src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Fri, 12 Aug 2011 11:31:06 -0400

author
tonyp
date
Fri, 12 Aug 2011 11:31:06 -0400
changeset 3028
f44782f04dd4
parent 3021
14a2fd14c0db
child 3065
ff53346271fe
permissions
-rw-r--r--

7039627: G1: avoid BOT updates for survivor allocations and dirty survivor regions incrementally
Summary: Refactor the allocation code during GC to use the G1AllocRegion abstraction. Use separate subclasses of G1AllocRegion for survivor and old regions. Avoid BOT updates and dirty survivor cards incrementally for the former.
Reviewed-by: brutisso, johnc, ysr

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1HRPrinter.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.hpp"
    34 #include "gc_implementation/g1/heapRegionSets.hpp"
    35 #include "gc_implementation/shared/hSpaceCounters.hpp"
    36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    37 #include "memory/barrierSet.hpp"
    38 #include "memory/memRegion.hpp"
    39 #include "memory/sharedHeap.hpp"
    41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    42 // It uses the "Garbage First" heap organization and algorithm, which
    43 // may combine concurrent marking with parallel, incremental compaction of
    44 // heap subsets that will yield large amounts of garbage.
    46 class HeapRegion;
    47 class HRRSCleanupTask;
    48 class PermanentGenerationSpec;
    49 class GenerationSpec;
    50 class OopsInHeapRegionClosure;
    51 class G1ScanHeapEvacClosure;
    52 class ObjectClosure;
    53 class SpaceClosure;
    54 class CompactibleSpaceClosure;
    55 class Space;
    56 class G1CollectorPolicy;
    57 class GenRemSet;
    58 class G1RemSet;
    59 class HeapRegionRemSetIterator;
    60 class ConcurrentMark;
    61 class ConcurrentMarkThread;
    62 class ConcurrentG1Refine;
    63 class GenerationCounters;
    65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    71 enum GCAllocPurpose {
    72   GCAllocForTenured,
    73   GCAllocForSurvived,
    74   GCAllocPurposeCount
    75 };
    77 class YoungList : public CHeapObj {
    78 private:
    79   G1CollectedHeap* _g1h;
    81   HeapRegion* _head;
    83   HeapRegion* _survivor_head;
    84   HeapRegion* _survivor_tail;
    86   HeapRegion* _curr;
    88   size_t      _length;
    89   size_t      _survivor_length;
    91   size_t      _last_sampled_rs_lengths;
    92   size_t      _sampled_rs_lengths;
    94   void         empty_list(HeapRegion* list);
    96 public:
    97   YoungList(G1CollectedHeap* g1h);
    99   void         push_region(HeapRegion* hr);
   100   void         add_survivor_region(HeapRegion* hr);
   102   void         empty_list();
   103   bool         is_empty() { return _length == 0; }
   104   size_t       length() { return _length; }
   105   size_t       survivor_length() { return _survivor_length; }
   107   // Currently we do not keep track of the used byte sum for the
   108   // young list and the survivors and it'd be quite a lot of work to
   109   // do so. When we'll eventually replace the young list with
   110   // instances of HeapRegionLinkedList we'll get that for free. So,
   111   // we'll report the more accurate information then.
   112   size_t       eden_used_bytes() {
   113     assert(length() >= survivor_length(), "invariant");
   114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
   115   }
   116   size_t       survivor_used_bytes() {
   117     return survivor_length() * HeapRegion::GrainBytes;
   118   }
   120   void rs_length_sampling_init();
   121   bool rs_length_sampling_more();
   122   void rs_length_sampling_next();
   124   void reset_sampled_info() {
   125     _last_sampled_rs_lengths =   0;
   126   }
   127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   129   // for development purposes
   130   void reset_auxilary_lists();
   131   void clear() { _head = NULL; _length = 0; }
   133   void clear_survivors() {
   134     _survivor_head    = NULL;
   135     _survivor_tail    = NULL;
   136     _survivor_length  = 0;
   137   }
   139   HeapRegion* first_region() { return _head; }
   140   HeapRegion* first_survivor_region() { return _survivor_head; }
   141   HeapRegion* last_survivor_region() { return _survivor_tail; }
   143   // debugging
   144   bool          check_list_well_formed();
   145   bool          check_list_empty(bool check_sample = true);
   146   void          print();
   147 };
   149 class MutatorAllocRegion : public G1AllocRegion {
   150 protected:
   151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   153 public:
   154   MutatorAllocRegion()
   155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   156 };
   158 class SurvivorGCAllocRegion : public G1AllocRegion {
   159 protected:
   160   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   161   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   162 public:
   163   SurvivorGCAllocRegion()
   164   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   165 };
   167 class OldGCAllocRegion : public G1AllocRegion {
   168 protected:
   169   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   170   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   171 public:
   172   OldGCAllocRegion()
   173   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   174 };
   176 class RefineCardTableEntryClosure;
   177 class G1CollectedHeap : public SharedHeap {
   178   friend class VM_G1CollectForAllocation;
   179   friend class VM_GenCollectForPermanentAllocation;
   180   friend class VM_G1CollectFull;
   181   friend class VM_G1IncCollectionPause;
   182   friend class VMStructs;
   183   friend class MutatorAllocRegion;
   184   friend class SurvivorGCAllocRegion;
   185   friend class OldGCAllocRegion;
   187   // Closures used in implementation.
   188   friend class G1ParCopyHelper;
   189   friend class G1IsAliveClosure;
   190   friend class G1EvacuateFollowersClosure;
   191   friend class G1ParScanThreadState;
   192   friend class G1ParScanClosureSuper;
   193   friend class G1ParEvacuateFollowersClosure;
   194   friend class G1ParTask;
   195   friend class G1FreeGarbageRegionClosure;
   196   friend class RefineCardTableEntryClosure;
   197   friend class G1PrepareCompactClosure;
   198   friend class RegionSorter;
   199   friend class RegionResetter;
   200   friend class CountRCClosure;
   201   friend class EvacPopObjClosure;
   202   friend class G1ParCleanupCTTask;
   204   // Other related classes.
   205   friend class G1MarkSweep;
   207 private:
   208   // The one and only G1CollectedHeap, so static functions can find it.
   209   static G1CollectedHeap* _g1h;
   211   static size_t _humongous_object_threshold_in_words;
   213   // Storage for the G1 heap (excludes the permanent generation).
   214   VirtualSpace _g1_storage;
   215   MemRegion    _g1_reserved;
   217   // The part of _g1_storage that is currently committed.
   218   MemRegion _g1_committed;
   220   // The master free list. It will satisfy all new region allocations.
   221   MasterFreeRegionList      _free_list;
   223   // The secondary free list which contains regions that have been
   224   // freed up during the cleanup process. This will be appended to the
   225   // master free list when appropriate.
   226   SecondaryFreeRegionList   _secondary_free_list;
   228   // It keeps track of the humongous regions.
   229   MasterHumongousRegionSet  _humongous_set;
   231   // The number of regions we could create by expansion.
   232   size_t _expansion_regions;
   234   // The block offset table for the G1 heap.
   235   G1BlockOffsetSharedArray* _bot_shared;
   237   // Move all of the regions off the free lists, then rebuild those free
   238   // lists, before and after full GC.
   239   void tear_down_region_lists();
   240   void rebuild_region_lists();
   242   // The sequence of all heap regions in the heap.
   243   HeapRegionSeq _hrs;
   245   // Alloc region used to satisfy mutator allocation requests.
   246   MutatorAllocRegion _mutator_alloc_region;
   248   // Alloc region used to satisfy allocation requests by the GC for
   249   // survivor objects.
   250   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   252   // Alloc region used to satisfy allocation requests by the GC for
   253   // old objects.
   254   OldGCAllocRegion _old_gc_alloc_region;
   256   // The last old region we allocated to during the last GC.
   257   // Typically, it is not full so we should re-use it during the next GC.
   258   HeapRegion* _retained_old_gc_alloc_region;
   260   // It resets the mutator alloc region before new allocations can take place.
   261   void init_mutator_alloc_region();
   263   // It releases the mutator alloc region.
   264   void release_mutator_alloc_region();
   266   // It initializes the GC alloc regions at the start of a GC.
   267   void init_gc_alloc_regions();
   269   // It releases the GC alloc regions at the end of a GC.
   270   void release_gc_alloc_regions();
   272   // It does any cleanup that needs to be done on the GC alloc regions
   273   // before a Full GC.
   274   void abandon_gc_alloc_regions();
   276   // Helper for monitoring and management support.
   277   G1MonitoringSupport* _g1mm;
   279   // Determines PLAB size for a particular allocation purpose.
   280   static size_t desired_plab_sz(GCAllocPurpose purpose);
   282   // Outside of GC pauses, the number of bytes used in all regions other
   283   // than the current allocation region.
   284   size_t _summary_bytes_used;
   286   // This is used for a quick test on whether a reference points into
   287   // the collection set or not. Basically, we have an array, with one
   288   // byte per region, and that byte denotes whether the corresponding
   289   // region is in the collection set or not. The entry corresponding
   290   // the bottom of the heap, i.e., region 0, is pointed to by
   291   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   292   // biased so that it actually points to address 0 of the address
   293   // space, to make the test as fast as possible (we can simply shift
   294   // the address to address into it, instead of having to subtract the
   295   // bottom of the heap from the address before shifting it; basically
   296   // it works in the same way the card table works).
   297   bool* _in_cset_fast_test;
   299   // The allocated array used for the fast test on whether a reference
   300   // points into the collection set or not. This field is also used to
   301   // free the array.
   302   bool* _in_cset_fast_test_base;
   304   // The length of the _in_cset_fast_test_base array.
   305   size_t _in_cset_fast_test_length;
   307   volatile unsigned _gc_time_stamp;
   309   size_t* _surviving_young_words;
   311   G1HRPrinter _hr_printer;
   313   void setup_surviving_young_words();
   314   void update_surviving_young_words(size_t* surv_young_words);
   315   void cleanup_surviving_young_words();
   317   // It decides whether an explicit GC should start a concurrent cycle
   318   // instead of doing a STW GC. Currently, a concurrent cycle is
   319   // explicitly started if:
   320   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   321   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   322   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   324   // Keeps track of how many "full collections" (i.e., Full GCs or
   325   // concurrent cycles) we have completed. The number of them we have
   326   // started is maintained in _total_full_collections in CollectedHeap.
   327   volatile unsigned int _full_collections_completed;
   329   // This is a non-product method that is helpful for testing. It is
   330   // called at the end of a GC and artificially expands the heap by
   331   // allocating a number of dead regions. This way we can induce very
   332   // frequent marking cycles and stress the cleanup / concurrent
   333   // cleanup code more (as all the regions that will be allocated by
   334   // this method will be found dead by the marking cycle).
   335   void allocate_dummy_regions() PRODUCT_RETURN;
   337   // These are macros so that, if the assert fires, we get the correct
   338   // line number, file, etc.
   340 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   341   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   342           (_extra_message_),                                                  \
   343           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   344           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   345           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   347 #define assert_heap_locked()                                                  \
   348   do {                                                                        \
   349     assert(Heap_lock->owned_by_self(),                                        \
   350            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   351   } while (0)
   353 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   354   do {                                                                        \
   355     assert(Heap_lock->owned_by_self() ||                                      \
   356            (SafepointSynchronize::is_at_safepoint() &&                        \
   357              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   358            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   359                                         "should be at a safepoint"));         \
   360   } while (0)
   362 #define assert_heap_locked_and_not_at_safepoint()                             \
   363   do {                                                                        \
   364     assert(Heap_lock->owned_by_self() &&                                      \
   365                                     !SafepointSynchronize::is_at_safepoint(), \
   366           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   367                                        "should not be at a safepoint"));      \
   368   } while (0)
   370 #define assert_heap_not_locked()                                              \
   371   do {                                                                        \
   372     assert(!Heap_lock->owned_by_self(),                                       \
   373         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   374   } while (0)
   376 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   377   do {                                                                        \
   378     assert(!Heap_lock->owned_by_self() &&                                     \
   379                                     !SafepointSynchronize::is_at_safepoint(), \
   380       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   381                                    "should not be at a safepoint"));          \
   382   } while (0)
   384 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   385   do {                                                                        \
   386     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   387               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   388            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   389   } while (0)
   391 #define assert_not_at_safepoint()                                             \
   392   do {                                                                        \
   393     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   394            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   395   } while (0)
   397 protected:
   399   // The young region list.
   400   YoungList*  _young_list;
   402   // The current policy object for the collector.
   403   G1CollectorPolicy* _g1_policy;
   405   // This is the second level of trying to allocate a new region. If
   406   // new_region() didn't find a region on the free_list, this call will
   407   // check whether there's anything available on the
   408   // secondary_free_list and/or wait for more regions to appear on
   409   // that list, if _free_regions_coming is set.
   410   HeapRegion* new_region_try_secondary_free_list();
   412   // Try to allocate a single non-humongous HeapRegion sufficient for
   413   // an allocation of the given word_size. If do_expand is true,
   414   // attempt to expand the heap if necessary to satisfy the allocation
   415   // request.
   416   HeapRegion* new_region(size_t word_size, bool do_expand);
   418   // Attempt to satisfy a humongous allocation request of the given
   419   // size by finding a contiguous set of free regions of num_regions
   420   // length and remove them from the master free list. Return the
   421   // index of the first region or G1_NULL_HRS_INDEX if the search
   422   // was unsuccessful.
   423   size_t humongous_obj_allocate_find_first(size_t num_regions,
   424                                            size_t word_size);
   426   // Initialize a contiguous set of free regions of length num_regions
   427   // and starting at index first so that they appear as a single
   428   // humongous region.
   429   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
   430                                                       size_t num_regions,
   431                                                       size_t word_size);
   433   // Attempt to allocate a humongous object of the given size. Return
   434   // NULL if unsuccessful.
   435   HeapWord* humongous_obj_allocate(size_t word_size);
   437   // The following two methods, allocate_new_tlab() and
   438   // mem_allocate(), are the two main entry points from the runtime
   439   // into the G1's allocation routines. They have the following
   440   // assumptions:
   441   //
   442   // * They should both be called outside safepoints.
   443   //
   444   // * They should both be called without holding the Heap_lock.
   445   //
   446   // * All allocation requests for new TLABs should go to
   447   //   allocate_new_tlab().
   448   //
   449   // * All non-TLAB allocation requests should go to mem_allocate().
   450   //
   451   // * If either call cannot satisfy the allocation request using the
   452   //   current allocating region, they will try to get a new one. If
   453   //   this fails, they will attempt to do an evacuation pause and
   454   //   retry the allocation.
   455   //
   456   // * If all allocation attempts fail, even after trying to schedule
   457   //   an evacuation pause, allocate_new_tlab() will return NULL,
   458   //   whereas mem_allocate() will attempt a heap expansion and/or
   459   //   schedule a Full GC.
   460   //
   461   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   462   //   should never be called with word_size being humongous. All
   463   //   humongous allocation requests should go to mem_allocate() which
   464   //   will satisfy them with a special path.
   466   virtual HeapWord* allocate_new_tlab(size_t word_size);
   468   virtual HeapWord* mem_allocate(size_t word_size,
   469                                  bool*  gc_overhead_limit_was_exceeded);
   471   // The following three methods take a gc_count_before_ret
   472   // parameter which is used to return the GC count if the method
   473   // returns NULL. Given that we are required to read the GC count
   474   // while holding the Heap_lock, and these paths will take the
   475   // Heap_lock at some point, it's easier to get them to read the GC
   476   // count while holding the Heap_lock before they return NULL instead
   477   // of the caller (namely: mem_allocate()) having to also take the
   478   // Heap_lock just to read the GC count.
   480   // First-level mutator allocation attempt: try to allocate out of
   481   // the mutator alloc region without taking the Heap_lock. This
   482   // should only be used for non-humongous allocations.
   483   inline HeapWord* attempt_allocation(size_t word_size,
   484                                       unsigned int* gc_count_before_ret);
   486   // Second-level mutator allocation attempt: take the Heap_lock and
   487   // retry the allocation attempt, potentially scheduling a GC
   488   // pause. This should only be used for non-humongous allocations.
   489   HeapWord* attempt_allocation_slow(size_t word_size,
   490                                     unsigned int* gc_count_before_ret);
   492   // Takes the Heap_lock and attempts a humongous allocation. It can
   493   // potentially schedule a GC pause.
   494   HeapWord* attempt_allocation_humongous(size_t word_size,
   495                                          unsigned int* gc_count_before_ret);
   497   // Allocation attempt that should be called during safepoints (e.g.,
   498   // at the end of a successful GC). expect_null_mutator_alloc_region
   499   // specifies whether the mutator alloc region is expected to be NULL
   500   // or not.
   501   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   502                                        bool expect_null_mutator_alloc_region);
   504   // It dirties the cards that cover the block so that so that the post
   505   // write barrier never queues anything when updating objects on this
   506   // block. It is assumed (and in fact we assert) that the block
   507   // belongs to a young region.
   508   inline void dirty_young_block(HeapWord* start, size_t word_size);
   510   // Allocate blocks during garbage collection. Will ensure an
   511   // allocation region, either by picking one or expanding the
   512   // heap, and then allocate a block of the given size. The block
   513   // may not be a humongous - it must fit into a single heap region.
   514   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   516   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   517                                     HeapRegion*    alloc_region,
   518                                     bool           par,
   519                                     size_t         word_size);
   521   // Ensure that no further allocations can happen in "r", bearing in mind
   522   // that parallel threads might be attempting allocations.
   523   void par_allocate_remaining_space(HeapRegion* r);
   525   // Allocation attempt during GC for a survivor object / PLAB.
   526   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   528   // Allocation attempt during GC for an old object / PLAB.
   529   inline HeapWord* old_attempt_allocation(size_t word_size);
   531   // These methods are the "callbacks" from the G1AllocRegion class.
   533   // For mutator alloc regions.
   534   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   535   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   536                                    size_t allocated_bytes);
   538   // For GC alloc regions.
   539   HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
   540                                   GCAllocPurpose ap);
   541   void retire_gc_alloc_region(HeapRegion* alloc_region,
   542                               size_t allocated_bytes, GCAllocPurpose ap);
   544   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   545   //   inspection request and should collect the entire heap
   546   // - if clear_all_soft_refs is true, all soft references should be
   547   //   cleared during the GC
   548   // - if explicit_gc is false, word_size describes the allocation that
   549   //   the GC should attempt (at least) to satisfy
   550   // - it returns false if it is unable to do the collection due to the
   551   //   GC locker being active, true otherwise
   552   bool do_collection(bool explicit_gc,
   553                      bool clear_all_soft_refs,
   554                      size_t word_size);
   556   // Callback from VM_G1CollectFull operation.
   557   // Perform a full collection.
   558   void do_full_collection(bool clear_all_soft_refs);
   560   // Resize the heap if necessary after a full collection.  If this is
   561   // after a collect-for allocation, "word_size" is the allocation size,
   562   // and will be considered part of the used portion of the heap.
   563   void resize_if_necessary_after_full_collection(size_t word_size);
   565   // Callback from VM_G1CollectForAllocation operation.
   566   // This function does everything necessary/possible to satisfy a
   567   // failed allocation request (including collection, expansion, etc.)
   568   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   570   // Attempting to expand the heap sufficiently
   571   // to support an allocation of the given "word_size".  If
   572   // successful, perform the allocation and return the address of the
   573   // allocated block, or else "NULL".
   574   HeapWord* expand_and_allocate(size_t word_size);
   576 public:
   578   G1MonitoringSupport* g1mm() { return _g1mm; }
   580   // Expand the garbage-first heap by at least the given size (in bytes!).
   581   // Returns true if the heap was expanded by the requested amount;
   582   // false otherwise.
   583   // (Rounds up to a HeapRegion boundary.)
   584   bool expand(size_t expand_bytes);
   586   // Do anything common to GC's.
   587   virtual void gc_prologue(bool full);
   588   virtual void gc_epilogue(bool full);
   590   // We register a region with the fast "in collection set" test. We
   591   // simply set to true the array slot corresponding to this region.
   592   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   593     assert(_in_cset_fast_test_base != NULL, "sanity");
   594     assert(r->in_collection_set(), "invariant");
   595     size_t index = r->hrs_index();
   596     assert(index < _in_cset_fast_test_length, "invariant");
   597     assert(!_in_cset_fast_test_base[index], "invariant");
   598     _in_cset_fast_test_base[index] = true;
   599   }
   601   // This is a fast test on whether a reference points into the
   602   // collection set or not. It does not assume that the reference
   603   // points into the heap; if it doesn't, it will return false.
   604   bool in_cset_fast_test(oop obj) {
   605     assert(_in_cset_fast_test != NULL, "sanity");
   606     if (_g1_committed.contains((HeapWord*) obj)) {
   607       // no need to subtract the bottom of the heap from obj,
   608       // _in_cset_fast_test is biased
   609       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   610       bool ret = _in_cset_fast_test[index];
   611       // let's make sure the result is consistent with what the slower
   612       // test returns
   613       assert( ret || !obj_in_cs(obj), "sanity");
   614       assert(!ret ||  obj_in_cs(obj), "sanity");
   615       return ret;
   616     } else {
   617       return false;
   618     }
   619   }
   621   void clear_cset_fast_test() {
   622     assert(_in_cset_fast_test_base != NULL, "sanity");
   623     memset(_in_cset_fast_test_base, false,
   624         _in_cset_fast_test_length * sizeof(bool));
   625   }
   627   // This is called at the end of either a concurrent cycle or a Full
   628   // GC to update the number of full collections completed. Those two
   629   // can happen in a nested fashion, i.e., we start a concurrent
   630   // cycle, a Full GC happens half-way through it which ends first,
   631   // and then the cycle notices that a Full GC happened and ends
   632   // too. The concurrent parameter is a boolean to help us do a bit
   633   // tighter consistency checking in the method. If concurrent is
   634   // false, the caller is the inner caller in the nesting (i.e., the
   635   // Full GC). If concurrent is true, the caller is the outer caller
   636   // in this nesting (i.e., the concurrent cycle). Further nesting is
   637   // not currently supported. The end of the this call also notifies
   638   // the FullGCCount_lock in case a Java thread is waiting for a full
   639   // GC to happen (e.g., it called System.gc() with
   640   // +ExplicitGCInvokesConcurrent).
   641   void increment_full_collections_completed(bool concurrent);
   643   unsigned int full_collections_completed() {
   644     return _full_collections_completed;
   645   }
   647   G1HRPrinter* hr_printer() { return &_hr_printer; }
   649 protected:
   651   // Shrink the garbage-first heap by at most the given size (in bytes!).
   652   // (Rounds down to a HeapRegion boundary.)
   653   virtual void shrink(size_t expand_bytes);
   654   void shrink_helper(size_t expand_bytes);
   656   #if TASKQUEUE_STATS
   657   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   658   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   659   void reset_taskqueue_stats();
   660   #endif // TASKQUEUE_STATS
   662   // Schedule the VM operation that will do an evacuation pause to
   663   // satisfy an allocation request of word_size. *succeeded will
   664   // return whether the VM operation was successful (it did do an
   665   // evacuation pause) or not (another thread beat us to it or the GC
   666   // locker was active). Given that we should not be holding the
   667   // Heap_lock when we enter this method, we will pass the
   668   // gc_count_before (i.e., total_collections()) as a parameter since
   669   // it has to be read while holding the Heap_lock. Currently, both
   670   // methods that call do_collection_pause() release the Heap_lock
   671   // before the call, so it's easy to read gc_count_before just before.
   672   HeapWord* do_collection_pause(size_t       word_size,
   673                                 unsigned int gc_count_before,
   674                                 bool*        succeeded);
   676   // The guts of the incremental collection pause, executed by the vm
   677   // thread. It returns false if it is unable to do the collection due
   678   // to the GC locker being active, true otherwise
   679   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   681   // Actually do the work of evacuating the collection set.
   682   void evacuate_collection_set();
   684   // The g1 remembered set of the heap.
   685   G1RemSet* _g1_rem_set;
   686   // And it's mod ref barrier set, used to track updates for the above.
   687   ModRefBarrierSet* _mr_bs;
   689   // A set of cards that cover the objects for which the Rsets should be updated
   690   // concurrently after the collection.
   691   DirtyCardQueueSet _dirty_card_queue_set;
   693   // The Heap Region Rem Set Iterator.
   694   HeapRegionRemSetIterator** _rem_set_iterator;
   696   // The closure used to refine a single card.
   697   RefineCardTableEntryClosure* _refine_cte_cl;
   699   // A function to check the consistency of dirty card logs.
   700   void check_ct_logs_at_safepoint();
   702   // A DirtyCardQueueSet that is used to hold cards that contain
   703   // references into the current collection set. This is used to
   704   // update the remembered sets of the regions in the collection
   705   // set in the event of an evacuation failure.
   706   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   708   // After a collection pause, make the regions in the CS into free
   709   // regions.
   710   void free_collection_set(HeapRegion* cs_head);
   712   // Abandon the current collection set without recording policy
   713   // statistics or updating free lists.
   714   void abandon_collection_set(HeapRegion* cs_head);
   716   // Applies "scan_non_heap_roots" to roots outside the heap,
   717   // "scan_rs" to roots inside the heap (having done "set_region" to
   718   // indicate the region in which the root resides), and does "scan_perm"
   719   // (setting the generation to the perm generation.)  If "scan_rs" is
   720   // NULL, then this step is skipped.  The "worker_i"
   721   // param is for use with parallel roots processing, and should be
   722   // the "i" of the calling parallel worker thread's work(i) function.
   723   // In the sequential case this param will be ignored.
   724   void g1_process_strong_roots(bool collecting_perm_gen,
   725                                SharedHeap::ScanningOption so,
   726                                OopClosure* scan_non_heap_roots,
   727                                OopsInHeapRegionClosure* scan_rs,
   728                                OopsInGenClosure* scan_perm,
   729                                int worker_i);
   731   // Apply "blk" to all the weak roots of the system.  These include
   732   // JNI weak roots, the code cache, system dictionary, symbol table,
   733   // string table, and referents of reachable weak refs.
   734   void g1_process_weak_roots(OopClosure* root_closure,
   735                              OopClosure* non_root_closure);
   737   // Frees a non-humongous region by initializing its contents and
   738   // adding it to the free list that's passed as a parameter (this is
   739   // usually a local list which will be appended to the master free
   740   // list later). The used bytes of freed regions are accumulated in
   741   // pre_used. If par is true, the region's RSet will not be freed
   742   // up. The assumption is that this will be done later.
   743   void free_region(HeapRegion* hr,
   744                    size_t* pre_used,
   745                    FreeRegionList* free_list,
   746                    bool par);
   748   // Frees a humongous region by collapsing it into individual regions
   749   // and calling free_region() for each of them. The freed regions
   750   // will be added to the free list that's passed as a parameter (this
   751   // is usually a local list which will be appended to the master free
   752   // list later). The used bytes of freed regions are accumulated in
   753   // pre_used. If par is true, the region's RSet will not be freed
   754   // up. The assumption is that this will be done later.
   755   void free_humongous_region(HeapRegion* hr,
   756                              size_t* pre_used,
   757                              FreeRegionList* free_list,
   758                              HumongousRegionSet* humongous_proxy_set,
   759                              bool par);
   761   // Notifies all the necessary spaces that the committed space has
   762   // been updated (either expanded or shrunk). It should be called
   763   // after _g1_storage is updated.
   764   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   766   // The concurrent marker (and the thread it runs in.)
   767   ConcurrentMark* _cm;
   768   ConcurrentMarkThread* _cmThread;
   769   bool _mark_in_progress;
   771   // The concurrent refiner.
   772   ConcurrentG1Refine* _cg1r;
   774   // The parallel task queues
   775   RefToScanQueueSet *_task_queues;
   777   // True iff a evacuation has failed in the current collection.
   778   bool _evacuation_failed;
   780   // Set the attribute indicating whether evacuation has failed in the
   781   // current collection.
   782   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   784   // Failed evacuations cause some logical from-space objects to have
   785   // forwarding pointers to themselves.  Reset them.
   786   void remove_self_forwarding_pointers();
   788   // When one is non-null, so is the other.  Together, they each pair is
   789   // an object with a preserved mark, and its mark value.
   790   GrowableArray<oop>*     _objs_with_preserved_marks;
   791   GrowableArray<markOop>* _preserved_marks_of_objs;
   793   // Preserve the mark of "obj", if necessary, in preparation for its mark
   794   // word being overwritten with a self-forwarding-pointer.
   795   void preserve_mark_if_necessary(oop obj, markOop m);
   797   // The stack of evac-failure objects left to be scanned.
   798   GrowableArray<oop>*    _evac_failure_scan_stack;
   799   // The closure to apply to evac-failure objects.
   801   OopsInHeapRegionClosure* _evac_failure_closure;
   802   // Set the field above.
   803   void
   804   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   805     _evac_failure_closure = evac_failure_closure;
   806   }
   808   // Push "obj" on the scan stack.
   809   void push_on_evac_failure_scan_stack(oop obj);
   810   // Process scan stack entries until the stack is empty.
   811   void drain_evac_failure_scan_stack();
   812   // True iff an invocation of "drain_scan_stack" is in progress; to
   813   // prevent unnecessary recursion.
   814   bool _drain_in_progress;
   816   // Do any necessary initialization for evacuation-failure handling.
   817   // "cl" is the closure that will be used to process evac-failure
   818   // objects.
   819   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   820   // Do any necessary cleanup for evacuation-failure handling data
   821   // structures.
   822   void finalize_for_evac_failure();
   824   // An attempt to evacuate "obj" has failed; take necessary steps.
   825   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   826   void handle_evacuation_failure_common(oop obj, markOop m);
   828   // Instance of the concurrent mark is_alive closure for embedding
   829   // into the reference processor as the is_alive_non_header. This
   830   // prevents unnecessary additions to the discovered lists during
   831   // concurrent discovery.
   832   G1CMIsAliveClosure _is_alive_closure;
   834   // ("Weak") Reference processing support
   835   ReferenceProcessor* _ref_processor;
   837   enum G1H_process_strong_roots_tasks {
   838     G1H_PS_mark_stack_oops_do,
   839     G1H_PS_refProcessor_oops_do,
   840     // Leave this one last.
   841     G1H_PS_NumElements
   842   };
   844   SubTasksDone* _process_strong_tasks;
   846   volatile bool _free_regions_coming;
   848 public:
   850   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   852   void set_refine_cte_cl_concurrency(bool concurrent);
   854   RefToScanQueue *task_queue(int i) const;
   856   // A set of cards where updates happened during the GC
   857   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   859   // A DirtyCardQueueSet that is used to hold cards that contain
   860   // references into the current collection set. This is used to
   861   // update the remembered sets of the regions in the collection
   862   // set in the event of an evacuation failure.
   863   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   864         { return _into_cset_dirty_card_queue_set; }
   866   // Create a G1CollectedHeap with the specified policy.
   867   // Must call the initialize method afterwards.
   868   // May not return if something goes wrong.
   869   G1CollectedHeap(G1CollectorPolicy* policy);
   871   // Initialize the G1CollectedHeap to have the initial and
   872   // maximum sizes, permanent generation, and remembered and barrier sets
   873   // specified by the policy object.
   874   jint initialize();
   876   virtual void ref_processing_init();
   878   void set_par_threads(int t) {
   879     SharedHeap::set_par_threads(t);
   880     _process_strong_tasks->set_n_threads(t);
   881   }
   883   virtual CollectedHeap::Name kind() const {
   884     return CollectedHeap::G1CollectedHeap;
   885   }
   887   // The current policy object for the collector.
   888   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   890   // Adaptive size policy.  No such thing for g1.
   891   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   893   // The rem set and barrier set.
   894   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   895   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   897   // The rem set iterator.
   898   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   899     return _rem_set_iterator[i];
   900   }
   902   HeapRegionRemSetIterator* rem_set_iterator() {
   903     return _rem_set_iterator[0];
   904   }
   906   unsigned get_gc_time_stamp() {
   907     return _gc_time_stamp;
   908   }
   910   void reset_gc_time_stamp() {
   911     _gc_time_stamp = 0;
   912     OrderAccess::fence();
   913   }
   915   void increment_gc_time_stamp() {
   916     ++_gc_time_stamp;
   917     OrderAccess::fence();
   918   }
   920   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
   921                                   DirtyCardQueue* into_cset_dcq,
   922                                   bool concurrent, int worker_i);
   924   // The shared block offset table array.
   925   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   927   // Reference Processing accessor
   928   ReferenceProcessor* ref_processor() { return _ref_processor; }
   930   virtual size_t capacity() const;
   931   virtual size_t used() const;
   932   // This should be called when we're not holding the heap lock. The
   933   // result might be a bit inaccurate.
   934   size_t used_unlocked() const;
   935   size_t recalculate_used() const;
   937   // These virtual functions do the actual allocation.
   938   // Some heaps may offer a contiguous region for shared non-blocking
   939   // allocation, via inlined code (by exporting the address of the top and
   940   // end fields defining the extent of the contiguous allocation region.)
   941   // But G1CollectedHeap doesn't yet support this.
   943   // Return an estimate of the maximum allocation that could be performed
   944   // without triggering any collection or expansion activity.  In a
   945   // generational collector, for example, this is probably the largest
   946   // allocation that could be supported (without expansion) in the youngest
   947   // generation.  It is "unsafe" because no locks are taken; the result
   948   // should be treated as an approximation, not a guarantee, for use in
   949   // heuristic resizing decisions.
   950   virtual size_t unsafe_max_alloc();
   952   virtual bool is_maximal_no_gc() const {
   953     return _g1_storage.uncommitted_size() == 0;
   954   }
   956   // The total number of regions in the heap.
   957   size_t n_regions() { return _hrs.length(); }
   959   // The max number of regions in the heap.
   960   size_t max_regions() { return _hrs.max_length(); }
   962   // The number of regions that are completely free.
   963   size_t free_regions() { return _free_list.length(); }
   965   // The number of regions that are not completely free.
   966   size_t used_regions() { return n_regions() - free_regions(); }
   968   // The number of regions available for "regular" expansion.
   969   size_t expansion_regions() { return _expansion_regions; }
   971   // Factory method for HeapRegion instances. It will return NULL if
   972   // the allocation fails.
   973   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
   975   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   976   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   977   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
   978   void verify_dirty_young_regions() PRODUCT_RETURN;
   980   // verify_region_sets() performs verification over the region
   981   // lists. It will be compiled in the product code to be used when
   982   // necessary (i.e., during heap verification).
   983   void verify_region_sets();
   985   // verify_region_sets_optional() is planted in the code for
   986   // list verification in non-product builds (and it can be enabled in
   987   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
   988 #if HEAP_REGION_SET_FORCE_VERIFY
   989   void verify_region_sets_optional() {
   990     verify_region_sets();
   991   }
   992 #else // HEAP_REGION_SET_FORCE_VERIFY
   993   void verify_region_sets_optional() { }
   994 #endif // HEAP_REGION_SET_FORCE_VERIFY
   996 #ifdef ASSERT
   997   bool is_on_master_free_list(HeapRegion* hr) {
   998     return hr->containing_set() == &_free_list;
   999   }
  1001   bool is_in_humongous_set(HeapRegion* hr) {
  1002     return hr->containing_set() == &_humongous_set;
  1004 #endif // ASSERT
  1006   // Wrapper for the region list operations that can be called from
  1007   // methods outside this class.
  1009   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1010     _secondary_free_list.add_as_tail(list);
  1013   void append_secondary_free_list() {
  1014     _free_list.add_as_head(&_secondary_free_list);
  1017   void append_secondary_free_list_if_not_empty_with_lock() {
  1018     // If the secondary free list looks empty there's no reason to
  1019     // take the lock and then try to append it.
  1020     if (!_secondary_free_list.is_empty()) {
  1021       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1022       append_secondary_free_list();
  1026   void set_free_regions_coming();
  1027   void reset_free_regions_coming();
  1028   bool free_regions_coming() { return _free_regions_coming; }
  1029   void wait_while_free_regions_coming();
  1031   // Perform a collection of the heap; intended for use in implementing
  1032   // "System.gc".  This probably implies as full a collection as the
  1033   // "CollectedHeap" supports.
  1034   virtual void collect(GCCause::Cause cause);
  1036   // The same as above but assume that the caller holds the Heap_lock.
  1037   void collect_locked(GCCause::Cause cause);
  1039   // This interface assumes that it's being called by the
  1040   // vm thread. It collects the heap assuming that the
  1041   // heap lock is already held and that we are executing in
  1042   // the context of the vm thread.
  1043   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1045   // True iff a evacuation has failed in the most-recent collection.
  1046   bool evacuation_failed() { return _evacuation_failed; }
  1048   // It will free a region if it has allocated objects in it that are
  1049   // all dead. It calls either free_region() or
  1050   // free_humongous_region() depending on the type of the region that
  1051   // is passed to it.
  1052   void free_region_if_empty(HeapRegion* hr,
  1053                             size_t* pre_used,
  1054                             FreeRegionList* free_list,
  1055                             HumongousRegionSet* humongous_proxy_set,
  1056                             HRRSCleanupTask* hrrs_cleanup_task,
  1057                             bool par);
  1059   // It appends the free list to the master free list and updates the
  1060   // master humongous list according to the contents of the proxy
  1061   // list. It also adjusts the total used bytes according to pre_used
  1062   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1063   void update_sets_after_freeing_regions(size_t pre_used,
  1064                                        FreeRegionList* free_list,
  1065                                        HumongousRegionSet* humongous_proxy_set,
  1066                                        bool par);
  1068   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1069   virtual bool is_in(const void* p) const;
  1071   // Return "TRUE" iff the given object address is within the collection
  1072   // set.
  1073   inline bool obj_in_cs(oop obj);
  1075   // Return "TRUE" iff the given object address is in the reserved
  1076   // region of g1 (excluding the permanent generation).
  1077   bool is_in_g1_reserved(const void* p) const {
  1078     return _g1_reserved.contains(p);
  1081   // Returns a MemRegion that corresponds to the space that has been
  1082   // reserved for the heap
  1083   MemRegion g1_reserved() {
  1084     return _g1_reserved;
  1087   // Returns a MemRegion that corresponds to the space that has been
  1088   // committed in the heap
  1089   MemRegion g1_committed() {
  1090     return _g1_committed;
  1093   virtual bool is_in_closed_subset(const void* p) const;
  1095   // This resets the card table to all zeros.  It is used after
  1096   // a collection pause which used the card table to claim cards.
  1097   void cleanUpCardTable();
  1099   // Iteration functions.
  1101   // Iterate over all the ref-containing fields of all objects, calling
  1102   // "cl.do_oop" on each.
  1103   virtual void oop_iterate(OopClosure* cl) {
  1104     oop_iterate(cl, true);
  1106   void oop_iterate(OopClosure* cl, bool do_perm);
  1108   // Same as above, restricted to a memory region.
  1109   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1110     oop_iterate(mr, cl, true);
  1112   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1114   // Iterate over all objects, calling "cl.do_object" on each.
  1115   virtual void object_iterate(ObjectClosure* cl) {
  1116     object_iterate(cl, true);
  1118   virtual void safe_object_iterate(ObjectClosure* cl) {
  1119     object_iterate(cl, true);
  1121   void object_iterate(ObjectClosure* cl, bool do_perm);
  1123   // Iterate over all objects allocated since the last collection, calling
  1124   // "cl.do_object" on each.  The heap must have been initialized properly
  1125   // to support this function, or else this call will fail.
  1126   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1128   // Iterate over all spaces in use in the heap, in ascending address order.
  1129   virtual void space_iterate(SpaceClosure* cl);
  1131   // Iterate over heap regions, in address order, terminating the
  1132   // iteration early if the "doHeapRegion" method returns "true".
  1133   void heap_region_iterate(HeapRegionClosure* blk) const;
  1135   // Iterate over heap regions starting with r (or the first region if "r"
  1136   // is NULL), in address order, terminating early if the "doHeapRegion"
  1137   // method returns "true".
  1138   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
  1140   // Return the region with the given index. It assumes the index is valid.
  1141   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
  1143   // Divide the heap region sequence into "chunks" of some size (the number
  1144   // of regions divided by the number of parallel threads times some
  1145   // overpartition factor, currently 4).  Assumes that this will be called
  1146   // in parallel by ParallelGCThreads worker threads with discinct worker
  1147   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1148   // calls will use the same "claim_value", and that that claim value is
  1149   // different from the claim_value of any heap region before the start of
  1150   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1151   // attempting to claim the first region in each chunk, and, if
  1152   // successful, applying the closure to each region in the chunk (and
  1153   // setting the claim value of the second and subsequent regions of the
  1154   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1155   // i.e., that a closure never attempt to abort a traversal.
  1156   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1157                                        int worker,
  1158                                        jint claim_value);
  1160   // It resets all the region claim values to the default.
  1161   void reset_heap_region_claim_values();
  1163 #ifdef ASSERT
  1164   bool check_heap_region_claim_values(jint claim_value);
  1165 #endif // ASSERT
  1167   // Iterate over the regions (if any) in the current collection set.
  1168   void collection_set_iterate(HeapRegionClosure* blk);
  1170   // As above but starting from region r
  1171   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1173   // Returns the first (lowest address) compactible space in the heap.
  1174   virtual CompactibleSpace* first_compactible_space();
  1176   // A CollectedHeap will contain some number of spaces.  This finds the
  1177   // space containing a given address, or else returns NULL.
  1178   virtual Space* space_containing(const void* addr) const;
  1180   // A G1CollectedHeap will contain some number of heap regions.  This
  1181   // finds the region containing a given address, or else returns NULL.
  1182   template <class T>
  1183   inline HeapRegion* heap_region_containing(const T addr) const;
  1185   // Like the above, but requires "addr" to be in the heap (to avoid a
  1186   // null-check), and unlike the above, may return an continuing humongous
  1187   // region.
  1188   template <class T>
  1189   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1191   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1192   // each address in the (reserved) heap is a member of exactly
  1193   // one block.  The defining characteristic of a block is that it is
  1194   // possible to find its size, and thus to progress forward to the next
  1195   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1196   // represent Java objects, or they might be free blocks in a
  1197   // free-list-based heap (or subheap), as long as the two kinds are
  1198   // distinguishable and the size of each is determinable.
  1200   // Returns the address of the start of the "block" that contains the
  1201   // address "addr".  We say "blocks" instead of "object" since some heaps
  1202   // may not pack objects densely; a chunk may either be an object or a
  1203   // non-object.
  1204   virtual HeapWord* block_start(const void* addr) const;
  1206   // Requires "addr" to be the start of a chunk, and returns its size.
  1207   // "addr + size" is required to be the start of a new chunk, or the end
  1208   // of the active area of the heap.
  1209   virtual size_t block_size(const HeapWord* addr) const;
  1211   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1212   // the block is an object.
  1213   virtual bool block_is_obj(const HeapWord* addr) const;
  1215   // Does this heap support heap inspection? (+PrintClassHistogram)
  1216   virtual bool supports_heap_inspection() const { return true; }
  1218   // Section on thread-local allocation buffers (TLABs)
  1219   // See CollectedHeap for semantics.
  1221   virtual bool supports_tlab_allocation() const;
  1222   virtual size_t tlab_capacity(Thread* thr) const;
  1223   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1225   // Can a compiler initialize a new object without store barriers?
  1226   // This permission only extends from the creation of a new object
  1227   // via a TLAB up to the first subsequent safepoint. If such permission
  1228   // is granted for this heap type, the compiler promises to call
  1229   // defer_store_barrier() below on any slow path allocation of
  1230   // a new object for which such initializing store barriers will
  1231   // have been elided. G1, like CMS, allows this, but should be
  1232   // ready to provide a compensating write barrier as necessary
  1233   // if that storage came out of a non-young region. The efficiency
  1234   // of this implementation depends crucially on being able to
  1235   // answer very efficiently in constant time whether a piece of
  1236   // storage in the heap comes from a young region or not.
  1237   // See ReduceInitialCardMarks.
  1238   virtual bool can_elide_tlab_store_barriers() const {
  1239     // 6920090: Temporarily disabled, because of lingering
  1240     // instabilities related to RICM with G1. In the
  1241     // interim, the option ReduceInitialCardMarksForG1
  1242     // below is left solely as a debugging device at least
  1243     // until 6920109 fixes the instabilities.
  1244     return ReduceInitialCardMarksForG1;
  1247   virtual bool card_mark_must_follow_store() const {
  1248     return true;
  1251   bool is_in_young(const oop obj) {
  1252     HeapRegion* hr = heap_region_containing(obj);
  1253     return hr != NULL && hr->is_young();
  1256 #ifdef ASSERT
  1257   virtual bool is_in_partial_collection(const void* p);
  1258 #endif
  1260   virtual bool is_scavengable(const void* addr);
  1262   // We don't need barriers for initializing stores to objects
  1263   // in the young gen: for the SATB pre-barrier, there is no
  1264   // pre-value that needs to be remembered; for the remembered-set
  1265   // update logging post-barrier, we don't maintain remembered set
  1266   // information for young gen objects. Note that non-generational
  1267   // G1 does not have any "young" objects, should not elide
  1268   // the rs logging barrier and so should always answer false below.
  1269   // However, non-generational G1 (-XX:-G1Gen) appears to have
  1270   // bit-rotted so was not tested below.
  1271   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1272     // Re 6920090, 6920109 above.
  1273     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1274     assert(G1Gen || !is_in_young(new_obj),
  1275            "Non-generational G1 should never return true below");
  1276     return is_in_young(new_obj);
  1279   // Can a compiler elide a store barrier when it writes
  1280   // a permanent oop into the heap?  Applies when the compiler
  1281   // is storing x to the heap, where x->is_perm() is true.
  1282   virtual bool can_elide_permanent_oop_store_barriers() const {
  1283     // At least until perm gen collection is also G1-ified, at
  1284     // which point this should return false.
  1285     return true;
  1288   // Returns "true" iff the given word_size is "very large".
  1289   static bool isHumongous(size_t word_size) {
  1290     // Note this has to be strictly greater-than as the TLABs
  1291     // are capped at the humongous thresold and we want to
  1292     // ensure that we don't try to allocate a TLAB as
  1293     // humongous and that we don't allocate a humongous
  1294     // object in a TLAB.
  1295     return word_size > _humongous_object_threshold_in_words;
  1298   // Update mod union table with the set of dirty cards.
  1299   void updateModUnion();
  1301   // Set the mod union bits corresponding to the given memRegion.  Note
  1302   // that this is always a safe operation, since it doesn't clear any
  1303   // bits.
  1304   void markModUnionRange(MemRegion mr);
  1306   // Records the fact that a marking phase is no longer in progress.
  1307   void set_marking_complete() {
  1308     _mark_in_progress = false;
  1310   void set_marking_started() {
  1311     _mark_in_progress = true;
  1313   bool mark_in_progress() {
  1314     return _mark_in_progress;
  1317   // Print the maximum heap capacity.
  1318   virtual size_t max_capacity() const;
  1320   virtual jlong millis_since_last_gc();
  1322   // Perform any cleanup actions necessary before allowing a verification.
  1323   virtual void prepare_for_verify();
  1325   // Perform verification.
  1327   // vo == UsePrevMarking  -> use "prev" marking information,
  1328   // vo == UseNextMarking -> use "next" marking information
  1329   // vo == UseMarkWord    -> use the mark word in the object header
  1330   //
  1331   // NOTE: Only the "prev" marking information is guaranteed to be
  1332   // consistent most of the time, so most calls to this should use
  1333   // vo == UsePrevMarking.
  1334   // Currently, there is only one case where this is called with
  1335   // vo == UseNextMarking, which is to verify the "next" marking
  1336   // information at the end of remark.
  1337   // Currently there is only one place where this is called with
  1338   // vo == UseMarkWord, which is to verify the marking during a
  1339   // full GC.
  1340   void verify(bool allow_dirty, bool silent, VerifyOption vo);
  1342   // Override; it uses the "prev" marking information
  1343   virtual void verify(bool allow_dirty, bool silent);
  1344   // Default behavior by calling print(tty);
  1345   virtual void print() const;
  1346   // This calls print_on(st, PrintHeapAtGCExtended).
  1347   virtual void print_on(outputStream* st) const;
  1348   // If extended is true, it will print out information for all
  1349   // regions in the heap by calling print_on_extended(st).
  1350   virtual void print_on(outputStream* st, bool extended) const;
  1351   virtual void print_on_extended(outputStream* st) const;
  1353   virtual void print_gc_threads_on(outputStream* st) const;
  1354   virtual void gc_threads_do(ThreadClosure* tc) const;
  1356   // Override
  1357   void print_tracing_info() const;
  1359   // The following two methods are helpful for debugging RSet issues.
  1360   void print_cset_rsets() PRODUCT_RETURN;
  1361   void print_all_rsets() PRODUCT_RETURN;
  1363   // Convenience function to be used in situations where the heap type can be
  1364   // asserted to be this type.
  1365   static G1CollectedHeap* heap();
  1367   void empty_young_list();
  1369   void set_region_short_lived_locked(HeapRegion* hr);
  1370   // add appropriate methods for any other surv rate groups
  1372   YoungList* young_list() { return _young_list; }
  1374   // debugging
  1375   bool check_young_list_well_formed() {
  1376     return _young_list->check_list_well_formed();
  1379   bool check_young_list_empty(bool check_heap,
  1380                               bool check_sample = true);
  1382   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1383   // many of these need to be public.
  1385   // The functions below are helper functions that a subclass of
  1386   // "CollectedHeap" can use in the implementation of its virtual
  1387   // functions.
  1388   // This performs a concurrent marking of the live objects in a
  1389   // bitmap off to the side.
  1390   void doConcurrentMark();
  1392   // Do a full concurrent marking, synchronously.
  1393   void do_sync_mark();
  1395   bool isMarkedPrev(oop obj) const;
  1396   bool isMarkedNext(oop obj) const;
  1398   // vo == UsePrevMarking -> use "prev" marking information,
  1399   // vo == UseNextMarking -> use "next" marking information,
  1400   // vo == UseMarkWord    -> use mark word from object header
  1401   bool is_obj_dead_cond(const oop obj,
  1402                         const HeapRegion* hr,
  1403                         const VerifyOption vo) const {
  1405     switch (vo) {
  1406       case VerifyOption_G1UsePrevMarking:
  1407         return is_obj_dead(obj, hr);
  1408       case VerifyOption_G1UseNextMarking:
  1409         return is_obj_ill(obj, hr);
  1410       default:
  1411         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1412         return !obj->is_gc_marked();
  1416   // Determine if an object is dead, given the object and also
  1417   // the region to which the object belongs. An object is dead
  1418   // iff a) it was not allocated since the last mark and b) it
  1419   // is not marked.
  1421   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1422     return
  1423       !hr->obj_allocated_since_prev_marking(obj) &&
  1424       !isMarkedPrev(obj);
  1427   // This is used when copying an object to survivor space.
  1428   // If the object is marked live, then we mark the copy live.
  1429   // If the object is allocated since the start of this mark
  1430   // cycle, then we mark the copy live.
  1431   // If the object has been around since the previous mark
  1432   // phase, and hasn't been marked yet during this phase,
  1433   // then we don't mark it, we just wait for the
  1434   // current marking cycle to get to it.
  1436   // This function returns true when an object has been
  1437   // around since the previous marking and hasn't yet
  1438   // been marked during this marking.
  1440   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1441     return
  1442       !hr->obj_allocated_since_next_marking(obj) &&
  1443       !isMarkedNext(obj);
  1446   // Determine if an object is dead, given only the object itself.
  1447   // This will find the region to which the object belongs and
  1448   // then call the region version of the same function.
  1450   // Added if it is in permanent gen it isn't dead.
  1451   // Added if it is NULL it isn't dead.
  1453   // vo == UsePrevMarking -> use "prev" marking information,
  1454   // vo == UseNextMarking -> use "next" marking information,
  1455   // vo == UseMarkWord    -> use mark word from object header
  1456   bool is_obj_dead_cond(const oop obj,
  1457                         const VerifyOption vo) const {
  1459     switch (vo) {
  1460       case VerifyOption_G1UsePrevMarking:
  1461         return is_obj_dead(obj);
  1462       case VerifyOption_G1UseNextMarking:
  1463         return is_obj_ill(obj);
  1464       default:
  1465         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1466         return !obj->is_gc_marked();
  1470   bool is_obj_dead(const oop obj) const {
  1471     const HeapRegion* hr = heap_region_containing(obj);
  1472     if (hr == NULL) {
  1473       if (Universe::heap()->is_in_permanent(obj))
  1474         return false;
  1475       else if (obj == NULL) return false;
  1476       else return true;
  1478     else return is_obj_dead(obj, hr);
  1481   bool is_obj_ill(const oop obj) const {
  1482     const HeapRegion* hr = heap_region_containing(obj);
  1483     if (hr == NULL) {
  1484       if (Universe::heap()->is_in_permanent(obj))
  1485         return false;
  1486       else if (obj == NULL) return false;
  1487       else return true;
  1489     else return is_obj_ill(obj, hr);
  1492   // The following is just to alert the verification code
  1493   // that a full collection has occurred and that the
  1494   // remembered sets are no longer up to date.
  1495   bool _full_collection;
  1496   void set_full_collection() { _full_collection = true;}
  1497   void clear_full_collection() {_full_collection = false;}
  1498   bool full_collection() {return _full_collection;}
  1500   ConcurrentMark* concurrent_mark() const { return _cm; }
  1501   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1503   // The dirty cards region list is used to record a subset of regions
  1504   // whose cards need clearing. The list if populated during the
  1505   // remembered set scanning and drained during the card table
  1506   // cleanup. Although the methods are reentrant, population/draining
  1507   // phases must not overlap. For synchronization purposes the last
  1508   // element on the list points to itself.
  1509   HeapRegion* _dirty_cards_region_list;
  1510   void push_dirty_cards_region(HeapRegion* hr);
  1511   HeapRegion* pop_dirty_cards_region();
  1513 public:
  1514   void stop_conc_gc_threads();
  1516   // <NEW PREDICTION>
  1518   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1519   void check_if_region_is_too_expensive(double predicted_time_ms);
  1520   size_t pending_card_num();
  1521   size_t max_pending_card_num();
  1522   size_t cards_scanned();
  1524   // </NEW PREDICTION>
  1526 protected:
  1527   size_t _max_heap_capacity;
  1528 };
  1530 #define use_local_bitmaps         1
  1531 #define verify_local_bitmaps      0
  1532 #define oop_buffer_length       256
  1534 #ifndef PRODUCT
  1535 class GCLabBitMap;
  1536 class GCLabBitMapClosure: public BitMapClosure {
  1537 private:
  1538   ConcurrentMark* _cm;
  1539   GCLabBitMap*    _bitmap;
  1541 public:
  1542   GCLabBitMapClosure(ConcurrentMark* cm,
  1543                      GCLabBitMap* bitmap) {
  1544     _cm     = cm;
  1545     _bitmap = bitmap;
  1548   virtual bool do_bit(size_t offset);
  1549 };
  1550 #endif // !PRODUCT
  1552 class GCLabBitMap: public BitMap {
  1553 private:
  1554   ConcurrentMark* _cm;
  1556   int       _shifter;
  1557   size_t    _bitmap_word_covers_words;
  1559   // beginning of the heap
  1560   HeapWord* _heap_start;
  1562   // this is the actual start of the GCLab
  1563   HeapWord* _real_start_word;
  1565   // this is the actual end of the GCLab
  1566   HeapWord* _real_end_word;
  1568   // this is the first word, possibly located before the actual start
  1569   // of the GCLab, that corresponds to the first bit of the bitmap
  1570   HeapWord* _start_word;
  1572   // size of a GCLab in words
  1573   size_t _gclab_word_size;
  1575   static int shifter() {
  1576     return MinObjAlignment - 1;
  1579   // how many heap words does a single bitmap word corresponds to?
  1580   static size_t bitmap_word_covers_words() {
  1581     return BitsPerWord << shifter();
  1584   size_t gclab_word_size() const {
  1585     return _gclab_word_size;
  1588   // Calculates actual GCLab size in words
  1589   size_t gclab_real_word_size() const {
  1590     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1591            / BitsPerWord;
  1594   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1595     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1596     // We are going to ensure that the beginning of a word in this
  1597     // bitmap also corresponds to the beginning of a word in the
  1598     // global marking bitmap. To handle the case where a GCLab
  1599     // starts from the middle of the bitmap, we need to add enough
  1600     // space (i.e. up to a bitmap word) to ensure that we have
  1601     // enough bits in the bitmap.
  1602     return bits_in_bitmap + BitsPerWord - 1;
  1604 public:
  1605   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1606     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1607       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1608       _shifter(shifter()),
  1609       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1610       _heap_start(heap_start),
  1611       _gclab_word_size(gclab_word_size),
  1612       _real_start_word(NULL),
  1613       _real_end_word(NULL),
  1614       _start_word(NULL)
  1616     guarantee( size_in_words() >= bitmap_size_in_words(),
  1617                "just making sure");
  1620   inline unsigned heapWordToOffset(HeapWord* addr) {
  1621     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1622     assert(offset < size(), "offset should be within bounds");
  1623     return offset;
  1626   inline HeapWord* offsetToHeapWord(size_t offset) {
  1627     HeapWord* addr =  _start_word + (offset << _shifter);
  1628     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1629     return addr;
  1632   bool fields_well_formed() {
  1633     bool ret1 = (_real_start_word == NULL) &&
  1634                 (_real_end_word == NULL) &&
  1635                 (_start_word == NULL);
  1636     if (ret1)
  1637       return true;
  1639     bool ret2 = _real_start_word >= _start_word &&
  1640       _start_word < _real_end_word &&
  1641       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1642       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1643                                                               > _real_end_word;
  1644     return ret2;
  1647   inline bool mark(HeapWord* addr) {
  1648     guarantee(use_local_bitmaps, "invariant");
  1649     assert(fields_well_formed(), "invariant");
  1651     if (addr >= _real_start_word && addr < _real_end_word) {
  1652       assert(!isMarked(addr), "should not have already been marked");
  1654       // first mark it on the bitmap
  1655       at_put(heapWordToOffset(addr), true);
  1657       return true;
  1658     } else {
  1659       return false;
  1663   inline bool isMarked(HeapWord* addr) {
  1664     guarantee(use_local_bitmaps, "invariant");
  1665     assert(fields_well_formed(), "invariant");
  1667     return at(heapWordToOffset(addr));
  1670   void set_buffer(HeapWord* start) {
  1671     guarantee(use_local_bitmaps, "invariant");
  1672     clear();
  1674     assert(start != NULL, "invariant");
  1675     _real_start_word = start;
  1676     _real_end_word   = start + _gclab_word_size;
  1678     size_t diff =
  1679       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1680     _start_word = start - diff;
  1682     assert(fields_well_formed(), "invariant");
  1685 #ifndef PRODUCT
  1686   void verify() {
  1687     // verify that the marks have been propagated
  1688     GCLabBitMapClosure cl(_cm, this);
  1689     iterate(&cl);
  1691 #endif // PRODUCT
  1693   void retire() {
  1694     guarantee(use_local_bitmaps, "invariant");
  1695     assert(fields_well_formed(), "invariant");
  1697     if (_start_word != NULL) {
  1698       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1700       // this means that the bitmap was set up for the GCLab
  1701       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1703       mark_bitmap->mostly_disjoint_range_union(this,
  1704                                 0, // always start from the start of the bitmap
  1705                                 _start_word,
  1706                                 gclab_real_word_size());
  1707       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1709 #ifndef PRODUCT
  1710       if (use_local_bitmaps && verify_local_bitmaps)
  1711         verify();
  1712 #endif // PRODUCT
  1713     } else {
  1714       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1718   size_t bitmap_size_in_words() const {
  1719     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1722 };
  1724 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1725 private:
  1726   bool        _retired;
  1727   bool        _during_marking;
  1728   GCLabBitMap _bitmap;
  1730 public:
  1731   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1732     ParGCAllocBuffer(gclab_word_size),
  1733     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1734     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1735     _retired(false)
  1736   { }
  1738   inline bool mark(HeapWord* addr) {
  1739     guarantee(use_local_bitmaps, "invariant");
  1740     assert(_during_marking, "invariant");
  1741     return _bitmap.mark(addr);
  1744   inline void set_buf(HeapWord* buf) {
  1745     if (use_local_bitmaps && _during_marking)
  1746       _bitmap.set_buffer(buf);
  1747     ParGCAllocBuffer::set_buf(buf);
  1748     _retired = false;
  1751   inline void retire(bool end_of_gc, bool retain) {
  1752     if (_retired)
  1753       return;
  1754     if (use_local_bitmaps && _during_marking) {
  1755       _bitmap.retire();
  1757     ParGCAllocBuffer::retire(end_of_gc, retain);
  1758     _retired = true;
  1760 };
  1762 class G1ParScanThreadState : public StackObj {
  1763 protected:
  1764   G1CollectedHeap* _g1h;
  1765   RefToScanQueue*  _refs;
  1766   DirtyCardQueue   _dcq;
  1767   CardTableModRefBS* _ct_bs;
  1768   G1RemSet* _g1_rem;
  1770   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1771   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1772   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1773   ageTable            _age_table;
  1775   size_t           _alloc_buffer_waste;
  1776   size_t           _undo_waste;
  1778   OopsInHeapRegionClosure*      _evac_failure_cl;
  1779   G1ParScanHeapEvacClosure*     _evac_cl;
  1780   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1782   int _hash_seed;
  1783   int _queue_num;
  1785   size_t _term_attempts;
  1787   double _start;
  1788   double _start_strong_roots;
  1789   double _strong_roots_time;
  1790   double _start_term;
  1791   double _term_time;
  1793   // Map from young-age-index (0 == not young, 1 is youngest) to
  1794   // surviving words. base is what we get back from the malloc call
  1795   size_t* _surviving_young_words_base;
  1796   // this points into the array, as we use the first few entries for padding
  1797   size_t* _surviving_young_words;
  1799 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1801   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1803   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1805   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1806   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1808   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1809     if (!from->is_survivor()) {
  1810       _g1_rem->par_write_ref(from, p, tid);
  1814   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1815     // If the new value of the field points to the same region or
  1816     // is the to-space, we don't need to include it in the Rset updates.
  1817     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1818       size_t card_index = ctbs()->index_for(p);
  1819       // If the card hasn't been added to the buffer, do it.
  1820       if (ctbs()->mark_card_deferred(card_index)) {
  1821         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1826 public:
  1827   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1829   ~G1ParScanThreadState() {
  1830     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1833   RefToScanQueue*   refs()            { return _refs;             }
  1834   ageTable*         age_table()       { return &_age_table;       }
  1836   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1837     return _alloc_buffers[purpose];
  1840   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1841   size_t undo_waste() const                      { return _undo_waste; }
  1843 #ifdef ASSERT
  1844   bool verify_ref(narrowOop* ref) const;
  1845   bool verify_ref(oop* ref) const;
  1846   bool verify_task(StarTask ref) const;
  1847 #endif // ASSERT
  1849   template <class T> void push_on_queue(T* ref) {
  1850     assert(verify_ref(ref), "sanity");
  1851     refs()->push(ref);
  1854   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1855     if (G1DeferredRSUpdate) {
  1856       deferred_rs_update(from, p, tid);
  1857     } else {
  1858       immediate_rs_update(from, p, tid);
  1862   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1864     HeapWord* obj = NULL;
  1865     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1866     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1867       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1868       assert(gclab_word_size == alloc_buf->word_sz(),
  1869              "dynamic resizing is not supported");
  1870       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1871       alloc_buf->retire(false, false);
  1873       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1874       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1875       // Otherwise.
  1876       alloc_buf->set_buf(buf);
  1878       obj = alloc_buf->allocate(word_sz);
  1879       assert(obj != NULL, "buffer was definitely big enough...");
  1880     } else {
  1881       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1883     return obj;
  1886   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1887     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1888     if (obj != NULL) return obj;
  1889     return allocate_slow(purpose, word_sz);
  1892   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1893     if (alloc_buffer(purpose)->contains(obj)) {
  1894       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1895              "should contain whole object");
  1896       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1897     } else {
  1898       CollectedHeap::fill_with_object(obj, word_sz);
  1899       add_to_undo_waste(word_sz);
  1903   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1904     _evac_failure_cl = evac_failure_cl;
  1906   OopsInHeapRegionClosure* evac_failure_closure() {
  1907     return _evac_failure_cl;
  1910   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1911     _evac_cl = evac_cl;
  1914   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1915     _partial_scan_cl = partial_scan_cl;
  1918   int* hash_seed() { return &_hash_seed; }
  1919   int  queue_num() { return _queue_num; }
  1921   size_t term_attempts() const  { return _term_attempts; }
  1922   void note_term_attempt() { _term_attempts++; }
  1924   void start_strong_roots() {
  1925     _start_strong_roots = os::elapsedTime();
  1927   void end_strong_roots() {
  1928     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1930   double strong_roots_time() const { return _strong_roots_time; }
  1932   void start_term_time() {
  1933     note_term_attempt();
  1934     _start_term = os::elapsedTime();
  1936   void end_term_time() {
  1937     _term_time += (os::elapsedTime() - _start_term);
  1939   double term_time() const { return _term_time; }
  1941   double elapsed_time() const {
  1942     return os::elapsedTime() - _start;
  1945   static void
  1946     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1947   void
  1948     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1950   size_t* surviving_young_words() {
  1951     // We add on to hide entry 0 which accumulates surviving words for
  1952     // age -1 regions (i.e. non-young ones)
  1953     return _surviving_young_words;
  1956   void retire_alloc_buffers() {
  1957     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1958       size_t waste = _alloc_buffers[ap]->words_remaining();
  1959       add_to_alloc_buffer_waste(waste);
  1960       _alloc_buffers[ap]->retire(true, false);
  1964   template <class T> void deal_with_reference(T* ref_to_scan) {
  1965     if (has_partial_array_mask(ref_to_scan)) {
  1966       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1967     } else {
  1968       // Note: we can use "raw" versions of "region_containing" because
  1969       // "obj_to_scan" is definitely in the heap, and is not in a
  1970       // humongous region.
  1971       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1972       _evac_cl->set_region(r);
  1973       _evac_cl->do_oop_nv(ref_to_scan);
  1977   void deal_with_reference(StarTask ref) {
  1978     assert(verify_task(ref), "sanity");
  1979     if (ref.is_narrow()) {
  1980       deal_with_reference((narrowOop*)ref);
  1981     } else {
  1982       deal_with_reference((oop*)ref);
  1986 public:
  1987   void trim_queue();
  1988 };
  1990 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial