src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Fri, 19 Aug 2011 09:30:59 +0200

author
brutisso
date
Fri, 19 Aug 2011 09:30:59 +0200
changeset 3065
ff53346271fe
parent 3028
f44782f04dd4
child 3086
eeae91c9baba
permissions
-rw-r--r--

6814390: G1: remove the concept of non-generational G1
Summary: Removed the possibility to turn off generational mode for G1.
Reviewed-by: johnc, ysr, tonyp

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1HRPrinter.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.hpp"
    34 #include "gc_implementation/g1/heapRegionSets.hpp"
    35 #include "gc_implementation/shared/hSpaceCounters.hpp"
    36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    37 #include "memory/barrierSet.hpp"
    38 #include "memory/memRegion.hpp"
    39 #include "memory/sharedHeap.hpp"
    41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    42 // It uses the "Garbage First" heap organization and algorithm, which
    43 // may combine concurrent marking with parallel, incremental compaction of
    44 // heap subsets that will yield large amounts of garbage.
    46 class HeapRegion;
    47 class HRRSCleanupTask;
    48 class PermanentGenerationSpec;
    49 class GenerationSpec;
    50 class OopsInHeapRegionClosure;
    51 class G1ScanHeapEvacClosure;
    52 class ObjectClosure;
    53 class SpaceClosure;
    54 class CompactibleSpaceClosure;
    55 class Space;
    56 class G1CollectorPolicy;
    57 class GenRemSet;
    58 class G1RemSet;
    59 class HeapRegionRemSetIterator;
    60 class ConcurrentMark;
    61 class ConcurrentMarkThread;
    62 class ConcurrentG1Refine;
    63 class GenerationCounters;
    65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    71 enum GCAllocPurpose {
    72   GCAllocForTenured,
    73   GCAllocForSurvived,
    74   GCAllocPurposeCount
    75 };
    77 class YoungList : public CHeapObj {
    78 private:
    79   G1CollectedHeap* _g1h;
    81   HeapRegion* _head;
    83   HeapRegion* _survivor_head;
    84   HeapRegion* _survivor_tail;
    86   HeapRegion* _curr;
    88   size_t      _length;
    89   size_t      _survivor_length;
    91   size_t      _last_sampled_rs_lengths;
    92   size_t      _sampled_rs_lengths;
    94   void         empty_list(HeapRegion* list);
    96 public:
    97   YoungList(G1CollectedHeap* g1h);
    99   void         push_region(HeapRegion* hr);
   100   void         add_survivor_region(HeapRegion* hr);
   102   void         empty_list();
   103   bool         is_empty() { return _length == 0; }
   104   size_t       length() { return _length; }
   105   size_t       survivor_length() { return _survivor_length; }
   107   // Currently we do not keep track of the used byte sum for the
   108   // young list and the survivors and it'd be quite a lot of work to
   109   // do so. When we'll eventually replace the young list with
   110   // instances of HeapRegionLinkedList we'll get that for free. So,
   111   // we'll report the more accurate information then.
   112   size_t       eden_used_bytes() {
   113     assert(length() >= survivor_length(), "invariant");
   114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
   115   }
   116   size_t       survivor_used_bytes() {
   117     return survivor_length() * HeapRegion::GrainBytes;
   118   }
   120   void rs_length_sampling_init();
   121   bool rs_length_sampling_more();
   122   void rs_length_sampling_next();
   124   void reset_sampled_info() {
   125     _last_sampled_rs_lengths =   0;
   126   }
   127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   129   // for development purposes
   130   void reset_auxilary_lists();
   131   void clear() { _head = NULL; _length = 0; }
   133   void clear_survivors() {
   134     _survivor_head    = NULL;
   135     _survivor_tail    = NULL;
   136     _survivor_length  = 0;
   137   }
   139   HeapRegion* first_region() { return _head; }
   140   HeapRegion* first_survivor_region() { return _survivor_head; }
   141   HeapRegion* last_survivor_region() { return _survivor_tail; }
   143   // debugging
   144   bool          check_list_well_formed();
   145   bool          check_list_empty(bool check_sample = true);
   146   void          print();
   147 };
   149 class MutatorAllocRegion : public G1AllocRegion {
   150 protected:
   151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   153 public:
   154   MutatorAllocRegion()
   155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   156 };
   158 class SurvivorGCAllocRegion : public G1AllocRegion {
   159 protected:
   160   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   161   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   162 public:
   163   SurvivorGCAllocRegion()
   164   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   165 };
   167 class OldGCAllocRegion : public G1AllocRegion {
   168 protected:
   169   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   170   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   171 public:
   172   OldGCAllocRegion()
   173   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   174 };
   176 class RefineCardTableEntryClosure;
   177 class G1CollectedHeap : public SharedHeap {
   178   friend class VM_G1CollectForAllocation;
   179   friend class VM_GenCollectForPermanentAllocation;
   180   friend class VM_G1CollectFull;
   181   friend class VM_G1IncCollectionPause;
   182   friend class VMStructs;
   183   friend class MutatorAllocRegion;
   184   friend class SurvivorGCAllocRegion;
   185   friend class OldGCAllocRegion;
   187   // Closures used in implementation.
   188   friend class G1ParCopyHelper;
   189   friend class G1IsAliveClosure;
   190   friend class G1EvacuateFollowersClosure;
   191   friend class G1ParScanThreadState;
   192   friend class G1ParScanClosureSuper;
   193   friend class G1ParEvacuateFollowersClosure;
   194   friend class G1ParTask;
   195   friend class G1FreeGarbageRegionClosure;
   196   friend class RefineCardTableEntryClosure;
   197   friend class G1PrepareCompactClosure;
   198   friend class RegionSorter;
   199   friend class RegionResetter;
   200   friend class CountRCClosure;
   201   friend class EvacPopObjClosure;
   202   friend class G1ParCleanupCTTask;
   204   // Other related classes.
   205   friend class G1MarkSweep;
   207 private:
   208   // The one and only G1CollectedHeap, so static functions can find it.
   209   static G1CollectedHeap* _g1h;
   211   static size_t _humongous_object_threshold_in_words;
   213   // Storage for the G1 heap (excludes the permanent generation).
   214   VirtualSpace _g1_storage;
   215   MemRegion    _g1_reserved;
   217   // The part of _g1_storage that is currently committed.
   218   MemRegion _g1_committed;
   220   // The master free list. It will satisfy all new region allocations.
   221   MasterFreeRegionList      _free_list;
   223   // The secondary free list which contains regions that have been
   224   // freed up during the cleanup process. This will be appended to the
   225   // master free list when appropriate.
   226   SecondaryFreeRegionList   _secondary_free_list;
   228   // It keeps track of the humongous regions.
   229   MasterHumongousRegionSet  _humongous_set;
   231   // The number of regions we could create by expansion.
   232   size_t _expansion_regions;
   234   // The block offset table for the G1 heap.
   235   G1BlockOffsetSharedArray* _bot_shared;
   237   // Move all of the regions off the free lists, then rebuild those free
   238   // lists, before and after full GC.
   239   void tear_down_region_lists();
   240   void rebuild_region_lists();
   242   // The sequence of all heap regions in the heap.
   243   HeapRegionSeq _hrs;
   245   // Alloc region used to satisfy mutator allocation requests.
   246   MutatorAllocRegion _mutator_alloc_region;
   248   // Alloc region used to satisfy allocation requests by the GC for
   249   // survivor objects.
   250   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   252   // Alloc region used to satisfy allocation requests by the GC for
   253   // old objects.
   254   OldGCAllocRegion _old_gc_alloc_region;
   256   // The last old region we allocated to during the last GC.
   257   // Typically, it is not full so we should re-use it during the next GC.
   258   HeapRegion* _retained_old_gc_alloc_region;
   260   // It resets the mutator alloc region before new allocations can take place.
   261   void init_mutator_alloc_region();
   263   // It releases the mutator alloc region.
   264   void release_mutator_alloc_region();
   266   // It initializes the GC alloc regions at the start of a GC.
   267   void init_gc_alloc_regions();
   269   // It releases the GC alloc regions at the end of a GC.
   270   void release_gc_alloc_regions();
   272   // It does any cleanup that needs to be done on the GC alloc regions
   273   // before a Full GC.
   274   void abandon_gc_alloc_regions();
   276   // Helper for monitoring and management support.
   277   G1MonitoringSupport* _g1mm;
   279   // Determines PLAB size for a particular allocation purpose.
   280   static size_t desired_plab_sz(GCAllocPurpose purpose);
   282   // Outside of GC pauses, the number of bytes used in all regions other
   283   // than the current allocation region.
   284   size_t _summary_bytes_used;
   286   // This is used for a quick test on whether a reference points into
   287   // the collection set or not. Basically, we have an array, with one
   288   // byte per region, and that byte denotes whether the corresponding
   289   // region is in the collection set or not. The entry corresponding
   290   // the bottom of the heap, i.e., region 0, is pointed to by
   291   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   292   // biased so that it actually points to address 0 of the address
   293   // space, to make the test as fast as possible (we can simply shift
   294   // the address to address into it, instead of having to subtract the
   295   // bottom of the heap from the address before shifting it; basically
   296   // it works in the same way the card table works).
   297   bool* _in_cset_fast_test;
   299   // The allocated array used for the fast test on whether a reference
   300   // points into the collection set or not. This field is also used to
   301   // free the array.
   302   bool* _in_cset_fast_test_base;
   304   // The length of the _in_cset_fast_test_base array.
   305   size_t _in_cset_fast_test_length;
   307   volatile unsigned _gc_time_stamp;
   309   size_t* _surviving_young_words;
   311   G1HRPrinter _hr_printer;
   313   void setup_surviving_young_words();
   314   void update_surviving_young_words(size_t* surv_young_words);
   315   void cleanup_surviving_young_words();
   317   // It decides whether an explicit GC should start a concurrent cycle
   318   // instead of doing a STW GC. Currently, a concurrent cycle is
   319   // explicitly started if:
   320   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   321   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   322   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   324   // Keeps track of how many "full collections" (i.e., Full GCs or
   325   // concurrent cycles) we have completed. The number of them we have
   326   // started is maintained in _total_full_collections in CollectedHeap.
   327   volatile unsigned int _full_collections_completed;
   329   // This is a non-product method that is helpful for testing. It is
   330   // called at the end of a GC and artificially expands the heap by
   331   // allocating a number of dead regions. This way we can induce very
   332   // frequent marking cycles and stress the cleanup / concurrent
   333   // cleanup code more (as all the regions that will be allocated by
   334   // this method will be found dead by the marking cycle).
   335   void allocate_dummy_regions() PRODUCT_RETURN;
   337   // These are macros so that, if the assert fires, we get the correct
   338   // line number, file, etc.
   340 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   341   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   342           (_extra_message_),                                                  \
   343           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   344           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   345           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   347 #define assert_heap_locked()                                                  \
   348   do {                                                                        \
   349     assert(Heap_lock->owned_by_self(),                                        \
   350            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   351   } while (0)
   353 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   354   do {                                                                        \
   355     assert(Heap_lock->owned_by_self() ||                                      \
   356            (SafepointSynchronize::is_at_safepoint() &&                        \
   357              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   358            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   359                                         "should be at a safepoint"));         \
   360   } while (0)
   362 #define assert_heap_locked_and_not_at_safepoint()                             \
   363   do {                                                                        \
   364     assert(Heap_lock->owned_by_self() &&                                      \
   365                                     !SafepointSynchronize::is_at_safepoint(), \
   366           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   367                                        "should not be at a safepoint"));      \
   368   } while (0)
   370 #define assert_heap_not_locked()                                              \
   371   do {                                                                        \
   372     assert(!Heap_lock->owned_by_self(),                                       \
   373         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   374   } while (0)
   376 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   377   do {                                                                        \
   378     assert(!Heap_lock->owned_by_self() &&                                     \
   379                                     !SafepointSynchronize::is_at_safepoint(), \
   380       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   381                                    "should not be at a safepoint"));          \
   382   } while (0)
   384 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   385   do {                                                                        \
   386     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   387               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   388            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   389   } while (0)
   391 #define assert_not_at_safepoint()                                             \
   392   do {                                                                        \
   393     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   394            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   395   } while (0)
   397 protected:
   399   // The young region list.
   400   YoungList*  _young_list;
   402   // The current policy object for the collector.
   403   G1CollectorPolicy* _g1_policy;
   405   // This is the second level of trying to allocate a new region. If
   406   // new_region() didn't find a region on the free_list, this call will
   407   // check whether there's anything available on the
   408   // secondary_free_list and/or wait for more regions to appear on
   409   // that list, if _free_regions_coming is set.
   410   HeapRegion* new_region_try_secondary_free_list();
   412   // Try to allocate a single non-humongous HeapRegion sufficient for
   413   // an allocation of the given word_size. If do_expand is true,
   414   // attempt to expand the heap if necessary to satisfy the allocation
   415   // request.
   416   HeapRegion* new_region(size_t word_size, bool do_expand);
   418   // Attempt to satisfy a humongous allocation request of the given
   419   // size by finding a contiguous set of free regions of num_regions
   420   // length and remove them from the master free list. Return the
   421   // index of the first region or G1_NULL_HRS_INDEX if the search
   422   // was unsuccessful.
   423   size_t humongous_obj_allocate_find_first(size_t num_regions,
   424                                            size_t word_size);
   426   // Initialize a contiguous set of free regions of length num_regions
   427   // and starting at index first so that they appear as a single
   428   // humongous region.
   429   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
   430                                                       size_t num_regions,
   431                                                       size_t word_size);
   433   // Attempt to allocate a humongous object of the given size. Return
   434   // NULL if unsuccessful.
   435   HeapWord* humongous_obj_allocate(size_t word_size);
   437   // The following two methods, allocate_new_tlab() and
   438   // mem_allocate(), are the two main entry points from the runtime
   439   // into the G1's allocation routines. They have the following
   440   // assumptions:
   441   //
   442   // * They should both be called outside safepoints.
   443   //
   444   // * They should both be called without holding the Heap_lock.
   445   //
   446   // * All allocation requests for new TLABs should go to
   447   //   allocate_new_tlab().
   448   //
   449   // * All non-TLAB allocation requests should go to mem_allocate().
   450   //
   451   // * If either call cannot satisfy the allocation request using the
   452   //   current allocating region, they will try to get a new one. If
   453   //   this fails, they will attempt to do an evacuation pause and
   454   //   retry the allocation.
   455   //
   456   // * If all allocation attempts fail, even after trying to schedule
   457   //   an evacuation pause, allocate_new_tlab() will return NULL,
   458   //   whereas mem_allocate() will attempt a heap expansion and/or
   459   //   schedule a Full GC.
   460   //
   461   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   462   //   should never be called with word_size being humongous. All
   463   //   humongous allocation requests should go to mem_allocate() which
   464   //   will satisfy them with a special path.
   466   virtual HeapWord* allocate_new_tlab(size_t word_size);
   468   virtual HeapWord* mem_allocate(size_t word_size,
   469                                  bool*  gc_overhead_limit_was_exceeded);
   471   // The following three methods take a gc_count_before_ret
   472   // parameter which is used to return the GC count if the method
   473   // returns NULL. Given that we are required to read the GC count
   474   // while holding the Heap_lock, and these paths will take the
   475   // Heap_lock at some point, it's easier to get them to read the GC
   476   // count while holding the Heap_lock before they return NULL instead
   477   // of the caller (namely: mem_allocate()) having to also take the
   478   // Heap_lock just to read the GC count.
   480   // First-level mutator allocation attempt: try to allocate out of
   481   // the mutator alloc region without taking the Heap_lock. This
   482   // should only be used for non-humongous allocations.
   483   inline HeapWord* attempt_allocation(size_t word_size,
   484                                       unsigned int* gc_count_before_ret);
   486   // Second-level mutator allocation attempt: take the Heap_lock and
   487   // retry the allocation attempt, potentially scheduling a GC
   488   // pause. This should only be used for non-humongous allocations.
   489   HeapWord* attempt_allocation_slow(size_t word_size,
   490                                     unsigned int* gc_count_before_ret);
   492   // Takes the Heap_lock and attempts a humongous allocation. It can
   493   // potentially schedule a GC pause.
   494   HeapWord* attempt_allocation_humongous(size_t word_size,
   495                                          unsigned int* gc_count_before_ret);
   497   // Allocation attempt that should be called during safepoints (e.g.,
   498   // at the end of a successful GC). expect_null_mutator_alloc_region
   499   // specifies whether the mutator alloc region is expected to be NULL
   500   // or not.
   501   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   502                                        bool expect_null_mutator_alloc_region);
   504   // It dirties the cards that cover the block so that so that the post
   505   // write barrier never queues anything when updating objects on this
   506   // block. It is assumed (and in fact we assert) that the block
   507   // belongs to a young region.
   508   inline void dirty_young_block(HeapWord* start, size_t word_size);
   510   // Allocate blocks during garbage collection. Will ensure an
   511   // allocation region, either by picking one or expanding the
   512   // heap, and then allocate a block of the given size. The block
   513   // may not be a humongous - it must fit into a single heap region.
   514   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   516   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   517                                     HeapRegion*    alloc_region,
   518                                     bool           par,
   519                                     size_t         word_size);
   521   // Ensure that no further allocations can happen in "r", bearing in mind
   522   // that parallel threads might be attempting allocations.
   523   void par_allocate_remaining_space(HeapRegion* r);
   525   // Allocation attempt during GC for a survivor object / PLAB.
   526   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   528   // Allocation attempt during GC for an old object / PLAB.
   529   inline HeapWord* old_attempt_allocation(size_t word_size);
   531   // These methods are the "callbacks" from the G1AllocRegion class.
   533   // For mutator alloc regions.
   534   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   535   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   536                                    size_t allocated_bytes);
   538   // For GC alloc regions.
   539   HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
   540                                   GCAllocPurpose ap);
   541   void retire_gc_alloc_region(HeapRegion* alloc_region,
   542                               size_t allocated_bytes, GCAllocPurpose ap);
   544   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   545   //   inspection request and should collect the entire heap
   546   // - if clear_all_soft_refs is true, all soft references should be
   547   //   cleared during the GC
   548   // - if explicit_gc is false, word_size describes the allocation that
   549   //   the GC should attempt (at least) to satisfy
   550   // - it returns false if it is unable to do the collection due to the
   551   //   GC locker being active, true otherwise
   552   bool do_collection(bool explicit_gc,
   553                      bool clear_all_soft_refs,
   554                      size_t word_size);
   556   // Callback from VM_G1CollectFull operation.
   557   // Perform a full collection.
   558   void do_full_collection(bool clear_all_soft_refs);
   560   // Resize the heap if necessary after a full collection.  If this is
   561   // after a collect-for allocation, "word_size" is the allocation size,
   562   // and will be considered part of the used portion of the heap.
   563   void resize_if_necessary_after_full_collection(size_t word_size);
   565   // Callback from VM_G1CollectForAllocation operation.
   566   // This function does everything necessary/possible to satisfy a
   567   // failed allocation request (including collection, expansion, etc.)
   568   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   570   // Attempting to expand the heap sufficiently
   571   // to support an allocation of the given "word_size".  If
   572   // successful, perform the allocation and return the address of the
   573   // allocated block, or else "NULL".
   574   HeapWord* expand_and_allocate(size_t word_size);
   576 public:
   578   G1MonitoringSupport* g1mm() { return _g1mm; }
   580   // Expand the garbage-first heap by at least the given size (in bytes!).
   581   // Returns true if the heap was expanded by the requested amount;
   582   // false otherwise.
   583   // (Rounds up to a HeapRegion boundary.)
   584   bool expand(size_t expand_bytes);
   586   // Do anything common to GC's.
   587   virtual void gc_prologue(bool full);
   588   virtual void gc_epilogue(bool full);
   590   // We register a region with the fast "in collection set" test. We
   591   // simply set to true the array slot corresponding to this region.
   592   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   593     assert(_in_cset_fast_test_base != NULL, "sanity");
   594     assert(r->in_collection_set(), "invariant");
   595     size_t index = r->hrs_index();
   596     assert(index < _in_cset_fast_test_length, "invariant");
   597     assert(!_in_cset_fast_test_base[index], "invariant");
   598     _in_cset_fast_test_base[index] = true;
   599   }
   601   // This is a fast test on whether a reference points into the
   602   // collection set or not. It does not assume that the reference
   603   // points into the heap; if it doesn't, it will return false.
   604   bool in_cset_fast_test(oop obj) {
   605     assert(_in_cset_fast_test != NULL, "sanity");
   606     if (_g1_committed.contains((HeapWord*) obj)) {
   607       // no need to subtract the bottom of the heap from obj,
   608       // _in_cset_fast_test is biased
   609       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   610       bool ret = _in_cset_fast_test[index];
   611       // let's make sure the result is consistent with what the slower
   612       // test returns
   613       assert( ret || !obj_in_cs(obj), "sanity");
   614       assert(!ret ||  obj_in_cs(obj), "sanity");
   615       return ret;
   616     } else {
   617       return false;
   618     }
   619   }
   621   void clear_cset_fast_test() {
   622     assert(_in_cset_fast_test_base != NULL, "sanity");
   623     memset(_in_cset_fast_test_base, false,
   624         _in_cset_fast_test_length * sizeof(bool));
   625   }
   627   // This is called at the end of either a concurrent cycle or a Full
   628   // GC to update the number of full collections completed. Those two
   629   // can happen in a nested fashion, i.e., we start a concurrent
   630   // cycle, a Full GC happens half-way through it which ends first,
   631   // and then the cycle notices that a Full GC happened and ends
   632   // too. The concurrent parameter is a boolean to help us do a bit
   633   // tighter consistency checking in the method. If concurrent is
   634   // false, the caller is the inner caller in the nesting (i.e., the
   635   // Full GC). If concurrent is true, the caller is the outer caller
   636   // in this nesting (i.e., the concurrent cycle). Further nesting is
   637   // not currently supported. The end of the this call also notifies
   638   // the FullGCCount_lock in case a Java thread is waiting for a full
   639   // GC to happen (e.g., it called System.gc() with
   640   // +ExplicitGCInvokesConcurrent).
   641   void increment_full_collections_completed(bool concurrent);
   643   unsigned int full_collections_completed() {
   644     return _full_collections_completed;
   645   }
   647   G1HRPrinter* hr_printer() { return &_hr_printer; }
   649 protected:
   651   // Shrink the garbage-first heap by at most the given size (in bytes!).
   652   // (Rounds down to a HeapRegion boundary.)
   653   virtual void shrink(size_t expand_bytes);
   654   void shrink_helper(size_t expand_bytes);
   656   #if TASKQUEUE_STATS
   657   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   658   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   659   void reset_taskqueue_stats();
   660   #endif // TASKQUEUE_STATS
   662   // Schedule the VM operation that will do an evacuation pause to
   663   // satisfy an allocation request of word_size. *succeeded will
   664   // return whether the VM operation was successful (it did do an
   665   // evacuation pause) or not (another thread beat us to it or the GC
   666   // locker was active). Given that we should not be holding the
   667   // Heap_lock when we enter this method, we will pass the
   668   // gc_count_before (i.e., total_collections()) as a parameter since
   669   // it has to be read while holding the Heap_lock. Currently, both
   670   // methods that call do_collection_pause() release the Heap_lock
   671   // before the call, so it's easy to read gc_count_before just before.
   672   HeapWord* do_collection_pause(size_t       word_size,
   673                                 unsigned int gc_count_before,
   674                                 bool*        succeeded);
   676   // The guts of the incremental collection pause, executed by the vm
   677   // thread. It returns false if it is unable to do the collection due
   678   // to the GC locker being active, true otherwise
   679   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   681   // Actually do the work of evacuating the collection set.
   682   void evacuate_collection_set();
   684   // The g1 remembered set of the heap.
   685   G1RemSet* _g1_rem_set;
   686   // And it's mod ref barrier set, used to track updates for the above.
   687   ModRefBarrierSet* _mr_bs;
   689   // A set of cards that cover the objects for which the Rsets should be updated
   690   // concurrently after the collection.
   691   DirtyCardQueueSet _dirty_card_queue_set;
   693   // The Heap Region Rem Set Iterator.
   694   HeapRegionRemSetIterator** _rem_set_iterator;
   696   // The closure used to refine a single card.
   697   RefineCardTableEntryClosure* _refine_cte_cl;
   699   // A function to check the consistency of dirty card logs.
   700   void check_ct_logs_at_safepoint();
   702   // A DirtyCardQueueSet that is used to hold cards that contain
   703   // references into the current collection set. This is used to
   704   // update the remembered sets of the regions in the collection
   705   // set in the event of an evacuation failure.
   706   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   708   // After a collection pause, make the regions in the CS into free
   709   // regions.
   710   void free_collection_set(HeapRegion* cs_head);
   712   // Abandon the current collection set without recording policy
   713   // statistics or updating free lists.
   714   void abandon_collection_set(HeapRegion* cs_head);
   716   // Applies "scan_non_heap_roots" to roots outside the heap,
   717   // "scan_rs" to roots inside the heap (having done "set_region" to
   718   // indicate the region in which the root resides), and does "scan_perm"
   719   // (setting the generation to the perm generation.)  If "scan_rs" is
   720   // NULL, then this step is skipped.  The "worker_i"
   721   // param is for use with parallel roots processing, and should be
   722   // the "i" of the calling parallel worker thread's work(i) function.
   723   // In the sequential case this param will be ignored.
   724   void g1_process_strong_roots(bool collecting_perm_gen,
   725                                SharedHeap::ScanningOption so,
   726                                OopClosure* scan_non_heap_roots,
   727                                OopsInHeapRegionClosure* scan_rs,
   728                                OopsInGenClosure* scan_perm,
   729                                int worker_i);
   731   // Apply "blk" to all the weak roots of the system.  These include
   732   // JNI weak roots, the code cache, system dictionary, symbol table,
   733   // string table, and referents of reachable weak refs.
   734   void g1_process_weak_roots(OopClosure* root_closure,
   735                              OopClosure* non_root_closure);
   737   // Frees a non-humongous region by initializing its contents and
   738   // adding it to the free list that's passed as a parameter (this is
   739   // usually a local list which will be appended to the master free
   740   // list later). The used bytes of freed regions are accumulated in
   741   // pre_used. If par is true, the region's RSet will not be freed
   742   // up. The assumption is that this will be done later.
   743   void free_region(HeapRegion* hr,
   744                    size_t* pre_used,
   745                    FreeRegionList* free_list,
   746                    bool par);
   748   // Frees a humongous region by collapsing it into individual regions
   749   // and calling free_region() for each of them. The freed regions
   750   // will be added to the free list that's passed as a parameter (this
   751   // is usually a local list which will be appended to the master free
   752   // list later). The used bytes of freed regions are accumulated in
   753   // pre_used. If par is true, the region's RSet will not be freed
   754   // up. The assumption is that this will be done later.
   755   void free_humongous_region(HeapRegion* hr,
   756                              size_t* pre_used,
   757                              FreeRegionList* free_list,
   758                              HumongousRegionSet* humongous_proxy_set,
   759                              bool par);
   761   // Notifies all the necessary spaces that the committed space has
   762   // been updated (either expanded or shrunk). It should be called
   763   // after _g1_storage is updated.
   764   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   766   // The concurrent marker (and the thread it runs in.)
   767   ConcurrentMark* _cm;
   768   ConcurrentMarkThread* _cmThread;
   769   bool _mark_in_progress;
   771   // The concurrent refiner.
   772   ConcurrentG1Refine* _cg1r;
   774   // The parallel task queues
   775   RefToScanQueueSet *_task_queues;
   777   // True iff a evacuation has failed in the current collection.
   778   bool _evacuation_failed;
   780   // Set the attribute indicating whether evacuation has failed in the
   781   // current collection.
   782   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   784   // Failed evacuations cause some logical from-space objects to have
   785   // forwarding pointers to themselves.  Reset them.
   786   void remove_self_forwarding_pointers();
   788   // When one is non-null, so is the other.  Together, they each pair is
   789   // an object with a preserved mark, and its mark value.
   790   GrowableArray<oop>*     _objs_with_preserved_marks;
   791   GrowableArray<markOop>* _preserved_marks_of_objs;
   793   // Preserve the mark of "obj", if necessary, in preparation for its mark
   794   // word being overwritten with a self-forwarding-pointer.
   795   void preserve_mark_if_necessary(oop obj, markOop m);
   797   // The stack of evac-failure objects left to be scanned.
   798   GrowableArray<oop>*    _evac_failure_scan_stack;
   799   // The closure to apply to evac-failure objects.
   801   OopsInHeapRegionClosure* _evac_failure_closure;
   802   // Set the field above.
   803   void
   804   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   805     _evac_failure_closure = evac_failure_closure;
   806   }
   808   // Push "obj" on the scan stack.
   809   void push_on_evac_failure_scan_stack(oop obj);
   810   // Process scan stack entries until the stack is empty.
   811   void drain_evac_failure_scan_stack();
   812   // True iff an invocation of "drain_scan_stack" is in progress; to
   813   // prevent unnecessary recursion.
   814   bool _drain_in_progress;
   816   // Do any necessary initialization for evacuation-failure handling.
   817   // "cl" is the closure that will be used to process evac-failure
   818   // objects.
   819   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   820   // Do any necessary cleanup for evacuation-failure handling data
   821   // structures.
   822   void finalize_for_evac_failure();
   824   // An attempt to evacuate "obj" has failed; take necessary steps.
   825   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   826   void handle_evacuation_failure_common(oop obj, markOop m);
   828   // Instance of the concurrent mark is_alive closure for embedding
   829   // into the reference processor as the is_alive_non_header. This
   830   // prevents unnecessary additions to the discovered lists during
   831   // concurrent discovery.
   832   G1CMIsAliveClosure _is_alive_closure;
   834   // ("Weak") Reference processing support
   835   ReferenceProcessor* _ref_processor;
   837   enum G1H_process_strong_roots_tasks {
   838     G1H_PS_mark_stack_oops_do,
   839     G1H_PS_refProcessor_oops_do,
   840     // Leave this one last.
   841     G1H_PS_NumElements
   842   };
   844   SubTasksDone* _process_strong_tasks;
   846   volatile bool _free_regions_coming;
   848 public:
   850   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   852   void set_refine_cte_cl_concurrency(bool concurrent);
   854   RefToScanQueue *task_queue(int i) const;
   856   // A set of cards where updates happened during the GC
   857   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   859   // A DirtyCardQueueSet that is used to hold cards that contain
   860   // references into the current collection set. This is used to
   861   // update the remembered sets of the regions in the collection
   862   // set in the event of an evacuation failure.
   863   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   864         { return _into_cset_dirty_card_queue_set; }
   866   // Create a G1CollectedHeap with the specified policy.
   867   // Must call the initialize method afterwards.
   868   // May not return if something goes wrong.
   869   G1CollectedHeap(G1CollectorPolicy* policy);
   871   // Initialize the G1CollectedHeap to have the initial and
   872   // maximum sizes, permanent generation, and remembered and barrier sets
   873   // specified by the policy object.
   874   jint initialize();
   876   virtual void ref_processing_init();
   878   void set_par_threads(int t) {
   879     SharedHeap::set_par_threads(t);
   880     _process_strong_tasks->set_n_threads(t);
   881   }
   883   virtual CollectedHeap::Name kind() const {
   884     return CollectedHeap::G1CollectedHeap;
   885   }
   887   // The current policy object for the collector.
   888   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   890   // Adaptive size policy.  No such thing for g1.
   891   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   893   // The rem set and barrier set.
   894   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   895   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   897   // The rem set iterator.
   898   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   899     return _rem_set_iterator[i];
   900   }
   902   HeapRegionRemSetIterator* rem_set_iterator() {
   903     return _rem_set_iterator[0];
   904   }
   906   unsigned get_gc_time_stamp() {
   907     return _gc_time_stamp;
   908   }
   910   void reset_gc_time_stamp() {
   911     _gc_time_stamp = 0;
   912     OrderAccess::fence();
   913   }
   915   void increment_gc_time_stamp() {
   916     ++_gc_time_stamp;
   917     OrderAccess::fence();
   918   }
   920   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
   921                                   DirtyCardQueue* into_cset_dcq,
   922                                   bool concurrent, int worker_i);
   924   // The shared block offset table array.
   925   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   927   // Reference Processing accessor
   928   ReferenceProcessor* ref_processor() { return _ref_processor; }
   930   virtual size_t capacity() const;
   931   virtual size_t used() const;
   932   // This should be called when we're not holding the heap lock. The
   933   // result might be a bit inaccurate.
   934   size_t used_unlocked() const;
   935   size_t recalculate_used() const;
   937   // These virtual functions do the actual allocation.
   938   // Some heaps may offer a contiguous region for shared non-blocking
   939   // allocation, via inlined code (by exporting the address of the top and
   940   // end fields defining the extent of the contiguous allocation region.)
   941   // But G1CollectedHeap doesn't yet support this.
   943   // Return an estimate of the maximum allocation that could be performed
   944   // without triggering any collection or expansion activity.  In a
   945   // generational collector, for example, this is probably the largest
   946   // allocation that could be supported (without expansion) in the youngest
   947   // generation.  It is "unsafe" because no locks are taken; the result
   948   // should be treated as an approximation, not a guarantee, for use in
   949   // heuristic resizing decisions.
   950   virtual size_t unsafe_max_alloc();
   952   virtual bool is_maximal_no_gc() const {
   953     return _g1_storage.uncommitted_size() == 0;
   954   }
   956   // The total number of regions in the heap.
   957   size_t n_regions() { return _hrs.length(); }
   959   // The max number of regions in the heap.
   960   size_t max_regions() { return _hrs.max_length(); }
   962   // The number of regions that are completely free.
   963   size_t free_regions() { return _free_list.length(); }
   965   // The number of regions that are not completely free.
   966   size_t used_regions() { return n_regions() - free_regions(); }
   968   // The number of regions available for "regular" expansion.
   969   size_t expansion_regions() { return _expansion_regions; }
   971   // Factory method for HeapRegion instances. It will return NULL if
   972   // the allocation fails.
   973   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
   975   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   976   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   977   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
   978   void verify_dirty_young_regions() PRODUCT_RETURN;
   980   // verify_region_sets() performs verification over the region
   981   // lists. It will be compiled in the product code to be used when
   982   // necessary (i.e., during heap verification).
   983   void verify_region_sets();
   985   // verify_region_sets_optional() is planted in the code for
   986   // list verification in non-product builds (and it can be enabled in
   987   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
   988 #if HEAP_REGION_SET_FORCE_VERIFY
   989   void verify_region_sets_optional() {
   990     verify_region_sets();
   991   }
   992 #else // HEAP_REGION_SET_FORCE_VERIFY
   993   void verify_region_sets_optional() { }
   994 #endif // HEAP_REGION_SET_FORCE_VERIFY
   996 #ifdef ASSERT
   997   bool is_on_master_free_list(HeapRegion* hr) {
   998     return hr->containing_set() == &_free_list;
   999   }
  1001   bool is_in_humongous_set(HeapRegion* hr) {
  1002     return hr->containing_set() == &_humongous_set;
  1004 #endif // ASSERT
  1006   // Wrapper for the region list operations that can be called from
  1007   // methods outside this class.
  1009   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1010     _secondary_free_list.add_as_tail(list);
  1013   void append_secondary_free_list() {
  1014     _free_list.add_as_head(&_secondary_free_list);
  1017   void append_secondary_free_list_if_not_empty_with_lock() {
  1018     // If the secondary free list looks empty there's no reason to
  1019     // take the lock and then try to append it.
  1020     if (!_secondary_free_list.is_empty()) {
  1021       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1022       append_secondary_free_list();
  1026   void set_free_regions_coming();
  1027   void reset_free_regions_coming();
  1028   bool free_regions_coming() { return _free_regions_coming; }
  1029   void wait_while_free_regions_coming();
  1031   // Perform a collection of the heap; intended for use in implementing
  1032   // "System.gc".  This probably implies as full a collection as the
  1033   // "CollectedHeap" supports.
  1034   virtual void collect(GCCause::Cause cause);
  1036   // The same as above but assume that the caller holds the Heap_lock.
  1037   void collect_locked(GCCause::Cause cause);
  1039   // This interface assumes that it's being called by the
  1040   // vm thread. It collects the heap assuming that the
  1041   // heap lock is already held and that we are executing in
  1042   // the context of the vm thread.
  1043   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1045   // True iff a evacuation has failed in the most-recent collection.
  1046   bool evacuation_failed() { return _evacuation_failed; }
  1048   // It will free a region if it has allocated objects in it that are
  1049   // all dead. It calls either free_region() or
  1050   // free_humongous_region() depending on the type of the region that
  1051   // is passed to it.
  1052   void free_region_if_empty(HeapRegion* hr,
  1053                             size_t* pre_used,
  1054                             FreeRegionList* free_list,
  1055                             HumongousRegionSet* humongous_proxy_set,
  1056                             HRRSCleanupTask* hrrs_cleanup_task,
  1057                             bool par);
  1059   // It appends the free list to the master free list and updates the
  1060   // master humongous list according to the contents of the proxy
  1061   // list. It also adjusts the total used bytes according to pre_used
  1062   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1063   void update_sets_after_freeing_regions(size_t pre_used,
  1064                                        FreeRegionList* free_list,
  1065                                        HumongousRegionSet* humongous_proxy_set,
  1066                                        bool par);
  1068   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1069   virtual bool is_in(const void* p) const;
  1071   // Return "TRUE" iff the given object address is within the collection
  1072   // set.
  1073   inline bool obj_in_cs(oop obj);
  1075   // Return "TRUE" iff the given object address is in the reserved
  1076   // region of g1 (excluding the permanent generation).
  1077   bool is_in_g1_reserved(const void* p) const {
  1078     return _g1_reserved.contains(p);
  1081   // Returns a MemRegion that corresponds to the space that has been
  1082   // reserved for the heap
  1083   MemRegion g1_reserved() {
  1084     return _g1_reserved;
  1087   // Returns a MemRegion that corresponds to the space that has been
  1088   // committed in the heap
  1089   MemRegion g1_committed() {
  1090     return _g1_committed;
  1093   virtual bool is_in_closed_subset(const void* p) const;
  1095   // This resets the card table to all zeros.  It is used after
  1096   // a collection pause which used the card table to claim cards.
  1097   void cleanUpCardTable();
  1099   // Iteration functions.
  1101   // Iterate over all the ref-containing fields of all objects, calling
  1102   // "cl.do_oop" on each.
  1103   virtual void oop_iterate(OopClosure* cl) {
  1104     oop_iterate(cl, true);
  1106   void oop_iterate(OopClosure* cl, bool do_perm);
  1108   // Same as above, restricted to a memory region.
  1109   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1110     oop_iterate(mr, cl, true);
  1112   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1114   // Iterate over all objects, calling "cl.do_object" on each.
  1115   virtual void object_iterate(ObjectClosure* cl) {
  1116     object_iterate(cl, true);
  1118   virtual void safe_object_iterate(ObjectClosure* cl) {
  1119     object_iterate(cl, true);
  1121   void object_iterate(ObjectClosure* cl, bool do_perm);
  1123   // Iterate over all objects allocated since the last collection, calling
  1124   // "cl.do_object" on each.  The heap must have been initialized properly
  1125   // to support this function, or else this call will fail.
  1126   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1128   // Iterate over all spaces in use in the heap, in ascending address order.
  1129   virtual void space_iterate(SpaceClosure* cl);
  1131   // Iterate over heap regions, in address order, terminating the
  1132   // iteration early if the "doHeapRegion" method returns "true".
  1133   void heap_region_iterate(HeapRegionClosure* blk) const;
  1135   // Iterate over heap regions starting with r (or the first region if "r"
  1136   // is NULL), in address order, terminating early if the "doHeapRegion"
  1137   // method returns "true".
  1138   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
  1140   // Return the region with the given index. It assumes the index is valid.
  1141   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
  1143   // Divide the heap region sequence into "chunks" of some size (the number
  1144   // of regions divided by the number of parallel threads times some
  1145   // overpartition factor, currently 4).  Assumes that this will be called
  1146   // in parallel by ParallelGCThreads worker threads with discinct worker
  1147   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1148   // calls will use the same "claim_value", and that that claim value is
  1149   // different from the claim_value of any heap region before the start of
  1150   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1151   // attempting to claim the first region in each chunk, and, if
  1152   // successful, applying the closure to each region in the chunk (and
  1153   // setting the claim value of the second and subsequent regions of the
  1154   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1155   // i.e., that a closure never attempt to abort a traversal.
  1156   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1157                                        int worker,
  1158                                        jint claim_value);
  1160   // It resets all the region claim values to the default.
  1161   void reset_heap_region_claim_values();
  1163 #ifdef ASSERT
  1164   bool check_heap_region_claim_values(jint claim_value);
  1165 #endif // ASSERT
  1167   // Iterate over the regions (if any) in the current collection set.
  1168   void collection_set_iterate(HeapRegionClosure* blk);
  1170   // As above but starting from region r
  1171   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1173   // Returns the first (lowest address) compactible space in the heap.
  1174   virtual CompactibleSpace* first_compactible_space();
  1176   // A CollectedHeap will contain some number of spaces.  This finds the
  1177   // space containing a given address, or else returns NULL.
  1178   virtual Space* space_containing(const void* addr) const;
  1180   // A G1CollectedHeap will contain some number of heap regions.  This
  1181   // finds the region containing a given address, or else returns NULL.
  1182   template <class T>
  1183   inline HeapRegion* heap_region_containing(const T addr) const;
  1185   // Like the above, but requires "addr" to be in the heap (to avoid a
  1186   // null-check), and unlike the above, may return an continuing humongous
  1187   // region.
  1188   template <class T>
  1189   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1191   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1192   // each address in the (reserved) heap is a member of exactly
  1193   // one block.  The defining characteristic of a block is that it is
  1194   // possible to find its size, and thus to progress forward to the next
  1195   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1196   // represent Java objects, or they might be free blocks in a
  1197   // free-list-based heap (or subheap), as long as the two kinds are
  1198   // distinguishable and the size of each is determinable.
  1200   // Returns the address of the start of the "block" that contains the
  1201   // address "addr".  We say "blocks" instead of "object" since some heaps
  1202   // may not pack objects densely; a chunk may either be an object or a
  1203   // non-object.
  1204   virtual HeapWord* block_start(const void* addr) const;
  1206   // Requires "addr" to be the start of a chunk, and returns its size.
  1207   // "addr + size" is required to be the start of a new chunk, or the end
  1208   // of the active area of the heap.
  1209   virtual size_t block_size(const HeapWord* addr) const;
  1211   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1212   // the block is an object.
  1213   virtual bool block_is_obj(const HeapWord* addr) const;
  1215   // Does this heap support heap inspection? (+PrintClassHistogram)
  1216   virtual bool supports_heap_inspection() const { return true; }
  1218   // Section on thread-local allocation buffers (TLABs)
  1219   // See CollectedHeap for semantics.
  1221   virtual bool supports_tlab_allocation() const;
  1222   virtual size_t tlab_capacity(Thread* thr) const;
  1223   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1225   // Can a compiler initialize a new object without store barriers?
  1226   // This permission only extends from the creation of a new object
  1227   // via a TLAB up to the first subsequent safepoint. If such permission
  1228   // is granted for this heap type, the compiler promises to call
  1229   // defer_store_barrier() below on any slow path allocation of
  1230   // a new object for which such initializing store barriers will
  1231   // have been elided. G1, like CMS, allows this, but should be
  1232   // ready to provide a compensating write barrier as necessary
  1233   // if that storage came out of a non-young region. The efficiency
  1234   // of this implementation depends crucially on being able to
  1235   // answer very efficiently in constant time whether a piece of
  1236   // storage in the heap comes from a young region or not.
  1237   // See ReduceInitialCardMarks.
  1238   virtual bool can_elide_tlab_store_barriers() const {
  1239     // 6920090: Temporarily disabled, because of lingering
  1240     // instabilities related to RICM with G1. In the
  1241     // interim, the option ReduceInitialCardMarksForG1
  1242     // below is left solely as a debugging device at least
  1243     // until 6920109 fixes the instabilities.
  1244     return ReduceInitialCardMarksForG1;
  1247   virtual bool card_mark_must_follow_store() const {
  1248     return true;
  1251   bool is_in_young(const oop obj) {
  1252     HeapRegion* hr = heap_region_containing(obj);
  1253     return hr != NULL && hr->is_young();
  1256 #ifdef ASSERT
  1257   virtual bool is_in_partial_collection(const void* p);
  1258 #endif
  1260   virtual bool is_scavengable(const void* addr);
  1262   // We don't need barriers for initializing stores to objects
  1263   // in the young gen: for the SATB pre-barrier, there is no
  1264   // pre-value that needs to be remembered; for the remembered-set
  1265   // update logging post-barrier, we don't maintain remembered set
  1266   // information for young gen objects.
  1267   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1268     // Re 6920090, 6920109 above.
  1269     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1270     return is_in_young(new_obj);
  1273   // Can a compiler elide a store barrier when it writes
  1274   // a permanent oop into the heap?  Applies when the compiler
  1275   // is storing x to the heap, where x->is_perm() is true.
  1276   virtual bool can_elide_permanent_oop_store_barriers() const {
  1277     // At least until perm gen collection is also G1-ified, at
  1278     // which point this should return false.
  1279     return true;
  1282   // Returns "true" iff the given word_size is "very large".
  1283   static bool isHumongous(size_t word_size) {
  1284     // Note this has to be strictly greater-than as the TLABs
  1285     // are capped at the humongous thresold and we want to
  1286     // ensure that we don't try to allocate a TLAB as
  1287     // humongous and that we don't allocate a humongous
  1288     // object in a TLAB.
  1289     return word_size > _humongous_object_threshold_in_words;
  1292   // Update mod union table with the set of dirty cards.
  1293   void updateModUnion();
  1295   // Set the mod union bits corresponding to the given memRegion.  Note
  1296   // that this is always a safe operation, since it doesn't clear any
  1297   // bits.
  1298   void markModUnionRange(MemRegion mr);
  1300   // Records the fact that a marking phase is no longer in progress.
  1301   void set_marking_complete() {
  1302     _mark_in_progress = false;
  1304   void set_marking_started() {
  1305     _mark_in_progress = true;
  1307   bool mark_in_progress() {
  1308     return _mark_in_progress;
  1311   // Print the maximum heap capacity.
  1312   virtual size_t max_capacity() const;
  1314   virtual jlong millis_since_last_gc();
  1316   // Perform any cleanup actions necessary before allowing a verification.
  1317   virtual void prepare_for_verify();
  1319   // Perform verification.
  1321   // vo == UsePrevMarking  -> use "prev" marking information,
  1322   // vo == UseNextMarking -> use "next" marking information
  1323   // vo == UseMarkWord    -> use the mark word in the object header
  1324   //
  1325   // NOTE: Only the "prev" marking information is guaranteed to be
  1326   // consistent most of the time, so most calls to this should use
  1327   // vo == UsePrevMarking.
  1328   // Currently, there is only one case where this is called with
  1329   // vo == UseNextMarking, which is to verify the "next" marking
  1330   // information at the end of remark.
  1331   // Currently there is only one place where this is called with
  1332   // vo == UseMarkWord, which is to verify the marking during a
  1333   // full GC.
  1334   void verify(bool allow_dirty, bool silent, VerifyOption vo);
  1336   // Override; it uses the "prev" marking information
  1337   virtual void verify(bool allow_dirty, bool silent);
  1338   // Default behavior by calling print(tty);
  1339   virtual void print() const;
  1340   // This calls print_on(st, PrintHeapAtGCExtended).
  1341   virtual void print_on(outputStream* st) const;
  1342   // If extended is true, it will print out information for all
  1343   // regions in the heap by calling print_on_extended(st).
  1344   virtual void print_on(outputStream* st, bool extended) const;
  1345   virtual void print_on_extended(outputStream* st) const;
  1347   virtual void print_gc_threads_on(outputStream* st) const;
  1348   virtual void gc_threads_do(ThreadClosure* tc) const;
  1350   // Override
  1351   void print_tracing_info() const;
  1353   // The following two methods are helpful for debugging RSet issues.
  1354   void print_cset_rsets() PRODUCT_RETURN;
  1355   void print_all_rsets() PRODUCT_RETURN;
  1357   // Convenience function to be used in situations where the heap type can be
  1358   // asserted to be this type.
  1359   static G1CollectedHeap* heap();
  1361   void empty_young_list();
  1363   void set_region_short_lived_locked(HeapRegion* hr);
  1364   // add appropriate methods for any other surv rate groups
  1366   YoungList* young_list() { return _young_list; }
  1368   // debugging
  1369   bool check_young_list_well_formed() {
  1370     return _young_list->check_list_well_formed();
  1373   bool check_young_list_empty(bool check_heap,
  1374                               bool check_sample = true);
  1376   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1377   // many of these need to be public.
  1379   // The functions below are helper functions that a subclass of
  1380   // "CollectedHeap" can use in the implementation of its virtual
  1381   // functions.
  1382   // This performs a concurrent marking of the live objects in a
  1383   // bitmap off to the side.
  1384   void doConcurrentMark();
  1386   bool isMarkedPrev(oop obj) const;
  1387   bool isMarkedNext(oop obj) const;
  1389   // vo == UsePrevMarking -> use "prev" marking information,
  1390   // vo == UseNextMarking -> use "next" marking information,
  1391   // vo == UseMarkWord    -> use mark word from object header
  1392   bool is_obj_dead_cond(const oop obj,
  1393                         const HeapRegion* hr,
  1394                         const VerifyOption vo) const {
  1396     switch (vo) {
  1397       case VerifyOption_G1UsePrevMarking:
  1398         return is_obj_dead(obj, hr);
  1399       case VerifyOption_G1UseNextMarking:
  1400         return is_obj_ill(obj, hr);
  1401       default:
  1402         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1403         return !obj->is_gc_marked();
  1407   // Determine if an object is dead, given the object and also
  1408   // the region to which the object belongs. An object is dead
  1409   // iff a) it was not allocated since the last mark and b) it
  1410   // is not marked.
  1412   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1413     return
  1414       !hr->obj_allocated_since_prev_marking(obj) &&
  1415       !isMarkedPrev(obj);
  1418   // This is used when copying an object to survivor space.
  1419   // If the object is marked live, then we mark the copy live.
  1420   // If the object is allocated since the start of this mark
  1421   // cycle, then we mark the copy live.
  1422   // If the object has been around since the previous mark
  1423   // phase, and hasn't been marked yet during this phase,
  1424   // then we don't mark it, we just wait for the
  1425   // current marking cycle to get to it.
  1427   // This function returns true when an object has been
  1428   // around since the previous marking and hasn't yet
  1429   // been marked during this marking.
  1431   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1432     return
  1433       !hr->obj_allocated_since_next_marking(obj) &&
  1434       !isMarkedNext(obj);
  1437   // Determine if an object is dead, given only the object itself.
  1438   // This will find the region to which the object belongs and
  1439   // then call the region version of the same function.
  1441   // Added if it is in permanent gen it isn't dead.
  1442   // Added if it is NULL it isn't dead.
  1444   // vo == UsePrevMarking -> use "prev" marking information,
  1445   // vo == UseNextMarking -> use "next" marking information,
  1446   // vo == UseMarkWord    -> use mark word from object header
  1447   bool is_obj_dead_cond(const oop obj,
  1448                         const VerifyOption vo) const {
  1450     switch (vo) {
  1451       case VerifyOption_G1UsePrevMarking:
  1452         return is_obj_dead(obj);
  1453       case VerifyOption_G1UseNextMarking:
  1454         return is_obj_ill(obj);
  1455       default:
  1456         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1457         return !obj->is_gc_marked();
  1461   bool is_obj_dead(const oop obj) const {
  1462     const HeapRegion* hr = heap_region_containing(obj);
  1463     if (hr == NULL) {
  1464       if (Universe::heap()->is_in_permanent(obj))
  1465         return false;
  1466       else if (obj == NULL) return false;
  1467       else return true;
  1469     else return is_obj_dead(obj, hr);
  1472   bool is_obj_ill(const oop obj) const {
  1473     const HeapRegion* hr = heap_region_containing(obj);
  1474     if (hr == NULL) {
  1475       if (Universe::heap()->is_in_permanent(obj))
  1476         return false;
  1477       else if (obj == NULL) return false;
  1478       else return true;
  1480     else return is_obj_ill(obj, hr);
  1483   // The following is just to alert the verification code
  1484   // that a full collection has occurred and that the
  1485   // remembered sets are no longer up to date.
  1486   bool _full_collection;
  1487   void set_full_collection() { _full_collection = true;}
  1488   void clear_full_collection() {_full_collection = false;}
  1489   bool full_collection() {return _full_collection;}
  1491   ConcurrentMark* concurrent_mark() const { return _cm; }
  1492   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1494   // The dirty cards region list is used to record a subset of regions
  1495   // whose cards need clearing. The list if populated during the
  1496   // remembered set scanning and drained during the card table
  1497   // cleanup. Although the methods are reentrant, population/draining
  1498   // phases must not overlap. For synchronization purposes the last
  1499   // element on the list points to itself.
  1500   HeapRegion* _dirty_cards_region_list;
  1501   void push_dirty_cards_region(HeapRegion* hr);
  1502   HeapRegion* pop_dirty_cards_region();
  1504 public:
  1505   void stop_conc_gc_threads();
  1507   // <NEW PREDICTION>
  1509   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1510   void check_if_region_is_too_expensive(double predicted_time_ms);
  1511   size_t pending_card_num();
  1512   size_t max_pending_card_num();
  1513   size_t cards_scanned();
  1515   // </NEW PREDICTION>
  1517 protected:
  1518   size_t _max_heap_capacity;
  1519 };
  1521 #define use_local_bitmaps         1
  1522 #define verify_local_bitmaps      0
  1523 #define oop_buffer_length       256
  1525 #ifndef PRODUCT
  1526 class GCLabBitMap;
  1527 class GCLabBitMapClosure: public BitMapClosure {
  1528 private:
  1529   ConcurrentMark* _cm;
  1530   GCLabBitMap*    _bitmap;
  1532 public:
  1533   GCLabBitMapClosure(ConcurrentMark* cm,
  1534                      GCLabBitMap* bitmap) {
  1535     _cm     = cm;
  1536     _bitmap = bitmap;
  1539   virtual bool do_bit(size_t offset);
  1540 };
  1541 #endif // !PRODUCT
  1543 class GCLabBitMap: public BitMap {
  1544 private:
  1545   ConcurrentMark* _cm;
  1547   int       _shifter;
  1548   size_t    _bitmap_word_covers_words;
  1550   // beginning of the heap
  1551   HeapWord* _heap_start;
  1553   // this is the actual start of the GCLab
  1554   HeapWord* _real_start_word;
  1556   // this is the actual end of the GCLab
  1557   HeapWord* _real_end_word;
  1559   // this is the first word, possibly located before the actual start
  1560   // of the GCLab, that corresponds to the first bit of the bitmap
  1561   HeapWord* _start_word;
  1563   // size of a GCLab in words
  1564   size_t _gclab_word_size;
  1566   static int shifter() {
  1567     return MinObjAlignment - 1;
  1570   // how many heap words does a single bitmap word corresponds to?
  1571   static size_t bitmap_word_covers_words() {
  1572     return BitsPerWord << shifter();
  1575   size_t gclab_word_size() const {
  1576     return _gclab_word_size;
  1579   // Calculates actual GCLab size in words
  1580   size_t gclab_real_word_size() const {
  1581     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1582            / BitsPerWord;
  1585   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1586     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1587     // We are going to ensure that the beginning of a word in this
  1588     // bitmap also corresponds to the beginning of a word in the
  1589     // global marking bitmap. To handle the case where a GCLab
  1590     // starts from the middle of the bitmap, we need to add enough
  1591     // space (i.e. up to a bitmap word) to ensure that we have
  1592     // enough bits in the bitmap.
  1593     return bits_in_bitmap + BitsPerWord - 1;
  1595 public:
  1596   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1597     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1598       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1599       _shifter(shifter()),
  1600       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1601       _heap_start(heap_start),
  1602       _gclab_word_size(gclab_word_size),
  1603       _real_start_word(NULL),
  1604       _real_end_word(NULL),
  1605       _start_word(NULL)
  1607     guarantee( size_in_words() >= bitmap_size_in_words(),
  1608                "just making sure");
  1611   inline unsigned heapWordToOffset(HeapWord* addr) {
  1612     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1613     assert(offset < size(), "offset should be within bounds");
  1614     return offset;
  1617   inline HeapWord* offsetToHeapWord(size_t offset) {
  1618     HeapWord* addr =  _start_word + (offset << _shifter);
  1619     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1620     return addr;
  1623   bool fields_well_formed() {
  1624     bool ret1 = (_real_start_word == NULL) &&
  1625                 (_real_end_word == NULL) &&
  1626                 (_start_word == NULL);
  1627     if (ret1)
  1628       return true;
  1630     bool ret2 = _real_start_word >= _start_word &&
  1631       _start_word < _real_end_word &&
  1632       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1633       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1634                                                               > _real_end_word;
  1635     return ret2;
  1638   inline bool mark(HeapWord* addr) {
  1639     guarantee(use_local_bitmaps, "invariant");
  1640     assert(fields_well_formed(), "invariant");
  1642     if (addr >= _real_start_word && addr < _real_end_word) {
  1643       assert(!isMarked(addr), "should not have already been marked");
  1645       // first mark it on the bitmap
  1646       at_put(heapWordToOffset(addr), true);
  1648       return true;
  1649     } else {
  1650       return false;
  1654   inline bool isMarked(HeapWord* addr) {
  1655     guarantee(use_local_bitmaps, "invariant");
  1656     assert(fields_well_formed(), "invariant");
  1658     return at(heapWordToOffset(addr));
  1661   void set_buffer(HeapWord* start) {
  1662     guarantee(use_local_bitmaps, "invariant");
  1663     clear();
  1665     assert(start != NULL, "invariant");
  1666     _real_start_word = start;
  1667     _real_end_word   = start + _gclab_word_size;
  1669     size_t diff =
  1670       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1671     _start_word = start - diff;
  1673     assert(fields_well_formed(), "invariant");
  1676 #ifndef PRODUCT
  1677   void verify() {
  1678     // verify that the marks have been propagated
  1679     GCLabBitMapClosure cl(_cm, this);
  1680     iterate(&cl);
  1682 #endif // PRODUCT
  1684   void retire() {
  1685     guarantee(use_local_bitmaps, "invariant");
  1686     assert(fields_well_formed(), "invariant");
  1688     if (_start_word != NULL) {
  1689       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1691       // this means that the bitmap was set up for the GCLab
  1692       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1694       mark_bitmap->mostly_disjoint_range_union(this,
  1695                                 0, // always start from the start of the bitmap
  1696                                 _start_word,
  1697                                 gclab_real_word_size());
  1698       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1700 #ifndef PRODUCT
  1701       if (use_local_bitmaps && verify_local_bitmaps)
  1702         verify();
  1703 #endif // PRODUCT
  1704     } else {
  1705       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1709   size_t bitmap_size_in_words() const {
  1710     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1713 };
  1715 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1716 private:
  1717   bool        _retired;
  1718   bool        _during_marking;
  1719   GCLabBitMap _bitmap;
  1721 public:
  1722   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1723     ParGCAllocBuffer(gclab_word_size),
  1724     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1725     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1726     _retired(false)
  1727   { }
  1729   inline bool mark(HeapWord* addr) {
  1730     guarantee(use_local_bitmaps, "invariant");
  1731     assert(_during_marking, "invariant");
  1732     return _bitmap.mark(addr);
  1735   inline void set_buf(HeapWord* buf) {
  1736     if (use_local_bitmaps && _during_marking)
  1737       _bitmap.set_buffer(buf);
  1738     ParGCAllocBuffer::set_buf(buf);
  1739     _retired = false;
  1742   inline void retire(bool end_of_gc, bool retain) {
  1743     if (_retired)
  1744       return;
  1745     if (use_local_bitmaps && _during_marking) {
  1746       _bitmap.retire();
  1748     ParGCAllocBuffer::retire(end_of_gc, retain);
  1749     _retired = true;
  1751 };
  1753 class G1ParScanThreadState : public StackObj {
  1754 protected:
  1755   G1CollectedHeap* _g1h;
  1756   RefToScanQueue*  _refs;
  1757   DirtyCardQueue   _dcq;
  1758   CardTableModRefBS* _ct_bs;
  1759   G1RemSet* _g1_rem;
  1761   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1762   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1763   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1764   ageTable            _age_table;
  1766   size_t           _alloc_buffer_waste;
  1767   size_t           _undo_waste;
  1769   OopsInHeapRegionClosure*      _evac_failure_cl;
  1770   G1ParScanHeapEvacClosure*     _evac_cl;
  1771   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1773   int _hash_seed;
  1774   int _queue_num;
  1776   size_t _term_attempts;
  1778   double _start;
  1779   double _start_strong_roots;
  1780   double _strong_roots_time;
  1781   double _start_term;
  1782   double _term_time;
  1784   // Map from young-age-index (0 == not young, 1 is youngest) to
  1785   // surviving words. base is what we get back from the malloc call
  1786   size_t* _surviving_young_words_base;
  1787   // this points into the array, as we use the first few entries for padding
  1788   size_t* _surviving_young_words;
  1790 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1792   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1794   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1796   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1797   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1799   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1800     if (!from->is_survivor()) {
  1801       _g1_rem->par_write_ref(from, p, tid);
  1805   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1806     // If the new value of the field points to the same region or
  1807     // is the to-space, we don't need to include it in the Rset updates.
  1808     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1809       size_t card_index = ctbs()->index_for(p);
  1810       // If the card hasn't been added to the buffer, do it.
  1811       if (ctbs()->mark_card_deferred(card_index)) {
  1812         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1817 public:
  1818   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1820   ~G1ParScanThreadState() {
  1821     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1824   RefToScanQueue*   refs()            { return _refs;             }
  1825   ageTable*         age_table()       { return &_age_table;       }
  1827   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1828     return _alloc_buffers[purpose];
  1831   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1832   size_t undo_waste() const                      { return _undo_waste; }
  1834 #ifdef ASSERT
  1835   bool verify_ref(narrowOop* ref) const;
  1836   bool verify_ref(oop* ref) const;
  1837   bool verify_task(StarTask ref) const;
  1838 #endif // ASSERT
  1840   template <class T> void push_on_queue(T* ref) {
  1841     assert(verify_ref(ref), "sanity");
  1842     refs()->push(ref);
  1845   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1846     if (G1DeferredRSUpdate) {
  1847       deferred_rs_update(from, p, tid);
  1848     } else {
  1849       immediate_rs_update(from, p, tid);
  1853   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1855     HeapWord* obj = NULL;
  1856     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1857     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1858       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1859       assert(gclab_word_size == alloc_buf->word_sz(),
  1860              "dynamic resizing is not supported");
  1861       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1862       alloc_buf->retire(false, false);
  1864       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1865       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1866       // Otherwise.
  1867       alloc_buf->set_buf(buf);
  1869       obj = alloc_buf->allocate(word_sz);
  1870       assert(obj != NULL, "buffer was definitely big enough...");
  1871     } else {
  1872       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1874     return obj;
  1877   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1878     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1879     if (obj != NULL) return obj;
  1880     return allocate_slow(purpose, word_sz);
  1883   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1884     if (alloc_buffer(purpose)->contains(obj)) {
  1885       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1886              "should contain whole object");
  1887       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1888     } else {
  1889       CollectedHeap::fill_with_object(obj, word_sz);
  1890       add_to_undo_waste(word_sz);
  1894   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1895     _evac_failure_cl = evac_failure_cl;
  1897   OopsInHeapRegionClosure* evac_failure_closure() {
  1898     return _evac_failure_cl;
  1901   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1902     _evac_cl = evac_cl;
  1905   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1906     _partial_scan_cl = partial_scan_cl;
  1909   int* hash_seed() { return &_hash_seed; }
  1910   int  queue_num() { return _queue_num; }
  1912   size_t term_attempts() const  { return _term_attempts; }
  1913   void note_term_attempt() { _term_attempts++; }
  1915   void start_strong_roots() {
  1916     _start_strong_roots = os::elapsedTime();
  1918   void end_strong_roots() {
  1919     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1921   double strong_roots_time() const { return _strong_roots_time; }
  1923   void start_term_time() {
  1924     note_term_attempt();
  1925     _start_term = os::elapsedTime();
  1927   void end_term_time() {
  1928     _term_time += (os::elapsedTime() - _start_term);
  1930   double term_time() const { return _term_time; }
  1932   double elapsed_time() const {
  1933     return os::elapsedTime() - _start;
  1936   static void
  1937     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1938   void
  1939     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1941   size_t* surviving_young_words() {
  1942     // We add on to hide entry 0 which accumulates surviving words for
  1943     // age -1 regions (i.e. non-young ones)
  1944     return _surviving_young_words;
  1947   void retire_alloc_buffers() {
  1948     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1949       size_t waste = _alloc_buffers[ap]->words_remaining();
  1950       add_to_alloc_buffer_waste(waste);
  1951       _alloc_buffers[ap]->retire(true, false);
  1955   template <class T> void deal_with_reference(T* ref_to_scan) {
  1956     if (has_partial_array_mask(ref_to_scan)) {
  1957       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1958     } else {
  1959       // Note: we can use "raw" versions of "region_containing" because
  1960       // "obj_to_scan" is definitely in the heap, and is not in a
  1961       // humongous region.
  1962       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1963       _evac_cl->set_region(r);
  1964       _evac_cl->do_oop_nv(ref_to_scan);
  1968   void deal_with_reference(StarTask ref) {
  1969     assert(verify_task(ref), "sanity");
  1970     if (ref.is_narrow()) {
  1971       deal_with_reference((narrowOop*)ref);
  1972     } else {
  1973       deal_with_reference((oop*)ref);
  1977 public:
  1978   void trim_queue();
  1979 };
  1981 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial