src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Mon, 01 Aug 2011 10:04:28 -0700

author
johnc
date
Mon, 01 Aug 2011 10:04:28 -0700
changeset 3021
14a2fd14c0db
parent 2975
5f6f2615433a
child 3028
f44782f04dd4
permissions
-rw-r--r--

7068240: G1: Long "parallel other time" and "ext root scanning" when running specific benchmark
Summary: In root processing, move the scanning of the reference processor's discovered lists to before RSet updating and scanning. When scanning the reference processor's discovered lists, use a buffering closure so that the time spent copying any reference object is correctly attributed. Also removed a couple of unused and irrelevant timers.
Reviewed-by: ysr, jmasa

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1HRPrinter.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.hpp"
    34 #include "gc_implementation/g1/heapRegionSets.hpp"
    35 #include "gc_implementation/shared/hSpaceCounters.hpp"
    36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    37 #include "memory/barrierSet.hpp"
    38 #include "memory/memRegion.hpp"
    39 #include "memory/sharedHeap.hpp"
    41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    42 // It uses the "Garbage First" heap organization and algorithm, which
    43 // may combine concurrent marking with parallel, incremental compaction of
    44 // heap subsets that will yield large amounts of garbage.
    46 class HeapRegion;
    47 class HRRSCleanupTask;
    48 class PermanentGenerationSpec;
    49 class GenerationSpec;
    50 class OopsInHeapRegionClosure;
    51 class G1ScanHeapEvacClosure;
    52 class ObjectClosure;
    53 class SpaceClosure;
    54 class CompactibleSpaceClosure;
    55 class Space;
    56 class G1CollectorPolicy;
    57 class GenRemSet;
    58 class G1RemSet;
    59 class HeapRegionRemSetIterator;
    60 class ConcurrentMark;
    61 class ConcurrentMarkThread;
    62 class ConcurrentG1Refine;
    63 class GenerationCounters;
    65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    71 enum GCAllocPurpose {
    72   GCAllocForTenured,
    73   GCAllocForSurvived,
    74   GCAllocPurposeCount
    75 };
    77 class YoungList : public CHeapObj {
    78 private:
    79   G1CollectedHeap* _g1h;
    81   HeapRegion* _head;
    83   HeapRegion* _survivor_head;
    84   HeapRegion* _survivor_tail;
    86   HeapRegion* _curr;
    88   size_t      _length;
    89   size_t      _survivor_length;
    91   size_t      _last_sampled_rs_lengths;
    92   size_t      _sampled_rs_lengths;
    94   void         empty_list(HeapRegion* list);
    96 public:
    97   YoungList(G1CollectedHeap* g1h);
    99   void         push_region(HeapRegion* hr);
   100   void         add_survivor_region(HeapRegion* hr);
   102   void         empty_list();
   103   bool         is_empty() { return _length == 0; }
   104   size_t       length() { return _length; }
   105   size_t       survivor_length() { return _survivor_length; }
   107   // Currently we do not keep track of the used byte sum for the
   108   // young list and the survivors and it'd be quite a lot of work to
   109   // do so. When we'll eventually replace the young list with
   110   // instances of HeapRegionLinkedList we'll get that for free. So,
   111   // we'll report the more accurate information then.
   112   size_t       eden_used_bytes() {
   113     assert(length() >= survivor_length(), "invariant");
   114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
   115   }
   116   size_t       survivor_used_bytes() {
   117     return survivor_length() * HeapRegion::GrainBytes;
   118   }
   120   void rs_length_sampling_init();
   121   bool rs_length_sampling_more();
   122   void rs_length_sampling_next();
   124   void reset_sampled_info() {
   125     _last_sampled_rs_lengths =   0;
   126   }
   127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   129   // for development purposes
   130   void reset_auxilary_lists();
   131   void clear() { _head = NULL; _length = 0; }
   133   void clear_survivors() {
   134     _survivor_head    = NULL;
   135     _survivor_tail    = NULL;
   136     _survivor_length  = 0;
   137   }
   139   HeapRegion* first_region() { return _head; }
   140   HeapRegion* first_survivor_region() { return _survivor_head; }
   141   HeapRegion* last_survivor_region() { return _survivor_tail; }
   143   // debugging
   144   bool          check_list_well_formed();
   145   bool          check_list_empty(bool check_sample = true);
   146   void          print();
   147 };
   149 class MutatorAllocRegion : public G1AllocRegion {
   150 protected:
   151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   153 public:
   154   MutatorAllocRegion()
   155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   156 };
   158 class RefineCardTableEntryClosure;
   159 class G1CollectedHeap : public SharedHeap {
   160   friend class VM_G1CollectForAllocation;
   161   friend class VM_GenCollectForPermanentAllocation;
   162   friend class VM_G1CollectFull;
   163   friend class VM_G1IncCollectionPause;
   164   friend class VMStructs;
   165   friend class MutatorAllocRegion;
   167   // Closures used in implementation.
   168   friend class G1ParCopyHelper;
   169   friend class G1IsAliveClosure;
   170   friend class G1EvacuateFollowersClosure;
   171   friend class G1ParScanThreadState;
   172   friend class G1ParScanClosureSuper;
   173   friend class G1ParEvacuateFollowersClosure;
   174   friend class G1ParTask;
   175   friend class G1FreeGarbageRegionClosure;
   176   friend class RefineCardTableEntryClosure;
   177   friend class G1PrepareCompactClosure;
   178   friend class RegionSorter;
   179   friend class RegionResetter;
   180   friend class CountRCClosure;
   181   friend class EvacPopObjClosure;
   182   friend class G1ParCleanupCTTask;
   184   // Other related classes.
   185   friend class G1MarkSweep;
   187 private:
   188   // The one and only G1CollectedHeap, so static functions can find it.
   189   static G1CollectedHeap* _g1h;
   191   static size_t _humongous_object_threshold_in_words;
   193   // Storage for the G1 heap (excludes the permanent generation).
   194   VirtualSpace _g1_storage;
   195   MemRegion    _g1_reserved;
   197   // The part of _g1_storage that is currently committed.
   198   MemRegion _g1_committed;
   200   // The master free list. It will satisfy all new region allocations.
   201   MasterFreeRegionList      _free_list;
   203   // The secondary free list which contains regions that have been
   204   // freed up during the cleanup process. This will be appended to the
   205   // master free list when appropriate.
   206   SecondaryFreeRegionList   _secondary_free_list;
   208   // It keeps track of the humongous regions.
   209   MasterHumongousRegionSet  _humongous_set;
   211   // The number of regions we could create by expansion.
   212   size_t _expansion_regions;
   214   // The block offset table for the G1 heap.
   215   G1BlockOffsetSharedArray* _bot_shared;
   217   // Move all of the regions off the free lists, then rebuild those free
   218   // lists, before and after full GC.
   219   void tear_down_region_lists();
   220   void rebuild_region_lists();
   222   // The sequence of all heap regions in the heap.
   223   HeapRegionSeq _hrs;
   225   // Alloc region used to satisfy mutator allocation requests.
   226   MutatorAllocRegion _mutator_alloc_region;
   228   // It resets the mutator alloc region before new allocations can take place.
   229   void init_mutator_alloc_region();
   231   // It releases the mutator alloc region.
   232   void release_mutator_alloc_region();
   234   void abandon_gc_alloc_regions();
   236   // The to-space memory regions into which objects are being copied during
   237   // a GC.
   238   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   239   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   240   // These are the regions, one per GCAllocPurpose, that are half-full
   241   // at the end of a collection and that we want to reuse during the
   242   // next collection.
   243   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
   244   // This specifies whether we will keep the last half-full region at
   245   // the end of a collection so that it can be reused during the next
   246   // collection (this is specified per GCAllocPurpose)
   247   bool _retain_gc_alloc_region[GCAllocPurposeCount];
   249   // A list of the regions that have been set to be alloc regions in the
   250   // current collection.
   251   HeapRegion* _gc_alloc_region_list;
   253   // Helper for monitoring and management support.
   254   G1MonitoringSupport* _g1mm;
   256   // Determines PLAB size for a particular allocation purpose.
   257   static size_t desired_plab_sz(GCAllocPurpose purpose);
   259   // When called by par thread, requires the FreeList_lock to be held.
   260   void push_gc_alloc_region(HeapRegion* hr);
   262   // This should only be called single-threaded.  Undeclares all GC alloc
   263   // regions.
   264   void forget_alloc_region_list();
   266   // Should be used to set an alloc region, because there's other
   267   // associated bookkeeping.
   268   void set_gc_alloc_region(int purpose, HeapRegion* r);
   270   // Check well-formedness of alloc region list.
   271   bool check_gc_alloc_regions();
   273   // Outside of GC pauses, the number of bytes used in all regions other
   274   // than the current allocation region.
   275   size_t _summary_bytes_used;
   277   // This is used for a quick test on whether a reference points into
   278   // the collection set or not. Basically, we have an array, with one
   279   // byte per region, and that byte denotes whether the corresponding
   280   // region is in the collection set or not. The entry corresponding
   281   // the bottom of the heap, i.e., region 0, is pointed to by
   282   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   283   // biased so that it actually points to address 0 of the address
   284   // space, to make the test as fast as possible (we can simply shift
   285   // the address to address into it, instead of having to subtract the
   286   // bottom of the heap from the address before shifting it; basically
   287   // it works in the same way the card table works).
   288   bool* _in_cset_fast_test;
   290   // The allocated array used for the fast test on whether a reference
   291   // points into the collection set or not. This field is also used to
   292   // free the array.
   293   bool* _in_cset_fast_test_base;
   295   // The length of the _in_cset_fast_test_base array.
   296   size_t _in_cset_fast_test_length;
   298   volatile unsigned _gc_time_stamp;
   300   size_t* _surviving_young_words;
   302   G1HRPrinter _hr_printer;
   304   void setup_surviving_young_words();
   305   void update_surviving_young_words(size_t* surv_young_words);
   306   void cleanup_surviving_young_words();
   308   // It decides whether an explicit GC should start a concurrent cycle
   309   // instead of doing a STW GC. Currently, a concurrent cycle is
   310   // explicitly started if:
   311   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   312   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   313   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   315   // Keeps track of how many "full collections" (i.e., Full GCs or
   316   // concurrent cycles) we have completed. The number of them we have
   317   // started is maintained in _total_full_collections in CollectedHeap.
   318   volatile unsigned int _full_collections_completed;
   320   // This is a non-product method that is helpful for testing. It is
   321   // called at the end of a GC and artificially expands the heap by
   322   // allocating a number of dead regions. This way we can induce very
   323   // frequent marking cycles and stress the cleanup / concurrent
   324   // cleanup code more (as all the regions that will be allocated by
   325   // this method will be found dead by the marking cycle).
   326   void allocate_dummy_regions() PRODUCT_RETURN;
   328   // These are macros so that, if the assert fires, we get the correct
   329   // line number, file, etc.
   331 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   332   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   333           (_extra_message_),                                                  \
   334           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   335           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   336           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   338 #define assert_heap_locked()                                                  \
   339   do {                                                                        \
   340     assert(Heap_lock->owned_by_self(),                                        \
   341            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   342   } while (0)
   344 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   345   do {                                                                        \
   346     assert(Heap_lock->owned_by_self() ||                                      \
   347            (SafepointSynchronize::is_at_safepoint() &&                        \
   348              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   349            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   350                                         "should be at a safepoint"));         \
   351   } while (0)
   353 #define assert_heap_locked_and_not_at_safepoint()                             \
   354   do {                                                                        \
   355     assert(Heap_lock->owned_by_self() &&                                      \
   356                                     !SafepointSynchronize::is_at_safepoint(), \
   357           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   358                                        "should not be at a safepoint"));      \
   359   } while (0)
   361 #define assert_heap_not_locked()                                              \
   362   do {                                                                        \
   363     assert(!Heap_lock->owned_by_self(),                                       \
   364         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   365   } while (0)
   367 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   368   do {                                                                        \
   369     assert(!Heap_lock->owned_by_self() &&                                     \
   370                                     !SafepointSynchronize::is_at_safepoint(), \
   371       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   372                                    "should not be at a safepoint"));          \
   373   } while (0)
   375 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   376   do {                                                                        \
   377     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   378               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   379            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   380   } while (0)
   382 #define assert_not_at_safepoint()                                             \
   383   do {                                                                        \
   384     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   385            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   386   } while (0)
   388 protected:
   390   // Returns "true" iff none of the gc alloc regions have any allocations
   391   // since the last call to "save_marks".
   392   bool all_alloc_regions_no_allocs_since_save_marks();
   393   // Perform finalization stuff on all allocation regions.
   394   void retire_all_alloc_regions();
   396   // The young region list.
   397   YoungList*  _young_list;
   399   // The current policy object for the collector.
   400   G1CollectorPolicy* _g1_policy;
   402   // This is the second level of trying to allocate a new region. If
   403   // new_region() didn't find a region on the free_list, this call will
   404   // check whether there's anything available on the
   405   // secondary_free_list and/or wait for more regions to appear on
   406   // that list, if _free_regions_coming is set.
   407   HeapRegion* new_region_try_secondary_free_list();
   409   // Try to allocate a single non-humongous HeapRegion sufficient for
   410   // an allocation of the given word_size. If do_expand is true,
   411   // attempt to expand the heap if necessary to satisfy the allocation
   412   // request.
   413   HeapRegion* new_region(size_t word_size, bool do_expand);
   415   // Try to allocate a new region to be used for allocation by
   416   // a GC thread. It will try to expand the heap if no region is
   417   // available.
   418   HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);
   420   // Attempt to satisfy a humongous allocation request of the given
   421   // size by finding a contiguous set of free regions of num_regions
   422   // length and remove them from the master free list. Return the
   423   // index of the first region or G1_NULL_HRS_INDEX if the search
   424   // was unsuccessful.
   425   size_t humongous_obj_allocate_find_first(size_t num_regions,
   426                                            size_t word_size);
   428   // Initialize a contiguous set of free regions of length num_regions
   429   // and starting at index first so that they appear as a single
   430   // humongous region.
   431   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
   432                                                       size_t num_regions,
   433                                                       size_t word_size);
   435   // Attempt to allocate a humongous object of the given size. Return
   436   // NULL if unsuccessful.
   437   HeapWord* humongous_obj_allocate(size_t word_size);
   439   // The following two methods, allocate_new_tlab() and
   440   // mem_allocate(), are the two main entry points from the runtime
   441   // into the G1's allocation routines. They have the following
   442   // assumptions:
   443   //
   444   // * They should both be called outside safepoints.
   445   //
   446   // * They should both be called without holding the Heap_lock.
   447   //
   448   // * All allocation requests for new TLABs should go to
   449   //   allocate_new_tlab().
   450   //
   451   // * All non-TLAB allocation requests should go to mem_allocate().
   452   //
   453   // * If either call cannot satisfy the allocation request using the
   454   //   current allocating region, they will try to get a new one. If
   455   //   this fails, they will attempt to do an evacuation pause and
   456   //   retry the allocation.
   457   //
   458   // * If all allocation attempts fail, even after trying to schedule
   459   //   an evacuation pause, allocate_new_tlab() will return NULL,
   460   //   whereas mem_allocate() will attempt a heap expansion and/or
   461   //   schedule a Full GC.
   462   //
   463   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   464   //   should never be called with word_size being humongous. All
   465   //   humongous allocation requests should go to mem_allocate() which
   466   //   will satisfy them with a special path.
   468   virtual HeapWord* allocate_new_tlab(size_t word_size);
   470   virtual HeapWord* mem_allocate(size_t word_size,
   471                                  bool*  gc_overhead_limit_was_exceeded);
   473   // The following three methods take a gc_count_before_ret
   474   // parameter which is used to return the GC count if the method
   475   // returns NULL. Given that we are required to read the GC count
   476   // while holding the Heap_lock, and these paths will take the
   477   // Heap_lock at some point, it's easier to get them to read the GC
   478   // count while holding the Heap_lock before they return NULL instead
   479   // of the caller (namely: mem_allocate()) having to also take the
   480   // Heap_lock just to read the GC count.
   482   // First-level mutator allocation attempt: try to allocate out of
   483   // the mutator alloc region without taking the Heap_lock. This
   484   // should only be used for non-humongous allocations.
   485   inline HeapWord* attempt_allocation(size_t word_size,
   486                                       unsigned int* gc_count_before_ret);
   488   // Second-level mutator allocation attempt: take the Heap_lock and
   489   // retry the allocation attempt, potentially scheduling a GC
   490   // pause. This should only be used for non-humongous allocations.
   491   HeapWord* attempt_allocation_slow(size_t word_size,
   492                                     unsigned int* gc_count_before_ret);
   494   // Takes the Heap_lock and attempts a humongous allocation. It can
   495   // potentially schedule a GC pause.
   496   HeapWord* attempt_allocation_humongous(size_t word_size,
   497                                          unsigned int* gc_count_before_ret);
   499   // Allocation attempt that should be called during safepoints (e.g.,
   500   // at the end of a successful GC). expect_null_mutator_alloc_region
   501   // specifies whether the mutator alloc region is expected to be NULL
   502   // or not.
   503   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   504                                        bool expect_null_mutator_alloc_region);
   506   // It dirties the cards that cover the block so that so that the post
   507   // write barrier never queues anything when updating objects on this
   508   // block. It is assumed (and in fact we assert) that the block
   509   // belongs to a young region.
   510   inline void dirty_young_block(HeapWord* start, size_t word_size);
   512   // Allocate blocks during garbage collection. Will ensure an
   513   // allocation region, either by picking one or expanding the
   514   // heap, and then allocate a block of the given size. The block
   515   // may not be a humongous - it must fit into a single heap region.
   516   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   518   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   519                                     HeapRegion*    alloc_region,
   520                                     bool           par,
   521                                     size_t         word_size);
   523   // Ensure that no further allocations can happen in "r", bearing in mind
   524   // that parallel threads might be attempting allocations.
   525   void par_allocate_remaining_space(HeapRegion* r);
   527   // Retires an allocation region when it is full or at the end of a
   528   // GC pause.
   529   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   531   // These two methods are the "callbacks" from the G1AllocRegion class.
   533   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   534   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   535                                    size_t allocated_bytes);
   537   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   538   //   inspection request and should collect the entire heap
   539   // - if clear_all_soft_refs is true, all soft references should be
   540   //   cleared during the GC
   541   // - if explicit_gc is false, word_size describes the allocation that
   542   //   the GC should attempt (at least) to satisfy
   543   // - it returns false if it is unable to do the collection due to the
   544   //   GC locker being active, true otherwise
   545   bool do_collection(bool explicit_gc,
   546                      bool clear_all_soft_refs,
   547                      size_t word_size);
   549   // Callback from VM_G1CollectFull operation.
   550   // Perform a full collection.
   551   void do_full_collection(bool clear_all_soft_refs);
   553   // Resize the heap if necessary after a full collection.  If this is
   554   // after a collect-for allocation, "word_size" is the allocation size,
   555   // and will be considered part of the used portion of the heap.
   556   void resize_if_necessary_after_full_collection(size_t word_size);
   558   // Callback from VM_G1CollectForAllocation operation.
   559   // This function does everything necessary/possible to satisfy a
   560   // failed allocation request (including collection, expansion, etc.)
   561   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   563   // Attempting to expand the heap sufficiently
   564   // to support an allocation of the given "word_size".  If
   565   // successful, perform the allocation and return the address of the
   566   // allocated block, or else "NULL".
   567   HeapWord* expand_and_allocate(size_t word_size);
   569 public:
   571   G1MonitoringSupport* g1mm() { return _g1mm; }
   573   // Expand the garbage-first heap by at least the given size (in bytes!).
   574   // Returns true if the heap was expanded by the requested amount;
   575   // false otherwise.
   576   // (Rounds up to a HeapRegion boundary.)
   577   bool expand(size_t expand_bytes);
   579   // Do anything common to GC's.
   580   virtual void gc_prologue(bool full);
   581   virtual void gc_epilogue(bool full);
   583   // We register a region with the fast "in collection set" test. We
   584   // simply set to true the array slot corresponding to this region.
   585   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   586     assert(_in_cset_fast_test_base != NULL, "sanity");
   587     assert(r->in_collection_set(), "invariant");
   588     size_t index = r->hrs_index();
   589     assert(index < _in_cset_fast_test_length, "invariant");
   590     assert(!_in_cset_fast_test_base[index], "invariant");
   591     _in_cset_fast_test_base[index] = true;
   592   }
   594   // This is a fast test on whether a reference points into the
   595   // collection set or not. It does not assume that the reference
   596   // points into the heap; if it doesn't, it will return false.
   597   bool in_cset_fast_test(oop obj) {
   598     assert(_in_cset_fast_test != NULL, "sanity");
   599     if (_g1_committed.contains((HeapWord*) obj)) {
   600       // no need to subtract the bottom of the heap from obj,
   601       // _in_cset_fast_test is biased
   602       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   603       bool ret = _in_cset_fast_test[index];
   604       // let's make sure the result is consistent with what the slower
   605       // test returns
   606       assert( ret || !obj_in_cs(obj), "sanity");
   607       assert(!ret ||  obj_in_cs(obj), "sanity");
   608       return ret;
   609     } else {
   610       return false;
   611     }
   612   }
   614   void clear_cset_fast_test() {
   615     assert(_in_cset_fast_test_base != NULL, "sanity");
   616     memset(_in_cset_fast_test_base, false,
   617         _in_cset_fast_test_length * sizeof(bool));
   618   }
   620   // This is called at the end of either a concurrent cycle or a Full
   621   // GC to update the number of full collections completed. Those two
   622   // can happen in a nested fashion, i.e., we start a concurrent
   623   // cycle, a Full GC happens half-way through it which ends first,
   624   // and then the cycle notices that a Full GC happened and ends
   625   // too. The concurrent parameter is a boolean to help us do a bit
   626   // tighter consistency checking in the method. If concurrent is
   627   // false, the caller is the inner caller in the nesting (i.e., the
   628   // Full GC). If concurrent is true, the caller is the outer caller
   629   // in this nesting (i.e., the concurrent cycle). Further nesting is
   630   // not currently supported. The end of the this call also notifies
   631   // the FullGCCount_lock in case a Java thread is waiting for a full
   632   // GC to happen (e.g., it called System.gc() with
   633   // +ExplicitGCInvokesConcurrent).
   634   void increment_full_collections_completed(bool concurrent);
   636   unsigned int full_collections_completed() {
   637     return _full_collections_completed;
   638   }
   640   G1HRPrinter* hr_printer() { return &_hr_printer; }
   642 protected:
   644   // Shrink the garbage-first heap by at most the given size (in bytes!).
   645   // (Rounds down to a HeapRegion boundary.)
   646   virtual void shrink(size_t expand_bytes);
   647   void shrink_helper(size_t expand_bytes);
   649   #if TASKQUEUE_STATS
   650   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   651   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   652   void reset_taskqueue_stats();
   653   #endif // TASKQUEUE_STATS
   655   // Schedule the VM operation that will do an evacuation pause to
   656   // satisfy an allocation request of word_size. *succeeded will
   657   // return whether the VM operation was successful (it did do an
   658   // evacuation pause) or not (another thread beat us to it or the GC
   659   // locker was active). Given that we should not be holding the
   660   // Heap_lock when we enter this method, we will pass the
   661   // gc_count_before (i.e., total_collections()) as a parameter since
   662   // it has to be read while holding the Heap_lock. Currently, both
   663   // methods that call do_collection_pause() release the Heap_lock
   664   // before the call, so it's easy to read gc_count_before just before.
   665   HeapWord* do_collection_pause(size_t       word_size,
   666                                 unsigned int gc_count_before,
   667                                 bool*        succeeded);
   669   // The guts of the incremental collection pause, executed by the vm
   670   // thread. It returns false if it is unable to do the collection due
   671   // to the GC locker being active, true otherwise
   672   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   674   // Actually do the work of evacuating the collection set.
   675   void evacuate_collection_set();
   677   // The g1 remembered set of the heap.
   678   G1RemSet* _g1_rem_set;
   679   // And it's mod ref barrier set, used to track updates for the above.
   680   ModRefBarrierSet* _mr_bs;
   682   // A set of cards that cover the objects for which the Rsets should be updated
   683   // concurrently after the collection.
   684   DirtyCardQueueSet _dirty_card_queue_set;
   686   // The Heap Region Rem Set Iterator.
   687   HeapRegionRemSetIterator** _rem_set_iterator;
   689   // The closure used to refine a single card.
   690   RefineCardTableEntryClosure* _refine_cte_cl;
   692   // A function to check the consistency of dirty card logs.
   693   void check_ct_logs_at_safepoint();
   695   // A DirtyCardQueueSet that is used to hold cards that contain
   696   // references into the current collection set. This is used to
   697   // update the remembered sets of the regions in the collection
   698   // set in the event of an evacuation failure.
   699   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   701   // After a collection pause, make the regions in the CS into free
   702   // regions.
   703   void free_collection_set(HeapRegion* cs_head);
   705   // Abandon the current collection set without recording policy
   706   // statistics or updating free lists.
   707   void abandon_collection_set(HeapRegion* cs_head);
   709   // Applies "scan_non_heap_roots" to roots outside the heap,
   710   // "scan_rs" to roots inside the heap (having done "set_region" to
   711   // indicate the region in which the root resides), and does "scan_perm"
   712   // (setting the generation to the perm generation.)  If "scan_rs" is
   713   // NULL, then this step is skipped.  The "worker_i"
   714   // param is for use with parallel roots processing, and should be
   715   // the "i" of the calling parallel worker thread's work(i) function.
   716   // In the sequential case this param will be ignored.
   717   void g1_process_strong_roots(bool collecting_perm_gen,
   718                                SharedHeap::ScanningOption so,
   719                                OopClosure* scan_non_heap_roots,
   720                                OopsInHeapRegionClosure* scan_rs,
   721                                OopsInGenClosure* scan_perm,
   722                                int worker_i);
   724   // Apply "blk" to all the weak roots of the system.  These include
   725   // JNI weak roots, the code cache, system dictionary, symbol table,
   726   // string table, and referents of reachable weak refs.
   727   void g1_process_weak_roots(OopClosure* root_closure,
   728                              OopClosure* non_root_closure);
   730   // Invoke "save_marks" on all heap regions.
   731   void save_marks();
   733   // Frees a non-humongous region by initializing its contents and
   734   // adding it to the free list that's passed as a parameter (this is
   735   // usually a local list which will be appended to the master free
   736   // list later). The used bytes of freed regions are accumulated in
   737   // pre_used. If par is true, the region's RSet will not be freed
   738   // up. The assumption is that this will be done later.
   739   void free_region(HeapRegion* hr,
   740                    size_t* pre_used,
   741                    FreeRegionList* free_list,
   742                    bool par);
   744   // Frees a humongous region by collapsing it into individual regions
   745   // and calling free_region() for each of them. The freed regions
   746   // will be added to the free list that's passed as a parameter (this
   747   // is usually a local list which will be appended to the master free
   748   // list later). The used bytes of freed regions are accumulated in
   749   // pre_used. If par is true, the region's RSet will not be freed
   750   // up. The assumption is that this will be done later.
   751   void free_humongous_region(HeapRegion* hr,
   752                              size_t* pre_used,
   753                              FreeRegionList* free_list,
   754                              HumongousRegionSet* humongous_proxy_set,
   755                              bool par);
   757   // Notifies all the necessary spaces that the committed space has
   758   // been updated (either expanded or shrunk). It should be called
   759   // after _g1_storage is updated.
   760   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   762   // The concurrent marker (and the thread it runs in.)
   763   ConcurrentMark* _cm;
   764   ConcurrentMarkThread* _cmThread;
   765   bool _mark_in_progress;
   767   // The concurrent refiner.
   768   ConcurrentG1Refine* _cg1r;
   770   // The parallel task queues
   771   RefToScanQueueSet *_task_queues;
   773   // True iff a evacuation has failed in the current collection.
   774   bool _evacuation_failed;
   776   // Set the attribute indicating whether evacuation has failed in the
   777   // current collection.
   778   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   780   // Failed evacuations cause some logical from-space objects to have
   781   // forwarding pointers to themselves.  Reset them.
   782   void remove_self_forwarding_pointers();
   784   // When one is non-null, so is the other.  Together, they each pair is
   785   // an object with a preserved mark, and its mark value.
   786   GrowableArray<oop>*     _objs_with_preserved_marks;
   787   GrowableArray<markOop>* _preserved_marks_of_objs;
   789   // Preserve the mark of "obj", if necessary, in preparation for its mark
   790   // word being overwritten with a self-forwarding-pointer.
   791   void preserve_mark_if_necessary(oop obj, markOop m);
   793   // The stack of evac-failure objects left to be scanned.
   794   GrowableArray<oop>*    _evac_failure_scan_stack;
   795   // The closure to apply to evac-failure objects.
   797   OopsInHeapRegionClosure* _evac_failure_closure;
   798   // Set the field above.
   799   void
   800   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   801     _evac_failure_closure = evac_failure_closure;
   802   }
   804   // Push "obj" on the scan stack.
   805   void push_on_evac_failure_scan_stack(oop obj);
   806   // Process scan stack entries until the stack is empty.
   807   void drain_evac_failure_scan_stack();
   808   // True iff an invocation of "drain_scan_stack" is in progress; to
   809   // prevent unnecessary recursion.
   810   bool _drain_in_progress;
   812   // Do any necessary initialization for evacuation-failure handling.
   813   // "cl" is the closure that will be used to process evac-failure
   814   // objects.
   815   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   816   // Do any necessary cleanup for evacuation-failure handling data
   817   // structures.
   818   void finalize_for_evac_failure();
   820   // An attempt to evacuate "obj" has failed; take necessary steps.
   821   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   822   void handle_evacuation_failure_common(oop obj, markOop m);
   824   // Ensure that the relevant gc_alloc regions are set.
   825   void get_gc_alloc_regions();
   826   // We're done with GC alloc regions. We are going to tear down the
   827   // gc alloc list and remove the gc alloc tag from all the regions on
   828   // that list. However, we will also retain the last (i.e., the one
   829   // that is half-full) GC alloc region, per GCAllocPurpose, for
   830   // possible reuse during the next collection, provided
   831   // _retain_gc_alloc_region[] indicates that it should be the
   832   // case. Said regions are kept in the _retained_gc_alloc_regions[]
   833   // array. If the parameter totally is set, we will not retain any
   834   // regions, irrespective of what _retain_gc_alloc_region[]
   835   // indicates.
   836   void release_gc_alloc_regions(bool totally);
   837 #ifndef PRODUCT
   838   // Useful for debugging.
   839   void print_gc_alloc_regions();
   840 #endif // !PRODUCT
   842   // Instance of the concurrent mark is_alive closure for embedding
   843   // into the reference processor as the is_alive_non_header. This
   844   // prevents unnecessary additions to the discovered lists during
   845   // concurrent discovery.
   846   G1CMIsAliveClosure _is_alive_closure;
   848   // ("Weak") Reference processing support
   849   ReferenceProcessor* _ref_processor;
   851   enum G1H_process_strong_roots_tasks {
   852     G1H_PS_mark_stack_oops_do,
   853     G1H_PS_refProcessor_oops_do,
   854     // Leave this one last.
   855     G1H_PS_NumElements
   856   };
   858   SubTasksDone* _process_strong_tasks;
   860   volatile bool _free_regions_coming;
   862 public:
   864   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   866   void set_refine_cte_cl_concurrency(bool concurrent);
   868   RefToScanQueue *task_queue(int i) const;
   870   // A set of cards where updates happened during the GC
   871   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   873   // A DirtyCardQueueSet that is used to hold cards that contain
   874   // references into the current collection set. This is used to
   875   // update the remembered sets of the regions in the collection
   876   // set in the event of an evacuation failure.
   877   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   878         { return _into_cset_dirty_card_queue_set; }
   880   // Create a G1CollectedHeap with the specified policy.
   881   // Must call the initialize method afterwards.
   882   // May not return if something goes wrong.
   883   G1CollectedHeap(G1CollectorPolicy* policy);
   885   // Initialize the G1CollectedHeap to have the initial and
   886   // maximum sizes, permanent generation, and remembered and barrier sets
   887   // specified by the policy object.
   888   jint initialize();
   890   virtual void ref_processing_init();
   892   void set_par_threads(int t) {
   893     SharedHeap::set_par_threads(t);
   894     _process_strong_tasks->set_n_threads(t);
   895   }
   897   virtual CollectedHeap::Name kind() const {
   898     return CollectedHeap::G1CollectedHeap;
   899   }
   901   // The current policy object for the collector.
   902   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   904   // Adaptive size policy.  No such thing for g1.
   905   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   907   // The rem set and barrier set.
   908   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   909   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   911   // The rem set iterator.
   912   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   913     return _rem_set_iterator[i];
   914   }
   916   HeapRegionRemSetIterator* rem_set_iterator() {
   917     return _rem_set_iterator[0];
   918   }
   920   unsigned get_gc_time_stamp() {
   921     return _gc_time_stamp;
   922   }
   924   void reset_gc_time_stamp() {
   925     _gc_time_stamp = 0;
   926     OrderAccess::fence();
   927   }
   929   void increment_gc_time_stamp() {
   930     ++_gc_time_stamp;
   931     OrderAccess::fence();
   932   }
   934   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
   935                                   DirtyCardQueue* into_cset_dcq,
   936                                   bool concurrent, int worker_i);
   938   // The shared block offset table array.
   939   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   941   // Reference Processing accessor
   942   ReferenceProcessor* ref_processor() { return _ref_processor; }
   944   virtual size_t capacity() const;
   945   virtual size_t used() const;
   946   // This should be called when we're not holding the heap lock. The
   947   // result might be a bit inaccurate.
   948   size_t used_unlocked() const;
   949   size_t recalculate_used() const;
   950 #ifndef PRODUCT
   951   size_t recalculate_used_regions() const;
   952 #endif // PRODUCT
   954   // These virtual functions do the actual allocation.
   955   // Some heaps may offer a contiguous region for shared non-blocking
   956   // allocation, via inlined code (by exporting the address of the top and
   957   // end fields defining the extent of the contiguous allocation region.)
   958   // But G1CollectedHeap doesn't yet support this.
   960   // Return an estimate of the maximum allocation that could be performed
   961   // without triggering any collection or expansion activity.  In a
   962   // generational collector, for example, this is probably the largest
   963   // allocation that could be supported (without expansion) in the youngest
   964   // generation.  It is "unsafe" because no locks are taken; the result
   965   // should be treated as an approximation, not a guarantee, for use in
   966   // heuristic resizing decisions.
   967   virtual size_t unsafe_max_alloc();
   969   virtual bool is_maximal_no_gc() const {
   970     return _g1_storage.uncommitted_size() == 0;
   971   }
   973   // The total number of regions in the heap.
   974   size_t n_regions() { return _hrs.length(); }
   976   // The max number of regions in the heap.
   977   size_t max_regions() { return _hrs.max_length(); }
   979   // The number of regions that are completely free.
   980   size_t free_regions() { return _free_list.length(); }
   982   // The number of regions that are not completely free.
   983   size_t used_regions() { return n_regions() - free_regions(); }
   985   // The number of regions available for "regular" expansion.
   986   size_t expansion_regions() { return _expansion_regions; }
   988   // Factory method for HeapRegion instances. It will return NULL if
   989   // the allocation fails.
   990   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
   992   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   993   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   994   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
   995   void verify_dirty_young_regions() PRODUCT_RETURN;
   997   // verify_region_sets() performs verification over the region
   998   // lists. It will be compiled in the product code to be used when
   999   // necessary (i.e., during heap verification).
  1000   void verify_region_sets();
  1002   // verify_region_sets_optional() is planted in the code for
  1003   // list verification in non-product builds (and it can be enabled in
  1004   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1005 #if HEAP_REGION_SET_FORCE_VERIFY
  1006   void verify_region_sets_optional() {
  1007     verify_region_sets();
  1009 #else // HEAP_REGION_SET_FORCE_VERIFY
  1010   void verify_region_sets_optional() { }
  1011 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1013 #ifdef ASSERT
  1014   bool is_on_master_free_list(HeapRegion* hr) {
  1015     return hr->containing_set() == &_free_list;
  1018   bool is_in_humongous_set(HeapRegion* hr) {
  1019     return hr->containing_set() == &_humongous_set;
  1021 #endif // ASSERT
  1023   // Wrapper for the region list operations that can be called from
  1024   // methods outside this class.
  1026   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1027     _secondary_free_list.add_as_tail(list);
  1030   void append_secondary_free_list() {
  1031     _free_list.add_as_head(&_secondary_free_list);
  1034   void append_secondary_free_list_if_not_empty_with_lock() {
  1035     // If the secondary free list looks empty there's no reason to
  1036     // take the lock and then try to append it.
  1037     if (!_secondary_free_list.is_empty()) {
  1038       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1039       append_secondary_free_list();
  1043   void set_free_regions_coming();
  1044   void reset_free_regions_coming();
  1045   bool free_regions_coming() { return _free_regions_coming; }
  1046   void wait_while_free_regions_coming();
  1048   // Perform a collection of the heap; intended for use in implementing
  1049   // "System.gc".  This probably implies as full a collection as the
  1050   // "CollectedHeap" supports.
  1051   virtual void collect(GCCause::Cause cause);
  1053   // The same as above but assume that the caller holds the Heap_lock.
  1054   void collect_locked(GCCause::Cause cause);
  1056   // This interface assumes that it's being called by the
  1057   // vm thread. It collects the heap assuming that the
  1058   // heap lock is already held and that we are executing in
  1059   // the context of the vm thread.
  1060   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1062   // True iff a evacuation has failed in the most-recent collection.
  1063   bool evacuation_failed() { return _evacuation_failed; }
  1065   // It will free a region if it has allocated objects in it that are
  1066   // all dead. It calls either free_region() or
  1067   // free_humongous_region() depending on the type of the region that
  1068   // is passed to it.
  1069   void free_region_if_empty(HeapRegion* hr,
  1070                             size_t* pre_used,
  1071                             FreeRegionList* free_list,
  1072                             HumongousRegionSet* humongous_proxy_set,
  1073                             HRRSCleanupTask* hrrs_cleanup_task,
  1074                             bool par);
  1076   // It appends the free list to the master free list and updates the
  1077   // master humongous list according to the contents of the proxy
  1078   // list. It also adjusts the total used bytes according to pre_used
  1079   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1080   void update_sets_after_freeing_regions(size_t pre_used,
  1081                                        FreeRegionList* free_list,
  1082                                        HumongousRegionSet* humongous_proxy_set,
  1083                                        bool par);
  1085   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1086   virtual bool is_in(const void* p) const;
  1088   // Return "TRUE" iff the given object address is within the collection
  1089   // set.
  1090   inline bool obj_in_cs(oop obj);
  1092   // Return "TRUE" iff the given object address is in the reserved
  1093   // region of g1 (excluding the permanent generation).
  1094   bool is_in_g1_reserved(const void* p) const {
  1095     return _g1_reserved.contains(p);
  1098   // Returns a MemRegion that corresponds to the space that has been
  1099   // reserved for the heap
  1100   MemRegion g1_reserved() {
  1101     return _g1_reserved;
  1104   // Returns a MemRegion that corresponds to the space that has been
  1105   // committed in the heap
  1106   MemRegion g1_committed() {
  1107     return _g1_committed;
  1110   virtual bool is_in_closed_subset(const void* p) const;
  1112   // Dirty card table entries covering a list of young regions.
  1113   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
  1115   // This resets the card table to all zeros.  It is used after
  1116   // a collection pause which used the card table to claim cards.
  1117   void cleanUpCardTable();
  1119   // Iteration functions.
  1121   // Iterate over all the ref-containing fields of all objects, calling
  1122   // "cl.do_oop" on each.
  1123   virtual void oop_iterate(OopClosure* cl) {
  1124     oop_iterate(cl, true);
  1126   void oop_iterate(OopClosure* cl, bool do_perm);
  1128   // Same as above, restricted to a memory region.
  1129   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1130     oop_iterate(mr, cl, true);
  1132   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1134   // Iterate over all objects, calling "cl.do_object" on each.
  1135   virtual void object_iterate(ObjectClosure* cl) {
  1136     object_iterate(cl, true);
  1138   virtual void safe_object_iterate(ObjectClosure* cl) {
  1139     object_iterate(cl, true);
  1141   void object_iterate(ObjectClosure* cl, bool do_perm);
  1143   // Iterate over all objects allocated since the last collection, calling
  1144   // "cl.do_object" on each.  The heap must have been initialized properly
  1145   // to support this function, or else this call will fail.
  1146   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1148   // Iterate over all spaces in use in the heap, in ascending address order.
  1149   virtual void space_iterate(SpaceClosure* cl);
  1151   // Iterate over heap regions, in address order, terminating the
  1152   // iteration early if the "doHeapRegion" method returns "true".
  1153   void heap_region_iterate(HeapRegionClosure* blk) const;
  1155   // Iterate over heap regions starting with r (or the first region if "r"
  1156   // is NULL), in address order, terminating early if the "doHeapRegion"
  1157   // method returns "true".
  1158   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
  1160   // Return the region with the given index. It assumes the index is valid.
  1161   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
  1163   // Divide the heap region sequence into "chunks" of some size (the number
  1164   // of regions divided by the number of parallel threads times some
  1165   // overpartition factor, currently 4).  Assumes that this will be called
  1166   // in parallel by ParallelGCThreads worker threads with discinct worker
  1167   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1168   // calls will use the same "claim_value", and that that claim value is
  1169   // different from the claim_value of any heap region before the start of
  1170   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1171   // attempting to claim the first region in each chunk, and, if
  1172   // successful, applying the closure to each region in the chunk (and
  1173   // setting the claim value of the second and subsequent regions of the
  1174   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1175   // i.e., that a closure never attempt to abort a traversal.
  1176   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1177                                        int worker,
  1178                                        jint claim_value);
  1180   // It resets all the region claim values to the default.
  1181   void reset_heap_region_claim_values();
  1183 #ifdef ASSERT
  1184   bool check_heap_region_claim_values(jint claim_value);
  1185 #endif // ASSERT
  1187   // Iterate over the regions (if any) in the current collection set.
  1188   void collection_set_iterate(HeapRegionClosure* blk);
  1190   // As above but starting from region r
  1191   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1193   // Returns the first (lowest address) compactible space in the heap.
  1194   virtual CompactibleSpace* first_compactible_space();
  1196   // A CollectedHeap will contain some number of spaces.  This finds the
  1197   // space containing a given address, or else returns NULL.
  1198   virtual Space* space_containing(const void* addr) const;
  1200   // A G1CollectedHeap will contain some number of heap regions.  This
  1201   // finds the region containing a given address, or else returns NULL.
  1202   template <class T>
  1203   inline HeapRegion* heap_region_containing(const T addr) const;
  1205   // Like the above, but requires "addr" to be in the heap (to avoid a
  1206   // null-check), and unlike the above, may return an continuing humongous
  1207   // region.
  1208   template <class T>
  1209   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1211   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1212   // each address in the (reserved) heap is a member of exactly
  1213   // one block.  The defining characteristic of a block is that it is
  1214   // possible to find its size, and thus to progress forward to the next
  1215   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1216   // represent Java objects, or they might be free blocks in a
  1217   // free-list-based heap (or subheap), as long as the two kinds are
  1218   // distinguishable and the size of each is determinable.
  1220   // Returns the address of the start of the "block" that contains the
  1221   // address "addr".  We say "blocks" instead of "object" since some heaps
  1222   // may not pack objects densely; a chunk may either be an object or a
  1223   // non-object.
  1224   virtual HeapWord* block_start(const void* addr) const;
  1226   // Requires "addr" to be the start of a chunk, and returns its size.
  1227   // "addr + size" is required to be the start of a new chunk, or the end
  1228   // of the active area of the heap.
  1229   virtual size_t block_size(const HeapWord* addr) const;
  1231   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1232   // the block is an object.
  1233   virtual bool block_is_obj(const HeapWord* addr) const;
  1235   // Does this heap support heap inspection? (+PrintClassHistogram)
  1236   virtual bool supports_heap_inspection() const { return true; }
  1238   // Section on thread-local allocation buffers (TLABs)
  1239   // See CollectedHeap for semantics.
  1241   virtual bool supports_tlab_allocation() const;
  1242   virtual size_t tlab_capacity(Thread* thr) const;
  1243   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1245   // Can a compiler initialize a new object without store barriers?
  1246   // This permission only extends from the creation of a new object
  1247   // via a TLAB up to the first subsequent safepoint. If such permission
  1248   // is granted for this heap type, the compiler promises to call
  1249   // defer_store_barrier() below on any slow path allocation of
  1250   // a new object for which such initializing store barriers will
  1251   // have been elided. G1, like CMS, allows this, but should be
  1252   // ready to provide a compensating write barrier as necessary
  1253   // if that storage came out of a non-young region. The efficiency
  1254   // of this implementation depends crucially on being able to
  1255   // answer very efficiently in constant time whether a piece of
  1256   // storage in the heap comes from a young region or not.
  1257   // See ReduceInitialCardMarks.
  1258   virtual bool can_elide_tlab_store_barriers() const {
  1259     // 6920090: Temporarily disabled, because of lingering
  1260     // instabilities related to RICM with G1. In the
  1261     // interim, the option ReduceInitialCardMarksForG1
  1262     // below is left solely as a debugging device at least
  1263     // until 6920109 fixes the instabilities.
  1264     return ReduceInitialCardMarksForG1;
  1267   virtual bool card_mark_must_follow_store() const {
  1268     return true;
  1271   bool is_in_young(const oop obj) {
  1272     HeapRegion* hr = heap_region_containing(obj);
  1273     return hr != NULL && hr->is_young();
  1276 #ifdef ASSERT
  1277   virtual bool is_in_partial_collection(const void* p);
  1278 #endif
  1280   virtual bool is_scavengable(const void* addr);
  1282   // We don't need barriers for initializing stores to objects
  1283   // in the young gen: for the SATB pre-barrier, there is no
  1284   // pre-value that needs to be remembered; for the remembered-set
  1285   // update logging post-barrier, we don't maintain remembered set
  1286   // information for young gen objects. Note that non-generational
  1287   // G1 does not have any "young" objects, should not elide
  1288   // the rs logging barrier and so should always answer false below.
  1289   // However, non-generational G1 (-XX:-G1Gen) appears to have
  1290   // bit-rotted so was not tested below.
  1291   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1292     // Re 6920090, 6920109 above.
  1293     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1294     assert(G1Gen || !is_in_young(new_obj),
  1295            "Non-generational G1 should never return true below");
  1296     return is_in_young(new_obj);
  1299   // Can a compiler elide a store barrier when it writes
  1300   // a permanent oop into the heap?  Applies when the compiler
  1301   // is storing x to the heap, where x->is_perm() is true.
  1302   virtual bool can_elide_permanent_oop_store_barriers() const {
  1303     // At least until perm gen collection is also G1-ified, at
  1304     // which point this should return false.
  1305     return true;
  1308   // Returns "true" iff the given word_size is "very large".
  1309   static bool isHumongous(size_t word_size) {
  1310     // Note this has to be strictly greater-than as the TLABs
  1311     // are capped at the humongous thresold and we want to
  1312     // ensure that we don't try to allocate a TLAB as
  1313     // humongous and that we don't allocate a humongous
  1314     // object in a TLAB.
  1315     return word_size > _humongous_object_threshold_in_words;
  1318   // Update mod union table with the set of dirty cards.
  1319   void updateModUnion();
  1321   // Set the mod union bits corresponding to the given memRegion.  Note
  1322   // that this is always a safe operation, since it doesn't clear any
  1323   // bits.
  1324   void markModUnionRange(MemRegion mr);
  1326   // Records the fact that a marking phase is no longer in progress.
  1327   void set_marking_complete() {
  1328     _mark_in_progress = false;
  1330   void set_marking_started() {
  1331     _mark_in_progress = true;
  1333   bool mark_in_progress() {
  1334     return _mark_in_progress;
  1337   // Print the maximum heap capacity.
  1338   virtual size_t max_capacity() const;
  1340   virtual jlong millis_since_last_gc();
  1342   // Perform any cleanup actions necessary before allowing a verification.
  1343   virtual void prepare_for_verify();
  1345   // Perform verification.
  1347   // vo == UsePrevMarking  -> use "prev" marking information,
  1348   // vo == UseNextMarking -> use "next" marking information
  1349   // vo == UseMarkWord    -> use the mark word in the object header
  1350   //
  1351   // NOTE: Only the "prev" marking information is guaranteed to be
  1352   // consistent most of the time, so most calls to this should use
  1353   // vo == UsePrevMarking.
  1354   // Currently, there is only one case where this is called with
  1355   // vo == UseNextMarking, which is to verify the "next" marking
  1356   // information at the end of remark.
  1357   // Currently there is only one place where this is called with
  1358   // vo == UseMarkWord, which is to verify the marking during a
  1359   // full GC.
  1360   void verify(bool allow_dirty, bool silent, VerifyOption vo);
  1362   // Override; it uses the "prev" marking information
  1363   virtual void verify(bool allow_dirty, bool silent);
  1364   // Default behavior by calling print(tty);
  1365   virtual void print() const;
  1366   // This calls print_on(st, PrintHeapAtGCExtended).
  1367   virtual void print_on(outputStream* st) const;
  1368   // If extended is true, it will print out information for all
  1369   // regions in the heap by calling print_on_extended(st).
  1370   virtual void print_on(outputStream* st, bool extended) const;
  1371   virtual void print_on_extended(outputStream* st) const;
  1373   virtual void print_gc_threads_on(outputStream* st) const;
  1374   virtual void gc_threads_do(ThreadClosure* tc) const;
  1376   // Override
  1377   void print_tracing_info() const;
  1379   // The following two methods are helpful for debugging RSet issues.
  1380   void print_cset_rsets() PRODUCT_RETURN;
  1381   void print_all_rsets() PRODUCT_RETURN;
  1383   // Convenience function to be used in situations where the heap type can be
  1384   // asserted to be this type.
  1385   static G1CollectedHeap* heap();
  1387   void empty_young_list();
  1389   void set_region_short_lived_locked(HeapRegion* hr);
  1390   // add appropriate methods for any other surv rate groups
  1392   YoungList* young_list() { return _young_list; }
  1394   // debugging
  1395   bool check_young_list_well_formed() {
  1396     return _young_list->check_list_well_formed();
  1399   bool check_young_list_empty(bool check_heap,
  1400                               bool check_sample = true);
  1402   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1403   // many of these need to be public.
  1405   // The functions below are helper functions that a subclass of
  1406   // "CollectedHeap" can use in the implementation of its virtual
  1407   // functions.
  1408   // This performs a concurrent marking of the live objects in a
  1409   // bitmap off to the side.
  1410   void doConcurrentMark();
  1412   // Do a full concurrent marking, synchronously.
  1413   void do_sync_mark();
  1415   bool isMarkedPrev(oop obj) const;
  1416   bool isMarkedNext(oop obj) const;
  1418   // vo == UsePrevMarking -> use "prev" marking information,
  1419   // vo == UseNextMarking -> use "next" marking information,
  1420   // vo == UseMarkWord    -> use mark word from object header
  1421   bool is_obj_dead_cond(const oop obj,
  1422                         const HeapRegion* hr,
  1423                         const VerifyOption vo) const {
  1425     switch (vo) {
  1426       case VerifyOption_G1UsePrevMarking:
  1427         return is_obj_dead(obj, hr);
  1428       case VerifyOption_G1UseNextMarking:
  1429         return is_obj_ill(obj, hr);
  1430       default:
  1431         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1432         return !obj->is_gc_marked();
  1436   // Determine if an object is dead, given the object and also
  1437   // the region to which the object belongs. An object is dead
  1438   // iff a) it was not allocated since the last mark and b) it
  1439   // is not marked.
  1441   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1442     return
  1443       !hr->obj_allocated_since_prev_marking(obj) &&
  1444       !isMarkedPrev(obj);
  1447   // This is used when copying an object to survivor space.
  1448   // If the object is marked live, then we mark the copy live.
  1449   // If the object is allocated since the start of this mark
  1450   // cycle, then we mark the copy live.
  1451   // If the object has been around since the previous mark
  1452   // phase, and hasn't been marked yet during this phase,
  1453   // then we don't mark it, we just wait for the
  1454   // current marking cycle to get to it.
  1456   // This function returns true when an object has been
  1457   // around since the previous marking and hasn't yet
  1458   // been marked during this marking.
  1460   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1461     return
  1462       !hr->obj_allocated_since_next_marking(obj) &&
  1463       !isMarkedNext(obj);
  1466   // Determine if an object is dead, given only the object itself.
  1467   // This will find the region to which the object belongs and
  1468   // then call the region version of the same function.
  1470   // Added if it is in permanent gen it isn't dead.
  1471   // Added if it is NULL it isn't dead.
  1473   // vo == UsePrevMarking -> use "prev" marking information,
  1474   // vo == UseNextMarking -> use "next" marking information,
  1475   // vo == UseMarkWord    -> use mark word from object header
  1476   bool is_obj_dead_cond(const oop obj,
  1477                         const VerifyOption vo) const {
  1479     switch (vo) {
  1480       case VerifyOption_G1UsePrevMarking:
  1481         return is_obj_dead(obj);
  1482       case VerifyOption_G1UseNextMarking:
  1483         return is_obj_ill(obj);
  1484       default:
  1485         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1486         return !obj->is_gc_marked();
  1490   bool is_obj_dead(const oop obj) const {
  1491     const HeapRegion* hr = heap_region_containing(obj);
  1492     if (hr == NULL) {
  1493       if (Universe::heap()->is_in_permanent(obj))
  1494         return false;
  1495       else if (obj == NULL) return false;
  1496       else return true;
  1498     else return is_obj_dead(obj, hr);
  1501   bool is_obj_ill(const oop obj) const {
  1502     const HeapRegion* hr = heap_region_containing(obj);
  1503     if (hr == NULL) {
  1504       if (Universe::heap()->is_in_permanent(obj))
  1505         return false;
  1506       else if (obj == NULL) return false;
  1507       else return true;
  1509     else return is_obj_ill(obj, hr);
  1512   // The following is just to alert the verification code
  1513   // that a full collection has occurred and that the
  1514   // remembered sets are no longer up to date.
  1515   bool _full_collection;
  1516   void set_full_collection() { _full_collection = true;}
  1517   void clear_full_collection() {_full_collection = false;}
  1518   bool full_collection() {return _full_collection;}
  1520   ConcurrentMark* concurrent_mark() const { return _cm; }
  1521   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1523   // The dirty cards region list is used to record a subset of regions
  1524   // whose cards need clearing. The list if populated during the
  1525   // remembered set scanning and drained during the card table
  1526   // cleanup. Although the methods are reentrant, population/draining
  1527   // phases must not overlap. For synchronization purposes the last
  1528   // element on the list points to itself.
  1529   HeapRegion* _dirty_cards_region_list;
  1530   void push_dirty_cards_region(HeapRegion* hr);
  1531   HeapRegion* pop_dirty_cards_region();
  1533 public:
  1534   void stop_conc_gc_threads();
  1536   // <NEW PREDICTION>
  1538   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1539   void check_if_region_is_too_expensive(double predicted_time_ms);
  1540   size_t pending_card_num();
  1541   size_t max_pending_card_num();
  1542   size_t cards_scanned();
  1544   // </NEW PREDICTION>
  1546 protected:
  1547   size_t _max_heap_capacity;
  1548 };
  1550 #define use_local_bitmaps         1
  1551 #define verify_local_bitmaps      0
  1552 #define oop_buffer_length       256
  1554 #ifndef PRODUCT
  1555 class GCLabBitMap;
  1556 class GCLabBitMapClosure: public BitMapClosure {
  1557 private:
  1558   ConcurrentMark* _cm;
  1559   GCLabBitMap*    _bitmap;
  1561 public:
  1562   GCLabBitMapClosure(ConcurrentMark* cm,
  1563                      GCLabBitMap* bitmap) {
  1564     _cm     = cm;
  1565     _bitmap = bitmap;
  1568   virtual bool do_bit(size_t offset);
  1569 };
  1570 #endif // !PRODUCT
  1572 class GCLabBitMap: public BitMap {
  1573 private:
  1574   ConcurrentMark* _cm;
  1576   int       _shifter;
  1577   size_t    _bitmap_word_covers_words;
  1579   // beginning of the heap
  1580   HeapWord* _heap_start;
  1582   // this is the actual start of the GCLab
  1583   HeapWord* _real_start_word;
  1585   // this is the actual end of the GCLab
  1586   HeapWord* _real_end_word;
  1588   // this is the first word, possibly located before the actual start
  1589   // of the GCLab, that corresponds to the first bit of the bitmap
  1590   HeapWord* _start_word;
  1592   // size of a GCLab in words
  1593   size_t _gclab_word_size;
  1595   static int shifter() {
  1596     return MinObjAlignment - 1;
  1599   // how many heap words does a single bitmap word corresponds to?
  1600   static size_t bitmap_word_covers_words() {
  1601     return BitsPerWord << shifter();
  1604   size_t gclab_word_size() const {
  1605     return _gclab_word_size;
  1608   // Calculates actual GCLab size in words
  1609   size_t gclab_real_word_size() const {
  1610     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1611            / BitsPerWord;
  1614   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1615     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1616     // We are going to ensure that the beginning of a word in this
  1617     // bitmap also corresponds to the beginning of a word in the
  1618     // global marking bitmap. To handle the case where a GCLab
  1619     // starts from the middle of the bitmap, we need to add enough
  1620     // space (i.e. up to a bitmap word) to ensure that we have
  1621     // enough bits in the bitmap.
  1622     return bits_in_bitmap + BitsPerWord - 1;
  1624 public:
  1625   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1626     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1627       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1628       _shifter(shifter()),
  1629       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1630       _heap_start(heap_start),
  1631       _gclab_word_size(gclab_word_size),
  1632       _real_start_word(NULL),
  1633       _real_end_word(NULL),
  1634       _start_word(NULL)
  1636     guarantee( size_in_words() >= bitmap_size_in_words(),
  1637                "just making sure");
  1640   inline unsigned heapWordToOffset(HeapWord* addr) {
  1641     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1642     assert(offset < size(), "offset should be within bounds");
  1643     return offset;
  1646   inline HeapWord* offsetToHeapWord(size_t offset) {
  1647     HeapWord* addr =  _start_word + (offset << _shifter);
  1648     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1649     return addr;
  1652   bool fields_well_formed() {
  1653     bool ret1 = (_real_start_word == NULL) &&
  1654                 (_real_end_word == NULL) &&
  1655                 (_start_word == NULL);
  1656     if (ret1)
  1657       return true;
  1659     bool ret2 = _real_start_word >= _start_word &&
  1660       _start_word < _real_end_word &&
  1661       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1662       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1663                                                               > _real_end_word;
  1664     return ret2;
  1667   inline bool mark(HeapWord* addr) {
  1668     guarantee(use_local_bitmaps, "invariant");
  1669     assert(fields_well_formed(), "invariant");
  1671     if (addr >= _real_start_word && addr < _real_end_word) {
  1672       assert(!isMarked(addr), "should not have already been marked");
  1674       // first mark it on the bitmap
  1675       at_put(heapWordToOffset(addr), true);
  1677       return true;
  1678     } else {
  1679       return false;
  1683   inline bool isMarked(HeapWord* addr) {
  1684     guarantee(use_local_bitmaps, "invariant");
  1685     assert(fields_well_formed(), "invariant");
  1687     return at(heapWordToOffset(addr));
  1690   void set_buffer(HeapWord* start) {
  1691     guarantee(use_local_bitmaps, "invariant");
  1692     clear();
  1694     assert(start != NULL, "invariant");
  1695     _real_start_word = start;
  1696     _real_end_word   = start + _gclab_word_size;
  1698     size_t diff =
  1699       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1700     _start_word = start - diff;
  1702     assert(fields_well_formed(), "invariant");
  1705 #ifndef PRODUCT
  1706   void verify() {
  1707     // verify that the marks have been propagated
  1708     GCLabBitMapClosure cl(_cm, this);
  1709     iterate(&cl);
  1711 #endif // PRODUCT
  1713   void retire() {
  1714     guarantee(use_local_bitmaps, "invariant");
  1715     assert(fields_well_formed(), "invariant");
  1717     if (_start_word != NULL) {
  1718       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1720       // this means that the bitmap was set up for the GCLab
  1721       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1723       mark_bitmap->mostly_disjoint_range_union(this,
  1724                                 0, // always start from the start of the bitmap
  1725                                 _start_word,
  1726                                 gclab_real_word_size());
  1727       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1729 #ifndef PRODUCT
  1730       if (use_local_bitmaps && verify_local_bitmaps)
  1731         verify();
  1732 #endif // PRODUCT
  1733     } else {
  1734       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1738   size_t bitmap_size_in_words() const {
  1739     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1742 };
  1744 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1745 private:
  1746   bool        _retired;
  1747   bool        _during_marking;
  1748   GCLabBitMap _bitmap;
  1750 public:
  1751   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1752     ParGCAllocBuffer(gclab_word_size),
  1753     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1754     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1755     _retired(false)
  1756   { }
  1758   inline bool mark(HeapWord* addr) {
  1759     guarantee(use_local_bitmaps, "invariant");
  1760     assert(_during_marking, "invariant");
  1761     return _bitmap.mark(addr);
  1764   inline void set_buf(HeapWord* buf) {
  1765     if (use_local_bitmaps && _during_marking)
  1766       _bitmap.set_buffer(buf);
  1767     ParGCAllocBuffer::set_buf(buf);
  1768     _retired = false;
  1771   inline void retire(bool end_of_gc, bool retain) {
  1772     if (_retired)
  1773       return;
  1774     if (use_local_bitmaps && _during_marking) {
  1775       _bitmap.retire();
  1777     ParGCAllocBuffer::retire(end_of_gc, retain);
  1778     _retired = true;
  1780 };
  1782 class G1ParScanThreadState : public StackObj {
  1783 protected:
  1784   G1CollectedHeap* _g1h;
  1785   RefToScanQueue*  _refs;
  1786   DirtyCardQueue   _dcq;
  1787   CardTableModRefBS* _ct_bs;
  1788   G1RemSet* _g1_rem;
  1790   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1791   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1792   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1793   ageTable            _age_table;
  1795   size_t           _alloc_buffer_waste;
  1796   size_t           _undo_waste;
  1798   OopsInHeapRegionClosure*      _evac_failure_cl;
  1799   G1ParScanHeapEvacClosure*     _evac_cl;
  1800   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1802   int _hash_seed;
  1803   int _queue_num;
  1805   size_t _term_attempts;
  1807   double _start;
  1808   double _start_strong_roots;
  1809   double _strong_roots_time;
  1810   double _start_term;
  1811   double _term_time;
  1813   // Map from young-age-index (0 == not young, 1 is youngest) to
  1814   // surviving words. base is what we get back from the malloc call
  1815   size_t* _surviving_young_words_base;
  1816   // this points into the array, as we use the first few entries for padding
  1817   size_t* _surviving_young_words;
  1819 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1821   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1823   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1825   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1826   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1828   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1829     if (!from->is_survivor()) {
  1830       _g1_rem->par_write_ref(from, p, tid);
  1834   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1835     // If the new value of the field points to the same region or
  1836     // is the to-space, we don't need to include it in the Rset updates.
  1837     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1838       size_t card_index = ctbs()->index_for(p);
  1839       // If the card hasn't been added to the buffer, do it.
  1840       if (ctbs()->mark_card_deferred(card_index)) {
  1841         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1846 public:
  1847   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1849   ~G1ParScanThreadState() {
  1850     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1853   RefToScanQueue*   refs()            { return _refs;             }
  1854   ageTable*         age_table()       { return &_age_table;       }
  1856   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1857     return _alloc_buffers[purpose];
  1860   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1861   size_t undo_waste() const                      { return _undo_waste; }
  1863 #ifdef ASSERT
  1864   bool verify_ref(narrowOop* ref) const;
  1865   bool verify_ref(oop* ref) const;
  1866   bool verify_task(StarTask ref) const;
  1867 #endif // ASSERT
  1869   template <class T> void push_on_queue(T* ref) {
  1870     assert(verify_ref(ref), "sanity");
  1871     refs()->push(ref);
  1874   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1875     if (G1DeferredRSUpdate) {
  1876       deferred_rs_update(from, p, tid);
  1877     } else {
  1878       immediate_rs_update(from, p, tid);
  1882   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1884     HeapWord* obj = NULL;
  1885     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1886     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1887       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1888       assert(gclab_word_size == alloc_buf->word_sz(),
  1889              "dynamic resizing is not supported");
  1890       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1891       alloc_buf->retire(false, false);
  1893       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1894       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1895       // Otherwise.
  1896       alloc_buf->set_buf(buf);
  1898       obj = alloc_buf->allocate(word_sz);
  1899       assert(obj != NULL, "buffer was definitely big enough...");
  1900     } else {
  1901       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1903     return obj;
  1906   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1907     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1908     if (obj != NULL) return obj;
  1909     return allocate_slow(purpose, word_sz);
  1912   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1913     if (alloc_buffer(purpose)->contains(obj)) {
  1914       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1915              "should contain whole object");
  1916       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1917     } else {
  1918       CollectedHeap::fill_with_object(obj, word_sz);
  1919       add_to_undo_waste(word_sz);
  1923   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1924     _evac_failure_cl = evac_failure_cl;
  1926   OopsInHeapRegionClosure* evac_failure_closure() {
  1927     return _evac_failure_cl;
  1930   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1931     _evac_cl = evac_cl;
  1934   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1935     _partial_scan_cl = partial_scan_cl;
  1938   int* hash_seed() { return &_hash_seed; }
  1939   int  queue_num() { return _queue_num; }
  1941   size_t term_attempts() const  { return _term_attempts; }
  1942   void note_term_attempt() { _term_attempts++; }
  1944   void start_strong_roots() {
  1945     _start_strong_roots = os::elapsedTime();
  1947   void end_strong_roots() {
  1948     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1950   double strong_roots_time() const { return _strong_roots_time; }
  1952   void start_term_time() {
  1953     note_term_attempt();
  1954     _start_term = os::elapsedTime();
  1956   void end_term_time() {
  1957     _term_time += (os::elapsedTime() - _start_term);
  1959   double term_time() const { return _term_time; }
  1961   double elapsed_time() const {
  1962     return os::elapsedTime() - _start;
  1965   static void
  1966     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1967   void
  1968     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1970   size_t* surviving_young_words() {
  1971     // We add on to hide entry 0 which accumulates surviving words for
  1972     // age -1 regions (i.e. non-young ones)
  1973     return _surviving_young_words;
  1976   void retire_alloc_buffers() {
  1977     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1978       size_t waste = _alloc_buffers[ap]->words_remaining();
  1979       add_to_alloc_buffer_waste(waste);
  1980       _alloc_buffers[ap]->retire(true, false);
  1984   template <class T> void deal_with_reference(T* ref_to_scan) {
  1985     if (has_partial_array_mask(ref_to_scan)) {
  1986       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1987     } else {
  1988       // Note: we can use "raw" versions of "region_containing" because
  1989       // "obj_to_scan" is definitely in the heap, and is not in a
  1990       // humongous region.
  1991       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1992       _evac_cl->set_region(r);
  1993       _evac_cl->do_oop_nv(ref_to_scan);
  1997   void deal_with_reference(StarTask ref) {
  1998     assert(verify_task(ref), "sanity");
  1999     if (ref.is_narrow()) {
  2000       deal_with_reference((narrowOop*)ref);
  2001     } else {
  2002       deal_with_reference((oop*)ref);
  2006 public:
  2007   void trim_queue();
  2008 };
  2010 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial