
  1119   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
  1122 //=============================================================================
  1124 %} // interrupt source
  1126 source_hpp %{ // Header information of the source block.
  1128 //--------------------------------------------------------------
  1129 //---<  Used for optimization in Compile::Shorten_branches  >---
  1130 //--------------------------------------------------------------
  1132 const uint trampoline_stub_size     =  6 * BytesPerInstWord;
  1134 class CallStubImpl {
  1136  public:
  1138   // Emit call stub, compiled java to interpreter.
  1139   static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);
  1141   // Size of call trampoline stub.
  1142   // This doesn't need to be accurate to the byte, but it
  1143   // must be larger than or equal to the real size of the stub.
  1144   static uint size_call_trampoline() {
  1145     return trampoline_stub_size;
  1148   // number of relocations needed by a call trampoline stub
  1149   static uint reloc_call_trampoline() {
  1150     return 5;
  1153 };
  1155 %} // end source_hpp
  1157 source %{
  1159 // Emit a trampoline stub for a call to a target which is too far away.
  1160 //
  1161 // code sequences:
  1162 //
  1163 // call-site:
  1164 //   branch-and-link to <destination> or <trampoline stub>
  1165 //
  1166 // Related trampoline stub for this call-site in the stub section:
  1167 //   load the call target from the constant pool
  1168 //   branch via CTR (LR/link still points to the call-site above)
  1170 void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
  1171   // Start the stub.
  1172   address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
  1173   if (stub == NULL) {
  1174     Compile::current()->env()->record_out_of_memory_failure();
  1175     return;
  1178   // For java_to_interp stubs we use R11_scratch1 as scratch register
  1179   // and in call trampoline stubs we use R12_scratch2. This way we
  1180   // can distinguish them (see is_NativeCallTrampolineStub_at()).
  1181   Register reg_scratch = R12_scratch2;
  1183   // Create a trampoline stub relocation which relates this trampoline stub
  1184   // with the call instruction at insts_call_instruction_offset in the
  1185   // instructions code-section.
  1186   __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
  1187   const int stub_start_offset = __ offset();
  1189   // Now, create the trampoline stub's code:
  1190   // - load the TOC
  1191   // - load the call target from the constant pool
  1192   // - call
  1193   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
  1194   __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
  1195   __ mtctr(reg_scratch);
  1196   __ bctr();
  1198   const address stub_start_addr = __ addr_at(stub_start_offset);
  1200   // FIXME: Assert that the trampoline stub can be identified and patched.
  1202   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
  1203   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
  1204          "encoded offset into the constant pool must match");
  1205   // Trampoline_stub_size should be good.
  1206   assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
  1207   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
  1209   // End the stub.
  1210   __ end_a_stub();
  1213 //=============================================================================
  1215 // Emit an inline branch-and-link call and a related trampoline stub.
  1216 //
  1217 // code sequences:
  1218 //
  1219 // call-site:
  1220 //   branch-and-link to <destination> or <trampoline stub>
  1221 //
  1222 // Related trampoline stub for this call-site in the stub section:
  1223 //   load the call target from the constant pool
  1224 //   branch via CTR (LR/link still points to the call-site above)
  1225 //
  1227 typedef struct {
  1228   int insts_call_instruction_offset;
  1229   int ret_addr_offset;
  1230 } EmitCallOffsets;
  1232 // Emit a branch-and-link instruction that branches to a trampoline.
  1233 // - Remember the offset of the branch-and-link instruction.
  1234 // - Add a relocation at the branch-and-link instruction.
  1235 // - Emit a branch-and-link.
  1236 // - Remember the return pc offset.
  1237 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
  1238   EmitCallOffsets offsets = { -1, -1 };
  1239   const int start_offset = __ offset();
  1240   offsets.insts_call_instruction_offset = __ offset();
  1242   // No entry point given, use the current pc.
  1243   if (entry_point == NULL) entry_point = __ pc();
  1245   if (!Compile::current()->in_scratch_emit_size()) {
  1246     // Put the entry point as a constant into the constant pool.
  1247     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  1248     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  1250     // Emit the trampoline stub which will be related to the branch-and-link below.
  1251     CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
  1252     if (Compile::current()->env()->failing()) { return offsets; } // Code cache may be full.
  1253     __ relocate(rtype);
  1256   // Note: At this point we do not have the address of the trampoline
  1257   // stub, and the entry point might be too far away for bl, so __ pc()
  1258   // serves as dummy and the bl will be patched later.
  1259   __ bl((address) __ pc());
  1261   offsets.ret_addr_offset = __ offset() - start_offset;
  1263   return offsets;
  1266 //=============================================================================
  1268 // Factory for creating loadConL* nodes for large/small constant pool.
  1270 static inline jlong replicate_immF(float con) {
  1271   // Replicate float con 2 times and pack into vector.
  1272   int val = *((int*)&con);
  1273   jlong lval = val;
  1274   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
  1275   return lval;
  1278 //=============================================================================
  1280 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
  1281 int Compile::ConstantTable::calculate_table_base_offset() const {
  1282   return 0;  // absolute addressing, no offset
  1285 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
  1286 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1287   Compile *C = ra_->C;
  1289   iRegPdstOper *op_dst = new (C) iRegPdstOper();
  1290   MachNode *m1 = new (C) loadToc_hiNode();
  1291   MachNode *m2 = new (C) loadToc_loNode();
  1293   m1->add_req(NULL);
  1294   m2->add_req(NULL, m1);
  1295   m1->_opnds[0] = op_dst;
  1296   m2->_opnds[0] = op_dst;
  1297   m2->_opnds[1] = op_dst;
  1298   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1299   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1300   nodes->push(m1);
  1301   nodes->push(m2);
  1304 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1305   // Is postalloc expanded.
  1306   ShouldNotReachHere();
  1309 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1310   return 0;
  1313 #ifndef PRODUCT
  1314 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1315   st->print("-- \t// MachConstantBaseNode (empty encoding)");
  1317 #endif
  1319 //=============================================================================
  1321 #ifndef PRODUCT
  1322 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1323   Compile* C = ra_->C;
  1324   const long framesize = C->frame_slots() << LogBytesPerInt;
  1326   st->print("PROLOG\n\t");
  1327   if (C->need_stack_bang(framesize)) {
  1328     st->print("stack_overflow_check\n\t");
  1331   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
  1332     st->print("save return pc\n\t");
  1333     st->print("push frame %d\n\t", -framesize);
  1336 #endif
  1338 // Macro used instead of the common __ to emulate the pipes of PPC.
  1339 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
  1340 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
  1341 // still no scheduling of this code is possible, the micro scheduler is aware of the
  1342 // code and can update its internal data. The following mechanism is used to achieve this:
  1343 // The micro scheduler calls size() of each compound node during scheduling. size() does a
  1344 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
  1345 #if 0 // TODO: PPC port
  1346 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1347                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
  1348                 _masm.
  1349 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1350                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
  1351 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
  1352                   C->hb_scheduling()->_pdScheduling->advance_offset
  1353 #else
  1354 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
  1355                   Unimplemented();                                                    \
  1356                 _masm.
  1357 #define ___stop if (UsePower6SchedulerPPC64)                                          \
  1358                   Unimplemented()
  1359 #define ___advance if (UsePower6SchedulerPPC64)                                       \
  1360                   Unimplemented()
  1361 #endif
  1363 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1364   Compile* C = ra_->C;
  1365   MacroAssembler _masm(&cbuf);
  1367   const long framesize = C->frame_size_in_bytes();
  1368   assert(framesize % (2 * wordSize) == 0, "must preserve 2*wordSize alignment");
  1370   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
  1372   const Register return_pc            = R20; // Must match return_addr() in frame section.
  1373   const Register callers_sp           = R21;
  1374   const Register push_frame_temp      = R22;
  1375   const Register toc_temp             = R23;
  1376   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
  1378   if (method_is_frameless) {
  1379     // Add nop at beginning of all frameless methods to prevent any
  1380     // oop instructions from getting overwritten by make_not_entrant
  1381     // (patching attempt would fail).
  1382     ___(nop) nop();
  1383   } else {
  1384     // Get return pc.
  1385     ___(mflr) mflr(return_pc);
  1388   // Calls to C2R adapters often do not accept exceptional returns.
  1389   // We require that their callers must bang for them. But be
  1390   // careful, because some VM calls (such as call site linkage) can
  1391   // use several kilobytes of stack. But the stack safety zone should
  1392   // account for that. See bugs 4446381, 4468289, 4497237.
  1394   int bangsize = C->bang_size_in_bytes();
  1395   assert(bangsize >= framesize || bangsize <= 0, "stack bang size incorrect");
  1396   if (C->need_stack_bang(bangsize) && UseStackBanging) {
  1397     // Unfortunately we cannot use the function provided in
  1398     // assembler.cpp as we have to emulate the pipes. So I had to
  1399     // insert the code of generate_stack_overflow_check(), see
  1400     // assembler.cpp for some illuminative comments.
  1401     const int page_size = os::vm_page_size();
  1402     int bang_end = StackShadowPages * page_size;
  1404     // This is how far the previous frame's stack banging extended.
  1405     const int bang_end_safe = bang_end;
  1407     if (bangsize > page_size) {
  1408       bang_end += bangsize;
  1411     int bang_offset = bang_end_safe;
  1413     while (bang_offset <= bang_end) {
  1414       // Need at least one stack bang at end of shadow zone.
  1416       // Again I had to copy code, this time from assembler_ppc.cpp,
  1417       // bang_stack_with_offset - see there for comments.
  1419       // Stack grows down, caller passes positive offset.
  1420       assert(bang_offset > 0, "must bang with positive offset");
  1422       long stdoffset = -bang_offset;
  1424       if (Assembler::is_simm(stdoffset, 16)) {
  1425         // Signed 16 bit offset, a simple std is ok.
  1426         if (UseLoadInstructionsForStackBangingPPC64) {
  1427           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
  1428         } else {
  1429           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
  1431       } else if (Assembler::is_simm(stdoffset, 31)) {
  1432         // Use largeoffset calculations for addis & ld/std.
  1433         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
  1434         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
  1436         Register tmp = R11;
  1437         ___(addis) addis(tmp, R1_SP, hi);
  1438         if (UseLoadInstructionsForStackBangingPPC64) {
  1439           ___(ld) ld(R0, lo, tmp);
  1440         } else {
  1441           ___(std) std(R0, lo, tmp);
  1443       } else {
  1444         ShouldNotReachHere();
  1447       bang_offset += page_size;
  1449     // R11 trashed
  1450   } // C->need_stack_bang(framesize) && UseStackBanging
  1452   unsigned int bytes = (unsigned int)framesize;
  1453   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  1454   ciMethod *currMethod = C->method();
  1456   // Optimized version for most common case.
  1457   if (UsePower6SchedulerPPC64 &&
  1458       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
  1459       !(false /* ConstantsALot TODO: PPC port*/)) {
  1460     ___(or) mr(callers_sp, R1_SP);
  1461     ___(std) std(return_pc, _abi(lr), R1_SP);
  1462     ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1463     return;
  1466   if (!method_is_frameless) {
  1467     // Get callers sp.
  1468     ___(or) mr(callers_sp, R1_SP);
  1470     // Push method's frame, modifies SP.
  1471     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
  1472     // The ABI is already accounted for in 'framesize' via the
  1473     // 'out_preserve' area.
  1474     Register tmp = push_frame_temp;
  1475     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
  1476     if (Assembler::is_simm(-offset, 16)) {
  1477       ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1478     } else {
  1479       long x = -offset;
  1480       // Had to insert load_const(tmp, -offset).
  1481       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
  1482       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
  1483       ___(rldicr) sldi(tmp, tmp, 32);
  1484       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
  1485       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
  1487       ___(stdux) stdux(R1_SP, R1_SP, tmp);
  1490 #if 0 // TODO: PPC port
  1491   // For testing large constant pools, emit a lot of constants to constant pool.
  1492   // "Randomize" const_size.
  1493   if (ConstantsALot) {
  1494     const int num_consts = const_size();
  1495     for (int i = 0; i < num_consts; i++) {
  1496       __ long_constant(0xB0B5B00BBABE);
  1499 #endif
  1500   if (!method_is_frameless) {
  1501     // Save return pc.
  1502     ___(std) std(return_pc, _abi(lr), callers_sp);
  1505 #undef ___
  1506 #undef ___stop
  1507 #undef ___advance
  1509 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1510   // Variable size. determine dynamically.
  1511   return MachNode::size(ra_);
  1514 int MachPrologNode::reloc() const {
  1515   // Return number of relocatable values contained in this instruction.
  1516   return 1; // 1 reloc entry for load_const(toc).
  1519 //=============================================================================
  1521 #ifndef PRODUCT
  1522 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1523   Compile* C = ra_->C;
  1525   st->print("EPILOG\n\t");
  1526   st->print("restore return pc\n\t");
  1527   st->print("pop frame\n\t");
  1529   if (do_polling() && C->is_method_compilation()) {
  1530     st->print("touch polling page\n\t");
  1533 #endif
  1535 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1536   Compile* C = ra_->C;
  1537   MacroAssembler _masm(&cbuf);
  1539   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
  1540   assert(framesize >= 0, "negative frame-size?");
  1542   const bool method_needs_polling = do_polling() && C->is_method_compilation();
  1543   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
  1544   const Register return_pc        = R11;
  1545   const Register polling_page     = R12;
  1547   if (!method_is_frameless) {
  1548     // Restore return pc relative to callers' sp.
  1549     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
  1552   if (method_needs_polling) {
  1553     if (LoadPollAddressFromThread) {
  1554       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1555       Unimplemented();
  1556     } else {
  1557       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
  1561   if (!method_is_frameless) {
  1562     // Move return pc to LR.
  1563     __ mtlr(return_pc);
  1564     // Pop frame (fixed frame-size).
  1565     __ addi(R1_SP, R1_SP, (int)framesize);
  1568   if (method_needs_polling) {
  1569     // We need to mark the code position where the load from the safepoint
  1570     // polling page was emitted as relocInfo::poll_return_type here.
  1571     __ relocate(relocInfo::poll_return_type);
  1572     __ load_from_polling_page(polling_page);
  1576 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1577   // Variable size. Determine dynamically.
  1578   return MachNode::size(ra_);
  1581 int MachEpilogNode::reloc() const {
  1582   // Return number of relocatable values contained in this instruction.
  1583   return 1; // 1 for load_from_polling_page.
  1586 const Pipeline * MachEpilogNode::pipeline() const {
  1587   return MachNode::pipeline_class();
  1590 // This method seems to be obsolete. It is declared in machnode.hpp
  1591 // and defined in all *.ad files, but it is never called. Should we
  1592 // get rid of it?
  1593 int MachEpilogNode::safepoint_offset() const {
  1594   assert(do_polling(), "no return for this epilog node");
  1595   return 0;
  1598 #if 0 // TODO: PPC port
  1599 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1600   MacroAssembler _masm(&cbuf);
  1601   if (LoadPollAddressFromThread) {
  1602     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1603   } else {
  1604     _masm.nop();
  1608 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
  1609   if (LoadPollAddressFromThread) {
  1610     return 4;
  1611   } else {
  1612     return 4;
  1616 #ifndef PRODUCT
  1617 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1618   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
  1620 #endif
  1622 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
  1623   return RSCRATCH1_BITS64_REG_mask();
  1625 #endif // PPC port
  1627 // =============================================================================
  1629 // Figure out which register class each belongs in: rc_int, rc_float or
  1630 // rc_stack.
  1631 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1633 static enum RC rc_class(OptoReg::Name reg) {
  1634   // Return the register class for the given register. The given register
  1635   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
  1636   // enumeration in adGlobals_ppc64.hpp.
  1638   if (reg == OptoReg::Bad) return rc_bad;
  1640   // We have 64 integer register halves, starting at index 0.
  1641   if (reg < 64) return rc_int;
  1643   // We have 64 floating-point register halves, starting at index 64.
  1644   if (reg < 64+64) return rc_float;
  1646   // Between float regs & stack are the flags regs.
  1647   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
  1649   return rc_stack;
  1652 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
  1653                         bool do_print, Compile* C, outputStream *st) {
  1655   assert(opcode == Assembler::LD_OPCODE   ||
  1656          opcode == Assembler::STD_OPCODE  ||
  1657          opcode == Assembler::LWZ_OPCODE  ||
  1658          opcode == Assembler::STW_OPCODE  ||
  1659          opcode == Assembler::LFD_OPCODE  ||
  1660          opcode == Assembler::STFD_OPCODE ||
  1661          opcode == Assembler::LFS_OPCODE  ||
  1662          opcode == Assembler::STFS_OPCODE,
  1663          "opcode not supported");
  1665   if (cbuf) {
  1666     int d =
  1667       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
  1668         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
  1669       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
  1670     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
  1672 #ifndef PRODUCT
  1673   else if (do_print) {
  1674     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
  1675               op_str,
  1676               Matcher::regName[reg],
  1677               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
  1679 #endif
  1680   return 4; // size
  1683 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
  1684   Compile* C = ra_->C;
  1686   // Get registers to move.
  1687   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
  1688   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
  1689   OptoReg::Name dst_hi = ra_->get_reg_second(this);
  1690   OptoReg::Name dst_lo = ra_->get_reg_first(this);
  1692   enum RC src_hi_rc = rc_class(src_hi);
  1693   enum RC src_lo_rc = rc_class(src_lo);
  1694   enum RC dst_hi_rc = rc_class(dst_hi);
  1695   enum RC dst_lo_rc = rc_class(dst_lo);
  1697   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
  1698   if (src_hi != OptoReg::Bad)
  1699     assert((src_lo&1)==0 && src_lo+1==src_hi &&
  1700            (dst_lo&1)==0 && dst_lo+1==dst_hi,
  1701            "expected aligned-adjacent pairs");
  1702   // Generate spill code!
  1703   int size = 0;
  1705   if (src_lo == dst_lo && src_hi == dst_hi)
  1706     return size;            // Self copy, no move.
  1708   // --------------------------------------
  1709   // Memory->Memory Spill. Use R0 to hold the value.
  1710   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1711     int src_offset = ra_->reg2offset(src_lo);
  1712     int dst_offset = ra_->reg2offset(dst_lo);
  1713     if (src_hi != OptoReg::Bad) {
  1714       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
  1715              "expected same type of move for high parts");
  1716       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
  1717       if (!cbuf && !do_size) st->print("\n\t");
  1718       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1719     } else {
  1720       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
  1721       if (!cbuf && !do_size) st->print("\n\t");
  1722       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1724     return size;
  1727   // --------------------------------------
  1728   // Check for float->int copy; requires a trip through memory.
  1729   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1730     Unimplemented();
  1733   // --------------------------------------
  1734   // Check for integer reg-reg copy.
  1735   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1736       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1737       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1738       size = (Rsrc != Rdst) ? 4 : 0;
  1740       if (cbuf) {
  1741         MacroAssembler _masm(cbuf);
  1742         if (size) {
  1743           __ mr(Rdst, Rsrc);
  1746 #ifndef PRODUCT
  1747       else if (!do_size) {
  1748         if (size) {
  1749           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1750         } else {
  1751           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1754 #endif
  1755       return size;
  1758   // Check for integer store.
  1759   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1760     int dst_offset = ra_->reg2offset(dst_lo);
  1761     if (src_hi != OptoReg::Bad) {
  1762       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
  1763              "expected same type of move for high parts");
  1764       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1765     } else {
  1766       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1768     return size;
  1771   // Check for integer load.
  1772   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1773     int src_offset = ra_->reg2offset(src_lo);
  1774     if (src_hi != OptoReg::Bad) {
  1775       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
  1776              "expected same type of move for high parts");
  1777       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1778     } else {
  1779       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1781     return size;
  1784   // Check for float reg-reg copy.
  1785   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1786     if (cbuf) {
  1787       MacroAssembler _masm(cbuf);
  1788       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
  1789       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
  1790       __ fmr(Rdst, Rsrc);
  1792 #ifndef PRODUCT
  1793     else if (!do_size) {
  1794       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1796 #endif
  1797     return 4;
  1800   // Check for float store.
  1801   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1802     int dst_offset = ra_->reg2offset(dst_lo);
  1803     if (src_hi != OptoReg::Bad) {
  1804       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
  1805              "expected same type of move for high parts");
  1806       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1807     } else {
  1808       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1810     return size;
  1813   // Check for float load.
  1814   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1815     int src_offset = ra_->reg2offset(src_lo);
  1816     if (src_hi != OptoReg::Bad) {
  1817       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
  1818              "expected same type of move for high parts");
  1819       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1820     } else {
  1821       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1823     return size;
  1826   // --------------------------------------------------------------------
  1827   // Check for hi bits still needing moving. Only happens for misaligned
  1828   // arguments to native calls.
  1829   if (src_hi == dst_hi)
  1830     return size;               // Self copy; no move.
  1832   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
  1833   ShouldNotReachHere(); // Unimplemented
  1834   return 0;
  1837 #ifndef PRODUCT
  1838 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1839   if (!ra_)
  1840     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
  1841   else
  1842     implementation(NULL, ra_, false, st);
  1844 #endif
  1846 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1847   implementation(&cbuf, ra_, false, NULL);
  1850 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1851   return implementation(NULL, ra_, true, NULL);
  1854 #if 0 // TODO: PPC port
  1855 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
  1856 #ifndef PRODUCT
  1857   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
  1858 #endif
  1859   assert(ra_->node_regs_max_index() != 0, "");
  1861   // Get registers to move.
  1862   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
  1863   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
  1864   OptoReg::Name dst_hi = ra_->get_reg_second(n);
  1865   OptoReg::Name dst_lo = ra_->get_reg_first(n);
  1867   enum RC src_lo_rc = rc_class(src_lo);
  1868   enum RC dst_lo_rc = rc_class(dst_lo);
  1870   if (src_lo == dst_lo && src_hi == dst_hi)
  1871     return ppc64Opcode_none;            // Self copy, no move.
  1873   // --------------------------------------
  1874   // Memory->Memory Spill. Use R0 to hold the value.
  1875   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1876     return ppc64Opcode_compound;
  1879   // --------------------------------------
  1880   // Check for float->int copy; requires a trip through memory.
  1881   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1882     Unimplemented();
  1885   // --------------------------------------
  1886   // Check for integer reg-reg copy.
  1887   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1888     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1889     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1890     if (Rsrc == Rdst) {
  1891       return ppc64Opcode_none;
  1892     } else {
  1893       return ppc64Opcode_or;
  1897   // Check for integer store.
  1898   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1899     if (src_hi != OptoReg::Bad) {
  1900       return ppc64Opcode_std;
  1901     } else {
  1902       return ppc64Opcode_stw;
  1906   // Check for integer load.
  1907   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1908     if (src_hi != OptoReg::Bad) {
  1909       return ppc64Opcode_ld;
  1910     } else {
  1911       return ppc64Opcode_lwz;
  1915   // Check for float reg-reg copy.
  1916   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1917     return ppc64Opcode_fmr;
  1920   // Check for float store.
  1921   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1922     if (src_hi != OptoReg::Bad) {
  1923       return ppc64Opcode_stfd;
  1924     } else {
  1925       return ppc64Opcode_stfs;
  1929   // Check for float load.
  1930   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1931     if (src_hi != OptoReg::Bad) {
  1932       return ppc64Opcode_lfd;
  1933     } else {
  1934       return ppc64Opcode_lfs;
  1938   // --------------------------------------------------------------------
  1939   // Check for hi bits still needing moving. Only happens for misaligned
  1940   // arguments to native calls.
  1941   if (src_hi == dst_hi)
  1942     return ppc64Opcode_none;               // Self copy; no move.
  1944   ShouldNotReachHere();
  1945   return ppc64Opcode_undefined;
  1947 #endif // PPC port
  1949 #ifndef PRODUCT
  1950 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1951   st->print("NOP \t// %d nops to pad for loops.", _count);
  1953 #endif
  1955 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
  1956   MacroAssembler _masm(&cbuf);
  1957   // _count contains the number of nops needed for padding.
  1958   for (int i = 0; i < _count; i++) {
  1959     __ nop();
  1963 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1964    return _count * 4;
  1967 #ifndef PRODUCT
  1968 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1969   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1970   int reg = ra_->get_reg_first(this);
  1971   st->print("ADDI %s, SP, %d \t// box node", Matcher::regName[reg], offset);
  1973 #endif
  1975 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1976   MacroAssembler _masm(&cbuf);
  1978   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1979   int reg    = ra_->get_encode(this);
  1981   if (Assembler::is_simm(offset, 16)) {
  1982     __ addi(as_Register(reg), R1, offset);
  1983   } else {
  1984     ShouldNotReachHere();
  1988 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1989   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
  1990   return 4;
  1993 #ifndef PRODUCT
  1994 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1995   st->print_cr("---- MachUEPNode ----");
  1996   st->print_cr("...");
  1998 #endif
  2000 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  2001   // This is the unverified entry point.
  2002   MacroAssembler _masm(&cbuf);
  2004   // Inline_cache contains a klass.
  2005   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
  2006   Register receiver_klass = R12_scratch2;  // tmp
  2008   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
  2009   assert(R11_scratch1 == R11, "need prologue scratch register");
  2011   // Check for NULL argument if we don't have implicit null checks.
  2012   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
  2013     if (TrapBasedNullChecks) {
  2014       __ trap_null_check(R3_ARG1);
  2015     } else {
  2016       Label valid;
  2017       __ cmpdi(CCR0, R3_ARG1, 0);
  2018       __ bne_predict_taken(CCR0, valid);
  2019       // We have a null argument, branch to ic_miss_stub.
  2020       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2021                            relocInfo::runtime_call_type);
  2022       __ bind(valid);
  2025   // Assume argument is not NULL, load klass from receiver.
  2026   __ load_klass(receiver_klass, R3_ARG1);
  2028   if (TrapBasedICMissChecks) {
  2029     __ trap_ic_miss_check(receiver_klass, ic_klass);
  2030   } else {
  2031     Label valid;
  2032     __ cmpd(CCR0, receiver_klass, ic_klass);
  2033     __ beq_predict_taken(CCR0, valid);
  2034     // We have an unexpected klass, branch to ic_miss_stub.
  2035     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2036                          relocInfo::runtime_call_type);
  2037     __ bind(valid);
  2040   // Argument is valid and klass is as expected, continue.
  2043 #if 0 // TODO: PPC port
  2044 // Optimize UEP code on z (save a load_const() call in main path).
  2045 int MachUEPNode::ep_offset() {
  2046   return 0;
  2048 #endif
  2050 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  2051   // Variable size. Determine dynamically.
  2052   return MachNode::size(ra_);
  2055 //=============================================================================
  2057 %} // interrupt source
  2059 source_hpp %{ // Header information of the source block.
  2061 class HandlerImpl {
  2063  public:
  2065   static int emit_exception_handler(CodeBuffer &cbuf);
  2066   static int emit_deopt_handler(CodeBuffer& cbuf);
  2068   static uint size_exception_handler() {
  2069     // The exception_handler is a b64_patchable.
  2070     return MacroAssembler::b64_patchable_size;
  2073   static uint size_deopt_handler() {
  2074     // The deopt_handler is a bl64_patchable.
  2075     return MacroAssembler::bl64_patchable_size;
  2078 };
  2080 %} // end source_hpp
  2082 source %{
  2084 int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
  2085   MacroAssembler _masm(&cbuf);
  2087   address base = __ start_a_stub(size_exception_handler());
  2088   if (base == NULL) return 0; // CodeBuffer::expand failed
  2090   int offset = __ offset();
  2091   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
  2092                        relocInfo::runtime_call_type);
  2093   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
  2094   __ end_a_stub();
  2096   return offset;
  2099 // The deopt_handler is like the exception handler, but it calls to
  2100 // the deoptimization blob instead of jumping to the exception blob.
  2101 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
  2102   MacroAssembler _masm(&cbuf);
  2104   address base = __ start_a_stub(size_deopt_handler());
  2105   if (base == NULL) return 0; // CodeBuffer::expand failed
  2107   int offset = __ offset();
  2108   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
  2109                         relocInfo::runtime_call_type);
  2110   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
  2111   __ end_a_stub();
  2113   return offset;
  2116 //=============================================================================
  2118 // Use a frame slots bias for frameless methods if accessing the stack.
  2119 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
  2120   if (as_Register(reg_enc) == R1_SP) {
  2121     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
  2123   return 0;
  2126 const bool Matcher::match_rule_supported(int opcode) {
  2127   if (!has_match_rule(opcode))
  2128     return false;
  2130   switch (opcode) {
  2131   case Op_SqrtD:
  2132     return VM_Version::has_fsqrt();
  2133   case Op_CountLeadingZerosI:
  2134   case Op_CountLeadingZerosL:
  2135   case Op_CountTrailingZerosI:
  2136   case Op_CountTrailingZerosL:
  2137     if (!UseCountLeadingZerosInstructionsPPC64)
  2138       return false;
  2139     break;
  2141   case Op_PopCountI:
  2142   case Op_PopCountL:
  2143     return (UsePopCountInstruction && VM_Version::has_popcntw());
  2145   case Op_StrComp:
  2146     return SpecialStringCompareTo;
  2147   case Op_StrEquals:
  2148     return SpecialStringEquals;
  2149   case Op_StrIndexOf:
  2150     return SpecialStringIndexOf;
  2153   return true;  // Per default match rules are supported.
  2156 int Matcher::regnum_to_fpu_offset(int regnum) {
  2157   // No user for this method?
  2158   Unimplemented();
  2159   return 999;
  2162 const bool Matcher::convL2FSupported(void) {
  2163   // fcfids can do the conversion (>= Power7).
  2164   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
  2165   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
  2168 // Vector width in bytes.
  2169 const int Matcher::vector_width_in_bytes(BasicType bt) {
  2170   assert(MaxVectorSize == 8, "");
  2171   return 8;
  2174 // Vector ideal reg.
  2175 const int Matcher::vector_ideal_reg(int size) {
  2176   assert(MaxVectorSize == 8 && size == 8, "");
  2177   return Op_RegL;
  2180 const int Matcher::vector_shift_count_ideal_reg(int size) {
  2181   fatal("vector shift is not supported");
  2182   return Node::NotAMachineReg;
  2185 // Limits on vector size (number of elements) loaded into vector.
  2186 const int Matcher::max_vector_size(const BasicType bt) {
  2187   assert(is_java_primitive(bt), "only primitive type vectors");
  2188   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  2191 const int Matcher::min_vector_size(const BasicType bt) {
  2192   return max_vector_size(bt); // Same as max.
  2195 // PPC doesn't support misaligned vectors store/load.
  2196 const bool Matcher::misaligned_vectors_ok() {
  2197   return false;
  2200 // PPC AES support not yet implemented
  2201 const bool Matcher::pass_original_key_for_aes() {
  2202   return false;
  2205 // RETURNS: whether this branch offset is short enough that a short
  2206 // branch can be used.
  2207 //
  2208 // If the platform does not provide any short branch variants, then
  2209 // this method should return `false' for offset 0.
  2210 //
  2211 // `Compile::Fill_buffer' will decide on basis of this information
  2212 // whether to do the pass `Compile::Shorten_branches' at all.
  2213 //
  2214 // And `Compile::Shorten_branches' will decide on basis of this
  2215 // information whether to replace particular branch sites by short
  2216 // ones.
  2217 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  2218   // Is the offset within the range of a ppc64 pc relative branch?
  2219   bool b;
  2221   const int safety_zone = 3 * BytesPerInstWord;
  2222   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
  2223                          29 - 16 + 1 + 2);
  2224   return b;
  2227 const bool Matcher::isSimpleConstant64(jlong value) {
  2228   // Probably always true, even if a temp register is required.
  2229   return true;
  2231 /* TODO: PPC port
  2232 // Make a new machine dependent decode node (with its operands).
  2233 MachTypeNode *Matcher::make_decode_node(Compile *C) {
  2234   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
  2235          "This method is only implemented for unscaled cOops mode so far");
  2236   MachTypeNode *decode = new (C) decodeN_unscaledNode();
  2237   decode->set_opnd_array(0, new (C) iRegPdstOper());
  2238   decode->set_opnd_array(1, new (C) iRegNsrcOper());
  2239   return decode;
  2241 */
  2242 // Threshold size for cleararray.
  2243 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  2245 // false => size gets scaled to BytesPerLong, ok.
  2246 const bool Matcher::init_array_count_is_in_bytes = false;
  2248 // Use conditional move (CMOVL) on Power7.
  2249 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
  2251 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
  2252 // fsel doesn't accept a condition register as input, so this would be slightly different.
  2253 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
  2255 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
  2256 const bool Matcher::require_postalloc_expand = true;
  2258 // Should the Matcher clone shifts on addressing modes, expecting them to
  2259 // be subsumed into complex addressing expressions or compute them into
  2260 // registers? True for Intel but false for most RISCs.
  2261 const bool Matcher::clone_shift_expressions = false;
  2263 // Do we need to mask the count passed to shift instructions or does
  2264 // the cpu only look at the lower 5/6 bits anyway?
  2265 // Off, as masks are generated in expand rules where required.
  2266 // Constant shift counts are handled in Ideal phase.
  2267 const bool Matcher::need_masked_shift_count = false;
  2269 // This affects two different things:
  2270 //  - how Decode nodes are matched
  2271 //  - how ImplicitNullCheck opportunities are recognized
  2272 // If true, the matcher will try to remove all Decodes and match them
  2273 // (as operands) into nodes. NullChecks are not prepared to deal with
  2274 // Decodes by final_graph_reshaping().
  2275 // If false, final_graph_reshaping() forces the decode behind the Cmp
  2276 // for a NullCheck. The matcher matches the Decode node into a register.
  2277 // Implicit_null_check optimization moves the Decode along with the
  2278 // memory operation back up before the NullCheck.
  2279 bool Matcher::narrow_oop_use_complex_address() {
  2280   // TODO: PPC port if (MatchDecodeNodes) return true;
  2281   return false;
  2284 bool Matcher::narrow_klass_use_complex_address() {
  2285   NOT_LP64(ShouldNotCallThis());
  2286   assert(UseCompressedClassPointers, "only for compressed klass code");
  2287   // TODO: PPC port if (MatchDecodeNodes) return true;
  2288   return false;
  2291 // Is it better to copy float constants, or load them directly from memory?
  2292 // Intel can load a float constant from a direct address, requiring no
  2293 // extra registers. Most RISCs will have to materialize an address into a
  2294 // register first, so they would do better to copy the constant from stack.
  2295 const bool Matcher::rematerialize_float_constants = false;
  2297 // If CPU can load and store mis-aligned doubles directly then no fixup is
  2298 // needed. Else we split the double into 2 integer pieces and move it
  2299 // piece-by-piece. Only happens when passing doubles into C code as the
  2300 // Java calling convention forces doubles to be aligned.
  2301 const bool Matcher::misaligned_doubles_ok = true;
  2303 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  2304  Unimplemented();
  2307 // Advertise here if the CPU requires explicit rounding operations
  2308 // to implement the UseStrictFP mode.
  2309 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  2311 // Do floats take an entire double register or just half?
  2312 //
  2313 // A float occupies a ppc64 double register. For the allocator, a
  2314 // ppc64 double register appears as a pair of float registers.
  2315 bool Matcher::float_in_double() { return true; }
  2317 // Do ints take an entire long register or just half?
  2318 // The relevant question is how the int is callee-saved:
  2319 // the whole long is written but de-opt'ing will have to extract
  2320 // the relevant 32 bits.
  2321 const bool Matcher::int_in_long = true;
  2323 // Constants for c2c and c calling conventions.
  2325 const MachRegisterNumbers iarg_reg[8] = {
  2326   R3_num, R4_num, R5_num, R6_num,
  2327   R7_num, R8_num, R9_num, R10_num
  2328 };
  2330 const MachRegisterNumbers farg_reg[13] = {
  2331   F1_num, F2_num, F3_num, F4_num,
  2332   F5_num, F6_num, F7_num, F8_num,
  2333   F9_num, F10_num, F11_num, F12_num,
  2334   F13_num
  2335 };
  2337 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
  2339 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
  2341 // Return whether or not this register is ever used as an argument. This
  2342 // function is used on startup to build the trampoline stubs in generateOptoStub.
  2343 // Registers not mentioned will be killed by the VM call in the trampoline, and
  2344 // arguments in those registers not be available to the callee.
  2345 bool Matcher::can_be_java_arg(int reg) {
  2346   // We return true for all registers contained in iarg_reg[] and
  2347   // farg_reg[] and their virtual halves.
  2348   // We must include the virtual halves in order to get STDs and LDs
  2349   // instead of STWs and LWs in the trampoline stubs.
  2351   if (   reg == R3_num  || reg == R3_H_num
  2352       || reg == R4_num  || reg == R4_H_num
  2353       || reg == R5_num  || reg == R5_H_num
  2354       || reg == R6_num  || reg == R6_H_num
  2355       || reg == R7_num  || reg == R7_H_num
  2356       || reg == R8_num  || reg == R8_H_num
  2357       || reg == R9_num  || reg == R9_H_num
  2358       || reg == R10_num || reg == R10_H_num)
  2359     return true;
  2361   if (   reg == F1_num  || reg == F1_H_num
  2362       || reg == F2_num  || reg == F2_H_num
  2363       || reg == F3_num  || reg == F3_H_num
  2364       || reg == F4_num  || reg == F4_H_num
  2365       || reg == F5_num  || reg == F5_H_num
  2366       || reg == F6_num  || reg == F6_H_num
  2367       || reg == F7_num  || reg == F7_H_num
  2368       || reg == F8_num  || reg == F8_H_num
  2369       || reg == F9_num  || reg == F9_H_num
  2370       || reg == F10_num || reg == F10_H_num
  2371       || reg == F11_num || reg == F11_H_num
  2372       || reg == F12_num || reg == F12_H_num
  2373       || reg == F13_num || reg == F13_H_num)
  2374     return true;
  2376   return false;
  2379 bool Matcher::is_spillable_arg(int reg) {
  2380   return can_be_java_arg(reg);
  2383 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
  2384   return false;
  2387 // Register for DIVI projection of divmodI.
  2388 RegMask Matcher::divI_proj_mask() {
  2389   ShouldNotReachHere();
  2390   return RegMask();
  2393 // Register for MODI projection of divmodI.
  2394 RegMask Matcher::modI_proj_mask() {
  2395   ShouldNotReachHere();
  2396   return RegMask();
  2399 // Register for DIVL projection of divmodL.
  2400 RegMask Matcher::divL_proj_mask() {
  2401   ShouldNotReachHere();
  2402   return RegMask();
  2405 // Register for MODL projection of divmodL.
  2406 RegMask Matcher::modL_proj_mask() {
  2407   ShouldNotReachHere();
  2408   return RegMask();
  2411 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2412   return RegMask();
  2415 %}
  2417 //----------ENCODING BLOCK-----------------------------------------------------
  2418 // This block specifies the encoding classes used by the compiler to output
  2419 // byte streams. Encoding classes are parameterized macros used by
  2420 // Machine Instruction Nodes in order to generate the bit encoding of the
  2421 // instruction. Operands specify their base encoding interface with the
  2422 // interface keyword. There are currently supported four interfaces,
  2423 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
  2424 // operand to generate a function which returns its register number when
  2425 // queried. CONST_INTER causes an operand to generate a function which
  2426 // returns the value of the constant when queried. MEMORY_INTER causes an
  2427 // operand to generate four functions which return the Base Register, the
  2428 // Index Register, the Scale Value, and the Offset Value of the operand when
  2429 // queried. COND_INTER causes an operand to generate six functions which
  2430 // return the encoding code (ie - encoding bits for the instruction)
  2431 // associated with each basic boolean condition for a conditional instruction.
  2432 //
  2433 // Instructions specify two basic values for encoding. Again, a function
  2434 // is available to check if the constant displacement is an oop. They use the
  2435 // ins_encode keyword to specify their encoding classes (which must be
  2436 // a sequence of enc_class names, and their parameters, specified in
  2437 // the encoding block), and they use the
  2438 // opcode keyword to specify, in order, their primary, secondary, and
  2439 // tertiary opcode. Only the opcode sections which a particular instruction
  2440 // needs for encoding need to be specified.
  2441 encode %{
  2442   enc_class enc_unimplemented %{
  2443     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2444     MacroAssembler _masm(&cbuf);
  2445     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
  2446   %}
  2448   enc_class enc_untested %{
  2449 #ifdef ASSERT
  2450     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2451     MacroAssembler _masm(&cbuf);
  2452     __ untested("Untested mach node encoding in AD file.");
  2453 #else
  2454     // TODO: PPC port $archOpcode(ppc64Opcode_none);
  2455 #endif
  2456   %}
  2458   enc_class enc_lbz(iRegIdst dst, memory mem) %{
  2459     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
  2460     MacroAssembler _masm(&cbuf);
  2461     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2462     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  2463   %}
  2465   // Load acquire.
  2466   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
  2467     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2468     MacroAssembler _masm(&cbuf);
  2469     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2470     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  2471     __ twi_0($dst$$Register);
  2472     __ isync();
  2473   %}
  2475   enc_class enc_lhz(iRegIdst dst, memory mem) %{
  2476     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
  2478     MacroAssembler _masm(&cbuf);
  2479     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2480     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  2481   %}
  2483   // Load acquire.
  2484   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
  2485     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2487     MacroAssembler _masm(&cbuf);
  2488     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2489     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  2490     __ twi_0($dst$$Register);
  2491     __ isync();
  2492   %}
  2494   enc_class enc_lwz(iRegIdst dst, memory mem) %{
  2495     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
  2497     MacroAssembler _masm(&cbuf);
  2498     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2499     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  2500   %}
  2502   // Load acquire.
  2503   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
  2504     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2506     MacroAssembler _masm(&cbuf);
  2507     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2508     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  2509     __ twi_0($dst$$Register);
  2510     __ isync();
  2511   %}
  2513   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
  2514     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2515     MacroAssembler _masm(&cbuf);
  2516     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2517     // Operand 'ds' requires 4-alignment.
  2518     assert((Idisp & 0x3) == 0, "unaligned offset");
  2519     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  2520   %}
  2522   // Load acquire.
  2523   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
  2524     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2525     MacroAssembler _masm(&cbuf);
  2526     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2527     // Operand 'ds' requires 4-alignment.
  2528     assert((Idisp & 0x3) == 0, "unaligned offset");
  2529     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  2530     __ twi_0($dst$$Register);
  2531     __ isync();
  2532   %}
  2534   enc_class enc_lfd(RegF dst, memory mem) %{
  2535     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  2536     MacroAssembler _masm(&cbuf);
  2537     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2538     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  2539   %}
  2541   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
  2542     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2544     MacroAssembler _masm(&cbuf);
  2545     int toc_offset = 0;
  2547     if (!ra_->C->in_scratch_emit_size()) {
  2548       address const_toc_addr;
  2549       // Create a non-oop constant, no relocation needed.
  2550       // If it is an IC, it has a virtual_call_Relocation.
  2551       const_toc_addr = __ long_constant((jlong)$src$$constant);
  2553       // Get the constant's TOC offset.
  2554       toc_offset = __ offset_to_method_toc(const_toc_addr);
  2556       // Keep the current instruction offset in mind.
  2557       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
  2560     __ ld($dst$$Register, toc_offset, $toc$$Register);
  2561   %}
  2563   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
  2564     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  2566     MacroAssembler _masm(&cbuf);
  2568     if (!ra_->C->in_scratch_emit_size()) {
  2569       address const_toc_addr;
  2570       // Create a non-oop constant, no relocation needed.
  2571       // If it is an IC, it has a virtual_call_Relocation.
  2572       const_toc_addr = __ long_constant((jlong)$src$$constant);
  2574       // Get the constant's TOC offset.
  2575       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  2576       // Store the toc offset of the constant.
  2577       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
  2579       // Also keep the current instruction offset in mind.
  2580       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
  2583     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  2584   %}
  2586 %} // encode
  2588 source %{
  2590 typedef struct {
  2591   loadConL_hiNode *_large_hi;
  2592   loadConL_loNode *_large_lo;
  2593   loadConLNode    *_small;
  2594   MachNode        *_last;
  2595 } loadConLNodesTuple;
  2597 loadConLNodesTuple loadConLNodesTuple_create(Compile *C, PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
  2598                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
  2599   loadConLNodesTuple nodes;
  2601   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2602   if (large_constant_pool) {
  2603     // Create new nodes.
  2604     loadConL_hiNode *m1 = new (C) loadConL_hiNode();
  2605     loadConL_loNode *m2 = new (C) loadConL_loNode();
  2607     // inputs for new nodes
  2608     m1->add_req(NULL, toc);
  2609     m2->add_req(NULL, m1);
  2611     // operands for new nodes
  2612     m1->_opnds[0] = new (C) iRegLdstOper(); // dst
  2613     m1->_opnds[1] = immSrc;                 // src
  2614     m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  2615     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  2616     m2->_opnds[1] = immSrc;                 // src
  2617     m2->_opnds[2] = new (C) iRegLdstOper(); // base
  2619     // Initialize ins_attrib TOC fields.
  2620     m1->_const_toc_offset = -1;
  2621     m2->_const_toc_offset_hi_node = m1;
  2623     // Initialize ins_attrib instruction offset.
  2624     m1->_cbuf_insts_offset = -1;
  2626     // register allocation for new nodes
  2627     ra_->set_pair(m1->_idx, reg_second, reg_first);
  2628     ra_->set_pair(m2->_idx, reg_second, reg_first);
  2630     // Create result.
  2631     nodes._large_hi = m1;
  2632     nodes._large_lo = m2;
  2633     nodes._small = NULL;
  2634     nodes._last = nodes._large_lo;
  2635     assert(m2->bottom_type()->isa_long(), "must be long");
  2636   } else {
  2637     loadConLNode *m2 = new (C) loadConLNode();
  2639     // inputs for new nodes
  2640     m2->add_req(NULL, toc);
  2642     // operands for new nodes
  2643     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  2644     m2->_opnds[1] = immSrc;                 // src
  2645     m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  2647     // Initialize ins_attrib instruction offset.
  2648     m2->_cbuf_insts_offset = -1;
  2650     // register allocation for new nodes
  2651     ra_->set_pair(m2->_idx, reg_second, reg_first);
  2653     // Create result.
  2654     nodes._large_hi = NULL;
  2655     nodes._large_lo = NULL;
  2656     nodes._small = m2;
  2657     nodes._last = nodes._small;
  2658     assert(m2->bottom_type()->isa_long(), "must be long");
  2661   return nodes;
  2664 %} // source
  2666 encode %{
  2667   // Postalloc expand emitter for loading a long constant from the method's TOC.
  2668   // Enc_class needed as consttanttablebase is not supported by postalloc
  2669   // expand.
  2670   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
  2671     // Create new nodes.
  2672     loadConLNodesTuple loadConLNodes =
  2673       loadConLNodesTuple_create(C, ra_, n_toc, op_src,
  2674                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
  2676     // Push new nodes.
  2677     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  2678     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  2680     // some asserts
  2681     assert(nodes->length() >= 1, "must have created at least 1 node");
  2682     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  2683   %}
  2685   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
  2686     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2688     MacroAssembler _masm(&cbuf);
  2689     int toc_offset = 0;
  2691     if (!ra_->C->in_scratch_emit_size()) {
  2692       intptr_t val = $src$$constant;
  2693       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  2694       address const_toc_addr;
  2695       if (constant_reloc == relocInfo::oop_type) {
  2696         // Create an oop constant and a corresponding relocation.
  2697         AddressLiteral a = __ allocate_oop_address((jobject)val);
  2698         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2699         __ relocate(a.rspec());
  2700       } else if (constant_reloc == relocInfo::metadata_type) {
  2701         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  2702         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2703         __ relocate(a.rspec());
  2704       } else {
  2705         // Create a non-oop constant, no relocation needed.
  2706         const_toc_addr = __ long_constant((jlong)$src$$constant);
  2709       // Get the constant's TOC offset.
  2710       toc_offset = __ offset_to_method_toc(const_toc_addr);
  2713     __ ld($dst$$Register, toc_offset, $toc$$Register);
  2714   %}
  2716   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
  2717     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  2719     MacroAssembler _masm(&cbuf);
  2720     if (!ra_->C->in_scratch_emit_size()) {
  2721       intptr_t val = $src$$constant;
  2722       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  2723       address const_toc_addr;
  2724       if (constant_reloc == relocInfo::oop_type) {
  2725         // Create an oop constant and a corresponding relocation.
  2726         AddressLiteral a = __ allocate_oop_address((jobject)val);
  2727         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2728         __ relocate(a.rspec());
  2729       } else if (constant_reloc == relocInfo::metadata_type) {
  2730         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  2731         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2732         __ relocate(a.rspec());
  2733       } else {  // non-oop pointers, e.g. card mark base, heap top
  2734         // Create a non-oop constant, no relocation needed.
  2735         const_toc_addr = __ long_constant((jlong)$src$$constant);
  2738       // Get the constant's TOC offset.
  2739       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  2740       // Store the toc offset of the constant.
  2741       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
  2744     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  2745   %}
  2747   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
  2748   // Enc_class needed as consttanttablebase is not supported by postalloc
  2749   // expand.
  2750   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
  2751     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2752     if (large_constant_pool) {
  2753       // Create new nodes.
  2754       loadConP_hiNode *m1 = new (C) loadConP_hiNode();
  2755       loadConP_loNode *m2 = new (C) loadConP_loNode();
  2757       // inputs for new nodes
  2758       m1->add_req(NULL, n_toc);
  2759       m2->add_req(NULL, m1);
  2761       // operands for new nodes
  2762       m1->_opnds[0] = new (C) iRegPdstOper(); // dst
  2763       m1->_opnds[1] = op_src;                 // src
  2764       m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  2765       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  2766       m2->_opnds[1] = op_src;                 // src
  2767       m2->_opnds[2] = new (C) iRegLdstOper(); // base
  2769       // Initialize ins_attrib TOC fields.
  2770       m1->_const_toc_offset = -1;
  2771       m2->_const_toc_offset_hi_node = m1;
  2773       // Register allocation for new nodes.
  2774       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2775       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2777       nodes->push(m1);
  2778       nodes->push(m2);
  2779       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  2780     } else {
  2781       loadConPNode *m2 = new (C) loadConPNode();
  2783       // inputs for new nodes
  2784       m2->add_req(NULL, n_toc);
  2786       // operands for new nodes
  2787       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  2788       m2->_opnds[1] = op_src;                 // src
  2789       m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  2791       // Register allocation for new nodes.
  2792       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2794       nodes->push(m2);
  2795       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  2797   %}
  2799   // Enc_class needed as consttanttablebase is not supported by postalloc
  2800   // expand.
  2801   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
  2802     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2804     MachNode *m2;
  2805     if (large_constant_pool) {
  2806       m2 = new (C) loadConFCompNode();
  2807     } else {
  2808       m2 = new (C) loadConFNode();
  2810     // inputs for new nodes
  2811     m2->add_req(NULL, n_toc);
  2813     // operands for new nodes
  2814     m2->_opnds[0] = op_dst;
  2815     m2->_opnds[1] = op_src;
  2816     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  2818     // register allocation for new nodes
  2819     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2820     nodes->push(m2);
  2821   %}
  2823   // Enc_class needed as consttanttablebase is not supported by postalloc
  2824   // expand.
  2825   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
  2826     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2828     MachNode *m2;
  2829     if (large_constant_pool) {
  2830       m2 = new (C) loadConDCompNode();
  2831     } else {
  2832       m2 = new (C) loadConDNode();
  2834     // inputs for new nodes
  2835     m2->add_req(NULL, n_toc);
  2837     // operands for new nodes
  2838     m2->_opnds[0] = op_dst;
  2839     m2->_opnds[1] = op_src;
  2840     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  2842     // register allocation for new nodes
  2843     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2844     nodes->push(m2);
  2845   %}
  2847   enc_class enc_stw(iRegIsrc src, memory mem) %{
  2848     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
  2849     MacroAssembler _masm(&cbuf);
  2850     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2851     __ stw($src$$Register, Idisp, $mem$$base$$Register);
  2852   %}
  2854   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
  2855     // TODO: PPC port $archOpcode(ppc64Opcode_std);
  2856     MacroAssembler _masm(&cbuf);
  2857     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2858     // Operand 'ds' requires 4-alignment.
  2859     assert((Idisp & 0x3) == 0, "unaligned offset");
  2860     __ std($src$$Register, Idisp, $mem$$base$$Register);
  2861   %}
  2863   enc_class enc_stfs(RegF src, memory mem) %{
  2864     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
  2865     MacroAssembler _masm(&cbuf);
  2866     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2867     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
  2868   %}
  2870   enc_class enc_stfd(RegF src, memory mem) %{
  2871     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
  2872     MacroAssembler _masm(&cbuf);
  2873     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2874     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
  2875   %}
  2877   // Use release_store for card-marking to ensure that previous
  2878   // oop-stores are visible before the card-mark change.
  2879   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr) %{
  2880     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2881     // FIXME: Implement this as a cmove and use a fixed condition code
  2882     // register which is written on every transition to compiled code,
  2883     // e.g. in call-stub and when returning from runtime stubs.
  2884     //
  2885     // Proposed code sequence for the cmove implementation:
  2886     //
  2887     // Label skip_release;
  2888     // __ beq(CCRfixed, skip_release);
  2889     // __ release();
  2890     // __ bind(skip_release);
  2891     // __ stb(card mark);
  2893     MacroAssembler _masm(&cbuf);
  2894     Label skip_storestore;
  2896 #if 0 // TODO: PPC port
  2897     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
  2898     // StoreStore barrier conditionally.
  2899     __ lwz(R0, 0, $releaseFieldAddr$$Register);
  2900     __ cmpwi(CCR0, R0, 0);
  2901     __ beq_predict_taken(CCR0, skip_storestore);
  2902 #endif
  2903     __ li(R0, 0);
  2904     __ membar(Assembler::StoreStore);
  2905 #if 0 // TODO: PPC port
  2906     __ bind(skip_storestore);
  2907 #endif
  2909     // Do the store.
  2910     if ($mem$$index == 0) {
  2911       __ stb(R0, $mem$$disp, $mem$$base$$Register);
  2912     } else {
  2913       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
  2914       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
  2916   %}
  2918   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
  2920     if (VM_Version::has_isel()) {
  2921       // use isel instruction with Power 7
  2922       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  2923       encodeP_subNode    *n_sub_base = new (C) encodeP_subNode();
  2924       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  2925       cond_set_0_oopNode *n_cond_set = new (C) cond_set_0_oopNode();
  2927       n_compare->add_req(n_region, n_src);
  2928       n_compare->_opnds[0] = op_crx;
  2929       n_compare->_opnds[1] = op_src;
  2930       n_compare->_opnds[2] = new (C) immL16Oper(0);
  2932       n_sub_base->add_req(n_region, n_src);
  2933       n_sub_base->_opnds[0] = op_dst;
  2934       n_sub_base->_opnds[1] = op_src;
  2935       n_sub_base->_bottom_type = _bottom_type;
  2937       n_shift->add_req(n_region, n_sub_base);
  2938       n_shift->_opnds[0] = op_dst;
  2939       n_shift->_opnds[1] = op_dst;
  2940       n_shift->_bottom_type = _bottom_type;
  2942       n_cond_set->add_req(n_region, n_compare, n_shift);
  2943       n_cond_set->_opnds[0] = op_dst;
  2944       n_cond_set->_opnds[1] = op_crx;
  2945       n_cond_set->_opnds[2] = op_dst;
  2946       n_cond_set->_bottom_type = _bottom_type;
  2948       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  2949       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2950       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2951       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2953       nodes->push(n_compare);
  2954       nodes->push(n_sub_base);
  2955       nodes->push(n_shift);
  2956       nodes->push(n_cond_set);
  2958     } else {
  2959       // before Power 7
  2960       moveRegNode        *n_move     = new (C) moveRegNode();
  2961       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  2962       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  2963       cond_sub_baseNode  *n_sub_base = new (C) cond_sub_baseNode();
  2965       n_move->add_req(n_region, n_src);
  2966       n_move->_opnds[0] = op_dst;
  2967       n_move->_opnds[1] = op_src;
  2968       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
  2970       n_compare->add_req(n_region, n_src);
  2971       n_compare->add_prec(n_move);
  2973       n_compare->_opnds[0] = op_crx;
  2974       n_compare->_opnds[1] = op_src;
  2975       n_compare->_opnds[2] = new (C) immL16Oper(0);
  2977       n_sub_base->add_req(n_region, n_compare, n_src);
  2978       n_sub_base->_opnds[0] = op_dst;
  2979       n_sub_base->_opnds[1] = op_crx;
  2980       n_sub_base->_opnds[2] = op_src;
  2981       n_sub_base->_bottom_type = _bottom_type;
  2983       n_shift->add_req(n_region, n_sub_base);
  2984       n_shift->_opnds[0] = op_dst;
  2985       n_shift->_opnds[1] = op_dst;
  2986       n_shift->_bottom_type = _bottom_type;
  2988       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2989       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  2990       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2991       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2993       nodes->push(n_move);
  2994       nodes->push(n_compare);
  2995       nodes->push(n_sub_base);
  2996       nodes->push(n_shift);
  2999     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  3000   %}
  3002   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
  3004     encodeP_subNode *n1 = new (C) encodeP_subNode();
  3005     n1->add_req(n_region, n_src);
  3006     n1->_opnds[0] = op_dst;
  3007     n1->_opnds[1] = op_src;
  3008     n1->_bottom_type = _bottom_type;
  3010     encodeP_shiftNode *n2 = new (C) encodeP_shiftNode();
  3011     n2->add_req(n_region, n1);
  3012     n2->_opnds[0] = op_dst;
  3013     n2->_opnds[1] = op_dst;
  3014     n2->_bottom_type = _bottom_type;
  3015     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3016     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3018     nodes->push(n1);
  3019     nodes->push(n2);
  3020     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  3021   %}
  3023   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  3024     decodeN_shiftNode *n_shift    = new (C) decodeN_shiftNode();
  3025     cmpN_reg_imm0Node *n_compare  = new (C) cmpN_reg_imm0Node();
  3027     n_compare->add_req(n_region, n_src);
  3028     n_compare->_opnds[0] = op_crx;
  3029     n_compare->_opnds[1] = op_src;
  3030     n_compare->_opnds[2] = new (C) immN_0Oper(TypeNarrowOop::NULL_PTR);
  3032     n_shift->add_req(n_region, n_src);
  3033     n_shift->_opnds[0] = op_dst;
  3034     n_shift->_opnds[1] = op_src;
  3035     n_shift->_bottom_type = _bottom_type;
  3037     if (VM_Version::has_isel()) {
  3038       // use isel instruction with Power 7
  3040       decodeN_addNode *n_add_base = new (C) decodeN_addNode();
  3041       n_add_base->add_req(n_region, n_shift);
  3042       n_add_base->_opnds[0] = op_dst;
  3043       n_add_base->_opnds[1] = op_dst;
  3044       n_add_base->_bottom_type = _bottom_type;
  3046       cond_set_0_ptrNode *n_cond_set = new (C) cond_set_0_ptrNode();
  3047       n_cond_set->add_req(n_region, n_compare, n_add_base);
  3048       n_cond_set->_opnds[0] = op_dst;
  3049       n_cond_set->_opnds[1] = op_crx;
  3050       n_cond_set->_opnds[2] = op_dst;
  3051       n_cond_set->_bottom_type = _bottom_type;
  3053       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3054       ra_->set_oop(n_cond_set, true);
  3056       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3057       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  3058       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3059       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3061       nodes->push(n_compare);
  3062       nodes->push(n_shift);
  3063       nodes->push(n_add_base);
  3064       nodes->push(n_cond_set);
  3066     } else {
  3067       // before Power 7
  3068       cond_add_baseNode *n_add_base = new (C) cond_add_baseNode();
  3070       n_add_base->add_req(n_region, n_compare, n_shift);
  3071       n_add_base->_opnds[0] = op_dst;
  3072       n_add_base->_opnds[1] = op_crx;
  3073       n_add_base->_opnds[2] = op_dst;
  3074       n_add_base->_bottom_type = _bottom_type;
  3076       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3077       ra_->set_oop(n_add_base, true);
  3079       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3080       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  3081       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3083       nodes->push(n_compare);
  3084       nodes->push(n_shift);
  3085       nodes->push(n_add_base);
  3087   %}
  3089   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
  3090     decodeN_shiftNode *n1 = new (C) decodeN_shiftNode();
  3091     n1->add_req(n_region, n_src);
  3092     n1->_opnds[0] = op_dst;
  3093     n1->_opnds[1] = op_src;
  3094     n1->_bottom_type = _bottom_type;
  3096     decodeN_addNode *n2 = new (C) decodeN_addNode();
  3097     n2->add_req(n_region, n1);
  3098     n2->_opnds[0] = op_dst;
  3099     n2->_opnds[1] = op_dst;
  3100     n2->_bottom_type = _bottom_type;
  3101     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3102     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3104     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3105     ra_->set_oop(n2, true);
  3107     nodes->push(n1);
  3108     nodes->push(n2);
  3109   %}
  3111   enc_class enc_cmove_reg(iRegIdst dst, flagsReg crx, iRegIsrc src, cmpOp cmp) %{
  3112     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3114     MacroAssembler _masm(&cbuf);
  3115     int cc        = $cmp$$cmpcode;
  3116     int flags_reg = $crx$$reg;
  3117     Label done;
  3118     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3119     // Branch if not (cmp crx).
  3120     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
  3121     __ mr($dst$$Register, $src$$Register);
  3122     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3123     __ bind(done);
  3124   %}
  3126   enc_class enc_cmove_imm(iRegIdst dst, flagsReg crx, immI16 src, cmpOp cmp) %{
  3127     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3129     MacroAssembler _masm(&cbuf);
  3130     Label done;
  3131     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3132     // Branch if not (cmp crx).
  3133     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  3134     __ li($dst$$Register, $src$$constant);
  3135     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3136     __ bind(done);
  3137   %}
  3139   // New atomics.
  3140   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  3141     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3143     MacroAssembler _masm(&cbuf);
  3144     Register Rtmp   = R0;
  3145     Register Rres   = $res$$Register;
  3146     Register Rsrc   = $src$$Register;
  3147     Register Rptr   = $mem_ptr$$Register;
  3148     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3149     Register Rold   = RegCollision ? Rtmp : Rres;
  3151     Label Lretry;
  3152     __ bind(Lretry);
  3153     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3154     __ add(Rtmp, Rsrc, Rold);
  3155     __ stwcx_(Rtmp, Rptr);
  3156     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3157       __ bne_predict_not_taken(CCR0, Lretry);
  3158     } else {
  3159       __ bne(                  CCR0, Lretry);
  3161     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  3162     __ fence();
  3163   %}
  3165   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  3166     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3168     MacroAssembler _masm(&cbuf);
  3169     Register Rtmp   = R0;
  3170     Register Rres   = $res$$Register;
  3171     Register Rsrc   = $src$$Register;
  3172     Register Rptr   = $mem_ptr$$Register;
  3173     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3174     Register Rold   = RegCollision ? Rtmp : Rres;
  3176     Label Lretry;
  3177     __ bind(Lretry);
  3178     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3179     __ add(Rtmp, Rsrc, Rold);
  3180     __ stdcx_(Rtmp, Rptr);
  3181     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3182       __ bne_predict_not_taken(CCR0, Lretry);
  3183     } else {
  3184       __ bne(                  CCR0, Lretry);
  3186     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  3187     __ fence();
  3188   %}
  3190   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  3191     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3193     MacroAssembler _masm(&cbuf);
  3194     Register Rtmp   = R0;
  3195     Register Rres   = $res$$Register;
  3196     Register Rsrc   = $src$$Register;
  3197     Register Rptr   = $mem_ptr$$Register;
  3198     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3199     Register Rold   = RegCollision ? Rtmp : Rres;
  3201     Label Lretry;
  3202     __ bind(Lretry);
  3203     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3204     __ stwcx_(Rsrc, Rptr);
  3205     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3206       __ bne_predict_not_taken(CCR0, Lretry);
  3207     } else {
  3208       __ bne(                  CCR0, Lretry);
  3210     if (RegCollision) __ mr(Rres, Rtmp);
  3211     __ fence();
  3212   %}
  3214   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  3215     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3217     MacroAssembler _masm(&cbuf);
  3218     Register Rtmp   = R0;
  3219     Register Rres   = $res$$Register;
  3220     Register Rsrc   = $src$$Register;
  3221     Register Rptr   = $mem_ptr$$Register;
  3222     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3223     Register Rold   = RegCollision ? Rtmp : Rres;
  3225     Label Lretry;
  3226     __ bind(Lretry);
  3227     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3228     __ stdcx_(Rsrc, Rptr);
  3229     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3230       __ bne_predict_not_taken(CCR0, Lretry);
  3231     } else {
  3232       __ bne(                  CCR0, Lretry);
  3234     if (RegCollision) __ mr(Rres, Rtmp);
  3235     __ fence();
  3236   %}
  3238   // This enc_class is needed so that scheduler gets proper
  3239   // input mapping for latency computation.
  3240   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  3241     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  3242     MacroAssembler _masm(&cbuf);
  3243     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  3244   %}
  3246   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  3247     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3249     MacroAssembler _masm(&cbuf);
  3251     Label done;
  3252     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
  3253     __ li($dst$$Register, $zero$$constant);
  3254     __ beq($crx$$CondRegister, done);
  3255     __ li($dst$$Register, $notzero$$constant);
  3256     __ bind(done);
  3257   %}
  3259   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  3260     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3262     MacroAssembler _masm(&cbuf);
  3264     Label done;
  3265     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
  3266     __ li($dst$$Register, $zero$$constant);
  3267     __ beq($crx$$CondRegister, done);
  3268     __ li($dst$$Register, $notzero$$constant);
  3269     __ bind(done);
  3270   %}
  3272   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL mem ) %{
  3273     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3275     MacroAssembler _masm(&cbuf);
  3276     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  3277     Label done;
  3278     __ bso($crx$$CondRegister, done);
  3279     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  3280     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3281     __ bind(done);
  3282   %}
  3284   enc_class enc_bc(flagsReg crx, cmpOp cmp, Label lbl) %{
  3285     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3287     MacroAssembler _masm(&cbuf);
  3288     Label d;   // dummy
  3289     __ bind(d);
  3290     Label* p = ($lbl$$label);
  3291     // `p' is `NULL' when this encoding class is used only to
  3292     // determine the size of the encoded instruction.
  3293     Label& l = (NULL == p)? d : *(p);
  3294     int cc = $cmp$$cmpcode;
  3295     int flags_reg = $crx$$reg;
  3296     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3297     int bhint = Assembler::bhintNoHint;
  3299     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3300       if (_prob <= PROB_NEVER) {
  3301         bhint = Assembler::bhintIsNotTaken;
  3302       } else if (_prob >= PROB_ALWAYS) {
  3303         bhint = Assembler::bhintIsTaken;
  3307     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3308           cc_to_biint(cc, flags_reg),
  3309           l);
  3310   %}
  3312   enc_class enc_bc_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  3313     // The scheduler doesn't know about branch shortening, so we set the opcode
  3314     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  3315     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3317     MacroAssembler _masm(&cbuf);
  3318     Label d;    // dummy
  3319     __ bind(d);
  3320     Label* p = ($lbl$$label);
  3321     // `p' is `NULL' when this encoding class is used only to
  3322     // determine the size of the encoded instruction.
  3323     Label& l = (NULL == p)? d : *(p);
  3324     int cc = $cmp$$cmpcode;
  3325     int flags_reg = $crx$$reg;
  3326     int bhint = Assembler::bhintNoHint;
  3328     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3329       if (_prob <= PROB_NEVER) {
  3330         bhint = Assembler::bhintIsNotTaken;
  3331       } else if (_prob >= PROB_ALWAYS) {
  3332         bhint = Assembler::bhintIsTaken;
  3336     // Tell the conditional far branch to optimize itself when being relocated.
  3337     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3338                   cc_to_biint(cc, flags_reg),
  3339                   l,
  3340                   MacroAssembler::bc_far_optimize_on_relocate);
  3341   %}
  3343   // Branch used with Power6 scheduling (can be shortened without changing the node).
  3344   enc_class enc_bc_short_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  3345     // The scheduler doesn't know about branch shortening, so we set the opcode
  3346     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  3347     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3349     MacroAssembler _masm(&cbuf);
  3350     Label d;   // dummy
  3351     __ bind(d);
  3352     Label* p = ($lbl$$label);
  3353     // `p' is `NULL' when this encoding class is used only to
  3354     // determine the size of the encoded instruction.
  3355     Label& l = (NULL == p)? d : *(p);
  3356     int cc = $cmp$$cmpcode;
  3357     int flags_reg = $crx$$reg;
  3358     int bhint = Assembler::bhintNoHint;
  3360     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3361       if (_prob <= PROB_NEVER) {
  3362         bhint = Assembler::bhintIsNotTaken;
  3363       } else if (_prob >= PROB_ALWAYS) {
  3364         bhint = Assembler::bhintIsTaken;
  3368 #if 0 // TODO: PPC port
  3369     if (_size == 8) {
  3370       // Tell the conditional far branch to optimize itself when being relocated.
  3371       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3372                     cc_to_biint(cc, flags_reg),
  3373                     l,
  3374                     MacroAssembler::bc_far_optimize_on_relocate);
  3375     } else {
  3376       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3377                     cc_to_biint(cc, flags_reg),
  3378                     l);
  3380 #endif
  3381     Unimplemented();
  3382   %}
  3384   // Postalloc expand emitter for loading a replicatef float constant from
  3385   // the method's TOC.
  3386   // Enc_class needed as consttanttablebase is not supported by postalloc
  3387   // expand.
  3388   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
  3389     // Create new nodes.
  3391     // Make an operand with the bit pattern to load as float.
  3392     immLOper *op_repl = new (C) immLOper((jlong)replicate_immF(op_src->constantF()));
  3394     loadConLNodesTuple loadConLNodes =
  3395       loadConLNodesTuple_create(C, ra_, n_toc, op_repl,
  3396                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
  3398     // Push new nodes.
  3399     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  3400     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  3402     assert(nodes->length() >= 1, "must have created at least 1 node");
  3403     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  3404   %}
  3406   // This enc_class is needed so that scheduler gets proper
  3407   // input mapping for latency computation.
  3408   enc_class enc_poll(immI dst, iRegLdst poll) %{
  3409     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  3410     // Fake operand dst needed for PPC scheduler.
  3411     assert($dst$$constant == 0x0, "dst must be 0x0");
  3413     MacroAssembler _masm(&cbuf);
  3414     // Mark the code position where the load from the safepoint
  3415     // polling page was emitted as relocInfo::poll_type.
  3416     __ relocate(relocInfo::poll_type);
  3417     __ load_from_polling_page($poll$$Register);
  3418   %}
  3420   // A Java static call or a runtime call.
  3421   //
  3422   // Branch-and-link relative to a trampoline.
  3423   // The trampoline loads the target address and does a long branch to there.
  3424   // In case we call java, the trampoline branches to a interpreter_stub
  3425   // which loads the inline cache and the real call target from the constant pool.
  3426   //
  3427   // This basically looks like this:
  3428   //
  3429   // >>>> consts      -+  -+
  3430   //                   |   |- offset1
  3431   // [call target1]    | <-+
  3432   // [IC cache]        |- offset2
  3433   // [call target2] <--+
  3434   //
  3435   // <<<< consts
  3436   // >>>> insts
  3437   //
  3438   // bl offset16               -+  -+             ??? // How many bits available?
  3439   //                            |   |
  3440   // <<<< insts                 |   |
  3441   // >>>> stubs                 |   |
  3442   //                            |   |- trampoline_stub_Reloc
  3443   // trampoline stub:           | <-+
  3444   //   r2 = toc                 |
  3445   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
  3446   //   mtctr r2                 |
  3447   //   bctr                     |- static_stub_Reloc
  3448   // comp_to_interp_stub:   <---+
  3449   //   r1 = toc
  3450   //   ICreg = [r1 + IC_offset]         // Load IC from const section
  3451   //   r1    = [r1 + offset2]           // Load call target2 from const section
  3452   //   mtctr r1
  3453   //   bctr
  3454   //
  3455   // <<<< stubs
  3456   //
  3457   // The call instruction in the code either
  3458   // - Branches directly to a compiled method if the offset is encodable in instruction.
  3459   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
  3460   // - Branches to the compiled_to_interp stub if the target is interpreted.
  3461   //
  3462   // Further there are three relocations from the loads to the constants in
  3463   // the constant section.
  3464   //
  3465   // Usage of r1 and r2 in the stubs allows to distinguish them.
  3466   enc_class enc_java_static_call(method meth) %{
  3467     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  3469     MacroAssembler _masm(&cbuf);
  3470     address entry_point = (address)$meth$$method;
  3472     if (!_method) {
  3473       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
  3474       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
  3475     } else {
  3476       // Remember the offset not the address.
  3477       const int start_offset = __ offset();
  3478       // The trampoline stub.
  3479       if (!Compile::current()->in_scratch_emit_size()) {
  3480         // No entry point given, use the current pc.
  3481         // Make sure branch fits into
  3482         if (entry_point == 0) entry_point = __ pc();
  3484         // Put the entry point as a constant into the constant pool.
  3485         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  3486         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  3488         // Emit the trampoline stub which will be related to the branch-and-link below.
  3489         CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  3490         if (Compile::current()->env()->failing()) { return; } // Code cache may be full.
  3491         __ relocate(_optimized_virtual ?
  3492                     relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
  3495       // The real call.
  3496       // Note: At this point we do not have the address of the trampoline
  3497       // stub, and the entry point might be too far away for bl, so __ pc()
  3498       // serves as dummy and the bl will be patched later.
  3499       cbuf.set_insts_mark();
  3500       __ bl(__ pc());  // Emits a relocation.
  3502       // The stub for call to interpreter.
  3503       CompiledStaticCall::emit_to_interp_stub(cbuf);
  3505   %}
  3507   // Emit a method handle call.
  3508   //
  3509   // Method handle calls from compiled to compiled are going thru a
  3510   // c2i -> i2c adapter, extending the frame for their arguments. The
  3511   // caller however, returns directly to the compiled callee, that has
  3512   // to cope with the extended frame. We restore the original frame by
  3513   // loading the callers sp and adding the calculated framesize.
  3514   enc_class enc_java_handle_call(method meth) %{
  3515     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3517     MacroAssembler _masm(&cbuf);
  3518     address entry_point = (address)$meth$$method;
  3520     // Remember the offset not the address.
  3521     const int start_offset = __ offset();
  3522     // The trampoline stub.
  3523     if (!ra_->C->in_scratch_emit_size()) {
  3524       // No entry point given, use the current pc.
  3525       // Make sure branch fits into
  3526       if (entry_point == 0) entry_point = __ pc();
  3528       // Put the entry point as a constant into the constant pool.
  3529       const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  3530       const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  3532       // Emit the trampoline stub which will be related to the branch-and-link below.
  3533       CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  3534       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
  3535       assert(_optimized_virtual, "methodHandle call should be a virtual call");
  3536       __ relocate(relocInfo::opt_virtual_call_type);
  3539     // The real call.
  3540     // Note: At this point we do not have the address of the trampoline
  3541     // stub, and the entry point might be too far away for bl, so __ pc()
  3542     // serves as dummy and the bl will be patched later.
  3543     cbuf.set_insts_mark();
  3544     __ bl(__ pc());  // Emits a relocation.
  3546     assert(_method, "execute next statement conditionally");
  3547     // The stub for call to interpreter.
  3548     CompiledStaticCall::emit_to_interp_stub(cbuf);
  3550     // Restore original sp.
  3551     __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
  3552     const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
  3553     unsigned int bytes = (unsigned int)framesize;
  3554     long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  3555     if (Assembler::is_simm(-offset, 16)) {
  3556       __ addi(R1_SP, R11_scratch1, -offset);
  3557     } else {
  3558       __ load_const_optimized(R12_scratch2, -offset);
  3559       __ add(R1_SP, R11_scratch1, R12_scratch2);
  3561 #ifdef ASSERT
  3562   __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
  3563   __ cmpd(CCR0, R11_scratch1, R12_scratch2);
  3564   __ asm_assert_eq("backlink changed", 0x8000);
  3565 #endif
  3566     // If fails should store backlink before unextending.
  3568     if (ra_->C->env()->failing()) {
  3569       return;
  3571   %}
  3573   // Second node of expanded dynamic call - the call.
  3574   enc_class enc_java_dynamic_call_sched(method meth) %{
  3575     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  3577     MacroAssembler _masm(&cbuf);
  3579     if (!ra_->C->in_scratch_emit_size()) {
  3580       // Create a call trampoline stub for the given method.
  3581       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
  3582       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
  3583       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
  3584       CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
  3585       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
  3587       // Build relocation at call site with ic position as data.
  3588       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
  3589              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
  3590              "must have one, but can't have both");
  3591       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
  3592              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
  3593              "must contain instruction offset");
  3594       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
  3595         ? _load_ic_hi_node->_cbuf_insts_offset
  3596         : _load_ic_node->_cbuf_insts_offset;
  3597       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
  3598       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
  3599              "should be load from TOC");
  3601       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  3604     // At this point I do not have the address of the trampoline stub,
  3605     // and the entry point might be too far away for bl. Pc() serves
  3606     // as dummy and bl will be patched later.
  3607     __ bl((address) __ pc());
  3608   %}
  3610   // postalloc expand emitter for virtual calls.
  3611   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
  3613     // Create the nodes for loading the IC from the TOC.
  3614     loadConLNodesTuple loadConLNodes_IC =
  3615       loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong)Universe::non_oop_word()),
  3616                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
  3618     // Create the call node.
  3619     CallDynamicJavaDirectSchedNode *call = new (C) CallDynamicJavaDirectSchedNode();
  3620     call->_method_handle_invoke = _method_handle_invoke;
  3621     call->_vtable_index      = _vtable_index;
  3622     call->_method            = _method;
  3623     call->_bci               = _bci;
  3624     call->_optimized_virtual = _optimized_virtual;
  3625     call->_tf                = _tf;
  3626     call->_entry_point       = _entry_point;
  3627     call->_cnt               = _cnt;
  3628     call->_argsize           = _argsize;
  3629     call->_oop_map           = _oop_map;
  3630     call->_jvms              = _jvms;
  3631     call->_jvmadj            = _jvmadj;
  3632     call->_in_rms            = _in_rms;
  3633     call->_nesting           = _nesting;
  3635     // New call needs all inputs of old call.
  3636     // Req...
  3637     for (uint i = 0; i < req(); ++i) {
  3638       // The expanded node does not need toc any more.
  3639       // Add the inline cache constant here instead. This expresses the
  3640       // register of the inline cache must be live at the call.
  3641       // Else we would have to adapt JVMState by -1.
  3642       if (i == mach_constant_base_node_input()) {
  3643         call->add_req(loadConLNodes_IC._last);
  3644       } else {
  3645         call->add_req(in(i));
  3648     // ...as well as prec
  3649     for (uint i = req(); i < len(); ++i) {
  3650       call->add_prec(in(i));
  3653     // Remember nodes loading the inline cache into r19.
  3654     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
  3655     call->_load_ic_node    = loadConLNodes_IC._small;
  3657     // Operands for new nodes.
  3658     call->_opnds[0] = _opnds[0];
  3659     call->_opnds[1] = _opnds[1];
  3661     // Only the inline cache is associated with a register.
  3662     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
  3664     // Push new nodes.
  3665     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
  3666     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
  3667     nodes->push(call);
  3668   %}
  3670   // Compound version of call dynamic
  3671   // Toc is only passed so that it can be used in ins_encode statement.
  3672   // In the code we have to use $constanttablebase.
  3673   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
  3674     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3675     MacroAssembler _masm(&cbuf);
  3676     int start_offset = __ offset();
  3678     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
  3679 #if 0
  3680     int vtable_index = this->_vtable_index;
  3681     if (_vtable_index < 0) {
  3682       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  3683       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  3684       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
  3686       // Virtual call relocation will point to ic load.
  3687       address virtual_call_meta_addr = __ pc();
  3688       // Load a clear inline cache.
  3689       AddressLiteral empty_ic((address) Universe::non_oop_word());
  3690       __ load_const_from_method_toc(ic_reg, empty_ic, Rtoc);
  3691       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
  3692       // to determine who we intended to call.
  3693       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
  3694       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
  3695       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  3696              "Fix constant in ret_addr_offset()");
  3697     } else {
  3698       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  3699       // Go thru the vtable. Get receiver klass. Receiver already
  3700       // checked for non-null. If we'll go thru a C2I adapter, the
  3701       // interpreter expects method in R19_method.
  3703       __ load_klass(R11_scratch1, R3);
  3705       int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
  3706       int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  3707       __ li(R19_method, v_off);
  3708       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
  3709       // NOTE: for vtable dispatches, the vtable entry will never be
  3710       // null. However it may very well end up in handle_wrong_method
  3711       // if the method is abstract for the particular class.
  3712       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
  3713       // Call target. Either compiled code or C2I adapter.
  3714       __ mtctr(R11_scratch1);
  3715       __ bctrl();
  3716       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
  3717         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
  3719       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  3720              "Fix constant in ret_addr_offset()");
  3722 #endif
  3723     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
  3724   %}
  3726   // a runtime call
  3727   enc_class enc_java_to_runtime_call (method meth) %{
  3728     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3730     MacroAssembler _masm(&cbuf);
  3731     const address start_pc = __ pc();
  3733 #if defined(ABI_ELFv2)
  3734     address entry= !($meth$$method) ? NULL : (address)$meth$$method;
  3735     __ call_c(entry, relocInfo::runtime_call_type);
  3736 #else
  3737     // The function we're going to call.
  3738     FunctionDescriptor fdtemp;
  3739     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
  3741     Register Rtoc = R12_scratch2;
  3742     // Calculate the method's TOC.
  3743     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
  3744     // Put entry, env, toc into the constant pool, this needs up to 3 constant
  3745     // pool entries; call_c_using_toc will optimize the call.
  3746     __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
  3747 #endif
  3749     // Check the ret_addr_offset.
  3750     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
  3751            "Fix constant in ret_addr_offset()");
  3752   %}
  3754   // Move to ctr for leaf call.
  3755   // This enc_class is needed so that scheduler gets proper
  3756   // input mapping for latency computation.
  3757   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
  3758     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
  3759     MacroAssembler _masm(&cbuf);
  3760     __ mtctr($src$$Register);
  3761   %}
  3763   // Postalloc expand emitter for runtime leaf calls.
  3764   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
  3765     loadConLNodesTuple loadConLNodes_Entry;
  3766 #if defined(ABI_ELFv2)
  3767     jlong entry_address = (jlong) this->entry_point();
  3768     assert(entry_address, "need address here");
  3769     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
  3770                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  3771 #else
  3772     // Get the struct that describes the function we are about to call.
  3773     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
  3774     assert(fd, "need fd here");
  3775     jlong entry_address = (jlong) fd->entry();
  3776     // new nodes
  3777     loadConLNodesTuple loadConLNodes_Env;
  3778     loadConLNodesTuple loadConLNodes_Toc;
  3780     // Create nodes and operands for loading the entry point.
  3781     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
  3782                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  3785     // Create nodes and operands for loading the env pointer.
  3786     if (fd->env() != NULL) {
  3787       loadConLNodes_Env = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->env()),
  3788                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  3789     } else {
  3790       loadConLNodes_Env._large_hi = NULL;
  3791       loadConLNodes_Env._large_lo = NULL;
  3792       loadConLNodes_Env._small    = NULL;
  3793       loadConLNodes_Env._last = new (C) loadConL16Node();
  3794       loadConLNodes_Env._last->_opnds[0] = new (C) iRegLdstOper();
  3795       loadConLNodes_Env._last->_opnds[1] = new (C) immL16Oper(0);
  3796       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  3799     // Create nodes and operands for loading the Toc point.
  3800     loadConLNodes_Toc = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->toc()),
  3801                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
  3802 #endif // ABI_ELFv2
  3803     // mtctr node
  3804     MachNode *mtctr = new (C) CallLeafDirect_mtctrNode();
  3806     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
  3807     mtctr->add_req(0, loadConLNodes_Entry._last);
  3809     mtctr->_opnds[0] = new (C) iRegLdstOper();
  3810     mtctr->_opnds[1] = new (C) iRegLdstOper();
  3812     // call node
  3813     MachCallLeafNode *call = new (C) CallLeafDirectNode();
  3815     call->_opnds[0] = _opnds[0];
  3816     call->_opnds[1] = new (C) methodOper((intptr_t) entry_address); // May get set later.
  3818     // Make the new call node look like the old one.
  3819     call->_name        = _name;
  3820     call->_tf          = _tf;
  3821     call->_entry_point = _entry_point;
  3822     call->_cnt         = _cnt;
  3823     call->_argsize     = _argsize;
  3824     call->_oop_map     = _oop_map;
  3825     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
  3826     call->_jvms        = NULL;
  3827     call->_jvmadj      = _jvmadj;
  3828     call->_in_rms      = _in_rms;
  3829     call->_nesting     = _nesting;
  3832     // New call needs all inputs of old call.
  3833     // Req...
  3834     for (uint i = 0; i < req(); ++i) {
  3835       if (i != mach_constant_base_node_input()) {
  3836         call->add_req(in(i));
  3840     // These must be reqired edges, as the registers are live up to
  3841     // the call. Else the constants are handled as kills.
  3842     call->add_req(mtctr);
  3843 #if !defined(ABI_ELFv2)
  3844     call->add_req(loadConLNodes_Env._last);
  3845     call->add_req(loadConLNodes_Toc._last);
  3846 #endif
  3848     // ...as well as prec
  3849     for (uint i = req(); i < len(); ++i) {
  3850       call->add_prec(in(i));
  3853     // registers
  3854     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
  3856     // Insert the new nodes.
  3857     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
  3858     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
  3859 #if !defined(ABI_ELFv2)
  3860     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
  3861     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
  3862     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
  3863     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
  3864 #endif
  3865     nodes->push(mtctr);
  3866     nodes->push(call);
  3867   %}
  3868 %}
  3870 //----------FRAME--------------------------------------------------------------
  3871 // Definition of frame structure and management information.
  3873 frame %{
  3874   // What direction does stack grow in (assumed to be same for native & Java).
  3875   stack_direction(TOWARDS_LOW);
  3877   // These two registers define part of the calling convention between
  3878   // compiled code and the interpreter.
  3880   // Inline Cache Register or method for I2C.
  3881   inline_cache_reg(R19); // R19_method
  3883   // Method Oop Register when calling interpreter.
  3884   interpreter_method_oop_reg(R19); // R19_method
  3886   // Optional: name the operand used by cisc-spilling to access
  3887   // [stack_pointer + offset].
  3888   cisc_spilling_operand_name(indOffset);
  3890   // Number of stack slots consumed by a Monitor enter.
  3891   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
  3893   // Compiled code's Frame Pointer.
  3894   frame_pointer(R1); // R1_SP
  3896   // Interpreter stores its frame pointer in a register which is
  3897   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
  3898   // interpreted java to compiled java.
  3899   //
  3900   // R14_state holds pointer to caller's cInterpreter.
  3901   interpreter_frame_pointer(R14); // R14_state
  3903   stack_alignment(frame::alignment_in_bytes);
  3905   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
  3907   // Number of outgoing stack slots killed above the
  3908   // out_preserve_stack_slots for calls to C. Supports the var-args
  3909   // backing area for register parms.
  3910   //
  3911   varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
  3913   // The after-PROLOG location of the return address. Location of
  3914   // return address specifies a type (REG or STACK) and a number
  3915   // representing the register number (i.e. - use a register name) or
  3916   // stack slot.
  3917   //
  3918   // A: Link register is stored in stack slot ...
  3919   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
  3920   // J: Therefore, we make sure that the link register is also in R11_scratch1
  3921   //    at the end of the prolog.
  3922   // B: We use R20, now.
  3923   //return_addr(REG R20);
  3925   // G: After reading the comments made by all the luminaries on their
  3926   //    failure to tell the compiler where the return address really is,
  3927   //    I hardly dare to try myself.  However, I'm convinced it's in slot
  3928   //    4 what apparently works and saves us some spills.
  3929   return_addr(STACK 4);
  3931   // This is the body of the function
  3932   //
  3933   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
  3934   //                                  uint length,      // length of array
  3935   //                                  bool is_outgoing)
  3936   //
  3937   // The `sig' array is to be updated. sig[j] represents the location
  3938   // of the j-th argument, either a register or a stack slot.
  3940   // Comment taken from i486.ad:
  3941   // Body of function which returns an integer array locating
  3942   // arguments either in registers or in stack slots. Passed an array
  3943   // of ideal registers called "sig" and a "length" count. Stack-slot
  3944   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3945   // arguments for a CALLEE. Incoming stack arguments are
  3946   // automatically biased by the preserve_stack_slots field above.
  3947   calling_convention %{
  3948     // No difference between ingoing/outgoing. Just pass false.
  3949     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3950   %}
  3952   // Comment taken from i486.ad:
  3953   // Body of function which returns an integer array locating
  3954   // arguments either in registers or in stack slots. Passed an array
  3955   // of ideal registers called "sig" and a "length" count. Stack-slot
  3956   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3957   // arguments for a CALLEE. Incoming stack arguments are
  3958   // automatically biased by the preserve_stack_slots field above.
  3959   c_calling_convention %{
  3960     // This is obviously always outgoing.
  3961     // C argument in register AND stack slot.
  3962     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3963   %}
  3965   // Location of native (C/C++) and interpreter return values. This
  3966   // is specified to be the same as Java. In the 32-bit VM, long
  3967   // values are actually returned from native calls in O0:O1 and
  3968   // returned to the interpreter in I0:I1. The copying to and from
  3969   // the register pairs is done by the appropriate call and epilog
  3970   // opcodes. This simplifies the register allocator.
  3971   c_return_value %{
  3972     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  3973             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  3974             "only return normal values");
  3975     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  3976     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  3977     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  3978     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  3979   %}
  3981   // Location of compiled Java return values.  Same as C
  3982   return_value %{
  3983     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  3984             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  3985             "only return normal values");
  3986     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  3987     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  3988     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  3989     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  3990   %}
  3991 %}
  3994 //----------ATTRIBUTES---------------------------------------------------------
  3996 //----------Operand Attributes-------------------------------------------------
  3997 op_attrib op_cost(1);          // Required cost attribute.
  3999 //----------Instruction Attributes---------------------------------------------
  4001 // Cost attribute. required.
  4002 ins_attrib ins_cost(DEFAULT_COST);
  4004 // Is this instruction a non-matching short branch variant of some
  4005 // long branch? Not required.
  4006 ins_attrib ins_short_branch(0);
  4008 ins_attrib ins_is_TrapBasedCheckNode(true);
  4010 // Number of constants.
  4011 // This instruction uses the given number of constants
  4012 // (optional attribute).
  4013 // This is needed to determine in time whether the constant pool will
  4014 // exceed 4000 entries. Before postalloc_expand the overall number of constants
  4015 // is determined. It's also used to compute the constant pool size
  4016 // in Output().
  4017 ins_attrib ins_num_consts(0);
  4019 // Required alignment attribute (must be a power of 2) specifies the
  4020 // alignment that some part of the instruction (not necessarily the
  4021 // start) requires. If > 1, a compute_padding() function must be
  4022 // provided for the instruction.
  4023 ins_attrib ins_alignment(1);
  4025 // Enforce/prohibit rematerializations.
  4026 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
  4027 //   then rematerialization of that instruction is prohibited and the
  4028 //   instruction's value will be spilled if necessary.
  4029 //   Causes that MachNode::rematerialize() returns false.
  4030 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
  4031 //   then rematerialization should be enforced and a copy of the instruction
  4032 //   should be inserted if possible; rematerialization is not guaranteed.
  4033 //   Note: this may result in rematerializations in front of every use.
  4034 //   Causes that MachNode::rematerialize() can return true.
  4035 // (optional attribute)
  4036 ins_attrib ins_cannot_rematerialize(false);
  4037 ins_attrib ins_should_rematerialize(false);
  4039 // Instruction has variable size depending on alignment.
  4040 ins_attrib ins_variable_size_depending_on_alignment(false);
  4042 // Instruction is a nop.
  4043 ins_attrib ins_is_nop(false);
  4045 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
  4046 ins_attrib ins_use_mach_if_fast_lock_node(false);
  4048 // Field for the toc offset of a constant.
  4049 //
  4050 // This is needed if the toc offset is not encodable as an immediate in
  4051 // the PPC load instruction. If so, the upper (hi) bits of the offset are
  4052 // added to the toc, and from this a load with immediate is performed.
  4053 // With postalloc expand, we get two nodes that require the same offset
  4054 // but which don't know about each other. The offset is only known
  4055 // when the constant is added to the constant pool during emitting.
  4056 // It is generated in the 'hi'-node adding the upper bits, and saved
  4057 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
  4058 // the offset from there when it gets encoded.
  4059 ins_attrib ins_field_const_toc_offset(0);
  4060 ins_attrib ins_field_const_toc_offset_hi_node(0);
  4062 // A field that can hold the instructions offset in the code buffer.
  4063 // Set in the nodes emitter.
  4064 ins_attrib ins_field_cbuf_insts_offset(-1);
  4066 // Fields for referencing a call's load-IC-node.
  4067 // If the toc offset can not be encoded as an immediate in a load, we
  4068 // use two nodes.
  4069 ins_attrib ins_field_load_ic_hi_node(0);
  4070 ins_attrib ins_field_load_ic_node(0);
  4072 //----------OPERANDS-----------------------------------------------------------
  4073 // Operand definitions must precede instruction definitions for correct
  4074 // parsing in the ADLC because operands constitute user defined types
  4075 // which are used in instruction definitions.
  4076 //
  4077 // Formats are generated automatically for constants and base registers.
  4079 //----------Simple Operands----------------------------------------------------
  4080 // Immediate Operands
  4082 // Integer Immediate: 32-bit
  4083 operand immI() %{
  4084   match(ConI);
  4085   op_cost(40);
  4086   format %{ %}
  4087   interface(CONST_INTER);
  4088 %}
  4090 operand immI8() %{
  4091   predicate(Assembler::is_simm(n->get_int(), 8));
  4092   op_cost(0);
  4093   match(ConI);
  4094   format %{ %}
  4095   interface(CONST_INTER);
  4096 %}
  4098 // Integer Immediate: 16-bit
  4099 operand immI16() %{
  4100   predicate(Assembler::is_simm(n->get_int(), 16));
  4101   op_cost(0);
  4102   match(ConI);
  4103   format %{ %}
  4104   interface(CONST_INTER);
  4105 %}
  4107 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
  4108 operand immIhi16() %{
  4109   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
  4110   match(ConI);
  4111   op_cost(0);
  4112   format %{ %}
  4113   interface(CONST_INTER);
  4114 %}
  4116 operand immInegpow2() %{
  4117   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
  4118   match(ConI);
  4119   op_cost(0);
  4120   format %{ %}
  4121   interface(CONST_INTER);
  4122 %}
  4124 operand immIpow2minus1() %{
  4125   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
  4126   match(ConI);
  4127   op_cost(0);
  4128   format %{ %}
  4129   interface(CONST_INTER);
  4130 %}
  4132 operand immIpowerOf2() %{
  4133   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
  4134   match(ConI);
  4135   op_cost(0);
  4136   format %{ %}
  4137   interface(CONST_INTER);
  4138 %}
  4140 // Unsigned Integer Immediate: the values 0-31
  4141 operand uimmI5() %{
  4142   predicate(Assembler::is_uimm(n->get_int(), 5));
  4143   match(ConI);
  4144   op_cost(0);
  4145   format %{ %}
  4146   interface(CONST_INTER);
  4147 %}
  4149 // Unsigned Integer Immediate: 6-bit
  4150 operand uimmI6() %{
  4151   predicate(Assembler::is_uimm(n->get_int(), 6));
  4152   match(ConI);
  4153   op_cost(0);
  4154   format %{ %}
  4155   interface(CONST_INTER);
  4156 %}
  4158 // Unsigned Integer Immediate:  6-bit int, greater than 32
  4159 operand uimmI6_ge32() %{
  4160   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
  4161   match(ConI);
  4162   op_cost(0);
  4163   format %{ %}
  4164   interface(CONST_INTER);
  4165 %}
  4167 // Unsigned Integer Immediate: 15-bit
  4168 operand uimmI15() %{
  4169   predicate(Assembler::is_uimm(n->get_int(), 15));
  4170   match(ConI);
  4171   op_cost(0);
  4172   format %{ %}
  4173   interface(CONST_INTER);
  4174 %}
  4176 // Unsigned Integer Immediate: 16-bit
  4177 operand uimmI16() %{
  4178   predicate(Assembler::is_uimm(n->get_int(), 16));
  4179   match(ConI);
  4180   op_cost(0);
  4181   format %{ %}
  4182   interface(CONST_INTER);
  4183 %}
  4185 // constant 'int 0'.
  4186 operand immI_0() %{
  4187   predicate(n->get_int() == 0);
  4188   match(ConI);
  4189   op_cost(0);
  4190   format %{ %}
  4191   interface(CONST_INTER);
  4192 %}
  4194 // constant 'int 1'.
  4195 operand immI_1() %{
  4196   predicate(n->get_int() == 1);
  4197   match(ConI);
  4198   op_cost(0);
  4199   format %{ %}
  4200   interface(CONST_INTER);
  4201 %}
  4203 // constant 'int -1'.
  4204 operand immI_minus1() %{
  4205   predicate(n->get_int() == -1);
  4206   match(ConI);
  4207   op_cost(0);
  4208   format %{ %}
  4209   interface(CONST_INTER);
  4210 %}
  4212 // int value 16.
  4213 operand immI_16() %{
  4214   predicate(n->get_int() == 16);
  4215   match(ConI);
  4216   op_cost(0);
  4217   format %{ %}
  4218   interface(CONST_INTER);
  4219 %}
  4221 // int value 24.
  4222 operand immI_24() %{
  4223   predicate(n->get_int() == 24);
  4224   match(ConI);
  4225   op_cost(0);
  4226   format %{ %}
  4227   interface(CONST_INTER);
  4228 %}
  4230 // Compressed oops constants
  4231 // Pointer Immediate
  4232 operand immN() %{
  4233   match(ConN);
  4235   op_cost(10);
  4236   format %{ %}
  4237   interface(CONST_INTER);
  4238 %}
  4240 // NULL Pointer Immediate
  4241 operand immN_0() %{
  4242   predicate(n->get_narrowcon() == 0);
  4243   match(ConN);
  4245   op_cost(0);
  4246   format %{ %}
  4247   interface(CONST_INTER);
  4248 %}
  4250 // Compressed klass constants
  4251 operand immNKlass() %{
  4252   match(ConNKlass);
  4254   op_cost(0);
  4255   format %{ %}
  4256   interface(CONST_INTER);
  4257 %}
  4259 // This operand can be used to avoid matching of an instruct
  4260 // with chain rule.
  4261 operand immNKlass_NM() %{
  4262   match(ConNKlass);
  4263   predicate(false);
  4264   op_cost(0);
  4265   format %{ %}
  4266   interface(CONST_INTER);
  4267 %}
  4269 // Pointer Immediate: 64-bit
  4270 operand immP() %{
  4271   match(ConP);
  4272   op_cost(0);
  4273   format %{ %}
  4274   interface(CONST_INTER);
  4275 %}
  4277 // Operand to avoid match of loadConP.
  4278 // This operand can be used to avoid matching of an instruct
  4279 // with chain rule.
  4280 operand immP_NM() %{
  4281   match(ConP);
  4282   predicate(false);
  4283   op_cost(0);
  4284   format %{ %}
  4285   interface(CONST_INTER);
  4286 %}
  4288 // costant 'pointer 0'.
  4289 operand immP_0() %{
  4290   predicate(n->get_ptr() == 0);
  4291   match(ConP);
  4292   op_cost(0);
  4293   format %{ %}
  4294   interface(CONST_INTER);
  4295 %}
  4297 // pointer 0x0 or 0x1
  4298 operand immP_0or1() %{
  4299   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
  4300   match(ConP);
  4301   op_cost(0);
  4302   format %{ %}
  4303   interface(CONST_INTER);
  4304 %}
  4306 operand immL() %{
  4307   match(ConL);
  4308   op_cost(40);
  4309   format %{ %}
  4310   interface(CONST_INTER);
  4311 %}
  4313 // Long Immediate: 16-bit
  4314 operand immL16() %{
  4315   predicate(Assembler::is_simm(n->get_long(), 16));
  4316   match(ConL);
  4317   op_cost(0);
  4318   format %{ %}
  4319   interface(CONST_INTER);
  4320 %}
  4322 // Long Immediate: 16-bit, 4-aligned
  4323 operand immL16Alg4() %{
  4324   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
  4325   match(ConL);
  4326   op_cost(0);
  4327   format %{ %}
  4328   interface(CONST_INTER);
  4329 %}
  4331 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
  4332 operand immL32hi16() %{
  4333   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
  4334   match(ConL);
  4335   op_cost(0);
  4336   format %{ %}
  4337   interface(CONST_INTER);
  4338 %}
  4340 // Long Immediate: 32-bit
  4341 operand immL32() %{
  4342   predicate(Assembler::is_simm(n->get_long(), 32));
  4343   match(ConL);
  4344   op_cost(0);
  4345   format %{ %}
  4346   interface(CONST_INTER);
  4347 %}
  4349 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
  4350 operand immLhighest16() %{
  4351   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
  4352   match(ConL);
  4353   op_cost(0);
  4354   format %{ %}
  4355   interface(CONST_INTER);
  4356 %}
  4358 operand immLnegpow2() %{
  4359   predicate(is_power_of_2_long((jlong)-(n->get_long())));
  4360   match(ConL);
  4361   op_cost(0);
  4362   format %{ %}
  4363   interface(CONST_INTER);
  4364 %}
  4366 operand immLpow2minus1() %{
  4367   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
  4368             (n->get_long() != (jlong)0xffffffffffffffffL));
  4369   match(ConL);
  4370   op_cost(0);
  4371   format %{ %}
  4372   interface(CONST_INTER);
  4373 %}
  4375 // constant 'long 0'.
  4376 operand immL_0() %{
  4377   predicate(n->get_long() == 0L);
  4378   match(ConL);
  4379   op_cost(0);
  4380   format %{ %}
  4381   interface(CONST_INTER);
  4382 %}
  4384 // constat ' long -1'.
  4385 operand immL_minus1() %{
  4386   predicate(n->get_long() == -1L);
  4387   match(ConL);
  4388   op_cost(0);
  4389   format %{ %}
  4390   interface(CONST_INTER);
  4391 %}
  4393 // Long Immediate: low 32-bit mask
  4394 operand immL_32bits() %{
  4395   predicate(n->get_long() == 0xFFFFFFFFL);
  4396   match(ConL);
  4397   op_cost(0);
  4398   format %{ %}
  4399   interface(CONST_INTER);
  4400 %}
  4402 // Unsigned Long Immediate: 16-bit
  4403 operand uimmL16() %{
  4404   predicate(Assembler::is_uimm(n->get_long(), 16));
  4405   match(ConL);
  4406   op_cost(0);
  4407   format %{ %}
  4408   interface(CONST_INTER);
  4409 %}
  4411 // Float Immediate
  4412 operand immF() %{
  4413   match(ConF);
  4414   op_cost(40);
  4415   format %{ %}
  4416   interface(CONST_INTER);
  4417 %}
  4419 // constant 'float +0.0'.
  4420 operand immF_0() %{
  4421   predicate((n->getf() == 0) &&
  4422             (fpclassify(n->getf()) == FP_ZERO) && (signbit(n->getf()) == 0));
  4423   match(ConF);
  4424   op_cost(0);
  4425   format %{ %}
  4426   interface(CONST_INTER);
  4427 %}
  4429 // Double Immediate
  4430 operand immD() %{
  4431   match(ConD);
  4432   op_cost(40);
  4433   format %{ %}
  4434   interface(CONST_INTER);
  4435 %}
  4437 // Integer Register Operands
  4438 // Integer Destination Register
  4439 // See definition of reg_class bits32_reg_rw.
  4440 operand iRegIdst() %{
  4441   constraint(ALLOC_IN_RC(bits32_reg_rw));
  4442   match(RegI);
  4443   match(rscratch1RegI);
  4444   match(rscratch2RegI);
  4445   match(rarg1RegI);
  4446   match(rarg2RegI);
  4447   match(rarg3RegI);
  4448   match(rarg4RegI);
  4449   format %{ %}
  4450   interface(REG_INTER);
  4451 %}
  4453 // Integer Source Register
  4454 // See definition of reg_class bits32_reg_ro.
  4455 operand iRegIsrc() %{
  4456   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4457   match(RegI);
  4458   match(rscratch1RegI);
  4459   match(rscratch2RegI);
  4460   match(rarg1RegI);
  4461   match(rarg2RegI);
  4462   match(rarg3RegI);
  4463   match(rarg4RegI);
  4464   format %{ %}
  4465   interface(REG_INTER);
  4466 %}
  4468 operand rscratch1RegI() %{
  4469   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
  4470   match(iRegIdst);
  4471   format %{ %}
  4472   interface(REG_INTER);
  4473 %}
  4475 operand rscratch2RegI() %{
  4476   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
  4477   match(iRegIdst);
  4478   format %{ %}
  4479   interface(REG_INTER);
  4480 %}
  4482 operand rarg1RegI() %{
  4483   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
  4484   match(iRegIdst);
  4485   format %{ %}
  4486   interface(REG_INTER);
  4487 %}
  4489 operand rarg2RegI() %{
  4490   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
  4491   match(iRegIdst);
  4492   format %{ %}
  4493   interface(REG_INTER);
  4494 %}
  4496 operand rarg3RegI() %{
  4497   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
  4498   match(iRegIdst);
  4499   format %{ %}
  4500   interface(REG_INTER);
  4501 %}
  4503 operand rarg4RegI() %{
  4504   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
  4505   match(iRegIdst);
  4506   format %{ %}
  4507   interface(REG_INTER);
  4508 %}
  4510 operand rarg1RegL() %{
  4511   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  4512   match(iRegLdst);
  4513   format %{ %}
  4514   interface(REG_INTER);
  4515 %}
  4517 operand rarg2RegL() %{
  4518   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  4519   match(iRegLdst);
  4520   format %{ %}
  4521   interface(REG_INTER);
  4522 %}
  4524 operand rarg3RegL() %{
  4525   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  4526   match(iRegLdst);
  4527   format %{ %}
  4528   interface(REG_INTER);
  4529 %}
  4531 operand rarg4RegL() %{
  4532   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  4533   match(iRegLdst);
  4534   format %{ %}
  4535   interface(REG_INTER);
  4536 %}
  4538 // Pointer Destination Register
  4539 // See definition of reg_class bits64_reg_rw.
  4540 operand iRegPdst() %{
  4541   constraint(ALLOC_IN_RC(bits64_reg_rw));
  4542   match(RegP);
  4543   match(rscratch1RegP);
  4544   match(rscratch2RegP);
  4545   match(rarg1RegP);
  4546   match(rarg2RegP);
  4547   match(rarg3RegP);
  4548   match(rarg4RegP);
  4549   format %{ %}
  4550   interface(REG_INTER);
  4551 %}
  4553 // Pointer Destination Register
  4554 // Operand not using r11 and r12 (killed in epilog).
  4555 operand iRegPdstNoScratch() %{
  4556   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
  4557   match(RegP);
  4558   match(rarg1RegP);
  4559   match(rarg2RegP);
  4560   match(rarg3RegP);
  4561   match(rarg4RegP);
  4562   format %{ %}
  4563   interface(REG_INTER);
  4564 %}
  4566 // Pointer Source Register
  4567 // See definition of reg_class bits64_reg_ro.
  4568 operand iRegPsrc() %{
  4569   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4570   match(RegP);
  4571   match(iRegPdst);
  4572   match(rscratch1RegP);
  4573   match(rscratch2RegP);
  4574   match(rarg1RegP);
  4575   match(rarg2RegP);
  4576   match(rarg3RegP);
  4577   match(rarg4RegP);
  4578   match(threadRegP);
  4579   format %{ %}
  4580   interface(REG_INTER);
  4581 %}
  4583 // Thread operand.
  4584 operand threadRegP() %{
  4585   constraint(ALLOC_IN_RC(thread_bits64_reg));
  4586   match(iRegPdst);
  4587   format %{ "R16" %}
  4588   interface(REG_INTER);
  4589 %}
  4591 operand rscratch1RegP() %{
  4592   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  4593   match(iRegPdst);
  4594   format %{ "R11" %}
  4595   interface(REG_INTER);
  4596 %}
  4598 operand rscratch2RegP() %{
  4599   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  4600   match(iRegPdst);
  4601   format %{ %}
  4602   interface(REG_INTER);
  4603 %}
  4605 operand rarg1RegP() %{
  4606   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  4607   match(iRegPdst);
  4608   format %{ %}
  4609   interface(REG_INTER);
  4610 %}
  4612 operand rarg2RegP() %{
  4613   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  4614   match(iRegPdst);
  4615   format %{ %}
  4616   interface(REG_INTER);
  4617 %}
  4619 operand rarg3RegP() %{
  4620   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  4621   match(iRegPdst);
  4622   format %{ %}
  4623   interface(REG_INTER);
  4624 %}
  4626 operand rarg4RegP() %{
  4627   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  4628   match(iRegPdst);
  4629   format %{ %}
  4630   interface(REG_INTER);
  4631 %}
  4633 operand iRegNsrc() %{
  4634   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4635   match(RegN);
  4636   match(iRegNdst);
  4638   format %{ %}
  4639   interface(REG_INTER);
  4640 %}
  4642 operand iRegNdst() %{
  4643   constraint(ALLOC_IN_RC(bits32_reg_rw));
  4644   match(RegN);
  4646   format %{ %}
  4647   interface(REG_INTER);
  4648 %}
  4650 // Long Destination Register
  4651 // See definition of reg_class bits64_reg_rw.
  4652 operand iRegLdst() %{
  4653   constraint(ALLOC_IN_RC(bits64_reg_rw));
  4654   match(RegL);
  4655   match(rscratch1RegL);
  4656   match(rscratch2RegL);
  4657   format %{ %}
  4658   interface(REG_INTER);
  4659 %}
  4661 // Long Source Register
  4662 // See definition of reg_class bits64_reg_ro.
  4663 operand iRegLsrc() %{
  4664   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4665   match(RegL);
  4666   match(iRegLdst);
  4667   match(rscratch1RegL);
  4668   match(rscratch2RegL);
  4669   format %{ %}
  4670   interface(REG_INTER);
  4671 %}
  4673 // Special operand for ConvL2I.
  4674 operand iRegL2Isrc(iRegLsrc reg) %{
  4675   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4676   match(ConvL2I reg);
  4677   format %{ "ConvL2I($reg)" %}
  4678   interface(REG_INTER)
  4679 %}
  4681 operand rscratch1RegL() %{
  4682   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  4683   match(RegL);
  4684   format %{ %}
  4685   interface(REG_INTER);
  4686 %}
  4688 operand rscratch2RegL() %{
  4689   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  4690   match(RegL);
  4691   format %{ %}
  4692   interface(REG_INTER);
  4693 %}
  4695 // Condition Code Flag Registers
  4696 operand flagsReg() %{
  4697   constraint(ALLOC_IN_RC(int_flags));
  4698   match(RegFlags);
  4699   format %{ %}
  4700   interface(REG_INTER);
  4701 %}
  4703 // Condition Code Flag Register CR0
  4704 operand flagsRegCR0() %{
  4705   constraint(ALLOC_IN_RC(int_flags_CR0));
  4706   match(RegFlags);
  4707   format %{ "CR0" %}
  4708   interface(REG_INTER);
  4709 %}
  4711 operand flagsRegCR1() %{
  4712   constraint(ALLOC_IN_RC(int_flags_CR1));
  4713   match(RegFlags);
  4714   format %{ "CR1" %}
  4715   interface(REG_INTER);
  4716 %}
  4718 operand flagsRegCR6() %{
  4719   constraint(ALLOC_IN_RC(int_flags_CR6));
  4720   match(RegFlags);
  4721   format %{ "CR6" %}
  4722   interface(REG_INTER);
  4723 %}
  4725 operand regCTR() %{
  4726   constraint(ALLOC_IN_RC(ctr_reg));
  4727   // RegFlags should work. Introducing a RegSpecial type would cause a
  4728   // lot of changes.
  4729   match(RegFlags);
  4730   format %{"SR_CTR" %}
  4731   interface(REG_INTER);
  4732 %}
  4734 operand regD() %{
  4735   constraint(ALLOC_IN_RC(dbl_reg));
  4736   match(RegD);
  4737   format %{ %}
  4738   interface(REG_INTER);
  4739 %}
  4741 operand regF() %{
  4742   constraint(ALLOC_IN_RC(flt_reg));
  4743   match(RegF);
  4744   format %{ %}
  4745   interface(REG_INTER);
  4746 %}
  4748 // Special Registers
  4750 // Method Register
  4751 operand inline_cache_regP(iRegPdst reg) %{
  4752   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
  4753   match(reg);
  4754   format %{ %}
  4755   interface(REG_INTER);
  4756 %}
  4758 operand compiler_method_oop_regP(iRegPdst reg) %{
  4759   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
  4760   match(reg);
  4761   format %{ %}
  4762   interface(REG_INTER);
  4763 %}
  4765 operand interpreter_method_oop_regP(iRegPdst reg) %{
  4766   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
  4767   match(reg);
  4768   format %{ %}
  4769   interface(REG_INTER);
  4770 %}
  4772 // Operands to remove register moves in unscaled mode.
  4773 // Match read/write registers with an EncodeP node if neither shift nor add are required.
  4774 operand iRegP2N(iRegPsrc reg) %{
  4775   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
  4776   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4777   match(EncodeP reg);
  4778   format %{ "$reg" %}
  4779   interface(REG_INTER)
  4780 %}
  4782 operand iRegN2P(iRegNsrc reg) %{
  4783   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4784   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4785   match(DecodeN reg);
  4786   match(DecodeNKlass reg);
  4787   format %{ "$reg" %}
  4788   interface(REG_INTER)
  4789 %}
  4791 //----------Complex Operands---------------------------------------------------
  4792 // Indirect Memory Reference
  4793 operand indirect(iRegPsrc reg) %{
  4794   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4795   match(reg);
  4796   op_cost(100);
  4797   format %{ "[$reg]" %}
  4798   interface(MEMORY_INTER) %{
  4799     base($reg);
  4800     index(0x0);
  4801     scale(0x0);
  4802     disp(0x0);
  4803   %}
  4804 %}
  4806 // Indirect with Offset
  4807 operand indOffset16(iRegPsrc reg, immL16 offset) %{
  4808   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4809   match(AddP reg offset);
  4810   op_cost(100);
  4811   format %{ "[$reg + $offset]" %}
  4812   interface(MEMORY_INTER) %{
  4813     base($reg);
  4814     index(0x0);
  4815     scale(0x0);
  4816     disp($offset);
  4817   %}
  4818 %}
  4820 // Indirect with 4-aligned Offset
  4821 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
  4822   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4823   match(AddP reg offset);
  4824   op_cost(100);
  4825   format %{ "[$reg + $offset]" %}
  4826   interface(MEMORY_INTER) %{
  4827     base($reg);
  4828     index(0x0);
  4829     scale(0x0);
  4830     disp($offset);
  4831   %}
  4832 %}
  4834 //----------Complex Operands for Compressed OOPs-------------------------------
  4835 // Compressed OOPs with narrow_oop_shift == 0.
  4837 // Indirect Memory Reference, compressed OOP
  4838 operand indirectNarrow(iRegNsrc reg) %{
  4839   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4840   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4841   match(DecodeN reg);
  4842   match(DecodeNKlass reg);
  4843   op_cost(100);
  4844   format %{ "[$reg]" %}
  4845   interface(MEMORY_INTER) %{
  4846     base($reg);
  4847     index(0x0);
  4848     scale(0x0);
  4849     disp(0x0);
  4850   %}
  4851 %}
  4853 // Indirect with Offset, compressed OOP
  4854 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
  4855   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4856   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4857   match(AddP (DecodeN reg) offset);
  4858   match(AddP (DecodeNKlass reg) offset);
  4859   op_cost(100);
  4860   format %{ "[$reg + $offset]" %}
  4861   interface(MEMORY_INTER) %{
  4862     base($reg);
  4863     index(0x0);
  4864     scale(0x0);
  4865     disp($offset);
  4866   %}
  4867 %}
  4869 // Indirect with 4-aligned Offset, compressed OOP
  4870 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
  4871   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4872   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4873   match(AddP (DecodeN reg) offset);
  4874   match(AddP (DecodeNKlass reg) offset);
  4875   op_cost(100);
  4876   format %{ "[$reg + $offset]" %}
  4877   interface(MEMORY_INTER) %{
  4878     base($reg);
  4879     index(0x0);
  4880     scale(0x0);
  4881     disp($offset);
  4882   %}
  4883 %}
  4885 //----------Special Memory Operands--------------------------------------------
  4886 // Stack Slot Operand
  4887 //
  4888 // This operand is used for loading and storing temporary values on
  4889 // the stack where a match requires a value to flow through memory.
  4890 operand stackSlotI(sRegI reg) %{
  4891   constraint(ALLOC_IN_RC(stack_slots));
  4892   op_cost(100);
  4893   //match(RegI);
  4894   format %{ "[sp+$reg]" %}
  4895   interface(MEMORY_INTER) %{
  4896     base(0x1);   // R1_SP
  4897     index(0x0);
  4898     scale(0x0);
  4899     disp($reg);  // Stack Offset
  4900   %}
  4901 %}
  4903 operand stackSlotL(sRegL reg) %{
  4904   constraint(ALLOC_IN_RC(stack_slots));
  4905   op_cost(100);
  4906   //match(RegL);
  4907   format %{ "[sp+$reg]" %}
  4908   interface(MEMORY_INTER) %{
  4909     base(0x1);   // R1_SP
  4910     index(0x0);
  4911     scale(0x0);
  4912     disp($reg);  // Stack Offset
  4913   %}
  4914 %}
  4916 operand stackSlotP(sRegP reg) %{
  4917   constraint(ALLOC_IN_RC(stack_slots));
  4918   op_cost(100);
  4919   //match(RegP);
  4920   format %{ "[sp+$reg]" %}
  4921   interface(MEMORY_INTER) %{
  4922     base(0x1);   // R1_SP
  4923     index(0x0);
  4924     scale(0x0);
  4925     disp($reg);  // Stack Offset
  4926   %}
  4927 %}
  4929 operand stackSlotF(sRegF reg) %{
  4930   constraint(ALLOC_IN_RC(stack_slots));
  4931   op_cost(100);
  4932   //match(RegF);
  4933   format %{ "[sp+$reg]" %}
  4934   interface(MEMORY_INTER) %{
  4935     base(0x1);   // R1_SP
  4936     index(0x0);
  4937     scale(0x0);
  4938     disp($reg);  // Stack Offset
  4939   %}
  4940 %}
  4942 operand stackSlotD(sRegD reg) %{
  4943   constraint(ALLOC_IN_RC(stack_slots));
  4944   op_cost(100);
  4945   //match(RegD);
  4946   format %{ "[sp+$reg]" %}
  4947   interface(MEMORY_INTER) %{
  4948     base(0x1);   // R1_SP
  4949     index(0x0);
  4950     scale(0x0);
  4951     disp($reg);  // Stack Offset
  4952   %}
  4953 %}
  4955 // Operands for expressing Control Flow
  4956 // NOTE: Label is a predefined operand which should not be redefined in
  4957 //       the AD file. It is generically handled within the ADLC.
  4959 //----------Conditional Branch Operands----------------------------------------
  4960 // Comparison Op
  4961 //
  4962 // This is the operation of the comparison, and is limited to the
  4963 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
  4964 // (!=).
  4965 //
  4966 // Other attributes of the comparison, such as unsignedness, are specified
  4967 // by the comparison instruction that sets a condition code flags register.
  4968 // That result is represented by a flags operand whose subtype is appropriate
  4969 // to the unsignedness (etc.) of the comparison.
  4970 //
  4971 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4972 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4973 // by matching a specific subtype of Bool operand below.
  4975 // When used for floating point comparisons: unordered same as less.
  4976 operand cmpOp() %{
  4977   match(Bool);
  4978   format %{ "" %}
  4979   interface(COND_INTER) %{
  4980                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
  4981                            //           BO          &  BI
  4982     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
  4983     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
  4984     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
  4985     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
  4986     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
  4987     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
  4988     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
  4989     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
  4990   %}
  4991 %}
  4993 //----------OPERAND CLASSES----------------------------------------------------
  4994 // Operand Classes are groups of operands that are used to simplify
  4995 // instruction definitions by not requiring the AD writer to specify
  4996 // seperate instructions for every form of operand when the
  4997 // instruction accepts multiple operand types with the same basic
  4998 // encoding and format. The classic case of this is memory operands.
  4999 // Indirect is not included since its use is limited to Compare & Swap.
  5001 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indOffset16Narrow);
  5002 // Memory operand where offsets are 4-aligned. Required for ld, std.
  5003 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4);
  5004 opclass indirectMemory(indirect, indirectNarrow);
  5006 // Special opclass for I and ConvL2I.
  5007 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
  5009 // Operand classes to match encode and decode. iRegN_P2N is only used
  5010 // for storeN. I have never seen an encode node elsewhere.
  5011 opclass iRegN_P2N(iRegNsrc, iRegP2N);
  5012 opclass iRegP_N2P(iRegPsrc, iRegN2P);
  5014 //----------PIPELINE-----------------------------------------------------------
  5016 pipeline %{
  5018 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
  5019 // J. Res. & Dev., No. 1, Jan. 2002.
  5021 //----------ATTRIBUTES---------------------------------------------------------
  5022 attributes %{
  5024   // Power4 instructions are of fixed length.
  5025   fixed_size_instructions;
  5027   // TODO: if `bundle' means number of instructions fetched
  5028   // per cycle, this is 8. If `bundle' means Power4 `group', that is
  5029   // max instructions issued per cycle, this is 5.
  5030   max_instructions_per_bundle = 8;
  5032   // A Power4 instruction is 4 bytes long.
  5033   instruction_unit_size = 4;
  5035   // The Power4 processor fetches 64 bytes...
  5036   instruction_fetch_unit_size = 64;
  5038   // ...in one line
  5039   instruction_fetch_units = 1
  5041   // Unused, list one so that array generated by adlc is not empty.
  5042   // Aix compiler chokes if _nop_count = 0.
  5043   nops(fxNop);
  5044 %}
  5046 //----------RESOURCES----------------------------------------------------------
  5047 // Resources are the functional units available to the machine
  5048 resources(
  5049    PPC_BR,         // branch unit
  5050    PPC_CR,         // condition unit
  5051    PPC_FX1,        // integer arithmetic unit 1
  5052    PPC_FX2,        // integer arithmetic unit 2
  5053    PPC_LDST1,      // load/store unit 1
  5054    PPC_LDST2,      // load/store unit 2
  5055    PPC_FP1,        // float arithmetic unit 1
  5056    PPC_FP2,        // float arithmetic unit 2
  5057    PPC_LDST = PPC_LDST1 | PPC_LDST2,
  5058    PPC_FX = PPC_FX1 | PPC_FX2,
  5059    PPC_FP = PPC_FP1 | PPC_FP2
  5060  );
  5062 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5063 // Pipeline Description specifies the stages in the machine's pipeline
  5064 pipe_desc(
  5065    // Power4 longest pipeline path
  5066    PPC_IF,   // instruction fetch
  5067    PPC_IC,
  5068    //PPC_BP, // branch prediction
  5069    PPC_D0,   // decode
  5070    PPC_D1,   // decode
  5071    PPC_D2,   // decode
  5072    PPC_D3,   // decode
  5073    PPC_Xfer1,
  5074    PPC_GD,   // group definition
  5075    PPC_MP,   // map
  5076    PPC_ISS,  // issue
  5077    PPC_RF,   // resource fetch
  5078    PPC_EX1,  // execute (all units)
  5079    PPC_EX2,  // execute (FP, LDST)
  5080    PPC_EX3,  // execute (FP, LDST)
  5081    PPC_EX4,  // execute (FP)
  5082    PPC_EX5,  // execute (FP)
  5083    PPC_EX6,  // execute (FP)
  5084    PPC_WB,   // write back
  5085    PPC_Xfer2,
  5086    PPC_CP
  5087  );
  5089 //----------PIPELINE CLASSES---------------------------------------------------
  5090 // Pipeline Classes describe the stages in which input and output are
  5091 // referenced by the hardware pipeline.
  5093 // Simple pipeline classes.
  5095 // Default pipeline class.
  5096 pipe_class pipe_class_default() %{
  5097   single_instruction;
  5098   fixed_latency(2);
  5099 %}
  5101 // Pipeline class for empty instructions.
  5102 pipe_class pipe_class_empty() %{
  5103   single_instruction;
  5104   fixed_latency(0);
  5105 %}
  5107 // Pipeline class for compares.
  5108 pipe_class pipe_class_compare() %{
  5109   single_instruction;
  5110   fixed_latency(16);
  5111 %}
  5113 // Pipeline class for traps.
  5114 pipe_class pipe_class_trap() %{
  5115   single_instruction;
  5116   fixed_latency(100);
  5117 %}
  5119 // Pipeline class for memory operations.
  5120 pipe_class pipe_class_memory() %{
  5121   single_instruction;
  5122   fixed_latency(16);
  5123 %}
  5125 // Pipeline class for call.
  5126 pipe_class pipe_class_call() %{
  5127   single_instruction;
  5128   fixed_latency(100);
  5129 %}
  5131 // Define the class for the Nop node.
  5132 define %{
  5133    MachNop = pipe_class_default;
  5134 %}
  5136 %}
  5138 //----------INSTRUCTIONS-------------------------------------------------------
  5140 // Naming of instructions:
  5141 //   opA_operB / opA_operB_operC:
  5142 //     Operation 'op' with one or two source operands 'oper'. Result
  5143 //     type is A, source operand types are B and C.
  5144 //     Iff A == B == C, B and C are left out.
  5145 //
  5146 // The instructions are ordered according to the following scheme:
  5147 //  - loads
  5148 //  - load constants
  5149 //  - prefetch
  5150 //  - store
  5151 //  - encode/decode
  5152 //  - membar
  5153 //  - conditional moves
  5154 //  - compare & swap
  5155 //  - arithmetic and logic operations
  5156 //    * int: Add, Sub, Mul, Div, Mod
  5157 //    * int: lShift, arShift, urShift, rot
  5158 //    * float: Add, Sub, Mul, Div
  5159 //    * and, or, xor ...
  5160 //  - register moves: float <-> int, reg <-> stack, repl
  5161 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
  5162 //  - conv (low level type cast requiring bit changes (sign extend etc)
  5163 //  - compares, range & zero checks.
  5164 //  - branches
  5165 //  - complex operations, intrinsics, min, max, replicate
  5166 //  - lock
  5167 //  - Calls
  5168 //
  5169 // If there are similar instructions with different types they are sorted:
  5170 // int before float
  5171 // small before big
  5172 // signed before unsigned
  5173 // e.g., loadS before loadUS before loadI before loadF.
  5176 //----------Load/Store Instructions--------------------------------------------
  5178 //----------Load Instructions--------------------------------------------------
  5180 // Converts byte to int.
  5181 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
  5182 // reuses the 'amount' operand, but adlc expects that operand specification
  5183 // and operands in match rule are equivalent.
  5184 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
  5185   effect(DEF dst, USE src);
  5186   format %{ "EXTSB   $dst, $src \t// byte->int" %}
  5187   size(4);
  5188   ins_encode %{
  5189     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  5190     __ extsb($dst$$Register, $src$$Register);
  5191   %}
  5192   ins_pipe(pipe_class_default);
  5193 %}
  5195 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
  5196   // match-rule, false predicate
  5197   match(Set dst (LoadB mem));
  5198   predicate(false);
  5200   format %{ "LBZ     $dst, $mem" %}
  5201   size(4);
  5202   ins_encode( enc_lbz(dst, mem) );
  5203   ins_pipe(pipe_class_memory);
  5204 %}
  5206 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
  5207   // match-rule, false predicate
  5208   match(Set dst (LoadB mem));
  5209   predicate(false);
  5211   format %{ "LBZ     $dst, $mem\n\t"
  5212             "TWI     $dst\n\t"
  5213             "ISYNC" %}
  5214   size(12);
  5215   ins_encode( enc_lbz_ac(dst, mem) );
  5216   ins_pipe(pipe_class_memory);
  5217 %}
  5219 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  5220 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
  5221   match(Set dst (LoadB mem));
  5222   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5223   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5224   expand %{
  5225     iRegIdst tmp;
  5226     loadUB_indirect(tmp, mem);
  5227     convB2I_reg_2(dst, tmp);
  5228   %}
  5229 %}
  5231 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
  5232   match(Set dst (LoadB mem));
  5233   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  5234   expand %{
  5235     iRegIdst tmp;
  5236     loadUB_indirect_ac(tmp, mem);
  5237     convB2I_reg_2(dst, tmp);
  5238   %}
  5239 %}
  5241 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
  5242   // match-rule, false predicate
  5243   match(Set dst (LoadB mem));
  5244   predicate(false);
  5246   format %{ "LBZ     $dst, $mem" %}
  5247   size(4);
  5248   ins_encode( enc_lbz(dst, mem) );
  5249   ins_pipe(pipe_class_memory);
  5250 %}
  5252 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
  5253   // match-rule, false predicate
  5254   match(Set dst (LoadB mem));
  5255   predicate(false);
  5257   format %{ "LBZ     $dst, $mem\n\t"
  5258             "TWI     $dst\n\t"
  5259             "ISYNC" %}
  5260   size(12);
  5261   ins_encode( enc_lbz_ac(dst, mem) );
  5262   ins_pipe(pipe_class_memory);
  5263 %}
  5265 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  5266 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
  5267   match(Set dst (LoadB mem));
  5268   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5269   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5271   expand %{
  5272     iRegIdst tmp;
  5273     loadUB_indOffset16(tmp, mem);
  5274     convB2I_reg_2(dst, tmp);
  5275   %}
  5276 %}
  5278 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
  5279   match(Set dst (LoadB mem));
  5280   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  5282   expand %{
  5283     iRegIdst tmp;
  5284     loadUB_indOffset16_ac(tmp, mem);
  5285     convB2I_reg_2(dst, tmp);
  5286   %}
  5287 %}
  5289 // Load Unsigned Byte (8bit UNsigned) into an int reg.
  5290 instruct loadUB(iRegIdst dst, memory mem) %{
  5291   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5292   match(Set dst (LoadUB mem));
  5293   ins_cost(MEMORY_REF_COST);
  5295   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
  5296   size(4);
  5297   ins_encode( enc_lbz(dst, mem) );
  5298   ins_pipe(pipe_class_memory);
  5299 %}
  5301 // Load  Unsigned Byte (8bit UNsigned) acquire.
  5302 instruct loadUB_ac(iRegIdst dst, memory mem) %{
  5303   match(Set dst (LoadUB mem));
  5304   ins_cost(3*MEMORY_REF_COST);
  5306   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
  5307             "TWI     $dst\n\t"
  5308             "ISYNC" %}
  5309   size(12);
  5310   ins_encode( enc_lbz_ac(dst, mem) );
  5311   ins_pipe(pipe_class_memory);
  5312 %}
  5314 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
  5315 instruct loadUB2L(iRegLdst dst, memory mem) %{
  5316   match(Set dst (ConvI2L (LoadUB mem)));
  5317   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  5318   ins_cost(MEMORY_REF_COST);
  5320   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
  5321   size(4);
  5322   ins_encode( enc_lbz(dst, mem) );
  5323   ins_pipe(pipe_class_memory);
  5324 %}
  5326 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
  5327   match(Set dst (ConvI2L (LoadUB mem)));
  5328   ins_cost(3*MEMORY_REF_COST);
  5330   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
  5331             "TWI     $dst\n\t"
  5332             "ISYNC" %}
  5333   size(12);
  5334   ins_encode( enc_lbz_ac(dst, mem) );
  5335   ins_pipe(pipe_class_memory);
  5336 %}
  5338 // Load Short (16bit signed)
  5339 instruct loadS(iRegIdst dst, memory mem) %{
  5340   match(Set dst (LoadS mem));
  5341   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5342   ins_cost(MEMORY_REF_COST);
  5344   format %{ "LHA     $dst, $mem" %}
  5345   size(4);
  5346   ins_encode %{
  5347     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
  5348     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5349     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  5350   %}
  5351   ins_pipe(pipe_class_memory);
  5352 %}
  5354 // Load Short (16bit signed) acquire.
  5355 instruct loadS_ac(iRegIdst dst, memory mem) %{
  5356   match(Set dst (LoadS mem));
  5357   ins_cost(3*MEMORY_REF_COST);
  5359   format %{ "LHA     $dst, $mem\t acquire\n\t"
  5360             "TWI     $dst\n\t"
  5361             "ISYNC" %}
  5362   size(12);
  5363   ins_encode %{
  5364     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5365     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5366     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  5367     __ twi_0($dst$$Register);
  5368     __ isync();
  5369   %}
  5370   ins_pipe(pipe_class_memory);
  5371 %}
  5373 // Load Char (16bit unsigned)
  5374 instruct loadUS(iRegIdst dst, memory mem) %{
  5375   match(Set dst (LoadUS mem));
  5376   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5377   ins_cost(MEMORY_REF_COST);
  5379   format %{ "LHZ     $dst, $mem" %}
  5380   size(4);
  5381   ins_encode( enc_lhz(dst, mem) );
  5382   ins_pipe(pipe_class_memory);
  5383 %}
  5385 // Load Char (16bit unsigned) acquire.
  5386 instruct loadUS_ac(iRegIdst dst, memory mem) %{
  5387   match(Set dst (LoadUS mem));
  5388   ins_cost(3*MEMORY_REF_COST);
  5390   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
  5391             "TWI     $dst\n\t"
  5392             "ISYNC" %}
  5393   size(12);
  5394   ins_encode( enc_lhz_ac(dst, mem) );
  5395   ins_pipe(pipe_class_memory);
  5396 %}
  5398 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
  5399 instruct loadUS2L(iRegLdst dst, memory mem) %{
  5400   match(Set dst (ConvI2L (LoadUS mem)));
  5401   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  5402   ins_cost(MEMORY_REF_COST);
  5404   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
  5405   size(4);
  5406   ins_encode( enc_lhz(dst, mem) );
  5407   ins_pipe(pipe_class_memory);
  5408 %}
  5410 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
  5411 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
  5412   match(Set dst (ConvI2L (LoadUS mem)));
  5413   ins_cost(3*MEMORY_REF_COST);
  5415   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
  5416             "TWI     $dst\n\t"
  5417             "ISYNC" %}
  5418   size(12);
  5419   ins_encode( enc_lhz_ac(dst, mem) );
  5420   ins_pipe(pipe_class_memory);
  5421 %}
  5423 // Load Integer.
  5424 instruct loadI(iRegIdst dst, memory mem) %{
  5425   match(Set dst (LoadI mem));
  5426   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5427   ins_cost(MEMORY_REF_COST);
  5429   format %{ "LWZ     $dst, $mem" %}
  5430   size(4);
  5431   ins_encode( enc_lwz(dst, mem) );
  5432   ins_pipe(pipe_class_memory);
  5433 %}
  5435 // Load Integer acquire.
  5436 instruct loadI_ac(iRegIdst dst, memory mem) %{
  5437   match(Set dst (LoadI mem));
  5438   ins_cost(3*MEMORY_REF_COST);
  5440   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
  5441             "TWI     $dst\n\t"
  5442             "ISYNC" %}
  5443   size(12);
  5444   ins_encode( enc_lwz_ac(dst, mem) );
  5445   ins_pipe(pipe_class_memory);
  5446 %}
  5448 // Match loading integer and casting it to unsigned int in
  5449 // long register.
  5450 // LoadI + ConvI2L + AndL 0xffffffff.
  5451 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
  5452   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5453   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
  5454   ins_cost(MEMORY_REF_COST);
  5456   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
  5457   size(4);
  5458   ins_encode( enc_lwz(dst, mem) );
  5459   ins_pipe(pipe_class_memory);
  5460 %}
  5462 // Match loading integer and casting it to long.
  5463 instruct loadI2L(iRegLdst dst, memory mem) %{
  5464   match(Set dst (ConvI2L (LoadI mem)));
  5465   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  5466   ins_cost(MEMORY_REF_COST);
  5468   format %{ "LWA     $dst, $mem \t// loadI2L" %}
  5469   size(4);
  5470   ins_encode %{
  5471     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  5472     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5473     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  5474   %}
  5475   ins_pipe(pipe_class_memory);
  5476 %}
  5478 // Match loading integer and casting it to long - acquire.
  5479 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
  5480   match(Set dst (ConvI2L (LoadI mem)));
  5481   ins_cost(3*MEMORY_REF_COST);
  5483   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
  5484             "TWI     $dst\n\t"
  5485             "ISYNC" %}
  5486   size(12);
  5487   ins_encode %{
  5488     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  5489     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5490     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  5491     __ twi_0($dst$$Register);
  5492     __ isync();
  5493   %}
  5494   ins_pipe(pipe_class_memory);
  5495 %}
  5497 // Load Long - aligned
  5498 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
  5499   match(Set dst (LoadL mem));
  5500   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5501   ins_cost(MEMORY_REF_COST);
  5503   format %{ "LD      $dst, $mem \t// long" %}
  5504   size(4);
  5505   ins_encode( enc_ld(dst, mem) );
  5506   ins_pipe(pipe_class_memory);
  5507 %}
  5509 // Load Long - aligned acquire.
  5510 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
  5511   match(Set dst (LoadL mem));
  5512   ins_cost(3*MEMORY_REF_COST);
  5514   format %{ "LD      $dst, $mem \t// long acquire\n\t"
  5515             "TWI     $dst\n\t"
  5516             "ISYNC" %}
  5517   size(12);
  5518   ins_encode( enc_ld_ac(dst, mem) );
  5519   ins_pipe(pipe_class_memory);
  5520 %}
  5522 // Load Long - UNaligned
  5523 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
  5524   match(Set dst (LoadL_unaligned mem));
  5525   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  5526   ins_cost(MEMORY_REF_COST);
  5528   format %{ "LD      $dst, $mem \t// unaligned long" %}
  5529   size(4);
  5530   ins_encode( enc_ld(dst, mem) );
  5531   ins_pipe(pipe_class_memory);
  5532 %}
  5534 // Load nodes for superwords
  5536 // Load Aligned Packed Byte
  5537 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
  5538   predicate(n->as_LoadVector()->memory_size() == 8);
  5539   match(Set dst (LoadVector mem));
  5540   ins_cost(MEMORY_REF_COST);
  5542   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
  5543   size(4);
  5544   ins_encode( enc_ld(dst, mem) );
  5545   ins_pipe(pipe_class_memory);
  5546 %}
  5548 // Load Range, range = array length (=jint)
  5549 instruct loadRange(iRegIdst dst, memory mem) %{
  5550   match(Set dst (LoadRange mem));
  5551   ins_cost(MEMORY_REF_COST);
  5553   format %{ "LWZ     $dst, $mem \t// range" %}
  5554   size(4);
  5555   ins_encode( enc_lwz(dst, mem) );
  5556   ins_pipe(pipe_class_memory);
  5557 %}
  5559 // Load Compressed Pointer
  5560 instruct loadN(iRegNdst dst, memory mem) %{
  5561   match(Set dst (LoadN mem));
  5562   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5563   ins_cost(MEMORY_REF_COST);
  5565   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
  5566   size(4);
  5567   ins_encode( enc_lwz(dst, mem) );
  5568   ins_pipe(pipe_class_memory);
  5569 %}
  5571 // Load Compressed Pointer acquire.
  5572 instruct loadN_ac(iRegNdst dst, memory mem) %{
  5573   match(Set dst (LoadN mem));
  5574   ins_cost(3*MEMORY_REF_COST);
  5576   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
  5577             "TWI     $dst\n\t"
  5578             "ISYNC" %}
  5579   size(12);
  5580   ins_encode( enc_lwz_ac(dst, mem) );
  5581   ins_pipe(pipe_class_memory);
  5582 %}
  5584 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
  5585 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
  5586   match(Set dst (DecodeN (LoadN mem)));
  5587   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
  5588   ins_cost(MEMORY_REF_COST);
  5590   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
  5591   size(4);
  5592   ins_encode( enc_lwz(dst, mem) );
  5593   ins_pipe(pipe_class_memory);
  5594 %}
  5596 // Load Pointer
  5597 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
  5598   match(Set dst (LoadP mem));
  5599   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5600   ins_cost(MEMORY_REF_COST);
  5602   format %{ "LD      $dst, $mem \t// ptr" %}
  5603   size(4);
  5604   ins_encode( enc_ld(dst, mem) );
  5605   ins_pipe(pipe_class_memory);
  5606 %}
  5608 // Load Pointer acquire.
  5609 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
  5610   match(Set dst (LoadP mem));
  5611   ins_cost(3*MEMORY_REF_COST);
  5613   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
  5614             "TWI     $dst\n\t"
  5615             "ISYNC" %}
  5616   size(12);
  5617   ins_encode( enc_ld_ac(dst, mem) );
  5618   ins_pipe(pipe_class_memory);
  5619 %}
  5621 // LoadP + CastP2L
  5622 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
  5623   match(Set dst (CastP2X (LoadP mem)));
  5624   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  5625   ins_cost(MEMORY_REF_COST);
  5627   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
  5628   size(4);
  5629   ins_encode( enc_ld(dst, mem) );
  5630   ins_pipe(pipe_class_memory);
  5631 %}
  5633 // Load compressed klass pointer.
  5634 instruct loadNKlass(iRegNdst dst, memory mem) %{
  5635   match(Set dst (LoadNKlass mem));
  5636   ins_cost(MEMORY_REF_COST);
  5638   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
  5639   size(4);
  5640   ins_encode( enc_lwz(dst, mem) );
  5641   ins_pipe(pipe_class_memory);
  5642 %}
  5644 // Load Klass Pointer
  5645 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
  5646   match(Set dst (LoadKlass mem));
  5647   ins_cost(MEMORY_REF_COST);
  5649   format %{ "LD      $dst, $mem \t// klass ptr" %}
  5650   size(4);
  5651   ins_encode( enc_ld(dst, mem) );
  5652   ins_pipe(pipe_class_memory);
  5653 %}
  5655 // Load Float
  5656 instruct loadF(regF dst, memory mem) %{
  5657   match(Set dst (LoadF mem));
  5658   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5659   ins_cost(MEMORY_REF_COST);
  5661   format %{ "LFS     $dst, $mem" %}
  5662   size(4);
  5663   ins_encode %{
  5664     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  5665     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5666     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5667   %}
  5668   ins_pipe(pipe_class_memory);
  5669 %}
  5671 // Load Float acquire.
  5672 instruct loadF_ac(regF dst, memory mem) %{
  5673   match(Set dst (LoadF mem));
  5674   ins_cost(3*MEMORY_REF_COST);
  5676   format %{ "LFS     $dst, $mem \t// acquire\n\t"
  5677             "FCMPU   cr0, $dst, $dst\n\t"
  5678             "BNE     cr0, next\n"
  5679             "next:\n\t"
  5680             "ISYNC" %}
  5681   size(16);
  5682   ins_encode %{
  5683     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5684     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5685     Label next;
  5686     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5687     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  5688     __ bne(CCR0, next);
  5689     __ bind(next);
  5690     __ isync();
  5691   %}
  5692   ins_pipe(pipe_class_memory);
  5693 %}
  5695 // Load Double - aligned
  5696 instruct loadD(regD dst, memory mem) %{
  5697   match(Set dst (LoadD mem));
  5698   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5699   ins_cost(MEMORY_REF_COST);
  5701   format %{ "LFD     $dst, $mem" %}
  5702   size(4);
  5703   ins_encode( enc_lfd(dst, mem) );
  5704   ins_pipe(pipe_class_memory);
  5705 %}
  5707 // Load Double - aligned acquire.
  5708 instruct loadD_ac(regD dst, memory mem) %{
  5709   match(Set dst (LoadD mem));
  5710   ins_cost(3*MEMORY_REF_COST);
  5712   format %{ "LFD     $dst, $mem \t// acquire\n\t"
  5713             "FCMPU   cr0, $dst, $dst\n\t"
  5714             "BNE     cr0, next\n"
  5715             "next:\n\t"
  5716             "ISYNC" %}
  5717   size(16);
  5718   ins_encode %{
  5719     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5720     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5721     Label next;
  5722     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5723     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  5724     __ bne(CCR0, next);
  5725     __ bind(next);
  5726     __ isync();
  5727   %}
  5728   ins_pipe(pipe_class_memory);
  5729 %}
  5731 // Load Double - UNaligned
  5732 instruct loadD_unaligned(regD dst, memory mem) %{
  5733   match(Set dst (LoadD_unaligned mem));
  5734   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  5735   ins_cost(MEMORY_REF_COST);
  5737   format %{ "LFD     $dst, $mem" %}
  5738   size(4);
  5739   ins_encode( enc_lfd(dst, mem) );
  5740   ins_pipe(pipe_class_memory);
  5741 %}
  5743 //----------Constants--------------------------------------------------------
  5745 // Load MachConstantTableBase: add hi offset to global toc.
  5746 // TODO: Handle hidden register r29 in bundler!
  5747 instruct loadToc_hi(iRegLdst dst) %{
  5748   effect(DEF dst);
  5749   ins_cost(DEFAULT_COST);
  5751   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
  5752   size(4);
  5753   ins_encode %{
  5754     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5755     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
  5756   %}
  5757   ins_pipe(pipe_class_default);
  5758 %}
  5760 // Load MachConstantTableBase: add lo offset to global toc.
  5761 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
  5762   effect(DEF dst, USE src);
  5763   ins_cost(DEFAULT_COST);
  5765   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
  5766   size(4);
  5767   ins_encode %{
  5768     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5769     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
  5770   %}
  5771   ins_pipe(pipe_class_default);
  5772 %}
  5774 // Load 16-bit integer constant 0xssss????
  5775 instruct loadConI16(iRegIdst dst, immI16 src) %{
  5776   match(Set dst src);
  5778   format %{ "LI      $dst, $src" %}
  5779   size(4);
  5780   ins_encode %{
  5781     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5782     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  5783   %}
  5784   ins_pipe(pipe_class_default);
  5785 %}
  5787 // Load integer constant 0x????0000
  5788 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
  5789   match(Set dst src);
  5790   ins_cost(DEFAULT_COST);
  5792   format %{ "LIS     $dst, $src.hi" %}
  5793   size(4);
  5794   ins_encode %{
  5795     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5796     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
  5797     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  5798   %}
  5799   ins_pipe(pipe_class_default);
  5800 %}
  5802 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
  5803 // and sign extended), this adds the low 16 bits.
  5804 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  5805   // no match-rule, false predicate
  5806   effect(DEF dst, USE src1, USE src2);
  5807   predicate(false);
  5809   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
  5810   size(4);
  5811   ins_encode %{
  5812     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5813     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  5814   %}
  5815   ins_pipe(pipe_class_default);
  5816 %}
  5818 instruct loadConI_Ex(iRegIdst dst, immI src) %{
  5819   match(Set dst src);
  5820   ins_cost(DEFAULT_COST*2);
  5822   expand %{
  5823     // Would like to use $src$$constant.
  5824     immI16 srcLo %{ _opnds[1]->constant() %}
  5825     // srcHi can be 0000 if srcLo sign-extends to a negative number.
  5826     immIhi16 srcHi %{ _opnds[1]->constant() %}
  5827     iRegIdst tmpI;
  5828     loadConIhi16(tmpI, srcHi);
  5829     loadConI32_lo16(dst, tmpI, srcLo);
  5830   %}
  5831 %}
  5833 // No constant pool entries required.
  5834 instruct loadConL16(iRegLdst dst, immL16 src) %{
  5835   match(Set dst src);
  5837   format %{ "LI      $dst, $src \t// long" %}
  5838   size(4);
  5839   ins_encode %{
  5840     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5841     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
  5842   %}
  5843   ins_pipe(pipe_class_default);
  5844 %}
  5846 // Load long constant 0xssssssss????0000
  5847 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
  5848   match(Set dst src);
  5849   ins_cost(DEFAULT_COST);
  5851   format %{ "LIS     $dst, $src.hi \t// long" %}
  5852   size(4);
  5853   ins_encode %{
  5854     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5855     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  5856   %}
  5857   ins_pipe(pipe_class_default);
  5858 %}
  5860 // To load a 32 bit constant: merge lower 16 bits into already loaded
  5861 // high 16 bits.
  5862 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  5863   // no match-rule, false predicate
  5864   effect(DEF dst, USE src1, USE src2);
  5865   predicate(false);
  5867   format %{ "ORI     $dst, $src1, $src2.lo" %}
  5868   size(4);
  5869   ins_encode %{
  5870     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5871     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  5872   %}
  5873   ins_pipe(pipe_class_default);
  5874 %}
  5876 // Load 32-bit long constant
  5877 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
  5878   match(Set dst src);
  5879   ins_cost(DEFAULT_COST*2);
  5881   expand %{
  5882     // Would like to use $src$$constant.
  5883     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
  5884     // srcHi can be 0000 if srcLo sign-extends to a negative number.
  5885     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
  5886     iRegLdst tmpL;
  5887     loadConL32hi16(tmpL, srcHi);
  5888     loadConL32_lo16(dst, tmpL, srcLo);
  5889   %}
  5890 %}
  5892 // Load long constant 0x????000000000000.
  5893 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
  5894   match(Set dst src);
  5895   ins_cost(DEFAULT_COST);
  5897   expand %{
  5898     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
  5899     immI shift32 %{ 32 %}
  5900     iRegLdst tmpL;
  5901     loadConL32hi16(tmpL, srcHi);
  5902     lshiftL_regL_immI(dst, tmpL, shift32);
  5903   %}
  5904 %}
  5906 // Expand node for constant pool load: small offset.
  5907 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
  5908   effect(DEF dst, USE src, USE toc);
  5909   ins_cost(MEMORY_REF_COST);
  5911   ins_num_consts(1);
  5912   // Needed so that CallDynamicJavaDirect can compute the address of this
  5913   // instruction for relocation.
  5914   ins_field_cbuf_insts_offset(int);
  5916   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
  5917   size(4);
  5918   ins_encode( enc_load_long_constL(dst, src, toc) );
  5919   ins_pipe(pipe_class_memory);
  5920 %}
  5922 // Expand node for constant pool load: large offset.
  5923 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
  5924   effect(DEF dst, USE src, USE toc);
  5925   predicate(false);
  5927   ins_num_consts(1);
  5928   ins_field_const_toc_offset(int);
  5929   // Needed so that CallDynamicJavaDirect can compute the address of this
  5930   // instruction for relocation.
  5931   ins_field_cbuf_insts_offset(int);
  5933   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
  5934   size(4);
  5935   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
  5936   ins_pipe(pipe_class_default);
  5937 %}
  5939 // Expand node for constant pool load: large offset.
  5940 // No constant pool entries required.
  5941 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
  5942   effect(DEF dst, USE src, USE base);
  5943   predicate(false);
  5945   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
  5947   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
  5948   size(4);
  5949   ins_encode %{
  5950     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  5951     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  5952     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  5953   %}
  5954   ins_pipe(pipe_class_memory);
  5955 %}
  5957 // Load long constant from constant table. Expand in case of
  5958 // offset > 16 bit is needed.
  5959 // Adlc adds toc node MachConstantTableBase.
  5960 instruct loadConL_Ex(iRegLdst dst, immL src) %{
  5961   match(Set dst src);
  5962   ins_cost(MEMORY_REF_COST);
  5964   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
  5965   // We can not inline the enc_class for the expand as that does not support constanttablebase.
  5966   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
  5967 %}
  5969 // Load NULL as compressed oop.
  5970 instruct loadConN0(iRegNdst dst, immN_0 src) %{
  5971   match(Set dst src);
  5972   ins_cost(DEFAULT_COST);
  5974   format %{ "LI      $dst, $src \t// compressed ptr" %}
  5975   size(4);
  5976   ins_encode %{
  5977     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5978     __ li($dst$$Register, 0);
  5979   %}
  5980   ins_pipe(pipe_class_default);
  5981 %}
  5983 // Load hi part of compressed oop constant.
  5984 instruct loadConN_hi(iRegNdst dst, immN src) %{
  5985   effect(DEF dst, USE src);
  5986   ins_cost(DEFAULT_COST);
  5988   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
  5989   size(4);
  5990   ins_encode %{
  5991     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5992     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
  5993   %}
  5994   ins_pipe(pipe_class_default);
  5995 %}
  5997 // Add lo part of compressed oop constant to already loaded hi part.
  5998 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
  5999   effect(DEF dst, USE src1, USE src2);
  6000   ins_cost(DEFAULT_COST);
  6002   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
  6003   size(4);
  6004   ins_encode %{
  6005     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6006     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6007     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
  6008     RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6009     __ relocate(rspec, 1);
  6010     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
  6011   %}
  6012   ins_pipe(pipe_class_default);
  6013 %}
  6015 // Needed to postalloc expand loadConN: ConN is loaded as ConI
  6016 // leaving the upper 32 bits with sign-extension bits.
  6017 // This clears these bits: dst = src & 0xFFFFFFFF.
  6018 // TODO: Eventually call this maskN_regN_FFFFFFFF.
  6019 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
  6020   effect(DEF dst, USE src);
  6021   predicate(false);
  6023   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
  6024   size(4);
  6025   ins_encode %{
  6026     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6027     __ clrldi($dst$$Register, $src$$Register, 0x20);
  6028   %}
  6029   ins_pipe(pipe_class_default);
  6030 %}
  6032 // Loading ConN must be postalloc expanded so that edges between
  6033 // the nodes are safe. They may not interfere with a safepoint.
  6034 // GL TODO: This needs three instructions: better put this into the constant pool.
  6035 instruct loadConN_Ex(iRegNdst dst, immN src) %{
  6036   match(Set dst src);
  6037   ins_cost(DEFAULT_COST*2);
  6039   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  6040   postalloc_expand %{
  6041     MachNode *m1 = new (C) loadConN_hiNode();
  6042     MachNode *m2 = new (C) loadConN_loNode();
  6043     MachNode *m3 = new (C) clearMs32bNode();
  6044     m1->add_req(NULL);
  6045     m2->add_req(NULL, m1);
  6046     m3->add_req(NULL, m2);
  6047     m1->_opnds[0] = op_dst;
  6048     m1->_opnds[1] = op_src;
  6049     m2->_opnds[0] = op_dst;
  6050     m2->_opnds[1] = op_dst;
  6051     m2->_opnds[2] = op_src;
  6052     m3->_opnds[0] = op_dst;
  6053     m3->_opnds[1] = op_dst;
  6054     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6055     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6056     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6057     nodes->push(m1);
  6058     nodes->push(m2);
  6059     nodes->push(m3);
  6060   %}
  6061 %}
  6063 // We have seen a safepoint between the hi and lo parts, and this node was handled
  6064 // as an oop. Therefore this needs a match rule so that build_oop_map knows this is
  6065 // not a narrow oop.
  6066 instruct loadConNKlass_hi(iRegNdst dst, immNKlass_NM src) %{
  6067   match(Set dst src);
  6068   effect(DEF dst, USE src);
  6069   ins_cost(DEFAULT_COST);
  6071   format %{ "LIS     $dst, $src \t// narrow klass hi" %}
  6072   size(4);
  6073   ins_encode %{
  6074     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  6075     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
  6076     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
  6077   %}
  6078   ins_pipe(pipe_class_default);
  6079 %}
  6081 // As loadConNKlass_hi this must be recognized as narrow klass, not oop!
  6082 instruct loadConNKlass_mask(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
  6083   match(Set dst src1);
  6084   effect(TEMP src2);
  6085   ins_cost(DEFAULT_COST);
  6087   format %{ "MASK    $dst, $src2, 0xFFFFFFFF" %} // mask
  6088   size(4);
  6089   ins_encode %{
  6090     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6091     __ clrldi($dst$$Register, $src2$$Register, 0x20);
  6092   %}
  6093   ins_pipe(pipe_class_default);
  6094 %}
  6096 // This needs a match rule so that build_oop_map knows this is
  6097 // not a narrow oop.
  6098 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
  6099   match(Set dst src1);
  6100   effect(TEMP src2);
  6101   ins_cost(DEFAULT_COST);
  6103   format %{ "ORI    $dst, $src1, $src2 \t// narrow klass lo" %}
  6104   size(4);
  6105   ins_encode %{
  6106     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  6107     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
  6108     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6109     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
  6110     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6112     __ relocate(rspec, 1);
  6113     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
  6114   %}
  6115   ins_pipe(pipe_class_default);
  6116 %}
  6118 // Loading ConNKlass must be postalloc expanded so that edges between
  6119 // the nodes are safe. They may not interfere with a safepoint.
  6120 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
  6121   match(Set dst src);
  6122   ins_cost(DEFAULT_COST*2);
  6124   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  6125   postalloc_expand %{
  6126     // Load high bits into register. Sign extended.
  6127     MachNode *m1 = new (C) loadConNKlass_hiNode();
  6128     m1->add_req(NULL);
  6129     m1->_opnds[0] = op_dst;
  6130     m1->_opnds[1] = op_src;
  6131     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6132     nodes->push(m1);
  6134     MachNode *m2 = m1;
  6135     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
  6136       // Value might be 1-extended. Mask out these bits.
  6137       m2 = new (C) loadConNKlass_maskNode();
  6138       m2->add_req(NULL, m1);
  6139       m2->_opnds[0] = op_dst;
  6140       m2->_opnds[1] = op_src;
  6141       m2->_opnds[2] = op_dst;
  6142       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6143       nodes->push(m2);
  6146     MachNode *m3 = new (C) loadConNKlass_loNode();
  6147     m3->add_req(NULL, m2);
  6148     m3->_opnds[0] = op_dst;
  6149     m3->_opnds[1] = op_src;
  6150     m3->_opnds[2] = op_dst;
  6151     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6152     nodes->push(m3);
  6153   %}
  6154 %}
  6156 // 0x1 is used in object initialization (initial object header).
  6157 // No constant pool entries required.
  6158 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
  6159   match(Set dst src);
  6161   format %{ "LI      $dst, $src \t// ptr" %}
  6162   size(4);
  6163   ins_encode %{
  6164     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6165     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  6166   %}
  6167   ins_pipe(pipe_class_default);
  6168 %}
  6170 // Expand node for constant pool load: small offset.
  6171 // The match rule is needed to generate the correct bottom_type(),
  6172 // however this node should never match. The use of predicate is not
  6173 // possible since ADLC forbids predicates for chain rules. The higher
  6174 // costs do not prevent matching in this case. For that reason the
  6175 // operand immP_NM with predicate(false) is used.
  6176 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  6177   match(Set dst src);
  6178   effect(TEMP toc);
  6180   ins_num_consts(1);
  6182   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
  6183   size(4);
  6184   ins_encode( enc_load_long_constP(dst, src, toc) );
  6185   ins_pipe(pipe_class_memory);
  6186 %}
  6188 // Expand node for constant pool load: large offset.
  6189 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  6190   effect(DEF dst, USE src, USE toc);
  6191   predicate(false);
  6193   ins_num_consts(1);
  6194   ins_field_const_toc_offset(int);
  6196   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
  6197   size(4);
  6198   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
  6199   ins_pipe(pipe_class_default);
  6200 %}
  6202 // Expand node for constant pool load: large offset.
  6203 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
  6204   match(Set dst src);
  6205   effect(TEMP base);
  6207   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
  6209   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
  6210   size(4);
  6211   ins_encode %{
  6212     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  6213     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  6214     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  6215   %}
  6216   ins_pipe(pipe_class_memory);
  6217 %}
  6219 // Load pointer constant from constant table. Expand in case an
  6220 // offset > 16 bit is needed.
  6221 // Adlc adds toc node MachConstantTableBase.
  6222 instruct loadConP_Ex(iRegPdst dst, immP src) %{
  6223   match(Set dst src);
  6224   ins_cost(MEMORY_REF_COST);
  6226   // This rule does not use "expand" because then
  6227   // the result type is not known to be an Oop.  An ADLC
  6228   // enhancement will be needed to make that work - not worth it!
  6230   // If this instruction rematerializes, it prolongs the live range
  6231   // of the toc node, causing illegal graphs.
  6232   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
  6233   ins_cannot_rematerialize(true);
  6235   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
  6236   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
  6237 %}
  6239 // Expand node for constant pool load: small offset.
  6240 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
  6241   effect(DEF dst, USE src, USE toc);
  6242   ins_cost(MEMORY_REF_COST);
  6244   ins_num_consts(1);
  6246   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
  6247   size(4);
  6248   ins_encode %{
  6249     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  6250     address float_address = __ float_constant($src$$constant);
  6251     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
  6252   %}
  6253   ins_pipe(pipe_class_memory);
  6254 %}
  6256 // Expand node for constant pool load: large offset.
  6257 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
  6258   effect(DEF dst, USE src, USE toc);
  6259   ins_cost(MEMORY_REF_COST);
  6261   ins_num_consts(1);
  6263   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  6264             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
  6265             "ADDIS   $toc, $toc, -offset_hi"%}
  6266   size(12);
  6267   ins_encode %{
  6268     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6269     FloatRegister Rdst    = $dst$$FloatRegister;
  6270     Register Rtoc         = $toc$$Register;
  6271     address float_address = __ float_constant($src$$constant);
  6272     int offset            = __ offset_to_method_toc(float_address);
  6273     int hi = (offset + (1<<15))>>16;
  6274     int lo = offset - hi * (1<<16);
  6276     __ addis(Rtoc, Rtoc, hi);
  6277     __ lfs(Rdst, lo, Rtoc);
  6278     __ addis(Rtoc, Rtoc, -hi);
  6279   %}
  6280   ins_pipe(pipe_class_memory);
  6281 %}
  6283 // Adlc adds toc node MachConstantTableBase.
  6284 instruct loadConF_Ex(regF dst, immF src) %{
  6285   match(Set dst src);
  6286   ins_cost(MEMORY_REF_COST);
  6288   // See loadConP.
  6289   ins_cannot_rematerialize(true);
  6291   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  6292   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
  6293 %}
  6295 // Expand node for constant pool load: small offset.
  6296 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
  6297   effect(DEF dst, USE src, USE toc);
  6298   ins_cost(MEMORY_REF_COST);
  6300   ins_num_consts(1);
  6302   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
  6303   size(4);
  6304   ins_encode %{
  6305     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  6306     int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
  6307     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
  6308   %}
  6309   ins_pipe(pipe_class_memory);
  6310 %}
  6312 // Expand node for constant pool load: large offset.
  6313 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
  6314   effect(DEF dst, USE src, USE toc);
  6315   ins_cost(MEMORY_REF_COST);
  6317   ins_num_consts(1);
  6319   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  6320             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
  6321             "ADDIS   $toc, $toc, -offset_hi" %}
  6322   size(12);
  6323   ins_encode %{
  6324     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6325     FloatRegister Rdst    = $dst$$FloatRegister;
  6326     Register      Rtoc    = $toc$$Register;
  6327     address float_address = __ double_constant($src$$constant);
  6328     int offset            = __ offset_to_method_toc(float_address);
  6329     int hi = (offset + (1<<15))>>16;
  6330     int lo = offset - hi * (1<<16);
  6332     __ addis(Rtoc, Rtoc, hi);
  6333     __ lfd(Rdst, lo, Rtoc);
  6334     __ addis(Rtoc, Rtoc, -hi);
  6335   %}
  6336   ins_pipe(pipe_class_memory);
  6337 %}
  6339 // Adlc adds toc node MachConstantTableBase.
  6340 instruct loadConD_Ex(regD dst, immD src) %{
  6341   match(Set dst src);
  6342   ins_cost(MEMORY_REF_COST);
  6344   // See loadConP.
  6345   ins_cannot_rematerialize(true);
  6347   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  6348   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
  6349 %}
  6351 // Prefetch instructions.
  6352 // Must be safe to execute with invalid address (cannot fault).
  6354 instruct prefetchr(indirectMemory mem, iRegLsrc src) %{
  6355   match(PrefetchRead (AddP mem src));
  6356   ins_cost(MEMORY_REF_COST);
  6358   format %{ "PREFETCH $mem, 0, $src \t// Prefetch read-many" %}
  6359   size(4);
  6360   ins_encode %{
  6361     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  6362     __ dcbt($src$$Register, $mem$$base$$Register);
  6363   %}
  6364   ins_pipe(pipe_class_memory);
  6365 %}
  6367 instruct prefetchr_no_offset(indirectMemory mem) %{
  6368   match(PrefetchRead mem);
  6369   ins_cost(MEMORY_REF_COST);
  6371   format %{ "PREFETCH $mem" %}
  6372   size(4);
  6373   ins_encode %{
  6374     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  6375     __ dcbt($mem$$base$$Register);
  6376   %}
  6377   ins_pipe(pipe_class_memory);
  6378 %}
  6380 instruct prefetchw(indirectMemory mem, iRegLsrc src) %{
  6381   match(PrefetchWrite (AddP mem src));
  6382   ins_cost(MEMORY_REF_COST);
  6384   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many (and read)" %}
  6385   size(4);
  6386   ins_encode %{
  6387     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6388     __ dcbtst($src$$Register, $mem$$base$$Register);
  6389   %}
  6390   ins_pipe(pipe_class_memory);
  6391 %}
  6393 instruct prefetchw_no_offset(indirectMemory mem) %{
  6394   match(PrefetchWrite mem);
  6395   ins_cost(MEMORY_REF_COST);
  6397   format %{ "PREFETCH $mem" %}
  6398   size(4);
  6399   ins_encode %{
  6400     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6401     __ dcbtst($mem$$base$$Register);
  6402   %}
  6403   ins_pipe(pipe_class_memory);
  6404 %}
  6406 // Special prefetch versions which use the dcbz instruction.
  6407 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
  6408   match(PrefetchAllocation (AddP mem src));
  6409   predicate(AllocatePrefetchStyle == 3);
  6410   ins_cost(MEMORY_REF_COST);
  6412   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
  6413   size(4);
  6414   ins_encode %{
  6415     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6416     __ dcbz($src$$Register, $mem$$base$$Register);
  6417   %}
  6418   ins_pipe(pipe_class_memory);
  6419 %}
  6421 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
  6422   match(PrefetchAllocation mem);
  6423   predicate(AllocatePrefetchStyle == 3);
  6424   ins_cost(MEMORY_REF_COST);
  6426   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
  6427   size(4);
  6428   ins_encode %{
  6429     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6430     __ dcbz($mem$$base$$Register);
  6431   %}
  6432   ins_pipe(pipe_class_memory);
  6433 %}
  6435 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
  6436   match(PrefetchAllocation (AddP mem src));
  6437   predicate(AllocatePrefetchStyle != 3);
  6438   ins_cost(MEMORY_REF_COST);
  6440   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
  6441   size(4);
  6442   ins_encode %{
  6443     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6444     __ dcbtst($src$$Register, $mem$$base$$Register);
  6445   %}
  6446   ins_pipe(pipe_class_memory);
  6447 %}
  6449 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
  6450   match(PrefetchAllocation mem);
  6451   predicate(AllocatePrefetchStyle != 3);
  6452   ins_cost(MEMORY_REF_COST);
  6454   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
  6455   size(4);
  6456   ins_encode %{
  6457     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6458     __ dcbtst($mem$$base$$Register);
  6459   %}
  6460   ins_pipe(pipe_class_memory);
  6461 %}
  6463 //----------Store Instructions-------------------------------------------------
  6465 // Store Byte
  6466 instruct storeB(memory mem, iRegIsrc src) %{
  6467   match(Set mem (StoreB mem src));
  6468   ins_cost(MEMORY_REF_COST);
  6470   format %{ "STB     $src, $mem \t// byte" %}
  6471   size(4);
  6472   ins_encode %{
  6473     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
  6474     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  6475     __ stb($src$$Register, Idisp, $mem$$base$$Register);
  6476   %}
  6477   ins_pipe(pipe_class_memory);
  6478 %}
  6480 // Store Char/Short
  6481 instruct storeC(memory mem, iRegIsrc src) %{
  6482   match(Set mem (StoreC mem src));
  6483   ins_cost(MEMORY_REF_COST);
  6485   format %{ "STH     $src, $mem \t// short" %}
  6486   size(4);
  6487   ins_encode %{
  6488     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
  6489     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  6490     __ sth($src$$Register, Idisp, $mem$$base$$Register);
  6491   %}
  6492   ins_pipe(pipe_class_memory);
  6493 %}
  6495 // Store Integer
  6496 instruct storeI(memory mem, iRegIsrc src) %{
  6497   match(Set mem (StoreI mem src));
  6498   ins_cost(MEMORY_REF_COST);
  6500   format %{ "STW     $src, $mem" %}
  6501   size(4);
  6502   ins_encode( enc_stw(src, mem) );
  6503   ins_pipe(pipe_class_memory);
  6504 %}
  6506 // ConvL2I + StoreI.
  6507 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
  6508   match(Set mem (StoreI mem (ConvL2I src)));
  6509   ins_cost(MEMORY_REF_COST);
  6511   format %{ "STW     l2i($src), $mem" %}
  6512   size(4);
  6513   ins_encode( enc_stw(src, mem) );
  6514   ins_pipe(pipe_class_memory);
  6515 %}
  6517 // Store Long
  6518 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
  6519   match(Set mem (StoreL mem src));
  6520   ins_cost(MEMORY_REF_COST);
  6522   format %{ "STD     $src, $mem \t// long" %}
  6523   size(4);
  6524   ins_encode( enc_std(src, mem) );
  6525   ins_pipe(pipe_class_memory);
  6526 %}
  6528 // Store super word nodes.
  6530 // Store Aligned Packed Byte long register to memory
  6531 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
  6532   predicate(n->as_StoreVector()->memory_size() == 8);
  6533   match(Set mem (StoreVector mem src));
  6534   ins_cost(MEMORY_REF_COST);
  6536   format %{ "STD     $mem, $src \t// packed8B" %}
  6537   size(4);
  6538   ins_encode( enc_std(src, mem) );
  6539   ins_pipe(pipe_class_memory);
  6540 %}
  6542 // Store Compressed Oop
  6543 instruct storeN(memory dst, iRegN_P2N src) %{
  6544   match(Set dst (StoreN dst src));
  6545   ins_cost(MEMORY_REF_COST);
  6547   format %{ "STW     $src, $dst \t// compressed oop" %}
  6548   size(4);
  6549   ins_encode( enc_stw(src, dst) );
  6550   ins_pipe(pipe_class_memory);
  6551 %}
  6553 // Store Compressed KLass
  6554 instruct storeNKlass(memory dst, iRegN_P2N src) %{
  6555   match(Set dst (StoreNKlass dst src));
  6556   ins_cost(MEMORY_REF_COST);
  6558   format %{ "STW     $src, $dst \t// compressed klass" %}
  6559   size(4);
  6560   ins_encode( enc_stw(src, dst) );
  6561   ins_pipe(pipe_class_memory);
  6562 %}
  6564 // Store Pointer
  6565 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
  6566   match(Set dst (StoreP dst src));
  6567   ins_cost(MEMORY_REF_COST);
  6569   format %{ "STD     $src, $dst \t// ptr" %}
  6570   size(4);
  6571   ins_encode( enc_std(src, dst) );
  6572   ins_pipe(pipe_class_memory);
  6573 %}
  6575 // Store Float
  6576 instruct storeF(memory mem, regF src) %{
  6577   match(Set mem (StoreF mem src));
  6578   ins_cost(MEMORY_REF_COST);
  6580   format %{ "STFS    $src, $mem" %}
  6581   size(4);
  6582   ins_encode( enc_stfs(src, mem) );
  6583   ins_pipe(pipe_class_memory);
  6584 %}
  6586 // Store Double
  6587 instruct storeD(memory mem, regD src) %{
  6588   match(Set mem (StoreD mem src));
  6589   ins_cost(MEMORY_REF_COST);
  6591   format %{ "STFD    $src, $mem" %}
  6592   size(4);
  6593   ins_encode( enc_stfd(src, mem) );
  6594   ins_pipe(pipe_class_memory);
  6595 %}
  6597 //----------Store Instructions With Zeros--------------------------------------
  6599 // Card-mark for CMS garbage collection.
  6600 // This cardmark does an optimization so that it must not always
  6601 // do a releasing store. For this, it gets the address of
  6602 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
  6603 // (Using releaseFieldAddr in the match rule is a hack.)
  6604 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr) %{
  6605   match(Set mem (StoreCM mem releaseFieldAddr));
  6606   predicate(false);
  6607   ins_cost(MEMORY_REF_COST);
  6609   // See loadConP.
  6610   ins_cannot_rematerialize(true);
  6612   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
  6613   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr) );
  6614   ins_pipe(pipe_class_memory);
  6615 %}
  6617 // Card-mark for CMS garbage collection.
  6618 // This cardmark does an optimization so that it must not always
  6619 // do a releasing store. For this, it needs the constant address of
  6620 // CMSCollectorCardTableModRefBSExt::_requires_release.
  6621 // This constant address is split off here by expand so we can use
  6622 // adlc / matcher functionality to load it from the constant section.
  6623 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
  6624   match(Set mem (StoreCM mem zero));
  6625   predicate(UseConcMarkSweepGC);
  6627   expand %{
  6628     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
  6629     iRegLdst releaseFieldAddress;
  6630     loadConL_Ex(releaseFieldAddress, baseImm);
  6631     storeCM_CMS(mem, releaseFieldAddress);
  6632   %}
  6633 %}
  6635 instruct storeCM_G1(memory mem, immI_0 zero) %{
  6636   match(Set mem (StoreCM mem zero));
  6637   predicate(UseG1GC);
  6638   ins_cost(MEMORY_REF_COST);
  6640   ins_cannot_rematerialize(true);
  6642   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
  6643   size(8);
  6644   ins_encode %{
  6645     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6646     __ li(R0, 0);
  6647     //__ release(); // G1: oops are allowed to get visible after dirty marking
  6648     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
  6649     __ stb(R0, $mem$$disp, $mem$$base$$Register);
  6650   %}
  6651   ins_pipe(pipe_class_memory);
  6652 %}
  6654 // Convert oop pointer into compressed form.
  6656 // Nodes for postalloc expand.
  6658 // Shift node for expand.
  6659 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
  6660   // The match rule is needed to make it a 'MachTypeNode'!
  6661   match(Set dst (EncodeP src));
  6662   predicate(false);
  6664   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  6665   size(4);
  6666   ins_encode %{
  6667     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6668     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  6669   %}
  6670   ins_pipe(pipe_class_default);
  6671 %}
  6673 // Add node for expand.
  6674 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
  6675   // The match rule is needed to make it a 'MachTypeNode'!
  6676   match(Set dst (EncodeP src));
  6677   predicate(false);
  6679   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
  6680   size(4);
  6681   ins_encode %{
  6682     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  6683     __ subf($dst$$Register, R30, $src$$Register);
  6684   %}
  6685   ins_pipe(pipe_class_default);
  6686 %}
  6688 // Conditional sub base.
  6689 instruct cond_sub_base(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  6690   // The match rule is needed to make it a 'MachTypeNode'!
  6691   match(Set dst (EncodeP (Binary crx src1)));
  6692   predicate(false);
  6694   ins_variable_size_depending_on_alignment(true);
  6696   format %{ "BEQ     $crx, done\n\t"
  6697             "SUB     $dst, $src1, R30 \t// encode: subtract base if != NULL\n"
  6698             "done:" %}
  6699   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  6700   ins_encode %{
  6701     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  6702     Label done;
  6703     __ beq($crx$$CondRegister, done);
  6704     __ subf($dst$$Register, R30, $src1$$Register);
  6705     // TODO PPC port __ endgroup_if_needed(_size == 12);
  6706     __ bind(done);
  6707   %}
  6708   ins_pipe(pipe_class_default);
  6709 %}
  6711 // Power 7 can use isel instruction
  6712 instruct cond_set_0_oop(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  6713   // The match rule is needed to make it a 'MachTypeNode'!
  6714   match(Set dst (EncodeP (Binary crx src1)));
  6715   predicate(false);
  6717   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
  6718   size(4);
  6719   ins_encode %{
  6720     // This is a Power7 instruction for which no machine description exists.
  6721     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6722     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  6723   %}
  6724   ins_pipe(pipe_class_default);
  6725 %}
  6727 // base != 0
  6728 // 32G aligned narrow oop base.
  6729 instruct encodeP_32GAligned(iRegNdst dst, iRegPsrc src) %{
  6730   match(Set dst (EncodeP src));
  6731   predicate(false /* TODO: PPC port Universe::narrow_oop_base_disjoint()*/);
  6733   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  6734   size(4);
  6735   ins_encode %{
  6736     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6737     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
  6738   %}
  6739   ins_pipe(pipe_class_default);
  6740 %}
  6742 // shift != 0, base != 0
  6743 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
  6744   match(Set dst (EncodeP src));
  6745   effect(TEMP crx);
  6746   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
  6747             Universe::narrow_oop_shift() != 0 &&
  6748             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  6750   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
  6751   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
  6752 %}
  6754 // shift != 0, base != 0
  6755 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
  6756   match(Set dst (EncodeP src));
  6757   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
  6758             Universe::narrow_oop_shift() != 0 &&
  6759             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  6761   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
  6762   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
  6763 %}
  6765 // shift != 0, base == 0
  6766 // TODO: This is the same as encodeP_shift. Merge!
  6767 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
  6768   match(Set dst (EncodeP src));
  6769   predicate(Universe::narrow_oop_shift() != 0 &&
  6770             Universe::narrow_oop_base() ==0);
  6772   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
  6773   size(4);
  6774   ins_encode %{
  6775     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6776     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  6777   %}
  6778   ins_pipe(pipe_class_default);
  6779 %}
  6781 // Compressed OOPs with narrow_oop_shift == 0.
  6782 // shift == 0, base == 0
  6783 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
  6784   match(Set dst (EncodeP src));
  6785   predicate(Universe::narrow_oop_shift() == 0);
  6787   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
  6788   // variable size, 0 or 4.
  6789   ins_encode %{
  6790     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6791     __ mr_if_needed($dst$$Register, $src$$Register);
  6792   %}
  6793   ins_pipe(pipe_class_default);
  6794 %}
  6796 // Decode nodes.
  6798 // Shift node for expand.
  6799 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
  6800   // The match rule is needed to make it a 'MachTypeNode'!
  6801   match(Set dst (DecodeN src));
  6802   predicate(false);
  6804   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
  6805   size(4);
  6806   ins_encode %{
  6807     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6808     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  6809   %}
  6810   ins_pipe(pipe_class_default);
  6811 %}
  6813 // Add node for expand.
  6814 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
  6815   // The match rule is needed to make it a 'MachTypeNode'!
  6816   match(Set dst (DecodeN src));
  6817   predicate(false);
  6819   format %{ "ADD     $dst, $src, R30 \t// DecodeN, add oop base" %}
  6820   size(4);
  6821   ins_encode %{
  6822     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  6823     __ add($dst$$Register, $src$$Register, R30);
  6824   %}
  6825   ins_pipe(pipe_class_default);
  6826 %}
  6828 // conditianal add base for expand
  6829 instruct cond_add_base(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  6830   // The match rule is needed to make it a 'MachTypeNode'!
  6831   // NOTICE that the rule is nonsense - we just have to make sure that:
  6832   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  6833   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  6834   match(Set dst (DecodeN (Binary crx src1)));
  6835   predicate(false);
  6837   ins_variable_size_depending_on_alignment(true);
  6839   format %{ "BEQ     $crx, done\n\t"
  6840             "ADD     $dst, $src1, R30 \t// DecodeN: add oop base if $src1 != NULL\n"
  6841             "done:" %}
  6842   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling()) */? 12 : 8);
  6843   ins_encode %{
  6844     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  6845     Label done;
  6846     __ beq($crx$$CondRegister, done);
  6847     __ add($dst$$Register, $src1$$Register, R30);
  6848     // TODO PPC port  __ endgroup_if_needed(_size == 12);
  6849     __ bind(done);
  6850   %}
  6851   ins_pipe(pipe_class_default);
  6852 %}
  6854 instruct cond_set_0_ptr(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  6855   // The match rule is needed to make it a 'MachTypeNode'!
  6856   // NOTICE that the rule is nonsense - we just have to make sure that:
  6857   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  6858   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  6859   match(Set dst (DecodeN (Binary crx src1)));
  6860   predicate(false);
  6862   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
  6863   size(4);
  6864   ins_encode %{
  6865     // This is a Power7 instruction for which no machine description exists.
  6866     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6867     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  6868   %}
  6869   ins_pipe(pipe_class_default);
  6870 %}
  6872 //  shift != 0, base != 0
  6873 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  6874   match(Set dst (DecodeN src));
  6875   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6876              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
  6877             Universe::narrow_oop_shift() != 0 &&
  6878             Universe::narrow_oop_base() != 0);
  6879   effect(TEMP crx);
  6881   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
  6882   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
  6883 %}
  6885 // shift != 0, base == 0
  6886 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
  6887   match(Set dst (DecodeN src));
  6888   predicate(Universe::narrow_oop_shift() != 0 &&
  6889             Universe::narrow_oop_base() == 0);
  6891   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
  6892   size(4);
  6893   ins_encode %{
  6894     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6895     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  6896   %}
  6897   ins_pipe(pipe_class_default);
  6898 %}
  6900 // src != 0, shift != 0, base != 0
  6901 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
  6902   match(Set dst (DecodeN src));
  6903   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6904              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
  6905             Universe::narrow_oop_shift() != 0 &&
  6906             Universe::narrow_oop_base() != 0);
  6908   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
  6909   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
  6910 %}
  6912 // Compressed OOPs with narrow_oop_shift == 0.
  6913 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
  6914   match(Set dst (DecodeN src));
  6915   predicate(Universe::narrow_oop_shift() == 0);
  6916   ins_cost(DEFAULT_COST);
  6918   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
  6919   // variable size, 0 or 4.
  6920   ins_encode %{
  6921     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6922     __ mr_if_needed($dst$$Register, $src$$Register);
  6923   %}
  6924   ins_pipe(pipe_class_default);
  6925 %}
  6927 // Convert compressed oop into int for vectors alignment masking.
  6928 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
  6929   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
  6930   predicate(Universe::narrow_oop_shift() == 0);
  6931   ins_cost(DEFAULT_COST);
  6933   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
  6934   // variable size, 0 or 4.
  6935   ins_encode %{
  6936     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6937     __ mr_if_needed($dst$$Register, $src$$Register);
  6938   %}
  6939   ins_pipe(pipe_class_default);
  6940 %}
  6942 // Convert klass pointer into compressed form.
  6944 // Nodes for postalloc expand.
  6946 // Shift node for expand.
  6947 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
  6948   // The match rule is needed to make it a 'MachTypeNode'!
  6949   match(Set dst (EncodePKlass src));
  6950   predicate(false);
  6952   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  6953   size(4);
  6954   ins_encode %{
  6955     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6956     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  6957   %}
  6958   ins_pipe(pipe_class_default);
  6959 %}
  6961 // Add node for expand.
  6962 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  6963   // The match rule is needed to make it a 'MachTypeNode'!
  6964   match(Set dst (EncodePKlass (Binary base src)));
  6965   predicate(false);
  6967   format %{ "SUB     $dst, $base, $src \t// encode" %}
  6968   size(4);
  6969   ins_encode %{
  6970     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  6971     __ subf($dst$$Register, $base$$Register, $src$$Register);
  6972   %}
  6973   ins_pipe(pipe_class_default);
  6974 %}
  6976 // base != 0
  6977 // 32G aligned narrow oop base.
  6978 instruct encodePKlass_32GAligned(iRegNdst dst, iRegPsrc src) %{
  6979   match(Set dst (EncodePKlass src));
  6980   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
  6982   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  6983   size(4);
  6984   ins_encode %{
  6985     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6986     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_klass_shift(), 32);
  6987   %}
  6988   ins_pipe(pipe_class_default);
  6989 %}
  6991 // shift != 0, base != 0
  6992 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
  6993   match(Set dst (EncodePKlass (Binary base src)));
  6994   predicate(false);
  6996   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  6997   postalloc_expand %{
  6998     encodePKlass_sub_baseNode *n1 = new (C) encodePKlass_sub_baseNode();
  6999     n1->add_req(n_region, n_base, n_src);
  7000     n1->_opnds[0] = op_dst;
  7001     n1->_opnds[1] = op_base;
  7002     n1->_opnds[2] = op_src;
  7003     n1->_bottom_type = _bottom_type;
  7005     encodePKlass_shiftNode *n2 = new (C) encodePKlass_shiftNode();
  7006     n2->add_req(n_region, n1);
  7007     n2->_opnds[0] = op_dst;
  7008     n2->_opnds[1] = op_dst;
  7009     n2->_bottom_type = _bottom_type;
  7010     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7011     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7013     nodes->push(n1);
  7014     nodes->push(n2);
  7015   %}
  7016 %}
  7018 // shift != 0, base != 0
  7019 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
  7020   match(Set dst (EncodePKlass src));
  7021   //predicate(Universe::narrow_klass_shift() != 0 &&
  7022   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
  7024   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  7025   ins_cost(DEFAULT_COST*2);  // Don't count constant.
  7026   expand %{
  7027     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
  7028     iRegLdst base;
  7029     loadConL_Ex(base, baseImm);
  7030     encodePKlass_not_null_Ex(dst, base, src);
  7031   %}
  7032 %}
  7034 // Decode nodes.
  7036 // Shift node for expand.
  7037 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
  7038   // The match rule is needed to make it a 'MachTypeNode'!
  7039   match(Set dst (DecodeNKlass src));
  7040   predicate(false);
  7042   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
  7043   size(4);
  7044   ins_encode %{
  7045     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  7046     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  7047   %}
  7048   ins_pipe(pipe_class_default);
  7049 %}
  7051 // Add node for expand.
  7053 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  7054   // The match rule is needed to make it a 'MachTypeNode'!
  7055   match(Set dst (DecodeNKlass (Binary base src)));
  7056   predicate(false);
  7058   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
  7059   size(4);
  7060   ins_encode %{
  7061     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7062     __ add($dst$$Register, $base$$Register, $src$$Register);
  7063   %}
  7064   ins_pipe(pipe_class_default);
  7065 %}
  7067 // src != 0, shift != 0, base != 0
  7068 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
  7069   match(Set dst (DecodeNKlass (Binary base src)));
  7070   //effect(kill src); // We need a register for the immediate result after shifting.
  7071   predicate(false);
  7073   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
  7074   postalloc_expand %{
  7075     decodeNKlass_add_baseNode *n1 = new (C) decodeNKlass_add_baseNode();
  7076     n1->add_req(n_region, n_base, n_src);
  7077     n1->_opnds[0] = op_dst;
  7078     n1->_opnds[1] = op_base;
  7079     n1->_opnds[2] = op_src;
  7080     n1->_bottom_type = _bottom_type;
  7082     decodeNKlass_shiftNode *n2 = new (C) decodeNKlass_shiftNode();
  7083     n2->add_req(n_region, n1);
  7084     n2->_opnds[0] = op_dst;
  7085     n2->_opnds[1] = op_dst;
  7086     n2->_bottom_type = _bottom_type;
  7088     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7089     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7091     nodes->push(n1);
  7092     nodes->push(n2);
  7093   %}
  7094 %}
  7096 // src != 0, shift != 0, base != 0
  7097 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
  7098   match(Set dst (DecodeNKlass src));
  7099   // predicate(Universe::narrow_klass_shift() != 0 &&
  7100   //           Universe::narrow_klass_base() != 0);
  7102   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
  7104   ins_cost(DEFAULT_COST*2);  // Don't count constant.
  7105   expand %{
  7106     // We add first, then we shift. Like this, we can get along with one register less.
  7107     // But we have to load the base pre-shifted.
  7108     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
  7109     iRegLdst base;
  7110     loadConL_Ex(base, baseImm);
  7111     decodeNKlass_notNull_addBase_Ex(dst, base, src);
  7112   %}
  7113 %}
  7115 //----------MemBar Instructions-----------------------------------------------
  7116 // Memory barrier flavors
  7118 instruct membar_acquire() %{
  7119   match(LoadFence);
  7120   ins_cost(4*MEMORY_REF_COST);
  7122   format %{ "MEMBAR-acquire" %}
  7123   size(4);
  7124   ins_encode %{
  7125     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7126     __ acquire();
  7127   %}
  7128   ins_pipe(pipe_class_default);
  7129 %}
  7131 instruct unnecessary_membar_acquire() %{
  7132   match(MemBarAcquire);
  7133   ins_cost(0);
  7135   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
  7136   size(0);
  7137   ins_encode( /*empty*/ );
  7138   ins_pipe(pipe_class_default);
  7139 %}
  7141 instruct membar_acquire_lock() %{
  7142   match(MemBarAcquireLock);
  7143   ins_cost(0);
  7145   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
  7146   size(0);
  7147   ins_encode( /*empty*/ );
  7148   ins_pipe(pipe_class_default);
  7149 %}
  7151 instruct membar_release() %{
  7152   match(MemBarRelease);
  7153   match(StoreFence);
  7154   ins_cost(4*MEMORY_REF_COST);
  7156   format %{ "MEMBAR-release" %}
  7157   size(4);
  7158   ins_encode %{
  7159     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7160     __ release();
  7161   %}
  7162   ins_pipe(pipe_class_default);
  7163 %}
  7165 instruct membar_storestore() %{
  7166   match(MemBarStoreStore);
  7167   ins_cost(4*MEMORY_REF_COST);
  7169   format %{ "MEMBAR-store-store" %}
  7170   size(4);
  7171   ins_encode %{
  7172     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7173     __ membar(Assembler::StoreStore);
  7174   %}
  7175   ins_pipe(pipe_class_default);
  7176 %}
  7178 instruct membar_release_lock() %{
  7179   match(MemBarReleaseLock);
  7180   ins_cost(0);
  7182   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
  7183   size(0);
  7184   ins_encode( /*empty*/ );
  7185   ins_pipe(pipe_class_default);
  7186 %}
  7188 instruct membar_volatile() %{
  7189   match(MemBarVolatile);
  7190   ins_cost(4*MEMORY_REF_COST);
  7192   format %{ "MEMBAR-volatile" %}
  7193   size(4);
  7194   ins_encode %{
  7195     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
  7196     __ fence();
  7197   %}
  7198   ins_pipe(pipe_class_default);
  7199 %}
  7201 // This optimization is wrong on PPC. The following pattern is not supported:
  7202 //  MemBarVolatile
  7203 //   ^        ^
  7204 //   |        |
  7205 //  CtrlProj MemProj
  7206 //   ^        ^
  7207 //   |        |
  7208 //   |       Load
  7209 //   |
  7210 //  MemBarVolatile
  7211 //
  7212 //  The first MemBarVolatile could get optimized out! According to
  7213 //  Vladimir, this pattern can not occur on Oracle platforms.
  7214 //  However, it does occur on PPC64 (because of membars in
  7215 //  inline_unsafe_load_store).
  7216 //
  7217 // Add this node again if we found a good solution for inline_unsafe_load_store().
  7218 // Don't forget to look at the implementation of post_store_load_barrier again,
  7219 // we did other fixes in that method.
  7220 //instruct unnecessary_membar_volatile() %{
  7221 //  match(MemBarVolatile);
  7222 //  predicate(Matcher::post_store_load_barrier(n));
  7223 //  ins_cost(0);
  7224 //
  7225 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
  7226 //  size(0);
  7227 //  ins_encode( /*empty*/ );
  7228 //  ins_pipe(pipe_class_default);
  7229 //%}
  7231 instruct membar_CPUOrder() %{
  7232   match(MemBarCPUOrder);
  7233   ins_cost(0);
  7235   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
  7236   size(0);
  7237   ins_encode( /*empty*/ );
  7238   ins_pipe(pipe_class_default);
  7239 %}
  7241 //----------Conditional Move---------------------------------------------------
  7243 // Cmove using isel.
  7244 instruct cmovI_reg_isel(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  7245   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7246   predicate(VM_Version::has_isel());
  7247   ins_cost(DEFAULT_COST);
  7249   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7250   size(4);
  7251   ins_encode %{
  7252     // This is a Power7 instruction for which no machine description
  7253     // exists. Anyways, the scheduler should be off on Power7.
  7254     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7255     int cc        = $cmp$$cmpcode;
  7256     __ isel($dst$$Register, $crx$$CondRegister,
  7257             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7258   %}
  7259   ins_pipe(pipe_class_default);
  7260 %}
  7262 instruct cmovI_reg(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  7263   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7264   predicate(!VM_Version::has_isel());
  7265   ins_cost(DEFAULT_COST+BRANCH_COST);
  7267   ins_variable_size_depending_on_alignment(true);
  7269   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7270   // Worst case is branch + move + stop, no stop without scheduler
  7271   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7272   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7273   ins_pipe(pipe_class_default);
  7274 %}
  7276 instruct cmovI_imm(cmpOp cmp, flagsReg crx, iRegIdst dst, immI16 src) %{
  7277   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7278   ins_cost(DEFAULT_COST+BRANCH_COST);
  7280   ins_variable_size_depending_on_alignment(true);
  7282   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7283   // Worst case is branch + move + stop, no stop without scheduler
  7284   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7285   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7286   ins_pipe(pipe_class_default);
  7287 %}
  7289 // Cmove using isel.
  7290 instruct cmovL_reg_isel(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  7291   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7292   predicate(VM_Version::has_isel());
  7293   ins_cost(DEFAULT_COST);
  7295   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7296   size(4);
  7297   ins_encode %{
  7298     // This is a Power7 instruction for which no machine description
  7299     // exists. Anyways, the scheduler should be off on Power7.
  7300     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7301     int cc        = $cmp$$cmpcode;
  7302     __ isel($dst$$Register, $crx$$CondRegister,
  7303             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7304   %}
  7305   ins_pipe(pipe_class_default);
  7306 %}
  7308 instruct cmovL_reg(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  7309   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7310   predicate(!VM_Version::has_isel());
  7311   ins_cost(DEFAULT_COST+BRANCH_COST);
  7313   ins_variable_size_depending_on_alignment(true);
  7315   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7316   // Worst case is branch + move + stop, no stop without scheduler.
  7317   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7318   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7319   ins_pipe(pipe_class_default);
  7320 %}
  7322 instruct cmovL_imm(cmpOp cmp, flagsReg crx, iRegLdst dst, immL16 src) %{
  7323   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7324   ins_cost(DEFAULT_COST+BRANCH_COST);
  7326   ins_variable_size_depending_on_alignment(true);
  7328   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7329   // Worst case is branch + move + stop, no stop without scheduler.
  7330   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7331   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7332   ins_pipe(pipe_class_default);
  7333 %}
  7335 // Cmove using isel.
  7336 instruct cmovN_reg_isel(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  7337   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7338   predicate(VM_Version::has_isel());
  7339   ins_cost(DEFAULT_COST);
  7341   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7342   size(4);
  7343   ins_encode %{
  7344     // This is a Power7 instruction for which no machine description
  7345     // exists. Anyways, the scheduler should be off on Power7.
  7346     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7347     int cc        = $cmp$$cmpcode;
  7348     __ isel($dst$$Register, $crx$$CondRegister,
  7349             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7350   %}
  7351   ins_pipe(pipe_class_default);
  7352 %}
  7354 // Conditional move for RegN. Only cmov(reg, reg).
  7355 instruct cmovN_reg(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  7356   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7357   predicate(!VM_Version::has_isel());
  7358   ins_cost(DEFAULT_COST+BRANCH_COST);
  7360   ins_variable_size_depending_on_alignment(true);
  7362   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7363   // Worst case is branch + move + stop, no stop without scheduler.
  7364   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7365   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7366   ins_pipe(pipe_class_default);
  7367 %}
  7369 instruct cmovN_imm(cmpOp cmp, flagsReg crx, iRegNdst dst, immN_0 src) %{
  7370   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7371   ins_cost(DEFAULT_COST+BRANCH_COST);
  7373   ins_variable_size_depending_on_alignment(true);
  7375   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7376   // Worst case is branch + move + stop, no stop without scheduler.
  7377   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7378   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7379   ins_pipe(pipe_class_default);
  7380 %}
  7382 // Cmove using isel.
  7383 instruct cmovP_reg_isel(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegPsrc src) %{
  7384   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7385   predicate(VM_Version::has_isel());
  7386   ins_cost(DEFAULT_COST);
  7388   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7389   size(4);
  7390   ins_encode %{
  7391     // This is a Power7 instruction for which no machine description
  7392     // exists. Anyways, the scheduler should be off on Power7.
  7393     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7394     int cc        = $cmp$$cmpcode;
  7395     __ isel($dst$$Register, $crx$$CondRegister,
  7396             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7397   %}
  7398   ins_pipe(pipe_class_default);
  7399 %}
  7401 instruct cmovP_reg(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegP_N2P src) %{
  7402   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7403   predicate(!VM_Version::has_isel());
  7404   ins_cost(DEFAULT_COST+BRANCH_COST);
  7406   ins_variable_size_depending_on_alignment(true);
  7408   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7409   // Worst case is branch + move + stop, no stop without scheduler.
  7410   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7411   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7412   ins_pipe(pipe_class_default);
  7413 %}
  7415 instruct cmovP_imm(cmpOp cmp, flagsReg crx, iRegPdst dst, immP_0 src) %{
  7416   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7417   ins_cost(DEFAULT_COST+BRANCH_COST);
  7419   ins_variable_size_depending_on_alignment(true);
  7421   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7422   // Worst case is branch + move + stop, no stop without scheduler.
  7423   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7424   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7425   ins_pipe(pipe_class_default);
  7426 %}
  7428 instruct cmovF_reg(cmpOp cmp, flagsReg crx, regF dst, regF src) %{
  7429   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
  7430   ins_cost(DEFAULT_COST+BRANCH_COST);
  7432   ins_variable_size_depending_on_alignment(true);
  7434   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  7435   // Worst case is branch + move + stop, no stop without scheduler.
  7436   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  7437   ins_encode %{
  7438     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  7439     Label done;
  7440     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  7441     // Branch if not (cmp crx).
  7442     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  7443     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  7444     // TODO PPC port __ endgroup_if_needed(_size == 12);
  7445     __ bind(done);
  7446   %}
  7447   ins_pipe(pipe_class_default);
  7448 %}
  7450 instruct cmovD_reg(cmpOp cmp, flagsReg crx, regD dst, regD src) %{
  7451   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
  7452   ins_cost(DEFAULT_COST+BRANCH_COST);
  7454   ins_variable_size_depending_on_alignment(true);
  7456   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  7457   // Worst case is branch + move + stop, no stop without scheduler.
  7458   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  7459   ins_encode %{
  7460     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  7461     Label done;
  7462     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  7463     // Branch if not (cmp crx).
  7464     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  7465     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  7466     // TODO PPC port __ endgroup_if_needed(_size == 12);
  7467     __ bind(done);
  7468   %}
  7469   ins_pipe(pipe_class_default);
  7470 %}
  7472 //----------Conditional_store--------------------------------------------------
  7473 // Conditional-store of the updated heap-top.
  7474 // Used during allocation of the shared heap.
  7475 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
  7477 // As compareAndSwapL, but return flag register instead of boolean value in
  7478 // int register.
  7479 // Used by sun/misc/AtomicLongCSImpl.java.
  7480 // Mem_ptr must be a memory operand, else this node does not get
  7481 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  7482 // can be rematerialized which leads to errors.
  7483 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal) %{
  7484   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
  7485   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  7486   ins_encode %{
  7487     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7488     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  7489                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7490                 noreg, NULL, true);
  7491   %}
  7492   ins_pipe(pipe_class_default);
  7493 %}
  7495 // As compareAndSwapP, but return flag register instead of boolean value in
  7496 // int register.
  7497 // This instruction is matched if UseTLAB is off.
  7498 // Mem_ptr must be a memory operand, else this node does not get
  7499 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  7500 // can be rematerialized which leads to errors.
  7501 instruct storePConditional_regP_regP_regP(flagsReg crx, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
  7502   match(Set crx (StorePConditional mem_ptr (Binary oldVal newVal)));
  7503   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  7504   ins_encode %{
  7505     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7506     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  7507                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7508                 noreg, NULL, true);
  7509   %}
  7510   ins_pipe(pipe_class_default);
  7511 %}
  7513 // Implement LoadPLocked. Must be ordered against changes of the memory location
  7514 // by storePConditional.
  7515 // Don't know whether this is ever used.
  7516 instruct loadPLocked(iRegPdst dst, memory mem) %{
  7517   match(Set dst (LoadPLocked mem));
  7518   ins_cost(MEMORY_REF_COST);
  7520   format %{ "LD      $dst, $mem \t// loadPLocked\n\t"
  7521             "TWI     $dst\n\t"
  7522             "ISYNC" %}
  7523   size(12);
  7524   ins_encode( enc_ld_ac(dst, mem) );
  7525   ins_pipe(pipe_class_memory);
  7526 %}
  7528 //----------Compare-And-Swap---------------------------------------------------
  7530 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
  7531 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
  7532 // matched.
  7534 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2) %{
  7535   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
  7536   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  7537   // Variable size: instruction count smaller if regs are disjoint.
  7538   ins_encode %{
  7539     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7540     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7541     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7542                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7543                 $res$$Register, true);
  7544   %}
  7545   ins_pipe(pipe_class_default);
  7546 %}
  7548 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2) %{
  7549   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
  7550   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  7551   // Variable size: instruction count smaller if regs are disjoint.
  7552   ins_encode %{
  7553     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7554     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7555     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7556                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7557                 $res$$Register, true);
  7558   %}
  7559   ins_pipe(pipe_class_default);
  7560 %}
  7562 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2) %{
  7563   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
  7564   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
  7565   // Variable size: instruction count smaller if regs are disjoint.
  7566   ins_encode %{
  7567     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7568     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7569     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7570                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7571                 $res$$Register, NULL, true);
  7572   %}
  7573   ins_pipe(pipe_class_default);
  7574 %}
  7576 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2) %{
  7577   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
  7578   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
  7579   // Variable size: instruction count smaller if regs are disjoint.
  7580   ins_encode %{
  7581     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7582     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7583     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7584                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7585                 $res$$Register, NULL, true);
  7586   %}
  7587   ins_pipe(pipe_class_default);
  7588 %}
  7590 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  7591   match(Set res (GetAndAddI mem_ptr src));
  7592   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
  7593   // Variable size: instruction count smaller if regs are disjoint.
  7594   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
  7595   ins_pipe(pipe_class_default);
  7596 %}
  7598 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  7599   match(Set res (GetAndAddL mem_ptr src));
  7600   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
  7601   // Variable size: instruction count smaller if regs are disjoint.
  7602   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
  7603   ins_pipe(pipe_class_default);
  7604 %}
  7606 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  7607   match(Set res (GetAndSetI mem_ptr src));
  7608   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
  7609   // Variable size: instruction count smaller if regs are disjoint.
  7610   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  7611   ins_pipe(pipe_class_default);
  7612 %}
  7614 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  7615   match(Set res (GetAndSetL mem_ptr src));
  7616   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
  7617   // Variable size: instruction count smaller if regs are disjoint.
  7618   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  7619   ins_pipe(pipe_class_default);
  7620 %}
  7622 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src) %{
  7623   match(Set res (GetAndSetP mem_ptr src));
  7624   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
  7625   // Variable size: instruction count smaller if regs are disjoint.
  7626   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  7627   ins_pipe(pipe_class_default);
  7628 %}
  7630 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src) %{
  7631   match(Set res (GetAndSetN mem_ptr src));
  7632   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
  7633   // Variable size: instruction count smaller if regs are disjoint.
  7634   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  7635   ins_pipe(pipe_class_default);
  7636 %}
  7638 //----------Arithmetic Instructions--------------------------------------------
  7639 // Addition Instructions
  7641 // Register Addition
  7642 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
  7643   match(Set dst (AddI src1 src2));
  7644   format %{ "ADD     $dst, $src1, $src2" %}
  7645   size(4);
  7646   ins_encode %{
  7647     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7648     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7649   %}
  7650   ins_pipe(pipe_class_default);
  7651 %}
  7653 // Expand does not work with above instruct. (??)
  7654 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7655   // no match-rule
  7656   effect(DEF dst, USE src1, USE src2);
  7657   format %{ "ADD     $dst, $src1, $src2" %}
  7658   size(4);
  7659   ins_encode %{
  7660     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7661     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7662   %}
  7663   ins_pipe(pipe_class_default);
  7664 %}
  7666 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  7667   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
  7668   ins_cost(DEFAULT_COST*3);
  7670   expand %{
  7671     // FIXME: we should do this in the ideal world.
  7672     iRegIdst tmp1;
  7673     iRegIdst tmp2;
  7674     addI_reg_reg(tmp1, src1, src2);
  7675     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
  7676     addI_reg_reg(dst, tmp1, tmp2);
  7677   %}
  7678 %}
  7680 // Immediate Addition
  7681 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7682   match(Set dst (AddI src1 src2));
  7683   format %{ "ADDI    $dst, $src1, $src2" %}
  7684   size(4);
  7685   ins_encode %{
  7686     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7687     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7688   %}
  7689   ins_pipe(pipe_class_default);
  7690 %}
  7692 // Immediate Addition with 16-bit shifted operand
  7693 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
  7694   match(Set dst (AddI src1 src2));
  7695   format %{ "ADDIS   $dst, $src1, $src2" %}
  7696   size(4);
  7697   ins_encode %{
  7698     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7699     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7700   %}
  7701   ins_pipe(pipe_class_default);
  7702 %}
  7704 // Long Addition
  7705 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7706   match(Set dst (AddL src1 src2));
  7707   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  7708   size(4);
  7709   ins_encode %{
  7710     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7711     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7712   %}
  7713   ins_pipe(pipe_class_default);
  7714 %}
  7716 // Expand does not work with above instruct. (??)
  7717 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7718   // no match-rule
  7719   effect(DEF dst, USE src1, USE src2);
  7720   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  7721   size(4);
  7722   ins_encode %{
  7723     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7724     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7725   %}
  7726   ins_pipe(pipe_class_default);
  7727 %}
  7729 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
  7730   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
  7731   ins_cost(DEFAULT_COST*3);
  7733   expand %{
  7734     // FIXME: we should do this in the ideal world.
  7735     iRegLdst tmp1;
  7736     iRegLdst tmp2;
  7737     addL_reg_reg(tmp1, src1, src2);
  7738     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  7739     addL_reg_reg(dst, tmp1, tmp2);
  7740   %}
  7741 %}
  7743 // AddL + ConvL2I.
  7744 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7745   match(Set dst (ConvL2I (AddL src1 src2)));
  7747   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
  7748   size(4);
  7749   ins_encode %{
  7750     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7751     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7752   %}
  7753   ins_pipe(pipe_class_default);
  7754 %}
  7756 // No constant pool entries required.
  7757 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7758   match(Set dst (AddL src1 src2));
  7760   format %{ "ADDI    $dst, $src1, $src2" %}
  7761   size(4);
  7762   ins_encode %{
  7763     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7764     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7765   %}
  7766   ins_pipe(pipe_class_default);
  7767 %}
  7769 // Long Immediate Addition with 16-bit shifted operand.
  7770 // No constant pool entries required.
  7771 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
  7772   match(Set dst (AddL src1 src2));
  7774   format %{ "ADDIS   $dst, $src1, $src2" %}
  7775   size(4);
  7776   ins_encode %{
  7777     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7778     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7779   %}
  7780   ins_pipe(pipe_class_default);
  7781 %}
  7783 // Pointer Register Addition
  7784 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
  7785   match(Set dst (AddP src1 src2));
  7786   format %{ "ADD     $dst, $src1, $src2" %}
  7787   size(4);
  7788   ins_encode %{
  7789     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7790     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7791   %}
  7792   ins_pipe(pipe_class_default);
  7793 %}
  7795 // Pointer Immediate Addition
  7796 // No constant pool entries required.
  7797 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
  7798   match(Set dst (AddP src1 src2));
  7800   format %{ "ADDI    $dst, $src1, $src2" %}
  7801   size(4);
  7802   ins_encode %{
  7803     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7804     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7805   %}
  7806   ins_pipe(pipe_class_default);
  7807 %}
  7809 // Pointer Immediate Addition with 16-bit shifted operand.
  7810 // No constant pool entries required.
  7811 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
  7812   match(Set dst (AddP src1 src2));
  7814   format %{ "ADDIS   $dst, $src1, $src2" %}
  7815   size(4);
  7816   ins_encode %{
  7817     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7818     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7819   %}
  7820   ins_pipe(pipe_class_default);
  7821 %}
  7823 //---------------------
  7824 // Subtraction Instructions
  7826 // Register Subtraction
  7827 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7828   match(Set dst (SubI src1 src2));
  7829   format %{ "SUBF    $dst, $src2, $src1" %}
  7830   size(4);
  7831   ins_encode %{
  7832     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7833     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7834   %}
  7835   ins_pipe(pipe_class_default);
  7836 %}
  7838 // Immediate Subtraction
  7839 // The compiler converts "x-c0" into "x+ -c0" (see SubINode::Ideal),
  7840 // so this rule seems to be unused.
  7841 instruct subI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7842   match(Set dst (SubI src1 src2));
  7843   format %{ "SUBI    $dst, $src1, $src2" %}
  7844   size(4);
  7845   ins_encode %{
  7846     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7847     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  7848   %}
  7849   ins_pipe(pipe_class_default);
  7850 %}
  7852 // SubI from constant (using subfic).
  7853 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
  7854   match(Set dst (SubI src1 src2));
  7855   format %{ "SUBI    $dst, $src1, $src2" %}
  7857   size(4);
  7858   ins_encode %{
  7859     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
  7860     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
  7861   %}
  7862   ins_pipe(pipe_class_default);
  7863 %}
  7865 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
  7866 // positive integers and 0xF...F for negative ones.
  7867 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
  7868   // no match-rule, false predicate
  7869   effect(DEF dst, USE src);
  7870   predicate(false);
  7872   format %{ "SRAWI   $dst, $src, #31" %}
  7873   size(4);
  7874   ins_encode %{
  7875     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  7876     __ srawi($dst$$Register, $src$$Register, 0x1f);
  7877   %}
  7878   ins_pipe(pipe_class_default);
  7879 %}
  7881 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
  7882   match(Set dst (AbsI src));
  7883   ins_cost(DEFAULT_COST*3);
  7885   expand %{
  7886     iRegIdst tmp1;
  7887     iRegIdst tmp2;
  7888     signmask32I_regI(tmp1, src);
  7889     xorI_reg_reg(tmp2, tmp1, src);
  7890     subI_reg_reg(dst, tmp2, tmp1);
  7891   %}
  7892 %}
  7894 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
  7895   match(Set dst (SubI zero src2));
  7896   format %{ "NEG     $dst, $src2" %}
  7897   size(4);
  7898   ins_encode %{
  7899     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7900     __ neg($dst$$Register, $src2$$Register);
  7901   %}
  7902   ins_pipe(pipe_class_default);
  7903 %}
  7905 // Long subtraction
  7906 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7907   match(Set dst (SubL src1 src2));
  7908   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
  7909   size(4);
  7910   ins_encode %{
  7911     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7912     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7913   %}
  7914   ins_pipe(pipe_class_default);
  7915 %}
  7917 // SubL + convL2I.
  7918 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7919   match(Set dst (ConvL2I (SubL src1 src2)));
  7921   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
  7922   size(4);
  7923   ins_encode %{
  7924     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7925     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7926   %}
  7927   ins_pipe(pipe_class_default);
  7928 %}
  7930 // Immediate Subtraction
  7931 // The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
  7932 // so this rule seems to be unused.
  7933 // No constant pool entries required.
  7934 instruct subL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7935   match(Set dst (SubL src1 src2));
  7937   format %{ "SUBI    $dst, $src1, $src2 \t// long" %}
  7938   size(4);
  7939   ins_encode %{
  7940     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7941     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  7942   %}
  7943   ins_pipe(pipe_class_default);
  7944 %}
  7946 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  7947 // positive longs and 0xF...F for negative ones.
  7948 instruct signmask64I_regL(iRegIdst dst, iRegLsrc src) %{
  7949   // no match-rule, false predicate
  7950   effect(DEF dst, USE src);
  7951   predicate(false);
  7953   format %{ "SRADI   $dst, $src, #63" %}
  7954   size(4);
  7955   ins_encode %{
  7956     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  7957     __ sradi($dst$$Register, $src$$Register, 0x3f);
  7958   %}
  7959   ins_pipe(pipe_class_default);
  7960 %}
  7962 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  7963 // positive longs and 0xF...F for negative ones.
  7964 instruct signmask64L_regL(iRegLdst dst, iRegLsrc src) %{
  7965   // no match-rule, false predicate
  7966   effect(DEF dst, USE src);
  7967   predicate(false);
  7969   format %{ "SRADI   $dst, $src, #63" %}
  7970   size(4);
  7971   ins_encode %{
  7972     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  7973     __ sradi($dst$$Register, $src$$Register, 0x3f);
  7974   %}
  7975   ins_pipe(pipe_class_default);
  7976 %}
  7978 // Long negation
  7979 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
  7980   match(Set dst (SubL zero src2));
  7981   format %{ "NEG     $dst, $src2 \t// long" %}
  7982   size(4);
  7983   ins_encode %{
  7984     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7985     __ neg($dst$$Register, $src2$$Register);
  7986   %}
  7987   ins_pipe(pipe_class_default);
  7988 %}
  7990 // NegL + ConvL2I.
  7991 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
  7992   match(Set dst (ConvL2I (SubL zero src2)));
  7994   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
  7995   size(4);
  7996   ins_encode %{
  7997     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7998     __ neg($dst$$Register, $src2$$Register);
  7999   %}
  8000   ins_pipe(pipe_class_default);
  8001 %}
  8003 // Multiplication Instructions
  8004 // Integer Multiplication
  8006 // Register Multiplication
  8007 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8008   match(Set dst (MulI src1 src2));
  8009   ins_cost(DEFAULT_COST);
  8011   format %{ "MULLW   $dst, $src1, $src2" %}
  8012   size(4);
  8013   ins_encode %{
  8014     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
  8015     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
  8016   %}
  8017   ins_pipe(pipe_class_default);
  8018 %}
  8020 // Immediate Multiplication
  8021 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  8022   match(Set dst (MulI src1 src2));
  8023   ins_cost(DEFAULT_COST);
  8025   format %{ "MULLI   $dst, $src1, $src2" %}
  8026   size(4);
  8027   ins_encode %{
  8028     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  8029     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  8030   %}
  8031   ins_pipe(pipe_class_default);
  8032 %}
  8034 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8035   match(Set dst (MulL src1 src2));
  8036   ins_cost(DEFAULT_COST);
  8038   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
  8039   size(4);
  8040   ins_encode %{
  8041     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
  8042     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
  8043   %}
  8044   ins_pipe(pipe_class_default);
  8045 %}
  8047 // Multiply high for optimized long division by constant.
  8048 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8049   match(Set dst (MulHiL src1 src2));
  8050   ins_cost(DEFAULT_COST);
  8052   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
  8053   size(4);
  8054   ins_encode %{
  8055     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
  8056     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
  8057   %}
  8058   ins_pipe(pipe_class_default);
  8059 %}
  8061 // Immediate Multiplication
  8062 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  8063   match(Set dst (MulL src1 src2));
  8064   ins_cost(DEFAULT_COST);
  8066   format %{ "MULLI   $dst, $src1, $src2" %}
  8067   size(4);
  8068   ins_encode %{
  8069     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  8070     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  8071   %}
  8072   ins_pipe(pipe_class_default);
  8073 %}
  8075 // Integer Division with Immediate -1: Negate.
  8076 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  8077   match(Set dst (DivI src1 src2));
  8078   ins_cost(DEFAULT_COST);
  8080   format %{ "NEG     $dst, $src1 \t// /-1" %}
  8081   size(4);
  8082   ins_encode %{
  8083     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8084     __ neg($dst$$Register, $src1$$Register);
  8085   %}
  8086   ins_pipe(pipe_class_default);
  8087 %}
  8089 // Integer Division with constant, but not -1.
  8090 // We should be able to improve this by checking the type of src2.
  8091 // It might well be that src2 is known to be positive.
  8092 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8093   match(Set dst (DivI src1 src2));
  8094   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
  8095   ins_cost(2*DEFAULT_COST);
  8097   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
  8098   size(4);
  8099   ins_encode %{
  8100     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
  8101     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
  8102   %}
  8103   ins_pipe(pipe_class_default);
  8104 %}
  8106 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsReg crx, iRegIsrc src1) %{
  8107   effect(USE_DEF dst, USE src1, USE crx);
  8108   predicate(false);
  8110   ins_variable_size_depending_on_alignment(true);
  8112   format %{ "CMOVE   $dst, neg($src1), $crx" %}
  8113   // Worst case is branch + move + stop, no stop without scheduler.
  8114   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  8115   ins_encode %{
  8116     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  8117     Label done;
  8118     __ bne($crx$$CondRegister, done);
  8119     __ neg($dst$$Register, $src1$$Register);
  8120     // TODO PPC port __ endgroup_if_needed(_size == 12);
  8121     __ bind(done);
  8122   %}
  8123   ins_pipe(pipe_class_default);
  8124 %}
  8126 // Integer Division with Registers not containing constants.
  8127 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8128   match(Set dst (DivI src1 src2));
  8129   ins_cost(10*DEFAULT_COST);
  8131   expand %{
  8132     immI16 imm %{ (int)-1 %}
  8133     flagsReg tmp1;
  8134     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  8135     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  8136     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  8137   %}
  8138 %}
  8140 // Long Division with Immediate -1: Negate.
  8141 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  8142   match(Set dst (DivL src1 src2));
  8143   ins_cost(DEFAULT_COST);
  8145   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
  8146   size(4);
  8147   ins_encode %{
  8148     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8149     __ neg($dst$$Register, $src1$$Register);
  8150   %}
  8151   ins_pipe(pipe_class_default);
  8152 %}
  8154 // Long Division with constant, but not -1.
  8155 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8156   match(Set dst (DivL src1 src2));
  8157   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
  8158   ins_cost(2*DEFAULT_COST);
  8160   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
  8161   size(4);
  8162   ins_encode %{
  8163     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
  8164     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
  8165   %}
  8166   ins_pipe(pipe_class_default);
  8167 %}
  8169 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsReg crx, iRegLsrc src1) %{
  8170   effect(USE_DEF dst, USE src1, USE crx);
  8171   predicate(false);
  8173   ins_variable_size_depending_on_alignment(true);
  8175   format %{ "CMOVE   $dst, neg($src1), $crx" %}
  8176   // Worst case is branch + move + stop, no stop without scheduler.
  8177   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  8178   ins_encode %{
  8179     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  8180     Label done;
  8181     __ bne($crx$$CondRegister, done);
  8182     __ neg($dst$$Register, $src1$$Register);
  8183     // TODO PPC port __ endgroup_if_needed(_size == 12);
  8184     __ bind(done);
  8185   %}
  8186   ins_pipe(pipe_class_default);
  8187 %}
  8189 // Long Division with Registers not containing constants.
  8190 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8191   match(Set dst (DivL src1 src2));
  8192   ins_cost(10*DEFAULT_COST);
  8194   expand %{
  8195     immL16 imm %{ (int)-1 %}
  8196     flagsReg tmp1;
  8197     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  8198     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  8199     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  8200   %}
  8201 %}
  8203 // Integer Remainder with registers.
  8204 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8205   match(Set dst (ModI src1 src2));
  8206   ins_cost(10*DEFAULT_COST);
  8208   expand %{
  8209     immI16 imm %{ (int)-1 %}
  8210     flagsReg tmp1;
  8211     iRegIdst tmp2;
  8212     iRegIdst tmp3;
  8213     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
  8214     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
  8215     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
  8216     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
  8217     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
  8218   %}
  8219 %}
  8221 // Long Remainder with registers
  8222 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
  8223   match(Set dst (ModL src1 src2));
  8224   ins_cost(10*DEFAULT_COST);
  8226   expand %{
  8227     immL16 imm %{ (int)-1 %}
  8228     flagsReg tmp1;
  8229     iRegLdst tmp2;
  8230     iRegLdst tmp3;
  8231     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
  8232     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
  8233     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
  8234     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
  8235     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
  8236   %}
  8237 %}
  8239 // Integer Shift Instructions
  8241 // Register Shift Left
  8243 // Clear all but the lowest #mask bits.
  8244 // Used to normalize shift amounts in registers.
  8245 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
  8246   // no match-rule, false predicate
  8247   effect(DEF dst, USE src, USE mask);
  8248   predicate(false);
  8250   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
  8251   size(4);
  8252   ins_encode %{
  8253     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8254     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
  8255   %}
  8256   ins_pipe(pipe_class_default);
  8257 %}
  8259 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8260   // no match-rule, false predicate
  8261   effect(DEF dst, USE src1, USE src2);
  8262   predicate(false);
  8264   format %{ "SLW     $dst, $src1, $src2" %}
  8265   size(4);
  8266   ins_encode %{
  8267     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
  8268     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
  8269   %}
  8270   ins_pipe(pipe_class_default);
  8271 %}
  8273 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8274   match(Set dst (LShiftI src1 src2));
  8275   ins_cost(DEFAULT_COST*2);
  8276   expand %{
  8277     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8278     iRegIdst tmpI;
  8279     maskI_reg_imm(tmpI, src2, mask);
  8280     lShiftI_reg_reg(dst, src1, tmpI);
  8281   %}
  8282 %}
  8284 // Register Shift Left Immediate
  8285 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8286   match(Set dst (LShiftI src1 src2));
  8288   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
  8289   size(4);
  8290   ins_encode %{
  8291     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8292     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8293   %}
  8294   ins_pipe(pipe_class_default);
  8295 %}
  8297 // AndI with negpow2-constant + LShiftI
  8298 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  8299   match(Set dst (LShiftI (AndI src1 src2) src3));
  8300   predicate(UseRotateAndMaskInstructionsPPC64);
  8302   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
  8303   size(4);
  8304   ins_encode %{
  8305     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  8306     long src2      = $src2$$constant;
  8307     long src3      = $src3$$constant;
  8308     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  8309     if (maskbits >= 32) {
  8310       __ li($dst$$Register, 0); // addi
  8311     } else {
  8312       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
  8314   %}
  8315   ins_pipe(pipe_class_default);
  8316 %}
  8318 // RShiftI + AndI with negpow2-constant + LShiftI
  8319 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  8320   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
  8321   predicate(UseRotateAndMaskInstructionsPPC64);
  8323   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
  8324   size(4);
  8325   ins_encode %{
  8326     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  8327     long src2      = $src2$$constant;
  8328     long src3      = $src3$$constant;
  8329     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  8330     if (maskbits >= 32) {
  8331       __ li($dst$$Register, 0); // addi
  8332     } else {
  8333       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
  8335   %}
  8336   ins_pipe(pipe_class_default);
  8337 %}
  8339 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8340   // no match-rule, false predicate
  8341   effect(DEF dst, USE src1, USE src2);
  8342   predicate(false);
  8344   format %{ "SLD     $dst, $src1, $src2" %}
  8345   size(4);
  8346   ins_encode %{
  8347     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
  8348     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
  8349   %}
  8350   ins_pipe(pipe_class_default);
  8351 %}
  8353 // Register Shift Left
  8354 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8355   match(Set dst (LShiftL src1 src2));
  8356   ins_cost(DEFAULT_COST*2);
  8357   expand %{
  8358     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8359     iRegIdst tmpI;
  8360     maskI_reg_imm(tmpI, src2, mask);
  8361     lShiftL_regL_regI(dst, src1, tmpI);
  8362   %}
  8363 %}
  8365 // Register Shift Left Immediate
  8366 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8367   match(Set dst (LShiftL src1 src2));
  8368   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
  8369   size(4);
  8370   ins_encode %{
  8371     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8372     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8373   %}
  8374   ins_pipe(pipe_class_default);
  8375 %}
  8377 // If we shift more than 32 bits, we need not convert I2L.
  8378 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
  8379   match(Set dst (LShiftL (ConvI2L src1) src2));
  8380   ins_cost(DEFAULT_COST);
  8382   size(4);
  8383   format %{ "SLDI    $dst, i2l($src1), $src2" %}
  8384   ins_encode %{
  8385     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8386     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8387   %}
  8388   ins_pipe(pipe_class_default);
  8389 %}
  8391 // Shift a postivie int to the left.
  8392 // Clrlsldi clears the upper 32 bits and shifts.
  8393 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
  8394   match(Set dst (LShiftL (ConvI2L src1) src2));
  8395   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
  8397   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
  8398   size(4);
  8399   ins_encode %{
  8400     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
  8401     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
  8402   %}
  8403   ins_pipe(pipe_class_default);
  8404 %}
  8406 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8407   // no match-rule, false predicate
  8408   effect(DEF dst, USE src1, USE src2);
  8409   predicate(false);
  8411   format %{ "SRAW    $dst, $src1, $src2" %}
  8412   size(4);
  8413   ins_encode %{
  8414     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
  8415     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
  8416   %}
  8417   ins_pipe(pipe_class_default);
  8418 %}
  8420 // Register Arithmetic Shift Right
  8421 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8422   match(Set dst (RShiftI src1 src2));
  8423   ins_cost(DEFAULT_COST*2);
  8424   expand %{
  8425     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8426     iRegIdst tmpI;
  8427     maskI_reg_imm(tmpI, src2, mask);
  8428     arShiftI_reg_reg(dst, src1, tmpI);
  8429   %}
  8430 %}
  8432 // Register Arithmetic Shift Right Immediate
  8433 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8434   match(Set dst (RShiftI src1 src2));
  8436   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
  8437   size(4);
  8438   ins_encode %{
  8439     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  8440     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8441   %}
  8442   ins_pipe(pipe_class_default);
  8443 %}
  8445 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8446   // no match-rule, false predicate
  8447   effect(DEF dst, USE src1, USE src2);
  8448   predicate(false);
  8450   format %{ "SRAD    $dst, $src1, $src2" %}
  8451   size(4);
  8452   ins_encode %{
  8453     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
  8454     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
  8455   %}
  8456   ins_pipe(pipe_class_default);
  8457 %}
  8459 // Register Shift Right Arithmetic Long
  8460 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8461   match(Set dst (RShiftL src1 src2));
  8462   ins_cost(DEFAULT_COST*2);
  8464   expand %{
  8465     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8466     iRegIdst tmpI;
  8467     maskI_reg_imm(tmpI, src2, mask);
  8468     arShiftL_regL_regI(dst, src1, tmpI);
  8469   %}
  8470 %}
  8472 // Register Shift Right Immediate
  8473 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8474   match(Set dst (RShiftL src1 src2));
  8476   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
  8477   size(4);
  8478   ins_encode %{
  8479     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  8480     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8481   %}
  8482   ins_pipe(pipe_class_default);
  8483 %}
  8485 // RShiftL + ConvL2I
  8486 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  8487   match(Set dst (ConvL2I (RShiftL src1 src2)));
  8489   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  8490   size(4);
  8491   ins_encode %{
  8492     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  8493     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8494   %}
  8495   ins_pipe(pipe_class_default);
  8496 %}
  8498 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8499   // no match-rule, false predicate
  8500   effect(DEF dst, USE src1, USE src2);
  8501   predicate(false);
  8503   format %{ "SRW     $dst, $src1, $src2" %}
  8504   size(4);
  8505   ins_encode %{
  8506     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
  8507     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
  8508   %}
  8509   ins_pipe(pipe_class_default);
  8510 %}
  8512 // Register Shift Right
  8513 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8514   match(Set dst (URShiftI src1 src2));
  8515   ins_cost(DEFAULT_COST*2);
  8517   expand %{
  8518     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8519     iRegIdst tmpI;
  8520     maskI_reg_imm(tmpI, src2, mask);
  8521     urShiftI_reg_reg(dst, src1, tmpI);
  8522   %}
  8523 %}
  8525 // Register Shift Right Immediate
  8526 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8527   match(Set dst (URShiftI src1 src2));
  8529   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
  8530   size(4);
  8531   ins_encode %{
  8532     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8533     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8534   %}
  8535   ins_pipe(pipe_class_default);
  8536 %}
  8538 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8539   // no match-rule, false predicate
  8540   effect(DEF dst, USE src1, USE src2);
  8541   predicate(false);
  8543   format %{ "SRD     $dst, $src1, $src2" %}
  8544   size(4);
  8545   ins_encode %{
  8546     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
  8547     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
  8548   %}
  8549   ins_pipe(pipe_class_default);
  8550 %}
  8552 // Register Shift Right
  8553 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8554   match(Set dst (URShiftL src1 src2));
  8555   ins_cost(DEFAULT_COST*2);
  8557   expand %{
  8558     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8559     iRegIdst tmpI;
  8560     maskI_reg_imm(tmpI, src2, mask);
  8561     urShiftL_regL_regI(dst, src1, tmpI);
  8562   %}
  8563 %}
  8565 // Register Shift Right Immediate
  8566 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8567   match(Set dst (URShiftL src1 src2));
  8569   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
  8570   size(4);
  8571   ins_encode %{
  8572     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8573     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8574   %}
  8575   ins_pipe(pipe_class_default);
  8576 %}
  8578 // URShiftL + ConvL2I.
  8579 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  8580   match(Set dst (ConvL2I (URShiftL src1 src2)));
  8582   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  8583   size(4);
  8584   ins_encode %{
  8585     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8586     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8587   %}
  8588   ins_pipe(pipe_class_default);
  8589 %}
  8591 // Register Shift Right Immediate with a CastP2X
  8592 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
  8593   match(Set dst (URShiftL (CastP2X src1) src2));
  8595   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
  8596   size(4);
  8597   ins_encode %{
  8598     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8599     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8600   %}
  8601   ins_pipe(pipe_class_default);
  8602 %}
  8604 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
  8605   match(Set dst (ConvL2I (ConvI2L src)));
  8607   format %{ "EXTSW   $dst, $src \t// int->int" %}
  8608   size(4);
  8609   ins_encode %{
  8610     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  8611     __ extsw($dst$$Register, $src$$Register);
  8612   %}
  8613   ins_pipe(pipe_class_default);
  8614 %}
  8616 //----------Rotate Instructions------------------------------------------------
  8618 // Rotate Left by 8-bit immediate
  8619 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
  8620   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
  8621   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8623   format %{ "ROTLWI  $dst, $src, $lshift" %}
  8624   size(4);
  8625   ins_encode %{
  8626     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8627     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
  8628   %}
  8629   ins_pipe(pipe_class_default);
  8630 %}
  8632 // Rotate Right by 8-bit immediate
  8633 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
  8634   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
  8635   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8637   format %{ "ROTRWI  $dst, $rshift" %}
  8638   size(4);
  8639   ins_encode %{
  8640     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8641     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
  8642   %}
  8643   ins_pipe(pipe_class_default);
  8644 %}
  8646 //----------Floating Point Arithmetic Instructions-----------------------------
  8648 // Add float single precision
  8649 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  8650   match(Set dst (AddF src1 src2));
  8652   format %{ "FADDS   $dst, $src1, $src2" %}
  8653   size(4);
  8654   ins_encode %{
  8655     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
  8656     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8657   %}
  8658   ins_pipe(pipe_class_default);
  8659 %}
  8661 // Add float double precision
  8662 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  8663   match(Set dst (AddD src1 src2));
  8665   format %{ "FADD    $dst, $src1, $src2" %}
  8666   size(4);
  8667   ins_encode %{
  8668     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
  8669     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8670   %}
  8671   ins_pipe(pipe_class_default);
  8672 %}
  8674 // Sub float single precision
  8675 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  8676   match(Set dst (SubF src1 src2));
  8678   format %{ "FSUBS   $dst, $src1, $src2" %}
  8679   size(4);
  8680   ins_encode %{
  8681     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
  8682     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8683   %}
  8684   ins_pipe(pipe_class_default);
  8685 %}
  8687 // Sub float double precision
  8688 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  8689   match(Set dst (SubD src1 src2));
  8690   format %{ "FSUB    $dst, $src1, $src2" %}
  8691   size(4);
  8692   ins_encode %{
  8693     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
  8694     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8695   %}
  8696   ins_pipe(pipe_class_default);
  8697 %}
  8699 // Mul float single precision
  8700 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  8701   match(Set dst (MulF src1 src2));
  8702   format %{ "FMULS   $dst, $src1, $src2" %}
  8703   size(4);
  8704   ins_encode %{
  8705     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
  8706     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8707   %}
  8708   ins_pipe(pipe_class_default);
  8709 %}
  8711 // Mul float double precision
  8712 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  8713   match(Set dst (MulD src1 src2));
  8714   format %{ "FMUL    $dst, $src1, $src2" %}
  8715   size(4);
  8716   ins_encode %{
  8717     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
  8718     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8719   %}
  8720   ins_pipe(pipe_class_default);
  8721 %}
  8723 // Div float single precision
  8724 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  8725   match(Set dst (DivF src1 src2));
  8726   format %{ "FDIVS   $dst, $src1, $src2" %}
  8727   size(4);
  8728   ins_encode %{
  8729     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
  8730     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8731   %}
  8732   ins_pipe(pipe_class_default);
  8733 %}
  8735 // Div float double precision
  8736 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  8737   match(Set dst (DivD src1 src2));
  8738   format %{ "FDIV    $dst, $src1, $src2" %}
  8739   size(4);
  8740   ins_encode %{
  8741     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
  8742     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8743   %}
  8744   ins_pipe(pipe_class_default);
  8745 %}
  8747 // Absolute float single precision
  8748 instruct absF_reg(regF dst, regF src) %{
  8749   match(Set dst (AbsF src));
  8750   format %{ "FABS    $dst, $src \t// float" %}
  8751   size(4);
  8752   ins_encode %{
  8753     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  8754     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  8755   %}
  8756   ins_pipe(pipe_class_default);
  8757 %}
  8759 // Absolute float double precision
  8760 instruct absD_reg(regD dst, regD src) %{
  8761   match(Set dst (AbsD src));
  8762   format %{ "FABS    $dst, $src \t// double" %}
  8763   size(4);
  8764   ins_encode %{
  8765     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  8766     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  8767   %}
  8768   ins_pipe(pipe_class_default);
  8769 %}
  8771 instruct negF_reg(regF dst, regF src) %{
  8772   match(Set dst (NegF src));
  8773   format %{ "FNEG    $dst, $src \t// float" %}
  8774   size(4);
  8775   ins_encode %{
  8776     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  8777     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  8778   %}
  8779   ins_pipe(pipe_class_default);
  8780 %}
  8782 instruct negD_reg(regD dst, regD src) %{
  8783   match(Set dst (NegD src));
  8784   format %{ "FNEG    $dst, $src \t// double" %}
  8785   size(4);
  8786   ins_encode %{
  8787     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  8788     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  8789   %}
  8790   ins_pipe(pipe_class_default);
  8791 %}
  8793 // AbsF + NegF.
  8794 instruct negF_absF_reg(regF dst, regF src) %{
  8795   match(Set dst (NegF (AbsF src)));
  8796   format %{ "FNABS   $dst, $src \t// float" %}
  8797   size(4);
  8798   ins_encode %{
  8799     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  8800     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  8801   %}
  8802   ins_pipe(pipe_class_default);
  8803 %}
  8805 // AbsD + NegD.
  8806 instruct negD_absD_reg(regD dst, regD src) %{
  8807   match(Set dst (NegD (AbsD src)));
  8808   format %{ "FNABS   $dst, $src \t// double" %}
  8809   size(4);
  8810   ins_encode %{
  8811     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  8812     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  8813   %}
  8814   ins_pipe(pipe_class_default);
  8815 %}
  8817 // VM_Version::has_fsqrt() decides if this node will be used.
  8818 // Sqrt float double precision
  8819 instruct sqrtD_reg(regD dst, regD src) %{
  8820   match(Set dst (SqrtD src));
  8821   format %{ "FSQRT   $dst, $src" %}
  8822   size(4);
  8823   ins_encode %{
  8824     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
  8825     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
  8826   %}
  8827   ins_pipe(pipe_class_default);
  8828 %}
  8830 // Single-precision sqrt.
  8831 instruct sqrtF_reg(regF dst, regF src) %{
  8832   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  8833   predicate(VM_Version::has_fsqrts());
  8834   ins_cost(DEFAULT_COST);
  8836   format %{ "FSQRTS  $dst, $src" %}
  8837   size(4);
  8838   ins_encode %{
  8839     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
  8840     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
  8841   %}
  8842   ins_pipe(pipe_class_default);
  8843 %}
  8845 instruct roundDouble_nop(regD dst) %{
  8846   match(Set dst (RoundDouble dst));
  8847   ins_cost(0);
  8849   format %{ " -- \t// RoundDouble not needed - empty" %}
  8850   size(0);
  8851   // PPC results are already "rounded" (i.e., normal-format IEEE).
  8852   ins_encode( /*empty*/ );
  8853   ins_pipe(pipe_class_default);
  8854 %}
  8856 instruct roundFloat_nop(regF dst) %{
  8857   match(Set dst (RoundFloat dst));
  8858   ins_cost(0);
  8860   format %{ " -- \t// RoundFloat not needed - empty" %}
  8861   size(0);
  8862   // PPC results are already "rounded" (i.e., normal-format IEEE).
  8863   ins_encode( /*empty*/ );
  8864   ins_pipe(pipe_class_default);
  8865 %}
  8867 //----------Logical Instructions-----------------------------------------------
  8869 // And Instructions
  8871 // Register And
  8872 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8873   match(Set dst (AndI src1 src2));
  8874   format %{ "AND     $dst, $src1, $src2" %}
  8875   size(4);
  8876   ins_encode %{
  8877     // TODO: PPC port $archOpcode(ppc64Opcode_and);
  8878     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  8879   %}
  8880   ins_pipe(pipe_class_default);
  8881 %}
  8883 // Immediate And
  8884 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
  8885   match(Set dst (AndI src1 src2));
  8886   effect(KILL cr0);
  8888   format %{ "ANDI    $dst, $src1, $src2" %}
  8889   size(4);
  8890   ins_encode %{
  8891     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  8892     // FIXME: avoid andi_ ?
  8893     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  8894   %}
  8895   ins_pipe(pipe_class_default);
  8896 %}
  8898 // Immediate And where the immediate is a negative power of 2.
  8899 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
  8900   match(Set dst (AndI src1 src2));
  8901   format %{ "ANDWI   $dst, $src1, $src2" %}
  8902   size(4);
  8903   ins_encode %{
  8904     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8905     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
  8906   %}
  8907   ins_pipe(pipe_class_default);
  8908 %}
  8910 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
  8911   match(Set dst (AndI src1 src2));
  8912   format %{ "ANDWI   $dst, $src1, $src2" %}
  8913   size(4);
  8914   ins_encode %{
  8915     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8916     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8917   %}
  8918   ins_pipe(pipe_class_default);
  8919 %}
  8921 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
  8922   match(Set dst (AndI src1 src2));
  8923   predicate(UseRotateAndMaskInstructionsPPC64);
  8924   format %{ "ANDWI   $dst, $src1, $src2" %}
  8925   size(4);
  8926   ins_encode %{
  8927     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8928     __ rlwinm($dst$$Register, $src1$$Register, 0,
  8929               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
  8930   %}
  8931   ins_pipe(pipe_class_default);
  8932 %}
  8934 // Register And Long
  8935 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8936   match(Set dst (AndL src1 src2));
  8937   ins_cost(DEFAULT_COST);
  8939   format %{ "AND     $dst, $src1, $src2 \t// long" %}
  8940   size(4);
  8941   ins_encode %{
  8942     // TODO: PPC port $archOpcode(ppc64Opcode_and);
  8943     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  8944   %}
  8945   ins_pipe(pipe_class_default);
  8946 %}
  8948 // Immediate And long
  8949 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
  8950   match(Set dst (AndL src1 src2));
  8951   effect(KILL cr0);
  8952   ins_cost(DEFAULT_COST);
  8954   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
  8955   size(4);
  8956   ins_encode %{
  8957     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  8958     // FIXME: avoid andi_ ?
  8959     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  8960   %}
  8961   ins_pipe(pipe_class_default);
  8962 %}
  8964 // Immediate And Long where the immediate is a negative power of 2.
  8965 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
  8966   match(Set dst (AndL src1 src2));
  8967   format %{ "ANDDI   $dst, $src1, $src2" %}
  8968   size(4);
  8969   ins_encode %{
  8970     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8971     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
  8972   %}
  8973   ins_pipe(pipe_class_default);
  8974 %}
  8976 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  8977   match(Set dst (AndL src1 src2));
  8978   format %{ "ANDDI   $dst, $src1, $src2" %}
  8979   size(4);
  8980   ins_encode %{
  8981     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8982     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8983   %}
  8984   ins_pipe(pipe_class_default);
  8985 %}
  8987 // AndL + ConvL2I.
  8988 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  8989   match(Set dst (ConvL2I (AndL src1 src2)));
  8990   ins_cost(DEFAULT_COST);
  8992   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
  8993   size(4);
  8994   ins_encode %{
  8995     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8996     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8997   %}
  8998   ins_pipe(pipe_class_default);
  8999 %}
  9001 // Or Instructions
  9003 // Register Or
  9004 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9005   match(Set dst (OrI src1 src2));
  9006   format %{ "OR      $dst, $src1, $src2" %}
  9007   size(4);
  9008   ins_encode %{
  9009     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9010     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9011   %}
  9012   ins_pipe(pipe_class_default);
  9013 %}
  9015 // Expand does not work with above instruct. (??)
  9016 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9017   // no match-rule
  9018   effect(DEF dst, USE src1, USE src2);
  9019   format %{ "OR      $dst, $src1, $src2" %}
  9020   size(4);
  9021   ins_encode %{
  9022     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9023     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9024   %}
  9025   ins_pipe(pipe_class_default);
  9026 %}
  9028 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  9029   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
  9030   ins_cost(DEFAULT_COST*3);
  9032   expand %{
  9033     // FIXME: we should do this in the ideal world.
  9034     iRegIdst tmp1;
  9035     iRegIdst tmp2;
  9036     orI_reg_reg(tmp1, src1, src2);
  9037     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  9038     orI_reg_reg(dst, tmp1, tmp2);
  9039   %}
  9040 %}
  9042 // Immediate Or
  9043 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  9044   match(Set dst (OrI src1 src2));
  9045   format %{ "ORI     $dst, $src1, $src2" %}
  9046   size(4);
  9047   ins_encode %{
  9048     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  9049     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  9050   %}
  9051   ins_pipe(pipe_class_default);
  9052 %}
  9054 // Register Or Long
  9055 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9056   match(Set dst (OrL src1 src2));
  9057   ins_cost(DEFAULT_COST);
  9059   size(4);
  9060   format %{ "OR      $dst, $src1, $src2 \t// long" %}
  9061   ins_encode %{
  9062     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9063     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9064   %}
  9065   ins_pipe(pipe_class_default);
  9066 %}
  9068 // OrL + ConvL2I.
  9069 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9070   match(Set dst (ConvL2I (OrL src1 src2)));
  9071   ins_cost(DEFAULT_COST);
  9073   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
  9074   size(4);
  9075   ins_encode %{
  9076     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9077     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9078   %}
  9079   ins_pipe(pipe_class_default);
  9080 %}
  9082 // Immediate Or long
  9083 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
  9084   match(Set dst (OrL src1 con));
  9085   ins_cost(DEFAULT_COST);
  9087   format %{ "ORI     $dst, $src1, $con \t// long" %}
  9088   size(4);
  9089   ins_encode %{
  9090     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  9091     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
  9092   %}
  9093   ins_pipe(pipe_class_default);
  9094 %}
  9096 // Xor Instructions
  9098 // Register Xor
  9099 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9100   match(Set dst (XorI src1 src2));
  9101   format %{ "XOR     $dst, $src1, $src2" %}
  9102   size(4);
  9103   ins_encode %{
  9104     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9105     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9106   %}
  9107   ins_pipe(pipe_class_default);
  9108 %}
  9110 // Expand does not work with above instruct. (??)
  9111 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9112   // no match-rule
  9113   effect(DEF dst, USE src1, USE src2);
  9114   format %{ "XOR     $dst, $src1, $src2" %}
  9115   size(4);
  9116   ins_encode %{
  9117     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9118     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9119   %}
  9120   ins_pipe(pipe_class_default);
  9121 %}
  9123 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  9124   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
  9125   ins_cost(DEFAULT_COST*3);
  9127   expand %{
  9128     // FIXME: we should do this in the ideal world.
  9129     iRegIdst tmp1;
  9130     iRegIdst tmp2;
  9131     xorI_reg_reg(tmp1, src1, src2);
  9132     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
  9133     xorI_reg_reg(dst, tmp1, tmp2);
  9134   %}
  9135 %}
  9137 // Immediate Xor
  9138 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  9139   match(Set dst (XorI src1 src2));
  9140   format %{ "XORI    $dst, $src1, $src2" %}
  9141   size(4);
  9142   ins_encode %{
  9143     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  9144     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  9145   %}
  9146   ins_pipe(pipe_class_default);
  9147 %}
  9149 // Register Xor Long
  9150 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9151   match(Set dst (XorL src1 src2));
  9152   ins_cost(DEFAULT_COST);
  9154   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
  9155   size(4);
  9156   ins_encode %{
  9157     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9158     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9159   %}
  9160   ins_pipe(pipe_class_default);
  9161 %}
  9163 // XorL + ConvL2I.
  9164 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9165   match(Set dst (ConvL2I (XorL src1 src2)));
  9166   ins_cost(DEFAULT_COST);
  9168   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
  9169   size(4);
  9170   ins_encode %{
  9171     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9172     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9173   %}
  9174   ins_pipe(pipe_class_default);
  9175 %}
  9177 // Immediate Xor Long
  9178 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
  9179   match(Set dst (XorL src1 src2));
  9180   ins_cost(DEFAULT_COST);
  9182   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
  9183   size(4);
  9184   ins_encode %{
  9185     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  9186     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  9187   %}
  9188   ins_pipe(pipe_class_default);
  9189 %}
  9191 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  9192   match(Set dst (XorI src1 src2));
  9193   ins_cost(DEFAULT_COST);
  9195   format %{ "NOT     $dst, $src1 ($src2)" %}
  9196   size(4);
  9197   ins_encode %{
  9198     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  9199     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  9200   %}
  9201   ins_pipe(pipe_class_default);
  9202 %}
  9204 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  9205   match(Set dst (XorL src1 src2));
  9206   ins_cost(DEFAULT_COST);
  9208   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
  9209   size(4);
  9210   ins_encode %{
  9211     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  9212     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  9213   %}
  9214   ins_pipe(pipe_class_default);
  9215 %}
  9217 // And-complement
  9218 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
  9219   match(Set dst (AndI (XorI src1 src2) src3));
  9220   ins_cost(DEFAULT_COST);
  9222   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
  9223   size(4);
  9224   ins_encode( enc_andc(dst, src3, src1) );
  9225   ins_pipe(pipe_class_default);
  9226 %}
  9228 // And-complement
  9229 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9230   // no match-rule, false predicate
  9231   effect(DEF dst, USE src1, USE src2);
  9232   predicate(false);
  9234   format %{ "ANDC    $dst, $src1, $src2" %}
  9235   size(4);
  9236   ins_encode %{
  9237     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  9238     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  9239   %}
  9240   ins_pipe(pipe_class_default);
  9241 %}
  9243 //----------Moves between int/long and float/double----------------------------
  9244 //
  9245 // The following rules move values from int/long registers/stack-locations
  9246 // to float/double registers/stack-locations and vice versa, without doing any
  9247 // conversions. These rules are used to implement the bit-conversion methods
  9248 // of java.lang.Float etc., e.g.
  9249 //   int   floatToIntBits(float value)
  9250 //   float intBitsToFloat(int bits)
  9251 //
  9252 // Notes on the implementation on ppc64:
  9253 // We only provide rules which move between a register and a stack-location,
  9254 // because we always have to go through memory when moving between a float
  9255 // register and an integer register.
  9257 //---------- Chain stack slots between similar types --------
  9259 // These are needed so that the rules below can match.
  9261 // Load integer from stack slot
  9262 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
  9263   match(Set dst src);
  9264   ins_cost(MEMORY_REF_COST);
  9266   format %{ "LWZ     $dst, $src" %}
  9267   size(4);
  9268   ins_encode( enc_lwz(dst, src) );
  9269   ins_pipe(pipe_class_memory);
  9270 %}
  9272 // Store integer to stack slot
  9273 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
  9274   match(Set dst src);
  9275   ins_cost(MEMORY_REF_COST);
  9277   format %{ "STW     $src, $dst \t// stk" %}
  9278   size(4);
  9279   ins_encode( enc_stw(src, dst) ); // rs=rt
  9280   ins_pipe(pipe_class_memory);
  9281 %}
  9283 // Load long from stack slot
  9284 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
  9285   match(Set dst src);
  9286   ins_cost(MEMORY_REF_COST);
  9288   format %{ "LD      $dst, $src \t// long" %}
  9289   size(4);
  9290   ins_encode( enc_ld(dst, src) );
  9291   ins_pipe(pipe_class_memory);
  9292 %}
  9294 // Store long to stack slot
  9295 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
  9296   match(Set dst src);
  9297   ins_cost(MEMORY_REF_COST);
  9299   format %{ "STD     $src, $dst \t// long" %}
  9300   size(4);
  9301   ins_encode( enc_std(src, dst) ); // rs=rt
  9302   ins_pipe(pipe_class_memory);
  9303 %}
  9305 //----------Moves between int and float
  9307 // Move float value from float stack-location to integer register.
  9308 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
  9309   match(Set dst (MoveF2I src));
  9310   ins_cost(MEMORY_REF_COST);
  9312   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
  9313   size(4);
  9314   ins_encode( enc_lwz(dst, src) );
  9315   ins_pipe(pipe_class_memory);
  9316 %}
  9318 // Move float value from float register to integer stack-location.
  9319 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
  9320   match(Set dst (MoveF2I src));
  9321   ins_cost(MEMORY_REF_COST);
  9323   format %{ "STFS    $src, $dst \t// MoveF2I" %}
  9324   size(4);
  9325   ins_encode( enc_stfs(src, dst) );
  9326   ins_pipe(pipe_class_memory);
  9327 %}
  9329 // Move integer value from integer stack-location to float register.
  9330 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
  9331   match(Set dst (MoveI2F src));
  9332   ins_cost(MEMORY_REF_COST);
  9334   format %{ "LFS     $dst, $src \t// MoveI2F" %}
  9335   size(4);
  9336   ins_encode %{
  9337     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  9338     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
  9339     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
  9340   %}
  9341   ins_pipe(pipe_class_memory);
  9342 %}
  9344 // Move integer value from integer register to float stack-location.
  9345 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
  9346   match(Set dst (MoveI2F src));
  9347   ins_cost(MEMORY_REF_COST);
  9349   format %{ "STW     $src, $dst \t// MoveI2F" %}
  9350   size(4);
  9351   ins_encode( enc_stw(src, dst) );
  9352   ins_pipe(pipe_class_memory);
  9353 %}
  9355 //----------Moves between long and float
  9357 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
  9358   // no match-rule, false predicate
  9359   effect(DEF dst, USE src);
  9360   predicate(false);
  9362   format %{ "storeD  $src, $dst \t// STACK" %}
  9363   size(4);
  9364   ins_encode( enc_stfd(src, dst) );
  9365   ins_pipe(pipe_class_default);
  9366 %}
  9368 //----------Moves between long and double
  9370 // Move double value from double stack-location to long register.
  9371 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
  9372   match(Set dst (MoveD2L src));
  9373   ins_cost(MEMORY_REF_COST);
  9374   size(4);
  9375   format %{ "LD      $dst, $src \t// MoveD2L" %}
  9376   ins_encode( enc_ld(dst, src) );
  9377   ins_pipe(pipe_class_memory);
  9378 %}
  9380 // Move double value from double register to long stack-location.
  9381 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
  9382   match(Set dst (MoveD2L src));
  9383   effect(DEF dst, USE src);
  9384   ins_cost(MEMORY_REF_COST);
  9386   format %{ "STFD    $src, $dst \t// MoveD2L" %}
  9387   size(4);
  9388   ins_encode( enc_stfd(src, dst) );
  9389   ins_pipe(pipe_class_memory);
  9390 %}
  9392 // Move long value from long stack-location to double register.
  9393 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
  9394   match(Set dst (MoveL2D src));
  9395   ins_cost(MEMORY_REF_COST);
  9397   format %{ "LFD     $dst, $src \t// MoveL2D" %}
  9398   size(4);
  9399   ins_encode( enc_lfd(dst, src) );
  9400   ins_pipe(pipe_class_memory);
  9401 %}
  9403 // Move long value from long register to double stack-location.
  9404 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
  9405   match(Set dst (MoveL2D src));
  9406   ins_cost(MEMORY_REF_COST);
  9408   format %{ "STD     $src, $dst \t// MoveL2D" %}
  9409   size(4);
  9410   ins_encode( enc_std(src, dst) );
  9411   ins_pipe(pipe_class_memory);
  9412 %}
  9414 //----------Register Move Instructions-----------------------------------------
  9416 // Replicate for Superword
  9418 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
  9419   predicate(false);
  9420   effect(DEF dst, USE src);
  9422   format %{ "MR      $dst, $src \t// replicate " %}
  9423   // variable size, 0 or 4.
  9424   ins_encode %{
  9425     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9426     __ mr_if_needed($dst$$Register, $src$$Register);
  9427   %}
  9428   ins_pipe(pipe_class_default);
  9429 %}
  9431 //----------Cast instructions (Java-level type cast)---------------------------
  9433 // Cast Long to Pointer for unsafe natives.
  9434 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
  9435   match(Set dst (CastX2P src));
  9437   format %{ "MR      $dst, $src \t// Long->Ptr" %}
  9438   // variable size, 0 or 4.
  9439   ins_encode %{
  9440     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9441     __ mr_if_needed($dst$$Register, $src$$Register);
  9442   %}
  9443  ins_pipe(pipe_class_default);
  9444 %}
  9446 // Cast Pointer to Long for unsafe natives.
  9447 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
  9448   match(Set dst (CastP2X src));
  9450   format %{ "MR      $dst, $src \t// Ptr->Long" %}
  9451   // variable size, 0 or 4.
  9452   ins_encode %{
  9453     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9454     __ mr_if_needed($dst$$Register, $src$$Register);
  9455   %}
  9456   ins_pipe(pipe_class_default);
  9457 %}
  9459 instruct castPP(iRegPdst dst) %{
  9460   match(Set dst (CastPP dst));
  9461   format %{ " -- \t// castPP of $dst" %}
  9462   size(0);
  9463   ins_encode( /*empty*/ );
  9464   ins_pipe(pipe_class_default);
  9465 %}
  9467 instruct castII(iRegIdst dst) %{
  9468   match(Set dst (CastII dst));
  9469   format %{ " -- \t// castII of $dst" %}
  9470   size(0);
  9471   ins_encode( /*empty*/ );
  9472   ins_pipe(pipe_class_default);
  9473 %}
  9475 instruct checkCastPP(iRegPdst dst) %{
  9476   match(Set dst (CheckCastPP dst));
  9477   format %{ " -- \t// checkcastPP of $dst" %}
  9478   size(0);
  9479   ins_encode( /*empty*/ );
  9480   ins_pipe(pipe_class_default);
  9481 %}
  9483 //----------Convert instructions-----------------------------------------------
  9485 // Convert to boolean.
  9487 // int_to_bool(src) : { 1   if src != 0
  9488 //                    { 0   else
  9489 //
  9490 // strategy:
  9491 // 1) Count leading zeros of 32 bit-value src,
  9492 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
  9493 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  9494 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  9496 // convI2Bool
  9497 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
  9498   match(Set dst (Conv2B src));
  9499   predicate(UseCountLeadingZerosInstructionsPPC64);
  9500   ins_cost(DEFAULT_COST);
  9502   expand %{
  9503     immI shiftAmount %{ 0x5 %}
  9504     uimmI16 mask %{ 0x1 %}
  9505     iRegIdst tmp1;
  9506     iRegIdst tmp2;
  9507     countLeadingZerosI(tmp1, src);
  9508     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  9509     xorI_reg_uimm16(dst, tmp2, mask);
  9510   %}
  9511 %}
  9513 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
  9514   match(Set dst (Conv2B src));
  9515   effect(TEMP crx);
  9516   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9517   ins_cost(DEFAULT_COST);
  9519   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
  9520             "LI      $dst, #0\n\t"
  9521             "BEQ     $crx, done\n\t"
  9522             "LI      $dst, #1\n"
  9523             "done:" %}
  9524   size(16);
  9525   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
  9526   ins_pipe(pipe_class_compare);
  9527 %}
  9529 // ConvI2B + XorI
  9530 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
  9531   match(Set dst (XorI (Conv2B src) mask));
  9532   predicate(UseCountLeadingZerosInstructionsPPC64);
  9533   ins_cost(DEFAULT_COST);
  9535   expand %{
  9536     immI shiftAmount %{ 0x5 %}
  9537     iRegIdst tmp1;
  9538     countLeadingZerosI(tmp1, src);
  9539     urShiftI_reg_imm(dst, tmp1, shiftAmount);
  9540   %}
  9541 %}
  9543 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
  9544   match(Set dst (XorI (Conv2B src) mask));
  9545   effect(TEMP crx);
  9546   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9547   ins_cost(DEFAULT_COST);
  9549   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
  9550             "LI      $dst, #1\n\t"
  9551             "BEQ     $crx, done\n\t"
  9552             "LI      $dst, #0\n"
  9553             "done:" %}
  9554   size(16);
  9555   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
  9556   ins_pipe(pipe_class_compare);
  9557 %}
  9559 // AndI 0b0..010..0 + ConvI2B
  9560 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
  9561   match(Set dst (Conv2B (AndI src mask)));
  9562   predicate(UseRotateAndMaskInstructionsPPC64);
  9563   ins_cost(DEFAULT_COST);
  9565   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
  9566   size(4);
  9567   ins_encode %{
  9568     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  9569     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
  9570   %}
  9571   ins_pipe(pipe_class_default);
  9572 %}
  9574 // Convert pointer to boolean.
  9575 //
  9576 // ptr_to_bool(src) : { 1   if src != 0
  9577 //                    { 0   else
  9578 //
  9579 // strategy:
  9580 // 1) Count leading zeros of 64 bit-value src,
  9581 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
  9582 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  9583 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  9585 // ConvP2B
  9586 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
  9587   match(Set dst (Conv2B src));
  9588   predicate(UseCountLeadingZerosInstructionsPPC64);
  9589   ins_cost(DEFAULT_COST);
  9591   expand %{
  9592     immI shiftAmount %{ 0x6 %}
  9593     uimmI16 mask %{ 0x1 %}
  9594     iRegIdst tmp1;
  9595     iRegIdst tmp2;
  9596     countLeadingZerosP(tmp1, src);
  9597     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  9598     xorI_reg_uimm16(dst, tmp2, mask);
  9599   %}
  9600 %}
  9602 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
  9603   match(Set dst (Conv2B src));
  9604   effect(TEMP crx);
  9605   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9606   ins_cost(DEFAULT_COST);
  9608   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
  9609             "LI      $dst, #0\n\t"
  9610             "BEQ     $crx, done\n\t"
  9611             "LI      $dst, #1\n"
  9612             "done:" %}
  9613   size(16);
  9614   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
  9615   ins_pipe(pipe_class_compare);
  9616 %}
  9618 // ConvP2B + XorI
  9619 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
  9620   match(Set dst (XorI (Conv2B src) mask));
  9621   predicate(UseCountLeadingZerosInstructionsPPC64);
  9622   ins_cost(DEFAULT_COST);
  9624   expand %{
  9625     immI shiftAmount %{ 0x6 %}
  9626     iRegIdst tmp1;
  9627     countLeadingZerosP(tmp1, src);
  9628     urShiftI_reg_imm(dst, tmp1, shiftAmount);
  9629   %}
  9630 %}
  9632 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
  9633   match(Set dst (XorI (Conv2B src) mask));
  9634   effect(TEMP crx);
  9635   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9636   ins_cost(DEFAULT_COST);
  9638   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
  9639             "LI      $dst, #1\n\t"
  9640             "BEQ     $crx, done\n\t"
  9641             "LI      $dst, #0\n"
  9642             "done:" %}
  9643   size(16);
  9644   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
  9645   ins_pipe(pipe_class_compare);
  9646 %}
  9648 // if src1 < src2, return -1 else return 0
  9649 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9650   match(Set dst (CmpLTMask src1 src2));
  9651   ins_cost(DEFAULT_COST*4);
  9653   expand %{
  9654     iRegLdst src1s;
  9655     iRegLdst src2s;
  9656     iRegLdst diff;
  9657     convI2L_reg(src1s, src1); // Ensure proper sign extension.
  9658     convI2L_reg(src2s, src2); // Ensure proper sign extension.
  9659     subL_reg_reg(diff, src1s, src2s);
  9660     // Need to consider >=33 bit result, therefore we need signmaskL.
  9661     signmask64I_regL(dst, diff);
  9662   %}
  9663 %}
  9665 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
  9666   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
  9667   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
  9668   size(4);
  9669   ins_encode %{
  9670     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  9671     __ srawi($dst$$Register, $src1$$Register, 0x1f);
  9672   %}
  9673   ins_pipe(pipe_class_default);
  9674 %}
  9676 //----------Arithmetic Conversion Instructions---------------------------------
  9678 // Convert to Byte  -- nop
  9679 // Convert to Short -- nop
  9681 // Convert to Int
  9683 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
  9684   match(Set dst (RShiftI (LShiftI src amount) amount));
  9685   format %{ "EXTSB   $dst, $src \t// byte->int" %}
  9686   size(4);
  9687   ins_encode %{
  9688     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  9689     __ extsb($dst$$Register, $src$$Register);
  9690   %}
  9691   ins_pipe(pipe_class_default);
  9692 %}
  9694 // LShiftI 16 + RShiftI 16 converts short to int.
  9695 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
  9696   match(Set dst (RShiftI (LShiftI src amount) amount));
  9697   format %{ "EXTSH   $dst, $src \t// short->int" %}
  9698   size(4);
  9699   ins_encode %{
  9700     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
  9701     __ extsh($dst$$Register, $src$$Register);
  9702   %}
  9703   ins_pipe(pipe_class_default);
  9704 %}
  9706 // ConvL2I + ConvI2L: Sign extend int in long register.
  9707 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
  9708   match(Set dst (ConvI2L (ConvL2I src)));
  9710   format %{ "EXTSW   $dst, $src \t// long->long" %}
  9711   size(4);
  9712   ins_encode %{
  9713     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  9714     __ extsw($dst$$Register, $src$$Register);
  9715   %}
  9716   ins_pipe(pipe_class_default);
  9717 %}
  9719 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
  9720   match(Set dst (ConvL2I src));
  9721   format %{ "MR      $dst, $src \t// long->int" %}
  9722   // variable size, 0 or 4
  9723   ins_encode %{
  9724     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9725     __ mr_if_needed($dst$$Register, $src$$Register);
  9726   %}
  9727   ins_pipe(pipe_class_default);
  9728 %}
  9730 instruct convD2IRaw_regD(regD dst, regD src) %{
  9731   // no match-rule, false predicate
  9732   effect(DEF dst, USE src);
  9733   predicate(false);
  9735   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
  9736   size(4);
  9737   ins_encode %{
  9738     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
  9739     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  9740   %}
  9741   ins_pipe(pipe_class_default);
  9742 %}
  9744 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsReg crx, stackSlotL src) %{
  9745   // no match-rule, false predicate
  9746   effect(DEF dst, USE crx, USE src);
  9747   predicate(false);
  9749   ins_variable_size_depending_on_alignment(true);
  9751   format %{ "cmovI   $crx, $dst, $src" %}
  9752   // Worst case is branch + move + stop, no stop without scheduler.
  9753   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  9754   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  9755   ins_pipe(pipe_class_default);
  9756 %}
  9758 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsReg crx, stackSlotL mem) %{
  9759   // no match-rule, false predicate
  9760   effect(DEF dst, USE crx, USE mem);
  9761   predicate(false);
  9763   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
  9764   postalloc_expand %{
  9765     //
  9766     // replaces
  9767     //
  9768     //   region  dst  crx  mem
  9769     //    \       |    |   /
  9770     //     dst=cmovI_bso_stackSlotL_conLvalue0
  9771     //
  9772     // with
  9773     //
  9774     //   region  dst
  9775     //    \       /
  9776     //     dst=loadConI16(0)
  9777     //      |
  9778     //      ^  region  dst  crx  mem
  9779     //      |   \       |    |    /
  9780     //      dst=cmovI_bso_stackSlotL
  9781     //
  9783     // Create new nodes.
  9784     MachNode *m1 = new (C) loadConI16Node();
  9785     MachNode *m2 = new (C) cmovI_bso_stackSlotLNode();
  9787     // inputs for new nodes
  9788     m1->add_req(n_region);
  9789     m2->add_req(n_region, n_crx, n_mem);
  9791     // precedences for new nodes
  9792     m2->add_prec(m1);
  9794     // operands for new nodes
  9795     m1->_opnds[0] = op_dst;
  9796     m1->_opnds[1] = new (C) immI16Oper(0);
  9798     m2->_opnds[0] = op_dst;
  9799     m2->_opnds[1] = op_crx;
  9800     m2->_opnds[2] = op_mem;
  9802     // registers for new nodes
  9803     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9804     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9806     // Insert new nodes.
  9807     nodes->push(m1);
  9808     nodes->push(m2);
  9809   %}
  9810 %}
  9812 // Double to Int conversion, NaN is mapped to 0.
  9813 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
  9814   match(Set dst (ConvD2I src));
  9815   ins_cost(DEFAULT_COST);
  9817   expand %{
  9818     regD tmpD;
  9819     stackSlotL tmpS;
  9820     flagsReg crx;
  9821     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9822     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
  9823     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
  9824     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9825   %}
  9826 %}
  9828 instruct convF2IRaw_regF(regF dst, regF src) %{
  9829   // no match-rule, false predicate
  9830   effect(DEF dst, USE src);
  9831   predicate(false);
  9833   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
  9834   size(4);
  9835   ins_encode %{
  9836     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9837     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  9838   %}
  9839   ins_pipe(pipe_class_default);
  9840 %}
  9842 // Float to Int conversion, NaN is mapped to 0.
  9843 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
  9844   match(Set dst (ConvF2I src));
  9845   ins_cost(DEFAULT_COST);
  9847   expand %{
  9848     regF tmpF;
  9849     stackSlotL tmpS;
  9850     flagsReg crx;
  9851     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9852     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
  9853     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  9854     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9855   %}
  9856 %}
  9858 // Convert to Long
  9860 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
  9861   match(Set dst (ConvI2L src));
  9862   format %{ "EXTSW   $dst, $src \t// int->long" %}
  9863   size(4);
  9864   ins_encode %{
  9865     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  9866     __ extsw($dst$$Register, $src$$Register);
  9867   %}
  9868   ins_pipe(pipe_class_default);
  9869 %}
  9871 // Zero-extend: convert unsigned int to long (convUI2L).
  9872 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
  9873   match(Set dst (AndL (ConvI2L src) mask));
  9874   ins_cost(DEFAULT_COST);
  9876   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  9877   size(4);
  9878   ins_encode %{
  9879     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  9880     __ clrldi($dst$$Register, $src$$Register, 32);
  9881   %}
  9882   ins_pipe(pipe_class_default);
  9883 %}
  9885 // Zero-extend: convert unsigned int to long in long register.
  9886 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
  9887   match(Set dst (AndL src mask));
  9888   ins_cost(DEFAULT_COST);
  9890   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  9891   size(4);
  9892   ins_encode %{
  9893     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  9894     __ clrldi($dst$$Register, $src$$Register, 32);
  9895   %}
  9896   ins_pipe(pipe_class_default);
  9897 %}
  9899 instruct convF2LRaw_regF(regF dst, regF src) %{
  9900   // no match-rule, false predicate
  9901   effect(DEF dst, USE src);
  9902   predicate(false);
  9904   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
  9905   size(4);
  9906   ins_encode %{
  9907     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9908     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  9909   %}
  9910   ins_pipe(pipe_class_default);
  9911 %}
  9913 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL src) %{
  9914   // no match-rule, false predicate
  9915   effect(DEF dst, USE crx, USE src);
  9916   predicate(false);
  9918   ins_variable_size_depending_on_alignment(true);
  9920   format %{ "cmovL   $crx, $dst, $src" %}
  9921   // Worst case is branch + move + stop, no stop without scheduler.
  9922   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  9923   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  9924   ins_pipe(pipe_class_default);
  9925 %}
  9927 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsReg crx, stackSlotL mem) %{
  9928   // no match-rule, false predicate
  9929   effect(DEF dst, USE crx, USE mem);
  9930   predicate(false);
  9932   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
  9933   postalloc_expand %{
  9934     //
  9935     // replaces
  9936     //
  9937     //   region  dst  crx  mem
  9938     //    \       |    |   /
  9939     //     dst=cmovL_bso_stackSlotL_conLvalue0
  9940     //
  9941     // with
  9942     //
  9943     //   region  dst
  9944     //    \       /
  9945     //     dst=loadConL16(0)
  9946     //      |
  9947     //      ^  region  dst  crx  mem
  9948     //      |   \       |    |    /
  9949     //      dst=cmovL_bso_stackSlotL
  9950     //
  9952     // Create new nodes.
  9953     MachNode *m1 = new (C) loadConL16Node();
  9954     MachNode *m2 = new (C) cmovL_bso_stackSlotLNode();
  9956     // inputs for new nodes
  9957     m1->add_req(n_region);
  9958     m2->add_req(n_region, n_crx, n_mem);
  9959     m2->add_prec(m1);
  9961     // operands for new nodes
  9962     m1->_opnds[0] = op_dst;
  9963     m1->_opnds[1] = new (C) immL16Oper(0);
  9964     m2->_opnds[0] = op_dst;
  9965     m2->_opnds[1] = op_crx;
  9966     m2->_opnds[2] = op_mem;
  9968     // registers for new nodes
  9969     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9970     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9972     // Insert new nodes.
  9973     nodes->push(m1);
  9974     nodes->push(m2);
  9975   %}
  9976 %}
  9978 // Float to Long conversion, NaN is mapped to 0.
  9979 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
  9980   match(Set dst (ConvF2L src));
  9981   ins_cost(DEFAULT_COST);
  9983   expand %{
  9984     regF tmpF;
  9985     stackSlotL tmpS;
  9986     flagsReg crx;
  9987     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9988     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
  9989     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  9990     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9991   %}
  9992 %}
  9994 instruct convD2LRaw_regD(regD dst, regD src) %{
  9995   // no match-rule, false predicate
  9996   effect(DEF dst, USE src);
  9997   predicate(false);
  9999   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
 10000   size(4);
 10001   ins_encode %{
 10002     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
 10003     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
 10004   %}
 10005   ins_pipe(pipe_class_default);
 10006 %}
 10008 // Double to Long conversion, NaN is mapped to 0.
 10009 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
 10010   match(Set dst (ConvD2L src));
 10011   ins_cost(DEFAULT_COST);
 10013   expand %{
 10014     regD tmpD;
 10015     stackSlotL tmpS;
 10016     flagsReg crx;
 10017     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
 10018     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
 10019     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
 10020     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
 10021   %}
 10022 %}
 10024 // Convert to Float
 10026 // Placed here as needed in expand.
 10027 instruct convL2DRaw_regD(regD dst, regD src) %{
 10028   // no match-rule, false predicate
 10029   effect(DEF dst, USE src);
 10030   predicate(false);
 10032   format %{ "FCFID $dst, $src \t// convL2D" %}
 10033   size(4);
 10034   ins_encode %{
 10035     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 10036     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
 10037   %}
 10038   ins_pipe(pipe_class_default);
 10039 %}
 10041 // Placed here as needed in expand.
 10042 instruct convD2F_reg(regF dst, regD src) %{
 10043   match(Set dst (ConvD2F src));
 10044   format %{ "FRSP    $dst, $src \t// convD2F" %}
 10045   size(4);
 10046   ins_encode %{
 10047     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
 10048     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
 10049   %}
 10050   ins_pipe(pipe_class_default);
 10051 %}
 10053 // Integer to Float conversion.
 10054 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
 10055   match(Set dst (ConvI2F src));
 10056   predicate(!VM_Version::has_fcfids());
 10057   ins_cost(DEFAULT_COST);
 10059   expand %{
 10060     iRegLdst tmpL;
 10061     stackSlotL tmpS;
 10062     regD tmpD;
 10063     regD tmpD2;
 10064     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10065     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10066     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10067     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
 10068     convD2F_reg(dst, tmpD2);             // Convert double to float.
 10069   %}
 10070 %}
 10072 instruct convL2FRaw_regF(regF dst, regD src) %{
 10073   // no match-rule, false predicate
 10074   effect(DEF dst, USE src);
 10075   predicate(false);
 10077   format %{ "FCFIDS $dst, $src \t// convL2F" %}
 10078   size(4);
 10079   ins_encode %{
 10080     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 10081     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
 10082   %}
 10083   ins_pipe(pipe_class_default);
 10084 %}
 10086 // Integer to Float conversion. Special version for Power7.
 10087 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
 10088   match(Set dst (ConvI2F src));
 10089   predicate(VM_Version::has_fcfids());
 10090   ins_cost(DEFAULT_COST);
 10092   expand %{
 10093     iRegLdst tmpL;
 10094     stackSlotL tmpS;
 10095     regD tmpD;
 10096     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10097     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10098     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10099     convL2FRaw_regF(dst, tmpD);          // Convert to float.
 10100   %}
 10101 %}
 10103 // L2F to avoid runtime call.
 10104 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
 10105   match(Set dst (ConvL2F src));
 10106   predicate(VM_Version::has_fcfids());
 10107   ins_cost(DEFAULT_COST);
 10109   expand %{
 10110     stackSlotL tmpS;
 10111     regD tmpD;
 10112     regL_to_stkL(tmpS, src);             // Store long to stack.
 10113     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10114     convL2FRaw_regF(dst, tmpD);          // Convert to float.
 10115   %}
 10116 %}
 10118 // Moved up as used in expand.
 10119 //instruct convD2F_reg(regF dst, regD src) %{%}
 10121 // Convert to Double
 10123 // Integer to Double conversion.
 10124 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
 10125   match(Set dst (ConvI2D src));
 10126   ins_cost(DEFAULT_COST);
 10128   expand %{
 10129     iRegLdst tmpL;
 10130     stackSlotL tmpS;
 10131     regD tmpD;
 10132     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10133     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10134     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10135     convL2DRaw_regD(dst, tmpD);          // Convert to double.
 10136   %}
 10137 %}
 10139 // Long to Double conversion
 10140 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
 10141   match(Set dst (ConvL2D src));
 10142   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10144   expand %{
 10145     regD tmpD;
 10146     moveL2D_stack_reg(tmpD, src);
 10147     convL2DRaw_regD(dst, tmpD);
 10148   %}
 10149 %}
 10151 instruct convF2D_reg(regD dst, regF src) %{
 10152   match(Set dst (ConvF2D src));
 10153   format %{ "FMR     $dst, $src \t// float->double" %}
 10154   // variable size, 0 or 4
 10155   ins_encode %{
 10156     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 10157     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
 10158   %}
 10159   ins_pipe(pipe_class_default);
 10160 %}
 10162 //----------Control Flow Instructions------------------------------------------
 10163 // Compare Instructions
 10165 // Compare Integers
 10166 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 10167   match(Set crx (CmpI src1 src2));
 10168   size(4);
 10169   format %{ "CMPW    $crx, $src1, $src2" %}
 10170   ins_encode %{
 10171     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 10172     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10173   %}
 10174   ins_pipe(pipe_class_compare);
 10175 %}
 10177 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
 10178   match(Set crx (CmpI src1 src2));
 10179   format %{ "CMPWI   $crx, $src1, $src2" %}
 10180   size(4);
 10181   ins_encode %{
 10182     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10183     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10184   %}
 10185   ins_pipe(pipe_class_compare);
 10186 %}
 10188 // (src1 & src2) == 0?
 10189 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
 10190   match(Set cr0 (CmpI (AndI src1 src2) zero));
 10191   // r0 is killed
 10192   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
 10193   size(4);
 10194   ins_encode %{
 10195     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 10196     // FIXME: avoid andi_ ?
 10197     __ andi_(R0, $src1$$Register, $src2$$constant);
 10198   %}
 10199   ins_pipe(pipe_class_compare);
 10200 %}
 10202 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
 10203   match(Set crx (CmpL src1 src2));
 10204   format %{ "CMPD    $crx, $src1, $src2" %}
 10205   size(4);
 10206   ins_encode %{
 10207     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 10208     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10209   %}
 10210   ins_pipe(pipe_class_compare);
 10211 %}
 10213 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
 10214   match(Set crx (CmpL src1 src2));
 10215   format %{ "CMPDI   $crx, $src1, $src2" %}
 10216   size(4);
 10217   ins_encode %{
 10218     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10219     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10220   %}
 10221   ins_pipe(pipe_class_compare);
 10222 %}
 10224 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
 10225   match(Set cr0 (CmpL (AndL src1 src2) zero));
 10226   // r0 is killed
 10227   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
 10228   size(4);
 10229   ins_encode %{
 10230     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
 10231     __ and_(R0, $src1$$Register, $src2$$Register);
 10232   %}
 10233   ins_pipe(pipe_class_compare);
 10234 %}
 10236 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
 10237   match(Set cr0 (CmpL (AndL src1 src2) zero));
 10238   // r0 is killed
 10239   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
 10240   size(4);
 10241   ins_encode %{
 10242     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 10243     // FIXME: avoid andi_ ?
 10244     __ andi_(R0, $src1$$Register, $src2$$constant);
 10245   %}
 10246   ins_pipe(pipe_class_compare);
 10247 %}
 10249 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsReg crx) %{
 10250   // no match-rule, false predicate
 10251   effect(DEF dst, USE crx);
 10252   predicate(false);
 10254   ins_variable_size_depending_on_alignment(true);
 10256   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
 10257   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
 10258   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
 10259   ins_encode %{
 10260     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
 10261     Label done;
 10262     // li(Rdst, 0);              // equal -> 0
 10263     __ beq($crx$$CondRegister, done);
 10264     __ li($dst$$Register, 1);    // greater -> +1
 10265     __ bgt($crx$$CondRegister, done);
 10266     __ li($dst$$Register, -1);   // unordered or less -> -1
 10267     // TODO: PPC port__ endgroup_if_needed(_size == 20);
 10268     __ bind(done);
 10269   %}
 10270   ins_pipe(pipe_class_compare);
 10271 %}
 10273 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsReg crx) %{
 10274   // no match-rule, false predicate
 10275   effect(DEF dst, USE crx);
 10276   predicate(false);
 10278   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
 10279   postalloc_expand %{
 10280     //
 10281     // replaces
 10282     //
 10283     //   region  crx
 10284     //    \       |
 10285     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
 10286     //
 10287     // with
 10288     //
 10289     //   region
 10290     //    \
 10291     //     dst=loadConI16(0)
 10292     //      |
 10293     //      ^  region  crx
 10294     //      |   \       |
 10295     //      dst=cmovI_conIvalueMinus1_conIvalue1
 10296     //
 10298     // Create new nodes.
 10299     MachNode *m1 = new (C) loadConI16Node();
 10300     MachNode *m2 = new (C) cmovI_conIvalueMinus1_conIvalue1Node();
 10302     // inputs for new nodes
 10303     m1->add_req(n_region);
 10304     m2->add_req(n_region, n_crx);
 10305     m2->add_prec(m1);
 10307     // operands for new nodes
 10308     m1->_opnds[0] = op_dst;
 10309     m1->_opnds[1] = new (C) immI16Oper(0);
 10310     m2->_opnds[0] = op_dst;
 10311     m2->_opnds[1] = op_crx;
 10313     // registers for new nodes
 10314     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 10315     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 10317     // Insert new nodes.
 10318     nodes->push(m1);
 10319     nodes->push(m2);
 10320   %}
 10321 %}
 10323 // Manifest a CmpL3 result in an integer register. Very painful.
 10324 // This is the test to avoid.
 10325 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 10326 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
 10327   match(Set dst (CmpL3 src1 src2));
 10328   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10330   expand %{
 10331     flagsReg tmp1;
 10332     cmpL_reg_reg(tmp1, src1, src2);
 10333     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10334   %}
 10335 %}
 10337 // Implicit range checks.
 10338 // A range check in the ideal world has one of the following shapes:
 10339 //  - (If le (CmpU length index)), (IfTrue  throw exception)
 10340 //  - (If lt (CmpU index length)), (IfFalse throw exception)
 10341 //
 10342 // Match range check 'If le (CmpU length index)'.
 10343 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
 10344   match(If cmp (CmpU src_length index));
 10345   effect(USE labl);
 10346   predicate(TrapBasedRangeChecks &&
 10347             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
 10348             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
 10349             (Matcher::branches_to_uncommon_trap(_leaf)));
 10351   ins_is_TrapBasedCheckNode(true);
 10353   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
 10354   size(4);
 10355   ins_encode %{
 10356     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 10357     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
 10358       __ trap_range_check_le($src_length$$Register, $index$$constant);
 10359     } else {
 10360       // Both successors are uncommon traps, probability is 0.
 10361       // Node got flipped during fixup flow.
 10362       assert($cmp$$cmpcode == 0x9, "must be greater");
 10363       __ trap_range_check_g($src_length$$Register, $index$$constant);
 10365   %}
 10366   ins_pipe(pipe_class_trap);
 10367 %}
 10369 // Match range check 'If lt (CmpU index length)'.
 10370 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
 10371   match(If cmp (CmpU src_index src_length));
 10372   effect(USE labl);
 10373   predicate(TrapBasedRangeChecks &&
 10374             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 10375             _leaf->as_If()->_prob >= PROB_ALWAYS &&
 10376             (Matcher::branches_to_uncommon_trap(_leaf)));
 10378   ins_is_TrapBasedCheckNode(true);
 10380   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
 10381   size(4);
 10382   ins_encode %{
 10383     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
 10384     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 10385       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
 10386     } else {
 10387       // Both successors are uncommon traps, probability is 0.
 10388       // Node got flipped during fixup flow.
 10389       assert($cmp$$cmpcode == 0x8, "must be less");
 10390       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
 10392   %}
 10393   ins_pipe(pipe_class_trap);
 10394 %}
 10396 // Match range check 'If lt (CmpU index length)'.
 10397 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
 10398   match(If cmp (CmpU src_index length));
 10399   effect(USE labl);
 10400   predicate(TrapBasedRangeChecks &&
 10401             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 10402             _leaf->as_If()->_prob >= PROB_ALWAYS &&
 10403             (Matcher::branches_to_uncommon_trap(_leaf)));
 10405   ins_is_TrapBasedCheckNode(true);
 10407   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
 10408   size(4);
 10409   ins_encode %{
 10410     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 10411     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 10412       __ trap_range_check_ge($src_index$$Register, $length$$constant);
 10413     } else {
 10414       // Both successors are uncommon traps, probability is 0.
 10415       // Node got flipped during fixup flow.
 10416       assert($cmp$$cmpcode == 0x8, "must be less");
 10417       __ trap_range_check_l($src_index$$Register, $length$$constant);
 10419   %}
 10420   ins_pipe(pipe_class_trap);
 10421 %}
 10423 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 10424   match(Set crx (CmpU src1 src2));
 10425   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
 10426   size(4);
 10427   ins_encode %{
 10428     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10429     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10430   %}
 10431   ins_pipe(pipe_class_compare);
 10432 %}
 10434 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
 10435   match(Set crx (CmpU src1 src2));
 10436   size(4);
 10437   format %{ "CMPLWI  $crx, $src1, $src2" %}
 10438   ins_encode %{
 10439     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 10440     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10441   %}
 10442   ins_pipe(pipe_class_compare);
 10443 %}
 10445 // Implicit zero checks (more implicit null checks).
 10446 // No constant pool entries required.
 10447 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
 10448   match(If cmp (CmpN value zero));
 10449   effect(USE labl);
 10450   predicate(TrapBasedNullChecks &&
 10451             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 10452             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 10453             Matcher::branches_to_uncommon_trap(_leaf));
 10454   ins_cost(1);
 10456   ins_is_TrapBasedCheckNode(true);
 10458   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
 10459   size(4);
 10460   ins_encode %{
 10461     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 10462     if ($cmp$$cmpcode == 0xA) {
 10463       __ trap_null_check($value$$Register);
 10464     } else {
 10465       // Both successors are uncommon traps, probability is 0.
 10466       // Node got flipped during fixup flow.
 10467       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 10468       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 10470   %}
 10471   ins_pipe(pipe_class_trap);
 10472 %}
 10474 // Compare narrow oops.
 10475 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
 10476   match(Set crx (CmpN src1 src2));
 10478   size(4);
 10479   ins_cost(DEFAULT_COST);
 10480   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
 10481   ins_encode %{
 10482     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10483     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10484   %}
 10485   ins_pipe(pipe_class_compare);
 10486 %}
 10488 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
 10489   match(Set crx (CmpN src1 src2));
 10490   // Make this more expensive than zeroCheckN_iReg_imm0.
 10491   ins_cost(DEFAULT_COST);
 10493   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
 10494   size(4);
 10495   ins_encode %{
 10496     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 10497     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10498   %}
 10499   ins_pipe(pipe_class_compare);
 10500 %}
 10502 // Implicit zero checks (more implicit null checks).
 10503 // No constant pool entries required.
 10504 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
 10505   match(If cmp (CmpP value zero));
 10506   effect(USE labl);
 10507   predicate(TrapBasedNullChecks &&
 10508             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 10509             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 10510             Matcher::branches_to_uncommon_trap(_leaf));
 10512   ins_is_TrapBasedCheckNode(true);
 10514   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
 10515   size(4);
 10516   ins_encode %{
 10517     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 10518     if ($cmp$$cmpcode == 0xA) {
 10519       __ trap_null_check($value$$Register);
 10520     } else {
 10521       // Both successors are uncommon traps, probability is 0.
 10522       // Node got flipped during fixup flow.
 10523       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 10524       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 10526   %}
 10527   ins_pipe(pipe_class_trap);
 10528 %}
 10530 // Compare Pointers
 10531 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
 10532   match(Set crx (CmpP src1 src2));
 10533   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
 10534   size(4);
 10535   ins_encode %{
 10536     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10537     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10538   %}
 10539   ins_pipe(pipe_class_compare);
 10540 %}
 10542 // Used in postalloc expand.
 10543 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
 10544   // This match rule prevents reordering of node before a safepoint.
 10545   // This only makes sense if this instructions is used exclusively
 10546   // for the expansion of EncodeP!
 10547   match(Set crx (CmpP src1 src2));
 10548   predicate(false);
 10550   format %{ "CMPDI   $crx, $src1, $src2" %}
 10551   size(4);
 10552   ins_encode %{
 10553     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10554     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10555   %}
 10556   ins_pipe(pipe_class_compare);
 10557 %}
 10559 //----------Float Compares----------------------------------------------------
 10561 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
 10562   // no match-rule, false predicate
 10563   effect(DEF crx, USE src1, USE src2);
 10564   predicate(false);
 10566   format %{ "cmpFUrd $crx, $src1, $src2" %}
 10567   size(4);
 10568   ins_encode %{
 10569     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 10570     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 10571   %}
 10572   ins_pipe(pipe_class_default);
 10573 %}
 10575 instruct cmov_bns_less(flagsReg crx) %{
 10576   // no match-rule, false predicate
 10577   effect(DEF crx);
 10578   predicate(false);
 10580   ins_variable_size_depending_on_alignment(true);
 10582   format %{ "cmov    $crx" %}
 10583   // Worst case is branch + move + stop, no stop without scheduler.
 10584   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
 10585   ins_encode %{
 10586     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
 10587     Label done;
 10588     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
 10589     __ li(R0, 0);
 10590     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
 10591     // TODO PPC port __ endgroup_if_needed(_size == 16);
 10592     __ bind(done);
 10593   %}
 10594   ins_pipe(pipe_class_default);
 10595 %}
 10597 // Compare floating, generate condition code.
 10598 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
 10599   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
 10600   //
 10601   // The following code sequence occurs a lot in mpegaudio:
 10602   //
 10603   // block BXX:
 10604   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
 10605   //    cmpFUrd CCR6, F11, F9
 10606   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
 10607   //    cmov CCR6
 10608   // 8: instruct branchConSched:
 10609   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
 10610   match(Set crx (CmpF src1 src2));
 10611   ins_cost(DEFAULT_COST+BRANCH_COST);
 10613   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
 10614   postalloc_expand %{
 10615     //
 10616     // replaces
 10617     //
 10618     //   region  src1  src2
 10619     //    \       |     |
 10620     //     crx=cmpF_reg_reg
 10621     //
 10622     // with
 10623     //
 10624     //   region  src1  src2
 10625     //    \       |     |
 10626     //     crx=cmpFUnordered_reg_reg
 10627     //      |
 10628     //      ^  region
 10629     //      |   \
 10630     //      crx=cmov_bns_less
 10631     //
 10633     // Create new nodes.
 10634     MachNode *m1 = new (C) cmpFUnordered_reg_regNode();
 10635     MachNode *m2 = new (C) cmov_bns_lessNode();
 10637     // inputs for new nodes
 10638     m1->add_req(n_region, n_src1, n_src2);
 10639     m2->add_req(n_region);
 10640     m2->add_prec(m1);
 10642     // operands for new nodes
 10643     m1->_opnds[0] = op_crx;
 10644     m1->_opnds[1] = op_src1;
 10645     m1->_opnds[2] = op_src2;
 10646     m2->_opnds[0] = op_crx;
 10648     // registers for new nodes
 10649     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10650     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10652     // Insert new nodes.
 10653     nodes->push(m1);
 10654     nodes->push(m2);
 10655   %}
 10656 %}
 10658 // Compare float, generate -1,0,1
 10659 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
 10660   match(Set dst (CmpF3 src1 src2));
 10661   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10663   expand %{
 10664     flagsReg tmp1;
 10665     cmpFUnordered_reg_reg(tmp1, src1, src2);
 10666     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10667   %}
 10668 %}
 10670 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
 10671   // no match-rule, false predicate
 10672   effect(DEF crx, USE src1, USE src2);
 10673   predicate(false);
 10675   format %{ "cmpFUrd $crx, $src1, $src2" %}
 10676   size(4);
 10677   ins_encode %{
 10678     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 10679     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 10680   %}
 10681   ins_pipe(pipe_class_default);
 10682 %}
 10684 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
 10685   match(Set crx (CmpD src1 src2));
 10686   ins_cost(DEFAULT_COST+BRANCH_COST);
 10688   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
 10689   postalloc_expand %{
 10690     //
 10691     // replaces
 10692     //
 10693     //   region  src1  src2
 10694     //    \       |     |
 10695     //     crx=cmpD_reg_reg
 10696     //
 10697     // with
 10698     //
 10699     //   region  src1  src2
 10700     //    \       |     |
 10701     //     crx=cmpDUnordered_reg_reg
 10702     //      |
 10703     //      ^  region
 10704     //      |   \
 10705     //      crx=cmov_bns_less
 10706     //
 10708     // create new nodes
 10709     MachNode *m1 = new (C) cmpDUnordered_reg_regNode();
 10710     MachNode *m2 = new (C) cmov_bns_lessNode();
 10712     // inputs for new nodes
 10713     m1->add_req(n_region, n_src1, n_src2);
 10714     m2->add_req(n_region);
 10715     m2->add_prec(m1);
 10717     // operands for new nodes
 10718     m1->_opnds[0] = op_crx;
 10719     m1->_opnds[1] = op_src1;
 10720     m1->_opnds[2] = op_src2;
 10721     m2->_opnds[0] = op_crx;
 10723     // registers for new nodes
 10724     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10725     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10727     // Insert new nodes.
 10728     nodes->push(m1);
 10729     nodes->push(m2);
 10730   %}
 10731 %}
 10733 // Compare double, generate -1,0,1
 10734 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
 10735   match(Set dst (CmpD3 src1 src2));
 10736   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10738   expand %{
 10739     flagsReg tmp1;
 10740     cmpDUnordered_reg_reg(tmp1, src1, src2);
 10741     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10742   %}
 10743 %}
 10745 //----------Branches---------------------------------------------------------
 10746 // Jump
 10748 // Direct Branch.
 10749 instruct branch(label labl) %{
 10750   match(Goto);
 10751   effect(USE labl);
 10752   ins_cost(BRANCH_COST);
 10754   format %{ "B       $labl" %}
 10755   size(4);
 10756   ins_encode %{
 10757     // TODO: PPC port $archOpcode(ppc64Opcode_b);
 10758      Label d;    // dummy
 10759      __ bind(d);
 10760      Label* p = $labl$$label;
 10761      // `p' is `NULL' when this encoding class is used only to
 10762      // determine the size of the encoded instruction.
 10763      Label& l = (NULL == p)? d : *(p);
 10764      __ b(l);
 10765   %}
 10766   ins_pipe(pipe_class_default);
 10767 %}
 10769 // Conditional Near Branch
 10770 instruct branchCon(cmpOp cmp, flagsReg crx, label lbl) %{
 10771   // Same match rule as `branchConFar'.
 10772   match(If cmp crx);
 10773   effect(USE lbl);
 10774   ins_cost(BRANCH_COST);
 10776   // If set to 1 this indicates that the current instruction is a
 10777   // short variant of a long branch. This avoids using this
 10778   // instruction in first-pass matching. It will then only be used in
 10779   // the `Shorten_branches' pass.
 10780   ins_short_branch(1);
 10782   format %{ "B$cmp     $crx, $lbl" %}
 10783   size(4);
 10784   ins_encode( enc_bc(crx, cmp, lbl) );
 10785   ins_pipe(pipe_class_default);
 10786 %}
 10788 // This is for cases when the ppc64 `bc' instruction does not
 10789 // reach far enough. So we emit a far branch here, which is more
 10790 // expensive.
 10791 //
 10792 // Conditional Far Branch
 10793 instruct branchConFar(cmpOp cmp, flagsReg crx, label lbl) %{
 10794   // Same match rule as `branchCon'.
 10795   match(If cmp crx);
 10796   effect(USE crx, USE lbl);
 10797   predicate(!false /* TODO: PPC port HB_Schedule*/);
 10798   // Higher cost than `branchCon'.
 10799   ins_cost(5*BRANCH_COST);
 10801   // This is not a short variant of a branch, but the long variant.
 10802   ins_short_branch(0);
 10804   format %{ "B_FAR$cmp $crx, $lbl" %}
 10805   size(8);
 10806   ins_encode( enc_bc_far(crx, cmp, lbl) );
 10807   ins_pipe(pipe_class_default);
 10808 %}
 10810 // Conditional Branch used with Power6 scheduler (can be far or short).
 10811 instruct branchConSched(cmpOp cmp, flagsReg crx, label lbl) %{
 10812   // Same match rule as `branchCon'.
 10813   match(If cmp crx);
 10814   effect(USE crx, USE lbl);
 10815   predicate(false /* TODO: PPC port HB_Schedule*/);
 10816   // Higher cost than `branchCon'.
 10817   ins_cost(5*BRANCH_COST);
 10819   // Actually size doesn't depend on alignment but on shortening.
 10820   ins_variable_size_depending_on_alignment(true);
 10821   // long variant.
 10822   ins_short_branch(0);
 10824   format %{ "B_FAR$cmp $crx, $lbl" %}
 10825   size(8); // worst case
 10826   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
 10827   ins_pipe(pipe_class_default);
 10828 %}
 10830 instruct branchLoopEnd(cmpOp cmp, flagsReg crx, label labl) %{
 10831   match(CountedLoopEnd cmp crx);
 10832   effect(USE labl);
 10833   ins_cost(BRANCH_COST);
 10835   // short variant.
 10836   ins_short_branch(1);
 10838   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
 10839   size(4);
 10840   ins_encode( enc_bc(crx, cmp, labl) );
 10841   ins_pipe(pipe_class_default);
 10842 %}
 10844 instruct branchLoopEndFar(cmpOp cmp, flagsReg crx, label labl) %{
 10845   match(CountedLoopEnd cmp crx);
 10846   effect(USE labl);
 10847   predicate(!false /* TODO: PPC port HB_Schedule */);
 10848   ins_cost(BRANCH_COST);
 10850   // Long variant.
 10851   ins_short_branch(0);
 10853   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 10854   size(8);
 10855   ins_encode( enc_bc_far(crx, cmp, labl) );
 10856   ins_pipe(pipe_class_default);
 10857 %}
 10859 // Conditional Branch used with Power6 scheduler (can be far or short).
 10860 instruct branchLoopEndSched(cmpOp cmp, flagsReg crx, label labl) %{
 10861   match(CountedLoopEnd cmp crx);
 10862   effect(USE labl);
 10863   predicate(false /* TODO: PPC port HB_Schedule */);
 10864   // Higher cost than `branchCon'.
 10865   ins_cost(5*BRANCH_COST);
 10867   // Actually size doesn't depend on alignment but on shortening.
 10868   ins_variable_size_depending_on_alignment(true);
 10869   // Long variant.
 10870   ins_short_branch(0);
 10872   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 10873   size(8); // worst case
 10874   ins_encode( enc_bc_short_far(crx, cmp, labl) );
 10875   ins_pipe(pipe_class_default);
 10876 %}
 10878 // ============================================================================
 10879 // Java runtime operations, intrinsics and other complex operations.
 10881 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
 10882 // array for an instance of the superklass. Set a hidden internal cache on a
 10883 // hit (cache is checked with exposed code in gen_subtype_check()). Return
 10884 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
 10885 //
 10886 // GL TODO: Improve this.
 10887 // - result should not be a TEMP
 10888 // - Add match rule as on sparc avoiding additional Cmp.
 10889 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
 10890                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
 10891   match(Set result (PartialSubtypeCheck subklass superklass));
 10892   effect(TEMP result, TEMP tmp_klass, TEMP tmp_arrayptr);
 10893   ins_cost(DEFAULT_COST*10);
 10895   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
 10896   ins_encode %{
 10897     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10898     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register,
 10899                                      $tmp_klass$$Register, NULL, $result$$Register);
 10900   %}
 10901   ins_pipe(pipe_class_default);
 10902 %}
 10904 // inlined locking and unlocking
 10906 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 10907   match(Set crx (FastLock oop box));
 10908   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 10909   // TODO PPC port predicate(!UseNewFastLockPPC64 || UseBiasedLocking);
 10911   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
 10912   ins_encode %{
 10913     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10914     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 10915                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 10916     // If locking was successfull, crx should indicate 'EQ'.
 10917     // The compiler generates a branch to the runtime call to
 10918     // _complete_monitor_locking_Java for the case where crx is 'NE'.
 10919   %}
 10920   ins_pipe(pipe_class_compare);
 10921 %}
 10923 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 10924   match(Set crx (FastUnlock oop box));
 10925   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 10927   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
 10928   ins_encode %{
 10929     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10930     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 10931                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 10932     // If unlocking was successfull, crx should indicate 'EQ'.
 10933     // The compiler generates a branch to the runtime call to
 10934     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
 10935   %}
 10936   ins_pipe(pipe_class_compare);
 10937 %}
 10939 // Align address.
 10940 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
 10941   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
 10943   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
 10944   size(4);
 10945   ins_encode %{
 10946     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
 10947     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
 10948   %}
 10949   ins_pipe(pipe_class_default);
 10950 %}
 10952 // Array size computation.
 10953 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
 10954   match(Set dst (SubL (CastP2X end) (CastP2X start)));
 10956   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
 10957   size(4);
 10958   ins_encode %{
 10959     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
 10960     __ subf($dst$$Register, $start$$Register, $end$$Register);
 10961   %}
 10962   ins_pipe(pipe_class_default);
 10963 %}
 10965 // Clear-array with dynamic array-size.
 10966 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
 10967   match(Set dummy (ClearArray cnt base));
 10968   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
 10969   ins_cost(MEMORY_REF_COST);
 10971   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 10973   format %{ "ClearArray $cnt, $base" %}
 10974   ins_encode %{
 10975     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10976     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
 10977   %}
 10978   ins_pipe(pipe_class_default);
 10979 %}
 10981 // String_IndexOf for needle of length 1.
 10982 //
 10983 // Match needle into immediate operands: no loadConP node needed. Saves one
 10984 // register and two instructions over string_indexOf_imm1Node.
 10985 //
 10986 // Assumes register result differs from all input registers.
 10987 //
 10988 // Preserves registers haystack, haycnt
 10989 // Kills     registers tmp1, tmp2
 10990 // Defines   registers result
 10991 //
 10992 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 10993 //
 10994 // Unfortunately this does not match too often. In many situations the AddP is used
 10995 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
 10996 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 10997                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
 10998                                   iRegIdst tmp1, iRegIdst tmp2,
 10999                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 11000   predicate(SpecialStringIndexOf);  // type check implicit by parameter type, See Matcher::match_rule_supported
 11001   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
 11003   effect(TEMP result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
 11005   ins_cost(150);
 11006   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
 11007             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
 11009   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
 11010   ins_encode %{
 11011     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11012     immPOper *needleOper = (immPOper *)$needleImm;
 11013     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
 11014     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
 11016     __ string_indexof_1($result$$Register,
 11017                         $haystack$$Register, $haycnt$$Register,
 11018                         R0, needle_values->char_at(0),
 11019                         $tmp1$$Register, $tmp2$$Register);
 11020   %}
 11021   ins_pipe(pipe_class_compare);
 11022 %}
 11024 // String_IndexOf for needle of length 1.
 11025 //
 11026 // Special case requires less registers and emits less instructions.
 11027 //
 11028 // Assumes register result differs from all input registers.
 11029 //
 11030 // Preserves registers haystack, haycnt
 11031 // Kills     registers tmp1, tmp2, needle
 11032 // Defines   registers result
 11033 //
 11034 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11035 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 11036                              rscratch2RegP needle, immI_1 needlecntImm,
 11037                              iRegIdst tmp1, iRegIdst tmp2,
 11038                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 11039   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 11040   effect(USE_KILL needle, /* TDEF needle, */ TEMP result,
 11041          TEMP tmp1, TEMP tmp2);
 11042   // Required for EA: check if it is still a type_array.
 11043   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 11044             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 11045   ins_cost(180);
 11047   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11049   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 11050             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
 11051   ins_encode %{
 11052     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11053     Node *ndl = in(operand_index($needle));  // The node that defines needle.
 11054     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 11055     guarantee(needle_values, "sanity");
 11056     if (needle_values != NULL) {
 11057       __ string_indexof_1($result$$Register,
 11058                           $haystack$$Register, $haycnt$$Register,
 11059                           R0, needle_values->char_at(0),
 11060                           $tmp1$$Register, $tmp2$$Register);
 11061     } else {
 11062       __ string_indexof_1($result$$Register,
 11063                           $haystack$$Register, $haycnt$$Register,
 11064                           $needle$$Register, 0,
 11065                           $tmp1$$Register, $tmp2$$Register);
 11067   %}
 11068   ins_pipe(pipe_class_compare);
 11069 %}
 11071 // String_IndexOf.
 11072 //
 11073 // Length of needle as immediate. This saves instruction loading constant needle
 11074 // length.
 11075 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
 11076 // completely or do it in vector instruction. This should save registers for
 11077 // needlecnt and needle.
 11078 //
 11079 // Assumes register result differs from all input registers.
 11080 // Overwrites haycnt, needlecnt.
 11081 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11082 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
 11083                             iRegPsrc needle, uimmI15 needlecntImm,
 11084                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
 11085                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 11086   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 11087   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP result,
 11088          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
 11089   // Required for EA: check if it is still a type_array.
 11090   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 11091             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 11092   ins_cost(250);
 11094   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11096   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 11097             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
 11098   ins_encode %{
 11099     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11100     Node *ndl = in(operand_index($needle));  // The node that defines needle.
 11101     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 11103     __ string_indexof($result$$Register,
 11104                       $haystack$$Register, $haycnt$$Register,
 11105                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
 11106                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 11107   %}
 11108   ins_pipe(pipe_class_compare);
 11109 %}
 11111 // StrIndexOf node.
 11112 //
 11113 // Assumes register result differs from all input registers.
 11114 // Overwrites haycnt, needlecnt.
 11115 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11116 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
 11117                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
 11118                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 11119   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
 11120   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
 11121          TEMP result,
 11122          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
 11123   predicate(SpecialStringIndexOf);  // See Matcher::match_rule_supported.
 11124   ins_cost(300);
 11126   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11128   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
 11129              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
 11130   ins_encode %{
 11131     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11132     __ string_indexof($result$$Register,
 11133                       $haystack$$Register, $haycnt$$Register,
 11134                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
 11135                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 11136   %}
 11137   ins_pipe(pipe_class_compare);
 11138 %}
 11140 // String equals with immediate.
 11141 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
 11142                            iRegPdst tmp1, iRegPdst tmp2,
 11143                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
 11144   match(Set result (StrEquals (Binary str1 str2) cntImm));
 11145   effect(TEMP result, TEMP tmp1, TEMP tmp2,
 11146          KILL cr0, KILL cr6, KILL ctr);
 11147   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 11148   ins_cost(250);
 11150   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11152   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
 11153             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
 11154   ins_encode %{
 11155     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11156     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
 11157                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
 11158   %}
 11159   ins_pipe(pipe_class_compare);
 11160 %}
 11162 // String equals.
 11163 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
 11164 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
 11165                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
 11166                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
 11167   match(Set result (StrEquals (Binary str1 str2) cnt));
 11168   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
 11169          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
 11170   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 11171   ins_cost(300);
 11173   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11175   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
 11176             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
 11177   ins_encode %{
 11178     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11179     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
 11180                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
 11181   %}
 11182   ins_pipe(pipe_class_compare);
 11183 %}
 11185 // String compare.
 11186 // Char[] pointers are passed in.
 11187 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
 11188 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
 11189                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
 11190   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11191   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP result, TEMP tmp, KILL cr0, KILL ctr);
 11192   ins_cost(300);
 11194   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11196   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
 11197             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
 11198   ins_encode %{
 11199     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11200     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
 11201                       $result$$Register, $tmp$$Register);
 11202   %}
 11203   ins_pipe(pipe_class_compare);
 11204 %}
 11206 //---------- Min/Max Instructions ---------------------------------------------
 11208 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 11209   match(Set dst (MinI src1 src2));
 11210   ins_cost(DEFAULT_COST*6);
 11212   expand %{
 11213     iRegLdst src1s;
 11214     iRegLdst src2s;
 11215     iRegLdst diff;
 11216     iRegLdst sm;
 11217     iRegLdst doz; // difference or zero
 11218     convI2L_reg(src1s, src1); // Ensure proper sign extension.
 11219     convI2L_reg(src2s, src2); // Ensure proper sign extension.
 11220     subL_reg_reg(diff, src2s, src1s);
 11221     // Need to consider >=33 bit result, therefore we need signmaskL.
 11222     signmask64L_regL(sm, diff);
 11223     andL_reg_reg(doz, diff, sm); // <=0
 11224     addI_regL_regL(dst, doz, src1s);
 11225   %}
 11226 %}
 11228 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 11229   match(Set dst (MaxI src1 src2));
 11230   ins_cost(DEFAULT_COST*6);
 11232   expand %{
 11233     iRegLdst src1s;
 11234     iRegLdst src2s;
 11235     iRegLdst diff;
 11236     iRegLdst sm;
 11237     iRegLdst doz; // difference or zero
 11238     convI2L_reg(src1s, src1); // Ensure proper sign extension.
 11239     convI2L_reg(src2s, src2); // Ensure proper sign extension.
 11240     subL_reg_reg(diff, src2s, src1s);
 11241     // Need to consider >=33 bit result, therefore we need signmaskL.
 11242     signmask64L_regL(sm, diff);
 11243     andcL_reg_reg(doz, diff, sm); // >=0
 11244     addI_regL_regL(dst, doz, src1s);
 11245   %}
 11246 %}
 11248 //---------- Population Count Instructions ------------------------------------
 11250 // Popcnt for Power7.
 11251 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
 11252   match(Set dst (PopCountI src));
 11253   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 11254   ins_cost(DEFAULT_COST);
 11256   format %{ "POPCNTW $dst, $src" %}
 11257   size(4);
 11258   ins_encode %{
 11259     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 11260     __ popcntw($dst$$Register, $src$$Register);
 11261   %}
 11262   ins_pipe(pipe_class_default);
 11263 %}
 11265 // Popcnt for Power7.
 11266 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
 11267   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 11268   match(Set dst (PopCountL src));
 11269   ins_cost(DEFAULT_COST);
 11271   format %{ "POPCNTD $dst, $src" %}
 11272   size(4);
 11273   ins_encode %{
 11274     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 11275     __ popcntd($dst$$Register, $src$$Register);
 11276   %}
 11277   ins_pipe(pipe_class_default);
 11278 %}
 11280 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
 11281   match(Set dst (CountLeadingZerosI src));
 11282   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 11283   ins_cost(DEFAULT_COST);
 11285   format %{ "CNTLZW  $dst, $src" %}
 11286   size(4);
 11287   ins_encode %{
 11288     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
 11289     __ cntlzw($dst$$Register, $src$$Register);
 11290   %}
 11291   ins_pipe(pipe_class_default);
 11292 %}
 11294 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
 11295   match(Set dst (CountLeadingZerosL src));
 11296   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 11297   ins_cost(DEFAULT_COST);
 11299   format %{ "CNTLZD  $dst, $src" %}
 11300   size(4);
 11301   ins_encode %{
 11302     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 11303     __ cntlzd($dst$$Register, $src$$Register);
 11304   %}
 11305   ins_pipe(pipe_class_default);
 11306 %}
 11308 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
 11309   // no match-rule, false predicate
 11310   effect(DEF dst, USE src);
 11311   predicate(false);
 11313   format %{ "CNTLZD  $dst, $src" %}
 11314   size(4);
 11315   ins_encode %{
 11316     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 11317     __ cntlzd($dst$$Register, $src$$Register);
 11318   %}
 11319   ins_pipe(pipe_class_default);
 11320 %}
 11322 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
 11323   match(Set dst (CountTrailingZerosI src));
 11324   predicate(UseCountLeadingZerosInstructionsPPC64);
 11325   ins_cost(DEFAULT_COST);
 11327   expand %{
 11328     immI16 imm1 %{ (int)-1 %}
 11329     immI16 imm2 %{ (int)32 %}
 11330     immI_minus1 m1 %{ -1 %}
 11331     iRegIdst tmpI1;
 11332     iRegIdst tmpI2;
 11333     iRegIdst tmpI3;
 11334     addI_reg_imm16(tmpI1, src, imm1);
 11335     andcI_reg_reg(tmpI2, src, m1, tmpI1);
 11336     countLeadingZerosI(tmpI3, tmpI2);
 11337     subI_imm16_reg(dst, imm2, tmpI3);
 11338   %}
 11339 %}
 11341 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
 11342   match(Set dst (CountTrailingZerosL src));
 11343   predicate(UseCountLeadingZerosInstructionsPPC64);
 11344   ins_cost(DEFAULT_COST);
 11346   expand %{
 11347     immL16 imm1 %{ (long)-1 %}
 11348     immI16 imm2 %{ (int)64 %}
 11349     iRegLdst tmpL1;
 11350     iRegLdst tmpL2;
 11351     iRegIdst tmpL3;
 11352     addL_reg_imm16(tmpL1, src, imm1);
 11353     andcL_reg_reg(tmpL2, tmpL1, src);
 11354     countLeadingZerosL(tmpL3, tmpL2);
 11355     subI_imm16_reg(dst, imm2, tmpL3);
 11356  %}
 11357 %}
 11359 // Expand nodes for byte_reverse_int.
 11360 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 11361   effect(DEF dst, USE src, USE pos, USE shift);
 11362   predicate(false);
 11364   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 11365   size(4);
 11366   ins_encode %{
 11367     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 11368     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 11369   %}
 11370   ins_pipe(pipe_class_default);
 11371 %}
 11373 // As insrwi_a, but with USE_DEF.
 11374 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 11375   effect(USE_DEF dst, USE src, USE pos, USE shift);
 11376   predicate(false);
 11378   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 11379   size(4);
 11380   ins_encode %{
 11381     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 11382     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 11383   %}
 11384   ins_pipe(pipe_class_default);
 11385 %}
 11387 // Just slightly faster than java implementation.
 11388 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
 11389   match(Set dst (ReverseBytesI src));
 11390   predicate(UseCountLeadingZerosInstructionsPPC64);
 11391   ins_cost(DEFAULT_COST);
 11393   expand %{
 11394     immI16 imm24 %{ (int) 24 %}
 11395     immI16 imm16 %{ (int) 16 %}
 11396     immI16  imm8 %{ (int)  8 %}
 11397     immI16  imm4 %{ (int)  4 %}
 11398     immI16  imm0 %{ (int)  0 %}
 11399     iRegLdst tmpI1;
 11400     iRegLdst tmpI2;
 11401     iRegLdst tmpI3;
 11403     urShiftI_reg_imm(tmpI1, src, imm24);
 11404     insrwi_a(dst, tmpI1, imm24, imm8);
 11405     urShiftI_reg_imm(tmpI2, src, imm16);
 11406     insrwi(dst, tmpI2, imm8, imm16);
 11407     urShiftI_reg_imm(tmpI3, src, imm8);
 11408     insrwi(dst, tmpI3, imm8, imm8);
 11409     insrwi(dst, src, imm0, imm8);
 11410   %}
 11411 %}
 11413 //---------- Replicate Vector Instructions ------------------------------------
 11415 // Insrdi does replicate if src == dst.
 11416 instruct repl32(iRegLdst dst) %{
 11417   predicate(false);
 11418   effect(USE_DEF dst);
 11420   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
 11421   size(4);
 11422   ins_encode %{
 11423     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11424     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
 11425   %}
 11426   ins_pipe(pipe_class_default);
 11427 %}
 11429 // Insrdi does replicate if src == dst.
 11430 instruct repl48(iRegLdst dst) %{
 11431   predicate(false);
 11432   effect(USE_DEF dst);
 11434   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
 11435   size(4);
 11436   ins_encode %{
 11437     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11438     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
 11439   %}
 11440   ins_pipe(pipe_class_default);
 11441 %}
 11443 // Insrdi does replicate if src == dst.
 11444 instruct repl56(iRegLdst dst) %{
 11445   predicate(false);
 11446   effect(USE_DEF dst);
 11448   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
 11449   size(4);
 11450   ins_encode %{
 11451     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11452     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
 11453   %}
 11454   ins_pipe(pipe_class_default);
 11455 %}
 11457 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11458   match(Set dst (ReplicateB src));
 11459   predicate(n->as_Vector()->length() == 8);
 11460   expand %{
 11461     moveReg(dst, src);
 11462     repl56(dst);
 11463     repl48(dst);
 11464     repl32(dst);
 11465   %}
 11466 %}
 11468 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
 11469   match(Set dst (ReplicateB zero));
 11470   predicate(n->as_Vector()->length() == 8);
 11471   format %{ "LI      $dst, #0 \t// replicate8B" %}
 11472   size(4);
 11473   ins_encode %{
 11474     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11475     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11476   %}
 11477   ins_pipe(pipe_class_default);
 11478 %}
 11480 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11481   match(Set dst (ReplicateB src));
 11482   predicate(n->as_Vector()->length() == 8);
 11483   format %{ "LI      $dst, #-1 \t// replicate8B" %}
 11484   size(4);
 11485   ins_encode %{
 11486     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11487     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11488   %}
 11489   ins_pipe(pipe_class_default);
 11490 %}
 11492 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11493   match(Set dst (ReplicateS src));
 11494   predicate(n->as_Vector()->length() == 4);
 11495   expand %{
 11496     moveReg(dst, src);
 11497     repl48(dst);
 11498     repl32(dst);
 11499   %}
 11500 %}
 11502 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
 11503   match(Set dst (ReplicateS zero));
 11504   predicate(n->as_Vector()->length() == 4);
 11505   format %{ "LI      $dst, #0 \t// replicate4C" %}
 11506   size(4);
 11507   ins_encode %{
 11508     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11509     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11510   %}
 11511   ins_pipe(pipe_class_default);
 11512 %}
 11514 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11515   match(Set dst (ReplicateS src));
 11516   predicate(n->as_Vector()->length() == 4);
 11517   format %{ "LI      $dst, -1 \t// replicate4C" %}
 11518   size(4);
 11519   ins_encode %{
 11520     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11521     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11522   %}
 11523   ins_pipe(pipe_class_default);
 11524 %}
 11526 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11527   match(Set dst (ReplicateI src));
 11528   predicate(n->as_Vector()->length() == 2);
 11529   ins_cost(2 * DEFAULT_COST);
 11530   expand %{
 11531     moveReg(dst, src);
 11532     repl32(dst);
 11533   %}
 11534 %}
 11536 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
 11537   match(Set dst (ReplicateI zero));
 11538   predicate(n->as_Vector()->length() == 2);
 11539   format %{ "LI      $dst, #0 \t// replicate4C" %}
 11540   size(4);
 11541   ins_encode %{
 11542     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11543     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11544   %}
 11545   ins_pipe(pipe_class_default);
 11546 %}
 11548 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11549   match(Set dst (ReplicateI src));
 11550   predicate(n->as_Vector()->length() == 2);
 11551   format %{ "LI      $dst, -1 \t// replicate4C" %}
 11552   size(4);
 11553   ins_encode %{
 11554     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11555     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11556   %}
 11557   ins_pipe(pipe_class_default);
 11558 %}
 11560 // Move float to int register via stack, replicate.
 11561 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
 11562   match(Set dst (ReplicateF src));
 11563   predicate(n->as_Vector()->length() == 2);
 11564   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
 11565   expand %{
 11566     stackSlotL tmpS;
 11567     iRegIdst tmpI;
 11568     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
 11569     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
 11570     moveReg(dst, tmpI);             // Move int to long reg.
 11571     repl32(dst);                    // Replicate bitpattern.
 11572   %}
 11573 %}
 11575 // Replicate scalar constant to packed float values in Double register
 11576 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
 11577   match(Set dst (ReplicateF src));
 11578   predicate(n->as_Vector()->length() == 2);
 11579   ins_cost(5 * DEFAULT_COST);
 11581   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
 11582   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
 11583 %}
 11585 // Replicate scalar zero constant to packed float values in Double register
 11586 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
 11587   match(Set dst (ReplicateF zero));
 11588   predicate(n->as_Vector()->length() == 2);
 11590   format %{ "LI      $dst, #0 \t// replicate2F" %}
 11591   ins_encode %{
 11592     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11593     __ li($dst$$Register, 0x0);
 11594   %}
 11595   ins_pipe(pipe_class_default);
 11596 %}
 11598 // ============================================================================
 11599 // Safepoint Instruction
 11601 instruct safePoint_poll(iRegPdst poll) %{
 11602   match(SafePoint poll);
 11603   predicate(LoadPollAddressFromThread);
 11605   // It caused problems to add the effect that r0 is killed, but this
 11606   // effect no longer needs to be mentioned, since r0 is not contained
 11607   // in a reg_class.
 11609   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
 11610   size(4);
 11611   ins_encode( enc_poll(0x0, poll) );
 11612   ins_pipe(pipe_class_default);
 11613 %}
 11615 // Safepoint without per-thread support. Load address of page to poll
 11616 // as constant.
 11617 // Rscratch2RegP is R12.
 11618 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
 11619 // a seperate node so that the oop map is at the right location.
 11620 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
 11621   match(SafePoint poll);
 11622   predicate(!LoadPollAddressFromThread);
 11624   // It caused problems to add the effect that r0 is killed, but this
 11625   // effect no longer needs to be mentioned, since r0 is not contained
 11626   // in a reg_class.
 11628   format %{ "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
 11629   ins_encode( enc_poll(0x0, poll) );
 11630   ins_pipe(pipe_class_default);
 11631 %}
 11633 // ============================================================================
 11634 // Call Instructions
 11636 // Call Java Static Instruction
 11638 // Schedulable version of call static node.
 11639 instruct CallStaticJavaDirect(method meth) %{
 11640   match(CallStaticJava);
 11641   effect(USE meth);
 11642   predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
 11643   ins_cost(CALL_COST);
 11645   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 11647   format %{ "CALL,static $meth \t// ==> " %}
 11648   size(4);
 11649   ins_encode( enc_java_static_call(meth) );
 11650   ins_pipe(pipe_class_call);
 11651 %}
 11653 // Schedulable version of call static node.
 11654 instruct CallStaticJavaDirectHandle(method meth) %{
 11655   match(CallStaticJava);
 11656   effect(USE meth);
 11657   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 11658   ins_cost(CALL_COST);
 11660   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 11662   format %{ "CALL,static $meth \t// ==> " %}
 11663   ins_encode( enc_java_handle_call(meth) );
 11664   ins_pipe(pipe_class_call);
 11665 %}
 11667 // Call Java Dynamic Instruction
 11669 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
 11670 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
 11671 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
 11672 // The call destination must still be placed in the constant pool.
 11673 instruct CallDynamicJavaDirectSched(method meth) %{
 11674   match(CallDynamicJava); // To get all the data fields we need ...
 11675   effect(USE meth);
 11676   predicate(false);       // ... but never match.
 11678   ins_field_load_ic_hi_node(loadConL_hiNode*);
 11679   ins_field_load_ic_node(loadConLNode*);
 11680   ins_num_consts(1 /* 1 patchable constant: call destination */);
 11682   format %{ "BL        \t// dynamic $meth ==> " %}
 11683   size(4);
 11684   ins_encode( enc_java_dynamic_call_sched(meth) );
 11685   ins_pipe(pipe_class_call);
 11686 %}
 11688 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
 11689 // We use postalloc expanded calls if we use inline caches
 11690 // and do not update method data.
 11691 //
 11692 // This instruction has two constants: inline cache (IC) and call destination.
 11693 // Loading the inline cache will be postalloc expanded, thus leaving a call with
 11694 // one constant.
 11695 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
 11696   match(CallDynamicJava);
 11697   effect(USE meth);
 11698   predicate(UseInlineCaches);
 11699   ins_cost(CALL_COST);
 11701   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
 11703   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
 11704   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
 11705 %}
 11707 // Compound version of call dynamic java
 11708 // We use postalloc expanded calls if we use inline caches
 11709 // and do not update method data.
 11710 instruct CallDynamicJavaDirect(method meth) %{
 11711   match(CallDynamicJava);
 11712   effect(USE meth);
 11713   predicate(!UseInlineCaches);
 11714   ins_cost(CALL_COST);
 11716   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
 11717   ins_num_consts(4);
 11719   format %{ "CALL,dynamic $meth \t// ==> " %}
 11720   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
 11721   ins_pipe(pipe_class_call);
 11722 %}
 11724 // Call Runtime Instruction
 11726 instruct CallRuntimeDirect(method meth) %{
 11727   match(CallRuntime);
 11728   effect(USE meth);
 11729   ins_cost(CALL_COST);
 11731   // Enc_java_to_runtime_call needs up to 3 constants: call target,
 11732   // env for callee, C-toc.
 11733   ins_num_consts(3);
 11735   format %{ "CALL,runtime" %}
 11736   ins_encode( enc_java_to_runtime_call(meth) );
 11737   ins_pipe(pipe_class_call);
 11738 %}
 11740 // Call Leaf
 11742 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
 11743 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
 11744   effect(DEF dst, USE src);
 11746   ins_num_consts(1);
 11748   format %{ "MTCTR   $src" %}
 11749   size(4);
 11750   ins_encode( enc_leaf_call_mtctr(src) );
 11751   ins_pipe(pipe_class_default);
 11752 %}
 11754 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
 11755 instruct CallLeafDirect(method meth) %{
 11756   match(CallLeaf);   // To get the data all the data fields we need ...
 11757   effect(USE meth);
 11758   predicate(false);  // but never match.
 11760   format %{ "BCTRL     \t// leaf call $meth ==> " %}
 11761   size(4);
 11762   ins_encode %{
 11763     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
 11764     __ bctrl();
 11765   %}
 11766   ins_pipe(pipe_class_call);
 11767 %}
 11769 // postalloc expand of CallLeafDirect.
 11770 // Load adress to call from TOC, then bl to it.
 11771 instruct CallLeafDirect_Ex(method meth) %{
 11772   match(CallLeaf);
 11773   effect(USE meth);
 11774   ins_cost(CALL_COST);
 11776   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
 11777   // env for callee, C-toc.
 11778   ins_num_consts(3);
 11780   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
 11781   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 11782 %}
 11784 // Call runtime without safepoint - same as CallLeaf.
 11785 // postalloc expand of CallLeafNoFPDirect.
 11786 // Load adress to call from TOC, then bl to it.
 11787 instruct CallLeafNoFPDirect_Ex(method meth) %{
 11788   match(CallLeafNoFP);
 11789   effect(USE meth);
 11790   ins_cost(CALL_COST);
 11792   // Enc_java_to_runtime_call needs up to 3 constants: call target,
 11793   // env for callee, C-toc.
 11794   ins_num_consts(3);
 11796   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
 11797   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 11798 %}
 11800 // Tail Call; Jump from runtime stub to Java code.
 11801 // Also known as an 'interprocedural jump'.
 11802 // Target of jump will eventually return to caller.
 11803 // TailJump below removes the return address.
 11804 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
 11805   match(TailCall jump_target method_oop);
 11806   ins_cost(CALL_COST);
 11808   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
 11809             "BCTR         \t// tail call" %}
 11810   size(8);
 11811   ins_encode %{
 11812     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11813     __ mtctr($jump_target$$Register);
 11814     __ bctr();
 11815   %}
 11816   ins_pipe(pipe_class_call);
 11817 %}
 11819 // Return Instruction
 11820 instruct Ret() %{
 11821   match(Return);
 11822   format %{ "BLR      \t// branch to link register" %}
 11823   size(4);
 11824   ins_encode %{
 11825     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
 11826     // LR is restored in MachEpilogNode. Just do the RET here.
 11827     __ blr();
 11828   %}
 11829   ins_pipe(pipe_class_default);
 11830 %}
 11832 // Tail Jump; remove the return address; jump to target.
 11833 // TailCall above leaves the return address around.
 11834 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 11835 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 11836 // "restore" before this instruction (in Epilogue), we need to materialize it
 11837 // in %i0.
 11838 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
 11839   match(TailJump jump_target ex_oop);
 11840   ins_cost(CALL_COST);
 11842   format %{ "LD      R4_ARG2 = LR\n\t"
 11843             "MTCTR   $jump_target\n\t"
 11844             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
 11845   size(12);
 11846   ins_encode %{
 11847     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11848     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
 11849     __ mtctr($jump_target$$Register);
 11850     __ bctr();
 11851   %}
 11852   ins_pipe(pipe_class_call);
 11853 %}
 11855 // Create exception oop: created by stack-crawling runtime code.
 11856 // Created exception is now available to this handler, and is setup
 11857 // just prior to jumping to this handler. No code emitted.
 11858 instruct CreateException(rarg1RegP ex_oop) %{
 11859   match(Set ex_oop (CreateEx));
 11860   ins_cost(0);
 11862   format %{ " -- \t// exception oop; no code emitted" %}
 11863   size(0);
 11864   ins_encode( /*empty*/ );
 11865   ins_pipe(pipe_class_default);
 11866 %}
 11868 // Rethrow exception: The exception oop will come in the first
 11869 // argument position. Then JUMP (not call) to the rethrow stub code.
 11870 instruct RethrowException() %{
 11871   match(Rethrow);
 11872   ins_cost(CALL_COST);
 11874   format %{ "Jmp     rethrow_stub" %}
 11875   ins_encode %{
 11876     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11877     cbuf.set_insts_mark();
 11878     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
 11879   %}
 11880   ins_pipe(pipe_class_call);
 11881 %}
 11883 // Die now.
 11884 instruct ShouldNotReachHere() %{
 11885   match(Halt);
 11886   ins_cost(CALL_COST);
 11888   format %{ "ShouldNotReachHere" %}
 11889   size(4);
 11890   ins_encode %{
 11891     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 11892     __ trap_should_not_reach_here();
 11893   %}
 11894   ins_pipe(pipe_class_default);
 11895 %}
 11897 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
 11898 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
 11899 // Get a DEF on threadRegP, no costs, no encoding, use
 11900 // 'ins_should_rematerialize(true)' to avoid spilling.
 11901 instruct tlsLoadP(threadRegP dst) %{
 11902   match(Set dst (ThreadLocal));
 11903   ins_cost(0);
 11905   ins_should_rematerialize(true);
 11907   format %{ " -- \t// $dst=Thread::current(), empty" %}
 11908   size(0);
 11909   ins_encode( /*empty*/ );
 11910   ins_pipe(pipe_class_empty);
 11911 %}
 11913 //---Some PPC specific nodes---------------------------------------------------
 11915 // Stop a group.
 11916 instruct endGroup() %{
 11917   ins_cost(0);
 11919   ins_is_nop(true);
 11921   format %{ "End Bundle (ori r1, r1, 0)" %}
 11922   size(4);
 11923   ins_encode %{
 11924     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
 11925     __ endgroup();
 11926   %}
 11927   ins_pipe(pipe_class_default);
 11928 %}
 11930 // Nop instructions
 11932 instruct fxNop() %{
 11933   ins_cost(0);
 11935   ins_is_nop(true);
 11937   format %{ "fxNop" %}
 11938   size(4);
 11939   ins_encode %{
 11940     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11941     __ nop();
 11942   %}
 11943   ins_pipe(pipe_class_default);
 11944 %}
 11946 instruct fpNop0() %{
 11947   ins_cost(0);
 11949   ins_is_nop(true);
 11951   format %{ "fpNop0" %}
 11952   size(4);
 11953   ins_encode %{
 11954     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11955     __ fpnop0();
 11956   %}
 11957   ins_pipe(pipe_class_default);
 11958 %}
 11960 instruct fpNop1() %{
 11961   ins_cost(0);
 11963   ins_is_nop(true);
 11965   format %{ "fpNop1" %}
 11966   size(4);
 11967   ins_encode %{
 11968     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11969     __ fpnop1();
 11970   %}
 11971   ins_pipe(pipe_class_default);
 11972 %}
 11974 instruct brNop0() %{
 11975   ins_cost(0);
 11976   size(4);
 11977   format %{ "brNop0" %}
 11978   ins_encode %{
 11979     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11980     __ brnop0();
 11981   %}
 11982   ins_is_nop(true);
 11983   ins_pipe(pipe_class_default);
 11984 %}
 11986 instruct brNop1() %{
 11987   ins_cost(0);
 11989   ins_is_nop(true);
 11991   format %{ "brNop1" %}
 11992   size(4);
 11993   ins_encode %{
 11994     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11995     __ brnop1();
 11996   %}
 11997   ins_pipe(pipe_class_default);
 11998 %}
 12000 instruct brNop2() %{
 12001   ins_cost(0);
 12003   ins_is_nop(true);
 12005   format %{ "brNop2" %}
 12006   size(4);
 12007   ins_encode %{
 12008     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 12009     __ brnop2();
 12010   %}
 12011   ins_pipe(pipe_class_default);
 12012 %}
 12014 //----------PEEPHOLE RULES-----------------------------------------------------
 12015 // These must follow all instruction definitions as they use the names
 12016 // defined in the instructions definitions.
 12017 //
 12018 // peepmatch ( root_instr_name [preceeding_instruction]* );
 12019 //
 12020 // peepconstraint %{
 12021 // (instruction_number.operand_name relational_op instruction_number.operand_name
 12022 //  [, ...] );
 12023 // // instruction numbers are zero-based using left to right order in peepmatch
 12024 //
 12025 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
 12026 // // provide an instruction_number.operand_name for each operand that appears
 12027 // // in the replacement instruction's match rule
 12028 //
 12029 // ---------VM FLAGS---------------------------------------------------------
 12030 //
 12031 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 12032 //
 12033 // Each peephole rule is given an identifying number starting with zero and
 12034 // increasing by one in the order seen by the parser. An individual peephole
 12035 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 12036 // on the command-line.
 12037 //
 12038 // ---------CURRENT LIMITATIONS----------------------------------------------
 12039 //
 12040 // Only match adjacent instructions in same basic block
 12041 // Only equality constraints
 12042 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 12043 // Only one replacement instruction
 12044 //
 12045 // ---------EXAMPLE----------------------------------------------------------
 12046 //
 12047 // // pertinent parts of existing instructions in architecture description
 12048 // instruct movI(eRegI dst, eRegI src) %{
 12049 //   match(Set dst (CopyI src));
 12050 // %}
 12051 //
 12052 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 12053 //   match(Set dst (AddI dst src));
 12054 //   effect(KILL cr);
 12055 // %}
 12056 //
 12057 // // Change (inc mov) to lea
 12058 // peephole %{
 12059 //   // increment preceeded by register-register move
 12060 //   peepmatch ( incI_eReg movI );
 12061 //   // require that the destination register of the increment
 12062 //   // match the destination register of the move
 12063 //   peepconstraint ( 0.dst == 1.dst );
 12064 //   // construct a replacement instruction that sets
 12065 //   // the destination to ( move's source register + one )
 12066 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12067 // %}
 12068 //
 12069 // Implementation no longer uses movX instructions since
 12070 // machine-independent system no longer uses CopyX nodes.
 12071 //
 12072 // peephole %{
 12073 //   peepmatch ( incI_eReg movI );
 12074 //   peepconstraint ( 0.dst == 1.dst );
 12075 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12076 // %}
 12077 //
 12078 // peephole %{
 12079 //   peepmatch ( decI_eReg movI );
 12080 //   peepconstraint ( 0.dst == 1.dst );
 12081 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12082 // %}
 12083 //
 12084 // peephole %{
 12085 //   peepmatch ( addI_eReg_imm movI );
 12086 //   peepconstraint ( 0.dst == 1.dst );
 12087 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12088 // %}
 12089 //
 12090 // peephole %{
 12091 //   peepmatch ( addP_eReg_imm movP );
 12092 //   peepconstraint ( 0.dst == 1.dst );
 12093 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 12094 // %}
 12096 // // Change load of spilled value to only a spill
 12097 // instruct storeI(memory mem, eRegI src) %{
 12098 //   match(Set mem (StoreI mem src));
 12099 // %}
 12100 //
 12101 // instruct loadI(eRegI dst, memory mem) %{
 12102 //   match(Set dst (LoadI mem));
 12103 // %}
 12104 //
 12105 peephole %{
 12106   peepmatch ( loadI storeI );
 12107   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 12108   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 12109 %}
 12111 peephole %{
 12112   peepmatch ( loadL storeL );
 12113   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 12114   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
 12115 %}
 12117 peephole %{
 12118   peepmatch ( loadP storeP );
 12119   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
 12120   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
 12121 %}
 12123 //----------SMARTSPILL RULES---------------------------------------------------
 12124 // These must follow all instruction definitions as they use the names
 12125 // defined in the instructions definitions.

mercurial